1 /* 2 * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.annotation.Annotation; 29 import java.lang.constant.ClassDesc; 30 import java.lang.constant.ConstantDescs; 31 import java.lang.invoke.TypeDescriptor; 32 import java.lang.invoke.MethodHandles; 33 import java.lang.ref.SoftReference; 34 import java.io.IOException; 35 import java.io.InputStream; 36 import java.io.ObjectStreamField; 37 import java.lang.reflect.AnnotatedElement; 38 import java.lang.reflect.AnnotatedType; 39 import java.lang.reflect.AccessFlag; 40 import java.lang.reflect.Array; 41 import java.lang.reflect.Constructor; 42 import java.lang.reflect.Executable; 43 import java.lang.reflect.Field; 44 import java.lang.reflect.GenericArrayType; 45 import java.lang.reflect.GenericDeclaration; 46 import java.lang.reflect.InvocationTargetException; 47 import java.lang.reflect.Member; 48 import java.lang.reflect.Method; 49 import java.lang.reflect.Modifier; 50 import java.lang.reflect.RecordComponent; 51 import java.lang.reflect.Type; 52 import java.lang.reflect.TypeVariable; 53 import java.lang.constant.Constable; 54 import java.net.URL; 55 import java.security.AllPermission; 56 import java.security.Permissions; 57 import java.security.ProtectionDomain; 58 import java.util.ArrayList; 59 import java.util.Arrays; 60 import java.util.Collection; 61 import java.util.HashMap; 62 import java.util.LinkedHashMap; 63 import java.util.LinkedHashSet; 64 import java.util.List; 65 import java.util.Map; 66 import java.util.Objects; 67 import java.util.Optional; 68 import java.util.Set; 69 import java.util.stream.Collectors; 70 71 import jdk.internal.constant.ConstantUtils; 72 import jdk.internal.loader.BootLoader; 73 import jdk.internal.loader.BuiltinClassLoader; 74 import jdk.internal.misc.Unsafe; 75 import jdk.internal.module.Resources; 76 import jdk.internal.reflect.CallerSensitive; 77 import jdk.internal.reflect.CallerSensitiveAdapter; 78 import jdk.internal.reflect.ConstantPool; 79 import jdk.internal.reflect.Reflection; 80 import jdk.internal.reflect.ReflectionFactory; 81 import jdk.internal.util.ModifiedUtf; 82 import jdk.internal.vm.annotation.AOTRuntimeSetup; 83 import jdk.internal.vm.annotation.AOTSafeClassInitializer; 84 import jdk.internal.vm.annotation.IntrinsicCandidate; 85 import jdk.internal.vm.annotation.Stable; 86 87 import sun.invoke.util.Wrapper; 88 import sun.reflect.generics.factory.CoreReflectionFactory; 89 import sun.reflect.generics.factory.GenericsFactory; 90 import sun.reflect.generics.repository.ClassRepository; 91 import sun.reflect.generics.repository.MethodRepository; 92 import sun.reflect.generics.repository.ConstructorRepository; 93 import sun.reflect.generics.scope.ClassScope; 94 import sun.reflect.annotation.*; 95 96 /** 97 * Instances of the class {@code Class} represent classes and 98 * interfaces in a running Java application. An enum class and a record 99 * class are kinds of class; an annotation interface is a kind of 100 * interface. Every array also belongs to a class that is reflected as 101 * a {@code Class} object that is shared by all arrays with the same 102 * element type and number of dimensions. The primitive Java types 103 * ({@code boolean}, {@code byte}, {@code char}, {@code short}, {@code 104 * int}, {@code long}, {@code float}, and {@code double}), and the 105 * keyword {@code void} are also represented as {@code Class} objects. 106 * 107 * <p> {@code Class} has no public constructor. Instead a {@code Class} 108 * object is constructed automatically by the Java Virtual Machine when 109 * a class is derived from the bytes of a {@code class} file through 110 * the invocation of one of the following methods: 111 * <ul> 112 * <li> {@link ClassLoader#defineClass(String, byte[], int, int) ClassLoader::defineClass} 113 * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[]) 114 * java.lang.invoke.MethodHandles.Lookup::defineClass} 115 * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 116 * java.lang.invoke.MethodHandles.Lookup::defineHiddenClass} 117 * </ul> 118 * 119 * <p> The methods of class {@code Class} expose many characteristics of a 120 * class or interface. Most characteristics are derived from the {@code class} 121 * file that the class loader passed to the Java Virtual Machine or 122 * from the {@code class} file passed to {@code Lookup::defineClass} 123 * or {@code Lookup::defineHiddenClass}. 124 * A few characteristics are determined by the class loading environment 125 * at run time, such as the module returned by {@link #getModule() getModule()}. 126 * 127 * <p> The following example uses a {@code Class} object to print the 128 * class name of an object: 129 * 130 * {@snippet lang="java" : 131 * void printClassName(Object obj) { 132 * System.out.println("The class of " + obj + 133 * " is " + obj.getClass().getName()); 134 * }} 135 * 136 * It is also possible to get the {@code Class} object for a named 137 * class or interface (or for {@code void}) using a <dfn>class literal</dfn> 138 * (JLS {@jls 15.8.2}). 139 * For example: 140 * 141 * {@snippet lang="java" : 142 * System.out.println("The name of class Foo is: " + Foo.class.getName()); // @highlight substring="Foo.class" 143 * } 144 * 145 * <p> Some methods of class {@code Class} expose whether the declaration of 146 * a class or interface in Java source code was <em>enclosed</em> within 147 * another declaration. Other methods describe how a class or interface 148 * is situated in a <dfn>{@index "nest"}</dfn>. A nest is a set of 149 * classes and interfaces, in the same run-time package, that 150 * allow mutual access to their {@code private} members. 151 * The classes and interfaces are known as <dfn>{@index "nestmates"}</dfn> 152 * (JVMS {@jvms 4.7.29}). 153 * One nestmate acts as the 154 * <dfn>nest host</dfn> (JVMS {@jvms 4.7.28}), and enumerates the other nestmates which 155 * belong to the nest; each of them in turn records it as the nest host. 156 * The classes and interfaces which belong to a nest, including its host, are 157 * determined when 158 * {@code class} files are generated, for example, a Java compiler 159 * will typically record a top-level class as the host of a nest where the 160 * other members are the classes and interfaces whose declarations are 161 * enclosed within the top-level class declaration. 162 * 163 * <h2><a id=hiddenClasses>Hidden Classes</a></h2> 164 * A class or interface created by the invocation of 165 * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 166 * Lookup::defineHiddenClass} is a {@linkplain Class#isHidden() <dfn>hidden</dfn>} 167 * class or interface. 168 * All kinds of class, including enum classes and record classes, may be 169 * hidden classes; all kinds of interface, including annotation interfaces, 170 * may be hidden interfaces. 171 * 172 * The {@linkplain #getName() name of a hidden class or interface} is 173 * not a {@linkplain ClassLoader##binary-name binary name}, 174 * which means the following: 175 * <ul> 176 * <li>A hidden class or interface cannot be referenced by the constant pools 177 * of other classes and interfaces. 178 * <li>A hidden class or interface cannot be described in 179 * {@linkplain java.lang.constant.ConstantDesc <em>nominal form</em>} by 180 * {@link #describeConstable() Class::describeConstable}, 181 * {@link ClassDesc#of(String) ClassDesc::of}, or 182 * {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}. 183 * <li>A hidden class or interface cannot be discovered by {@link #forName Class::forName} 184 * or {@link ClassLoader#loadClass(String, boolean) ClassLoader::loadClass}. 185 * </ul> 186 * 187 * A hidden class or interface is never an array class, but may be 188 * the element type of an array. In all other respects, the fact that 189 * a class or interface is hidden has no bearing on the characteristics 190 * exposed by the methods of class {@code Class}. 191 * 192 * <h2><a id=implicitClasses>Implicitly Declared Classes</a></h2> 193 * 194 * Conventionally, a Java compiler, starting from a source file for an 195 * implicitly declared class, say {@code HelloWorld.java}, creates a 196 * similarly-named {@code class} file, {@code HelloWorld.class}, where 197 * the class stored in that {@code class} file is named {@code 198 * "HelloWorld"}, matching the base names of the source and {@code 199 * class} files. 200 * 201 * For the {@code Class} object of an implicitly declared class {@code 202 * HelloWorld}, the methods to get the {@linkplain #getName name} and 203 * {@linkplain #getTypeName type name} return results 204 * equal to {@code "HelloWorld"}. The {@linkplain #getSimpleName 205 * simple name} of such an implicitly declared class is {@code "HelloWorld"} and 206 * the {@linkplain #getCanonicalName canonical name} is {@code "HelloWorld"}. 207 * 208 * @param <T> the type of the class modeled by this {@code Class} 209 * object. For example, the type of {@code String.class} is {@code 210 * Class<String>}. Use {@code Class<?>} if the class being modeled is 211 * unknown. 212 * 213 * @see java.lang.ClassLoader#defineClass(byte[], int, int) 214 * @since 1.0 215 */ 216 @AOTSafeClassInitializer 217 public final class Class<T> implements java.io.Serializable, 218 GenericDeclaration, 219 Type, 220 AnnotatedElement, 221 TypeDescriptor.OfField<Class<?>>, 222 Constable { 223 private static final int ANNOTATION= 0x00002000; 224 private static final int ENUM = 0x00004000; 225 private static final int SYNTHETIC = 0x00001000; 226 227 private static native void registerNatives(); 228 static { 229 runtimeSetup(); 230 } 231 232 /// No significant static final fields; [#resetArchivedStates()] handles 233 /// prevents storing [#reflectionFactory] into AOT image. 234 @AOTRuntimeSetup 235 private static void runtimeSetup() { 236 registerNatives(); 237 } 238 239 /* 240 * Private constructor. Only the Java Virtual Machine creates Class objects. 241 * This constructor is not used and prevents the default constructor being 242 * generated. 243 */ 244 private Class(ClassLoader loader, Class<?> arrayComponentType, char mods, ProtectionDomain pd, boolean isPrim, char flags) { 245 // Initialize final field for classLoader. The initialization value of non-null 246 // prevents future JIT optimizations from assuming this final field is null. 247 // The following assignments are done directly by the VM without calling this constructor. 248 classLoader = loader; 249 componentType = arrayComponentType; 250 modifiers = mods; 251 protectionDomain = pd; 252 primitive = isPrim; 253 classFileAccessFlags = flags; 254 } 255 256 /** 257 * Converts the object to a string. The string representation is the 258 * string "class" or "interface", followed by a space, and then by the 259 * name of the class in the format returned by {@code getName}. 260 * If this {@code Class} object represents a primitive type, 261 * this method returns the name of the primitive type. If 262 * this {@code Class} object represents void this method returns 263 * "void". If this {@code Class} object represents an array type, 264 * this method returns "class " followed by {@code getName}. 265 * 266 * @return a string representation of this {@code Class} object. 267 */ 268 public String toString() { 269 String kind = isInterface() ? "interface " : isPrimitive() ? "" : "class "; 270 return kind.concat(getName()); 271 } 272 273 /** 274 * Returns a string describing this {@code Class}, including 275 * information about modifiers, {@link #isSealed() sealed}/{@code 276 * non-sealed} status, and type parameters. 277 * 278 * The string is formatted as a list of type modifiers, if any, 279 * followed by the kind of type (empty string for primitive types 280 * and {@code class}, {@code enum}, {@code interface}, 281 * {@code @interface}, or {@code record} as appropriate), followed 282 * by the type's name, followed by an angle-bracketed 283 * comma-separated list of the type's type parameters, if any, 284 * including informative bounds on the type parameters, if any. 285 * 286 * A space is used to separate modifiers from one another and to 287 * separate any modifiers from the kind of type. The modifiers 288 * occur in canonical order. If there are no type parameters, the 289 * type parameter list is elided. 290 * 291 * For an array type, the string starts with the type name, 292 * followed by an angle-bracketed comma-separated list of the 293 * type's type parameters, if any, followed by a sequence of 294 * {@code []} characters, one set of brackets per dimension of 295 * the array. 296 * 297 * <p>Note that since information about the runtime representation 298 * of a type is being generated, modifiers not present on the 299 * originating source code or illegal on the originating source 300 * code may be present. 301 * 302 * @return a string describing this {@code Class}, including 303 * information about modifiers and type parameters 304 * 305 * @since 1.8 306 */ 307 public String toGenericString() { 308 if (isPrimitive()) { 309 return toString(); 310 } else { 311 StringBuilder sb = new StringBuilder(); 312 Class<?> component = this; 313 int arrayDepth = 0; 314 315 if (isArray()) { 316 do { 317 arrayDepth++; 318 component = component.getComponentType(); 319 } while (component.isArray()); 320 sb.append(component.getName()); 321 } else { 322 // Class modifiers are a superset of interface modifiers 323 int modifiers = getModifiers() & Modifier.classModifiers(); 324 if (modifiers != 0) { 325 sb.append(Modifier.toString(modifiers)); 326 sb.append(' '); 327 } 328 329 // A class cannot be strictfp and sealed/non-sealed so 330 // it is sufficient to check for sealed-ness after all 331 // modifiers are printed. 332 addSealingInfo(modifiers, sb); 333 334 if (isAnnotation()) { 335 sb.append('@'); 336 } 337 if (isInterface()) { // Note: all annotation interfaces are interfaces 338 sb.append("interface"); 339 } else { 340 if (isEnum()) 341 sb.append("enum"); 342 else if (isRecord()) 343 sb.append("record"); 344 else 345 sb.append("class"); 346 } 347 sb.append(' '); 348 sb.append(getName()); 349 } 350 351 TypeVariable<?>[] typeparms = component.getTypeParameters(); 352 if (typeparms.length > 0) { 353 sb.append(Arrays.stream(typeparms) 354 .map(Class::typeVarBounds) 355 .collect(Collectors.joining(",", "<", ">"))); 356 } 357 358 if (arrayDepth > 0) sb.append("[]".repeat(arrayDepth)); 359 360 return sb.toString(); 361 } 362 } 363 364 private void addSealingInfo(int modifiers, StringBuilder sb) { 365 // A class can be final XOR sealed XOR non-sealed. 366 if (Modifier.isFinal(modifiers)) { 367 return; // no-op 368 } else { 369 if (isSealed()) { 370 sb.append("sealed "); 371 return; 372 } else { 373 // Check for sealed ancestor, which implies this class 374 // is non-sealed. 375 if (hasSealedAncestor(this)) { 376 sb.append("non-sealed "); 377 } 378 } 379 } 380 } 381 382 private boolean hasSealedAncestor(Class<?> clazz) { 383 // From JLS 8.1.1.2: 384 // "It is a compile-time error if a class has a sealed direct 385 // superclass or a sealed direct superinterface, and is not 386 // declared final, sealed, or non-sealed either explicitly or 387 // implicitly. 388 // Thus, an effect of the sealed keyword is to force all 389 // direct subclasses to explicitly declare whether they are 390 // final, sealed, or non-sealed. This avoids accidentally 391 // exposing a sealed class hierarchy to unwanted subclassing." 392 393 // Therefore, will just check direct superclass and 394 // superinterfaces. 395 var superclass = clazz.getSuperclass(); 396 if (superclass != null && superclass.isSealed()) { 397 return true; 398 } 399 for (var superinterface : clazz.getInterfaces()) { 400 if (superinterface.isSealed()) { 401 return true; 402 } 403 } 404 return false; 405 } 406 407 static String typeVarBounds(TypeVariable<?> typeVar) { 408 Type[] bounds = typeVar.getBounds(); 409 if (bounds.length == 1 && bounds[0].equals(Object.class)) { 410 return typeVar.getName(); 411 } else { 412 return typeVar.getName() + " extends " + 413 Arrays.stream(bounds) 414 .map(Type::getTypeName) 415 .collect(Collectors.joining(" & ")); 416 } 417 } 418 419 /** 420 * Returns the {@code Class} object associated with the class or 421 * interface with the given string name. Invoking this method is 422 * equivalent to: 423 * 424 * {@snippet lang="java" : 425 * Class.forName(className, true, currentLoader) 426 * } 427 * 428 * where {@code currentLoader} denotes the defining class loader of 429 * the current class. 430 * 431 * <p> For example, the following code fragment returns the 432 * runtime {@code Class} object for the class named 433 * {@code java.lang.Thread}: 434 * 435 * {@snippet lang="java" : 436 * Class<?> t = Class.forName("java.lang.Thread"); 437 * } 438 * <p> 439 * A call to {@code forName("X")} causes the class named 440 * {@code X} to be initialized. 441 * 442 * <p> 443 * In cases where this method is called from a context where there is no 444 * caller frame on the stack (e.g. when called directly from a JNI 445 * attached thread), the system class loader is used. 446 * 447 * @param className the {@linkplain ClassLoader##binary-name binary name} 448 * of the class or the string representing an array type 449 * @return the {@code Class} object for the class with the 450 * specified name. 451 * @throws LinkageError if the linkage fails 452 * @throws ExceptionInInitializerError if the initialization provoked 453 * by this method fails 454 * @throws ClassNotFoundException if the class cannot be located 455 * 456 * @jls 12.2 Loading of Classes and Interfaces 457 * @jls 12.3 Linking of Classes and Interfaces 458 * @jls 12.4 Initialization of Classes and Interfaces 459 */ 460 @CallerSensitive 461 public static Class<?> forName(String className) 462 throws ClassNotFoundException { 463 Class<?> caller = Reflection.getCallerClass(); 464 return forName(className, caller); 465 } 466 467 // Caller-sensitive adapter method for reflective invocation 468 @CallerSensitiveAdapter 469 private static Class<?> forName(String className, Class<?> caller) 470 throws ClassNotFoundException { 471 validateClassNameLength(className); 472 ClassLoader loader = (caller == null) ? ClassLoader.getSystemClassLoader() 473 : ClassLoader.getClassLoader(caller); 474 return forName0(className, true, loader, caller); 475 } 476 477 /** 478 * Returns the {@code Class} object associated with the class or 479 * interface with the given string name, using the given class loader. 480 * Given the {@linkplain ClassLoader##binary-name binary name} for a class or interface, 481 * this method attempts to locate and load the class or interface. The specified 482 * class loader is used to load the class or interface. If the parameter 483 * {@code loader} is {@code null}, the class is loaded through the bootstrap 484 * class loader. The class is initialized only if the 485 * {@code initialize} parameter is {@code true} and if it has 486 * not been initialized earlier. 487 * 488 * <p> This method cannot be used to obtain any of the {@code Class} objects 489 * representing primitive types or void, hidden classes or interfaces, 490 * or array classes whose element type is a hidden class or interface. 491 * If {@code name} denotes a primitive type or void, for example {@code I}, 492 * an attempt will be made to locate a user-defined class in the unnamed package 493 * whose name is {@code I} instead. 494 * To obtain a {@code Class} object for a named primitive type 495 * such as {@code int} or {@code long} use {@link 496 * #forPrimitiveName(String)}. 497 * 498 * <p> To obtain the {@code Class} object associated with an array class, 499 * the name consists of one or more {@code '['} representing the depth 500 * of the array nesting, followed by the element type as encoded in 501 * {@linkplain ##nameFormat the table} specified in {@code Class.getName()}. 502 * 503 * <p> Examples: 504 * {@snippet lang="java" : 505 * Class<?> threadClass = Class.forName("java.lang.Thread", false, currentLoader); 506 * Class<?> stringArrayClass = Class.forName("[Ljava.lang.String;", false, currentLoader); 507 * Class<?> intArrayClass = Class.forName("[[[I", false, currentLoader); // Class of int[][][] 508 * Class<?> nestedClass = Class.forName("java.lang.Character$UnicodeBlock", false, currentLoader); 509 * Class<?> fooClass = Class.forName("Foo", true, currentLoader); 510 * } 511 * 512 * <p> A call to {@code getName()} on the {@code Class} object returned 513 * from {@code forName(}<i>N</i>{@code )} returns <i>N</i>. 514 * 515 * <p> A call to {@code forName("[L}<i>N</i>{@code ;")} causes the element type 516 * named <i>N</i> to be loaded but not initialized regardless of the value 517 * of the {@code initialize} parameter. 518 * 519 * @apiNote 520 * This method throws errors related to loading, linking or initializing 521 * as specified in Sections {@jls 12.2}, {@jls 12.3}, and {@jls 12.4} of 522 * <cite>The Java Language Specification</cite>. 523 * In addition, this method does not check whether the requested class 524 * is accessible to its caller. 525 * 526 * @param name the {@linkplain ClassLoader##binary-name binary name} 527 * of the class or the string representing an array class 528 * 529 * @param initialize if {@code true} the class will be initialized 530 * (which implies linking). See Section {@jls 531 * 12.4} of <cite>The Java Language 532 * Specification</cite>. 533 * @param loader class loader from which the class must be loaded 534 * @return class object representing the desired class 535 * 536 * @throws LinkageError if the linkage fails 537 * @throws ExceptionInInitializerError if the initialization provoked 538 * by this method fails 539 * @throws ClassNotFoundException if the class cannot be located by 540 * the specified class loader 541 * 542 * @see java.lang.Class#forName(String) 543 * @see java.lang.ClassLoader 544 * 545 * @jls 12.2 Loading of Classes and Interfaces 546 * @jls 12.3 Linking of Classes and Interfaces 547 * @jls 12.4 Initialization of Classes and Interfaces 548 * @jls 13.1 The Form of a Binary 549 * @since 1.2 550 */ 551 public static Class<?> forName(String name, boolean initialize, ClassLoader loader) 552 throws ClassNotFoundException 553 { 554 validateClassNameLength(name); 555 return forName0(name, initialize, loader, null); 556 } 557 558 /** Called after security check for system loader access checks have been made. */ 559 private static native Class<?> forName0(String name, boolean initialize, 560 ClassLoader loader, 561 Class<?> caller) 562 throws ClassNotFoundException; 563 564 565 /** 566 * Returns the {@code Class} with the given {@linkplain ClassLoader##binary-name 567 * binary name} in the given module. 568 * 569 * <p> This method attempts to locate and load the class or interface. 570 * It does not link the class, and does not run the class initializer. 571 * If the class is not found, this method returns {@code null}. </p> 572 * 573 * <p> If the class loader of the given module defines other modules and 574 * the given name is a class defined in a different module, this method 575 * returns {@code null} after the class is loaded. </p> 576 * 577 * <p> This method does not check whether the requested class is 578 * accessible to its caller. </p> 579 * 580 * @apiNote 581 * This method does not support loading of array types, unlike 582 * {@link #forName(String, boolean, ClassLoader)}. The class name must be 583 * a binary name. This method returns {@code null} on failure rather than 584 * throwing a {@link ClassNotFoundException}, as is done by 585 * the {@link #forName(String, boolean, ClassLoader)} method. 586 * 587 * @param module A module 588 * @param name The {@linkplain ClassLoader##binary-name binary name} 589 * of the class 590 * @return {@code Class} object of the given name defined in the given module; 591 * {@code null} if not found. 592 * 593 * @throws NullPointerException if the given module or name is {@code null} 594 * 595 * @throws LinkageError if the linkage fails 596 * 597 * @jls 12.2 Loading of Classes and Interfaces 598 * @jls 12.3 Linking of Classes and Interfaces 599 * @since 9 600 */ 601 public static Class<?> forName(Module module, String name) { 602 Objects.requireNonNull(module); 603 Objects.requireNonNull(name); 604 if (!ModifiedUtf.isValidLengthInConstantPool(name)) { 605 return null; 606 } 607 608 ClassLoader cl = module.getClassLoader(); 609 if (cl != null) { 610 return cl.loadClass(module, name); 611 } else { 612 return BootLoader.loadClass(module, name); 613 } 614 } 615 616 /** 617 * {@return the {@code Class} object associated with the 618 * {@linkplain #isPrimitive() primitive type} of the given name} 619 * If the argument is not the name of a primitive type, {@code 620 * null} is returned. 621 * 622 * @param primitiveName the name of the primitive type to find 623 * 624 * @throws NullPointerException if the argument is {@code null} 625 * 626 * @jls 4.2 Primitive Types and Values 627 * @jls 15.8.2 Class Literals 628 * @since 22 629 */ 630 public static Class<?> forPrimitiveName(String primitiveName) { 631 return switch(primitiveName) { 632 // Integral types 633 case "int" -> int.class; 634 case "long" -> long.class; 635 case "short" -> short.class; 636 case "char" -> char.class; 637 case "byte" -> byte.class; 638 639 // Floating-point types 640 case "float" -> float.class; 641 case "double" -> double.class; 642 643 // Other types 644 case "boolean" -> boolean.class; 645 case "void" -> void.class; 646 647 default -> null; 648 }; 649 } 650 651 /** 652 * Creates a new instance of the class represented by this {@code Class} 653 * object. The class is instantiated as if by a {@code new} 654 * expression with an empty argument list. The class is initialized if it 655 * has not already been initialized. 656 * 657 * @deprecated This method propagates any exception thrown by the 658 * nullary constructor, including a checked exception. Use of 659 * this method effectively bypasses the compile-time exception 660 * checking that would otherwise be performed by the compiler. 661 * The {@link 662 * java.lang.reflect.Constructor#newInstance(java.lang.Object...) 663 * Constructor.newInstance} method avoids this problem by wrapping 664 * any exception thrown by the constructor in a (checked) {@link 665 * java.lang.reflect.InvocationTargetException}. 666 * 667 * <p>The call 668 * 669 * {@snippet lang="java" : 670 * clazz.newInstance() 671 * } 672 * 673 * can be replaced by 674 * 675 * {@snippet lang="java" : 676 * clazz.getDeclaredConstructor().newInstance() 677 * } 678 * 679 * The latter sequence of calls is inferred to be able to throw 680 * the additional exception types {@link 681 * InvocationTargetException} and {@link 682 * NoSuchMethodException}. Both of these exception types are 683 * subclasses of {@link ReflectiveOperationException}. 684 * 685 * @return a newly allocated instance of the class represented by this 686 * object. 687 * @throws IllegalAccessException if the class or its nullary 688 * constructor is not accessible. 689 * @throws InstantiationException 690 * if this {@code Class} represents an abstract class, 691 * an interface, an array class, a primitive type, or void; 692 * or if the class has no nullary constructor; 693 * or if the instantiation fails for some other reason. 694 * @throws ExceptionInInitializerError if the initialization 695 * provoked by this method fails. 696 */ 697 @CallerSensitive 698 @Deprecated(since="9") 699 public T newInstance() 700 throws InstantiationException, IllegalAccessException 701 { 702 // Constructor lookup 703 Constructor<T> tmpConstructor = cachedConstructor; 704 if (tmpConstructor == null) { 705 if (this == Class.class) { 706 throw new IllegalAccessException( 707 "Can not call newInstance() on the Class for java.lang.Class" 708 ); 709 } 710 try { 711 Class<?>[] empty = {}; 712 final Constructor<T> c = getReflectionFactory().copyConstructor( 713 getConstructor0(empty, Member.DECLARED)); 714 // Disable accessibility checks on the constructor 715 // access check is done with the true caller 716 c.setAccessible(true); 717 cachedConstructor = tmpConstructor = c; 718 } catch (NoSuchMethodException e) { 719 throw (InstantiationException) 720 new InstantiationException(getName()).initCause(e); 721 } 722 } 723 724 try { 725 Class<?> caller = Reflection.getCallerClass(); 726 return getReflectionFactory().newInstance(tmpConstructor, null, caller); 727 } catch (InvocationTargetException e) { 728 Unsafe.getUnsafe().throwException(e.getTargetException()); 729 // Not reached 730 return null; 731 } 732 } 733 734 private transient volatile Constructor<T> cachedConstructor; 735 736 /** 737 * Determines if the specified {@code Object} is assignment-compatible 738 * with the object represented by this {@code Class}. This method is 739 * the dynamic equivalent of the Java language {@code instanceof} 740 * operator. The method returns {@code true} if the specified 741 * {@code Object} argument is non-null and can be cast to the 742 * reference type represented by this {@code Class} object without 743 * raising a {@code ClassCastException.} It returns {@code false} 744 * otherwise. 745 * 746 * <p> Specifically, if this {@code Class} object represents a 747 * declared class, this method returns {@code true} if the specified 748 * {@code Object} argument is an instance of the represented class (or 749 * of any of its subclasses); it returns {@code false} otherwise. If 750 * this {@code Class} object represents an array class, this method 751 * returns {@code true} if the specified {@code Object} argument 752 * can be converted to an object of the array class by an identity 753 * conversion or by a widening reference conversion; it returns 754 * {@code false} otherwise. If this {@code Class} object 755 * represents an interface, this method returns {@code true} if the 756 * class or any superclass of the specified {@code Object} argument 757 * implements this interface; it returns {@code false} otherwise. If 758 * this {@code Class} object represents a primitive type, this method 759 * returns {@code false}. 760 * 761 * @param obj the object to check 762 * @return true if {@code obj} is an instance of this class 763 * 764 * @since 1.1 765 */ 766 @IntrinsicCandidate 767 public native boolean isInstance(Object obj); 768 769 770 /** 771 * Determines if the class or interface represented by this 772 * {@code Class} object is either the same as, or is a superclass or 773 * superinterface of, the class or interface represented by the specified 774 * {@code Class} parameter. It returns {@code true} if so; 775 * otherwise it returns {@code false}. If this {@code Class} 776 * object represents a primitive type, this method returns 777 * {@code true} if the specified {@code Class} parameter is 778 * exactly this {@code Class} object; otherwise it returns 779 * {@code false}. 780 * 781 * <p> Specifically, this method tests whether the type represented by the 782 * specified {@code Class} parameter can be converted to the type 783 * represented by this {@code Class} object via an identity conversion 784 * or via a widening reference conversion. See <cite>The Java Language 785 * Specification</cite>, sections {@jls 5.1.1} and {@jls 5.1.4}, 786 * for details. 787 * 788 * @param cls the {@code Class} object to be checked 789 * @return the {@code boolean} value indicating whether objects of the 790 * type {@code cls} can be assigned to objects of this class 791 * @throws NullPointerException if the specified Class parameter is 792 * null. 793 * @since 1.1 794 */ 795 @IntrinsicCandidate 796 public native boolean isAssignableFrom(Class<?> cls); 797 798 799 /** 800 * Determines if this {@code Class} object represents an 801 * interface type. 802 * 803 * @return {@code true} if this {@code Class} object represents an interface; 804 * {@code false} otherwise. 805 */ 806 public boolean isInterface() { 807 return Modifier.isInterface(modifiers); 808 } 809 810 811 /** 812 * Determines if this {@code Class} object represents an array class. 813 * 814 * @return {@code true} if this {@code Class} object represents an array class; 815 * {@code false} otherwise. 816 * @since 1.1 817 */ 818 public boolean isArray() { 819 return componentType != null; 820 } 821 822 823 /** 824 * Determines if this {@code Class} object represents a primitive 825 * type or void. 826 * 827 * <p> There are nine predefined {@code Class} objects to 828 * represent the eight primitive types and void. These are 829 * created by the Java Virtual Machine, and have the same 830 * {@linkplain #getName() names} as the primitive types that they 831 * represent, namely {@code boolean}, {@code byte}, {@code char}, 832 * {@code short}, {@code int}, {@code long}, {@code float}, and 833 * {@code double}. 834 * 835 * <p>No other class objects are considered primitive. 836 * 837 * @apiNote 838 * A {@code Class} object represented by a primitive type can be 839 * accessed via the {@code TYPE} public static final variables 840 * defined in the primitive wrapper classes such as {@link 841 * java.lang.Integer#TYPE Integer.TYPE}. In the Java programming 842 * language, the objects may be referred to by a class literal 843 * expression such as {@code int.class}. The {@code Class} object 844 * for void can be expressed as {@code void.class} or {@link 845 * java.lang.Void#TYPE Void.TYPE}. 846 * 847 * @return true if and only if this class represents a primitive type 848 * 849 * @see java.lang.Boolean#TYPE 850 * @see java.lang.Character#TYPE 851 * @see java.lang.Byte#TYPE 852 * @see java.lang.Short#TYPE 853 * @see java.lang.Integer#TYPE 854 * @see java.lang.Long#TYPE 855 * @see java.lang.Float#TYPE 856 * @see java.lang.Double#TYPE 857 * @see java.lang.Void#TYPE 858 * @since 1.1 859 * @jls 15.8.2 Class Literals 860 */ 861 public boolean isPrimitive() { 862 return primitive; 863 } 864 865 /** 866 * Returns true if this {@code Class} object represents an annotation 867 * interface. Note that if this method returns true, {@link #isInterface()} 868 * would also return true, as all annotation interfaces are also interfaces. 869 * 870 * @return {@code true} if this {@code Class} object represents an annotation 871 * interface; {@code false} otherwise 872 * @since 1.5 873 */ 874 public boolean isAnnotation() { 875 return (getModifiers() & ANNOTATION) != 0; 876 } 877 878 /** 879 *{@return {@code true} if and only if this class has the synthetic modifier 880 * bit set} 881 * 882 * @jls 13.1 The Form of a Binary 883 * @jvms 4.1 The {@code ClassFile} Structure 884 * @see <a 885 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 886 * programming language and JVM modeling in core reflection</a> 887 * @since 1.5 888 */ 889 public boolean isSynthetic() { 890 return (getModifiers() & SYNTHETIC) != 0; 891 } 892 893 /** 894 * Returns the name of the entity (class, interface, array class, 895 * primitive type, or void) represented by this {@code Class} object. 896 * 897 * <p> If this {@code Class} object represents a class or interface, 898 * not an array class, then: 899 * <ul> 900 * <li> If the class or interface is not {@linkplain #isHidden() hidden}, 901 * then the {@linkplain ClassLoader##binary-name binary name} 902 * of the class or interface is returned. 903 * <li> If the class or interface is hidden, then the result is a string 904 * of the form: {@code N + '/' + <suffix>} 905 * where {@code N} is the {@linkplain ClassLoader##binary-name binary name} 906 * indicated by the {@code class} file passed to 907 * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 908 * Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name. 909 * </ul> 910 * 911 * <p> If this {@code Class} object represents an array class, then 912 * the result is a string consisting of one or more '{@code [}' characters 913 * representing the depth of the array nesting, followed by the element 914 * type as encoded using the following table: 915 * 916 * <blockquote><table class="striped" id="nameFormat"> 917 * <caption style="display:none">Element types and encodings</caption> 918 * <thead> 919 * <tr><th scope="col"> Element Type <th scope="col"> Encoding 920 * </thead> 921 * <tbody style="text-align:left"> 922 * <tr><th scope="row"> {@code boolean} <td style="text-align:center"> {@code Z} 923 * <tr><th scope="row"> {@code byte} <td style="text-align:center"> {@code B} 924 * <tr><th scope="row"> {@code char} <td style="text-align:center"> {@code C} 925 * <tr><th scope="row"> class or interface with {@linkplain ClassLoader##binary-name binary name} <i>N</i> 926 * <td style="text-align:center"> {@code L}<em>N</em>{@code ;} 927 * <tr><th scope="row"> {@code double} <td style="text-align:center"> {@code D} 928 * <tr><th scope="row"> {@code float} <td style="text-align:center"> {@code F} 929 * <tr><th scope="row"> {@code int} <td style="text-align:center"> {@code I} 930 * <tr><th scope="row"> {@code long} <td style="text-align:center"> {@code J} 931 * <tr><th scope="row"> {@code short} <td style="text-align:center"> {@code S} 932 * </tbody> 933 * </table></blockquote> 934 * 935 * <p> If this {@code Class} object represents a primitive type or {@code void}, 936 * then the result is a string with the same spelling as the Java language 937 * keyword which corresponds to the primitive type or {@code void}. 938 * 939 * <p> Examples: 940 * <blockquote><pre> 941 * String.class.getName() 942 * returns "java.lang.String" 943 * Character.UnicodeBlock.class.getName() 944 * returns "java.lang.Character$UnicodeBlock" 945 * byte.class.getName() 946 * returns "byte" 947 * (new Object[3]).getClass().getName() 948 * returns "[Ljava.lang.Object;" 949 * (new int[3][4][5][6][7][8][9]).getClass().getName() 950 * returns "[[[[[[[I" 951 * </pre></blockquote> 952 * 953 * @apiNote 954 * Distinct class objects can have the same name but different class loaders. 955 * 956 * @return the name of the class, interface, or other entity 957 * represented by this {@code Class} object. 958 * @jls 13.1 The Form of a Binary 959 */ 960 public String getName() { 961 String name = this.name; 962 return name != null ? name : initClassName(); 963 } 964 965 // Cache the name to reduce the number of calls into the VM. 966 // This field would be set by VM itself during initClassName call. 967 private transient String name; 968 private native String initClassName(); 969 970 /** 971 * Returns the class loader for the class. Some implementations may use 972 * null to represent the bootstrap class loader. This method will return 973 * null in such implementations if this class was loaded by the bootstrap 974 * class loader. 975 * 976 * <p>If this {@code Class} object 977 * represents a primitive type or void, null is returned. 978 * 979 * @return the class loader that loaded the class or interface 980 * represented by this {@code Class} object. 981 * @see java.lang.ClassLoader 982 */ 983 public ClassLoader getClassLoader() { 984 return classLoader; 985 } 986 987 // Package-private to allow ClassLoader access 988 ClassLoader getClassLoader0() { return classLoader; } 989 990 /** 991 * Returns the module that this class or interface is a member of. 992 * 993 * If this class represents an array type then this method returns the 994 * {@code Module} for the element type. If this class represents a 995 * primitive type or void, then the {@code Module} object for the 996 * {@code java.base} module is returned. 997 * 998 * If this class is in an unnamed module then the {@linkplain 999 * ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class 1000 * loader for this class is returned. 1001 * 1002 * @return the module that this class or interface is a member of 1003 * 1004 * @since 9 1005 */ 1006 public Module getModule() { 1007 return module; 1008 } 1009 1010 // set by VM 1011 @Stable 1012 private transient Module module; 1013 1014 // Initialized in JVM not by private constructor 1015 // This field is filtered from reflection access, i.e. getDeclaredField 1016 // will throw NoSuchFieldException 1017 private final ClassLoader classLoader; 1018 1019 private transient Object classData; // Set by VM 1020 private transient Object[] signers; // Read by VM, mutable 1021 private final transient char modifiers; // Set by the VM 1022 private final transient char classFileAccessFlags; // Set by the VM 1023 private final transient boolean primitive; // Set by the VM if the Class is a primitive type. 1024 1025 // package-private 1026 Object getClassData() { 1027 return classData; 1028 } 1029 1030 /** 1031 * Returns an array of {@code TypeVariable} objects that represent the 1032 * type variables declared by the generic declaration represented by this 1033 * {@code GenericDeclaration} object, in declaration order. Returns an 1034 * array of length 0 if the underlying generic declaration declares no type 1035 * variables. 1036 * 1037 * @return an array of {@code TypeVariable} objects that represent 1038 * the type variables declared by this generic declaration 1039 * @throws java.lang.reflect.GenericSignatureFormatError if the generic 1040 * signature of this generic declaration does not conform to 1041 * the format specified in section {@jvms 4.7.9} of 1042 * <cite>The Java Virtual Machine Specification</cite> 1043 * @since 1.5 1044 */ 1045 @SuppressWarnings("unchecked") 1046 public TypeVariable<Class<T>>[] getTypeParameters() { 1047 ClassRepository info = getGenericInfo(); 1048 if (info != null) 1049 return (TypeVariable<Class<T>>[])info.getTypeParameters(); 1050 else 1051 return (TypeVariable<Class<T>>[])new TypeVariable<?>[0]; 1052 } 1053 1054 1055 /** 1056 * Returns the {@code Class} representing the direct superclass of the 1057 * entity (class, interface, primitive type or void) represented by 1058 * this {@code Class}. If this {@code Class} represents either the 1059 * {@code Object} class, an interface, a primitive type, or void, then 1060 * null is returned. If this {@code Class} object represents an array class 1061 * then the {@code Class} object representing the {@code Object} class is 1062 * returned. 1063 * 1064 * @return the direct superclass of the class represented by this {@code Class} object 1065 */ 1066 @IntrinsicCandidate 1067 public native Class<? super T> getSuperclass(); 1068 1069 1070 /** 1071 * Returns the {@code Type} representing the direct superclass of 1072 * the entity (class, interface, primitive type or void) represented by 1073 * this {@code Class} object. 1074 * 1075 * <p>If the superclass is a parameterized type, the {@code Type} 1076 * object returned must accurately reflect the actual type 1077 * arguments used in the source code. The parameterized type 1078 * representing the superclass is created if it had not been 1079 * created before. See the declaration of {@link 1080 * java.lang.reflect.ParameterizedType ParameterizedType} for the 1081 * semantics of the creation process for parameterized types. If 1082 * this {@code Class} object represents either the {@code Object} 1083 * class, an interface, a primitive type, or void, then null is 1084 * returned. If this {@code Class} object represents an array class 1085 * then the {@code Class} object representing the {@code Object} class is 1086 * returned. 1087 * 1088 * @throws java.lang.reflect.GenericSignatureFormatError if the generic 1089 * class signature does not conform to the format specified in 1090 * section {@jvms 4.7.9} of <cite>The Java Virtual 1091 * Machine Specification</cite> 1092 * @throws TypeNotPresentException if the generic superclass 1093 * refers to a non-existent type declaration 1094 * @throws java.lang.reflect.MalformedParameterizedTypeException if the 1095 * generic superclass refers to a parameterized type that cannot be 1096 * instantiated for any reason 1097 * @return the direct superclass of the class represented by this {@code Class} object 1098 * @since 1.5 1099 */ 1100 public Type getGenericSuperclass() { 1101 ClassRepository info = getGenericInfo(); 1102 if (info == null) { 1103 return getSuperclass(); 1104 } 1105 1106 // Historical irregularity: 1107 // Generic signature marks interfaces with superclass = Object 1108 // but this API returns null for interfaces 1109 if (isInterface()) { 1110 return null; 1111 } 1112 1113 return info.getSuperclass(); 1114 } 1115 1116 /** 1117 * Gets the package of this class. 1118 * 1119 * <p>If this class represents an array type, a primitive type or void, 1120 * this method returns {@code null}. 1121 * 1122 * @return the package of this class. 1123 */ 1124 public Package getPackage() { 1125 if (isPrimitive() || isArray()) { 1126 return null; 1127 } 1128 ClassLoader cl = classLoader; 1129 return cl != null ? cl.definePackage(this) 1130 : BootLoader.definePackage(this); 1131 } 1132 1133 /** 1134 * Returns the fully qualified package name. 1135 * 1136 * <p> If this class is a top level class, then this method returns the fully 1137 * qualified name of the package that the class is a member of, or the 1138 * empty string if the class is in an unnamed package. 1139 * 1140 * <p> If this class is a member class, then this method is equivalent to 1141 * invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass 1142 * enclosing class}. 1143 * 1144 * <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain 1145 * #isAnonymousClass() anonymous class}, then this method is equivalent to 1146 * invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass 1147 * declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or 1148 * {@linkplain #getEnclosingConstructor enclosing constructor}. 1149 * 1150 * <p> If this class represents an array type then this method returns the 1151 * package name of the element type. If this class represents a primitive 1152 * type or void then the package name "{@code java.lang}" is returned. 1153 * 1154 * @return the fully qualified package name 1155 * 1156 * @since 9 1157 * @jls 6.7 Fully Qualified Names and Canonical Names 1158 */ 1159 public String getPackageName() { 1160 String pn = this.packageName; 1161 if (pn == null) { 1162 Class<?> c = isArray() ? elementType() : this; 1163 if (c.isPrimitive()) { 1164 pn = "java.lang"; 1165 } else { 1166 String cn = c.getName(); 1167 int dot = cn.lastIndexOf('.'); 1168 pn = (dot != -1) ? cn.substring(0, dot).intern() : ""; 1169 } 1170 this.packageName = pn; 1171 } 1172 return pn; 1173 } 1174 1175 // cached package name 1176 private transient String packageName; 1177 1178 /** 1179 * Returns the interfaces directly implemented by the class or interface 1180 * represented by this {@code Class} object. 1181 * 1182 * <p>If this {@code Class} object represents a class, the return value is an array 1183 * containing objects representing all interfaces directly implemented by 1184 * the class. The order of the interface objects in the array corresponds 1185 * to the order of the interface names in the {@code implements} clause of 1186 * the declaration of the class represented by this {@code Class} object. For example, 1187 * given the declaration: 1188 * <blockquote> 1189 * {@code class Shimmer implements FloorWax, DessertTopping { ... }} 1190 * </blockquote> 1191 * suppose the value of {@code s} is an instance of 1192 * {@code Shimmer}; the value of the expression: 1193 * <blockquote> 1194 * {@code s.getClass().getInterfaces()[0]} 1195 * </blockquote> 1196 * is the {@code Class} object that represents interface 1197 * {@code FloorWax}; and the value of: 1198 * <blockquote> 1199 * {@code s.getClass().getInterfaces()[1]} 1200 * </blockquote> 1201 * is the {@code Class} object that represents interface 1202 * {@code DessertTopping}. 1203 * 1204 * <p>If this {@code Class} object represents an interface, the array contains objects 1205 * representing all interfaces directly extended by the interface. The 1206 * order of the interface objects in the array corresponds to the order of 1207 * the interface names in the {@code extends} clause of the declaration of 1208 * the interface represented by this {@code Class} object. 1209 * 1210 * <p>If this {@code Class} object represents a class or interface that implements no 1211 * interfaces, the method returns an array of length 0. 1212 * 1213 * <p>If this {@code Class} object represents a primitive type or void, the method 1214 * returns an array of length 0. 1215 * 1216 * <p>If this {@code Class} object represents an array type, the 1217 * interfaces {@code Cloneable} and {@code java.io.Serializable} are 1218 * returned in that order. 1219 * 1220 * @return an array of interfaces directly implemented by this class 1221 */ 1222 public Class<?>[] getInterfaces() { 1223 // defensively copy before handing over to user code 1224 return getInterfaces(true); 1225 } 1226 1227 private Class<?>[] getInterfaces(boolean cloneArray) { 1228 ReflectionData<T> rd = reflectionData(); 1229 Class<?>[] interfaces = rd.interfaces; 1230 if (interfaces == null) { 1231 interfaces = getInterfaces0(); 1232 rd.interfaces = interfaces; 1233 } 1234 // defensively copy if requested 1235 return cloneArray ? interfaces.clone() : interfaces; 1236 } 1237 1238 private native Class<?>[] getInterfaces0(); 1239 1240 /** 1241 * Returns the {@code Type}s representing the interfaces 1242 * directly implemented by the class or interface represented by 1243 * this {@code Class} object. 1244 * 1245 * <p>If a superinterface is a parameterized type, the 1246 * {@code Type} object returned for it must accurately reflect 1247 * the actual type arguments used in the source code. The 1248 * parameterized type representing each superinterface is created 1249 * if it had not been created before. See the declaration of 1250 * {@link java.lang.reflect.ParameterizedType ParameterizedType} 1251 * for the semantics of the creation process for parameterized 1252 * types. 1253 * 1254 * <p>If this {@code Class} object represents a class, the return value is an array 1255 * containing objects representing all interfaces directly implemented by 1256 * the class. The order of the interface objects in the array corresponds 1257 * to the order of the interface names in the {@code implements} clause of 1258 * the declaration of the class represented by this {@code Class} object. 1259 * 1260 * <p>If this {@code Class} object represents an interface, the array contains objects 1261 * representing all interfaces directly extended by the interface. The 1262 * order of the interface objects in the array corresponds to the order of 1263 * the interface names in the {@code extends} clause of the declaration of 1264 * the interface represented by this {@code Class} object. 1265 * 1266 * <p>If this {@code Class} object represents a class or interface that implements no 1267 * interfaces, the method returns an array of length 0. 1268 * 1269 * <p>If this {@code Class} object represents a primitive type or void, the method 1270 * returns an array of length 0. 1271 * 1272 * <p>If this {@code Class} object represents an array type, the 1273 * interfaces {@code Cloneable} and {@code java.io.Serializable} are 1274 * returned in that order. 1275 * 1276 * @throws java.lang.reflect.GenericSignatureFormatError 1277 * if the generic class signature does not conform to the 1278 * format specified in section {@jvms 4.7.9} of <cite>The 1279 * Java Virtual Machine Specification</cite> 1280 * @throws TypeNotPresentException if any of the generic 1281 * superinterfaces refers to a non-existent type declaration 1282 * @throws java.lang.reflect.MalformedParameterizedTypeException 1283 * if any of the generic superinterfaces refer to a parameterized 1284 * type that cannot be instantiated for any reason 1285 * @return an array of interfaces directly implemented by this class 1286 * @since 1.5 1287 */ 1288 public Type[] getGenericInterfaces() { 1289 ClassRepository info = getGenericInfo(); 1290 return (info == null) ? getInterfaces() : info.getSuperInterfaces(); 1291 } 1292 1293 1294 /** 1295 * Returns the {@code Class} representing the component type of an 1296 * array. If this class does not represent an array class this method 1297 * returns null. 1298 * 1299 * @return the {@code Class} representing the component type of this 1300 * class if this class is an array 1301 * @see java.lang.reflect.Array 1302 * @since 1.1 1303 */ 1304 public Class<?> getComponentType() { 1305 return componentType; 1306 } 1307 1308 // The componentType field's null value is the sole indication that the class 1309 // is an array - see isArray(). 1310 private transient final Class<?> componentType; 1311 1312 /* 1313 * Returns the {@code Class} representing the element type of an array class. 1314 * If this class does not represent an array class, then this method returns 1315 * {@code null}. 1316 */ 1317 private Class<?> elementType() { 1318 if (!isArray()) return null; 1319 1320 Class<?> c = this; 1321 while (c.isArray()) { 1322 c = c.getComponentType(); 1323 } 1324 return c; 1325 } 1326 1327 /** 1328 * Returns the Java language modifiers for this class or interface, encoded 1329 * in an integer. The modifiers consist of the Java Virtual Machine's 1330 * constants for {@code public}, {@code protected}, 1331 * {@code private}, {@code final}, {@code static}, 1332 * {@code abstract} and {@code interface}; they should be decoded 1333 * using the methods of class {@code Modifier}. 1334 * 1335 * <p> If the underlying class is an array class: 1336 * <ul> 1337 * <li> its {@code public}, {@code private} and {@code protected} 1338 * modifiers are the same as those of its component type 1339 * <li> its {@code abstract} and {@code final} modifiers are always 1340 * {@code true} 1341 * <li> its interface modifier is always {@code false}, even when 1342 * the component type is an interface 1343 * </ul> 1344 * If this {@code Class} object represents a primitive type or 1345 * void, its {@code public}, {@code abstract}, and {@code final} 1346 * modifiers are always {@code true}. 1347 * For {@code Class} objects representing void, primitive types, and 1348 * arrays, the values of other modifiers are {@code false} other 1349 * than as specified above. 1350 * 1351 * <p> The modifier encodings are defined in section {@jvms 4.1} 1352 * of <cite>The Java Virtual Machine Specification</cite>. 1353 * 1354 * @return the {@code int} representing the modifiers for this class 1355 * @see java.lang.reflect.Modifier 1356 * @see #accessFlags() 1357 * @see <a 1358 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 1359 * programming language and JVM modeling in core reflection</a> 1360 * @since 1.1 1361 * @jls 8.1.1 Class Modifiers 1362 * @jls 9.1.1 Interface Modifiers 1363 * @jvms 4.1 The {@code ClassFile} Structure 1364 */ 1365 public int getModifiers() { return modifiers; } 1366 1367 /** 1368 * {@return an unmodifiable set of the {@linkplain AccessFlag access 1369 * flags} for this class, possibly empty} 1370 * 1371 * <p> If the underlying class is an array class: 1372 * <ul> 1373 * <li> its {@code PUBLIC}, {@code PRIVATE} and {@code PROTECTED} 1374 * access flags are the same as those of its component type 1375 * <li> its {@code ABSTRACT} and {@code FINAL} flags are present 1376 * <li> its {@code INTERFACE} flag is absent, even when the 1377 * component type is an interface 1378 * </ul> 1379 * If this {@code Class} object represents a primitive type or 1380 * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and 1381 * {@code FINAL}. 1382 * For {@code Class} objects representing void, primitive types, and 1383 * arrays, access flags are absent other than as specified above. 1384 * 1385 * @see #getModifiers() 1386 * @jvms 4.1 The ClassFile Structure 1387 * @jvms 4.7.6 The InnerClasses Attribute 1388 * @since 20 1389 */ 1390 public Set<AccessFlag> accessFlags() { 1391 // Location.CLASS allows SUPER and AccessFlag.MODULE which 1392 // INNER_CLASS forbids. INNER_CLASS allows PRIVATE, PROTECTED, 1393 // and STATIC, which are not allowed on Location.CLASS. 1394 // Use getClassFileAccessFlags to expose SUPER status. 1395 var location = (isMemberClass() || isLocalClass() || 1396 isAnonymousClass() || isArray()) ? 1397 AccessFlag.Location.INNER_CLASS : 1398 AccessFlag.Location.CLASS; 1399 return getReflectionFactory().parseAccessFlags((location == AccessFlag.Location.CLASS) ? 1400 getClassFileAccessFlags() : getModifiers(), location, this); 1401 } 1402 1403 /** 1404 * Gets the signers of this class. 1405 * 1406 * @return the signers of this class, or null if there are no signers. In 1407 * particular, this method returns null if this {@code Class} object represents 1408 * a primitive type or void. 1409 * @since 1.1 1410 */ 1411 public Object[] getSigners() { 1412 var signers = this.signers; 1413 return signers == null ? null : signers.clone(); 1414 } 1415 1416 /** 1417 * Set the signers of this class. 1418 */ 1419 void setSigners(Object[] signers) { 1420 if (!isPrimitive() && !isArray()) { 1421 this.signers = signers; 1422 } 1423 } 1424 1425 /** 1426 * If this {@code Class} object represents a local or anonymous 1427 * class within a method, returns a {@link 1428 * java.lang.reflect.Method Method} object representing the 1429 * immediately enclosing method of the underlying class. Returns 1430 * {@code null} otherwise. 1431 * 1432 * In particular, this method returns {@code null} if the underlying 1433 * class is a local or anonymous class immediately enclosed by a class or 1434 * interface declaration, instance initializer or static initializer. 1435 * 1436 * @return the immediately enclosing method of the underlying class, if 1437 * that class is a local or anonymous class; otherwise {@code null}. 1438 * 1439 * @since 1.5 1440 */ 1441 public Method getEnclosingMethod() { 1442 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1443 1444 if (enclosingInfo == null) 1445 return null; 1446 else { 1447 if (!enclosingInfo.isMethod()) 1448 return null; 1449 1450 MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(), 1451 getFactory()); 1452 Class<?> returnType = toClass(typeInfo.getReturnType()); 1453 Type [] parameterTypes = typeInfo.getParameterTypes(); 1454 Class<?>[] parameterClasses = new Class<?>[parameterTypes.length]; 1455 1456 // Convert Types to Classes; returned types *should* 1457 // be class objects since the methodDescriptor's used 1458 // don't have generics information 1459 for(int i = 0; i < parameterClasses.length; i++) 1460 parameterClasses[i] = toClass(parameterTypes[i]); 1461 1462 final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass(); 1463 Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false); 1464 1465 /* 1466 * Loop over all declared methods; match method name, 1467 * number of and type of parameters, *and* return 1468 * type. Matching return type is also necessary 1469 * because of covariant returns, etc. 1470 */ 1471 ReflectionFactory fact = getReflectionFactory(); 1472 for (Method m : candidates) { 1473 if (m.getName().equals(enclosingInfo.getName()) && 1474 arrayContentsEq(parameterClasses, 1475 fact.getExecutableSharedParameterTypes(m))) { 1476 // finally, check return type 1477 if (m.getReturnType().equals(returnType)) { 1478 return fact.copyMethod(m); 1479 } 1480 } 1481 } 1482 1483 throw new InternalError("Enclosing method not found"); 1484 } 1485 } 1486 1487 private native Object[] getEnclosingMethod0(); 1488 1489 private EnclosingMethodInfo getEnclosingMethodInfo() { 1490 Object[] enclosingInfo = getEnclosingMethod0(); 1491 if (enclosingInfo == null) 1492 return null; 1493 else { 1494 return new EnclosingMethodInfo(enclosingInfo); 1495 } 1496 } 1497 1498 private static final class EnclosingMethodInfo { 1499 private final Class<?> enclosingClass; 1500 private final String name; 1501 private final String descriptor; 1502 1503 static void validate(Object[] enclosingInfo) { 1504 if (enclosingInfo.length != 3) 1505 throw new InternalError("Malformed enclosing method information"); 1506 try { 1507 // The array is expected to have three elements: 1508 1509 // the immediately enclosing class 1510 Class<?> enclosingClass = (Class<?>)enclosingInfo[0]; 1511 assert(enclosingClass != null); 1512 1513 // the immediately enclosing method or constructor's 1514 // name (can be null). 1515 String name = (String)enclosingInfo[1]; 1516 1517 // the immediately enclosing method or constructor's 1518 // descriptor (null iff name is). 1519 String descriptor = (String)enclosingInfo[2]; 1520 assert((name != null && descriptor != null) || name == descriptor); 1521 } catch (ClassCastException cce) { 1522 throw new InternalError("Invalid type in enclosing method information", cce); 1523 } 1524 } 1525 1526 EnclosingMethodInfo(Object[] enclosingInfo) { 1527 validate(enclosingInfo); 1528 this.enclosingClass = (Class<?>)enclosingInfo[0]; 1529 this.name = (String)enclosingInfo[1]; 1530 this.descriptor = (String)enclosingInfo[2]; 1531 } 1532 1533 boolean isPartial() { 1534 return enclosingClass == null || name == null || descriptor == null; 1535 } 1536 1537 boolean isConstructor() { return !isPartial() && ConstantDescs.INIT_NAME.equals(name); } 1538 1539 boolean isMethod() { return !isPartial() && !isConstructor() && !ConstantDescs.CLASS_INIT_NAME.equals(name); } 1540 1541 Class<?> getEnclosingClass() { return enclosingClass; } 1542 1543 String getName() { return name; } 1544 1545 String getDescriptor() { return descriptor; } 1546 1547 } 1548 1549 private static Class<?> toClass(Type o) { 1550 if (o instanceof GenericArrayType gat) 1551 return toClass(gat.getGenericComponentType()).arrayType(); 1552 return (Class<?>)o; 1553 } 1554 1555 /** 1556 * If this {@code Class} object represents a local or anonymous 1557 * class within a constructor, returns a {@link 1558 * java.lang.reflect.Constructor Constructor} object representing 1559 * the immediately enclosing constructor of the underlying 1560 * class. Returns {@code null} otherwise. In particular, this 1561 * method returns {@code null} if the underlying class is a local 1562 * or anonymous class immediately enclosed by a class or 1563 * interface declaration, instance initializer or static initializer. 1564 * 1565 * @return the immediately enclosing constructor of the underlying class, if 1566 * that class is a local or anonymous class; otherwise {@code null}. 1567 * 1568 * @since 1.5 1569 */ 1570 public Constructor<?> getEnclosingConstructor() { 1571 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1572 1573 if (enclosingInfo == null) 1574 return null; 1575 else { 1576 if (!enclosingInfo.isConstructor()) 1577 return null; 1578 1579 ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(), 1580 getFactory()); 1581 Type [] parameterTypes = typeInfo.getParameterTypes(); 1582 Class<?>[] parameterClasses = new Class<?>[parameterTypes.length]; 1583 1584 // Convert Types to Classes; returned types *should* 1585 // be class objects since the methodDescriptor's used 1586 // don't have generics information 1587 for (int i = 0; i < parameterClasses.length; i++) 1588 parameterClasses[i] = toClass(parameterTypes[i]); 1589 1590 1591 final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass(); 1592 Constructor<?>[] candidates = enclosingCandidate 1593 .privateGetDeclaredConstructors(false); 1594 /* 1595 * Loop over all declared constructors; match number 1596 * of and type of parameters. 1597 */ 1598 ReflectionFactory fact = getReflectionFactory(); 1599 for (Constructor<?> c : candidates) { 1600 if (arrayContentsEq(parameterClasses, 1601 fact.getExecutableSharedParameterTypes(c))) { 1602 return fact.copyConstructor(c); 1603 } 1604 } 1605 1606 throw new InternalError("Enclosing constructor not found"); 1607 } 1608 } 1609 1610 1611 /** 1612 * If the class or interface represented by this {@code Class} object 1613 * is a member of another class, returns the {@code Class} object 1614 * representing the class in which it was declared. This method returns 1615 * null if this class or interface is not a member of any other class. If 1616 * this {@code Class} object represents an array class, a primitive 1617 * type, or void, then this method returns null. 1618 * 1619 * @return the declaring class for this class 1620 * @since 1.1 1621 */ 1622 public Class<?> getDeclaringClass() { 1623 return getDeclaringClass0(); 1624 } 1625 1626 private native Class<?> getDeclaringClass0(); 1627 1628 1629 /** 1630 * Returns the immediately enclosing class of the underlying 1631 * class. If the underlying class is a top level class this 1632 * method returns {@code null}. 1633 * @return the immediately enclosing class of the underlying class 1634 * @since 1.5 1635 */ 1636 public Class<?> getEnclosingClass() { 1637 // There are five kinds of classes (or interfaces): 1638 // a) Top level classes 1639 // b) Nested classes (static member classes) 1640 // c) Inner classes (non-static member classes) 1641 // d) Local classes (named classes declared within a method) 1642 // e) Anonymous classes 1643 1644 1645 // JVM Spec 4.7.7: A class must have an EnclosingMethod 1646 // attribute if and only if it is a local class or an 1647 // anonymous class. 1648 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1649 Class<?> enclosingCandidate; 1650 1651 if (enclosingInfo == null) { 1652 // This is a top level or a nested class or an inner class (a, b, or c) 1653 enclosingCandidate = getDeclaringClass0(); 1654 } else { 1655 Class<?> enclosingClass = enclosingInfo.getEnclosingClass(); 1656 // This is a local class or an anonymous class (d or e) 1657 if (enclosingClass == this || enclosingClass == null) 1658 throw new InternalError("Malformed enclosing method information"); 1659 else 1660 enclosingCandidate = enclosingClass; 1661 } 1662 return enclosingCandidate; 1663 } 1664 1665 /** 1666 * Returns the simple name of the underlying class as given in the 1667 * source code. An empty string is returned if the underlying class is 1668 * {@linkplain #isAnonymousClass() anonymous}. 1669 * A {@linkplain #isSynthetic() synthetic class}, one not present 1670 * in source code, can have a non-empty name including special 1671 * characters, such as "{@code $}". 1672 * 1673 * <p>The simple name of an {@linkplain #isArray() array class} is the simple name of the 1674 * component type with "[]" appended. In particular the simple 1675 * name of an array class whose component type is anonymous is "[]". 1676 * 1677 * @return the simple name of the underlying class 1678 * @since 1.5 1679 */ 1680 public String getSimpleName() { 1681 ReflectionData<T> rd = reflectionData(); 1682 String simpleName = rd.simpleName; 1683 if (simpleName == null) { 1684 rd.simpleName = simpleName = getSimpleName0(); 1685 } 1686 return simpleName; 1687 } 1688 1689 private String getSimpleName0() { 1690 if (isArray()) { 1691 return getComponentType().getSimpleName().concat("[]"); 1692 } 1693 String simpleName = getSimpleBinaryName(); 1694 if (simpleName == null) { // top level class 1695 simpleName = getName(); 1696 simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name 1697 } 1698 return simpleName; 1699 } 1700 1701 /** 1702 * Return an informative string for the name of this class or interface. 1703 * 1704 * @return an informative string for the name of this class or interface 1705 * @since 1.8 1706 */ 1707 public String getTypeName() { 1708 if (isArray()) { 1709 try { 1710 Class<?> cl = this; 1711 int dimensions = 0; 1712 do { 1713 dimensions++; 1714 cl = cl.getComponentType(); 1715 } while (cl.isArray()); 1716 return cl.getName().concat("[]".repeat(dimensions)); 1717 } catch (Throwable e) { /*FALLTHRU*/ } 1718 } 1719 return getName(); 1720 } 1721 1722 /** 1723 * Returns the canonical name of the underlying class as 1724 * defined by <cite>The Java Language Specification</cite>. 1725 * Returns {@code null} if the underlying class does not have a canonical 1726 * name. Classes without canonical names include: 1727 * <ul> 1728 * <li>a {@linkplain #isLocalClass() local class} 1729 * <li>a {@linkplain #isAnonymousClass() anonymous class} 1730 * <li>a {@linkplain #isHidden() hidden class} 1731 * <li>an array whose component type does not have a canonical name</li> 1732 * </ul> 1733 * 1734 * The canonical name for a primitive class is the keyword for the 1735 * corresponding primitive type ({@code byte}, {@code short}, 1736 * {@code char}, {@code int}, and so on). 1737 * 1738 * <p>An array type has a canonical name if and only if its 1739 * component type has a canonical name. When an array type has a 1740 * canonical name, it is equal to the canonical name of the 1741 * component type followed by "{@code []}". 1742 * 1743 * @return the canonical name of the underlying class if it exists, and 1744 * {@code null} otherwise. 1745 * @jls 6.7 Fully Qualified Names and Canonical Names 1746 * @since 1.5 1747 */ 1748 public String getCanonicalName() { 1749 ReflectionData<T> rd = reflectionData(); 1750 String canonicalName = rd.canonicalName; 1751 if (canonicalName == null) { 1752 rd.canonicalName = canonicalName = getCanonicalName0(); 1753 } 1754 return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName; 1755 } 1756 1757 private String getCanonicalName0() { 1758 if (isArray()) { 1759 String canonicalName = getComponentType().getCanonicalName(); 1760 if (canonicalName != null) 1761 return canonicalName.concat("[]"); 1762 else 1763 return ReflectionData.NULL_SENTINEL; 1764 } 1765 if (isHidden() || isLocalOrAnonymousClass()) 1766 return ReflectionData.NULL_SENTINEL; 1767 Class<?> enclosingClass = getEnclosingClass(); 1768 if (enclosingClass == null) { // top level class 1769 return getName(); 1770 } else { 1771 String enclosingName = enclosingClass.getCanonicalName(); 1772 if (enclosingName == null) 1773 return ReflectionData.NULL_SENTINEL; 1774 String simpleName = getSimpleName(); 1775 return new StringBuilder(enclosingName.length() + simpleName.length() + 1) 1776 .append(enclosingName) 1777 .append('.') 1778 .append(simpleName) 1779 .toString(); 1780 } 1781 } 1782 1783 /** 1784 * Returns {@code true} if and only if the underlying class 1785 * is an anonymous class. 1786 * 1787 * @apiNote 1788 * An anonymous class is not a {@linkplain #isHidden() hidden class}. 1789 * 1790 * @return {@code true} if and only if this class is an anonymous class. 1791 * @since 1.5 1792 * @jls 15.9.5 Anonymous Class Declarations 1793 */ 1794 public boolean isAnonymousClass() { 1795 return !isArray() && isLocalOrAnonymousClass() && 1796 getSimpleBinaryName0() == null; 1797 } 1798 1799 /** 1800 * Returns {@code true} if and only if the underlying class 1801 * is a local class. 1802 * 1803 * @return {@code true} if and only if this class is a local class. 1804 * @since 1.5 1805 * @jls 14.3 Local Class and Interface Declarations 1806 */ 1807 public boolean isLocalClass() { 1808 return isLocalOrAnonymousClass() && 1809 (isArray() || getSimpleBinaryName0() != null); 1810 } 1811 1812 /** 1813 * Returns {@code true} if and only if the underlying class 1814 * is a member class. 1815 * 1816 * @return {@code true} if and only if this class is a member class. 1817 * @since 1.5 1818 * @jls 8.5 Member Class and Interface Declarations 1819 */ 1820 public boolean isMemberClass() { 1821 return !isLocalOrAnonymousClass() && getDeclaringClass0() != null; 1822 } 1823 1824 /** 1825 * Returns the "simple binary name" of the underlying class, i.e., 1826 * the binary name without the leading enclosing class name. 1827 * Returns {@code null} if the underlying class is a top level 1828 * class. 1829 */ 1830 private String getSimpleBinaryName() { 1831 if (isTopLevelClass()) 1832 return null; 1833 String name = getSimpleBinaryName0(); 1834 if (name == null) // anonymous class 1835 return ""; 1836 return name; 1837 } 1838 1839 private native String getSimpleBinaryName0(); 1840 1841 /** 1842 * Returns {@code true} if this is a top level class. Returns {@code false} 1843 * otherwise. 1844 */ 1845 private boolean isTopLevelClass() { 1846 return !isLocalOrAnonymousClass() && getDeclaringClass0() == null; 1847 } 1848 1849 /** 1850 * Returns {@code true} if this is a local class or an anonymous 1851 * class. Returns {@code false} otherwise. 1852 */ 1853 private boolean isLocalOrAnonymousClass() { 1854 // JVM Spec 4.7.7: A class must have an EnclosingMethod 1855 // attribute if and only if it is a local class or an 1856 // anonymous class. 1857 return hasEnclosingMethodInfo(); 1858 } 1859 1860 private boolean hasEnclosingMethodInfo() { 1861 Object[] enclosingInfo = getEnclosingMethod0(); 1862 if (enclosingInfo != null) { 1863 EnclosingMethodInfo.validate(enclosingInfo); 1864 return true; 1865 } 1866 return false; 1867 } 1868 1869 /** 1870 * Returns an array containing {@code Class} objects representing all 1871 * the public classes and interfaces that are members of the class 1872 * represented by this {@code Class} object. This includes public 1873 * class and interface members inherited from superclasses and public class 1874 * and interface members declared by the class. This method returns an 1875 * array of length 0 if this {@code Class} object has no public member 1876 * classes or interfaces. This method also returns an array of length 0 if 1877 * this {@code Class} object represents a primitive type, an array 1878 * class, or void. 1879 * 1880 * @return the array of {@code Class} objects representing the public 1881 * members of this class 1882 * @since 1.1 1883 */ 1884 public Class<?>[] getClasses() { 1885 List<Class<?>> list = new ArrayList<>(); 1886 Class<?> currentClass = Class.this; 1887 while (currentClass != null) { 1888 for (Class<?> m : currentClass.getDeclaredClasses()) { 1889 if (Modifier.isPublic(m.getModifiers())) { 1890 list.add(m); 1891 } 1892 } 1893 currentClass = currentClass.getSuperclass(); 1894 } 1895 return list.toArray(new Class<?>[0]); 1896 } 1897 1898 1899 /** 1900 * Returns an array containing {@code Field} objects reflecting all 1901 * the accessible public fields of the class or interface represented by 1902 * this {@code Class} object. 1903 * 1904 * <p> If this {@code Class} object represents a class or interface with 1905 * no accessible public fields, then this method returns an array of length 1906 * 0. 1907 * 1908 * <p> If this {@code Class} object represents a class, then this method 1909 * returns the public fields of the class and of all its superclasses and 1910 * superinterfaces. 1911 * 1912 * <p> If this {@code Class} object represents an interface, then this 1913 * method returns the fields of the interface and of all its 1914 * superinterfaces. 1915 * 1916 * <p> If this {@code Class} object represents an array type, a primitive 1917 * type, or void, then this method returns an array of length 0. 1918 * 1919 * <p> The elements in the returned array are not sorted and are not in any 1920 * particular order. 1921 * 1922 * @return the array of {@code Field} objects representing the 1923 * public fields 1924 * 1925 * @since 1.1 1926 * @jls 8.2 Class Members 1927 * @jls 8.3 Field Declarations 1928 */ 1929 public Field[] getFields() { 1930 return copyFields(privateGetPublicFields()); 1931 } 1932 1933 1934 /** 1935 * Returns an array containing {@code Method} objects reflecting all the 1936 * public methods of the class or interface represented by this {@code 1937 * Class} object, including those declared by the class or interface and 1938 * those inherited from superclasses and superinterfaces. 1939 * 1940 * <p> If this {@code Class} object represents an array type, then the 1941 * returned array has a {@code Method} object for each of the public 1942 * methods inherited by the array type from {@code Object}. It does not 1943 * contain a {@code Method} object for {@code clone()}. 1944 * 1945 * <p> If this {@code Class} object represents an interface then the 1946 * returned array does not contain any implicitly declared methods from 1947 * {@code Object}. Therefore, if no methods are explicitly declared in 1948 * this interface or any of its superinterfaces then the returned array 1949 * has length 0. (Note that a {@code Class} object which represents a class 1950 * always has public methods, inherited from {@code Object}.) 1951 * 1952 * <p> The returned array never contains methods with names {@value 1953 * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}. 1954 * 1955 * <p> The elements in the returned array are not sorted and are not in any 1956 * particular order. 1957 * 1958 * <p> Generally, the result is computed as with the following 4 step algorithm. 1959 * Let C be the class or interface represented by this {@code Class} object: 1960 * <ol> 1961 * <li> A union of methods is composed of: 1962 * <ol type="a"> 1963 * <li> C's declared public instance and static methods as returned by 1964 * {@link #getDeclaredMethods()} and filtered to include only public 1965 * methods.</li> 1966 * <li> If C is a class other than {@code Object}, then include the result 1967 * of invoking this algorithm recursively on the superclass of C.</li> 1968 * <li> Include the results of invoking this algorithm recursively on all 1969 * direct superinterfaces of C, but include only instance methods.</li> 1970 * </ol></li> 1971 * <li> Union from step 1 is partitioned into subsets of methods with same 1972 * signature (name, parameter types) and return type.</li> 1973 * <li> Within each such subset only the most specific methods are selected. 1974 * Let method M be a method from a set of methods with same signature 1975 * and return type. M is most specific if there is no such method 1976 * N != M from the same set, such that N is more specific than M. 1977 * N is more specific than M if: 1978 * <ol type="a"> 1979 * <li> N is declared by a class and M is declared by an interface; or</li> 1980 * <li> N and M are both declared by classes or both by interfaces and 1981 * N's declaring type is the same as or a subtype of M's declaring type 1982 * (clearly, if M's and N's declaring types are the same type, then 1983 * M and N are the same method).</li> 1984 * </ol></li> 1985 * <li> The result of this algorithm is the union of all selected methods from 1986 * step 3.</li> 1987 * </ol> 1988 * 1989 * @apiNote There may be more than one method with a particular name 1990 * and parameter types in a class because while the Java language forbids a 1991 * class to declare multiple methods with the same signature but different 1992 * return types, the Java virtual machine does not. This 1993 * increased flexibility in the virtual machine can be used to 1994 * implement various language features. For example, covariant 1995 * returns can be implemented with {@linkplain 1996 * java.lang.reflect.Method#isBridge bridge methods}; the bridge 1997 * method and the overriding method would have the same 1998 * signature but different return types. 1999 * 2000 * @return the array of {@code Method} objects representing the 2001 * public methods of this class 2002 * 2003 * @jls 8.2 Class Members 2004 * @jls 8.4 Method Declarations 2005 * @since 1.1 2006 */ 2007 public Method[] getMethods() { 2008 return copyMethods(privateGetPublicMethods()); 2009 } 2010 2011 2012 /** 2013 * Returns an array containing {@code Constructor} objects reflecting 2014 * all the public constructors of the class represented by this 2015 * {@code Class} object. An array of length 0 is returned if the 2016 * class has no public constructors, or if the class is an array class, or 2017 * if the class reflects a primitive type or void. 2018 * 2019 * @apiNote 2020 * While this method returns an array of {@code 2021 * Constructor<T>} objects (that is an array of constructors from 2022 * this class), the return type of this method is {@code 2023 * Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as 2024 * might be expected. This less informative return type is 2025 * necessary since after being returned from this method, the 2026 * array could be modified to hold {@code Constructor} objects for 2027 * different classes, which would violate the type guarantees of 2028 * {@code Constructor<T>[]}. 2029 * 2030 * @return the array of {@code Constructor} objects representing the 2031 * public constructors of this class 2032 * 2033 * @see #getDeclaredConstructors() 2034 * @since 1.1 2035 */ 2036 public Constructor<?>[] getConstructors() { 2037 return copyConstructors(privateGetDeclaredConstructors(true)); 2038 } 2039 2040 2041 /** 2042 * Returns a {@code Field} object that reflects the specified public member 2043 * field of the class or interface represented by this {@code Class} 2044 * object. The {@code name} parameter is a {@code String} specifying the 2045 * simple name of the desired field. 2046 * 2047 * <p> The field to be reflected is determined by the algorithm that 2048 * follows. Let C be the class or interface represented by this {@code Class} object: 2049 * 2050 * <OL> 2051 * <LI> If C declares a public field with the name specified, that is the 2052 * field to be reflected.</LI> 2053 * <LI> If no field was found in step 1 above, this algorithm is applied 2054 * recursively to each direct superinterface of C. The direct 2055 * superinterfaces are searched in the order they were declared.</LI> 2056 * <LI> If no field was found in steps 1 and 2 above, and C has a 2057 * superclass S, then this algorithm is invoked recursively upon S. 2058 * If C has no superclass, then a {@code NoSuchFieldException} 2059 * is thrown.</LI> 2060 * </OL> 2061 * 2062 * <p> If this {@code Class} object represents an array type, then this 2063 * method does not find the {@code length} field of the array type. 2064 * 2065 * @param name the field name 2066 * @return the {@code Field} object of this class specified by 2067 * {@code name} 2068 * @throws NoSuchFieldException if a field with the specified name is 2069 * not found. 2070 * @throws NullPointerException if {@code name} is {@code null} 2071 * 2072 * @since 1.1 2073 * @jls 8.2 Class Members 2074 * @jls 8.3 Field Declarations 2075 */ 2076 public Field getField(String name) throws NoSuchFieldException { 2077 Objects.requireNonNull(name); 2078 Field field = getField0(name); 2079 if (field == null) { 2080 throw new NoSuchFieldException(name); 2081 } 2082 return getReflectionFactory().copyField(field); 2083 } 2084 2085 2086 /** 2087 * Returns a {@code Method} object that reflects the specified public 2088 * member method of the class or interface represented by this 2089 * {@code Class} object. The {@code name} parameter is a 2090 * {@code String} specifying the simple name of the desired method. The 2091 * {@code parameterTypes} parameter is an array of {@code Class} 2092 * objects that identify the method's formal parameter types, in declared 2093 * order. If {@code parameterTypes} is {@code null}, it is 2094 * treated as if it were an empty array. 2095 * 2096 * <p> If this {@code Class} object represents an array type, then this 2097 * method finds any public method inherited by the array type from 2098 * {@code Object} except method {@code clone()}. 2099 * 2100 * <p> If this {@code Class} object represents an interface then this 2101 * method does not find any implicitly declared method from 2102 * {@code Object}. Therefore, if no methods are explicitly declared in 2103 * this interface or any of its superinterfaces, then this method does not 2104 * find any method. 2105 * 2106 * <p> This method does not find any method with name {@value 2107 * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}. 2108 * 2109 * <p> Generally, the method to be reflected is determined by the 4 step 2110 * algorithm that follows. 2111 * Let C be the class or interface represented by this {@code Class} object: 2112 * <ol> 2113 * <li> A union of methods is composed of: 2114 * <ol type="a"> 2115 * <li> C's declared public instance and static methods as returned by 2116 * {@link #getDeclaredMethods()} and filtered to include only public 2117 * methods that match given {@code name} and {@code parameterTypes}</li> 2118 * <li> If C is a class other than {@code Object}, then include the result 2119 * of invoking this algorithm recursively on the superclass of C.</li> 2120 * <li> Include the results of invoking this algorithm recursively on all 2121 * direct superinterfaces of C, but include only instance methods.</li> 2122 * </ol></li> 2123 * <li> This union is partitioned into subsets of methods with same 2124 * return type (the selection of methods from step 1 also guarantees that 2125 * they have the same method name and parameter types).</li> 2126 * <li> Within each such subset only the most specific methods are selected. 2127 * Let method M be a method from a set of methods with same VM 2128 * signature (return type, name, parameter types). 2129 * M is most specific if there is no such method N != M from the same 2130 * set, such that N is more specific than M. N is more specific than M 2131 * if: 2132 * <ol type="a"> 2133 * <li> N is declared by a class and M is declared by an interface; or</li> 2134 * <li> N and M are both declared by classes or both by interfaces and 2135 * N's declaring type is the same as or a subtype of M's declaring type 2136 * (clearly, if M's and N's declaring types are the same type, then 2137 * M and N are the same method).</li> 2138 * </ol></li> 2139 * <li> The result of this algorithm is chosen arbitrarily from the methods 2140 * with most specific return type among all selected methods from step 3. 2141 * Let R be a return type of a method M from the set of all selected methods 2142 * from step 3. M is a method with most specific return type if there is 2143 * no such method N != M from the same set, having return type S != R, 2144 * such that S is a subtype of R as determined by 2145 * R.class.{@link #isAssignableFrom}(S.class). 2146 * </ol> 2147 * 2148 * @apiNote There may be more than one method with matching name and 2149 * parameter types in a class because while the Java language forbids a 2150 * class to declare multiple methods with the same signature but different 2151 * return types, the Java virtual machine does not. This 2152 * increased flexibility in the virtual machine can be used to 2153 * implement various language features. For example, covariant 2154 * returns can be implemented with {@linkplain 2155 * java.lang.reflect.Method#isBridge bridge methods}; the bridge 2156 * method and the overriding method would have the same 2157 * signature but different return types. This method would return the 2158 * overriding method as it would have a more specific return type. 2159 * 2160 * @param name the name of the method 2161 * @param parameterTypes the list of parameters 2162 * @return the {@code Method} object that matches the specified 2163 * {@code name} and {@code parameterTypes} 2164 * @throws NoSuchMethodException if a matching method is not found 2165 * or if the name is {@value ConstantDescs#INIT_NAME} or 2166 * {@value ConstantDescs#CLASS_INIT_NAME}. 2167 * @throws NullPointerException if {@code name} is {@code null} 2168 * 2169 * @jls 8.2 Class Members 2170 * @jls 8.4 Method Declarations 2171 * @since 1.1 2172 */ 2173 public Method getMethod(String name, Class<?>... parameterTypes) 2174 throws NoSuchMethodException { 2175 Objects.requireNonNull(name); 2176 Method method = getMethod0(name, parameterTypes); 2177 if (method == null) { 2178 throw new NoSuchMethodException(methodToString(name, parameterTypes)); 2179 } 2180 return getReflectionFactory().copyMethod(method); 2181 } 2182 2183 /** 2184 * Returns a {@code Constructor} object that reflects the specified 2185 * public constructor of the class represented by this {@code Class} 2186 * object. The {@code parameterTypes} parameter is an array of 2187 * {@code Class} objects that identify the constructor's formal 2188 * parameter types, in declared order. 2189 * 2190 * If this {@code Class} object represents an inner class 2191 * declared in a non-static context, the formal parameter types 2192 * include the explicit enclosing instance as the first parameter. 2193 * 2194 * <p> The constructor to reflect is the public constructor of the class 2195 * represented by this {@code Class} object whose formal parameter 2196 * types match those specified by {@code parameterTypes}. 2197 * 2198 * @param parameterTypes the parameter array 2199 * @return the {@code Constructor} object of the public constructor that 2200 * matches the specified {@code parameterTypes} 2201 * @throws NoSuchMethodException if a matching constructor is not found, 2202 * including when this {@code Class} object represents 2203 * an interface, a primitive type, an array class, or void. 2204 * 2205 * @see #getDeclaredConstructor(Class[]) 2206 * @since 1.1 2207 */ 2208 public Constructor<T> getConstructor(Class<?>... parameterTypes) 2209 throws NoSuchMethodException { 2210 return getReflectionFactory().copyConstructor( 2211 getConstructor0(parameterTypes, Member.PUBLIC)); 2212 } 2213 2214 2215 /** 2216 * Returns an array of {@code Class} objects reflecting all the 2217 * classes and interfaces declared as members of the class represented by 2218 * this {@code Class} object. This includes public, protected, default 2219 * (package) access, and private classes and interfaces declared by the 2220 * class, but excludes inherited classes and interfaces. This method 2221 * returns an array of length 0 if the class declares no classes or 2222 * interfaces as members, or if this {@code Class} object represents a 2223 * primitive type, an array class, or void. 2224 * 2225 * @return the array of {@code Class} objects representing all the 2226 * declared members of this class 2227 * 2228 * @since 1.1 2229 * @jls 8.5 Member Class and Interface Declarations 2230 */ 2231 public Class<?>[] getDeclaredClasses() { 2232 return getDeclaredClasses0(); 2233 } 2234 2235 2236 /** 2237 * Returns an array of {@code Field} objects reflecting all the fields 2238 * declared by the class or interface represented by this 2239 * {@code Class} object. This includes public, protected, default 2240 * (package) access, and private fields, but excludes inherited fields. 2241 * 2242 * <p> If this {@code Class} object represents a class or interface with no 2243 * declared fields, then this method returns an array of length 0. 2244 * 2245 * <p> If this {@code Class} object represents an array type, a primitive 2246 * type, or void, then this method returns an array of length 0. 2247 * 2248 * <p> The elements in the returned array are not sorted and are not in any 2249 * particular order. 2250 * 2251 * @return the array of {@code Field} objects representing all the 2252 * declared fields of this class 2253 * 2254 * @since 1.1 2255 * @jls 8.2 Class Members 2256 * @jls 8.3 Field Declarations 2257 */ 2258 public Field[] getDeclaredFields() { 2259 return copyFields(privateGetDeclaredFields(false)); 2260 } 2261 2262 /** 2263 * Returns an array of {@code RecordComponent} objects representing all the 2264 * record components of this record class, or {@code null} if this class is 2265 * not a record class. 2266 * 2267 * <p> The components are returned in the same order that they are declared 2268 * in the record header. The array is empty if this record class has no 2269 * components. If the class is not a record class, that is {@link 2270 * #isRecord()} returns {@code false}, then this method returns {@code null}. 2271 * Conversely, if {@link #isRecord()} returns {@code true}, then this method 2272 * returns a non-null value. 2273 * 2274 * @apiNote 2275 * <p> The following method can be used to find the record canonical constructor: 2276 * 2277 * {@snippet lang="java" : 2278 * static <T extends Record> Constructor<T> getCanonicalConstructor(Class<T> cls) 2279 * throws NoSuchMethodException { 2280 * Class<?>[] paramTypes = 2281 * Arrays.stream(cls.getRecordComponents()) 2282 * .map(RecordComponent::getType) 2283 * .toArray(Class<?>[]::new); 2284 * return cls.getDeclaredConstructor(paramTypes); 2285 * }} 2286 * 2287 * @return An array of {@code RecordComponent} objects representing all the 2288 * record components of this record class, or {@code null} if this 2289 * class is not a record class 2290 * 2291 * @jls 8.10 Record Classes 2292 * @since 16 2293 */ 2294 public RecordComponent[] getRecordComponents() { 2295 if (!isRecord()) { 2296 return null; 2297 } 2298 return getRecordComponents0(); 2299 } 2300 2301 /** 2302 * Returns an array containing {@code Method} objects reflecting all the 2303 * declared methods of the class or interface represented by this {@code 2304 * Class} object, including public, protected, default (package) 2305 * access, and private methods, but excluding inherited methods. 2306 * The declared methods may include methods <em>not</em> in the 2307 * source of the class or interface, including {@linkplain 2308 * Method#isBridge bridge methods} and other {@linkplain 2309 * Executable#isSynthetic synthetic} methods added by compilers. 2310 * 2311 * <p> If this {@code Class} object represents a class or interface that 2312 * has multiple declared methods with the same name and parameter types, 2313 * but different return types, then the returned array has a {@code Method} 2314 * object for each such method. 2315 * 2316 * <p> If this {@code Class} object represents a class or interface that 2317 * has a class initialization method {@value ConstantDescs#CLASS_INIT_NAME}, 2318 * then the returned array does <em>not</em> have a corresponding {@code 2319 * Method} object. 2320 * 2321 * <p> If this {@code Class} object represents a class or interface with no 2322 * declared methods, then the returned array has length 0. 2323 * 2324 * <p> If this {@code Class} object represents an array type, a primitive 2325 * type, or void, then the returned array has length 0. 2326 * 2327 * <p> The elements in the returned array are not sorted and are not in any 2328 * particular order. 2329 * 2330 * @return the array of {@code Method} objects representing all the 2331 * declared methods of this class 2332 * 2333 * @jls 8.2 Class Members 2334 * @jls 8.4 Method Declarations 2335 * @see <a 2336 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 2337 * programming language and JVM modeling in core reflection</a> 2338 * @since 1.1 2339 */ 2340 public Method[] getDeclaredMethods() { 2341 return copyMethods(privateGetDeclaredMethods(false)); 2342 } 2343 2344 /** 2345 * Returns an array of {@code Constructor} objects reflecting all the 2346 * constructors implicitly or explicitly declared by the class represented by this 2347 * {@code Class} object. These are public, protected, default 2348 * (package) access, and private constructors. The elements in the array 2349 * returned are not sorted and are not in any particular order. If the 2350 * class has a default constructor (JLS {@jls 8.8.9}), it is included in the returned array. 2351 * If a record class has a canonical constructor (JLS {@jls 2352 * 8.10.4.1}, {@jls 8.10.4.2}), it is included in the returned array. 2353 * 2354 * This method returns an array of length 0 if this {@code Class} 2355 * object represents an interface, a primitive type, an array class, or 2356 * void. 2357 * 2358 * @return the array of {@code Constructor} objects representing all the 2359 * declared constructors of this class 2360 * 2361 * @since 1.1 2362 * @see #getConstructors() 2363 * @jls 8.8 Constructor Declarations 2364 */ 2365 public Constructor<?>[] getDeclaredConstructors() { 2366 return copyConstructors(privateGetDeclaredConstructors(false)); 2367 } 2368 2369 2370 /** 2371 * Returns a {@code Field} object that reflects the specified declared 2372 * field of the class or interface represented by this {@code Class} 2373 * object. The {@code name} parameter is a {@code String} that specifies 2374 * the simple name of the desired field. 2375 * 2376 * <p> If this {@code Class} object represents an array type, then this 2377 * method does not find the {@code length} field of the array type. 2378 * 2379 * @param name the name of the field 2380 * @return the {@code Field} object for the specified field in this 2381 * class 2382 * @throws NoSuchFieldException if a field with the specified name is 2383 * not found. 2384 * @throws NullPointerException if {@code name} is {@code null} 2385 * 2386 * @since 1.1 2387 * @jls 8.2 Class Members 2388 * @jls 8.3 Field Declarations 2389 */ 2390 public Field getDeclaredField(String name) throws NoSuchFieldException { 2391 Objects.requireNonNull(name); 2392 Field field = searchFields(privateGetDeclaredFields(false), name); 2393 if (field == null) { 2394 throw new NoSuchFieldException(name); 2395 } 2396 return getReflectionFactory().copyField(field); 2397 } 2398 2399 2400 /** 2401 * Returns a {@code Method} object that reflects the specified 2402 * declared method of the class or interface represented by this 2403 * {@code Class} object. The {@code name} parameter is a 2404 * {@code String} that specifies the simple name of the desired 2405 * method, and the {@code parameterTypes} parameter is an array of 2406 * {@code Class} objects that identify the method's formal parameter 2407 * types, in declared order. If more than one method with the same 2408 * parameter types is declared in a class, and one of these methods has a 2409 * return type that is more specific than any of the others, that method is 2410 * returned; otherwise one of the methods is chosen arbitrarily. If the 2411 * name is {@value ConstantDescs#INIT_NAME} or {@value 2412 * ConstantDescs#CLASS_INIT_NAME} a {@code NoSuchMethodException} 2413 * is raised. 2414 * 2415 * <p> If this {@code Class} object represents an array type, then this 2416 * method does not find the {@code clone()} method. 2417 * 2418 * @param name the name of the method 2419 * @param parameterTypes the parameter array 2420 * @return the {@code Method} object for the method of this class 2421 * matching the specified name and parameters 2422 * @throws NoSuchMethodException if a matching method is not found. 2423 * @throws NullPointerException if {@code name} is {@code null} 2424 * 2425 * @jls 8.2 Class Members 2426 * @jls 8.4 Method Declarations 2427 * @since 1.1 2428 */ 2429 public Method getDeclaredMethod(String name, Class<?>... parameterTypes) 2430 throws NoSuchMethodException { 2431 Objects.requireNonNull(name); 2432 Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes); 2433 if (method == null) { 2434 throw new NoSuchMethodException(methodToString(name, parameterTypes)); 2435 } 2436 return getReflectionFactory().copyMethod(method); 2437 } 2438 2439 /** 2440 * Returns the list of {@code Method} objects for the declared public 2441 * methods of this class or interface that have the specified method name 2442 * and parameter types. 2443 * 2444 * @param name the name of the method 2445 * @param parameterTypes the parameter array 2446 * @return the list of {@code Method} objects for the public methods of 2447 * this class matching the specified name and parameters 2448 */ 2449 List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) { 2450 Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true); 2451 ReflectionFactory factory = getReflectionFactory(); 2452 List<Method> result = new ArrayList<>(); 2453 for (Method method : methods) { 2454 if (method.getName().equals(name) 2455 && Arrays.equals( 2456 factory.getExecutableSharedParameterTypes(method), 2457 parameterTypes)) { 2458 result.add(factory.copyMethod(method)); 2459 } 2460 } 2461 return result; 2462 } 2463 2464 /** 2465 * Returns the most specific {@code Method} object of this class, super class or 2466 * interface that have the specified method name and parameter types. 2467 * 2468 * @param publicOnly true if only public methods are examined, otherwise all methods 2469 * @param name the name of the method 2470 * @param parameterTypes the parameter array 2471 * @return the {@code Method} object for the method found from this class matching 2472 * the specified name and parameters, or null if not found 2473 */ 2474 Method findMethod(boolean publicOnly, String name, Class<?>... parameterTypes) { 2475 PublicMethods.MethodList res = getMethodsRecursive(name, parameterTypes, true, publicOnly); 2476 return res == null ? null : getReflectionFactory().copyMethod(res.getMostSpecific()); 2477 } 2478 2479 /** 2480 * Returns a {@code Constructor} object that reflects the specified 2481 * constructor of the class represented by this 2482 * {@code Class} object. The {@code parameterTypes} parameter is 2483 * an array of {@code Class} objects that identify the constructor's 2484 * formal parameter types, in declared order. 2485 * 2486 * If this {@code Class} object represents an inner class 2487 * declared in a non-static context, the formal parameter types 2488 * include the explicit enclosing instance as the first parameter. 2489 * 2490 * @param parameterTypes the parameter array 2491 * @return The {@code Constructor} object for the constructor with the 2492 * specified parameter list 2493 * @throws NoSuchMethodException if a matching constructor is not found, 2494 * including when this {@code Class} object represents 2495 * an interface, a primitive type, an array class, or void. 2496 * 2497 * @see #getConstructor(Class[]) 2498 * @since 1.1 2499 */ 2500 public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes) 2501 throws NoSuchMethodException { 2502 return getReflectionFactory().copyConstructor( 2503 getConstructor0(parameterTypes, Member.DECLARED)); 2504 } 2505 2506 /** 2507 * Finds a resource with a given name. 2508 * 2509 * <p> If this class is in a named {@link Module Module} then this method 2510 * will attempt to find the resource in the module. This is done by 2511 * delegating to the module's class loader {@link 2512 * ClassLoader#findResource(String,String) findResource(String,String)} 2513 * method, invoking it with the module name and the absolute name of the 2514 * resource. Resources in named modules are subject to the rules for 2515 * encapsulation specified in the {@code Module} {@link 2516 * Module#getResourceAsStream getResourceAsStream} method and so this 2517 * method returns {@code null} when the resource is a 2518 * non-"{@code .class}" resource in a package that is not open to the 2519 * caller's module. 2520 * 2521 * <p> Otherwise, if this class is not in a named module then the rules for 2522 * searching resources associated with a given class are implemented by the 2523 * defining {@linkplain ClassLoader class loader} of the class. This method 2524 * delegates to this {@code Class} object's class loader. 2525 * If this {@code Class} object was loaded by the bootstrap class loader, 2526 * the method delegates to {@link ClassLoader#getSystemResourceAsStream}. 2527 * 2528 * <p> Before delegation, an absolute resource name is constructed from the 2529 * given resource name using this algorithm: 2530 * 2531 * <ul> 2532 * 2533 * <li> If the {@code name} begins with a {@code '/'} 2534 * (<code>'\u002f'</code>), then the absolute name of the resource is the 2535 * portion of the {@code name} following the {@code '/'}. 2536 * 2537 * <li> Otherwise, the absolute name is of the following form: 2538 * 2539 * <blockquote> 2540 * {@code modified_package_name/name} 2541 * </blockquote> 2542 * 2543 * <p> Where the {@code modified_package_name} is the package name of this 2544 * object with {@code '/'} substituted for {@code '.'} 2545 * (<code>'\u002e'</code>). 2546 * 2547 * </ul> 2548 * 2549 * @param name name of the desired resource 2550 * @return A {@link java.io.InputStream} object; {@code null} if no 2551 * resource with this name is found, or the resource is in a package 2552 * that is not {@linkplain Module#isOpen(String, Module) open} to at 2553 * least the caller module. 2554 * @throws NullPointerException If {@code name} is {@code null} 2555 * 2556 * @see Module#getResourceAsStream(String) 2557 * @since 1.1 2558 */ 2559 @CallerSensitive 2560 public InputStream getResourceAsStream(String name) { 2561 name = resolveName(name); 2562 2563 Module thisModule = getModule(); 2564 if (thisModule.isNamed()) { 2565 // check if resource can be located by caller 2566 if (Resources.canEncapsulate(name) 2567 && !isOpenToCaller(name, Reflection.getCallerClass())) { 2568 return null; 2569 } 2570 2571 // resource not encapsulated or in package open to caller 2572 String mn = thisModule.getName(); 2573 ClassLoader cl = classLoader; 2574 try { 2575 2576 // special-case built-in class loaders to avoid the 2577 // need for a URL connection 2578 if (cl == null) { 2579 return BootLoader.findResourceAsStream(mn, name); 2580 } else if (cl instanceof BuiltinClassLoader bcl) { 2581 return bcl.findResourceAsStream(mn, name); 2582 } else { 2583 URL url = cl.findResource(mn, name); 2584 return (url != null) ? url.openStream() : null; 2585 } 2586 2587 } catch (IOException | SecurityException e) { 2588 return null; 2589 } 2590 } 2591 2592 // unnamed module 2593 ClassLoader cl = classLoader; 2594 if (cl == null) { 2595 return ClassLoader.getSystemResourceAsStream(name); 2596 } else { 2597 return cl.getResourceAsStream(name); 2598 } 2599 } 2600 2601 /** 2602 * Finds a resource with a given name. 2603 * 2604 * <p> If this class is in a named {@link Module Module} then this method 2605 * will attempt to find the resource in the module. This is done by 2606 * delegating to the module's class loader {@link 2607 * ClassLoader#findResource(String,String) findResource(String,String)} 2608 * method, invoking it with the module name and the absolute name of the 2609 * resource. Resources in named modules are subject to the rules for 2610 * encapsulation specified in the {@code Module} {@link 2611 * Module#getResourceAsStream getResourceAsStream} method and so this 2612 * method returns {@code null} when the resource is a 2613 * non-"{@code .class}" resource in a package that is not open to the 2614 * caller's module. 2615 * 2616 * <p> Otherwise, if this class is not in a named module then the rules for 2617 * searching resources associated with a given class are implemented by the 2618 * defining {@linkplain ClassLoader class loader} of the class. This method 2619 * delegates to this {@code Class} object's class loader. 2620 * If this {@code Class} object was loaded by the bootstrap class loader, 2621 * the method delegates to {@link ClassLoader#getSystemResource}. 2622 * 2623 * <p> Before delegation, an absolute resource name is constructed from the 2624 * given resource name using this algorithm: 2625 * 2626 * <ul> 2627 * 2628 * <li> If the {@code name} begins with a {@code '/'} 2629 * (<code>'\u002f'</code>), then the absolute name of the resource is the 2630 * portion of the {@code name} following the {@code '/'}. 2631 * 2632 * <li> Otherwise, the absolute name is of the following form: 2633 * 2634 * <blockquote> 2635 * {@code modified_package_name/name} 2636 * </blockquote> 2637 * 2638 * <p> Where the {@code modified_package_name} is the package name of this 2639 * object with {@code '/'} substituted for {@code '.'} 2640 * (<code>'\u002e'</code>). 2641 * 2642 * </ul> 2643 * 2644 * @param name name of the desired resource 2645 * @return A {@link java.net.URL} object; {@code null} if no resource with 2646 * this name is found, the resource cannot be located by a URL, or the 2647 * resource is in a package that is not 2648 * {@linkplain Module#isOpen(String, Module) open} to at least the caller 2649 * module. 2650 * @throws NullPointerException If {@code name} is {@code null} 2651 * @since 1.1 2652 */ 2653 @CallerSensitive 2654 public URL getResource(String name) { 2655 name = resolveName(name); 2656 2657 Module thisModule = getModule(); 2658 if (thisModule.isNamed()) { 2659 // check if resource can be located by caller 2660 if (Resources.canEncapsulate(name) 2661 && !isOpenToCaller(name, Reflection.getCallerClass())) { 2662 return null; 2663 } 2664 2665 // resource not encapsulated or in package open to caller 2666 String mn = thisModule.getName(); 2667 ClassLoader cl = classLoader; 2668 try { 2669 if (cl == null) { 2670 return BootLoader.findResource(mn, name); 2671 } else { 2672 return cl.findResource(mn, name); 2673 } 2674 } catch (IOException ioe) { 2675 return null; 2676 } 2677 } 2678 2679 // unnamed module 2680 ClassLoader cl = classLoader; 2681 if (cl == null) { 2682 return ClassLoader.getSystemResource(name); 2683 } else { 2684 return cl.getResource(name); 2685 } 2686 } 2687 2688 /** 2689 * Returns true if a resource with the given name can be located by the 2690 * given caller. All resources in a module can be located by code in 2691 * the module. For other callers, then the package needs to be open to 2692 * the caller. 2693 */ 2694 private boolean isOpenToCaller(String name, Class<?> caller) { 2695 // assert getModule().isNamed(); 2696 Module thisModule = getModule(); 2697 Module callerModule = (caller != null) ? caller.getModule() : null; 2698 if (callerModule != thisModule) { 2699 String pn = Resources.toPackageName(name); 2700 if (thisModule.getDescriptor().packages().contains(pn)) { 2701 if (callerModule == null) { 2702 // no caller, return true if the package is open to all modules 2703 return thisModule.isOpen(pn); 2704 } 2705 if (!thisModule.isOpen(pn, callerModule)) { 2706 // package not open to caller 2707 return false; 2708 } 2709 } 2710 } 2711 return true; 2712 } 2713 2714 private transient final ProtectionDomain protectionDomain; 2715 2716 /** Holder for the protection domain returned when the internal domain is null */ 2717 private static class Holder { 2718 private static final ProtectionDomain allPermDomain; 2719 static { 2720 Permissions perms = new Permissions(); 2721 perms.add(new AllPermission()); 2722 allPermDomain = new ProtectionDomain(null, perms); 2723 } 2724 } 2725 2726 /** 2727 * Returns the {@code ProtectionDomain} of this class. 2728 * 2729 * @return the ProtectionDomain of this class 2730 * 2731 * @see java.security.ProtectionDomain 2732 * @since 1.2 2733 */ 2734 public ProtectionDomain getProtectionDomain() { 2735 if (protectionDomain == null) { 2736 return Holder.allPermDomain; 2737 } else { 2738 return protectionDomain; 2739 } 2740 } 2741 2742 /* 2743 * Returns the Class object for the named primitive type. Type parameter T 2744 * avoids redundant casts for trusted code. 2745 */ 2746 static native <T> Class<T> getPrimitiveClass(String name); 2747 2748 /** 2749 * Add a package name prefix if the name is not absolute. Remove leading "/" 2750 * if name is absolute 2751 */ 2752 private String resolveName(String name) { 2753 if (!name.startsWith("/")) { 2754 String baseName = getPackageName(); 2755 if (!baseName.isEmpty()) { 2756 int len = baseName.length() + 1 + name.length(); 2757 StringBuilder sb = new StringBuilder(len); 2758 name = sb.append(baseName.replace('.', '/')) 2759 .append('/') 2760 .append(name) 2761 .toString(); 2762 } 2763 } else { 2764 name = name.substring(1); 2765 } 2766 return name; 2767 } 2768 2769 /** 2770 * Atomic operations support. 2771 */ 2772 private static class Atomic { 2773 // initialize Unsafe machinery here, since we need to call Class.class instance method 2774 // and have to avoid calling it in the static initializer of the Class class... 2775 private static final Unsafe unsafe = Unsafe.getUnsafe(); 2776 // offset of Class.reflectionData instance field 2777 private static final long reflectionDataOffset 2778 = unsafe.objectFieldOffset(Class.class, "reflectionData"); 2779 // offset of Class.annotationType instance field 2780 private static final long annotationTypeOffset 2781 = unsafe.objectFieldOffset(Class.class, "annotationType"); 2782 // offset of Class.annotationData instance field 2783 private static final long annotationDataOffset 2784 = unsafe.objectFieldOffset(Class.class, "annotationData"); 2785 2786 static <T> boolean casReflectionData(Class<?> clazz, 2787 SoftReference<ReflectionData<T>> oldData, 2788 SoftReference<ReflectionData<T>> newData) { 2789 return unsafe.compareAndSetReference(clazz, reflectionDataOffset, oldData, newData); 2790 } 2791 2792 static boolean casAnnotationType(Class<?> clazz, 2793 AnnotationType oldType, 2794 AnnotationType newType) { 2795 return unsafe.compareAndSetReference(clazz, annotationTypeOffset, oldType, newType); 2796 } 2797 2798 static boolean casAnnotationData(Class<?> clazz, 2799 AnnotationData oldData, 2800 AnnotationData newData) { 2801 return unsafe.compareAndSetReference(clazz, annotationDataOffset, oldData, newData); 2802 } 2803 } 2804 2805 /** 2806 * Reflection support. 2807 */ 2808 2809 // Reflection data caches various derived names and reflective members. Cached 2810 // values may be invalidated when JVM TI RedefineClasses() is called 2811 private static class ReflectionData<T> { 2812 volatile Field[] declaredFields; 2813 volatile Field[] publicFields; 2814 volatile Method[] declaredMethods; 2815 volatile Method[] publicMethods; 2816 volatile Constructor<T>[] declaredConstructors; 2817 volatile Constructor<T>[] publicConstructors; 2818 // Intermediate results for getFields and getMethods 2819 volatile Field[] declaredPublicFields; 2820 volatile Method[] declaredPublicMethods; 2821 volatile Class<?>[] interfaces; 2822 2823 // Cached names 2824 String simpleName; 2825 String canonicalName; 2826 static final String NULL_SENTINEL = new String(); 2827 2828 // Value of classRedefinedCount when we created this ReflectionData instance 2829 final int redefinedCount; 2830 2831 ReflectionData(int redefinedCount) { 2832 this.redefinedCount = redefinedCount; 2833 } 2834 } 2835 2836 private transient volatile SoftReference<ReflectionData<T>> reflectionData; 2837 2838 // Incremented by the VM on each call to JVM TI RedefineClasses() 2839 // that redefines this class or a superclass. 2840 private transient volatile int classRedefinedCount; 2841 2842 // Lazily create and cache ReflectionData 2843 private ReflectionData<T> reflectionData() { 2844 SoftReference<ReflectionData<T>> reflectionData = this.reflectionData; 2845 int classRedefinedCount = this.classRedefinedCount; 2846 ReflectionData<T> rd; 2847 if (reflectionData != null && 2848 (rd = reflectionData.get()) != null && 2849 rd.redefinedCount == classRedefinedCount) { 2850 return rd; 2851 } 2852 // else no SoftReference or cleared SoftReference or stale ReflectionData 2853 // -> create and replace new instance 2854 return newReflectionData(reflectionData, classRedefinedCount); 2855 } 2856 2857 private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData, 2858 int classRedefinedCount) { 2859 while (true) { 2860 ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount); 2861 // try to CAS it... 2862 if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) { 2863 return rd; 2864 } 2865 // else retry 2866 oldReflectionData = this.reflectionData; 2867 classRedefinedCount = this.classRedefinedCount; 2868 if (oldReflectionData != null && 2869 (rd = oldReflectionData.get()) != null && 2870 rd.redefinedCount == classRedefinedCount) { 2871 return rd; 2872 } 2873 } 2874 } 2875 2876 // Generic signature handling 2877 private native String getGenericSignature0(); 2878 2879 // Generic info repository; lazily initialized 2880 private transient volatile ClassRepository genericInfo; 2881 2882 // accessor for factory 2883 private GenericsFactory getFactory() { 2884 // create scope and factory 2885 return CoreReflectionFactory.make(this, ClassScope.make(this)); 2886 } 2887 2888 // accessor for generic info repository; 2889 // generic info is lazily initialized 2890 private ClassRepository getGenericInfo() { 2891 ClassRepository genericInfo = this.genericInfo; 2892 if (genericInfo == null) { 2893 String signature = getGenericSignature0(); 2894 if (signature == null) { 2895 genericInfo = ClassRepository.NONE; 2896 } else { 2897 genericInfo = ClassRepository.make(signature, getFactory()); 2898 } 2899 this.genericInfo = genericInfo; 2900 } 2901 return (genericInfo != ClassRepository.NONE) ? genericInfo : null; 2902 } 2903 2904 // Annotations handling 2905 native byte[] getRawAnnotations(); 2906 // Since 1.8 2907 native byte[] getRawTypeAnnotations(); 2908 static byte[] getExecutableTypeAnnotationBytes(Executable ex) { 2909 return getReflectionFactory().getExecutableTypeAnnotationBytes(ex); 2910 } 2911 2912 native ConstantPool getConstantPool(); 2913 2914 // 2915 // 2916 // java.lang.reflect.Field handling 2917 // 2918 // 2919 2920 // Returns an array of "root" fields. These Field objects must NOT 2921 // be propagated to the outside world, but must instead be copied 2922 // via ReflectionFactory.copyField. 2923 private Field[] privateGetDeclaredFields(boolean publicOnly) { 2924 Field[] res; 2925 ReflectionData<T> rd = reflectionData(); 2926 res = publicOnly ? rd.declaredPublicFields : rd.declaredFields; 2927 if (res != null) return res; 2928 // No cached value available; request value from VM 2929 res = Reflection.filterFields(this, getDeclaredFields0(publicOnly)); 2930 if (publicOnly) { 2931 rd.declaredPublicFields = res; 2932 } else { 2933 rd.declaredFields = res; 2934 } 2935 return res; 2936 } 2937 2938 // Returns an array of "root" fields. These Field objects must NOT 2939 // be propagated to the outside world, but must instead be copied 2940 // via ReflectionFactory.copyField. 2941 private Field[] privateGetPublicFields() { 2942 Field[] res; 2943 ReflectionData<T> rd = reflectionData(); 2944 res = rd.publicFields; 2945 if (res != null) return res; 2946 2947 // Use a linked hash set to ensure order is preserved and 2948 // fields from common super interfaces are not duplicated 2949 LinkedHashSet<Field> fields = new LinkedHashSet<>(); 2950 2951 // Local fields 2952 addAll(fields, privateGetDeclaredFields(true)); 2953 2954 // Direct superinterfaces, recursively 2955 for (Class<?> si : getInterfaces(/* cloneArray */ false)) { 2956 addAll(fields, si.privateGetPublicFields()); 2957 } 2958 2959 // Direct superclass, recursively 2960 Class<?> sc = getSuperclass(); 2961 if (sc != null) { 2962 addAll(fields, sc.privateGetPublicFields()); 2963 } 2964 2965 res = fields.toArray(new Field[0]); 2966 rd.publicFields = res; 2967 return res; 2968 } 2969 2970 private static void addAll(Collection<Field> c, Field[] o) { 2971 for (Field f : o) { 2972 c.add(f); 2973 } 2974 } 2975 2976 2977 // 2978 // 2979 // java.lang.reflect.Constructor handling 2980 // 2981 // 2982 2983 // Returns an array of "root" constructors. These Constructor 2984 // objects must NOT be propagated to the outside world, but must 2985 // instead be copied via ReflectionFactory.copyConstructor. 2986 private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) { 2987 Constructor<T>[] res; 2988 ReflectionData<T> rd = reflectionData(); 2989 res = publicOnly ? rd.publicConstructors : rd.declaredConstructors; 2990 if (res != null) return res; 2991 // No cached value available; request value from VM 2992 if (isInterface()) { 2993 @SuppressWarnings("unchecked") 2994 Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0]; 2995 res = temporaryRes; 2996 } else { 2997 res = getDeclaredConstructors0(publicOnly); 2998 } 2999 if (publicOnly) { 3000 rd.publicConstructors = res; 3001 } else { 3002 rd.declaredConstructors = res; 3003 } 3004 return res; 3005 } 3006 3007 // 3008 // 3009 // java.lang.reflect.Method handling 3010 // 3011 // 3012 3013 // Returns an array of "root" methods. These Method objects must NOT 3014 // be propagated to the outside world, but must instead be copied 3015 // via ReflectionFactory.copyMethod. 3016 private Method[] privateGetDeclaredMethods(boolean publicOnly) { 3017 Method[] res; 3018 ReflectionData<T> rd = reflectionData(); 3019 res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods; 3020 if (res != null) return res; 3021 // No cached value available; request value from VM 3022 res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly)); 3023 if (publicOnly) { 3024 rd.declaredPublicMethods = res; 3025 } else { 3026 rd.declaredMethods = res; 3027 } 3028 return res; 3029 } 3030 3031 // Returns an array of "root" methods. These Method objects must NOT 3032 // be propagated to the outside world, but must instead be copied 3033 // via ReflectionFactory.copyMethod. 3034 private Method[] privateGetPublicMethods() { 3035 Method[] res; 3036 ReflectionData<T> rd = reflectionData(); 3037 res = rd.publicMethods; 3038 if (res != null) return res; 3039 3040 // No cached value available; compute value recursively. 3041 // Start by fetching public declared methods... 3042 PublicMethods pms = new PublicMethods(); 3043 for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) { 3044 pms.merge(m); 3045 } 3046 // ...then recur over superclass methods... 3047 Class<?> sc = getSuperclass(); 3048 if (sc != null) { 3049 for (Method m : sc.privateGetPublicMethods()) { 3050 pms.merge(m); 3051 } 3052 } 3053 // ...and finally over direct superinterfaces. 3054 for (Class<?> intf : getInterfaces(/* cloneArray */ false)) { 3055 for (Method m : intf.privateGetPublicMethods()) { 3056 // static interface methods are not inherited 3057 if (!Modifier.isStatic(m.getModifiers())) { 3058 pms.merge(m); 3059 } 3060 } 3061 } 3062 3063 res = pms.toArray(); 3064 rd.publicMethods = res; 3065 return res; 3066 } 3067 3068 3069 // 3070 // Helpers for fetchers of one field, method, or constructor 3071 // 3072 3073 // This method does not copy the returned Field object! 3074 private static Field searchFields(Field[] fields, String name) { 3075 for (Field field : fields) { 3076 if (field.getName().equals(name)) { 3077 return field; 3078 } 3079 } 3080 return null; 3081 } 3082 3083 // Returns a "root" Field object. This Field object must NOT 3084 // be propagated to the outside world, but must instead be copied 3085 // via ReflectionFactory.copyField. 3086 private Field getField0(String name) { 3087 // Note: the intent is that the search algorithm this routine 3088 // uses be equivalent to the ordering imposed by 3089 // privateGetPublicFields(). It fetches only the declared 3090 // public fields for each class, however, to reduce the number 3091 // of Field objects which have to be created for the common 3092 // case where the field being requested is declared in the 3093 // class which is being queried. 3094 Field res; 3095 // Search declared public fields 3096 if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) { 3097 return res; 3098 } 3099 // Direct superinterfaces, recursively 3100 Class<?>[] interfaces = getInterfaces(/* cloneArray */ false); 3101 for (Class<?> c : interfaces) { 3102 if ((res = c.getField0(name)) != null) { 3103 return res; 3104 } 3105 } 3106 // Direct superclass, recursively 3107 if (!isInterface()) { 3108 Class<?> c = getSuperclass(); 3109 if (c != null) { 3110 if ((res = c.getField0(name)) != null) { 3111 return res; 3112 } 3113 } 3114 } 3115 return null; 3116 } 3117 3118 // This method does not copy the returned Method object! 3119 private static Method searchMethods(Method[] methods, 3120 String name, 3121 Class<?>[] parameterTypes) 3122 { 3123 ReflectionFactory fact = getReflectionFactory(); 3124 Method res = null; 3125 for (Method m : methods) { 3126 if (m.getName().equals(name) 3127 && arrayContentsEq(parameterTypes, 3128 fact.getExecutableSharedParameterTypes(m)) 3129 && (res == null 3130 || (res.getReturnType() != m.getReturnType() 3131 && res.getReturnType().isAssignableFrom(m.getReturnType())))) 3132 res = m; 3133 } 3134 return res; 3135 } 3136 3137 private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0]; 3138 3139 // Returns a "root" Method object. This Method object must NOT 3140 // be propagated to the outside world, but must instead be copied 3141 // via ReflectionFactory.copyMethod. 3142 private Method getMethod0(String name, Class<?>[] parameterTypes) { 3143 PublicMethods.MethodList res = getMethodsRecursive( 3144 name, 3145 parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes, 3146 /* includeStatic */ true, /* publicOnly */ true); 3147 return res == null ? null : res.getMostSpecific(); 3148 } 3149 3150 // Returns a list of "root" Method objects. These Method objects must NOT 3151 // be propagated to the outside world, but must instead be copied 3152 // via ReflectionFactory.copyMethod. 3153 private PublicMethods.MethodList getMethodsRecursive(String name, 3154 Class<?>[] parameterTypes, 3155 boolean includeStatic, 3156 boolean publicOnly) { 3157 // 1st check declared methods 3158 Method[] methods = privateGetDeclaredMethods(publicOnly); 3159 PublicMethods.MethodList res = PublicMethods.MethodList 3160 .filter(methods, name, parameterTypes, includeStatic); 3161 // if there is at least one match among declared methods, we need not 3162 // search any further as such match surely overrides matching methods 3163 // declared in superclass(es) or interface(s). 3164 if (res != null) { 3165 return res; 3166 } 3167 3168 // if there was no match among declared methods, 3169 // we must consult the superclass (if any) recursively... 3170 Class<?> sc = getSuperclass(); 3171 if (sc != null) { 3172 res = sc.getMethodsRecursive(name, parameterTypes, includeStatic, publicOnly); 3173 } 3174 3175 // ...and coalesce the superclass methods with methods obtained 3176 // from directly implemented interfaces excluding static methods... 3177 for (Class<?> intf : getInterfaces(/* cloneArray */ false)) { 3178 res = PublicMethods.MethodList.merge( 3179 res, intf.getMethodsRecursive(name, parameterTypes, /* includeStatic */ false, publicOnly)); 3180 } 3181 3182 return res; 3183 } 3184 3185 // Returns a "root" Constructor object. This Constructor object must NOT 3186 // be propagated to the outside world, but must instead be copied 3187 // via ReflectionFactory.copyConstructor. 3188 private Constructor<T> getConstructor0(Class<?>[] parameterTypes, 3189 int which) throws NoSuchMethodException 3190 { 3191 ReflectionFactory fact = getReflectionFactory(); 3192 Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC)); 3193 for (Constructor<T> constructor : constructors) { 3194 if (arrayContentsEq(parameterTypes, 3195 fact.getExecutableSharedParameterTypes(constructor))) { 3196 return constructor; 3197 } 3198 } 3199 throw new NoSuchMethodException(methodToString("<init>", parameterTypes)); 3200 } 3201 3202 // 3203 // Other helpers and base implementation 3204 // 3205 3206 private static boolean arrayContentsEq(Object[] a1, Object[] a2) { 3207 if (a1 == null) { 3208 return a2 == null || a2.length == 0; 3209 } 3210 3211 if (a2 == null) { 3212 return a1.length == 0; 3213 } 3214 3215 if (a1.length != a2.length) { 3216 return false; 3217 } 3218 3219 for (int i = 0; i < a1.length; i++) { 3220 if (a1[i] != a2[i]) { 3221 return false; 3222 } 3223 } 3224 3225 return true; 3226 } 3227 3228 private static Field[] copyFields(Field[] arg) { 3229 Field[] out = new Field[arg.length]; 3230 ReflectionFactory fact = getReflectionFactory(); 3231 for (int i = 0; i < arg.length; i++) { 3232 out[i] = fact.copyField(arg[i]); 3233 } 3234 return out; 3235 } 3236 3237 private static Method[] copyMethods(Method[] arg) { 3238 Method[] out = new Method[arg.length]; 3239 ReflectionFactory fact = getReflectionFactory(); 3240 for (int i = 0; i < arg.length; i++) { 3241 out[i] = fact.copyMethod(arg[i]); 3242 } 3243 return out; 3244 } 3245 3246 private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) { 3247 Constructor<U>[] out = arg.clone(); 3248 ReflectionFactory fact = getReflectionFactory(); 3249 for (int i = 0; i < out.length; i++) { 3250 out[i] = fact.copyConstructor(out[i]); 3251 } 3252 return out; 3253 } 3254 3255 private native Field[] getDeclaredFields0(boolean publicOnly); 3256 private native Method[] getDeclaredMethods0(boolean publicOnly); 3257 private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly); 3258 private native Class<?>[] getDeclaredClasses0(); 3259 3260 /* 3261 * Returns an array containing the components of the Record attribute, 3262 * or null if the attribute is not present. 3263 * 3264 * Note that this method returns non-null array on a class with 3265 * the Record attribute even if this class is not a record. 3266 */ 3267 private native RecordComponent[] getRecordComponents0(); 3268 private native boolean isRecord0(); 3269 3270 /** 3271 * Helper method to get the method name from arguments. 3272 */ 3273 private String methodToString(String name, Class<?>[] argTypes) { 3274 return getName() + '.' + name + 3275 ((argTypes == null || argTypes.length == 0) ? 3276 "()" : 3277 Arrays.stream(argTypes) 3278 .map(c -> c == null ? "null" : c.getName()) 3279 .collect(Collectors.joining(",", "(", ")"))); 3280 } 3281 3282 /** use serialVersionUID from JDK 1.1 for interoperability */ 3283 @java.io.Serial 3284 private static final long serialVersionUID = 3206093459760846163L; 3285 3286 3287 /** 3288 * Class Class is special cased within the Serialization Stream Protocol. 3289 * 3290 * A Class instance is written initially into an ObjectOutputStream in the 3291 * following format: 3292 * <pre> 3293 * {@code TC_CLASS} ClassDescriptor 3294 * A ClassDescriptor is a special cased serialization of 3295 * a {@code java.io.ObjectStreamClass} instance. 3296 * </pre> 3297 * A new handle is generated for the initial time the class descriptor 3298 * is written into the stream. Future references to the class descriptor 3299 * are written as references to the initial class descriptor instance. 3300 * 3301 * @see java.io.ObjectStreamClass 3302 */ 3303 @java.io.Serial 3304 private static final ObjectStreamField[] serialPersistentFields = 3305 new ObjectStreamField[0]; 3306 3307 3308 /** 3309 * Returns the assertion status that would be assigned to this 3310 * class if it were to be initialized at the time this method is invoked. 3311 * If this class has had its assertion status set, the most recent 3312 * setting will be returned; otherwise, if any package default assertion 3313 * status pertains to this class, the most recent setting for the most 3314 * specific pertinent package default assertion status is returned; 3315 * otherwise, if this class is not a system class (i.e., it has a 3316 * class loader) its class loader's default assertion status is returned; 3317 * otherwise, the system class default assertion status is returned. 3318 * 3319 * @apiNote 3320 * Few programmers will have any need for this method; it is provided 3321 * for the benefit of the JDK itself. (It allows a class to determine at 3322 * the time that it is initialized whether assertions should be enabled.) 3323 * Note that this method is not guaranteed to return the actual 3324 * assertion status that was (or will be) associated with the specified 3325 * class when it was (or will be) initialized. 3326 * 3327 * @return the desired assertion status of the specified class. 3328 * @see java.lang.ClassLoader#setClassAssertionStatus 3329 * @see java.lang.ClassLoader#setPackageAssertionStatus 3330 * @see java.lang.ClassLoader#setDefaultAssertionStatus 3331 * @since 1.4 3332 */ 3333 public boolean desiredAssertionStatus() { 3334 ClassLoader loader = classLoader; 3335 // If the loader is null this is a system class, so ask the VM 3336 if (loader == null) 3337 return desiredAssertionStatus0(this); 3338 3339 // If the classloader has been initialized with the assertion 3340 // directives, ask it. Otherwise, ask the VM. 3341 synchronized(loader.assertionLock) { 3342 if (loader.classAssertionStatus != null) { 3343 return loader.desiredAssertionStatus(getName()); 3344 } 3345 } 3346 return desiredAssertionStatus0(this); 3347 } 3348 3349 // Retrieves the desired assertion status of this class from the VM 3350 private static native boolean desiredAssertionStatus0(Class<?> clazz); 3351 3352 /** 3353 * Returns true if and only if this class was declared as an enum in the 3354 * source code. 3355 * 3356 * Note that {@link java.lang.Enum} is not itself an enum class. 3357 * 3358 * Also note that if an enum constant is declared with a class body, 3359 * the class of that enum constant object is an anonymous class 3360 * and <em>not</em> the class of the declaring enum class. The 3361 * {@link Enum#getDeclaringClass} method of an enum constant can 3362 * be used to get the class of the enum class declaring the 3363 * constant. 3364 * 3365 * @return true if and only if this class was declared as an enum in the 3366 * source code 3367 * @since 1.5 3368 * @jls 8.9.1 Enum Constants 3369 */ 3370 public boolean isEnum() { 3371 // An enum must both directly extend java.lang.Enum and have 3372 // the ENUM bit set; classes for specialized enum constants 3373 // don't do the former. 3374 return (this.getModifiers() & ENUM) != 0 && 3375 this.getSuperclass() == java.lang.Enum.class; 3376 } 3377 3378 /** 3379 * Returns {@code true} if and only if this class is a record class. 3380 * 3381 * <p> The {@linkplain #getSuperclass() direct superclass} of a record 3382 * class is {@code java.lang.Record}. A record class is {@linkplain 3383 * Modifier#FINAL final}. A record class has (possibly zero) record 3384 * components; {@link #getRecordComponents()} returns a non-null but 3385 * possibly empty value for a record. 3386 * 3387 * <p> Note that class {@link Record} is not a record class and thus 3388 * invoking this method on class {@code Record} returns {@code false}. 3389 * 3390 * @return true if and only if this class is a record class, otherwise false 3391 * @jls 8.10 Record Classes 3392 * @since 16 3393 */ 3394 public boolean isRecord() { 3395 // this superclass and final modifier check is not strictly necessary 3396 // they are intrinsified and serve as a fast-path check 3397 return getSuperclass() == java.lang.Record.class && 3398 (this.getModifiers() & Modifier.FINAL) != 0 && 3399 isRecord0(); 3400 } 3401 3402 // Fetches the factory for reflective objects 3403 private static ReflectionFactory getReflectionFactory() { 3404 var factory = reflectionFactory; 3405 if (factory != null) { 3406 return factory; 3407 } 3408 return reflectionFactory = ReflectionFactory.getReflectionFactory(); 3409 } 3410 private static ReflectionFactory reflectionFactory; 3411 3412 /** 3413 * When CDS is enabled, the Class class may be aot-initialized. However, 3414 * we can't archive reflectionFactory, so we reset it to null, so it 3415 * will be allocated again at runtime. 3416 */ 3417 private static void resetArchivedStates() { 3418 reflectionFactory = null; 3419 } 3420 3421 /** 3422 * Returns the elements of this enum class or null if this 3423 * Class object does not represent an enum class. 3424 * 3425 * @return an array containing the values comprising the enum class 3426 * represented by this {@code Class} object in the order they're 3427 * declared, or null if this {@code Class} object does not 3428 * represent an enum class 3429 * @since 1.5 3430 * @jls 8.9.1 Enum Constants 3431 */ 3432 public T[] getEnumConstants() { 3433 T[] values = getEnumConstantsShared(); 3434 return (values != null) ? values.clone() : null; 3435 } 3436 3437 /** 3438 * Returns the elements of this enum class or null if this 3439 * Class object does not represent an enum class; 3440 * identical to getEnumConstants except that the result is 3441 * uncloned, cached, and shared by all callers. 3442 */ 3443 T[] getEnumConstantsShared() { 3444 T[] constants = enumConstants; 3445 if (constants == null) { 3446 if (!isEnum()) return null; 3447 try { 3448 final Method values = getMethod("values"); 3449 values.setAccessible(true); 3450 @SuppressWarnings("unchecked") 3451 T[] temporaryConstants = (T[])values.invoke(null); 3452 enumConstants = constants = temporaryConstants; 3453 } 3454 // These can happen when users concoct enum-like classes 3455 // that don't comply with the enum spec. 3456 catch (InvocationTargetException | NoSuchMethodException | 3457 IllegalAccessException | NullPointerException | 3458 ClassCastException ex) { return null; } 3459 } 3460 return constants; 3461 } 3462 private transient volatile T[] enumConstants; 3463 3464 /** 3465 * Returns a map from simple name to enum constant. This package-private 3466 * method is used internally by Enum to implement 3467 * {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)} 3468 * efficiently. Note that the map is returned by this method is 3469 * created lazily on first use. Typically it won't ever get created. 3470 */ 3471 Map<String, T> enumConstantDirectory() { 3472 Map<String, T> directory = enumConstantDirectory; 3473 if (directory == null) { 3474 T[] universe = getEnumConstantsShared(); 3475 if (universe == null) 3476 throw new IllegalArgumentException( 3477 getName() + " is not an enum class"); 3478 directory = HashMap.newHashMap(universe.length); 3479 for (T constant : universe) { 3480 directory.put(((Enum<?>)constant).name(), constant); 3481 } 3482 enumConstantDirectory = directory; 3483 } 3484 return directory; 3485 } 3486 private transient volatile Map<String, T> enumConstantDirectory; 3487 3488 /** 3489 * Casts an object to the class or interface represented 3490 * by this {@code Class} object. 3491 * 3492 * @param obj the object to be cast 3493 * @return the object after casting, or null if obj is null 3494 * 3495 * @throws ClassCastException if the object is not 3496 * null and is not assignable to the type T. 3497 * 3498 * @since 1.5 3499 */ 3500 @SuppressWarnings("unchecked") 3501 @IntrinsicCandidate 3502 public T cast(Object obj) { 3503 if (obj != null && !isInstance(obj)) 3504 throw new ClassCastException(cannotCastMsg(obj)); 3505 return (T) obj; 3506 } 3507 3508 private String cannotCastMsg(Object obj) { 3509 return "Cannot cast " + obj.getClass().getName() + " to " + getName(); 3510 } 3511 3512 /** 3513 * Casts this {@code Class} object to represent a subclass of the class 3514 * represented by the specified class object. Checks that the cast 3515 * is valid, and throws a {@code ClassCastException} if it is not. If 3516 * this method succeeds, it always returns a reference to this {@code Class} object. 3517 * 3518 * <p>This method is useful when a client needs to "narrow" the type of 3519 * a {@code Class} object to pass it to an API that restricts the 3520 * {@code Class} objects that it is willing to accept. A cast would 3521 * generate a compile-time warning, as the correctness of the cast 3522 * could not be checked at runtime (because generic types are implemented 3523 * by erasure). 3524 * 3525 * @param <U> the type to cast this {@code Class} object to 3526 * @param clazz the class of the type to cast this {@code Class} object to 3527 * @return this {@code Class} object, cast to represent a subclass of 3528 * the specified class object. 3529 * @throws ClassCastException if this {@code Class} object does not 3530 * represent a subclass of the specified class (here "subclass" includes 3531 * the class itself). 3532 * @since 1.5 3533 */ 3534 @SuppressWarnings("unchecked") 3535 public <U> Class<? extends U> asSubclass(Class<U> clazz) { 3536 if (clazz.isAssignableFrom(this)) 3537 return (Class<? extends U>) this; 3538 else 3539 throw new ClassCastException(this.toString()); 3540 } 3541 3542 /** 3543 * {@inheritDoc} 3544 * <p>Note that any annotation returned by this method is a 3545 * declaration annotation. 3546 * 3547 * @throws NullPointerException {@inheritDoc} 3548 * @since 1.5 3549 */ 3550 @Override 3551 @SuppressWarnings("unchecked") 3552 public <A extends Annotation> A getAnnotation(Class<A> annotationClass) { 3553 Objects.requireNonNull(annotationClass); 3554 3555 return (A) annotationData().annotations.get(annotationClass); 3556 } 3557 3558 /** 3559 * {@inheritDoc} 3560 * @throws NullPointerException {@inheritDoc} 3561 * @since 1.5 3562 */ 3563 @Override 3564 public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) { 3565 return GenericDeclaration.super.isAnnotationPresent(annotationClass); 3566 } 3567 3568 /** 3569 * {@inheritDoc} 3570 * <p>Note that any annotations returned by this method are 3571 * declaration annotations. 3572 * 3573 * @throws NullPointerException {@inheritDoc} 3574 * @since 1.8 3575 */ 3576 @Override 3577 public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) { 3578 Objects.requireNonNull(annotationClass); 3579 3580 AnnotationData annotationData = annotationData(); 3581 return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations, 3582 this, 3583 annotationClass); 3584 } 3585 3586 /** 3587 * {@inheritDoc} 3588 * <p>Note that any annotations returned by this method are 3589 * declaration annotations. 3590 * 3591 * @since 1.5 3592 */ 3593 @Override 3594 public Annotation[] getAnnotations() { 3595 return AnnotationParser.toArray(annotationData().annotations); 3596 } 3597 3598 /** 3599 * {@inheritDoc} 3600 * <p>Note that any annotation returned by this method is a 3601 * declaration annotation. 3602 * 3603 * @throws NullPointerException {@inheritDoc} 3604 * @since 1.8 3605 */ 3606 @Override 3607 @SuppressWarnings("unchecked") 3608 public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) { 3609 Objects.requireNonNull(annotationClass); 3610 3611 return (A) annotationData().declaredAnnotations.get(annotationClass); 3612 } 3613 3614 /** 3615 * {@inheritDoc} 3616 * <p>Note that any annotations returned by this method are 3617 * declaration annotations. 3618 * 3619 * @throws NullPointerException {@inheritDoc} 3620 * @since 1.8 3621 */ 3622 @Override 3623 public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) { 3624 Objects.requireNonNull(annotationClass); 3625 3626 return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations, 3627 annotationClass); 3628 } 3629 3630 /** 3631 * {@inheritDoc} 3632 * <p>Note that any annotations returned by this method are 3633 * declaration annotations. 3634 * 3635 * @since 1.5 3636 */ 3637 @Override 3638 public Annotation[] getDeclaredAnnotations() { 3639 return AnnotationParser.toArray(annotationData().declaredAnnotations); 3640 } 3641 3642 // annotation data that might get invalidated when JVM TI RedefineClasses() is called 3643 private static class AnnotationData { 3644 final Map<Class<? extends Annotation>, Annotation> annotations; 3645 final Map<Class<? extends Annotation>, Annotation> declaredAnnotations; 3646 3647 // Value of classRedefinedCount when we created this AnnotationData instance 3648 final int redefinedCount; 3649 3650 AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations, 3651 Map<Class<? extends Annotation>, Annotation> declaredAnnotations, 3652 int redefinedCount) { 3653 this.annotations = annotations; 3654 this.declaredAnnotations = declaredAnnotations; 3655 this.redefinedCount = redefinedCount; 3656 } 3657 } 3658 3659 // Annotations cache 3660 @SuppressWarnings("UnusedDeclaration") 3661 private transient volatile AnnotationData annotationData; 3662 3663 private AnnotationData annotationData() { 3664 while (true) { // retry loop 3665 AnnotationData annotationData = this.annotationData; 3666 int classRedefinedCount = this.classRedefinedCount; 3667 if (annotationData != null && 3668 annotationData.redefinedCount == classRedefinedCount) { 3669 return annotationData; 3670 } 3671 // null or stale annotationData -> optimistically create new instance 3672 AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount); 3673 // try to install it 3674 if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) { 3675 // successfully installed new AnnotationData 3676 return newAnnotationData; 3677 } 3678 } 3679 } 3680 3681 private AnnotationData createAnnotationData(int classRedefinedCount) { 3682 Map<Class<? extends Annotation>, Annotation> declaredAnnotations = 3683 AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this); 3684 Class<?> superClass = getSuperclass(); 3685 Map<Class<? extends Annotation>, Annotation> annotations = null; 3686 if (superClass != null) { 3687 Map<Class<? extends Annotation>, Annotation> superAnnotations = 3688 superClass.annotationData().annotations; 3689 for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) { 3690 Class<? extends Annotation> annotationClass = e.getKey(); 3691 if (AnnotationType.getInstance(annotationClass).isInherited()) { 3692 if (annotations == null) { // lazy construction 3693 annotations = LinkedHashMap.newLinkedHashMap(Math.max( 3694 declaredAnnotations.size(), 3695 Math.min(12, declaredAnnotations.size() + superAnnotations.size()) 3696 ) 3697 ); 3698 } 3699 annotations.put(annotationClass, e.getValue()); 3700 } 3701 } 3702 } 3703 if (annotations == null) { 3704 // no inherited annotations -> share the Map with declaredAnnotations 3705 annotations = declaredAnnotations; 3706 } else { 3707 // at least one inherited annotation -> declared may override inherited 3708 annotations.putAll(declaredAnnotations); 3709 } 3710 return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount); 3711 } 3712 3713 // Annotation interfaces cache their internal (AnnotationType) form 3714 3715 @SuppressWarnings("UnusedDeclaration") 3716 private transient volatile AnnotationType annotationType; 3717 3718 boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) { 3719 return Atomic.casAnnotationType(this, oldType, newType); 3720 } 3721 3722 AnnotationType getAnnotationType() { 3723 return annotationType; 3724 } 3725 3726 Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() { 3727 return annotationData().declaredAnnotations; 3728 } 3729 3730 /* Backing store of user-defined values pertaining to this class. 3731 * Maintained by the ClassValue class. 3732 */ 3733 transient ClassValue.ClassValueMap classValueMap; 3734 3735 /** 3736 * Returns an {@code AnnotatedType} object that represents the use of a 3737 * type to specify the superclass of the entity represented by this {@code 3738 * Class} object. (The <em>use</em> of type Foo to specify the superclass 3739 * in '... extends Foo' is distinct from the <em>declaration</em> of class 3740 * Foo.) 3741 * 3742 * <p> If this {@code Class} object represents a class whose declaration 3743 * does not explicitly indicate an annotated superclass, then the return 3744 * value is an {@code AnnotatedType} object representing an element with no 3745 * annotations. 3746 * 3747 * <p> If this {@code Class} represents either the {@code Object} class, an 3748 * interface type, an array type, a primitive type, or void, the return 3749 * value is {@code null}. 3750 * 3751 * @return an object representing the superclass 3752 * @since 1.8 3753 */ 3754 public AnnotatedType getAnnotatedSuperclass() { 3755 if (this == Object.class || 3756 isInterface() || 3757 isArray() || 3758 isPrimitive() || 3759 this == Void.TYPE) { 3760 return null; 3761 } 3762 3763 return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this); 3764 } 3765 3766 /** 3767 * Returns an array of {@code AnnotatedType} objects that represent the use 3768 * of types to specify superinterfaces of the entity represented by this 3769 * {@code Class} object. (The <em>use</em> of type Foo to specify a 3770 * superinterface in '... implements Foo' is distinct from the 3771 * <em>declaration</em> of interface Foo.) 3772 * 3773 * <p> If this {@code Class} object represents a class, the return value is 3774 * an array containing objects representing the uses of interface types to 3775 * specify interfaces implemented by the class. The order of the objects in 3776 * the array corresponds to the order of the interface types used in the 3777 * 'implements' clause of the declaration of this {@code Class} object. 3778 * 3779 * <p> If this {@code Class} object represents an interface, the return 3780 * value is an array containing objects representing the uses of interface 3781 * types to specify interfaces directly extended by the interface. The 3782 * order of the objects in the array corresponds to the order of the 3783 * interface types used in the 'extends' clause of the declaration of this 3784 * {@code Class} object. 3785 * 3786 * <p> If this {@code Class} object represents a class or interface whose 3787 * declaration does not explicitly indicate any annotated superinterfaces, 3788 * the return value is an array of length 0. 3789 * 3790 * <p> If this {@code Class} object represents either the {@code Object} 3791 * class, an array type, a primitive type, or void, the return value is an 3792 * array of length 0. 3793 * 3794 * @return an array representing the superinterfaces 3795 * @since 1.8 3796 */ 3797 public AnnotatedType[] getAnnotatedInterfaces() { 3798 return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this); 3799 } 3800 3801 private native Class<?> getNestHost0(); 3802 3803 /** 3804 * Returns the nest host of the <a href=#nest>nest</a> to which the class 3805 * or interface represented by this {@code Class} object belongs. 3806 * Every class and interface belongs to exactly one nest. 3807 * 3808 * If the nest host of this class or interface has previously 3809 * been determined, then this method returns the nest host. 3810 * If the nest host of this class or interface has 3811 * not previously been determined, then this method determines the nest 3812 * host using the algorithm of JVMS 5.4.4, and returns it. 3813 * 3814 * Often, a class or interface belongs to a nest consisting only of itself, 3815 * in which case this method returns {@code this} to indicate that the class 3816 * or interface is the nest host. 3817 * 3818 * <p>If this {@code Class} object represents a primitive type, an array type, 3819 * or {@code void}, then this method returns {@code this}, 3820 * indicating that the represented entity belongs to the nest consisting only of 3821 * itself, and is the nest host. 3822 * 3823 * @return the nest host of this class or interface 3824 * 3825 * @since 11 3826 * @jvms 4.7.28 The {@code NestHost} Attribute 3827 * @jvms 4.7.29 The {@code NestMembers} Attribute 3828 * @jvms 5.4.4 Access Control 3829 */ 3830 public Class<?> getNestHost() { 3831 if (isPrimitive() || isArray()) { 3832 return this; 3833 } 3834 return getNestHost0(); 3835 } 3836 3837 /** 3838 * Determines if the given {@code Class} is a nestmate of the 3839 * class or interface represented by this {@code Class} object. 3840 * Two classes or interfaces are nestmates 3841 * if they have the same {@linkplain #getNestHost() nest host}. 3842 * 3843 * @param c the class to check 3844 * @return {@code true} if this class and {@code c} are members of 3845 * the same nest; and {@code false} otherwise. 3846 * 3847 * @since 11 3848 */ 3849 public boolean isNestmateOf(Class<?> c) { 3850 if (this == c) { 3851 return true; 3852 } 3853 if (isPrimitive() || isArray() || 3854 c.isPrimitive() || c.isArray()) { 3855 return false; 3856 } 3857 3858 return getNestHost() == c.getNestHost(); 3859 } 3860 3861 private native Class<?>[] getNestMembers0(); 3862 3863 /** 3864 * Returns an array containing {@code Class} objects representing all the 3865 * classes and interfaces that are members of the nest to which the class 3866 * or interface represented by this {@code Class} object belongs. 3867 * 3868 * First, this method obtains the {@linkplain #getNestHost() nest host}, 3869 * {@code H}, of the nest to which the class or interface represented by 3870 * this {@code Class} object belongs. The zeroth element of the returned 3871 * array is {@code H}. 3872 * 3873 * Then, for each class or interface {@code C} which is recorded by {@code H} 3874 * as being a member of its nest, this method attempts to obtain the {@code Class} 3875 * object for {@code C} (using {@linkplain #getClassLoader() the defining class 3876 * loader} of the current {@code Class} object), and then obtains the 3877 * {@linkplain #getNestHost() nest host} of the nest to which {@code C} belongs. 3878 * The classes and interfaces which are recorded by {@code H} as being members 3879 * of its nest, and for which {@code H} can be determined as their nest host, 3880 * are indicated by subsequent elements of the returned array. The order of 3881 * such elements is unspecified. Duplicates are permitted. 3882 * 3883 * <p>If this {@code Class} object represents a primitive type, an array type, 3884 * or {@code void}, then this method returns a single-element array containing 3885 * {@code this}. 3886 * 3887 * @apiNote 3888 * The returned array includes only the nest members recorded in the {@code NestMembers} 3889 * attribute, and not any hidden classes that were added to the nest via 3890 * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 3891 * Lookup::defineHiddenClass}. 3892 * 3893 * @return an array of all classes and interfaces in the same nest as 3894 * this class or interface 3895 * 3896 * @since 11 3897 * @see #getNestHost() 3898 * @jvms 4.7.28 The {@code NestHost} Attribute 3899 * @jvms 4.7.29 The {@code NestMembers} Attribute 3900 */ 3901 public Class<?>[] getNestMembers() { 3902 if (isPrimitive() || isArray()) { 3903 return new Class<?>[] { this }; 3904 } 3905 Class<?>[] members = getNestMembers0(); 3906 // Can't actually enable this due to bootstrapping issues 3907 // assert(members.length != 1 || members[0] == this); // expected invariant from VM 3908 return members; 3909 } 3910 3911 /** 3912 * Returns the descriptor string of the entity (class, interface, array class, 3913 * primitive type, or {@code void}) represented by this {@code Class} object. 3914 * 3915 * <p> If this {@code Class} object represents a class or interface, 3916 * not an array class, then: 3917 * <ul> 3918 * <li> If the class or interface is not {@linkplain Class#isHidden() hidden}, 3919 * then the result is a field descriptor (JVMS {@jvms 4.3.2}) 3920 * for the class or interface. Calling 3921 * {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor} 3922 * with the result descriptor string produces a {@link ClassDesc ClassDesc} 3923 * describing this class or interface. 3924 * <li> If the class or interface is {@linkplain Class#isHidden() hidden}, 3925 * then the result is a string of the form: 3926 * <blockquote> 3927 * {@code "L" +} <em>N</em> {@code + "." + <suffix> + ";"} 3928 * </blockquote> 3929 * where <em>N</em> is the {@linkplain ClassLoader##binary-name binary name} 3930 * encoded in internal form indicated by the {@code class} file passed to 3931 * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 3932 * Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name. 3933 * A hidden class or interface has no {@linkplain ClassDesc nominal descriptor}. 3934 * The result string is not a type descriptor. 3935 * </ul> 3936 * 3937 * <p> If this {@code Class} object represents an array class, then 3938 * the result is a string consisting of one or more '{@code [}' characters 3939 * representing the depth of the array nesting, followed by the 3940 * descriptor string of the element type. 3941 * <ul> 3942 * <li> If the element type is not a {@linkplain Class#isHidden() hidden} class 3943 * or interface, then this array class can be described nominally. 3944 * Calling {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor} 3945 * with the result descriptor string produces a {@link ClassDesc ClassDesc} 3946 * describing this array class. 3947 * <li> If the element type is a {@linkplain Class#isHidden() hidden} class or 3948 * interface, then this array class cannot be described nominally. 3949 * The result string is not a type descriptor. 3950 * </ul> 3951 * 3952 * <p> If this {@code Class} object represents a primitive type or 3953 * {@code void}, then the result is a field descriptor string which 3954 * is a one-letter code corresponding to a primitive type or {@code void} 3955 * ({@code "B", "C", "D", "F", "I", "J", "S", "Z", "V"}) (JVMS {@jvms 4.3.2}). 3956 * 3957 * @return the descriptor string for this {@code Class} object 3958 * @jvms 4.3.2 Field Descriptors 3959 * @since 12 3960 */ 3961 @Override 3962 public String descriptorString() { 3963 if (isPrimitive()) 3964 return Wrapper.forPrimitiveType(this).basicTypeString(); 3965 3966 if (isArray()) { 3967 return "[".concat(componentType.descriptorString()); 3968 } else if (isHidden()) { 3969 String name = getName(); 3970 int index = name.indexOf('/'); 3971 return new StringBuilder(name.length() + 2) 3972 .append('L') 3973 .append(name.substring(0, index).replace('.', '/')) 3974 .append('.') 3975 .append(name, index + 1, name.length()) 3976 .append(';') 3977 .toString(); 3978 } else { 3979 String name = getName().replace('.', '/'); 3980 return StringConcatHelper.concat("L", name, ";"); 3981 } 3982 } 3983 3984 /** 3985 * Returns the component type of this {@code Class}, if it describes 3986 * an array type, or {@code null} otherwise. 3987 * 3988 * @implSpec 3989 * Equivalent to {@link Class#getComponentType()}. 3990 * 3991 * @return a {@code Class} describing the component type, or {@code null} 3992 * if this {@code Class} does not describe an array type 3993 * @since 12 3994 */ 3995 @Override 3996 public Class<?> componentType() { 3997 return getComponentType(); 3998 } 3999 4000 /** 4001 * Returns a {@code Class} for an array type whose component type 4002 * is described by this {@linkplain Class}. 4003 * 4004 * @throws UnsupportedOperationException if this component type is {@linkplain 4005 * Void#TYPE void} or if the number of dimensions of the resulting array 4006 * type would exceed 255. 4007 * @return a {@code Class} describing the array type 4008 * @jvms 4.3.2 Field Descriptors 4009 * @jvms 4.4.1 The {@code CONSTANT_Class_info} Structure 4010 * @since 12 4011 */ 4012 @Override 4013 public Class<?> arrayType() { 4014 try { 4015 return Array.newInstance(this, 0).getClass(); 4016 } catch (IllegalArgumentException iae) { 4017 throw new UnsupportedOperationException(iae); 4018 } 4019 } 4020 4021 /** 4022 * Returns a nominal descriptor for this instance, if one can be 4023 * constructed, or an empty {@link Optional} if one cannot be. 4024 * 4025 * @return An {@link Optional} containing the resulting nominal descriptor, 4026 * or an empty {@link Optional} if one cannot be constructed. 4027 * @since 12 4028 */ 4029 @Override 4030 public Optional<ClassDesc> describeConstable() { 4031 Class<?> c = isArray() ? elementType() : this; 4032 return c.isHidden() ? Optional.empty() 4033 : Optional.of(ConstantUtils.classDesc(this)); 4034 } 4035 4036 /** 4037 * Returns {@code true} if and only if the underlying class is a hidden class. 4038 * 4039 * @return {@code true} if and only if this class is a hidden class. 4040 * 4041 * @since 15 4042 * @see MethodHandles.Lookup#defineHiddenClass 4043 * @see Class##hiddenClasses Hidden Classes 4044 */ 4045 @IntrinsicCandidate 4046 public native boolean isHidden(); 4047 4048 /** 4049 * Returns an array containing {@code Class} objects representing the 4050 * direct subinterfaces or subclasses permitted to extend or 4051 * implement this class or interface if it is sealed. The order of such elements 4052 * is unspecified. The array is empty if this sealed class or interface has no 4053 * permitted subclass. If this {@code Class} object represents a primitive type, 4054 * {@code void}, an array type, or a class or interface that is not sealed, 4055 * that is {@link #isSealed()} returns {@code false}, then this method returns {@code null}. 4056 * Conversely, if {@link #isSealed()} returns {@code true}, then this method 4057 * returns a non-null value. 4058 * 4059 * For each class or interface {@code C} which is recorded as a permitted 4060 * direct subinterface or subclass of this class or interface, 4061 * this method attempts to obtain the {@code Class} 4062 * object for {@code C} (using {@linkplain #getClassLoader() the defining class 4063 * loader} of the current {@code Class} object). 4064 * The {@code Class} objects which can be obtained and which are direct 4065 * subinterfaces or subclasses of this class or interface, 4066 * are indicated by elements of the returned array. If a {@code Class} object 4067 * cannot be obtained, it is silently ignored, and not included in the result 4068 * array. 4069 * 4070 * @return an array of {@code Class} objects of the permitted subclasses of this class 4071 * or interface, or {@code null} if this class or interface is not sealed. 4072 * 4073 * @jls 8.1 Class Declarations 4074 * @jls 9.1 Interface Declarations 4075 * @since 17 4076 */ 4077 public Class<?>[] getPermittedSubclasses() { 4078 Class<?>[] subClasses; 4079 if (isArray() || isPrimitive() || (subClasses = getPermittedSubclasses0()) == null) { 4080 return null; 4081 } 4082 if (subClasses.length > 0) { 4083 if (Arrays.stream(subClasses).anyMatch(c -> !isDirectSubType(c))) { 4084 subClasses = Arrays.stream(subClasses) 4085 .filter(this::isDirectSubType) 4086 .toArray(s -> new Class<?>[s]); 4087 } 4088 } 4089 return subClasses; 4090 } 4091 4092 private boolean isDirectSubType(Class<?> c) { 4093 if (isInterface()) { 4094 for (Class<?> i : c.getInterfaces(/* cloneArray */ false)) { 4095 if (i == this) { 4096 return true; 4097 } 4098 } 4099 } else { 4100 return c.getSuperclass() == this; 4101 } 4102 return false; 4103 } 4104 4105 /** 4106 * Returns {@code true} if and only if this {@code Class} object represents 4107 * a sealed class or interface. If this {@code Class} object represents a 4108 * primitive type, {@code void}, or an array type, this method returns 4109 * {@code false}. A sealed class or interface has (possibly zero) permitted 4110 * subclasses; {@link #getPermittedSubclasses()} returns a non-null but 4111 * possibly empty value for a sealed class or interface. 4112 * 4113 * @return {@code true} if and only if this {@code Class} object represents 4114 * a sealed class or interface. 4115 * 4116 * @jls 8.1 Class Declarations 4117 * @jls 9.1 Interface Declarations 4118 * @since 17 4119 */ 4120 public boolean isSealed() { 4121 if (isArray() || isPrimitive()) { 4122 return false; 4123 } 4124 return getPermittedSubclasses() != null; 4125 } 4126 4127 private native Class<?>[] getPermittedSubclasses0(); 4128 4129 /* 4130 * Return the class's major and minor class file version packed into an int. 4131 * The high order 16 bits contain the class's minor version. The low order 4132 * 16 bits contain the class's major version. 4133 * 4134 * If the class is an array type then the class file version of its element 4135 * type is returned. If the class is a primitive type then the latest class 4136 * file major version is returned and zero is returned for the minor version. 4137 */ 4138 int getClassFileVersion() { 4139 Class<?> c = isArray() ? elementType() : this; 4140 return c.getClassFileVersion0(); 4141 } 4142 4143 private native int getClassFileVersion0(); 4144 4145 /** 4146 * Return the access flags as they were in the class's bytecode, including 4147 * the original setting of ACC_SUPER. 4148 * 4149 * If this {@code Class} object represents a primitive type or 4150 * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and 4151 * {@code FINAL}. 4152 * If this {@code Class} object represents an array type, return 0. 4153 */ 4154 int getClassFileAccessFlags() { 4155 return classFileAccessFlags; 4156 } 4157 4158 // Validates the length of the class name and throws an exception if it exceeds the maximum allowed length. 4159 private static void validateClassNameLength(String name) throws ClassNotFoundException { 4160 if (!ModifiedUtf.isValidLengthInConstantPool(name)) { 4161 throw new ClassNotFoundException( 4162 "Class name length exceeds limit of " 4163 + ModifiedUtf.CONSTANT_POOL_UTF8_MAX_BYTES 4164 + ": " + name.substring(0,256) + "..."); 4165 } 4166 } 4167 }