1 /*
   2  * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Annotation;
  29 import java.lang.constant.ClassDesc;
  30 import java.lang.constant.ConstantDescs;
  31 import java.lang.invoke.TypeDescriptor;
  32 import java.lang.invoke.MethodHandles;
  33 import java.lang.ref.SoftReference;
  34 import java.io.IOException;
  35 import java.io.InputStream;
  36 import java.io.ObjectStreamField;
  37 import java.lang.reflect.AnnotatedElement;
  38 import java.lang.reflect.AnnotatedType;
  39 import java.lang.reflect.AccessFlag;
  40 import java.lang.reflect.Array;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Executable;
  43 import java.lang.reflect.Field;
  44 import java.lang.reflect.GenericArrayType;
  45 import java.lang.reflect.GenericDeclaration;
  46 import java.lang.reflect.InvocationTargetException;
  47 import java.lang.reflect.Member;
  48 import java.lang.reflect.Method;
  49 import java.lang.reflect.Modifier;
  50 import java.lang.reflect.Proxy;
  51 import java.lang.reflect.RecordComponent;
  52 import java.lang.reflect.Type;
  53 import java.lang.reflect.TypeVariable;
  54 import java.lang.constant.Constable;
  55 import java.net.URL;
  56 import java.security.AllPermission;
  57 import java.security.Permissions;
  58 import java.security.ProtectionDomain;
  59 import java.util.ArrayList;
  60 import java.util.Arrays;
  61 import java.util.Collection;
  62 import java.util.HashMap;
  63 import java.util.LinkedHashMap;
  64 import java.util.LinkedHashSet;
  65 import java.util.List;
  66 import java.util.Map;
  67 import java.util.Objects;
  68 import java.util.Optional;
  69 import java.util.Set;
  70 import java.util.stream.Collectors;
  71 
  72 import jdk.internal.constant.ConstantUtils;
  73 import jdk.internal.loader.BootLoader;
  74 import jdk.internal.loader.BuiltinClassLoader;
  75 import jdk.internal.misc.Unsafe;
  76 import jdk.internal.module.Resources;
  77 import jdk.internal.reflect.CallerSensitive;
  78 import jdk.internal.reflect.CallerSensitiveAdapter;
  79 import jdk.internal.reflect.ConstantPool;
  80 import jdk.internal.reflect.Reflection;
  81 import jdk.internal.reflect.ReflectionFactory;
  82 import jdk.internal.vm.annotation.IntrinsicCandidate;
  83 import jdk.internal.vm.annotation.Stable;
  84 
  85 import sun.invoke.util.Wrapper;
  86 import sun.reflect.generics.factory.CoreReflectionFactory;
  87 import sun.reflect.generics.factory.GenericsFactory;
  88 import sun.reflect.generics.repository.ClassRepository;
  89 import sun.reflect.generics.repository.MethodRepository;
  90 import sun.reflect.generics.repository.ConstructorRepository;
  91 import sun.reflect.generics.scope.ClassScope;
  92 import sun.reflect.annotation.*;
  93 
  94 /**
  95  * Instances of the class {@code Class} represent classes and
  96  * interfaces in a running Java application. An enum class and a record
  97  * class are kinds of class; an annotation interface is a kind of
  98  * interface. Every array also belongs to a class that is reflected as
  99  * a {@code Class} object that is shared by all arrays with the same
 100  * element type and number of dimensions.  The primitive Java types
 101  * ({@code boolean}, {@code byte}, {@code char}, {@code short}, {@code
 102  * int}, {@code long}, {@code float}, and {@code double}), and the
 103  * keyword {@code void} are also represented as {@code Class} objects.
 104  *
 105  * <p> {@code Class} has no public constructor. Instead a {@code Class}
 106  * object is constructed automatically by the Java Virtual Machine when
 107  * a class is derived from the bytes of a {@code class} file through
 108  * the invocation of one of the following methods:
 109  * <ul>
 110  * <li> {@link ClassLoader#defineClass(String, byte[], int, int) ClassLoader::defineClass}
 111  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[])
 112  *      java.lang.invoke.MethodHandles.Lookup::defineClass}
 113  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 114  *      java.lang.invoke.MethodHandles.Lookup::defineHiddenClass}
 115  * </ul>
 116  *
 117  * <p> The methods of class {@code Class} expose many characteristics of a
 118  * class or interface. Most characteristics are derived from the {@code class}
 119  * file that the class loader passed to the Java Virtual Machine or
 120  * from the {@code class} file passed to {@code Lookup::defineClass}
 121  * or {@code Lookup::defineHiddenClass}.
 122  * A few characteristics are determined by the class loading environment
 123  * at run time, such as the module returned by {@link #getModule() getModule()}.
 124  *
 125  * <p> The following example uses a {@code Class} object to print the
 126  * class name of an object:
 127  *
 128  * {@snippet lang="java" :
 129  * void printClassName(Object obj) {
 130  *     System.out.println("The class of " + obj +
 131  *                        " is " + obj.getClass().getName());
 132  * }}
 133  *
 134  * It is also possible to get the {@code Class} object for a named
 135  * class or interface (or for {@code void}) using a <dfn>class literal</dfn>
 136  * (JLS {@jls 15.8.2}).
 137  * For example:
 138  *
 139  * {@snippet lang="java" :
 140  * System.out.println("The name of class Foo is: " + Foo.class.getName()); // @highlight substring="Foo.class"
 141  * }
 142  *
 143  * <p> Some methods of class {@code Class} expose whether the declaration of
 144  * a class or interface in Java source code was <em>enclosed</em> within
 145  * another declaration. Other methods describe how a class or interface
 146  * is situated in a <dfn>{@index "nest"}</dfn>. A nest is a set of
 147  * classes and interfaces, in the same run-time package, that
 148  * allow mutual access to their {@code private} members.
 149  * The classes and interfaces are known as <dfn>{@index "nestmates"}</dfn>
 150  * (JVMS {@jvms 4.7.29}).
 151  * One nestmate acts as the
 152  * <dfn>nest host</dfn> (JVMS {@jvms 4.7.28}), and enumerates the other nestmates which
 153  * belong to the nest; each of them in turn records it as the nest host.
 154  * The classes and interfaces which belong to a nest, including its host, are
 155  * determined when
 156  * {@code class} files are generated, for example, a Java compiler
 157  * will typically record a top-level class as the host of a nest where the
 158  * other members are the classes and interfaces whose declarations are
 159  * enclosed within the top-level class declaration.
 160  *
 161  * <h2><a id=hiddenClasses>Hidden Classes</a></h2>
 162  * A class or interface created by the invocation of
 163  * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 164  * Lookup::defineHiddenClass} is a {@linkplain Class#isHidden() <dfn>hidden</dfn>}
 165  * class or interface.
 166  * All kinds of class, including enum classes and record classes, may be
 167  * hidden classes; all kinds of interface, including annotation interfaces,
 168  * may be hidden interfaces.
 169  *
 170  * The {@linkplain #getName() name of a hidden class or interface} is
 171  * not a {@linkplain ClassLoader##binary-name binary name},
 172  * which means the following:
 173  * <ul>
 174  * <li>A hidden class or interface cannot be referenced by the constant pools
 175  *     of other classes and interfaces.
 176  * <li>A hidden class or interface cannot be described in
 177  *     {@linkplain java.lang.constant.ConstantDesc <em>nominal form</em>} by
 178  *     {@link #describeConstable() Class::describeConstable},
 179  *     {@link ClassDesc#of(String) ClassDesc::of}, or
 180  *     {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}.
 181  * <li>A hidden class or interface cannot be discovered by {@link #forName Class::forName}
 182  *     or {@link ClassLoader#loadClass(String, boolean) ClassLoader::loadClass}.
 183  * </ul>
 184  *
 185  * A hidden class or interface is never an array class, but may be
 186  * the element type of an array. In all other respects, the fact that
 187  * a class or interface is hidden has no bearing on the characteristics
 188  * exposed by the methods of class {@code Class}.
 189  *
 190  * <h2><a id=implicitClasses>Implicitly Declared Classes</a></h2>
 191  *
 192  * Conventionally, a Java compiler, starting from a source file for an
 193  * implicitly declared class, say {@code HelloWorld.java}, creates a
 194  * similarly-named {@code class} file, {@code HelloWorld.class}, where
 195  * the class stored in that {@code class} file is named {@code
 196  * "HelloWorld"}, matching the base names of the source and {@code
 197  * class} files.
 198  *
 199  * For the {@code Class} object of an implicitly declared class {@code
 200  * HelloWorld}, the methods to get the {@linkplain #getName name} and
 201  * {@linkplain #getTypeName type name} return results
 202  * equal to {@code "HelloWorld"}. The {@linkplain #getSimpleName
 203  * simple name} of such an implicitly declared class is {@code "HelloWorld"} and
 204  * the {@linkplain #getCanonicalName canonical name} is {@code "HelloWorld"}.
 205  *
 206  * @param <T> the type of the class modeled by this {@code Class}
 207  * object.  For example, the type of {@code String.class} is {@code
 208  * Class<String>}.  Use {@code Class<?>} if the class being modeled is
 209  * unknown.
 210  *
 211  * @see     java.lang.ClassLoader#defineClass(byte[], int, int)
 212  * @since   1.0
 213  */
 214 public final class Class<T> implements java.io.Serializable,
 215                               GenericDeclaration,
 216                               Type,
 217                               AnnotatedElement,
 218                               TypeDescriptor.OfField<Class<?>>,
 219                               Constable {
 220     private static final int ANNOTATION= 0x00002000;
 221     private static final int ENUM      = 0x00004000;
 222     private static final int SYNTHETIC = 0x00001000;
 223 
 224     private static native void registerNatives();
 225     static {
 226         runtimeSetup();
 227     }
 228 
 229     // Called from JVM when loading an AOT cache
 230     private static void runtimeSetup() {
 231         registerNatives();
 232     }
 233 
 234     /*
 235      * Private constructor. Only the Java Virtual Machine creates Class objects.
 236      * This constructor is not used and prevents the default constructor being
 237      * generated.
 238      */
 239     private Class(ClassLoader loader, Class<?> arrayComponentType) {
 240         // Initialize final field for classLoader.  The initialization value of non-null
 241         // prevents future JIT optimizations from assuming this final field is null.
 242         classLoader = loader;
 243         componentType = arrayComponentType;
 244     }
 245 
 246     /**
 247      * Converts the object to a string. The string representation is the
 248      * string "class" or "interface", followed by a space, and then by the
 249      * name of the class in the format returned by {@code getName}.
 250      * If this {@code Class} object represents a primitive type,
 251      * this method returns the name of the primitive type.  If
 252      * this {@code Class} object represents void this method returns
 253      * "void". If this {@code Class} object represents an array type,
 254      * this method returns "class " followed by {@code getName}.
 255      *
 256      * @return a string representation of this {@code Class} object.
 257      */
 258     public String toString() {
 259         String kind = isInterface() ? "interface " : isPrimitive() ? "" : "class ";
 260         return kind.concat(getName());
 261     }
 262 
 263     /**
 264      * Returns a string describing this {@code Class}, including
 265      * information about modifiers, {@link #isSealed() sealed}/{@code
 266      * non-sealed} status, and type parameters.
 267      *
 268      * The string is formatted as a list of type modifiers, if any,
 269      * followed by the kind of type (empty string for primitive types
 270      * and {@code class}, {@code enum}, {@code interface},
 271      * {@code @interface}, or {@code record} as appropriate), followed
 272      * by the type's name, followed by an angle-bracketed
 273      * comma-separated list of the type's type parameters, if any,
 274      * including informative bounds on the type parameters, if any.
 275      *
 276      * A space is used to separate modifiers from one another and to
 277      * separate any modifiers from the kind of type. The modifiers
 278      * occur in canonical order. If there are no type parameters, the
 279      * type parameter list is elided.
 280      *
 281      * For an array type, the string starts with the type name,
 282      * followed by an angle-bracketed comma-separated list of the
 283      * type's type parameters, if any, followed by a sequence of
 284      * {@code []} characters, one set of brackets per dimension of
 285      * the array.
 286      *
 287      * <p>Note that since information about the runtime representation
 288      * of a type is being generated, modifiers not present on the
 289      * originating source code or illegal on the originating source
 290      * code may be present.
 291      *
 292      * @return a string describing this {@code Class}, including
 293      * information about modifiers and type parameters
 294      *
 295      * @since 1.8
 296      */
 297     public String toGenericString() {
 298         if (isPrimitive()) {
 299             return toString();
 300         } else {
 301             StringBuilder sb = new StringBuilder();
 302             Class<?> component = this;
 303             int arrayDepth = 0;
 304 
 305             if (isArray()) {
 306                 do {
 307                     arrayDepth++;
 308                     component = component.getComponentType();
 309                 } while (component.isArray());
 310                 sb.append(component.getName());
 311             } else {
 312                 // Class modifiers are a superset of interface modifiers
 313                 int modifiers = getModifiers() & Modifier.classModifiers();
 314                 if (modifiers != 0) {
 315                     sb.append(Modifier.toString(modifiers));
 316                     sb.append(' ');
 317                 }
 318 
 319                 // A class cannot be strictfp and sealed/non-sealed so
 320                 // it is sufficient to check for sealed-ness after all
 321                 // modifiers are printed.
 322                 addSealingInfo(modifiers, sb);
 323 
 324                 if (isAnnotation()) {
 325                     sb.append('@');
 326                 }
 327                 if (isInterface()) { // Note: all annotation interfaces are interfaces
 328                     sb.append("interface");
 329                 } else {
 330                     if (isEnum())
 331                         sb.append("enum");
 332                     else if (isRecord())
 333                         sb.append("record");
 334                     else
 335                         sb.append("class");
 336                 }
 337                 sb.append(' ');
 338                 sb.append(getName());
 339             }
 340 
 341             TypeVariable<?>[] typeparms = component.getTypeParameters();
 342             if (typeparms.length > 0) {
 343                 sb.append(Arrays.stream(typeparms)
 344                           .map(Class::typeVarBounds)
 345                           .collect(Collectors.joining(",", "<", ">")));
 346             }
 347 
 348             if (arrayDepth > 0) sb.append("[]".repeat(arrayDepth));
 349 
 350             return sb.toString();
 351         }
 352     }
 353 
 354     private void addSealingInfo(int modifiers, StringBuilder sb) {
 355         // A class can be final XOR sealed XOR non-sealed.
 356         if (Modifier.isFinal(modifiers)) {
 357             return; // no-op
 358         } else {
 359             if (isSealed()) {
 360                 sb.append("sealed ");
 361                 return;
 362             } else {
 363                 // Check for sealed ancestor, which implies this class
 364                 // is non-sealed.
 365                 if (hasSealedAncestor(this)) {
 366                     sb.append("non-sealed ");
 367                 }
 368             }
 369         }
 370     }
 371 
 372     private boolean hasSealedAncestor(Class<?> clazz) {
 373         // From JLS 8.1.1.2:
 374         // "It is a compile-time error if a class has a sealed direct
 375         // superclass or a sealed direct superinterface, and is not
 376         // declared final, sealed, or non-sealed either explicitly or
 377         // implicitly.
 378         // Thus, an effect of the sealed keyword is to force all
 379         // direct subclasses to explicitly declare whether they are
 380         // final, sealed, or non-sealed. This avoids accidentally
 381         // exposing a sealed class hierarchy to unwanted subclassing."
 382 
 383         // Therefore, will just check direct superclass and
 384         // superinterfaces.
 385         var superclass = clazz.getSuperclass();
 386         if (superclass != null && superclass.isSealed()) {
 387             return true;
 388         }
 389         for (var superinterface : clazz.getInterfaces()) {
 390             if (superinterface.isSealed()) {
 391                 return true;
 392             }
 393         }
 394         return false;
 395     }
 396 
 397     static String typeVarBounds(TypeVariable<?> typeVar) {
 398         Type[] bounds = typeVar.getBounds();
 399         if (bounds.length == 1 && bounds[0].equals(Object.class)) {
 400             return typeVar.getName();
 401         } else {
 402             return typeVar.getName() + " extends " +
 403                 Arrays.stream(bounds)
 404                 .map(Type::getTypeName)
 405                 .collect(Collectors.joining(" & "));
 406         }
 407     }
 408 
 409     /**
 410      * Returns the {@code Class} object associated with the class or
 411      * interface with the given string name.  Invoking this method is
 412      * equivalent to:
 413      *
 414      * {@snippet lang="java" :
 415      * Class.forName(className, true, currentLoader)
 416      * }
 417      *
 418      * where {@code currentLoader} denotes the defining class loader of
 419      * the current class.
 420      *
 421      * <p> For example, the following code fragment returns the
 422      * runtime {@code Class} object for the class named
 423      * {@code java.lang.Thread}:
 424      *
 425      * {@snippet lang="java" :
 426      * Class<?> t = Class.forName("java.lang.Thread");
 427      * }
 428      * <p>
 429      * A call to {@code forName("X")} causes the class named
 430      * {@code X} to be initialized.
 431      *
 432      * <p>
 433      * In cases where this method is called from a context where there is no
 434      * caller frame on the stack (e.g. when called directly from a JNI
 435      * attached thread), the system class loader is used.
 436      *
 437      * @param     className the {@linkplain ClassLoader##binary-name binary name}
 438      *                      of the class or the string representing an array type
 439      * @return    the {@code Class} object for the class with the
 440      *            specified name.
 441      * @throws    LinkageError if the linkage fails
 442      * @throws    ExceptionInInitializerError if the initialization provoked
 443      *            by this method fails
 444      * @throws    ClassNotFoundException if the class cannot be located
 445      *
 446      * @jls 12.2 Loading of Classes and Interfaces
 447      * @jls 12.3 Linking of Classes and Interfaces
 448      * @jls 12.4 Initialization of Classes and Interfaces
 449      */
 450     @CallerSensitive
 451     public static Class<?> forName(String className)
 452                 throws ClassNotFoundException {
 453         Class<?> caller = Reflection.getCallerClass();
 454         return forName(className, caller);
 455     }
 456 
 457     // Caller-sensitive adapter method for reflective invocation
 458     @CallerSensitiveAdapter
 459     private static Class<?> forName(String className, Class<?> caller)
 460             throws ClassNotFoundException {
 461         ClassLoader loader = (caller == null) ? ClassLoader.getSystemClassLoader()
 462                                               : ClassLoader.getClassLoader(caller);
 463         return forName0(className, true, loader, caller);
 464     }
 465 
 466     /**
 467      * Returns the {@code Class} object associated with the class or
 468      * interface with the given string name, using the given class loader.
 469      * Given the {@linkplain ClassLoader##binary-name binary name} for a class or interface,
 470      * this method attempts to locate and load the class or interface. The specified
 471      * class loader is used to load the class or interface.  If the parameter
 472      * {@code loader} is {@code null}, the class is loaded through the bootstrap
 473      * class loader.  The class is initialized only if the
 474      * {@code initialize} parameter is {@code true} and if it has
 475      * not been initialized earlier.
 476      *
 477      * <p> This method cannot be used to obtain any of the {@code Class} objects
 478      * representing primitive types or void, hidden classes or interfaces,
 479      * or array classes whose element type is a hidden class or interface.
 480      * If {@code name} denotes a primitive type or void, for example {@code I},
 481      * an attempt will be made to locate a user-defined class in the unnamed package
 482      * whose name is {@code I} instead.
 483      * To obtain a {@code Class} object for a named primitive type
 484      * such as {@code int} or {@code long} use {@link
 485      * #forPrimitiveName(String)}.
 486      *
 487      * <p> To obtain the {@code Class} object associated with an array class,
 488      * the name consists of one or more {@code '['} representing the depth
 489      * of the array nesting, followed by the element type as encoded in
 490      * {@linkplain ##nameFormat the table} specified in {@code Class.getName()}.
 491      *
 492      * <p> Examples:
 493      * {@snippet lang="java" :
 494      * Class<?> threadClass = Class.forName("java.lang.Thread", false, currentLoader);
 495      * Class<?> stringArrayClass = Class.forName("[Ljava.lang.String;", false, currentLoader);
 496      * Class<?> intArrayClass = Class.forName("[[[I", false, currentLoader);   // Class of int[][][]
 497      * Class<?> nestedClass = Class.forName("java.lang.Character$UnicodeBlock", false, currentLoader);
 498      * Class<?> fooClass = Class.forName("Foo", true, currentLoader);
 499      * }
 500      *
 501      * <p> A call to {@code getName()} on the {@code Class} object returned
 502      * from {@code forName(}<i>N</i>{@code )} returns <i>N</i>.
 503      *
 504      * <p> A call to {@code forName("[L}<i>N</i>{@code ;")} causes the element type
 505      * named <i>N</i> to be loaded but not initialized regardless of the value
 506      * of the {@code initialize} parameter.
 507      *
 508      * @apiNote
 509      * This method throws errors related to loading, linking or initializing
 510      * as specified in Sections {@jls 12.2}, {@jls 12.3}, and {@jls 12.4} of
 511      * <cite>The Java Language Specification</cite>.
 512      * In addition, this method does not check whether the requested class
 513      * is accessible to its caller.
 514      *
 515      * @param name       the {@linkplain ClassLoader##binary-name binary name}
 516      *                   of the class or the string representing an array class
 517      *
 518      * @param initialize if {@code true} the class will be initialized
 519      *                   (which implies linking). See Section {@jls
 520      *                   12.4} of <cite>The Java Language
 521      *                   Specification</cite>.
 522      * @param loader     class loader from which the class must be loaded
 523      * @return           class object representing the desired class
 524      *
 525      * @throws    LinkageError if the linkage fails
 526      * @throws    ExceptionInInitializerError if the initialization provoked
 527      *            by this method fails
 528      * @throws    ClassNotFoundException if the class cannot be located by
 529      *            the specified class loader
 530      *
 531      * @see       java.lang.Class#forName(String)
 532      * @see       java.lang.ClassLoader
 533      *
 534      * @jls 12.2 Loading of Classes and Interfaces
 535      * @jls 12.3 Linking of Classes and Interfaces
 536      * @jls 12.4 Initialization of Classes and Interfaces
 537      * @jls 13.1 The Form of a Binary
 538      * @since     1.2
 539      */
 540     public static Class<?> forName(String name, boolean initialize, ClassLoader loader)
 541         throws ClassNotFoundException
 542     {
 543         return forName0(name, initialize, loader, null);
 544     }
 545 
 546     /** Called after security check for system loader access checks have been made. */
 547     private static native Class<?> forName0(String name, boolean initialize,
 548                                             ClassLoader loader,
 549                                             Class<?> caller)
 550         throws ClassNotFoundException;
 551 
 552 
 553     /**
 554      * Returns the {@code Class} with the given {@linkplain ClassLoader##binary-name
 555      * binary name} in the given module.
 556      *
 557      * <p> This method attempts to locate and load the class or interface.
 558      * It does not link the class, and does not run the class initializer.
 559      * If the class is not found, this method returns {@code null}. </p>
 560      *
 561      * <p> If the class loader of the given module defines other modules and
 562      * the given name is a class defined in a different module, this method
 563      * returns {@code null} after the class is loaded. </p>
 564      *
 565      * <p> This method does not check whether the requested class is
 566      * accessible to its caller. </p>
 567      *
 568      * @apiNote
 569      * This method does not support loading of array types, unlike
 570      * {@link #forName(String, boolean, ClassLoader)}. The class name must be
 571      * a binary name.  This method returns {@code null} on failure rather than
 572      * throwing a {@link ClassNotFoundException}, as is done by
 573      * the {@link #forName(String, boolean, ClassLoader)} method.
 574      *
 575      * @param  module   A module
 576      * @param  name     The {@linkplain ClassLoader##binary-name binary name}
 577      *                  of the class
 578      * @return {@code Class} object of the given name defined in the given module;
 579      *         {@code null} if not found.
 580      *
 581      * @throws NullPointerException if the given module or name is {@code null}
 582      *
 583      * @throws LinkageError if the linkage fails
 584      *
 585      * @jls 12.2 Loading of Classes and Interfaces
 586      * @jls 12.3 Linking of Classes and Interfaces
 587      * @since 9
 588      */
 589     public static Class<?> forName(Module module, String name) {
 590         Objects.requireNonNull(module);
 591         Objects.requireNonNull(name);
 592 
 593         ClassLoader cl = module.getClassLoader();
 594         if (cl != null) {
 595             return cl.loadClass(module, name);
 596         } else {
 597             return BootLoader.loadClass(module, name);
 598         }
 599     }
 600 
 601     /**
 602      * {@return the {@code Class} object associated with the
 603      * {@linkplain #isPrimitive() primitive type} of the given name}
 604      * If the argument is not the name of a primitive type, {@code
 605      * null} is returned.
 606      *
 607      * @param primitiveName the name of the primitive type to find
 608      *
 609      * @throws NullPointerException if the argument is {@code null}
 610      *
 611      * @jls 4.2 Primitive Types and Values
 612      * @jls 15.8.2 Class Literals
 613      * @since 22
 614      */
 615     public static Class<?> forPrimitiveName(String primitiveName) {
 616         return switch(primitiveName) {
 617         // Integral types
 618         case "int"     -> int.class;
 619         case "long"    -> long.class;
 620         case "short"   -> short.class;
 621         case "char"    -> char.class;
 622         case "byte"    -> byte.class;
 623 
 624         // Floating-point types
 625         case "float"   -> float.class;
 626         case "double"  -> double.class;
 627 
 628         // Other types
 629         case "boolean" -> boolean.class;
 630         case "void"    -> void.class;
 631 
 632         default        -> null;
 633         };
 634     }
 635 
 636     /**
 637      * Creates a new instance of the class represented by this {@code Class}
 638      * object.  The class is instantiated as if by a {@code new}
 639      * expression with an empty argument list.  The class is initialized if it
 640      * has not already been initialized.
 641      *
 642      * @deprecated This method propagates any exception thrown by the
 643      * nullary constructor, including a checked exception.  Use of
 644      * this method effectively bypasses the compile-time exception
 645      * checking that would otherwise be performed by the compiler.
 646      * The {@link
 647      * java.lang.reflect.Constructor#newInstance(java.lang.Object...)
 648      * Constructor.newInstance} method avoids this problem by wrapping
 649      * any exception thrown by the constructor in a (checked) {@link
 650      * java.lang.reflect.InvocationTargetException}.
 651      *
 652      * <p>The call
 653      *
 654      * {@snippet lang="java" :
 655      * clazz.newInstance()
 656      * }
 657      *
 658      * can be replaced by
 659      *
 660      * {@snippet lang="java" :
 661      * clazz.getDeclaredConstructor().newInstance()
 662      * }
 663      *
 664      * The latter sequence of calls is inferred to be able to throw
 665      * the additional exception types {@link
 666      * InvocationTargetException} and {@link
 667      * NoSuchMethodException}. Both of these exception types are
 668      * subclasses of {@link ReflectiveOperationException}.
 669      *
 670      * @return  a newly allocated instance of the class represented by this
 671      *          object.
 672      * @throws  IllegalAccessException  if the class or its nullary
 673      *          constructor is not accessible.
 674      * @throws  InstantiationException
 675      *          if this {@code Class} represents an abstract class,
 676      *          an interface, an array class, a primitive type, or void;
 677      *          or if the class has no nullary constructor;
 678      *          or if the instantiation fails for some other reason.
 679      * @throws  ExceptionInInitializerError if the initialization
 680      *          provoked by this method fails.
 681      */
 682     @CallerSensitive
 683     @Deprecated(since="9")
 684     public T newInstance()
 685         throws InstantiationException, IllegalAccessException
 686     {
 687         // Constructor lookup
 688         Constructor<T> tmpConstructor = cachedConstructor;
 689         if (tmpConstructor == null) {
 690             if (this == Class.class) {
 691                 throw new IllegalAccessException(
 692                     "Can not call newInstance() on the Class for java.lang.Class"
 693                 );
 694             }
 695             try {
 696                 Class<?>[] empty = {};
 697                 final Constructor<T> c = getReflectionFactory().copyConstructor(
 698                     getConstructor0(empty, Member.DECLARED));
 699                 // Disable accessibility checks on the constructor
 700                 // access check is done with the true caller
 701                 c.setAccessible(true);
 702                 cachedConstructor = tmpConstructor = c;
 703             } catch (NoSuchMethodException e) {
 704                 throw (InstantiationException)
 705                     new InstantiationException(getName()).initCause(e);
 706             }
 707         }
 708 
 709         try {
 710             Class<?> caller = Reflection.getCallerClass();
 711             return getReflectionFactory().newInstance(tmpConstructor, null, caller);
 712         } catch (InvocationTargetException e) {
 713             Unsafe.getUnsafe().throwException(e.getTargetException());
 714             // Not reached
 715             return null;
 716         }
 717     }
 718 
 719     private transient volatile Constructor<T> cachedConstructor;
 720 
 721     /**
 722      * Determines if the specified {@code Object} is assignment-compatible
 723      * with the object represented by this {@code Class}.  This method is
 724      * the dynamic equivalent of the Java language {@code instanceof}
 725      * operator. The method returns {@code true} if the specified
 726      * {@code Object} argument is non-null and can be cast to the
 727      * reference type represented by this {@code Class} object without
 728      * raising a {@code ClassCastException.} It returns {@code false}
 729      * otherwise.
 730      *
 731      * <p> Specifically, if this {@code Class} object represents a
 732      * declared class, this method returns {@code true} if the specified
 733      * {@code Object} argument is an instance of the represented class (or
 734      * of any of its subclasses); it returns {@code false} otherwise. If
 735      * this {@code Class} object represents an array class, this method
 736      * returns {@code true} if the specified {@code Object} argument
 737      * can be converted to an object of the array class by an identity
 738      * conversion or by a widening reference conversion; it returns
 739      * {@code false} otherwise. If this {@code Class} object
 740      * represents an interface, this method returns {@code true} if the
 741      * class or any superclass of the specified {@code Object} argument
 742      * implements this interface; it returns {@code false} otherwise. If
 743      * this {@code Class} object represents a primitive type, this method
 744      * returns {@code false}.
 745      *
 746      * @param   obj the object to check
 747      * @return  true if {@code obj} is an instance of this class
 748      *
 749      * @since 1.1
 750      */
 751     @IntrinsicCandidate
 752     public native boolean isInstance(Object obj);
 753 
 754 
 755     /**
 756      * Determines if the class or interface represented by this
 757      * {@code Class} object is either the same as, or is a superclass or
 758      * superinterface of, the class or interface represented by the specified
 759      * {@code Class} parameter. It returns {@code true} if so;
 760      * otherwise it returns {@code false}. If this {@code Class}
 761      * object represents a primitive type, this method returns
 762      * {@code true} if the specified {@code Class} parameter is
 763      * exactly this {@code Class} object; otherwise it returns
 764      * {@code false}.
 765      *
 766      * <p> Specifically, this method tests whether the type represented by the
 767      * specified {@code Class} parameter can be converted to the type
 768      * represented by this {@code Class} object via an identity conversion
 769      * or via a widening reference conversion. See <cite>The Java Language
 770      * Specification</cite>, sections {@jls 5.1.1} and {@jls 5.1.4},
 771      * for details.
 772      *
 773      * @param     cls the {@code Class} object to be checked
 774      * @return    the {@code boolean} value indicating whether objects of the
 775      *            type {@code cls} can be assigned to objects of this class
 776      * @throws    NullPointerException if the specified Class parameter is
 777      *            null.
 778      * @since     1.1
 779      */
 780     @IntrinsicCandidate
 781     public native boolean isAssignableFrom(Class<?> cls);
 782 
 783 
 784     /**
 785      * Determines if this {@code Class} object represents an
 786      * interface type.
 787      *
 788      * @return  {@code true} if this {@code Class} object represents an interface;
 789      *          {@code false} otherwise.
 790      */
 791     @IntrinsicCandidate
 792     public native boolean isInterface();
 793 
 794 
 795     /**
 796      * Determines if this {@code Class} object represents an array class.
 797      *
 798      * @return  {@code true} if this {@code Class} object represents an array class;
 799      *          {@code false} otherwise.
 800      * @since   1.1
 801      */
 802     @IntrinsicCandidate
 803     public native boolean isArray();
 804 
 805 
 806     /**
 807      * Determines if this {@code Class} object represents a primitive
 808      * type or void.
 809      *
 810      * <p> There are nine predefined {@code Class} objects to
 811      * represent the eight primitive types and void.  These are
 812      * created by the Java Virtual Machine, and have the same
 813      * {@linkplain #getName() names} as the primitive types that they
 814      * represent, namely {@code boolean}, {@code byte}, {@code char},
 815      * {@code short}, {@code int}, {@code long}, {@code float}, and
 816      * {@code double}.
 817      *
 818      * <p>No other class objects are considered primitive.
 819      *
 820      * @apiNote
 821      * A {@code Class} object represented by a primitive type can be
 822      * accessed via the {@code TYPE} public static final variables
 823      * defined in the primitive wrapper classes such as {@link
 824      * java.lang.Integer#TYPE Integer.TYPE}. In the Java programming
 825      * language, the objects may be referred to by a class literal
 826      * expression such as {@code int.class}.  The {@code Class} object
 827      * for void can be expressed as {@code void.class} or {@link
 828      * java.lang.Void#TYPE Void.TYPE}.
 829      *
 830      * @return true if and only if this class represents a primitive type
 831      *
 832      * @see     java.lang.Boolean#TYPE
 833      * @see     java.lang.Character#TYPE
 834      * @see     java.lang.Byte#TYPE
 835      * @see     java.lang.Short#TYPE
 836      * @see     java.lang.Integer#TYPE
 837      * @see     java.lang.Long#TYPE
 838      * @see     java.lang.Float#TYPE
 839      * @see     java.lang.Double#TYPE
 840      * @see     java.lang.Void#TYPE
 841      * @since 1.1
 842      * @jls 15.8.2 Class Literals
 843      */
 844     @IntrinsicCandidate
 845     public native boolean isPrimitive();
 846 
 847     /**
 848      * Returns true if this {@code Class} object represents an annotation
 849      * interface.  Note that if this method returns true, {@link #isInterface()}
 850      * would also return true, as all annotation interfaces are also interfaces.
 851      *
 852      * @return {@code true} if this {@code Class} object represents an annotation
 853      *      interface; {@code false} otherwise
 854      * @since 1.5
 855      */
 856     public boolean isAnnotation() {
 857         return (getModifiers() & ANNOTATION) != 0;
 858     }
 859 
 860     /**
 861      *{@return {@code true} if and only if this class has the synthetic modifier
 862      * bit set}
 863      *
 864      * @jls 13.1 The Form of a Binary
 865      * @jvms 4.1 The {@code ClassFile} Structure
 866      * @see <a
 867      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
 868      * programming language and JVM modeling in core reflection</a>
 869      * @since 1.5
 870      */
 871     public boolean isSynthetic() {
 872         return (getModifiers() & SYNTHETIC) != 0;
 873     }
 874 
 875     /**
 876      * Returns the  name of the entity (class, interface, array class,
 877      * primitive type, or void) represented by this {@code Class} object.
 878      *
 879      * <p> If this {@code Class} object represents a class or interface,
 880      * not an array class, then:
 881      * <ul>
 882      * <li> If the class or interface is not {@linkplain #isHidden() hidden},
 883      *      then the {@linkplain ClassLoader##binary-name binary name}
 884      *      of the class or interface is returned.
 885      * <li> If the class or interface is hidden, then the result is a string
 886      *      of the form: {@code N + '/' + <suffix>}
 887      *      where {@code N} is the {@linkplain ClassLoader##binary-name binary name}
 888      *      indicated by the {@code class} file passed to
 889      *      {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 890      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
 891      * </ul>
 892      *
 893      * <p> If this {@code Class} object represents an array class, then
 894      * the result is a string consisting of one or more '{@code [}' characters
 895      * representing the depth of the array nesting, followed by the element
 896      * type as encoded using the following table:
 897      *
 898      * <blockquote><table class="striped" id="nameFormat">
 899      * <caption style="display:none">Element types and encodings</caption>
 900      * <thead>
 901      * <tr><th scope="col"> Element Type <th scope="col"> Encoding
 902      * </thead>
 903      * <tbody style="text-align:left">
 904      * <tr><th scope="row"> {@code boolean} <td style="text-align:center"> {@code Z}
 905      * <tr><th scope="row"> {@code byte}    <td style="text-align:center"> {@code B}
 906      * <tr><th scope="row"> {@code char}    <td style="text-align:center"> {@code C}
 907      * <tr><th scope="row"> class or interface with {@linkplain ClassLoader##binary-name binary name} <i>N</i>
 908      *                                      <td style="text-align:center"> {@code L}<em>N</em>{@code ;}
 909      * <tr><th scope="row"> {@code double}  <td style="text-align:center"> {@code D}
 910      * <tr><th scope="row"> {@code float}   <td style="text-align:center"> {@code F}
 911      * <tr><th scope="row"> {@code int}     <td style="text-align:center"> {@code I}
 912      * <tr><th scope="row"> {@code long}    <td style="text-align:center"> {@code J}
 913      * <tr><th scope="row"> {@code short}   <td style="text-align:center"> {@code S}
 914      * </tbody>
 915      * </table></blockquote>
 916      *
 917      * <p> If this {@code Class} object represents a primitive type or {@code void},
 918      * then the result is a string with the same spelling as the Java language
 919      * keyword which corresponds to the primitive type or {@code void}.
 920      *
 921      * <p> Examples:
 922      * <blockquote><pre>
 923      * String.class.getName()
 924      *     returns "java.lang.String"
 925      * Character.UnicodeBlock.class.getName()
 926      *     returns "java.lang.Character$UnicodeBlock"
 927      * byte.class.getName()
 928      *     returns "byte"
 929      * (new Object[3]).getClass().getName()
 930      *     returns "[Ljava.lang.Object;"
 931      * (new int[3][4][5][6][7][8][9]).getClass().getName()
 932      *     returns "[[[[[[[I"
 933      * </pre></blockquote>
 934      *
 935      * @apiNote
 936      * Distinct class objects can have the same name but different class loaders.
 937      *
 938      * @return  the name of the class, interface, or other entity
 939      *          represented by this {@code Class} object.
 940      * @jls 13.1 The Form of a Binary
 941      */
 942     public String getName() {
 943         String name = this.name;
 944         return name != null ? name : initClassName();
 945     }
 946 
 947     // Cache the name to reduce the number of calls into the VM.
 948     // This field would be set by VM itself during initClassName call.
 949     private transient String name;
 950     private native String initClassName();
 951 
 952     /**
 953      * Returns the class loader for the class.  Some implementations may use
 954      * null to represent the bootstrap class loader. This method will return
 955      * null in such implementations if this class was loaded by the bootstrap
 956      * class loader.
 957      *
 958      * <p>If this {@code Class} object
 959      * represents a primitive type or void, null is returned.
 960      *
 961      * @return  the class loader that loaded the class or interface
 962      *          represented by this {@code Class} object.
 963      * @see java.lang.ClassLoader
 964      */
 965     public ClassLoader getClassLoader() {
 966         return classLoader;
 967     }
 968 
 969     // Package-private to allow ClassLoader access
 970     ClassLoader getClassLoader0() { return classLoader; }
 971 
 972     /**
 973      * Returns the module that this class or interface is a member of.
 974      *
 975      * If this class represents an array type then this method returns the
 976      * {@code Module} for the element type. If this class represents a
 977      * primitive type or void, then the {@code Module} object for the
 978      * {@code java.base} module is returned.
 979      *
 980      * If this class is in an unnamed module then the {@linkplain
 981      * ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class
 982      * loader for this class is returned.
 983      *
 984      * @return the module that this class or interface is a member of
 985      *
 986      * @since 9
 987      */
 988     public Module getModule() {
 989         return module;
 990     }
 991 
 992     // set by VM
 993     @Stable
 994     private transient Module module;
 995 
 996     // Initialized in JVM not by private constructor
 997     // This field is filtered from reflection access, i.e. getDeclaredField
 998     // will throw NoSuchFieldException
 999     private final ClassLoader classLoader;
1000 
1001     private transient Object classData; // Set by VM
1002     private transient Object[] signers; // Read by VM, mutable
1003 
1004     // package-private
1005     Object getClassData() {
1006         return classData;
1007     }
1008 
1009     /**
1010      * Returns an array of {@code TypeVariable} objects that represent the
1011      * type variables declared by the generic declaration represented by this
1012      * {@code GenericDeclaration} object, in declaration order.  Returns an
1013      * array of length 0 if the underlying generic declaration declares no type
1014      * variables.
1015      *
1016      * @return an array of {@code TypeVariable} objects that represent
1017      *     the type variables declared by this generic declaration
1018      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1019      *     signature of this generic declaration does not conform to
1020      *     the format specified in section {@jvms 4.7.9} of
1021      *     <cite>The Java Virtual Machine Specification</cite>
1022      * @since 1.5
1023      */
1024     @SuppressWarnings("unchecked")
1025     public TypeVariable<Class<T>>[] getTypeParameters() {
1026         ClassRepository info = getGenericInfo();
1027         if (info != null)
1028             return (TypeVariable<Class<T>>[])info.getTypeParameters();
1029         else
1030             return (TypeVariable<Class<T>>[])new TypeVariable<?>[0];
1031     }
1032 
1033 
1034     /**
1035      * Returns the {@code Class} representing the direct superclass of the
1036      * entity (class, interface, primitive type or void) represented by
1037      * this {@code Class}.  If this {@code Class} represents either the
1038      * {@code Object} class, an interface, a primitive type, or void, then
1039      * null is returned.  If this {@code Class} object represents an array class
1040      * then the {@code Class} object representing the {@code Object} class is
1041      * returned.
1042      *
1043      * @return the direct superclass of the class represented by this {@code Class} object
1044      */
1045     @IntrinsicCandidate
1046     public native Class<? super T> getSuperclass();
1047 
1048 
1049     /**
1050      * Returns the {@code Type} representing the direct superclass of
1051      * the entity (class, interface, primitive type or void) represented by
1052      * this {@code Class} object.
1053      *
1054      * <p>If the superclass is a parameterized type, the {@code Type}
1055      * object returned must accurately reflect the actual type
1056      * arguments used in the source code. The parameterized type
1057      * representing the superclass is created if it had not been
1058      * created before. See the declaration of {@link
1059      * java.lang.reflect.ParameterizedType ParameterizedType} for the
1060      * semantics of the creation process for parameterized types.  If
1061      * this {@code Class} object represents either the {@code Object}
1062      * class, an interface, a primitive type, or void, then null is
1063      * returned.  If this {@code Class} object represents an array class
1064      * then the {@code Class} object representing the {@code Object} class is
1065      * returned.
1066      *
1067      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1068      *     class signature does not conform to the format specified in
1069      *     section {@jvms 4.7.9} of <cite>The Java Virtual
1070      *     Machine Specification</cite>
1071      * @throws TypeNotPresentException if the generic superclass
1072      *     refers to a non-existent type declaration
1073      * @throws java.lang.reflect.MalformedParameterizedTypeException if the
1074      *     generic superclass refers to a parameterized type that cannot be
1075      *     instantiated  for any reason
1076      * @return the direct superclass of the class represented by this {@code Class} object
1077      * @since 1.5
1078      */
1079     public Type getGenericSuperclass() {
1080         ClassRepository info = getGenericInfo();
1081         if (info == null) {
1082             return getSuperclass();
1083         }
1084 
1085         // Historical irregularity:
1086         // Generic signature marks interfaces with superclass = Object
1087         // but this API returns null for interfaces
1088         if (isInterface()) {
1089             return null;
1090         }
1091 
1092         return info.getSuperclass();
1093     }
1094 
1095     /**
1096      * Gets the package of this class.
1097      *
1098      * <p>If this class represents an array type, a primitive type or void,
1099      * this method returns {@code null}.
1100      *
1101      * @return the package of this class.
1102      */
1103     public Package getPackage() {
1104         if (isPrimitive() || isArray()) {
1105             return null;
1106         }
1107         ClassLoader cl = classLoader;
1108         return cl != null ? cl.definePackage(this)
1109                           : BootLoader.definePackage(this);
1110     }
1111 
1112     /**
1113      * Returns the fully qualified package name.
1114      *
1115      * <p> If this class is a top level class, then this method returns the fully
1116      * qualified name of the package that the class is a member of, or the
1117      * empty string if the class is in an unnamed package.
1118      *
1119      * <p> If this class is a member class, then this method is equivalent to
1120      * invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass
1121      * enclosing class}.
1122      *
1123      * <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain
1124      * #isAnonymousClass() anonymous class}, then this method is equivalent to
1125      * invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass
1126      * declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or
1127      * {@linkplain #getEnclosingConstructor enclosing constructor}.
1128      *
1129      * <p> If this class represents an array type then this method returns the
1130      * package name of the element type. If this class represents a primitive
1131      * type or void then the package name "{@code java.lang}" is returned.
1132      *
1133      * @return the fully qualified package name
1134      *
1135      * @since 9
1136      * @jls 6.7 Fully Qualified Names and Canonical Names
1137      */
1138     public String getPackageName() {
1139         String pn = this.packageName;
1140         if (pn == null) {
1141             Class<?> c = isArray() ? elementType() : this;
1142             if (c.isPrimitive()) {
1143                 pn = "java.lang";
1144             } else {
1145                 String cn = c.getName();
1146                 int dot = cn.lastIndexOf('.');
1147                 pn = (dot != -1) ? cn.substring(0, dot).intern() : "";
1148             }
1149             this.packageName = pn;
1150         }
1151         return pn;
1152     }
1153 
1154     // cached package name
1155     private transient String packageName;
1156 
1157     /**
1158      * Returns the interfaces directly implemented by the class or interface
1159      * represented by this {@code Class} object.
1160      *
1161      * <p>If this {@code Class} object represents a class, the return value is an array
1162      * containing objects representing all interfaces directly implemented by
1163      * the class.  The order of the interface objects in the array corresponds
1164      * to the order of the interface names in the {@code implements} clause of
1165      * the declaration of the class represented by this {@code Class} object.  For example,
1166      * given the declaration:
1167      * <blockquote>
1168      * {@code class Shimmer implements FloorWax, DessertTopping { ... }}
1169      * </blockquote>
1170      * suppose the value of {@code s} is an instance of
1171      * {@code Shimmer}; the value of the expression:
1172      * <blockquote>
1173      * {@code s.getClass().getInterfaces()[0]}
1174      * </blockquote>
1175      * is the {@code Class} object that represents interface
1176      * {@code FloorWax}; and the value of:
1177      * <blockquote>
1178      * {@code s.getClass().getInterfaces()[1]}
1179      * </blockquote>
1180      * is the {@code Class} object that represents interface
1181      * {@code DessertTopping}.
1182      *
1183      * <p>If this {@code Class} object represents an interface, the array contains objects
1184      * representing all interfaces directly extended by the interface.  The
1185      * order of the interface objects in the array corresponds to the order of
1186      * the interface names in the {@code extends} clause of the declaration of
1187      * the interface represented by this {@code Class} object.
1188      *
1189      * <p>If this {@code Class} object represents a class or interface that implements no
1190      * interfaces, the method returns an array of length 0.
1191      *
1192      * <p>If this {@code Class} object represents a primitive type or void, the method
1193      * returns an array of length 0.
1194      *
1195      * <p>If this {@code Class} object represents an array type, the
1196      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1197      * returned in that order.
1198      *
1199      * @return an array of interfaces directly implemented by this class
1200      */
1201     public Class<?>[] getInterfaces() {
1202         // defensively copy before handing over to user code
1203         return getInterfaces(true);
1204     }
1205 
1206     private Class<?>[] getInterfaces(boolean cloneArray) {
1207         ReflectionData<T> rd = reflectionData();
1208         Class<?>[] interfaces = rd.interfaces;
1209         if (interfaces == null) {
1210             interfaces = getInterfaces0();
1211             rd.interfaces = interfaces;
1212         }
1213         // defensively copy if requested
1214         return cloneArray ? interfaces.clone() : interfaces;
1215     }
1216 
1217     private native Class<?>[] getInterfaces0();
1218 
1219     /**
1220      * Returns the {@code Type}s representing the interfaces
1221      * directly implemented by the class or interface represented by
1222      * this {@code Class} object.
1223      *
1224      * <p>If a superinterface is a parameterized type, the
1225      * {@code Type} object returned for it must accurately reflect
1226      * the actual type arguments used in the source code. The
1227      * parameterized type representing each superinterface is created
1228      * if it had not been created before. See the declaration of
1229      * {@link java.lang.reflect.ParameterizedType ParameterizedType}
1230      * for the semantics of the creation process for parameterized
1231      * types.
1232      *
1233      * <p>If this {@code Class} object represents a class, the return value is an array
1234      * containing objects representing all interfaces directly implemented by
1235      * the class.  The order of the interface objects in the array corresponds
1236      * to the order of the interface names in the {@code implements} clause of
1237      * the declaration of the class represented by this {@code Class} object.
1238      *
1239      * <p>If this {@code Class} object represents an interface, the array contains objects
1240      * representing all interfaces directly extended by the interface.  The
1241      * order of the interface objects in the array corresponds to the order of
1242      * the interface names in the {@code extends} clause of the declaration of
1243      * the interface represented by this {@code Class} object.
1244      *
1245      * <p>If this {@code Class} object represents a class or interface that implements no
1246      * interfaces, the method returns an array of length 0.
1247      *
1248      * <p>If this {@code Class} object represents a primitive type or void, the method
1249      * returns an array of length 0.
1250      *
1251      * <p>If this {@code Class} object represents an array type, the
1252      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1253      * returned in that order.
1254      *
1255      * @throws java.lang.reflect.GenericSignatureFormatError
1256      *     if the generic class signature does not conform to the
1257      *     format specified in section {@jvms 4.7.9} of <cite>The
1258      *     Java Virtual Machine Specification</cite>
1259      * @throws TypeNotPresentException if any of the generic
1260      *     superinterfaces refers to a non-existent type declaration
1261      * @throws java.lang.reflect.MalformedParameterizedTypeException
1262      *     if any of the generic superinterfaces refer to a parameterized
1263      *     type that cannot be instantiated for any reason
1264      * @return an array of interfaces directly implemented by this class
1265      * @since 1.5
1266      */
1267     public Type[] getGenericInterfaces() {
1268         ClassRepository info = getGenericInfo();
1269         return (info == null) ?  getInterfaces() : info.getSuperInterfaces();
1270     }
1271 
1272 
1273     /**
1274      * Returns the {@code Class} representing the component type of an
1275      * array.  If this class does not represent an array class this method
1276      * returns null.
1277      *
1278      * @return the {@code Class} representing the component type of this
1279      * class if this class is an array
1280      * @see     java.lang.reflect.Array
1281      * @since 1.1
1282      */
1283     public Class<?> getComponentType() {
1284         // Only return for array types. Storage may be reused for Class for instance types.
1285         if (isArray()) {
1286             return componentType;
1287         } else {
1288             return null;
1289         }
1290     }
1291 
1292     private final Class<?> componentType;
1293 
1294     /*
1295      * Returns the {@code Class} representing the element type of an array class.
1296      * If this class does not represent an array class, then this method returns
1297      * {@code null}.
1298      */
1299     private Class<?> elementType() {
1300         if (!isArray()) return null;
1301 
1302         Class<?> c = this;
1303         while (c.isArray()) {
1304             c = c.getComponentType();
1305         }
1306         return c;
1307     }
1308 
1309     /**
1310      * Returns the Java language modifiers for this class or interface, encoded
1311      * in an integer. The modifiers consist of the Java Virtual Machine's
1312      * constants for {@code public}, {@code protected},
1313      * {@code private}, {@code final}, {@code static},
1314      * {@code abstract} and {@code interface}; they should be decoded
1315      * using the methods of class {@code Modifier}.
1316      *
1317      * <p> If the underlying class is an array class:
1318      * <ul>
1319      * <li> its {@code public}, {@code private} and {@code protected}
1320      *      modifiers are the same as those of its component type
1321      * <li> its {@code abstract} and {@code final} modifiers are always
1322      *      {@code true}
1323      * <li> its interface modifier is always {@code false}, even when
1324      *      the component type is an interface
1325      * </ul>
1326      * If this {@code Class} object represents a primitive type or
1327      * void, its {@code public}, {@code abstract}, and {@code final}
1328      * modifiers are always {@code true}.
1329      * For {@code Class} objects representing void, primitive types, and
1330      * arrays, the values of other modifiers are {@code false} other
1331      * than as specified above.
1332      *
1333      * <p> The modifier encodings are defined in section {@jvms 4.1}
1334      * of <cite>The Java Virtual Machine Specification</cite>.
1335      *
1336      * @return the {@code int} representing the modifiers for this class
1337      * @see     java.lang.reflect.Modifier
1338      * @see #accessFlags()
1339      * @see <a
1340      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
1341      * programming language and JVM modeling in core reflection</a>
1342      * @since 1.1
1343      * @jls 8.1.1 Class Modifiers
1344      * @jls 9.1.1 Interface Modifiers
1345      * @jvms 4.1 The {@code ClassFile} Structure
1346      */
1347     @IntrinsicCandidate
1348     public native int getModifiers();
1349 
1350     /**
1351      * {@return an unmodifiable set of the {@linkplain AccessFlag access
1352      * flags} for this class, possibly empty}
1353      *
1354      * <p> If the underlying class is an array class:
1355      * <ul>
1356      * <li> its {@code PUBLIC}, {@code PRIVATE} and {@code PROTECTED}
1357      *      access flags are the same as those of its component type
1358      * <li> its {@code ABSTRACT} and {@code FINAL} flags are present
1359      * <li> its {@code INTERFACE} flag is absent, even when the
1360      *      component type is an interface
1361      * </ul>
1362      * If this {@code Class} object represents a primitive type or
1363      * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and
1364      * {@code FINAL}.
1365      * For {@code Class} objects representing void, primitive types, and
1366      * arrays, access flags are absent other than as specified above.
1367      *
1368      * @see #getModifiers()
1369      * @jvms 4.1 The ClassFile Structure
1370      * @jvms 4.7.6 The InnerClasses Attribute
1371      * @since 20
1372      */
1373     public Set<AccessFlag> accessFlags() {
1374         // Location.CLASS allows SUPER and AccessFlag.MODULE which
1375         // INNER_CLASS forbids. INNER_CLASS allows PRIVATE, PROTECTED,
1376         // and STATIC, which are not allowed on Location.CLASS.
1377         // Use getClassAccessFlagsRaw to expose SUPER status.
1378         var location = (isMemberClass() || isLocalClass() ||
1379                         isAnonymousClass() || isArray()) ?
1380             AccessFlag.Location.INNER_CLASS :
1381             AccessFlag.Location.CLASS;
1382         return AccessFlag.maskToAccessFlags((location == AccessFlag.Location.CLASS) ?
1383                                             getClassAccessFlagsRaw() :
1384                                             getModifiers(),
1385                                             location);
1386     }
1387 
1388     /**
1389      * Gets the signers of this class.
1390      *
1391      * @return  the signers of this class, or null if there are no signers.  In
1392      *          particular, this method returns null if this {@code Class} object represents
1393      *          a primitive type or void.
1394      * @since   1.1
1395      */
1396     public Object[] getSigners() {
1397         var signers = this.signers;
1398         return signers == null ? null : signers.clone();
1399     }
1400 
1401     /**
1402      * Set the signers of this class.
1403      */
1404     void setSigners(Object[] signers) {
1405         if (!isPrimitive() && !isArray()) {
1406             this.signers = signers;
1407         }
1408     }
1409 
1410     /**
1411      * If this {@code Class} object represents a local or anonymous
1412      * class within a method, returns a {@link
1413      * java.lang.reflect.Method Method} object representing the
1414      * immediately enclosing method of the underlying class. Returns
1415      * {@code null} otherwise.
1416      *
1417      * In particular, this method returns {@code null} if the underlying
1418      * class is a local or anonymous class immediately enclosed by a class or
1419      * interface declaration, instance initializer or static initializer.
1420      *
1421      * @return the immediately enclosing method of the underlying class, if
1422      *     that class is a local or anonymous class; otherwise {@code null}.
1423      *
1424      * @since 1.5
1425      */
1426     public Method getEnclosingMethod() {
1427         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1428 
1429         if (enclosingInfo == null)
1430             return null;
1431         else {
1432             if (!enclosingInfo.isMethod())
1433                 return null;
1434 
1435             MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(),
1436                                                               getFactory());
1437             Class<?>   returnType       = toClass(typeInfo.getReturnType());
1438             Type []    parameterTypes   = typeInfo.getParameterTypes();
1439             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1440 
1441             // Convert Types to Classes; returned types *should*
1442             // be class objects since the methodDescriptor's used
1443             // don't have generics information
1444             for(int i = 0; i < parameterClasses.length; i++)
1445                 parameterClasses[i] = toClass(parameterTypes[i]);
1446 
1447             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1448             Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false);
1449 
1450             /*
1451              * Loop over all declared methods; match method name,
1452              * number of and type of parameters, *and* return
1453              * type.  Matching return type is also necessary
1454              * because of covariant returns, etc.
1455              */
1456             ReflectionFactory fact = getReflectionFactory();
1457             for (Method m : candidates) {
1458                 if (m.getName().equals(enclosingInfo.getName()) &&
1459                     arrayContentsEq(parameterClasses,
1460                                     fact.getExecutableSharedParameterTypes(m))) {
1461                     // finally, check return type
1462                     if (m.getReturnType().equals(returnType)) {
1463                         return fact.copyMethod(m);
1464                     }
1465                 }
1466             }
1467 
1468             throw new InternalError("Enclosing method not found");
1469         }
1470     }
1471 
1472     private native Object[] getEnclosingMethod0();
1473 
1474     private EnclosingMethodInfo getEnclosingMethodInfo() {
1475         Object[] enclosingInfo = getEnclosingMethod0();
1476         if (enclosingInfo == null)
1477             return null;
1478         else {
1479             return new EnclosingMethodInfo(enclosingInfo);
1480         }
1481     }
1482 
1483     private static final class EnclosingMethodInfo {
1484         private final Class<?> enclosingClass;
1485         private final String name;
1486         private final String descriptor;
1487 
1488         static void validate(Object[] enclosingInfo) {
1489             if (enclosingInfo.length != 3)
1490                 throw new InternalError("Malformed enclosing method information");
1491             try {
1492                 // The array is expected to have three elements:
1493 
1494                 // the immediately enclosing class
1495                 Class<?> enclosingClass = (Class<?>)enclosingInfo[0];
1496                 assert(enclosingClass != null);
1497 
1498                 // the immediately enclosing method or constructor's
1499                 // name (can be null).
1500                 String name = (String)enclosingInfo[1];
1501 
1502                 // the immediately enclosing method or constructor's
1503                 // descriptor (null iff name is).
1504                 String descriptor = (String)enclosingInfo[2];
1505                 assert((name != null && descriptor != null) || name == descriptor);
1506             } catch (ClassCastException cce) {
1507                 throw new InternalError("Invalid type in enclosing method information", cce);
1508             }
1509         }
1510 
1511         EnclosingMethodInfo(Object[] enclosingInfo) {
1512             validate(enclosingInfo);
1513             this.enclosingClass = (Class<?>)enclosingInfo[0];
1514             this.name = (String)enclosingInfo[1];
1515             this.descriptor = (String)enclosingInfo[2];
1516         }
1517 
1518         boolean isPartial() {
1519             return enclosingClass == null || name == null || descriptor == null;
1520         }
1521 
1522         boolean isConstructor() { return !isPartial() && ConstantDescs.INIT_NAME.equals(name); }
1523 
1524         boolean isMethod() { return !isPartial() && !isConstructor() && !ConstantDescs.CLASS_INIT_NAME.equals(name); }
1525 
1526         Class<?> getEnclosingClass() { return enclosingClass; }
1527 
1528         String getName() { return name; }
1529 
1530         String getDescriptor() { return descriptor; }
1531 
1532     }
1533 
1534     private static Class<?> toClass(Type o) {
1535         if (o instanceof GenericArrayType gat)
1536             return toClass(gat.getGenericComponentType()).arrayType();
1537         return (Class<?>)o;
1538      }
1539 
1540     /**
1541      * If this {@code Class} object represents a local or anonymous
1542      * class within a constructor, returns a {@link
1543      * java.lang.reflect.Constructor Constructor} object representing
1544      * the immediately enclosing constructor of the underlying
1545      * class. Returns {@code null} otherwise.  In particular, this
1546      * method returns {@code null} if the underlying class is a local
1547      * or anonymous class immediately enclosed by a class or
1548      * interface declaration, instance initializer or static initializer.
1549      *
1550      * @return the immediately enclosing constructor of the underlying class, if
1551      *     that class is a local or anonymous class; otherwise {@code null}.
1552      *
1553      * @since 1.5
1554      */
1555     public Constructor<?> getEnclosingConstructor() {
1556         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1557 
1558         if (enclosingInfo == null)
1559             return null;
1560         else {
1561             if (!enclosingInfo.isConstructor())
1562                 return null;
1563 
1564             ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(),
1565                                                                         getFactory());
1566             Type []    parameterTypes   = typeInfo.getParameterTypes();
1567             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1568 
1569             // Convert Types to Classes; returned types *should*
1570             // be class objects since the methodDescriptor's used
1571             // don't have generics information
1572             for (int i = 0; i < parameterClasses.length; i++)
1573                 parameterClasses[i] = toClass(parameterTypes[i]);
1574 
1575 
1576             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1577             Constructor<?>[] candidates = enclosingCandidate
1578                     .privateGetDeclaredConstructors(false);
1579             /*
1580              * Loop over all declared constructors; match number
1581              * of and type of parameters.
1582              */
1583             ReflectionFactory fact = getReflectionFactory();
1584             for (Constructor<?> c : candidates) {
1585                 if (arrayContentsEq(parameterClasses,
1586                                     fact.getExecutableSharedParameterTypes(c))) {
1587                     return fact.copyConstructor(c);
1588                 }
1589             }
1590 
1591             throw new InternalError("Enclosing constructor not found");
1592         }
1593     }
1594 
1595 
1596     /**
1597      * If the class or interface represented by this {@code Class} object
1598      * is a member of another class, returns the {@code Class} object
1599      * representing the class in which it was declared.  This method returns
1600      * null if this class or interface is not a member of any other class.  If
1601      * this {@code Class} object represents an array class, a primitive
1602      * type, or void, then this method returns null.
1603      *
1604      * @return the declaring class for this class
1605      * @since 1.1
1606      */
1607     public Class<?> getDeclaringClass() {
1608         return getDeclaringClass0();
1609     }
1610 
1611     private native Class<?> getDeclaringClass0();
1612 
1613 
1614     /**
1615      * Returns the immediately enclosing class of the underlying
1616      * class.  If the underlying class is a top level class this
1617      * method returns {@code null}.
1618      * @return the immediately enclosing class of the underlying class
1619      * @since 1.5
1620      */
1621     public Class<?> getEnclosingClass() {
1622         // There are five kinds of classes (or interfaces):
1623         // a) Top level classes
1624         // b) Nested classes (static member classes)
1625         // c) Inner classes (non-static member classes)
1626         // d) Local classes (named classes declared within a method)
1627         // e) Anonymous classes
1628 
1629 
1630         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1631         // attribute if and only if it is a local class or an
1632         // anonymous class.
1633         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1634         Class<?> enclosingCandidate;
1635 
1636         if (enclosingInfo == null) {
1637             // This is a top level or a nested class or an inner class (a, b, or c)
1638             enclosingCandidate = getDeclaringClass0();
1639         } else {
1640             Class<?> enclosingClass = enclosingInfo.getEnclosingClass();
1641             // This is a local class or an anonymous class (d or e)
1642             if (enclosingClass == this || enclosingClass == null)
1643                 throw new InternalError("Malformed enclosing method information");
1644             else
1645                 enclosingCandidate = enclosingClass;
1646         }
1647         return enclosingCandidate;
1648     }
1649 
1650     /**
1651      * Returns the simple name of the underlying class as given in the
1652      * source code. An empty string is returned if the underlying class is
1653      * {@linkplain #isAnonymousClass() anonymous}.
1654      * A {@linkplain #isSynthetic() synthetic class}, one not present
1655      * in source code, can have a non-empty name including special
1656      * characters, such as "{@code $}".
1657      *
1658      * <p>The simple name of an {@linkplain #isArray() array class} is the simple name of the
1659      * component type with "[]" appended.  In particular the simple
1660      * name of an array class whose component type is anonymous is "[]".
1661      *
1662      * @return the simple name of the underlying class
1663      * @since 1.5
1664      */
1665     public String getSimpleName() {
1666         ReflectionData<T> rd = reflectionData();
1667         String simpleName = rd.simpleName;
1668         if (simpleName == null) {
1669             rd.simpleName = simpleName = getSimpleName0();
1670         }
1671         return simpleName;
1672     }
1673 
1674     private String getSimpleName0() {
1675         if (isArray()) {
1676             return getComponentType().getSimpleName().concat("[]");
1677         }
1678         String simpleName = getSimpleBinaryName();
1679         if (simpleName == null) { // top level class
1680             simpleName = getName();
1681             simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name
1682         }
1683         return simpleName;
1684     }
1685 
1686     /**
1687      * Return an informative string for the name of this class or interface.
1688      *
1689      * @return an informative string for the name of this class or interface
1690      * @since 1.8
1691      */
1692     public String getTypeName() {
1693         if (isArray()) {
1694             try {
1695                 Class<?> cl = this;
1696                 int dimensions = 0;
1697                 do {
1698                     dimensions++;
1699                     cl = cl.getComponentType();
1700                 } while (cl.isArray());
1701                 return cl.getName().concat("[]".repeat(dimensions));
1702             } catch (Throwable e) { /*FALLTHRU*/ }
1703         }
1704         return getName();
1705     }
1706 
1707     /**
1708      * Returns the canonical name of the underlying class as
1709      * defined by <cite>The Java Language Specification</cite>.
1710      * Returns {@code null} if the underlying class does not have a canonical
1711      * name. Classes without canonical names include:
1712      * <ul>
1713      * <li>a {@linkplain #isLocalClass() local class}
1714      * <li>a {@linkplain #isAnonymousClass() anonymous class}
1715      * <li>a {@linkplain #isHidden() hidden class}
1716      * <li>an array whose component type does not have a canonical name</li>
1717      * </ul>
1718      *
1719      * The canonical name for a primitive class is the keyword for the
1720      * corresponding primitive type ({@code byte}, {@code short},
1721      * {@code char}, {@code int}, and so on).
1722      *
1723      * <p>An array type has a canonical name if and only if its
1724      * component type has a canonical name. When an array type has a
1725      * canonical name, it is equal to the canonical name of the
1726      * component type followed by "{@code []}".
1727      *
1728      * @return the canonical name of the underlying class if it exists, and
1729      * {@code null} otherwise.
1730      * @jls 6.7 Fully Qualified Names and Canonical Names
1731      * @since 1.5
1732      */
1733     public String getCanonicalName() {
1734         ReflectionData<T> rd = reflectionData();
1735         String canonicalName = rd.canonicalName;
1736         if (canonicalName == null) {
1737             rd.canonicalName = canonicalName = getCanonicalName0();
1738         }
1739         return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName;
1740     }
1741 
1742     private String getCanonicalName0() {
1743         if (isArray()) {
1744             String canonicalName = getComponentType().getCanonicalName();
1745             if (canonicalName != null)
1746                 return canonicalName.concat("[]");
1747             else
1748                 return ReflectionData.NULL_SENTINEL;
1749         }
1750         if (isHidden() || isLocalOrAnonymousClass())
1751             return ReflectionData.NULL_SENTINEL;
1752         Class<?> enclosingClass = getEnclosingClass();
1753         if (enclosingClass == null) { // top level class
1754             return getName();
1755         } else {
1756             String enclosingName = enclosingClass.getCanonicalName();
1757             if (enclosingName == null)
1758                 return ReflectionData.NULL_SENTINEL;
1759             String simpleName = getSimpleName();
1760             return new StringBuilder(enclosingName.length() + simpleName.length() + 1)
1761                     .append(enclosingName)
1762                     .append('.')
1763                     .append(simpleName)
1764                     .toString();
1765         }
1766     }
1767 
1768     /**
1769      * Returns {@code true} if and only if the underlying class
1770      * is an anonymous class.
1771      *
1772      * @apiNote
1773      * An anonymous class is not a {@linkplain #isHidden() hidden class}.
1774      *
1775      * @return {@code true} if and only if this class is an anonymous class.
1776      * @since 1.5
1777      * @jls 15.9.5 Anonymous Class Declarations
1778      */
1779     public boolean isAnonymousClass() {
1780         return !isArray() && isLocalOrAnonymousClass() &&
1781                 getSimpleBinaryName0() == null;
1782     }
1783 
1784     /**
1785      * Returns {@code true} if and only if the underlying class
1786      * is a local class.
1787      *
1788      * @return {@code true} if and only if this class is a local class.
1789      * @since 1.5
1790      * @jls 14.3 Local Class and Interface Declarations
1791      */
1792     public boolean isLocalClass() {
1793         return isLocalOrAnonymousClass() &&
1794                 (isArray() || getSimpleBinaryName0() != null);
1795     }
1796 
1797     /**
1798      * Returns {@code true} if and only if the underlying class
1799      * is a member class.
1800      *
1801      * @return {@code true} if and only if this class is a member class.
1802      * @since 1.5
1803      * @jls 8.5 Member Class and Interface Declarations
1804      */
1805     public boolean isMemberClass() {
1806         return !isLocalOrAnonymousClass() && getDeclaringClass0() != null;
1807     }
1808 
1809     /**
1810      * Returns the "simple binary name" of the underlying class, i.e.,
1811      * the binary name without the leading enclosing class name.
1812      * Returns {@code null} if the underlying class is a top level
1813      * class.
1814      */
1815     private String getSimpleBinaryName() {
1816         if (isTopLevelClass())
1817             return null;
1818         String name = getSimpleBinaryName0();
1819         if (name == null) // anonymous class
1820             return "";
1821         return name;
1822     }
1823 
1824     private native String getSimpleBinaryName0();
1825 
1826     /**
1827      * Returns {@code true} if this is a top level class.  Returns {@code false}
1828      * otherwise.
1829      */
1830     private boolean isTopLevelClass() {
1831         return !isLocalOrAnonymousClass() && getDeclaringClass0() == null;
1832     }
1833 
1834     /**
1835      * Returns {@code true} if this is a local class or an anonymous
1836      * class.  Returns {@code false} otherwise.
1837      */
1838     private boolean isLocalOrAnonymousClass() {
1839         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1840         // attribute if and only if it is a local class or an
1841         // anonymous class.
1842         return hasEnclosingMethodInfo();
1843     }
1844 
1845     private boolean hasEnclosingMethodInfo() {
1846         Object[] enclosingInfo = getEnclosingMethod0();
1847         if (enclosingInfo != null) {
1848             EnclosingMethodInfo.validate(enclosingInfo);
1849             return true;
1850         }
1851         return false;
1852     }
1853 
1854     /**
1855      * Returns an array containing {@code Class} objects representing all
1856      * the public classes and interfaces that are members of the class
1857      * represented by this {@code Class} object.  This includes public
1858      * class and interface members inherited from superclasses and public class
1859      * and interface members declared by the class.  This method returns an
1860      * array of length 0 if this {@code Class} object has no public member
1861      * classes or interfaces.  This method also returns an array of length 0 if
1862      * this {@code Class} object represents a primitive type, an array
1863      * class, or void.
1864      *
1865      * @return the array of {@code Class} objects representing the public
1866      *         members of this class
1867      * @since 1.1
1868      */
1869     public Class<?>[] getClasses() {
1870         List<Class<?>> list = new ArrayList<>();
1871         Class<?> currentClass = Class.this;
1872         while (currentClass != null) {
1873             for (Class<?> m : currentClass.getDeclaredClasses()) {
1874                 if (Modifier.isPublic(m.getModifiers())) {
1875                     list.add(m);
1876                 }
1877             }
1878             currentClass = currentClass.getSuperclass();
1879         }
1880         return list.toArray(new Class<?>[0]);
1881     }
1882 
1883 
1884     /**
1885      * Returns an array containing {@code Field} objects reflecting all
1886      * the accessible public fields of the class or interface represented by
1887      * this {@code Class} object.
1888      *
1889      * <p> If this {@code Class} object represents a class or interface with
1890      * no accessible public fields, then this method returns an array of length
1891      * 0.
1892      *
1893      * <p> If this {@code Class} object represents a class, then this method
1894      * returns the public fields of the class and of all its superclasses and
1895      * superinterfaces.
1896      *
1897      * <p> If this {@code Class} object represents an interface, then this
1898      * method returns the fields of the interface and of all its
1899      * superinterfaces.
1900      *
1901      * <p> If this {@code Class} object represents an array type, a primitive
1902      * type, or void, then this method returns an array of length 0.
1903      *
1904      * <p> The elements in the returned array are not sorted and are not in any
1905      * particular order.
1906      *
1907      * @return the array of {@code Field} objects representing the
1908      *         public fields
1909      *
1910      * @since 1.1
1911      * @jls 8.2 Class Members
1912      * @jls 8.3 Field Declarations
1913      */
1914     public Field[] getFields() {
1915         return copyFields(privateGetPublicFields());
1916     }
1917 
1918 
1919     /**
1920      * Returns an array containing {@code Method} objects reflecting all the
1921      * public methods of the class or interface represented by this {@code
1922      * Class} object, including those declared by the class or interface and
1923      * those inherited from superclasses and superinterfaces.
1924      *
1925      * <p> If this {@code Class} object represents an array type, then the
1926      * returned array has a {@code Method} object for each of the public
1927      * methods inherited by the array type from {@code Object}. It does not
1928      * contain a {@code Method} object for {@code clone()}.
1929      *
1930      * <p> If this {@code Class} object represents an interface then the
1931      * returned array does not contain any implicitly declared methods from
1932      * {@code Object}. Therefore, if no methods are explicitly declared in
1933      * this interface or any of its superinterfaces then the returned array
1934      * has length 0. (Note that a {@code Class} object which represents a class
1935      * always has public methods, inherited from {@code Object}.)
1936      *
1937      * <p> The returned array never contains methods with names {@value
1938      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
1939      *
1940      * <p> The elements in the returned array are not sorted and are not in any
1941      * particular order.
1942      *
1943      * <p> Generally, the result is computed as with the following 4 step algorithm.
1944      * Let C be the class or interface represented by this {@code Class} object:
1945      * <ol>
1946      * <li> A union of methods is composed of:
1947      *   <ol type="a">
1948      *   <li> C's declared public instance and static methods as returned by
1949      *        {@link #getDeclaredMethods()} and filtered to include only public
1950      *        methods.</li>
1951      *   <li> If C is a class other than {@code Object}, then include the result
1952      *        of invoking this algorithm recursively on the superclass of C.</li>
1953      *   <li> Include the results of invoking this algorithm recursively on all
1954      *        direct superinterfaces of C, but include only instance methods.</li>
1955      *   </ol></li>
1956      * <li> Union from step 1 is partitioned into subsets of methods with same
1957      *      signature (name, parameter types) and return type.</li>
1958      * <li> Within each such subset only the most specific methods are selected.
1959      *      Let method M be a method from a set of methods with same signature
1960      *      and return type. M is most specific if there is no such method
1961      *      N != M from the same set, such that N is more specific than M.
1962      *      N is more specific than M if:
1963      *   <ol type="a">
1964      *   <li> N is declared by a class and M is declared by an interface; or</li>
1965      *   <li> N and M are both declared by classes or both by interfaces and
1966      *        N's declaring type is the same as or a subtype of M's declaring type
1967      *        (clearly, if M's and N's declaring types are the same type, then
1968      *        M and N are the same method).</li>
1969      *   </ol></li>
1970      * <li> The result of this algorithm is the union of all selected methods from
1971      *      step 3.</li>
1972      * </ol>
1973      *
1974      * @apiNote There may be more than one method with a particular name
1975      * and parameter types in a class because while the Java language forbids a
1976      * class to declare multiple methods with the same signature but different
1977      * return types, the Java virtual machine does not.  This
1978      * increased flexibility in the virtual machine can be used to
1979      * implement various language features.  For example, covariant
1980      * returns can be implemented with {@linkplain
1981      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
1982      * method and the overriding method would have the same
1983      * signature but different return types.
1984      *
1985      * @return the array of {@code Method} objects representing the
1986      *         public methods of this class
1987      *
1988      * @jls 8.2 Class Members
1989      * @jls 8.4 Method Declarations
1990      * @since 1.1
1991      */
1992     public Method[] getMethods() {
1993         return copyMethods(privateGetPublicMethods());
1994     }
1995 
1996 
1997     /**
1998      * Returns an array containing {@code Constructor} objects reflecting
1999      * all the public constructors of the class represented by this
2000      * {@code Class} object.  An array of length 0 is returned if the
2001      * class has no public constructors, or if the class is an array class, or
2002      * if the class reflects a primitive type or void.
2003      *
2004      * @apiNote
2005      * While this method returns an array of {@code
2006      * Constructor<T>} objects (that is an array of constructors from
2007      * this class), the return type of this method is {@code
2008      * Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as
2009      * might be expected.  This less informative return type is
2010      * necessary since after being returned from this method, the
2011      * array could be modified to hold {@code Constructor} objects for
2012      * different classes, which would violate the type guarantees of
2013      * {@code Constructor<T>[]}.
2014      *
2015      * @return the array of {@code Constructor} objects representing the
2016      *         public constructors of this class
2017      *
2018      * @see #getDeclaredConstructors()
2019      * @since 1.1
2020      */
2021     public Constructor<?>[] getConstructors() {
2022         return copyConstructors(privateGetDeclaredConstructors(true));
2023     }
2024 
2025 
2026     /**
2027      * Returns a {@code Field} object that reflects the specified public member
2028      * field of the class or interface represented by this {@code Class}
2029      * object. The {@code name} parameter is a {@code String} specifying the
2030      * simple name of the desired field.
2031      *
2032      * <p> The field to be reflected is determined by the algorithm that
2033      * follows.  Let C be the class or interface represented by this {@code Class} object:
2034      *
2035      * <OL>
2036      * <LI> If C declares a public field with the name specified, that is the
2037      *      field to be reflected.</LI>
2038      * <LI> If no field was found in step 1 above, this algorithm is applied
2039      *      recursively to each direct superinterface of C. The direct
2040      *      superinterfaces are searched in the order they were declared.</LI>
2041      * <LI> If no field was found in steps 1 and 2 above, and C has a
2042      *      superclass S, then this algorithm is invoked recursively upon S.
2043      *      If C has no superclass, then a {@code NoSuchFieldException}
2044      *      is thrown.</LI>
2045      * </OL>
2046      *
2047      * <p> If this {@code Class} object represents an array type, then this
2048      * method does not find the {@code length} field of the array type.
2049      *
2050      * @param name the field name
2051      * @return the {@code Field} object of this class specified by
2052      *         {@code name}
2053      * @throws NoSuchFieldException if a field with the specified name is
2054      *         not found.
2055      * @throws NullPointerException if {@code name} is {@code null}
2056      *
2057      * @since 1.1
2058      * @jls 8.2 Class Members
2059      * @jls 8.3 Field Declarations
2060      */
2061     public Field getField(String name) throws NoSuchFieldException {
2062         Objects.requireNonNull(name);
2063         Field field = getField0(name);
2064         if (field == null) {
2065             throw new NoSuchFieldException(name);
2066         }
2067         return getReflectionFactory().copyField(field);
2068     }
2069 
2070 
2071     /**
2072      * Returns a {@code Method} object that reflects the specified public
2073      * member method of the class or interface represented by this
2074      * {@code Class} object. The {@code name} parameter is a
2075      * {@code String} specifying the simple name of the desired method. The
2076      * {@code parameterTypes} parameter is an array of {@code Class}
2077      * objects that identify the method's formal parameter types, in declared
2078      * order. If {@code parameterTypes} is {@code null}, it is
2079      * treated as if it were an empty array.
2080      *
2081      * <p> If this {@code Class} object represents an array type, then this
2082      * method finds any public method inherited by the array type from
2083      * {@code Object} except method {@code clone()}.
2084      *
2085      * <p> If this {@code Class} object represents an interface then this
2086      * method does not find any implicitly declared method from
2087      * {@code Object}. Therefore, if no methods are explicitly declared in
2088      * this interface or any of its superinterfaces, then this method does not
2089      * find any method.
2090      *
2091      * <p> This method does not find any method with name {@value
2092      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
2093      *
2094      * <p> Generally, the method to be reflected is determined by the 4 step
2095      * algorithm that follows.
2096      * Let C be the class or interface represented by this {@code Class} object:
2097      * <ol>
2098      * <li> A union of methods is composed of:
2099      *   <ol type="a">
2100      *   <li> C's declared public instance and static methods as returned by
2101      *        {@link #getDeclaredMethods()} and filtered to include only public
2102      *        methods that match given {@code name} and {@code parameterTypes}</li>
2103      *   <li> If C is a class other than {@code Object}, then include the result
2104      *        of invoking this algorithm recursively on the superclass of C.</li>
2105      *   <li> Include the results of invoking this algorithm recursively on all
2106      *        direct superinterfaces of C, but include only instance methods.</li>
2107      *   </ol></li>
2108      * <li> This union is partitioned into subsets of methods with same
2109      *      return type (the selection of methods from step 1 also guarantees that
2110      *      they have the same method name and parameter types).</li>
2111      * <li> Within each such subset only the most specific methods are selected.
2112      *      Let method M be a method from a set of methods with same VM
2113      *      signature (return type, name, parameter types).
2114      *      M is most specific if there is no such method N != M from the same
2115      *      set, such that N is more specific than M. N is more specific than M
2116      *      if:
2117      *   <ol type="a">
2118      *   <li> N is declared by a class and M is declared by an interface; or</li>
2119      *   <li> N and M are both declared by classes or both by interfaces and
2120      *        N's declaring type is the same as or a subtype of M's declaring type
2121      *        (clearly, if M's and N's declaring types are the same type, then
2122      *        M and N are the same method).</li>
2123      *   </ol></li>
2124      * <li> The result of this algorithm is chosen arbitrarily from the methods
2125      *      with most specific return type among all selected methods from step 3.
2126      *      Let R be a return type of a method M from the set of all selected methods
2127      *      from step 3. M is a method with most specific return type if there is
2128      *      no such method N != M from the same set, having return type S != R,
2129      *      such that S is a subtype of R as determined by
2130      *      R.class.{@link #isAssignableFrom}(S.class).
2131      * </ol>
2132      *
2133      * @apiNote There may be more than one method with matching name and
2134      * parameter types in a class because while the Java language forbids a
2135      * class to declare multiple methods with the same signature but different
2136      * return types, the Java virtual machine does not.  This
2137      * increased flexibility in the virtual machine can be used to
2138      * implement various language features.  For example, covariant
2139      * returns can be implemented with {@linkplain
2140      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
2141      * method and the overriding method would have the same
2142      * signature but different return types. This method would return the
2143      * overriding method as it would have a more specific return type.
2144      *
2145      * @param name the name of the method
2146      * @param parameterTypes the list of parameters
2147      * @return the {@code Method} object that matches the specified
2148      *         {@code name} and {@code parameterTypes}
2149      * @throws NoSuchMethodException if a matching method is not found
2150      *         or if the name is {@value ConstantDescs#INIT_NAME} or
2151      *         {@value ConstantDescs#CLASS_INIT_NAME}.
2152      * @throws NullPointerException if {@code name} is {@code null}
2153      *
2154      * @jls 8.2 Class Members
2155      * @jls 8.4 Method Declarations
2156      * @since 1.1
2157      */
2158     public Method getMethod(String name, Class<?>... parameterTypes)
2159             throws NoSuchMethodException {
2160         Objects.requireNonNull(name);
2161         Method method = getMethod0(name, parameterTypes);
2162         if (method == null) {
2163             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2164         }
2165         return getReflectionFactory().copyMethod(method);
2166     }
2167 
2168     /**
2169      * Returns a {@code Constructor} object that reflects the specified
2170      * public constructor of the class represented by this {@code Class}
2171      * object. The {@code parameterTypes} parameter is an array of
2172      * {@code Class} objects that identify the constructor's formal
2173      * parameter types, in declared order.
2174      *
2175      * If this {@code Class} object represents an inner class
2176      * declared in a non-static context, the formal parameter types
2177      * include the explicit enclosing instance as the first parameter.
2178      *
2179      * <p> The constructor to reflect is the public constructor of the class
2180      * represented by this {@code Class} object whose formal parameter
2181      * types match those specified by {@code parameterTypes}.
2182      *
2183      * @param parameterTypes the parameter array
2184      * @return the {@code Constructor} object of the public constructor that
2185      *         matches the specified {@code parameterTypes}
2186      * @throws NoSuchMethodException if a matching constructor is not found,
2187      *         including when this {@code Class} object represents
2188      *         an interface, a primitive type, an array class, or void.
2189      *
2190      * @see #getDeclaredConstructor(Class[])
2191      * @since 1.1
2192      */
2193     public Constructor<T> getConstructor(Class<?>... parameterTypes)
2194             throws NoSuchMethodException {
2195         return getReflectionFactory().copyConstructor(
2196             getConstructor0(parameterTypes, Member.PUBLIC));
2197     }
2198 
2199 
2200     /**
2201      * Returns an array of {@code Class} objects reflecting all the
2202      * classes and interfaces declared as members of the class represented by
2203      * this {@code Class} object. This includes public, protected, default
2204      * (package) access, and private classes and interfaces declared by the
2205      * class, but excludes inherited classes and interfaces.  This method
2206      * returns an array of length 0 if the class declares no classes or
2207      * interfaces as members, or if this {@code Class} object represents a
2208      * primitive type, an array class, or void.
2209      *
2210      * @return the array of {@code Class} objects representing all the
2211      *         declared members of this class
2212      *
2213      * @since 1.1
2214      * @jls 8.5 Member Class and Interface Declarations
2215      */
2216     public Class<?>[] getDeclaredClasses() {
2217         return getDeclaredClasses0();
2218     }
2219 
2220 
2221     /**
2222      * Returns an array of {@code Field} objects reflecting all the fields
2223      * declared by the class or interface represented by this
2224      * {@code Class} object. This includes public, protected, default
2225      * (package) access, and private fields, but excludes inherited fields.
2226      *
2227      * <p> If this {@code Class} object represents a class or interface with no
2228      * declared fields, then this method returns an array of length 0.
2229      *
2230      * <p> If this {@code Class} object represents an array type, a primitive
2231      * type, or void, then this method returns an array of length 0.
2232      *
2233      * <p> The elements in the returned array are not sorted and are not in any
2234      * particular order.
2235      *
2236      * @return  the array of {@code Field} objects representing all the
2237      *          declared fields of this class
2238      *
2239      * @since 1.1
2240      * @jls 8.2 Class Members
2241      * @jls 8.3 Field Declarations
2242      */
2243     public Field[] getDeclaredFields() {
2244         return copyFields(privateGetDeclaredFields(false));
2245     }
2246 
2247     /**
2248      * Returns an array of {@code RecordComponent} objects representing all the
2249      * record components of this record class, or {@code null} if this class is
2250      * not a record class.
2251      *
2252      * <p> The components are returned in the same order that they are declared
2253      * in the record header. The array is empty if this record class has no
2254      * components. If the class is not a record class, that is {@link
2255      * #isRecord()} returns {@code false}, then this method returns {@code null}.
2256      * Conversely, if {@link #isRecord()} returns {@code true}, then this method
2257      * returns a non-null value.
2258      *
2259      * @apiNote
2260      * <p> The following method can be used to find the record canonical constructor:
2261      *
2262      * {@snippet lang="java" :
2263      * static <T extends Record> Constructor<T> getCanonicalConstructor(Class<T> cls)
2264      *     throws NoSuchMethodException {
2265      *   Class<?>[] paramTypes =
2266      *     Arrays.stream(cls.getRecordComponents())
2267      *           .map(RecordComponent::getType)
2268      *           .toArray(Class<?>[]::new);
2269      *   return cls.getDeclaredConstructor(paramTypes);
2270      * }}
2271      *
2272      * @return  An array of {@code RecordComponent} objects representing all the
2273      *          record components of this record class, or {@code null} if this
2274      *          class is not a record class
2275      *
2276      * @jls 8.10 Record Classes
2277      * @since 16
2278      */
2279     public RecordComponent[] getRecordComponents() {
2280         if (!isRecord()) {
2281             return null;
2282         }
2283         return getRecordComponents0();
2284     }
2285 
2286     /**
2287      * Returns an array containing {@code Method} objects reflecting all the
2288      * declared methods of the class or interface represented by this {@code
2289      * Class} object, including public, protected, default (package)
2290      * access, and private methods, but excluding inherited methods.
2291      * The declared methods may include methods <em>not</em> in the
2292      * source of the class or interface, including {@linkplain
2293      * Method#isBridge bridge methods} and other {@linkplain
2294      * Executable#isSynthetic synthetic} methods added by compilers.
2295      *
2296      * <p> If this {@code Class} object represents a class or interface that
2297      * has multiple declared methods with the same name and parameter types,
2298      * but different return types, then the returned array has a {@code Method}
2299      * object for each such method.
2300      *
2301      * <p> If this {@code Class} object represents a class or interface that
2302      * has a class initialization method {@value ConstantDescs#CLASS_INIT_NAME},
2303      * then the returned array does <em>not</em> have a corresponding {@code
2304      * Method} object.
2305      *
2306      * <p> If this {@code Class} object represents a class or interface with no
2307      * declared methods, then the returned array has length 0.
2308      *
2309      * <p> If this {@code Class} object represents an array type, a primitive
2310      * type, or void, then the returned array has length 0.
2311      *
2312      * <p> The elements in the returned array are not sorted and are not in any
2313      * particular order.
2314      *
2315      * @return  the array of {@code Method} objects representing all the
2316      *          declared methods of this class
2317      *
2318      * @jls 8.2 Class Members
2319      * @jls 8.4 Method Declarations
2320      * @see <a
2321      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
2322      * programming language and JVM modeling in core reflection</a>
2323      * @since 1.1
2324      */
2325     public Method[] getDeclaredMethods() {
2326         return copyMethods(privateGetDeclaredMethods(false));
2327     }
2328 
2329     /**
2330      * Returns an array of {@code Constructor} objects reflecting all the
2331      * constructors implicitly or explicitly declared by the class represented by this
2332      * {@code Class} object. These are public, protected, default
2333      * (package) access, and private constructors.  The elements in the array
2334      * returned are not sorted and are not in any particular order.  If the
2335      * class has a default constructor (JLS {@jls 8.8.9}), it is included in the returned array.
2336      * If a record class has a canonical constructor (JLS {@jls
2337      * 8.10.4.1}, {@jls 8.10.4.2}), it is included in the returned array.
2338      *
2339      * This method returns an array of length 0 if this {@code Class}
2340      * object represents an interface, a primitive type, an array class, or
2341      * void.
2342      *
2343      * @return  the array of {@code Constructor} objects representing all the
2344      *          declared constructors of this class
2345      *
2346      * @since 1.1
2347      * @see #getConstructors()
2348      * @jls 8.8 Constructor Declarations
2349      */
2350     public Constructor<?>[] getDeclaredConstructors() {
2351         return copyConstructors(privateGetDeclaredConstructors(false));
2352     }
2353 
2354 
2355     /**
2356      * Returns a {@code Field} object that reflects the specified declared
2357      * field of the class or interface represented by this {@code Class}
2358      * object. The {@code name} parameter is a {@code String} that specifies
2359      * the simple name of the desired field.
2360      *
2361      * <p> If this {@code Class} object represents an array type, then this
2362      * method does not find the {@code length} field of the array type.
2363      *
2364      * @param name the name of the field
2365      * @return  the {@code Field} object for the specified field in this
2366      *          class
2367      * @throws  NoSuchFieldException if a field with the specified name is
2368      *          not found.
2369      * @throws  NullPointerException if {@code name} is {@code null}
2370      *
2371      * @since 1.1
2372      * @jls 8.2 Class Members
2373      * @jls 8.3 Field Declarations
2374      */
2375     public Field getDeclaredField(String name) throws NoSuchFieldException {
2376         Objects.requireNonNull(name);
2377         Field field = searchFields(privateGetDeclaredFields(false), name);
2378         if (field == null) {
2379             throw new NoSuchFieldException(name);
2380         }
2381         return getReflectionFactory().copyField(field);
2382     }
2383 
2384 
2385     /**
2386      * Returns a {@code Method} object that reflects the specified
2387      * declared method of the class or interface represented by this
2388      * {@code Class} object. The {@code name} parameter is a
2389      * {@code String} that specifies the simple name of the desired
2390      * method, and the {@code parameterTypes} parameter is an array of
2391      * {@code Class} objects that identify the method's formal parameter
2392      * types, in declared order.  If more than one method with the same
2393      * parameter types is declared in a class, and one of these methods has a
2394      * return type that is more specific than any of the others, that method is
2395      * returned; otherwise one of the methods is chosen arbitrarily.  If the
2396      * name is {@value ConstantDescs#INIT_NAME} or {@value
2397      * ConstantDescs#CLASS_INIT_NAME} a {@code NoSuchMethodException}
2398      * is raised.
2399      *
2400      * <p> If this {@code Class} object represents an array type, then this
2401      * method does not find the {@code clone()} method.
2402      *
2403      * @param name the name of the method
2404      * @param parameterTypes the parameter array
2405      * @return  the {@code Method} object for the method of this class
2406      *          matching the specified name and parameters
2407      * @throws  NoSuchMethodException if a matching method is not found.
2408      * @throws  NullPointerException if {@code name} is {@code null}
2409      *
2410      * @jls 8.2 Class Members
2411      * @jls 8.4 Method Declarations
2412      * @since 1.1
2413      */
2414     public Method getDeclaredMethod(String name, Class<?>... parameterTypes)
2415             throws NoSuchMethodException {
2416         Objects.requireNonNull(name);
2417         Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);
2418         if (method == null) {
2419             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2420         }
2421         return getReflectionFactory().copyMethod(method);
2422     }
2423 
2424     /**
2425      * Returns the list of {@code Method} objects for the declared public
2426      * methods of this class or interface that have the specified method name
2427      * and parameter types.
2428      *
2429      * @param name the name of the method
2430      * @param parameterTypes the parameter array
2431      * @return the list of {@code Method} objects for the public methods of
2432      *         this class matching the specified name and parameters
2433      */
2434     List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) {
2435         Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true);
2436         ReflectionFactory factory = getReflectionFactory();
2437         List<Method> result = new ArrayList<>();
2438         for (Method method : methods) {
2439             if (method.getName().equals(name)
2440                 && Arrays.equals(
2441                     factory.getExecutableSharedParameterTypes(method),
2442                     parameterTypes)) {
2443                 result.add(factory.copyMethod(method));
2444             }
2445         }
2446         return result;
2447     }
2448 
2449     /**
2450      * Returns the most specific {@code Method} object of this class, super class or
2451      * interface that have the specified method name and parameter types.
2452      *
2453      * @param publicOnly true if only public methods are examined, otherwise all methods
2454      * @param name the name of the method
2455      * @param parameterTypes the parameter array
2456      * @return the {@code Method} object for the method found from this class matching
2457      * the specified name and parameters, or null if not found
2458      */
2459     Method findMethod(boolean publicOnly, String name, Class<?>... parameterTypes) {
2460         PublicMethods.MethodList res = getMethodsRecursive(name, parameterTypes, true, publicOnly);
2461         return res == null ? null : getReflectionFactory().copyMethod(res.getMostSpecific());
2462     }
2463 
2464     /**
2465      * Returns a {@code Constructor} object that reflects the specified
2466      * constructor of the class represented by this
2467      * {@code Class} object.  The {@code parameterTypes} parameter is
2468      * an array of {@code Class} objects that identify the constructor's
2469      * formal parameter types, in declared order.
2470      *
2471      * If this {@code Class} object represents an inner class
2472      * declared in a non-static context, the formal parameter types
2473      * include the explicit enclosing instance as the first parameter.
2474      *
2475      * @param parameterTypes the parameter array
2476      * @return  The {@code Constructor} object for the constructor with the
2477      *          specified parameter list
2478      * @throws  NoSuchMethodException if a matching constructor is not found,
2479      *          including when this {@code Class} object represents
2480      *          an interface, a primitive type, an array class, or void.
2481      *
2482      * @see #getConstructor(Class[])
2483      * @since 1.1
2484      */
2485     public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes)
2486             throws NoSuchMethodException {
2487         return getReflectionFactory().copyConstructor(
2488             getConstructor0(parameterTypes, Member.DECLARED));
2489     }
2490 
2491     /**
2492      * Finds a resource with a given name.
2493      *
2494      * <p> If this class is in a named {@link Module Module} then this method
2495      * will attempt to find the resource in the module. This is done by
2496      * delegating to the module's class loader {@link
2497      * ClassLoader#findResource(String,String) findResource(String,String)}
2498      * method, invoking it with the module name and the absolute name of the
2499      * resource. Resources in named modules are subject to the rules for
2500      * encapsulation specified in the {@code Module} {@link
2501      * Module#getResourceAsStream getResourceAsStream} method and so this
2502      * method returns {@code null} when the resource is a
2503      * non-"{@code .class}" resource in a package that is not open to the
2504      * caller's module.
2505      *
2506      * <p> Otherwise, if this class is not in a named module then the rules for
2507      * searching resources associated with a given class are implemented by the
2508      * defining {@linkplain ClassLoader class loader} of the class.  This method
2509      * delegates to this {@code Class} object's class loader.
2510      * If this {@code Class} object was loaded by the bootstrap class loader,
2511      * the method delegates to {@link ClassLoader#getSystemResourceAsStream}.
2512      *
2513      * <p> Before delegation, an absolute resource name is constructed from the
2514      * given resource name using this algorithm:
2515      *
2516      * <ul>
2517      *
2518      * <li> If the {@code name} begins with a {@code '/'}
2519      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2520      * portion of the {@code name} following the {@code '/'}.
2521      *
2522      * <li> Otherwise, the absolute name is of the following form:
2523      *
2524      * <blockquote>
2525      *   {@code modified_package_name/name}
2526      * </blockquote>
2527      *
2528      * <p> Where the {@code modified_package_name} is the package name of this
2529      * object with {@code '/'} substituted for {@code '.'}
2530      * (<code>'&#92;u002e'</code>).
2531      *
2532      * </ul>
2533      *
2534      * @param  name name of the desired resource
2535      * @return  A {@link java.io.InputStream} object; {@code null} if no
2536      *          resource with this name is found, or the resource is in a package
2537      *          that is not {@linkplain Module#isOpen(String, Module) open} to at
2538      *          least the caller module.
2539      * @throws  NullPointerException If {@code name} is {@code null}
2540      *
2541      * @see Module#getResourceAsStream(String)
2542      * @since  1.1
2543      */
2544     @CallerSensitive
2545     public InputStream getResourceAsStream(String name) {
2546         name = resolveName(name);
2547 
2548         Module thisModule = getModule();
2549         if (thisModule.isNamed()) {
2550             // check if resource can be located by caller
2551             if (Resources.canEncapsulate(name)
2552                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2553                 return null;
2554             }
2555 
2556             // resource not encapsulated or in package open to caller
2557             String mn = thisModule.getName();
2558             ClassLoader cl = classLoader;
2559             try {
2560 
2561                 // special-case built-in class loaders to avoid the
2562                 // need for a URL connection
2563                 if (cl == null) {
2564                     return BootLoader.findResourceAsStream(mn, name);
2565                 } else if (cl instanceof BuiltinClassLoader bcl) {
2566                     return bcl.findResourceAsStream(mn, name);
2567                 } else {
2568                     URL url = cl.findResource(mn, name);
2569                     return (url != null) ? url.openStream() : null;
2570                 }
2571 
2572             } catch (IOException | SecurityException e) {
2573                 return null;
2574             }
2575         }
2576 
2577         // unnamed module
2578         ClassLoader cl = classLoader;
2579         if (cl == null) {
2580             return ClassLoader.getSystemResourceAsStream(name);
2581         } else {
2582             return cl.getResourceAsStream(name);
2583         }
2584     }
2585 
2586     /**
2587      * Finds a resource with a given name.
2588      *
2589      * <p> If this class is in a named {@link Module Module} then this method
2590      * will attempt to find the resource in the module. This is done by
2591      * delegating to the module's class loader {@link
2592      * ClassLoader#findResource(String,String) findResource(String,String)}
2593      * method, invoking it with the module name and the absolute name of the
2594      * resource. Resources in named modules are subject to the rules for
2595      * encapsulation specified in the {@code Module} {@link
2596      * Module#getResourceAsStream getResourceAsStream} method and so this
2597      * method returns {@code null} when the resource is a
2598      * non-"{@code .class}" resource in a package that is not open to the
2599      * caller's module.
2600      *
2601      * <p> Otherwise, if this class is not in a named module then the rules for
2602      * searching resources associated with a given class are implemented by the
2603      * defining {@linkplain ClassLoader class loader} of the class.  This method
2604      * delegates to this {@code Class} object's class loader.
2605      * If this {@code Class} object was loaded by the bootstrap class loader,
2606      * the method delegates to {@link ClassLoader#getSystemResource}.
2607      *
2608      * <p> Before delegation, an absolute resource name is constructed from the
2609      * given resource name using this algorithm:
2610      *
2611      * <ul>
2612      *
2613      * <li> If the {@code name} begins with a {@code '/'}
2614      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2615      * portion of the {@code name} following the {@code '/'}.
2616      *
2617      * <li> Otherwise, the absolute name is of the following form:
2618      *
2619      * <blockquote>
2620      *   {@code modified_package_name/name}
2621      * </blockquote>
2622      *
2623      * <p> Where the {@code modified_package_name} is the package name of this
2624      * object with {@code '/'} substituted for {@code '.'}
2625      * (<code>'&#92;u002e'</code>).
2626      *
2627      * </ul>
2628      *
2629      * @param  name name of the desired resource
2630      * @return A {@link java.net.URL} object; {@code null} if no resource with
2631      *         this name is found, the resource cannot be located by a URL, or the
2632      *         resource is in a package that is not
2633      *         {@linkplain Module#isOpen(String, Module) open} to at least the caller
2634      *         module.
2635      * @throws NullPointerException If {@code name} is {@code null}
2636      * @since  1.1
2637      */
2638     @CallerSensitive
2639     public URL getResource(String name) {
2640         name = resolveName(name);
2641 
2642         Module thisModule = getModule();
2643         if (thisModule.isNamed()) {
2644             // check if resource can be located by caller
2645             if (Resources.canEncapsulate(name)
2646                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2647                 return null;
2648             }
2649 
2650             // resource not encapsulated or in package open to caller
2651             String mn = thisModule.getName();
2652             ClassLoader cl = classLoader;
2653             try {
2654                 if (cl == null) {
2655                     return BootLoader.findResource(mn, name);
2656                 } else {
2657                     return cl.findResource(mn, name);
2658                 }
2659             } catch (IOException ioe) {
2660                 return null;
2661             }
2662         }
2663 
2664         // unnamed module
2665         ClassLoader cl = classLoader;
2666         if (cl == null) {
2667             return ClassLoader.getSystemResource(name);
2668         } else {
2669             return cl.getResource(name);
2670         }
2671     }
2672 
2673     /**
2674      * Returns true if a resource with the given name can be located by the
2675      * given caller. All resources in a module can be located by code in
2676      * the module. For other callers, then the package needs to be open to
2677      * the caller.
2678      */
2679     private boolean isOpenToCaller(String name, Class<?> caller) {
2680         // assert getModule().isNamed();
2681         Module thisModule = getModule();
2682         Module callerModule = (caller != null) ? caller.getModule() : null;
2683         if (callerModule != thisModule) {
2684             String pn = Resources.toPackageName(name);
2685             if (thisModule.getDescriptor().packages().contains(pn)) {
2686                 if (callerModule == null) {
2687                     // no caller, return true if the package is open to all modules
2688                     return thisModule.isOpen(pn);
2689                 }
2690                 if (!thisModule.isOpen(pn, callerModule)) {
2691                     // package not open to caller
2692                     return false;
2693                 }
2694             }
2695         }
2696         return true;
2697     }
2698 
2699     /**
2700      * Returns the {@code ProtectionDomain} of this class.
2701      *
2702      * @return the ProtectionDomain of this class
2703      *
2704      * @see java.security.ProtectionDomain
2705      * @since 1.2
2706      */
2707     public ProtectionDomain getProtectionDomain() {
2708         return protectionDomain();
2709     }
2710 
2711     /** Holder for the protection domain returned when the internal domain is null */
2712     private static class Holder {
2713         private static final ProtectionDomain allPermDomain;
2714         static {
2715             Permissions perms = new Permissions();
2716             perms.add(new AllPermission());
2717             allPermDomain = new ProtectionDomain(null, perms);
2718         }
2719     }
2720 
2721     // package-private
2722     ProtectionDomain protectionDomain() {
2723         ProtectionDomain pd = getProtectionDomain0();
2724         if (pd == null) {
2725             return Holder.allPermDomain;
2726         } else {
2727             return pd;
2728         }
2729     }
2730 
2731     /**
2732      * Returns the ProtectionDomain of this class.
2733      */
2734     private native ProtectionDomain getProtectionDomain0();
2735 
2736     /*
2737      * Returns the Class object for the named primitive type. Type parameter T
2738      * avoids redundant casts for trusted code.
2739      */
2740     static native <T> Class<T> getPrimitiveClass(String name);
2741 
2742     /**
2743      * Add a package name prefix if the name is not absolute. Remove leading "/"
2744      * if name is absolute
2745      */
2746     private String resolveName(String name) {
2747         if (!name.startsWith("/")) {
2748             String baseName = getPackageName();
2749             if (!baseName.isEmpty()) {
2750                 int len = baseName.length() + 1 + name.length();
2751                 StringBuilder sb = new StringBuilder(len);
2752                 name = sb.append(baseName.replace('.', '/'))
2753                     .append('/')
2754                     .append(name)
2755                     .toString();
2756             }
2757         } else {
2758             name = name.substring(1);
2759         }
2760         return name;
2761     }
2762 
2763     /**
2764      * Atomic operations support.
2765      */
2766     private static class Atomic {
2767         // initialize Unsafe machinery here, since we need to call Class.class instance method
2768         // and have to avoid calling it in the static initializer of the Class class...
2769         private static final Unsafe unsafe = Unsafe.getUnsafe();
2770         // offset of Class.reflectionData instance field
2771         private static final long reflectionDataOffset
2772                 = unsafe.objectFieldOffset(Class.class, "reflectionData");
2773         // offset of Class.annotationType instance field
2774         private static final long annotationTypeOffset
2775                 = unsafe.objectFieldOffset(Class.class, "annotationType");
2776         // offset of Class.annotationData instance field
2777         private static final long annotationDataOffset
2778                 = unsafe.objectFieldOffset(Class.class, "annotationData");
2779 
2780         static <T> boolean casReflectionData(Class<?> clazz,
2781                                              SoftReference<ReflectionData<T>> oldData,
2782                                              SoftReference<ReflectionData<T>> newData) {
2783             return unsafe.compareAndSetReference(clazz, reflectionDataOffset, oldData, newData);
2784         }
2785 
2786         static boolean casAnnotationType(Class<?> clazz,
2787                                          AnnotationType oldType,
2788                                          AnnotationType newType) {
2789             return unsafe.compareAndSetReference(clazz, annotationTypeOffset, oldType, newType);
2790         }
2791 
2792         static boolean casAnnotationData(Class<?> clazz,
2793                                          AnnotationData oldData,
2794                                          AnnotationData newData) {
2795             return unsafe.compareAndSetReference(clazz, annotationDataOffset, oldData, newData);
2796         }
2797     }
2798 
2799     /**
2800      * Reflection support.
2801      */
2802 
2803     // Reflection data caches various derived names and reflective members. Cached
2804     // values may be invalidated when JVM TI RedefineClasses() is called
2805     private static class ReflectionData<T> {
2806         volatile Field[] declaredFields;
2807         volatile Field[] publicFields;
2808         volatile Method[] declaredMethods;
2809         volatile Method[] publicMethods;
2810         volatile Constructor<T>[] declaredConstructors;
2811         volatile Constructor<T>[] publicConstructors;
2812         // Intermediate results for getFields and getMethods
2813         volatile Field[] declaredPublicFields;
2814         volatile Method[] declaredPublicMethods;
2815         volatile Class<?>[] interfaces;
2816 
2817         // Cached names
2818         String simpleName;
2819         String canonicalName;
2820         static final String NULL_SENTINEL = new String();
2821 
2822         // Value of classRedefinedCount when we created this ReflectionData instance
2823         final int redefinedCount;
2824 
2825         ReflectionData(int redefinedCount) {
2826             this.redefinedCount = redefinedCount;
2827         }
2828     }
2829 
2830     private transient volatile SoftReference<ReflectionData<T>> reflectionData;
2831 
2832     // Incremented by the VM on each call to JVM TI RedefineClasses()
2833     // that redefines this class or a superclass.
2834     private transient volatile int classRedefinedCount;
2835 
2836     // Lazily create and cache ReflectionData
2837     private ReflectionData<T> reflectionData() {
2838         SoftReference<ReflectionData<T>> reflectionData = this.reflectionData;
2839         int classRedefinedCount = this.classRedefinedCount;
2840         ReflectionData<T> rd;
2841         if (reflectionData != null &&
2842             (rd = reflectionData.get()) != null &&
2843             rd.redefinedCount == classRedefinedCount) {
2844             return rd;
2845         }
2846         // else no SoftReference or cleared SoftReference or stale ReflectionData
2847         // -> create and replace new instance
2848         return newReflectionData(reflectionData, classRedefinedCount);
2849     }
2850 
2851     private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData,
2852                                                 int classRedefinedCount) {
2853         while (true) {
2854             ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount);
2855             // try to CAS it...
2856             if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) {
2857                 return rd;
2858             }
2859             // else retry
2860             oldReflectionData = this.reflectionData;
2861             classRedefinedCount = this.classRedefinedCount;
2862             if (oldReflectionData != null &&
2863                 (rd = oldReflectionData.get()) != null &&
2864                 rd.redefinedCount == classRedefinedCount) {
2865                 return rd;
2866             }
2867         }
2868     }
2869 
2870     // Generic signature handling
2871     private native String getGenericSignature0();
2872 
2873     // Generic info repository; lazily initialized
2874     private transient volatile ClassRepository genericInfo;
2875 
2876     // accessor for factory
2877     private GenericsFactory getFactory() {
2878         // create scope and factory
2879         return CoreReflectionFactory.make(this, ClassScope.make(this));
2880     }
2881 
2882     // accessor for generic info repository;
2883     // generic info is lazily initialized
2884     private ClassRepository getGenericInfo() {
2885         ClassRepository genericInfo = this.genericInfo;
2886         if (genericInfo == null) {
2887             String signature = getGenericSignature0();
2888             if (signature == null) {
2889                 genericInfo = ClassRepository.NONE;
2890             } else {
2891                 genericInfo = ClassRepository.make(signature, getFactory());
2892             }
2893             this.genericInfo = genericInfo;
2894         }
2895         return (genericInfo != ClassRepository.NONE) ? genericInfo : null;
2896     }
2897 
2898     // Annotations handling
2899     native byte[] getRawAnnotations();
2900     // Since 1.8
2901     native byte[] getRawTypeAnnotations();
2902     static byte[] getExecutableTypeAnnotationBytes(Executable ex) {
2903         return getReflectionFactory().getExecutableTypeAnnotationBytes(ex);
2904     }
2905 
2906     native ConstantPool getConstantPool();
2907 
2908     //
2909     //
2910     // java.lang.reflect.Field handling
2911     //
2912     //
2913 
2914     // Returns an array of "root" fields. These Field objects must NOT
2915     // be propagated to the outside world, but must instead be copied
2916     // via ReflectionFactory.copyField.
2917     private Field[] privateGetDeclaredFields(boolean publicOnly) {
2918         Field[] res;
2919         ReflectionData<T> rd = reflectionData();
2920         res = publicOnly ? rd.declaredPublicFields : rd.declaredFields;
2921         if (res != null) return res;
2922         // No cached value available; request value from VM
2923         res = Reflection.filterFields(this, getDeclaredFields0(publicOnly));
2924         if (publicOnly) {
2925             rd.declaredPublicFields = res;
2926         } else {
2927             rd.declaredFields = res;
2928         }
2929         return res;
2930     }
2931 
2932     // Returns an array of "root" fields. These Field objects must NOT
2933     // be propagated to the outside world, but must instead be copied
2934     // via ReflectionFactory.copyField.
2935     private Field[] privateGetPublicFields() {
2936         Field[] res;
2937         ReflectionData<T> rd = reflectionData();
2938         res = rd.publicFields;
2939         if (res != null) return res;
2940 
2941         // Use a linked hash set to ensure order is preserved and
2942         // fields from common super interfaces are not duplicated
2943         LinkedHashSet<Field> fields = new LinkedHashSet<>();
2944 
2945         // Local fields
2946         addAll(fields, privateGetDeclaredFields(true));
2947 
2948         // Direct superinterfaces, recursively
2949         for (Class<?> si : getInterfaces(/* cloneArray */ false)) {
2950             addAll(fields, si.privateGetPublicFields());
2951         }
2952 
2953         // Direct superclass, recursively
2954         Class<?> sc = getSuperclass();
2955         if (sc != null) {
2956             addAll(fields, sc.privateGetPublicFields());
2957         }
2958 
2959         res = fields.toArray(new Field[0]);
2960         rd.publicFields = res;
2961         return res;
2962     }
2963 
2964     private static void addAll(Collection<Field> c, Field[] o) {
2965         for (Field f : o) {
2966             c.add(f);
2967         }
2968     }
2969 
2970 
2971     //
2972     //
2973     // java.lang.reflect.Constructor handling
2974     //
2975     //
2976 
2977     // Returns an array of "root" constructors. These Constructor
2978     // objects must NOT be propagated to the outside world, but must
2979     // instead be copied via ReflectionFactory.copyConstructor.
2980     private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) {
2981         Constructor<T>[] res;
2982         ReflectionData<T> rd = reflectionData();
2983         res = publicOnly ? rd.publicConstructors : rd.declaredConstructors;
2984         if (res != null) return res;
2985         // No cached value available; request value from VM
2986         if (isInterface()) {
2987             @SuppressWarnings("unchecked")
2988             Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0];
2989             res = temporaryRes;
2990         } else {
2991             res = getDeclaredConstructors0(publicOnly);
2992         }
2993         if (publicOnly) {
2994             rd.publicConstructors = res;
2995         } else {
2996             rd.declaredConstructors = res;
2997         }
2998         return res;
2999     }
3000 
3001     //
3002     //
3003     // java.lang.reflect.Method handling
3004     //
3005     //
3006 
3007     // Returns an array of "root" methods. These Method objects must NOT
3008     // be propagated to the outside world, but must instead be copied
3009     // via ReflectionFactory.copyMethod.
3010     private Method[] privateGetDeclaredMethods(boolean publicOnly) {
3011         Method[] res;
3012         ReflectionData<T> rd = reflectionData();
3013         res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods;
3014         if (res != null) return res;
3015         // No cached value available; request value from VM
3016         res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly));
3017         if (publicOnly) {
3018             rd.declaredPublicMethods = res;
3019         } else {
3020             rd.declaredMethods = res;
3021         }
3022         return res;
3023     }
3024 
3025     // Returns an array of "root" methods. These Method objects must NOT
3026     // be propagated to the outside world, but must instead be copied
3027     // via ReflectionFactory.copyMethod.
3028     private Method[] privateGetPublicMethods() {
3029         Method[] res;
3030         ReflectionData<T> rd = reflectionData();
3031         res = rd.publicMethods;
3032         if (res != null) return res;
3033 
3034         // No cached value available; compute value recursively.
3035         // Start by fetching public declared methods...
3036         PublicMethods pms = new PublicMethods();
3037         for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) {
3038             pms.merge(m);
3039         }
3040         // ...then recur over superclass methods...
3041         Class<?> sc = getSuperclass();
3042         if (sc != null) {
3043             for (Method m : sc.privateGetPublicMethods()) {
3044                 pms.merge(m);
3045             }
3046         }
3047         // ...and finally over direct superinterfaces.
3048         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3049             for (Method m : intf.privateGetPublicMethods()) {
3050                 // static interface methods are not inherited
3051                 if (!Modifier.isStatic(m.getModifiers())) {
3052                     pms.merge(m);
3053                 }
3054             }
3055         }
3056 
3057         res = pms.toArray();
3058         rd.publicMethods = res;
3059         return res;
3060     }
3061 
3062 
3063     //
3064     // Helpers for fetchers of one field, method, or constructor
3065     //
3066 
3067     // This method does not copy the returned Field object!
3068     private static Field searchFields(Field[] fields, String name) {
3069         for (Field field : fields) {
3070             if (field.getName().equals(name)) {
3071                 return field;
3072             }
3073         }
3074         return null;
3075     }
3076 
3077     // Returns a "root" Field object. This Field object must NOT
3078     // be propagated to the outside world, but must instead be copied
3079     // via ReflectionFactory.copyField.
3080     private Field getField0(String name) {
3081         // Note: the intent is that the search algorithm this routine
3082         // uses be equivalent to the ordering imposed by
3083         // privateGetPublicFields(). It fetches only the declared
3084         // public fields for each class, however, to reduce the number
3085         // of Field objects which have to be created for the common
3086         // case where the field being requested is declared in the
3087         // class which is being queried.
3088         Field res;
3089         // Search declared public fields
3090         if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) {
3091             return res;
3092         }
3093         // Direct superinterfaces, recursively
3094         Class<?>[] interfaces = getInterfaces(/* cloneArray */ false);
3095         for (Class<?> c : interfaces) {
3096             if ((res = c.getField0(name)) != null) {
3097                 return res;
3098             }
3099         }
3100         // Direct superclass, recursively
3101         if (!isInterface()) {
3102             Class<?> c = getSuperclass();
3103             if (c != null) {
3104                 if ((res = c.getField0(name)) != null) {
3105                     return res;
3106                 }
3107             }
3108         }
3109         return null;
3110     }
3111 
3112     // This method does not copy the returned Method object!
3113     private static Method searchMethods(Method[] methods,
3114                                         String name,
3115                                         Class<?>[] parameterTypes)
3116     {
3117         ReflectionFactory fact = getReflectionFactory();
3118         Method res = null;
3119         for (Method m : methods) {
3120             if (m.getName().equals(name)
3121                 && arrayContentsEq(parameterTypes,
3122                                    fact.getExecutableSharedParameterTypes(m))
3123                 && (res == null
3124                     || (res.getReturnType() != m.getReturnType()
3125                         && res.getReturnType().isAssignableFrom(m.getReturnType()))))
3126                 res = m;
3127         }
3128         return res;
3129     }
3130 
3131     private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
3132 
3133     // Returns a "root" Method object. This Method object must NOT
3134     // be propagated to the outside world, but must instead be copied
3135     // via ReflectionFactory.copyMethod.
3136     private Method getMethod0(String name, Class<?>[] parameterTypes) {
3137         PublicMethods.MethodList res = getMethodsRecursive(
3138             name,
3139             parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes,
3140             /* includeStatic */ true, /* publicOnly */ true);
3141         return res == null ? null : res.getMostSpecific();
3142     }
3143 
3144     // Returns a list of "root" Method objects. These Method objects must NOT
3145     // be propagated to the outside world, but must instead be copied
3146     // via ReflectionFactory.copyMethod.
3147     private PublicMethods.MethodList getMethodsRecursive(String name,
3148                                                          Class<?>[] parameterTypes,
3149                                                          boolean includeStatic,
3150                                                          boolean publicOnly) {
3151         // 1st check declared methods
3152         Method[] methods = privateGetDeclaredMethods(publicOnly);
3153         PublicMethods.MethodList res = PublicMethods.MethodList
3154             .filter(methods, name, parameterTypes, includeStatic);
3155         // if there is at least one match among declared methods, we need not
3156         // search any further as such match surely overrides matching methods
3157         // declared in superclass(es) or interface(s).
3158         if (res != null) {
3159             return res;
3160         }
3161 
3162         // if there was no match among declared methods,
3163         // we must consult the superclass (if any) recursively...
3164         Class<?> sc = getSuperclass();
3165         if (sc != null) {
3166             res = sc.getMethodsRecursive(name, parameterTypes, includeStatic, publicOnly);
3167         }
3168 
3169         // ...and coalesce the superclass methods with methods obtained
3170         // from directly implemented interfaces excluding static methods...
3171         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3172             res = PublicMethods.MethodList.merge(
3173                 res, intf.getMethodsRecursive(name, parameterTypes, /* includeStatic */ false, publicOnly));
3174         }
3175 
3176         return res;
3177     }
3178 
3179     // Returns a "root" Constructor object. This Constructor object must NOT
3180     // be propagated to the outside world, but must instead be copied
3181     // via ReflectionFactory.copyConstructor.
3182     private Constructor<T> getConstructor0(Class<?>[] parameterTypes,
3183                                         int which) throws NoSuchMethodException
3184     {
3185         ReflectionFactory fact = getReflectionFactory();
3186         Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC));
3187         for (Constructor<T> constructor : constructors) {
3188             if (arrayContentsEq(parameterTypes,
3189                                 fact.getExecutableSharedParameterTypes(constructor))) {
3190                 return constructor;
3191             }
3192         }
3193         throw new NoSuchMethodException(methodToString("<init>", parameterTypes));
3194     }
3195 
3196     //
3197     // Other helpers and base implementation
3198     //
3199 
3200     private static boolean arrayContentsEq(Object[] a1, Object[] a2) {
3201         if (a1 == null) {
3202             return a2 == null || a2.length == 0;
3203         }
3204 
3205         if (a2 == null) {
3206             return a1.length == 0;
3207         }
3208 
3209         if (a1.length != a2.length) {
3210             return false;
3211         }
3212 
3213         for (int i = 0; i < a1.length; i++) {
3214             if (a1[i] != a2[i]) {
3215                 return false;
3216             }
3217         }
3218 
3219         return true;
3220     }
3221 
3222     private static Field[] copyFields(Field[] arg) {
3223         Field[] out = new Field[arg.length];
3224         ReflectionFactory fact = getReflectionFactory();
3225         for (int i = 0; i < arg.length; i++) {
3226             out[i] = fact.copyField(arg[i]);
3227         }
3228         return out;
3229     }
3230 
3231     private static Method[] copyMethods(Method[] arg) {
3232         Method[] out = new Method[arg.length];
3233         ReflectionFactory fact = getReflectionFactory();
3234         for (int i = 0; i < arg.length; i++) {
3235             out[i] = fact.copyMethod(arg[i]);
3236         }
3237         return out;
3238     }
3239 
3240     private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) {
3241         Constructor<U>[] out = arg.clone();
3242         ReflectionFactory fact = getReflectionFactory();
3243         for (int i = 0; i < out.length; i++) {
3244             out[i] = fact.copyConstructor(out[i]);
3245         }
3246         return out;
3247     }
3248 
3249     private native Field[]       getDeclaredFields0(boolean publicOnly);
3250     private native Method[]      getDeclaredMethods0(boolean publicOnly);
3251     private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly);
3252     private native Class<?>[]    getDeclaredClasses0();
3253 
3254     /*
3255      * Returns an array containing the components of the Record attribute,
3256      * or null if the attribute is not present.
3257      *
3258      * Note that this method returns non-null array on a class with
3259      * the Record attribute even if this class is not a record.
3260      */
3261     private native RecordComponent[] getRecordComponents0();
3262     private native boolean       isRecord0();
3263 
3264     /**
3265      * Helper method to get the method name from arguments.
3266      */
3267     private String methodToString(String name, Class<?>[] argTypes) {
3268         return getName() + '.' + name +
3269                 ((argTypes == null || argTypes.length == 0) ?
3270                 "()" :
3271                 Arrays.stream(argTypes)
3272                         .map(c -> c == null ? "null" : c.getName())
3273                         .collect(Collectors.joining(",", "(", ")")));
3274     }
3275 
3276     /** use serialVersionUID from JDK 1.1 for interoperability */
3277     @java.io.Serial
3278     private static final long serialVersionUID = 3206093459760846163L;
3279 
3280 
3281     /**
3282      * Class Class is special cased within the Serialization Stream Protocol.
3283      *
3284      * A Class instance is written initially into an ObjectOutputStream in the
3285      * following format:
3286      * <pre>
3287      *      {@code TC_CLASS} ClassDescriptor
3288      *      A ClassDescriptor is a special cased serialization of
3289      *      a {@code java.io.ObjectStreamClass} instance.
3290      * </pre>
3291      * A new handle is generated for the initial time the class descriptor
3292      * is written into the stream. Future references to the class descriptor
3293      * are written as references to the initial class descriptor instance.
3294      *
3295      * @see java.io.ObjectStreamClass
3296      */
3297     @java.io.Serial
3298     private static final ObjectStreamField[] serialPersistentFields =
3299         new ObjectStreamField[0];
3300 
3301 
3302     /**
3303      * Returns the assertion status that would be assigned to this
3304      * class if it were to be initialized at the time this method is invoked.
3305      * If this class has had its assertion status set, the most recent
3306      * setting will be returned; otherwise, if any package default assertion
3307      * status pertains to this class, the most recent setting for the most
3308      * specific pertinent package default assertion status is returned;
3309      * otherwise, if this class is not a system class (i.e., it has a
3310      * class loader) its class loader's default assertion status is returned;
3311      * otherwise, the system class default assertion status is returned.
3312      *
3313      * @apiNote
3314      * Few programmers will have any need for this method; it is provided
3315      * for the benefit of the JDK itself.  (It allows a class to determine at
3316      * the time that it is initialized whether assertions should be enabled.)
3317      * Note that this method is not guaranteed to return the actual
3318      * assertion status that was (or will be) associated with the specified
3319      * class when it was (or will be) initialized.
3320      *
3321      * @return the desired assertion status of the specified class.
3322      * @see    java.lang.ClassLoader#setClassAssertionStatus
3323      * @see    java.lang.ClassLoader#setPackageAssertionStatus
3324      * @see    java.lang.ClassLoader#setDefaultAssertionStatus
3325      * @since  1.4
3326      */
3327     public boolean desiredAssertionStatus() {
3328         ClassLoader loader = classLoader;
3329         // If the loader is null this is a system class, so ask the VM
3330         if (loader == null)
3331             return desiredAssertionStatus0(this);
3332 
3333         // If the classloader has been initialized with the assertion
3334         // directives, ask it. Otherwise, ask the VM.
3335         synchronized(loader.assertionLock) {
3336             if (loader.classAssertionStatus != null) {
3337                 return loader.desiredAssertionStatus(getName());
3338             }
3339         }
3340         return desiredAssertionStatus0(this);
3341     }
3342 
3343     // Retrieves the desired assertion status of this class from the VM
3344     private static native boolean desiredAssertionStatus0(Class<?> clazz);
3345 
3346     /**
3347      * Returns true if and only if this class was declared as an enum in the
3348      * source code.
3349      *
3350      * Note that {@link java.lang.Enum} is not itself an enum class.
3351      *
3352      * Also note that if an enum constant is declared with a class body,
3353      * the class of that enum constant object is an anonymous class
3354      * and <em>not</em> the class of the declaring enum class. The
3355      * {@link Enum#getDeclaringClass} method of an enum constant can
3356      * be used to get the class of the enum class declaring the
3357      * constant.
3358      *
3359      * @return true if and only if this class was declared as an enum in the
3360      *     source code
3361      * @since 1.5
3362      * @jls 8.9.1 Enum Constants
3363      */
3364     public boolean isEnum() {
3365         // An enum must both directly extend java.lang.Enum and have
3366         // the ENUM bit set; classes for specialized enum constants
3367         // don't do the former.
3368         return (this.getModifiers() & ENUM) != 0 &&
3369         this.getSuperclass() == java.lang.Enum.class;
3370     }
3371 
3372     /**
3373      * Returns {@code true} if and only if this class is a record class.
3374      *
3375      * <p> The {@linkplain #getSuperclass() direct superclass} of a record
3376      * class is {@code java.lang.Record}. A record class is {@linkplain
3377      * Modifier#FINAL final}. A record class has (possibly zero) record
3378      * components; {@link #getRecordComponents()} returns a non-null but
3379      * possibly empty value for a record.
3380      *
3381      * <p> Note that class {@link Record} is not a record class and thus
3382      * invoking this method on class {@code Record} returns {@code false}.
3383      *
3384      * @return true if and only if this class is a record class, otherwise false
3385      * @jls 8.10 Record Classes
3386      * @since 16
3387      */
3388     public boolean isRecord() {
3389         // this superclass and final modifier check is not strictly necessary
3390         // they are intrinsified and serve as a fast-path check
3391         return getSuperclass() == java.lang.Record.class &&
3392                 (this.getModifiers() & Modifier.FINAL) != 0 &&
3393                 isRecord0();
3394     }
3395 
3396     // Fetches the factory for reflective objects
3397     private static ReflectionFactory getReflectionFactory() {
3398         var factory = reflectionFactory;
3399         if (factory != null) {
3400             return factory;
3401         }
3402         return reflectionFactory = ReflectionFactory.getReflectionFactory();
3403     }
3404     private static ReflectionFactory reflectionFactory;
3405 
3406     /**
3407      * When CDS is enabled, the Class class may be aot-initialized. However,
3408      * we can't archive reflectionFactory, so we reset it to null, so it
3409      * will be allocated again at runtime.
3410      */
3411     private static void resetArchivedStates() {
3412         reflectionFactory = null;
3413     }
3414 
3415     /**
3416      * Returns the elements of this enum class or null if this
3417      * Class object does not represent an enum class.
3418      *
3419      * @return an array containing the values comprising the enum class
3420      *     represented by this {@code Class} object in the order they're
3421      *     declared, or null if this {@code Class} object does not
3422      *     represent an enum class
3423      * @since 1.5
3424      * @jls 8.9.1 Enum Constants
3425      */
3426     public T[] getEnumConstants() {
3427         T[] values = getEnumConstantsShared();
3428         return (values != null) ? values.clone() : null;
3429     }
3430 
3431     /**
3432      * Returns the elements of this enum class or null if this
3433      * Class object does not represent an enum class;
3434      * identical to getEnumConstants except that the result is
3435      * uncloned, cached, and shared by all callers.
3436      */
3437     T[] getEnumConstantsShared() {
3438         T[] constants = enumConstants;
3439         if (constants == null) {
3440             if (!isEnum()) return null;
3441             try {
3442                 final Method values = getMethod("values");
3443                 values.setAccessible(true);
3444                 @SuppressWarnings("unchecked")
3445                 T[] temporaryConstants = (T[])values.invoke(null);
3446                 enumConstants = constants = temporaryConstants;
3447             }
3448             // These can happen when users concoct enum-like classes
3449             // that don't comply with the enum spec.
3450             catch (InvocationTargetException | NoSuchMethodException |
3451                    IllegalAccessException | NullPointerException |
3452                    ClassCastException ex) { return null; }
3453         }
3454         return constants;
3455     }
3456     private transient volatile T[] enumConstants;
3457 
3458     /**
3459      * Returns a map from simple name to enum constant.  This package-private
3460      * method is used internally by Enum to implement
3461      * {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)}
3462      * efficiently.  Note that the map is returned by this method is
3463      * created lazily on first use.  Typically it won't ever get created.
3464      */
3465     Map<String, T> enumConstantDirectory() {
3466         Map<String, T> directory = enumConstantDirectory;
3467         if (directory == null) {
3468             T[] universe = getEnumConstantsShared();
3469             if (universe == null)
3470                 throw new IllegalArgumentException(
3471                     getName() + " is not an enum class");
3472             directory = HashMap.newHashMap(universe.length);
3473             for (T constant : universe) {
3474                 directory.put(((Enum<?>)constant).name(), constant);
3475             }
3476             enumConstantDirectory = directory;
3477         }
3478         return directory;
3479     }
3480     private transient volatile Map<String, T> enumConstantDirectory;
3481 
3482     /**
3483      * Casts an object to the class or interface represented
3484      * by this {@code Class} object.
3485      *
3486      * @param obj the object to be cast
3487      * @return the object after casting, or null if obj is null
3488      *
3489      * @throws ClassCastException if the object is not
3490      * null and is not assignable to the type T.
3491      *
3492      * @since 1.5
3493      */
3494     @SuppressWarnings("unchecked")
3495     @IntrinsicCandidate
3496     public T cast(Object obj) {
3497         if (obj != null && !isInstance(obj))
3498             throw new ClassCastException(cannotCastMsg(obj));
3499         return (T) obj;
3500     }
3501 
3502     private String cannotCastMsg(Object obj) {
3503         return "Cannot cast " + obj.getClass().getName() + " to " + getName();
3504     }
3505 
3506     /**
3507      * Casts this {@code Class} object to represent a subclass of the class
3508      * represented by the specified class object.  Checks that the cast
3509      * is valid, and throws a {@code ClassCastException} if it is not.  If
3510      * this method succeeds, it always returns a reference to this {@code Class} object.
3511      *
3512      * <p>This method is useful when a client needs to "narrow" the type of
3513      * a {@code Class} object to pass it to an API that restricts the
3514      * {@code Class} objects that it is willing to accept.  A cast would
3515      * generate a compile-time warning, as the correctness of the cast
3516      * could not be checked at runtime (because generic types are implemented
3517      * by erasure).
3518      *
3519      * @param <U> the type to cast this {@code Class} object to
3520      * @param clazz the class of the type to cast this {@code Class} object to
3521      * @return this {@code Class} object, cast to represent a subclass of
3522      *    the specified class object.
3523      * @throws ClassCastException if this {@code Class} object does not
3524      *    represent a subclass of the specified class (here "subclass" includes
3525      *    the class itself).
3526      * @since 1.5
3527      */
3528     @SuppressWarnings("unchecked")
3529     public <U> Class<? extends U> asSubclass(Class<U> clazz) {
3530         if (clazz.isAssignableFrom(this))
3531             return (Class<? extends U>) this;
3532         else
3533             throw new ClassCastException(this.toString());
3534     }
3535 
3536     /**
3537      * {@inheritDoc}
3538      * <p>Note that any annotation returned by this method is a
3539      * declaration annotation.
3540      *
3541      * @throws NullPointerException {@inheritDoc}
3542      * @since 1.5
3543      */
3544     @Override
3545     @SuppressWarnings("unchecked")
3546     public <A extends Annotation> A getAnnotation(Class<A> annotationClass) {
3547         Objects.requireNonNull(annotationClass);
3548 
3549         return (A) annotationData().annotations.get(annotationClass);
3550     }
3551 
3552     /**
3553      * {@inheritDoc}
3554      * @throws NullPointerException {@inheritDoc}
3555      * @since 1.5
3556      */
3557     @Override
3558     public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) {
3559         return GenericDeclaration.super.isAnnotationPresent(annotationClass);
3560     }
3561 
3562     /**
3563      * {@inheritDoc}
3564      * <p>Note that any annotations returned by this method are
3565      * declaration annotations.
3566      *
3567      * @throws NullPointerException {@inheritDoc}
3568      * @since 1.8
3569      */
3570     @Override
3571     public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) {
3572         Objects.requireNonNull(annotationClass);
3573 
3574         AnnotationData annotationData = annotationData();
3575         return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations,
3576                                                           this,
3577                                                           annotationClass);
3578     }
3579 
3580     /**
3581      * {@inheritDoc}
3582      * <p>Note that any annotations returned by this method are
3583      * declaration annotations.
3584      *
3585      * @since 1.5
3586      */
3587     @Override
3588     public Annotation[] getAnnotations() {
3589         return AnnotationParser.toArray(annotationData().annotations);
3590     }
3591 
3592     /**
3593      * {@inheritDoc}
3594      * <p>Note that any annotation returned by this method is a
3595      * declaration annotation.
3596      *
3597      * @throws NullPointerException {@inheritDoc}
3598      * @since 1.8
3599      */
3600     @Override
3601     @SuppressWarnings("unchecked")
3602     public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) {
3603         Objects.requireNonNull(annotationClass);
3604 
3605         return (A) annotationData().declaredAnnotations.get(annotationClass);
3606     }
3607 
3608     /**
3609      * {@inheritDoc}
3610      * <p>Note that any annotations returned by this method are
3611      * declaration annotations.
3612      *
3613      * @throws NullPointerException {@inheritDoc}
3614      * @since 1.8
3615      */
3616     @Override
3617     public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) {
3618         Objects.requireNonNull(annotationClass);
3619 
3620         return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations,
3621                                                                  annotationClass);
3622     }
3623 
3624     /**
3625      * {@inheritDoc}
3626      * <p>Note that any annotations returned by this method are
3627      * declaration annotations.
3628      *
3629      * @since 1.5
3630      */
3631     @Override
3632     public Annotation[] getDeclaredAnnotations()  {
3633         return AnnotationParser.toArray(annotationData().declaredAnnotations);
3634     }
3635 
3636     // annotation data that might get invalidated when JVM TI RedefineClasses() is called
3637     private static class AnnotationData {
3638         final Map<Class<? extends Annotation>, Annotation> annotations;
3639         final Map<Class<? extends Annotation>, Annotation> declaredAnnotations;
3640 
3641         // Value of classRedefinedCount when we created this AnnotationData instance
3642         final int redefinedCount;
3643 
3644         AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations,
3645                        Map<Class<? extends Annotation>, Annotation> declaredAnnotations,
3646                        int redefinedCount) {
3647             this.annotations = annotations;
3648             this.declaredAnnotations = declaredAnnotations;
3649             this.redefinedCount = redefinedCount;
3650         }
3651     }
3652 
3653     // Annotations cache
3654     @SuppressWarnings("UnusedDeclaration")
3655     private transient volatile AnnotationData annotationData;
3656 
3657     private AnnotationData annotationData() {
3658         while (true) { // retry loop
3659             AnnotationData annotationData = this.annotationData;
3660             int classRedefinedCount = this.classRedefinedCount;
3661             if (annotationData != null &&
3662                 annotationData.redefinedCount == classRedefinedCount) {
3663                 return annotationData;
3664             }
3665             // null or stale annotationData -> optimistically create new instance
3666             AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount);
3667             // try to install it
3668             if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) {
3669                 // successfully installed new AnnotationData
3670                 return newAnnotationData;
3671             }
3672         }
3673     }
3674 
3675     private AnnotationData createAnnotationData(int classRedefinedCount) {
3676         Map<Class<? extends Annotation>, Annotation> declaredAnnotations =
3677             AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this);
3678         Class<?> superClass = getSuperclass();
3679         Map<Class<? extends Annotation>, Annotation> annotations = null;
3680         if (superClass != null) {
3681             Map<Class<? extends Annotation>, Annotation> superAnnotations =
3682                 superClass.annotationData().annotations;
3683             for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) {
3684                 Class<? extends Annotation> annotationClass = e.getKey();
3685                 if (AnnotationType.getInstance(annotationClass).isInherited()) {
3686                     if (annotations == null) { // lazy construction
3687                         annotations = LinkedHashMap.newLinkedHashMap(Math.max(
3688                                 declaredAnnotations.size(),
3689                                 Math.min(12, declaredAnnotations.size() + superAnnotations.size())
3690                             )
3691                         );
3692                     }
3693                     annotations.put(annotationClass, e.getValue());
3694                 }
3695             }
3696         }
3697         if (annotations == null) {
3698             // no inherited annotations -> share the Map with declaredAnnotations
3699             annotations = declaredAnnotations;
3700         } else {
3701             // at least one inherited annotation -> declared may override inherited
3702             annotations.putAll(declaredAnnotations);
3703         }
3704         return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount);
3705     }
3706 
3707     // Annotation interfaces cache their internal (AnnotationType) form
3708 
3709     @SuppressWarnings("UnusedDeclaration")
3710     private transient volatile AnnotationType annotationType;
3711 
3712     boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) {
3713         return Atomic.casAnnotationType(this, oldType, newType);
3714     }
3715 
3716     AnnotationType getAnnotationType() {
3717         return annotationType;
3718     }
3719 
3720     Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() {
3721         return annotationData().declaredAnnotations;
3722     }
3723 
3724     /* Backing store of user-defined values pertaining to this class.
3725      * Maintained by the ClassValue class.
3726      */
3727     transient ClassValue.ClassValueMap classValueMap;
3728 
3729     /**
3730      * Returns an {@code AnnotatedType} object that represents the use of a
3731      * type to specify the superclass of the entity represented by this {@code
3732      * Class} object. (The <em>use</em> of type Foo to specify the superclass
3733      * in '...  extends Foo' is distinct from the <em>declaration</em> of class
3734      * Foo.)
3735      *
3736      * <p> If this {@code Class} object represents a class whose declaration
3737      * does not explicitly indicate an annotated superclass, then the return
3738      * value is an {@code AnnotatedType} object representing an element with no
3739      * annotations.
3740      *
3741      * <p> If this {@code Class} represents either the {@code Object} class, an
3742      * interface type, an array type, a primitive type, or void, the return
3743      * value is {@code null}.
3744      *
3745      * @return an object representing the superclass
3746      * @since 1.8
3747      */
3748     public AnnotatedType getAnnotatedSuperclass() {
3749         if (this == Object.class ||
3750                 isInterface() ||
3751                 isArray() ||
3752                 isPrimitive() ||
3753                 this == Void.TYPE) {
3754             return null;
3755         }
3756 
3757         return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this);
3758     }
3759 
3760     /**
3761      * Returns an array of {@code AnnotatedType} objects that represent the use
3762      * of types to specify superinterfaces of the entity represented by this
3763      * {@code Class} object. (The <em>use</em> of type Foo to specify a
3764      * superinterface in '... implements Foo' is distinct from the
3765      * <em>declaration</em> of interface Foo.)
3766      *
3767      * <p> If this {@code Class} object represents a class, the return value is
3768      * an array containing objects representing the uses of interface types to
3769      * specify interfaces implemented by the class. The order of the objects in
3770      * the array corresponds to the order of the interface types used in the
3771      * 'implements' clause of the declaration of this {@code Class} object.
3772      *
3773      * <p> If this {@code Class} object represents an interface, the return
3774      * value is an array containing objects representing the uses of interface
3775      * types to specify interfaces directly extended by the interface. The
3776      * order of the objects in the array corresponds to the order of the
3777      * interface types used in the 'extends' clause of the declaration of this
3778      * {@code Class} object.
3779      *
3780      * <p> If this {@code Class} object represents a class or interface whose
3781      * declaration does not explicitly indicate any annotated superinterfaces,
3782      * the return value is an array of length 0.
3783      *
3784      * <p> If this {@code Class} object represents either the {@code Object}
3785      * class, an array type, a primitive type, or void, the return value is an
3786      * array of length 0.
3787      *
3788      * @return an array representing the superinterfaces
3789      * @since 1.8
3790      */
3791     public AnnotatedType[] getAnnotatedInterfaces() {
3792          return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this);
3793     }
3794 
3795     private native Class<?> getNestHost0();
3796 
3797     /**
3798      * Returns the nest host of the <a href=#nest>nest</a> to which the class
3799      * or interface represented by this {@code Class} object belongs.
3800      * Every class and interface belongs to exactly one nest.
3801      *
3802      * If the nest host of this class or interface has previously
3803      * been determined, then this method returns the nest host.
3804      * If the nest host of this class or interface has
3805      * not previously been determined, then this method determines the nest
3806      * host using the algorithm of JVMS 5.4.4, and returns it.
3807      *
3808      * Often, a class or interface belongs to a nest consisting only of itself,
3809      * in which case this method returns {@code this} to indicate that the class
3810      * or interface is the nest host.
3811      *
3812      * <p>If this {@code Class} object represents a primitive type, an array type,
3813      * or {@code void}, then this method returns {@code this},
3814      * indicating that the represented entity belongs to the nest consisting only of
3815      * itself, and is the nest host.
3816      *
3817      * @return the nest host of this class or interface
3818      *
3819      * @since 11
3820      * @jvms 4.7.28 The {@code NestHost} Attribute
3821      * @jvms 4.7.29 The {@code NestMembers} Attribute
3822      * @jvms 5.4.4 Access Control
3823      */
3824     public Class<?> getNestHost() {
3825         if (isPrimitive() || isArray()) {
3826             return this;
3827         }
3828         return getNestHost0();
3829     }
3830 
3831     /**
3832      * Determines if the given {@code Class} is a nestmate of the
3833      * class or interface represented by this {@code Class} object.
3834      * Two classes or interfaces are nestmates
3835      * if they have the same {@linkplain #getNestHost() nest host}.
3836      *
3837      * @param c the class to check
3838      * @return {@code true} if this class and {@code c} are members of
3839      * the same nest; and {@code false} otherwise.
3840      *
3841      * @since 11
3842      */
3843     public boolean isNestmateOf(Class<?> c) {
3844         if (this == c) {
3845             return true;
3846         }
3847         if (isPrimitive() || isArray() ||
3848             c.isPrimitive() || c.isArray()) {
3849             return false;
3850         }
3851 
3852         return getNestHost() == c.getNestHost();
3853     }
3854 
3855     private native Class<?>[] getNestMembers0();
3856 
3857     /**
3858      * Returns an array containing {@code Class} objects representing all the
3859      * classes and interfaces that are members of the nest to which the class
3860      * or interface represented by this {@code Class} object belongs.
3861      *
3862      * First, this method obtains the {@linkplain #getNestHost() nest host},
3863      * {@code H}, of the nest to which the class or interface represented by
3864      * this {@code Class} object belongs. The zeroth element of the returned
3865      * array is {@code H}.
3866      *
3867      * Then, for each class or interface {@code C} which is recorded by {@code H}
3868      * as being a member of its nest, this method attempts to obtain the {@code Class}
3869      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
3870      * loader} of the current {@code Class} object), and then obtains the
3871      * {@linkplain #getNestHost() nest host} of the nest to which {@code C} belongs.
3872      * The classes and interfaces which are recorded by {@code H} as being members
3873      * of its nest, and for which {@code H} can be determined as their nest host,
3874      * are indicated by subsequent elements of the returned array. The order of
3875      * such elements is unspecified. Duplicates are permitted.
3876      *
3877      * <p>If this {@code Class} object represents a primitive type, an array type,
3878      * or {@code void}, then this method returns a single-element array containing
3879      * {@code this}.
3880      *
3881      * @apiNote
3882      * The returned array includes only the nest members recorded in the {@code NestMembers}
3883      * attribute, and not any hidden classes that were added to the nest via
3884      * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3885      * Lookup::defineHiddenClass}.
3886      *
3887      * @return an array of all classes and interfaces in the same nest as
3888      * this class or interface
3889      *
3890      * @since 11
3891      * @see #getNestHost()
3892      * @jvms 4.7.28 The {@code NestHost} Attribute
3893      * @jvms 4.7.29 The {@code NestMembers} Attribute
3894      */
3895     public Class<?>[] getNestMembers() {
3896         if (isPrimitive() || isArray()) {
3897             return new Class<?>[] { this };
3898         }
3899         Class<?>[] members = getNestMembers0();
3900         // Can't actually enable this due to bootstrapping issues
3901         // assert(members.length != 1 || members[0] == this); // expected invariant from VM
3902         return members;
3903     }
3904 
3905     /**
3906      * Returns the descriptor string of the entity (class, interface, array class,
3907      * primitive type, or {@code void}) represented by this {@code Class} object.
3908      *
3909      * <p> If this {@code Class} object represents a class or interface,
3910      * not an array class, then:
3911      * <ul>
3912      * <li> If the class or interface is not {@linkplain Class#isHidden() hidden},
3913      *      then the result is a field descriptor (JVMS {@jvms 4.3.2})
3914      *      for the class or interface. Calling
3915      *      {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3916      *      with the result descriptor string produces a {@link ClassDesc ClassDesc}
3917      *      describing this class or interface.
3918      * <li> If the class or interface is {@linkplain Class#isHidden() hidden},
3919      *      then the result is a string of the form:
3920      *      <blockquote>
3921      *      {@code "L" +} <em>N</em> {@code + "." + <suffix> + ";"}
3922      *      </blockquote>
3923      *      where <em>N</em> is the {@linkplain ClassLoader##binary-name binary name}
3924      *      encoded in internal form indicated by the {@code class} file passed to
3925      *      {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3926      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
3927      *      A hidden class or interface has no {@linkplain ClassDesc nominal descriptor}.
3928      *      The result string is not a type descriptor.
3929      * </ul>
3930      *
3931      * <p> If this {@code Class} object represents an array class, then
3932      * the result is a string consisting of one or more '{@code [}' characters
3933      * representing the depth of the array nesting, followed by the
3934      * descriptor string of the element type.
3935      * <ul>
3936      * <li> If the element type is not a {@linkplain Class#isHidden() hidden} class
3937      * or interface, then this array class can be described nominally.
3938      * Calling {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3939      * with the result descriptor string produces a {@link ClassDesc ClassDesc}
3940      * describing this array class.
3941      * <li> If the element type is a {@linkplain Class#isHidden() hidden} class or
3942      * interface, then this array class cannot be described nominally.
3943      * The result string is not a type descriptor.
3944      * </ul>
3945      *
3946      * <p> If this {@code Class} object represents a primitive type or
3947      * {@code void}, then the result is a field descriptor string which
3948      * is a one-letter code corresponding to a primitive type or {@code void}
3949      * ({@code "B", "C", "D", "F", "I", "J", "S", "Z", "V"}) (JVMS {@jvms 4.3.2}).
3950      *
3951      * @return the descriptor string for this {@code Class} object
3952      * @jvms 4.3.2 Field Descriptors
3953      * @since 12
3954      */
3955     @Override
3956     public String descriptorString() {
3957         if (isPrimitive())
3958             return Wrapper.forPrimitiveType(this).basicTypeString();
3959 
3960         if (isArray()) {
3961             return "[".concat(componentType.descriptorString());
3962         } else if (isHidden()) {
3963             String name = getName();
3964             int index = name.indexOf('/');
3965             return new StringBuilder(name.length() + 2)
3966                     .append('L')
3967                     .append(name.substring(0, index).replace('.', '/'))
3968                     .append('.')
3969                     .append(name, index + 1, name.length())
3970                     .append(';')
3971                     .toString();
3972         } else {
3973             String name = getName().replace('.', '/');
3974             return StringConcatHelper.concat("L", name, ";");
3975         }
3976     }
3977 
3978     /**
3979      * Returns the component type of this {@code Class}, if it describes
3980      * an array type, or {@code null} otherwise.
3981      *
3982      * @implSpec
3983      * Equivalent to {@link Class#getComponentType()}.
3984      *
3985      * @return a {@code Class} describing the component type, or {@code null}
3986      * if this {@code Class} does not describe an array type
3987      * @since 12
3988      */
3989     @Override
3990     public Class<?> componentType() {
3991         return isArray() ? componentType : null;
3992     }
3993 
3994     /**
3995      * Returns a {@code Class} for an array type whose component type
3996      * is described by this {@linkplain Class}.
3997      *
3998      * @throws UnsupportedOperationException if this component type is {@linkplain
3999      *         Void#TYPE void} or if the number of dimensions of the resulting array
4000      *         type would exceed 255.
4001      * @return a {@code Class} describing the array type
4002      * @jvms 4.3.2 Field Descriptors
4003      * @jvms 4.4.1 The {@code CONSTANT_Class_info} Structure
4004      * @since 12
4005      */
4006     @Override
4007     public Class<?> arrayType() {
4008         try {
4009             return Array.newInstance(this, 0).getClass();
4010         } catch (IllegalArgumentException iae) {
4011             throw new UnsupportedOperationException(iae);
4012         }
4013     }
4014 
4015     /**
4016      * Returns a nominal descriptor for this instance, if one can be
4017      * constructed, or an empty {@link Optional} if one cannot be.
4018      *
4019      * @return An {@link Optional} containing the resulting nominal descriptor,
4020      * or an empty {@link Optional} if one cannot be constructed.
4021      * @since 12
4022      */
4023     @Override
4024     public Optional<ClassDesc> describeConstable() {
4025         Class<?> c = isArray() ? elementType() : this;
4026         return c.isHidden() ? Optional.empty()
4027                             : Optional.of(ConstantUtils.classDesc(this));
4028    }
4029 
4030     /**
4031      * Returns {@code true} if and only if the underlying class is a hidden class.
4032      *
4033      * @return {@code true} if and only if this class is a hidden class.
4034      *
4035      * @since 15
4036      * @see MethodHandles.Lookup#defineHiddenClass
4037      * @see Class##hiddenClasses Hidden Classes
4038      */
4039     @IntrinsicCandidate
4040     public native boolean isHidden();
4041 
4042     /**
4043      * Returns an array containing {@code Class} objects representing the
4044      * direct subinterfaces or subclasses permitted to extend or
4045      * implement this class or interface if it is sealed.  The order of such elements
4046      * is unspecified. The array is empty if this sealed class or interface has no
4047      * permitted subclass. If this {@code Class} object represents a primitive type,
4048      * {@code void}, an array type, or a class or interface that is not sealed,
4049      * that is {@link #isSealed()} returns {@code false}, then this method returns {@code null}.
4050      * Conversely, if {@link #isSealed()} returns {@code true}, then this method
4051      * returns a non-null value.
4052      *
4053      * For each class or interface {@code C} which is recorded as a permitted
4054      * direct subinterface or subclass of this class or interface,
4055      * this method attempts to obtain the {@code Class}
4056      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
4057      * loader} of the current {@code Class} object).
4058      * The {@code Class} objects which can be obtained and which are direct
4059      * subinterfaces or subclasses of this class or interface,
4060      * are indicated by elements of the returned array. If a {@code Class} object
4061      * cannot be obtained, it is silently ignored, and not included in the result
4062      * array.
4063      *
4064      * @return an array of {@code Class} objects of the permitted subclasses of this class
4065      *         or interface, or {@code null} if this class or interface is not sealed.
4066      *
4067      * @jls 8.1 Class Declarations
4068      * @jls 9.1 Interface Declarations
4069      * @since 17
4070      */
4071     public Class<?>[] getPermittedSubclasses() {
4072         Class<?>[] subClasses;
4073         if (isArray() || isPrimitive() || (subClasses = getPermittedSubclasses0()) == null) {
4074             return null;
4075         }
4076         if (subClasses.length > 0) {
4077             if (Arrays.stream(subClasses).anyMatch(c -> !isDirectSubType(c))) {
4078                 subClasses = Arrays.stream(subClasses)
4079                                    .filter(this::isDirectSubType)
4080                                    .toArray(s -> new Class<?>[s]);
4081             }
4082         }
4083         return subClasses;
4084     }
4085 
4086     private boolean isDirectSubType(Class<?> c) {
4087         if (isInterface()) {
4088             for (Class<?> i : c.getInterfaces(/* cloneArray */ false)) {
4089                 if (i == this) {
4090                     return true;
4091                 }
4092             }
4093         } else {
4094             return c.getSuperclass() == this;
4095         }
4096         return false;
4097     }
4098 
4099     /**
4100      * Returns {@code true} if and only if this {@code Class} object represents
4101      * a sealed class or interface. If this {@code Class} object represents a
4102      * primitive type, {@code void}, or an array type, this method returns
4103      * {@code false}. A sealed class or interface has (possibly zero) permitted
4104      * subclasses; {@link #getPermittedSubclasses()} returns a non-null but
4105      * possibly empty value for a sealed class or interface.
4106      *
4107      * @return {@code true} if and only if this {@code Class} object represents
4108      * a sealed class or interface.
4109      *
4110      * @jls 8.1 Class Declarations
4111      * @jls 9.1 Interface Declarations
4112      * @since 17
4113      */
4114     public boolean isSealed() {
4115         if (isArray() || isPrimitive()) {
4116             return false;
4117         }
4118         return getPermittedSubclasses() != null;
4119     }
4120 
4121     private native Class<?>[] getPermittedSubclasses0();
4122 
4123     /*
4124      * Return the class's major and minor class file version packed into an int.
4125      * The high order 16 bits contain the class's minor version.  The low order
4126      * 16 bits contain the class's major version.
4127      *
4128      * If the class is an array type then the class file version of its element
4129      * type is returned.  If the class is a primitive type then the latest class
4130      * file major version is returned and zero is returned for the minor version.
4131      */
4132     private int getClassFileVersion() {
4133         Class<?> c = isArray() ? elementType() : this;
4134         return c.getClassFileVersion0();
4135     }
4136 
4137     private native int getClassFileVersion0();
4138 
4139     /*
4140      * Return the access flags as they were in the class's bytecode, including
4141      * the original setting of ACC_SUPER.
4142      *
4143      * If the class is an array type then the access flags of the element type is
4144      * returned.  If the class is a primitive then ACC_ABSTRACT | ACC_FINAL | ACC_PUBLIC.
4145      */
4146     private int getClassAccessFlagsRaw() {
4147         Class<?> c = isArray() ? elementType() : this;
4148         return c.getClassAccessFlagsRaw0();
4149     }
4150 
4151     private native int getClassAccessFlagsRaw0();
4152 }