1 /* 2 * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.annotation.Annotation; 29 import java.lang.constant.ClassDesc; 30 import java.lang.constant.ConstantDescs; 31 import java.lang.invoke.TypeDescriptor; 32 import java.lang.invoke.MethodHandles; 33 import java.lang.ref.SoftReference; 34 import java.io.IOException; 35 import java.io.InputStream; 36 import java.io.ObjectStreamField; 37 import java.lang.reflect.AnnotatedElement; 38 import java.lang.reflect.AnnotatedType; 39 import java.lang.reflect.AccessFlag; 40 import java.lang.reflect.Array; 41 import java.lang.reflect.Constructor; 42 import java.lang.reflect.Executable; 43 import java.lang.reflect.Field; 44 import java.lang.reflect.GenericArrayType; 45 import java.lang.reflect.GenericDeclaration; 46 import java.lang.reflect.InvocationTargetException; 47 import java.lang.reflect.Member; 48 import java.lang.reflect.Method; 49 import java.lang.reflect.Modifier; 50 import java.lang.reflect.Proxy; 51 import java.lang.reflect.RecordComponent; 52 import java.lang.reflect.Type; 53 import java.lang.reflect.TypeVariable; 54 import java.lang.constant.Constable; 55 import java.net.URL; 56 import java.security.AllPermission; 57 import java.security.Permissions; 58 import java.security.ProtectionDomain; 59 import java.util.ArrayList; 60 import java.util.Arrays; 61 import java.util.Collection; 62 import java.util.HashMap; 63 import java.util.LinkedHashMap; 64 import java.util.LinkedHashSet; 65 import java.util.List; 66 import java.util.Map; 67 import java.util.Objects; 68 import java.util.Optional; 69 import java.util.Set; 70 import java.util.stream.Collectors; 71 72 import jdk.internal.constant.ConstantUtils; 73 import jdk.internal.loader.BootLoader; 74 import jdk.internal.loader.BuiltinClassLoader; 75 import jdk.internal.misc.Unsafe; 76 import jdk.internal.module.Resources; 77 import jdk.internal.reflect.CallerSensitive; 78 import jdk.internal.reflect.CallerSensitiveAdapter; 79 import jdk.internal.reflect.ConstantPool; 80 import jdk.internal.reflect.Reflection; 81 import jdk.internal.reflect.ReflectionFactory; 82 import jdk.internal.vm.annotation.IntrinsicCandidate; 83 import jdk.internal.vm.annotation.Stable; 84 85 import sun.invoke.util.Wrapper; 86 import sun.reflect.generics.factory.CoreReflectionFactory; 87 import sun.reflect.generics.factory.GenericsFactory; 88 import sun.reflect.generics.repository.ClassRepository; 89 import sun.reflect.generics.repository.MethodRepository; 90 import sun.reflect.generics.repository.ConstructorRepository; 91 import sun.reflect.generics.scope.ClassScope; 92 import sun.reflect.annotation.*; 93 94 /** 95 * Instances of the class {@code Class} represent classes and 96 * interfaces in a running Java application. An enum class and a record 97 * class are kinds of class; an annotation interface is a kind of 98 * interface. Every array also belongs to a class that is reflected as 99 * a {@code Class} object that is shared by all arrays with the same 100 * element type and number of dimensions. The primitive Java types 101 * ({@code boolean}, {@code byte}, {@code char}, {@code short}, {@code 102 * int}, {@code long}, {@code float}, and {@code double}), and the 103 * keyword {@code void} are also represented as {@code Class} objects. 104 * 105 * <p> {@code Class} has no public constructor. Instead a {@code Class} 106 * object is constructed automatically by the Java Virtual Machine when 107 * a class is derived from the bytes of a {@code class} file through 108 * the invocation of one of the following methods: 109 * <ul> 110 * <li> {@link ClassLoader#defineClass(String, byte[], int, int) ClassLoader::defineClass} 111 * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[]) 112 * java.lang.invoke.MethodHandles.Lookup::defineClass} 113 * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 114 * java.lang.invoke.MethodHandles.Lookup::defineHiddenClass} 115 * </ul> 116 * 117 * <p> The methods of class {@code Class} expose many characteristics of a 118 * class or interface. Most characteristics are derived from the {@code class} 119 * file that the class loader passed to the Java Virtual Machine or 120 * from the {@code class} file passed to {@code Lookup::defineClass} 121 * or {@code Lookup::defineHiddenClass}. 122 * A few characteristics are determined by the class loading environment 123 * at run time, such as the module returned by {@link #getModule() getModule()}. 124 * 125 * <p> The following example uses a {@code Class} object to print the 126 * class name of an object: 127 * 128 * {@snippet lang="java" : 129 * void printClassName(Object obj) { 130 * System.out.println("The class of " + obj + 131 * " is " + obj.getClass().getName()); 132 * }} 133 * 134 * It is also possible to get the {@code Class} object for a named 135 * class or interface (or for {@code void}) using a <dfn>class literal</dfn> 136 * (JLS {@jls 15.8.2}). 137 * For example: 138 * 139 * {@snippet lang="java" : 140 * System.out.println("The name of class Foo is: " + Foo.class.getName()); // @highlight substring="Foo.class" 141 * } 142 * 143 * <p> Some methods of class {@code Class} expose whether the declaration of 144 * a class or interface in Java source code was <em>enclosed</em> within 145 * another declaration. Other methods describe how a class or interface 146 * is situated in a <dfn>{@index "nest"}</dfn>. A nest is a set of 147 * classes and interfaces, in the same run-time package, that 148 * allow mutual access to their {@code private} members. 149 * The classes and interfaces are known as <dfn>{@index "nestmates"}</dfn> 150 * (JVMS {@jvms 4.7.29}). 151 * One nestmate acts as the 152 * <dfn>nest host</dfn> (JVMS {@jvms 4.7.28}), and enumerates the other nestmates which 153 * belong to the nest; each of them in turn records it as the nest host. 154 * The classes and interfaces which belong to a nest, including its host, are 155 * determined when 156 * {@code class} files are generated, for example, a Java compiler 157 * will typically record a top-level class as the host of a nest where the 158 * other members are the classes and interfaces whose declarations are 159 * enclosed within the top-level class declaration. 160 * 161 * <h2><a id=hiddenClasses>Hidden Classes</a></h2> 162 * A class or interface created by the invocation of 163 * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 164 * Lookup::defineHiddenClass} is a {@linkplain Class#isHidden() <dfn>hidden</dfn>} 165 * class or interface. 166 * All kinds of class, including enum classes and record classes, may be 167 * hidden classes; all kinds of interface, including annotation interfaces, 168 * may be hidden interfaces. 169 * 170 * The {@linkplain #getName() name of a hidden class or interface} is 171 * not a {@linkplain ClassLoader##binary-name binary name}, 172 * which means the following: 173 * <ul> 174 * <li>A hidden class or interface cannot be referenced by the constant pools 175 * of other classes and interfaces. 176 * <li>A hidden class or interface cannot be described in 177 * {@linkplain java.lang.constant.ConstantDesc <em>nominal form</em>} by 178 * {@link #describeConstable() Class::describeConstable}, 179 * {@link ClassDesc#of(String) ClassDesc::of}, or 180 * {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}. 181 * <li>A hidden class or interface cannot be discovered by {@link #forName Class::forName} 182 * or {@link ClassLoader#loadClass(String, boolean) ClassLoader::loadClass}. 183 * </ul> 184 * 185 * A hidden class or interface is never an array class, but may be 186 * the element type of an array. In all other respects, the fact that 187 * a class or interface is hidden has no bearing on the characteristics 188 * exposed by the methods of class {@code Class}. 189 * 190 * <h2><a id=implicitClasses>Implicitly Declared Classes</a></h2> 191 * 192 * Conventionally, a Java compiler, starting from a source file for an 193 * implicitly declared class, say {@code HelloWorld.java}, creates a 194 * similarly-named {@code class} file, {@code HelloWorld.class}, where 195 * the class stored in that {@code class} file is named {@code 196 * "HelloWorld"}, matching the base names of the source and {@code 197 * class} files. 198 * 199 * For the {@code Class} object of an implicitly declared class {@code 200 * HelloWorld}, the methods to get the {@linkplain #getName name} and 201 * {@linkplain #getTypeName type name} return results 202 * equal to {@code "HelloWorld"}. The {@linkplain #getSimpleName 203 * simple name} of such an implicitly declared class is {@code "HelloWorld"} and 204 * the {@linkplain #getCanonicalName canonical name} is {@code "HelloWorld"}. 205 * 206 * @param <T> the type of the class modeled by this {@code Class} 207 * object. For example, the type of {@code String.class} is {@code 208 * Class<String>}. Use {@code Class<?>} if the class being modeled is 209 * unknown. 210 * 211 * @see java.lang.ClassLoader#defineClass(byte[], int, int) 212 * @since 1.0 213 */ 214 public final class Class<T> implements java.io.Serializable, 215 GenericDeclaration, 216 Type, 217 AnnotatedElement, 218 TypeDescriptor.OfField<Class<?>>, 219 Constable { 220 private static final int ANNOTATION= 0x00002000; 221 private static final int ENUM = 0x00004000; 222 private static final int SYNTHETIC = 0x00001000; 223 224 private static native void registerNatives(); 225 static { 226 runtimeSetup(); 227 } 228 229 // Called from JVM when loading an AOT cache 230 private static void runtimeSetup() { 231 registerNatives(); 232 } 233 234 /* 235 * Private constructor. Only the Java Virtual Machine creates Class objects. 236 * This constructor is not used and prevents the default constructor being 237 * generated. 238 */ 239 private Class(ClassLoader loader, Class<?> arrayComponentType, char mods, ProtectionDomain pd, boolean isPrim) { 240 // Initialize final field for classLoader. The initialization value of non-null 241 // prevents future JIT optimizations from assuming this final field is null. 242 // The following assignments are done directly by the VM without calling this constructor. 243 classLoader = loader; 244 componentType = arrayComponentType; 245 modifiers = mods; 246 protectionDomain = pd; 247 primitive = isPrim; 248 } 249 250 /** 251 * Converts the object to a string. The string representation is the 252 * string "class" or "interface", followed by a space, and then by the 253 * name of the class in the format returned by {@code getName}. 254 * If this {@code Class} object represents a primitive type, 255 * this method returns the name of the primitive type. If 256 * this {@code Class} object represents void this method returns 257 * "void". If this {@code Class} object represents an array type, 258 * this method returns "class " followed by {@code getName}. 259 * 260 * @return a string representation of this {@code Class} object. 261 */ 262 public String toString() { 263 String kind = isInterface() ? "interface " : isPrimitive() ? "" : "class "; 264 return kind.concat(getName()); 265 } 266 267 /** 268 * Returns a string describing this {@code Class}, including 269 * information about modifiers, {@link #isSealed() sealed}/{@code 270 * non-sealed} status, and type parameters. 271 * 272 * The string is formatted as a list of type modifiers, if any, 273 * followed by the kind of type (empty string for primitive types 274 * and {@code class}, {@code enum}, {@code interface}, 275 * {@code @interface}, or {@code record} as appropriate), followed 276 * by the type's name, followed by an angle-bracketed 277 * comma-separated list of the type's type parameters, if any, 278 * including informative bounds on the type parameters, if any. 279 * 280 * A space is used to separate modifiers from one another and to 281 * separate any modifiers from the kind of type. The modifiers 282 * occur in canonical order. If there are no type parameters, the 283 * type parameter list is elided. 284 * 285 * For an array type, the string starts with the type name, 286 * followed by an angle-bracketed comma-separated list of the 287 * type's type parameters, if any, followed by a sequence of 288 * {@code []} characters, one set of brackets per dimension of 289 * the array. 290 * 291 * <p>Note that since information about the runtime representation 292 * of a type is being generated, modifiers not present on the 293 * originating source code or illegal on the originating source 294 * code may be present. 295 * 296 * @return a string describing this {@code Class}, including 297 * information about modifiers and type parameters 298 * 299 * @since 1.8 300 */ 301 public String toGenericString() { 302 if (isPrimitive()) { 303 return toString(); 304 } else { 305 StringBuilder sb = new StringBuilder(); 306 Class<?> component = this; 307 int arrayDepth = 0; 308 309 if (isArray()) { 310 do { 311 arrayDepth++; 312 component = component.getComponentType(); 313 } while (component.isArray()); 314 sb.append(component.getName()); 315 } else { 316 // Class modifiers are a superset of interface modifiers 317 int modifiers = getModifiers() & Modifier.classModifiers(); 318 if (modifiers != 0) { 319 sb.append(Modifier.toString(modifiers)); 320 sb.append(' '); 321 } 322 323 // A class cannot be strictfp and sealed/non-sealed so 324 // it is sufficient to check for sealed-ness after all 325 // modifiers are printed. 326 addSealingInfo(modifiers, sb); 327 328 if (isAnnotation()) { 329 sb.append('@'); 330 } 331 if (isInterface()) { // Note: all annotation interfaces are interfaces 332 sb.append("interface"); 333 } else { 334 if (isEnum()) 335 sb.append("enum"); 336 else if (isRecord()) 337 sb.append("record"); 338 else 339 sb.append("class"); 340 } 341 sb.append(' '); 342 sb.append(getName()); 343 } 344 345 TypeVariable<?>[] typeparms = component.getTypeParameters(); 346 if (typeparms.length > 0) { 347 sb.append(Arrays.stream(typeparms) 348 .map(Class::typeVarBounds) 349 .collect(Collectors.joining(",", "<", ">"))); 350 } 351 352 if (arrayDepth > 0) sb.append("[]".repeat(arrayDepth)); 353 354 return sb.toString(); 355 } 356 } 357 358 private void addSealingInfo(int modifiers, StringBuilder sb) { 359 // A class can be final XOR sealed XOR non-sealed. 360 if (Modifier.isFinal(modifiers)) { 361 return; // no-op 362 } else { 363 if (isSealed()) { 364 sb.append("sealed "); 365 return; 366 } else { 367 // Check for sealed ancestor, which implies this class 368 // is non-sealed. 369 if (hasSealedAncestor(this)) { 370 sb.append("non-sealed "); 371 } 372 } 373 } 374 } 375 376 private boolean hasSealedAncestor(Class<?> clazz) { 377 // From JLS 8.1.1.2: 378 // "It is a compile-time error if a class has a sealed direct 379 // superclass or a sealed direct superinterface, and is not 380 // declared final, sealed, or non-sealed either explicitly or 381 // implicitly. 382 // Thus, an effect of the sealed keyword is to force all 383 // direct subclasses to explicitly declare whether they are 384 // final, sealed, or non-sealed. This avoids accidentally 385 // exposing a sealed class hierarchy to unwanted subclassing." 386 387 // Therefore, will just check direct superclass and 388 // superinterfaces. 389 var superclass = clazz.getSuperclass(); 390 if (superclass != null && superclass.isSealed()) { 391 return true; 392 } 393 for (var superinterface : clazz.getInterfaces()) { 394 if (superinterface.isSealed()) { 395 return true; 396 } 397 } 398 return false; 399 } 400 401 static String typeVarBounds(TypeVariable<?> typeVar) { 402 Type[] bounds = typeVar.getBounds(); 403 if (bounds.length == 1 && bounds[0].equals(Object.class)) { 404 return typeVar.getName(); 405 } else { 406 return typeVar.getName() + " extends " + 407 Arrays.stream(bounds) 408 .map(Type::getTypeName) 409 .collect(Collectors.joining(" & ")); 410 } 411 } 412 413 /** 414 * Returns the {@code Class} object associated with the class or 415 * interface with the given string name. Invoking this method is 416 * equivalent to: 417 * 418 * {@snippet lang="java" : 419 * Class.forName(className, true, currentLoader) 420 * } 421 * 422 * where {@code currentLoader} denotes the defining class loader of 423 * the current class. 424 * 425 * <p> For example, the following code fragment returns the 426 * runtime {@code Class} object for the class named 427 * {@code java.lang.Thread}: 428 * 429 * {@snippet lang="java" : 430 * Class<?> t = Class.forName("java.lang.Thread"); 431 * } 432 * <p> 433 * A call to {@code forName("X")} causes the class named 434 * {@code X} to be initialized. 435 * 436 * <p> 437 * In cases where this method is called from a context where there is no 438 * caller frame on the stack (e.g. when called directly from a JNI 439 * attached thread), the system class loader is used. 440 * 441 * @param className the {@linkplain ClassLoader##binary-name binary name} 442 * of the class or the string representing an array type 443 * @return the {@code Class} object for the class with the 444 * specified name. 445 * @throws LinkageError if the linkage fails 446 * @throws ExceptionInInitializerError if the initialization provoked 447 * by this method fails 448 * @throws ClassNotFoundException if the class cannot be located 449 * 450 * @jls 12.2 Loading of Classes and Interfaces 451 * @jls 12.3 Linking of Classes and Interfaces 452 * @jls 12.4 Initialization of Classes and Interfaces 453 */ 454 @CallerSensitive 455 public static Class<?> forName(String className) 456 throws ClassNotFoundException { 457 Class<?> caller = Reflection.getCallerClass(); 458 return forName(className, caller); 459 } 460 461 // Caller-sensitive adapter method for reflective invocation 462 @CallerSensitiveAdapter 463 private static Class<?> forName(String className, Class<?> caller) 464 throws ClassNotFoundException { 465 ClassLoader loader = (caller == null) ? ClassLoader.getSystemClassLoader() 466 : ClassLoader.getClassLoader(caller); 467 return forName0(className, true, loader, caller); 468 } 469 470 /** 471 * Returns the {@code Class} object associated with the class or 472 * interface with the given string name, using the given class loader. 473 * Given the {@linkplain ClassLoader##binary-name binary name} for a class or interface, 474 * this method attempts to locate and load the class or interface. The specified 475 * class loader is used to load the class or interface. If the parameter 476 * {@code loader} is {@code null}, the class is loaded through the bootstrap 477 * class loader. The class is initialized only if the 478 * {@code initialize} parameter is {@code true} and if it has 479 * not been initialized earlier. 480 * 481 * <p> This method cannot be used to obtain any of the {@code Class} objects 482 * representing primitive types or void, hidden classes or interfaces, 483 * or array classes whose element type is a hidden class or interface. 484 * If {@code name} denotes a primitive type or void, for example {@code I}, 485 * an attempt will be made to locate a user-defined class in the unnamed package 486 * whose name is {@code I} instead. 487 * To obtain a {@code Class} object for a named primitive type 488 * such as {@code int} or {@code long} use {@link 489 * #forPrimitiveName(String)}. 490 * 491 * <p> To obtain the {@code Class} object associated with an array class, 492 * the name consists of one or more {@code '['} representing the depth 493 * of the array nesting, followed by the element type as encoded in 494 * {@linkplain ##nameFormat the table} specified in {@code Class.getName()}. 495 * 496 * <p> Examples: 497 * {@snippet lang="java" : 498 * Class<?> threadClass = Class.forName("java.lang.Thread", false, currentLoader); 499 * Class<?> stringArrayClass = Class.forName("[Ljava.lang.String;", false, currentLoader); 500 * Class<?> intArrayClass = Class.forName("[[[I", false, currentLoader); // Class of int[][][] 501 * Class<?> nestedClass = Class.forName("java.lang.Character$UnicodeBlock", false, currentLoader); 502 * Class<?> fooClass = Class.forName("Foo", true, currentLoader); 503 * } 504 * 505 * <p> A call to {@code getName()} on the {@code Class} object returned 506 * from {@code forName(}<i>N</i>{@code )} returns <i>N</i>. 507 * 508 * <p> A call to {@code forName("[L}<i>N</i>{@code ;")} causes the element type 509 * named <i>N</i> to be loaded but not initialized regardless of the value 510 * of the {@code initialize} parameter. 511 * 512 * @apiNote 513 * This method throws errors related to loading, linking or initializing 514 * as specified in Sections {@jls 12.2}, {@jls 12.3}, and {@jls 12.4} of 515 * <cite>The Java Language Specification</cite>. 516 * In addition, this method does not check whether the requested class 517 * is accessible to its caller. 518 * 519 * @param name the {@linkplain ClassLoader##binary-name binary name} 520 * of the class or the string representing an array class 521 * 522 * @param initialize if {@code true} the class will be initialized 523 * (which implies linking). See Section {@jls 524 * 12.4} of <cite>The Java Language 525 * Specification</cite>. 526 * @param loader class loader from which the class must be loaded 527 * @return class object representing the desired class 528 * 529 * @throws LinkageError if the linkage fails 530 * @throws ExceptionInInitializerError if the initialization provoked 531 * by this method fails 532 * @throws ClassNotFoundException if the class cannot be located by 533 * the specified class loader 534 * 535 * @see java.lang.Class#forName(String) 536 * @see java.lang.ClassLoader 537 * 538 * @jls 12.2 Loading of Classes and Interfaces 539 * @jls 12.3 Linking of Classes and Interfaces 540 * @jls 12.4 Initialization of Classes and Interfaces 541 * @jls 13.1 The Form of a Binary 542 * @since 1.2 543 */ 544 public static Class<?> forName(String name, boolean initialize, ClassLoader loader) 545 throws ClassNotFoundException 546 { 547 return forName0(name, initialize, loader, null); 548 } 549 550 /** Called after security check for system loader access checks have been made. */ 551 private static native Class<?> forName0(String name, boolean initialize, 552 ClassLoader loader, 553 Class<?> caller) 554 throws ClassNotFoundException; 555 556 557 /** 558 * Returns the {@code Class} with the given {@linkplain ClassLoader##binary-name 559 * binary name} in the given module. 560 * 561 * <p> This method attempts to locate and load the class or interface. 562 * It does not link the class, and does not run the class initializer. 563 * If the class is not found, this method returns {@code null}. </p> 564 * 565 * <p> If the class loader of the given module defines other modules and 566 * the given name is a class defined in a different module, this method 567 * returns {@code null} after the class is loaded. </p> 568 * 569 * <p> This method does not check whether the requested class is 570 * accessible to its caller. </p> 571 * 572 * @apiNote 573 * This method does not support loading of array types, unlike 574 * {@link #forName(String, boolean, ClassLoader)}. The class name must be 575 * a binary name. This method returns {@code null} on failure rather than 576 * throwing a {@link ClassNotFoundException}, as is done by 577 * the {@link #forName(String, boolean, ClassLoader)} method. 578 * 579 * @param module A module 580 * @param name The {@linkplain ClassLoader##binary-name binary name} 581 * of the class 582 * @return {@code Class} object of the given name defined in the given module; 583 * {@code null} if not found. 584 * 585 * @throws NullPointerException if the given module or name is {@code null} 586 * 587 * @throws LinkageError if the linkage fails 588 * 589 * @jls 12.2 Loading of Classes and Interfaces 590 * @jls 12.3 Linking of Classes and Interfaces 591 * @since 9 592 */ 593 public static Class<?> forName(Module module, String name) { 594 Objects.requireNonNull(module); 595 Objects.requireNonNull(name); 596 597 ClassLoader cl = module.getClassLoader(); 598 if (cl != null) { 599 return cl.loadClass(module, name); 600 } else { 601 return BootLoader.loadClass(module, name); 602 } 603 } 604 605 /** 606 * {@return the {@code Class} object associated with the 607 * {@linkplain #isPrimitive() primitive type} of the given name} 608 * If the argument is not the name of a primitive type, {@code 609 * null} is returned. 610 * 611 * @param primitiveName the name of the primitive type to find 612 * 613 * @throws NullPointerException if the argument is {@code null} 614 * 615 * @jls 4.2 Primitive Types and Values 616 * @jls 15.8.2 Class Literals 617 * @since 22 618 */ 619 public static Class<?> forPrimitiveName(String primitiveName) { 620 return switch(primitiveName) { 621 // Integral types 622 case "int" -> int.class; 623 case "long" -> long.class; 624 case "short" -> short.class; 625 case "char" -> char.class; 626 case "byte" -> byte.class; 627 628 // Floating-point types 629 case "float" -> float.class; 630 case "double" -> double.class; 631 632 // Other types 633 case "boolean" -> boolean.class; 634 case "void" -> void.class; 635 636 default -> null; 637 }; 638 } 639 640 /** 641 * Creates a new instance of the class represented by this {@code Class} 642 * object. The class is instantiated as if by a {@code new} 643 * expression with an empty argument list. The class is initialized if it 644 * has not already been initialized. 645 * 646 * @deprecated This method propagates any exception thrown by the 647 * nullary constructor, including a checked exception. Use of 648 * this method effectively bypasses the compile-time exception 649 * checking that would otherwise be performed by the compiler. 650 * The {@link 651 * java.lang.reflect.Constructor#newInstance(java.lang.Object...) 652 * Constructor.newInstance} method avoids this problem by wrapping 653 * any exception thrown by the constructor in a (checked) {@link 654 * java.lang.reflect.InvocationTargetException}. 655 * 656 * <p>The call 657 * 658 * {@snippet lang="java" : 659 * clazz.newInstance() 660 * } 661 * 662 * can be replaced by 663 * 664 * {@snippet lang="java" : 665 * clazz.getDeclaredConstructor().newInstance() 666 * } 667 * 668 * The latter sequence of calls is inferred to be able to throw 669 * the additional exception types {@link 670 * InvocationTargetException} and {@link 671 * NoSuchMethodException}. Both of these exception types are 672 * subclasses of {@link ReflectiveOperationException}. 673 * 674 * @return a newly allocated instance of the class represented by this 675 * object. 676 * @throws IllegalAccessException if the class or its nullary 677 * constructor is not accessible. 678 * @throws InstantiationException 679 * if this {@code Class} represents an abstract class, 680 * an interface, an array class, a primitive type, or void; 681 * or if the class has no nullary constructor; 682 * or if the instantiation fails for some other reason. 683 * @throws ExceptionInInitializerError if the initialization 684 * provoked by this method fails. 685 */ 686 @CallerSensitive 687 @Deprecated(since="9") 688 public T newInstance() 689 throws InstantiationException, IllegalAccessException 690 { 691 // Constructor lookup 692 Constructor<T> tmpConstructor = cachedConstructor; 693 if (tmpConstructor == null) { 694 if (this == Class.class) { 695 throw new IllegalAccessException( 696 "Can not call newInstance() on the Class for java.lang.Class" 697 ); 698 } 699 try { 700 Class<?>[] empty = {}; 701 final Constructor<T> c = getReflectionFactory().copyConstructor( 702 getConstructor0(empty, Member.DECLARED)); 703 // Disable accessibility checks on the constructor 704 // access check is done with the true caller 705 c.setAccessible(true); 706 cachedConstructor = tmpConstructor = c; 707 } catch (NoSuchMethodException e) { 708 throw (InstantiationException) 709 new InstantiationException(getName()).initCause(e); 710 } 711 } 712 713 try { 714 Class<?> caller = Reflection.getCallerClass(); 715 return getReflectionFactory().newInstance(tmpConstructor, null, caller); 716 } catch (InvocationTargetException e) { 717 Unsafe.getUnsafe().throwException(e.getTargetException()); 718 // Not reached 719 return null; 720 } 721 } 722 723 private transient volatile Constructor<T> cachedConstructor; 724 725 /** 726 * Determines if the specified {@code Object} is assignment-compatible 727 * with the object represented by this {@code Class}. This method is 728 * the dynamic equivalent of the Java language {@code instanceof} 729 * operator. The method returns {@code true} if the specified 730 * {@code Object} argument is non-null and can be cast to the 731 * reference type represented by this {@code Class} object without 732 * raising a {@code ClassCastException.} It returns {@code false} 733 * otherwise. 734 * 735 * <p> Specifically, if this {@code Class} object represents a 736 * declared class, this method returns {@code true} if the specified 737 * {@code Object} argument is an instance of the represented class (or 738 * of any of its subclasses); it returns {@code false} otherwise. If 739 * this {@code Class} object represents an array class, this method 740 * returns {@code true} if the specified {@code Object} argument 741 * can be converted to an object of the array class by an identity 742 * conversion or by a widening reference conversion; it returns 743 * {@code false} otherwise. If this {@code Class} object 744 * represents an interface, this method returns {@code true} if the 745 * class or any superclass of the specified {@code Object} argument 746 * implements this interface; it returns {@code false} otherwise. If 747 * this {@code Class} object represents a primitive type, this method 748 * returns {@code false}. 749 * 750 * @param obj the object to check 751 * @return true if {@code obj} is an instance of this class 752 * 753 * @since 1.1 754 */ 755 @IntrinsicCandidate 756 public native boolean isInstance(Object obj); 757 758 759 /** 760 * Determines if the class or interface represented by this 761 * {@code Class} object is either the same as, or is a superclass or 762 * superinterface of, the class or interface represented by the specified 763 * {@code Class} parameter. It returns {@code true} if so; 764 * otherwise it returns {@code false}. If this {@code Class} 765 * object represents a primitive type, this method returns 766 * {@code true} if the specified {@code Class} parameter is 767 * exactly this {@code Class} object; otherwise it returns 768 * {@code false}. 769 * 770 * <p> Specifically, this method tests whether the type represented by the 771 * specified {@code Class} parameter can be converted to the type 772 * represented by this {@code Class} object via an identity conversion 773 * or via a widening reference conversion. See <cite>The Java Language 774 * Specification</cite>, sections {@jls 5.1.1} and {@jls 5.1.4}, 775 * for details. 776 * 777 * @param cls the {@code Class} object to be checked 778 * @return the {@code boolean} value indicating whether objects of the 779 * type {@code cls} can be assigned to objects of this class 780 * @throws NullPointerException if the specified Class parameter is 781 * null. 782 * @since 1.1 783 */ 784 @IntrinsicCandidate 785 public native boolean isAssignableFrom(Class<?> cls); 786 787 788 /** 789 * Determines if this {@code Class} object represents an 790 * interface type. 791 * 792 * @return {@code true} if this {@code Class} object represents an interface; 793 * {@code false} otherwise. 794 */ 795 public boolean isInterface() { 796 return Modifier.isInterface(modifiers); 797 } 798 799 800 /** 801 * Determines if this {@code Class} object represents an array class. 802 * 803 * @return {@code true} if this {@code Class} object represents an array class; 804 * {@code false} otherwise. 805 * @since 1.1 806 */ 807 public boolean isArray() { 808 return componentType != null; 809 } 810 811 812 /** 813 * Determines if this {@code Class} object represents a primitive 814 * type or void. 815 * 816 * <p> There are nine predefined {@code Class} objects to 817 * represent the eight primitive types and void. These are 818 * created by the Java Virtual Machine, and have the same 819 * {@linkplain #getName() names} as the primitive types that they 820 * represent, namely {@code boolean}, {@code byte}, {@code char}, 821 * {@code short}, {@code int}, {@code long}, {@code float}, and 822 * {@code double}. 823 * 824 * <p>No other class objects are considered primitive. 825 * 826 * @apiNote 827 * A {@code Class} object represented by a primitive type can be 828 * accessed via the {@code TYPE} public static final variables 829 * defined in the primitive wrapper classes such as {@link 830 * java.lang.Integer#TYPE Integer.TYPE}. In the Java programming 831 * language, the objects may be referred to by a class literal 832 * expression such as {@code int.class}. The {@code Class} object 833 * for void can be expressed as {@code void.class} or {@link 834 * java.lang.Void#TYPE Void.TYPE}. 835 * 836 * @return true if and only if this class represents a primitive type 837 * 838 * @see java.lang.Boolean#TYPE 839 * @see java.lang.Character#TYPE 840 * @see java.lang.Byte#TYPE 841 * @see java.lang.Short#TYPE 842 * @see java.lang.Integer#TYPE 843 * @see java.lang.Long#TYPE 844 * @see java.lang.Float#TYPE 845 * @see java.lang.Double#TYPE 846 * @see java.lang.Void#TYPE 847 * @since 1.1 848 * @jls 15.8.2 Class Literals 849 */ 850 public boolean isPrimitive() { 851 return primitive; 852 } 853 854 /** 855 * Returns true if this {@code Class} object represents an annotation 856 * interface. Note that if this method returns true, {@link #isInterface()} 857 * would also return true, as all annotation interfaces are also interfaces. 858 * 859 * @return {@code true} if this {@code Class} object represents an annotation 860 * interface; {@code false} otherwise 861 * @since 1.5 862 */ 863 public boolean isAnnotation() { 864 return (getModifiers() & ANNOTATION) != 0; 865 } 866 867 /** 868 *{@return {@code true} if and only if this class has the synthetic modifier 869 * bit set} 870 * 871 * @jls 13.1 The Form of a Binary 872 * @jvms 4.1 The {@code ClassFile} Structure 873 * @see <a 874 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 875 * programming language and JVM modeling in core reflection</a> 876 * @since 1.5 877 */ 878 public boolean isSynthetic() { 879 return (getModifiers() & SYNTHETIC) != 0; 880 } 881 882 /** 883 * Returns the name of the entity (class, interface, array class, 884 * primitive type, or void) represented by this {@code Class} object. 885 * 886 * <p> If this {@code Class} object represents a class or interface, 887 * not an array class, then: 888 * <ul> 889 * <li> If the class or interface is not {@linkplain #isHidden() hidden}, 890 * then the {@linkplain ClassLoader##binary-name binary name} 891 * of the class or interface is returned. 892 * <li> If the class or interface is hidden, then the result is a string 893 * of the form: {@code N + '/' + <suffix>} 894 * where {@code N} is the {@linkplain ClassLoader##binary-name binary name} 895 * indicated by the {@code class} file passed to 896 * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 897 * Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name. 898 * </ul> 899 * 900 * <p> If this {@code Class} object represents an array class, then 901 * the result is a string consisting of one or more '{@code [}' characters 902 * representing the depth of the array nesting, followed by the element 903 * type as encoded using the following table: 904 * 905 * <blockquote><table class="striped" id="nameFormat"> 906 * <caption style="display:none">Element types and encodings</caption> 907 * <thead> 908 * <tr><th scope="col"> Element Type <th scope="col"> Encoding 909 * </thead> 910 * <tbody style="text-align:left"> 911 * <tr><th scope="row"> {@code boolean} <td style="text-align:center"> {@code Z} 912 * <tr><th scope="row"> {@code byte} <td style="text-align:center"> {@code B} 913 * <tr><th scope="row"> {@code char} <td style="text-align:center"> {@code C} 914 * <tr><th scope="row"> class or interface with {@linkplain ClassLoader##binary-name binary name} <i>N</i> 915 * <td style="text-align:center"> {@code L}<em>N</em>{@code ;} 916 * <tr><th scope="row"> {@code double} <td style="text-align:center"> {@code D} 917 * <tr><th scope="row"> {@code float} <td style="text-align:center"> {@code F} 918 * <tr><th scope="row"> {@code int} <td style="text-align:center"> {@code I} 919 * <tr><th scope="row"> {@code long} <td style="text-align:center"> {@code J} 920 * <tr><th scope="row"> {@code short} <td style="text-align:center"> {@code S} 921 * </tbody> 922 * </table></blockquote> 923 * 924 * <p> If this {@code Class} object represents a primitive type or {@code void}, 925 * then the result is a string with the same spelling as the Java language 926 * keyword which corresponds to the primitive type or {@code void}. 927 * 928 * <p> Examples: 929 * <blockquote><pre> 930 * String.class.getName() 931 * returns "java.lang.String" 932 * Character.UnicodeBlock.class.getName() 933 * returns "java.lang.Character$UnicodeBlock" 934 * byte.class.getName() 935 * returns "byte" 936 * (new Object[3]).getClass().getName() 937 * returns "[Ljava.lang.Object;" 938 * (new int[3][4][5][6][7][8][9]).getClass().getName() 939 * returns "[[[[[[[I" 940 * </pre></blockquote> 941 * 942 * @apiNote 943 * Distinct class objects can have the same name but different class loaders. 944 * 945 * @return the name of the class, interface, or other entity 946 * represented by this {@code Class} object. 947 * @jls 13.1 The Form of a Binary 948 */ 949 public String getName() { 950 String name = this.name; 951 return name != null ? name : initClassName(); 952 } 953 954 // Cache the name to reduce the number of calls into the VM. 955 // This field would be set by VM itself during initClassName call. 956 private transient String name; 957 private native String initClassName(); 958 959 /** 960 * Returns the class loader for the class. Some implementations may use 961 * null to represent the bootstrap class loader. This method will return 962 * null in such implementations if this class was loaded by the bootstrap 963 * class loader. 964 * 965 * <p>If this {@code Class} object 966 * represents a primitive type or void, null is returned. 967 * 968 * @return the class loader that loaded the class or interface 969 * represented by this {@code Class} object. 970 * @see java.lang.ClassLoader 971 */ 972 public ClassLoader getClassLoader() { 973 return classLoader; 974 } 975 976 // Package-private to allow ClassLoader access 977 ClassLoader getClassLoader0() { return classLoader; } 978 979 /** 980 * Returns the module that this class or interface is a member of. 981 * 982 * If this class represents an array type then this method returns the 983 * {@code Module} for the element type. If this class represents a 984 * primitive type or void, then the {@code Module} object for the 985 * {@code java.base} module is returned. 986 * 987 * If this class is in an unnamed module then the {@linkplain 988 * ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class 989 * loader for this class is returned. 990 * 991 * @return the module that this class or interface is a member of 992 * 993 * @since 9 994 */ 995 public Module getModule() { 996 return module; 997 } 998 999 // set by VM 1000 @Stable 1001 private transient Module module; 1002 1003 // Initialized in JVM not by private constructor 1004 // This field is filtered from reflection access, i.e. getDeclaredField 1005 // will throw NoSuchFieldException 1006 private final ClassLoader classLoader; 1007 1008 private transient Object classData; // Set by VM 1009 private transient Object[] signers; // Read by VM, mutable 1010 private final transient char modifiers; // Set by the VM 1011 private final transient boolean primitive; // Set by the VM if the Class is a primitive type. 1012 1013 // package-private 1014 Object getClassData() { 1015 return classData; 1016 } 1017 1018 /** 1019 * Returns an array of {@code TypeVariable} objects that represent the 1020 * type variables declared by the generic declaration represented by this 1021 * {@code GenericDeclaration} object, in declaration order. Returns an 1022 * array of length 0 if the underlying generic declaration declares no type 1023 * variables. 1024 * 1025 * @return an array of {@code TypeVariable} objects that represent 1026 * the type variables declared by this generic declaration 1027 * @throws java.lang.reflect.GenericSignatureFormatError if the generic 1028 * signature of this generic declaration does not conform to 1029 * the format specified in section {@jvms 4.7.9} of 1030 * <cite>The Java Virtual Machine Specification</cite> 1031 * @since 1.5 1032 */ 1033 @SuppressWarnings("unchecked") 1034 public TypeVariable<Class<T>>[] getTypeParameters() { 1035 ClassRepository info = getGenericInfo(); 1036 if (info != null) 1037 return (TypeVariable<Class<T>>[])info.getTypeParameters(); 1038 else 1039 return (TypeVariable<Class<T>>[])new TypeVariable<?>[0]; 1040 } 1041 1042 1043 /** 1044 * Returns the {@code Class} representing the direct superclass of the 1045 * entity (class, interface, primitive type or void) represented by 1046 * this {@code Class}. If this {@code Class} represents either the 1047 * {@code Object} class, an interface, a primitive type, or void, then 1048 * null is returned. If this {@code Class} object represents an array class 1049 * then the {@code Class} object representing the {@code Object} class is 1050 * returned. 1051 * 1052 * @return the direct superclass of the class represented by this {@code Class} object 1053 */ 1054 @IntrinsicCandidate 1055 public native Class<? super T> getSuperclass(); 1056 1057 1058 /** 1059 * Returns the {@code Type} representing the direct superclass of 1060 * the entity (class, interface, primitive type or void) represented by 1061 * this {@code Class} object. 1062 * 1063 * <p>If the superclass is a parameterized type, the {@code Type} 1064 * object returned must accurately reflect the actual type 1065 * arguments used in the source code. The parameterized type 1066 * representing the superclass is created if it had not been 1067 * created before. See the declaration of {@link 1068 * java.lang.reflect.ParameterizedType ParameterizedType} for the 1069 * semantics of the creation process for parameterized types. If 1070 * this {@code Class} object represents either the {@code Object} 1071 * class, an interface, a primitive type, or void, then null is 1072 * returned. If this {@code Class} object represents an array class 1073 * then the {@code Class} object representing the {@code Object} class is 1074 * returned. 1075 * 1076 * @throws java.lang.reflect.GenericSignatureFormatError if the generic 1077 * class signature does not conform to the format specified in 1078 * section {@jvms 4.7.9} of <cite>The Java Virtual 1079 * Machine Specification</cite> 1080 * @throws TypeNotPresentException if the generic superclass 1081 * refers to a non-existent type declaration 1082 * @throws java.lang.reflect.MalformedParameterizedTypeException if the 1083 * generic superclass refers to a parameterized type that cannot be 1084 * instantiated for any reason 1085 * @return the direct superclass of the class represented by this {@code Class} object 1086 * @since 1.5 1087 */ 1088 public Type getGenericSuperclass() { 1089 ClassRepository info = getGenericInfo(); 1090 if (info == null) { 1091 return getSuperclass(); 1092 } 1093 1094 // Historical irregularity: 1095 // Generic signature marks interfaces with superclass = Object 1096 // but this API returns null for interfaces 1097 if (isInterface()) { 1098 return null; 1099 } 1100 1101 return info.getSuperclass(); 1102 } 1103 1104 /** 1105 * Gets the package of this class. 1106 * 1107 * <p>If this class represents an array type, a primitive type or void, 1108 * this method returns {@code null}. 1109 * 1110 * @return the package of this class. 1111 */ 1112 public Package getPackage() { 1113 if (isPrimitive() || isArray()) { 1114 return null; 1115 } 1116 ClassLoader cl = classLoader; 1117 return cl != null ? cl.definePackage(this) 1118 : BootLoader.definePackage(this); 1119 } 1120 1121 /** 1122 * Returns the fully qualified package name. 1123 * 1124 * <p> If this class is a top level class, then this method returns the fully 1125 * qualified name of the package that the class is a member of, or the 1126 * empty string if the class is in an unnamed package. 1127 * 1128 * <p> If this class is a member class, then this method is equivalent to 1129 * invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass 1130 * enclosing class}. 1131 * 1132 * <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain 1133 * #isAnonymousClass() anonymous class}, then this method is equivalent to 1134 * invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass 1135 * declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or 1136 * {@linkplain #getEnclosingConstructor enclosing constructor}. 1137 * 1138 * <p> If this class represents an array type then this method returns the 1139 * package name of the element type. If this class represents a primitive 1140 * type or void then the package name "{@code java.lang}" is returned. 1141 * 1142 * @return the fully qualified package name 1143 * 1144 * @since 9 1145 * @jls 6.7 Fully Qualified Names and Canonical Names 1146 */ 1147 public String getPackageName() { 1148 String pn = this.packageName; 1149 if (pn == null) { 1150 Class<?> c = isArray() ? elementType() : this; 1151 if (c.isPrimitive()) { 1152 pn = "java.lang"; 1153 } else { 1154 String cn = c.getName(); 1155 int dot = cn.lastIndexOf('.'); 1156 pn = (dot != -1) ? cn.substring(0, dot).intern() : ""; 1157 } 1158 this.packageName = pn; 1159 } 1160 return pn; 1161 } 1162 1163 // cached package name 1164 private transient String packageName; 1165 1166 /** 1167 * Returns the interfaces directly implemented by the class or interface 1168 * represented by this {@code Class} object. 1169 * 1170 * <p>If this {@code Class} object represents a class, the return value is an array 1171 * containing objects representing all interfaces directly implemented by 1172 * the class. The order of the interface objects in the array corresponds 1173 * to the order of the interface names in the {@code implements} clause of 1174 * the declaration of the class represented by this {@code Class} object. For example, 1175 * given the declaration: 1176 * <blockquote> 1177 * {@code class Shimmer implements FloorWax, DessertTopping { ... }} 1178 * </blockquote> 1179 * suppose the value of {@code s} is an instance of 1180 * {@code Shimmer}; the value of the expression: 1181 * <blockquote> 1182 * {@code s.getClass().getInterfaces()[0]} 1183 * </blockquote> 1184 * is the {@code Class} object that represents interface 1185 * {@code FloorWax}; and the value of: 1186 * <blockquote> 1187 * {@code s.getClass().getInterfaces()[1]} 1188 * </blockquote> 1189 * is the {@code Class} object that represents interface 1190 * {@code DessertTopping}. 1191 * 1192 * <p>If this {@code Class} object represents an interface, the array contains objects 1193 * representing all interfaces directly extended by the interface. The 1194 * order of the interface objects in the array corresponds to the order of 1195 * the interface names in the {@code extends} clause of the declaration of 1196 * the interface represented by this {@code Class} object. 1197 * 1198 * <p>If this {@code Class} object represents a class or interface that implements no 1199 * interfaces, the method returns an array of length 0. 1200 * 1201 * <p>If this {@code Class} object represents a primitive type or void, the method 1202 * returns an array of length 0. 1203 * 1204 * <p>If this {@code Class} object represents an array type, the 1205 * interfaces {@code Cloneable} and {@code java.io.Serializable} are 1206 * returned in that order. 1207 * 1208 * @return an array of interfaces directly implemented by this class 1209 */ 1210 public Class<?>[] getInterfaces() { 1211 // defensively copy before handing over to user code 1212 return getInterfaces(true); 1213 } 1214 1215 private Class<?>[] getInterfaces(boolean cloneArray) { 1216 ReflectionData<T> rd = reflectionData(); 1217 Class<?>[] interfaces = rd.interfaces; 1218 if (interfaces == null) { 1219 interfaces = getInterfaces0(); 1220 rd.interfaces = interfaces; 1221 } 1222 // defensively copy if requested 1223 return cloneArray ? interfaces.clone() : interfaces; 1224 } 1225 1226 private native Class<?>[] getInterfaces0(); 1227 1228 /** 1229 * Returns the {@code Type}s representing the interfaces 1230 * directly implemented by the class or interface represented by 1231 * this {@code Class} object. 1232 * 1233 * <p>If a superinterface is a parameterized type, the 1234 * {@code Type} object returned for it must accurately reflect 1235 * the actual type arguments used in the source code. The 1236 * parameterized type representing each superinterface is created 1237 * if it had not been created before. See the declaration of 1238 * {@link java.lang.reflect.ParameterizedType ParameterizedType} 1239 * for the semantics of the creation process for parameterized 1240 * types. 1241 * 1242 * <p>If this {@code Class} object represents a class, the return value is an array 1243 * containing objects representing all interfaces directly implemented by 1244 * the class. The order of the interface objects in the array corresponds 1245 * to the order of the interface names in the {@code implements} clause of 1246 * the declaration of the class represented by this {@code Class} object. 1247 * 1248 * <p>If this {@code Class} object represents an interface, the array contains objects 1249 * representing all interfaces directly extended by the interface. The 1250 * order of the interface objects in the array corresponds to the order of 1251 * the interface names in the {@code extends} clause of the declaration of 1252 * the interface represented by this {@code Class} object. 1253 * 1254 * <p>If this {@code Class} object represents a class or interface that implements no 1255 * interfaces, the method returns an array of length 0. 1256 * 1257 * <p>If this {@code Class} object represents a primitive type or void, the method 1258 * returns an array of length 0. 1259 * 1260 * <p>If this {@code Class} object represents an array type, the 1261 * interfaces {@code Cloneable} and {@code java.io.Serializable} are 1262 * returned in that order. 1263 * 1264 * @throws java.lang.reflect.GenericSignatureFormatError 1265 * if the generic class signature does not conform to the 1266 * format specified in section {@jvms 4.7.9} of <cite>The 1267 * Java Virtual Machine Specification</cite> 1268 * @throws TypeNotPresentException if any of the generic 1269 * superinterfaces refers to a non-existent type declaration 1270 * @throws java.lang.reflect.MalformedParameterizedTypeException 1271 * if any of the generic superinterfaces refer to a parameterized 1272 * type that cannot be instantiated for any reason 1273 * @return an array of interfaces directly implemented by this class 1274 * @since 1.5 1275 */ 1276 public Type[] getGenericInterfaces() { 1277 ClassRepository info = getGenericInfo(); 1278 return (info == null) ? getInterfaces() : info.getSuperInterfaces(); 1279 } 1280 1281 1282 /** 1283 * Returns the {@code Class} representing the component type of an 1284 * array. If this class does not represent an array class this method 1285 * returns null. 1286 * 1287 * @return the {@code Class} representing the component type of this 1288 * class if this class is an array 1289 * @see java.lang.reflect.Array 1290 * @since 1.1 1291 */ 1292 public Class<?> getComponentType() { 1293 return componentType; 1294 } 1295 1296 // The componentType field's null value is the sole indication that the class 1297 // is an array - see isArray(). 1298 private transient final Class<?> componentType; 1299 1300 /* 1301 * Returns the {@code Class} representing the element type of an array class. 1302 * If this class does not represent an array class, then this method returns 1303 * {@code null}. 1304 */ 1305 private Class<?> elementType() { 1306 if (!isArray()) return null; 1307 1308 Class<?> c = this; 1309 while (c.isArray()) { 1310 c = c.getComponentType(); 1311 } 1312 return c; 1313 } 1314 1315 /** 1316 * Returns the Java language modifiers for this class or interface, encoded 1317 * in an integer. The modifiers consist of the Java Virtual Machine's 1318 * constants for {@code public}, {@code protected}, 1319 * {@code private}, {@code final}, {@code static}, 1320 * {@code abstract} and {@code interface}; they should be decoded 1321 * using the methods of class {@code Modifier}. 1322 * 1323 * <p> If the underlying class is an array class: 1324 * <ul> 1325 * <li> its {@code public}, {@code private} and {@code protected} 1326 * modifiers are the same as those of its component type 1327 * <li> its {@code abstract} and {@code final} modifiers are always 1328 * {@code true} 1329 * <li> its interface modifier is always {@code false}, even when 1330 * the component type is an interface 1331 * </ul> 1332 * If this {@code Class} object represents a primitive type or 1333 * void, its {@code public}, {@code abstract}, and {@code final} 1334 * modifiers are always {@code true}. 1335 * For {@code Class} objects representing void, primitive types, and 1336 * arrays, the values of other modifiers are {@code false} other 1337 * than as specified above. 1338 * 1339 * <p> The modifier encodings are defined in section {@jvms 4.1} 1340 * of <cite>The Java Virtual Machine Specification</cite>. 1341 * 1342 * @return the {@code int} representing the modifiers for this class 1343 * @see java.lang.reflect.Modifier 1344 * @see #accessFlags() 1345 * @see <a 1346 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 1347 * programming language and JVM modeling in core reflection</a> 1348 * @since 1.1 1349 * @jls 8.1.1 Class Modifiers 1350 * @jls 9.1.1 Interface Modifiers 1351 * @jvms 4.1 The {@code ClassFile} Structure 1352 */ 1353 public int getModifiers() { return modifiers; } 1354 1355 /** 1356 * {@return an unmodifiable set of the {@linkplain AccessFlag access 1357 * flags} for this class, possibly empty} 1358 * 1359 * <p> If the underlying class is an array class: 1360 * <ul> 1361 * <li> its {@code PUBLIC}, {@code PRIVATE} and {@code PROTECTED} 1362 * access flags are the same as those of its component type 1363 * <li> its {@code ABSTRACT} and {@code FINAL} flags are present 1364 * <li> its {@code INTERFACE} flag is absent, even when the 1365 * component type is an interface 1366 * </ul> 1367 * If this {@code Class} object represents a primitive type or 1368 * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and 1369 * {@code FINAL}. 1370 * For {@code Class} objects representing void, primitive types, and 1371 * arrays, access flags are absent other than as specified above. 1372 * 1373 * @see #getModifiers() 1374 * @jvms 4.1 The ClassFile Structure 1375 * @jvms 4.7.6 The InnerClasses Attribute 1376 * @since 20 1377 */ 1378 public Set<AccessFlag> accessFlags() { 1379 // Location.CLASS allows SUPER and AccessFlag.MODULE which 1380 // INNER_CLASS forbids. INNER_CLASS allows PRIVATE, PROTECTED, 1381 // and STATIC, which are not allowed on Location.CLASS. 1382 // Use getClassAccessFlagsRaw to expose SUPER status. 1383 var location = (isMemberClass() || isLocalClass() || 1384 isAnonymousClass() || isArray()) ? 1385 AccessFlag.Location.INNER_CLASS : 1386 AccessFlag.Location.CLASS; 1387 return AccessFlag.maskToAccessFlags((location == AccessFlag.Location.CLASS) ? 1388 getClassAccessFlagsRaw() : 1389 getModifiers(), 1390 location); 1391 } 1392 1393 /** 1394 * Gets the signers of this class. 1395 * 1396 * @return the signers of this class, or null if there are no signers. In 1397 * particular, this method returns null if this {@code Class} object represents 1398 * a primitive type or void. 1399 * @since 1.1 1400 */ 1401 public Object[] getSigners() { 1402 var signers = this.signers; 1403 return signers == null ? null : signers.clone(); 1404 } 1405 1406 /** 1407 * Set the signers of this class. 1408 */ 1409 void setSigners(Object[] signers) { 1410 if (!isPrimitive() && !isArray()) { 1411 this.signers = signers; 1412 } 1413 } 1414 1415 /** 1416 * If this {@code Class} object represents a local or anonymous 1417 * class within a method, returns a {@link 1418 * java.lang.reflect.Method Method} object representing the 1419 * immediately enclosing method of the underlying class. Returns 1420 * {@code null} otherwise. 1421 * 1422 * In particular, this method returns {@code null} if the underlying 1423 * class is a local or anonymous class immediately enclosed by a class or 1424 * interface declaration, instance initializer or static initializer. 1425 * 1426 * @return the immediately enclosing method of the underlying class, if 1427 * that class is a local or anonymous class; otherwise {@code null}. 1428 * 1429 * @since 1.5 1430 */ 1431 public Method getEnclosingMethod() { 1432 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1433 1434 if (enclosingInfo == null) 1435 return null; 1436 else { 1437 if (!enclosingInfo.isMethod()) 1438 return null; 1439 1440 MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(), 1441 getFactory()); 1442 Class<?> returnType = toClass(typeInfo.getReturnType()); 1443 Type [] parameterTypes = typeInfo.getParameterTypes(); 1444 Class<?>[] parameterClasses = new Class<?>[parameterTypes.length]; 1445 1446 // Convert Types to Classes; returned types *should* 1447 // be class objects since the methodDescriptor's used 1448 // don't have generics information 1449 for(int i = 0; i < parameterClasses.length; i++) 1450 parameterClasses[i] = toClass(parameterTypes[i]); 1451 1452 final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass(); 1453 Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false); 1454 1455 /* 1456 * Loop over all declared methods; match method name, 1457 * number of and type of parameters, *and* return 1458 * type. Matching return type is also necessary 1459 * because of covariant returns, etc. 1460 */ 1461 ReflectionFactory fact = getReflectionFactory(); 1462 for (Method m : candidates) { 1463 if (m.getName().equals(enclosingInfo.getName()) && 1464 arrayContentsEq(parameterClasses, 1465 fact.getExecutableSharedParameterTypes(m))) { 1466 // finally, check return type 1467 if (m.getReturnType().equals(returnType)) { 1468 return fact.copyMethod(m); 1469 } 1470 } 1471 } 1472 1473 throw new InternalError("Enclosing method not found"); 1474 } 1475 } 1476 1477 private native Object[] getEnclosingMethod0(); 1478 1479 private EnclosingMethodInfo getEnclosingMethodInfo() { 1480 Object[] enclosingInfo = getEnclosingMethod0(); 1481 if (enclosingInfo == null) 1482 return null; 1483 else { 1484 return new EnclosingMethodInfo(enclosingInfo); 1485 } 1486 } 1487 1488 private static final class EnclosingMethodInfo { 1489 private final Class<?> enclosingClass; 1490 private final String name; 1491 private final String descriptor; 1492 1493 static void validate(Object[] enclosingInfo) { 1494 if (enclosingInfo.length != 3) 1495 throw new InternalError("Malformed enclosing method information"); 1496 try { 1497 // The array is expected to have three elements: 1498 1499 // the immediately enclosing class 1500 Class<?> enclosingClass = (Class<?>)enclosingInfo[0]; 1501 assert(enclosingClass != null); 1502 1503 // the immediately enclosing method or constructor's 1504 // name (can be null). 1505 String name = (String)enclosingInfo[1]; 1506 1507 // the immediately enclosing method or constructor's 1508 // descriptor (null iff name is). 1509 String descriptor = (String)enclosingInfo[2]; 1510 assert((name != null && descriptor != null) || name == descriptor); 1511 } catch (ClassCastException cce) { 1512 throw new InternalError("Invalid type in enclosing method information", cce); 1513 } 1514 } 1515 1516 EnclosingMethodInfo(Object[] enclosingInfo) { 1517 validate(enclosingInfo); 1518 this.enclosingClass = (Class<?>)enclosingInfo[0]; 1519 this.name = (String)enclosingInfo[1]; 1520 this.descriptor = (String)enclosingInfo[2]; 1521 } 1522 1523 boolean isPartial() { 1524 return enclosingClass == null || name == null || descriptor == null; 1525 } 1526 1527 boolean isConstructor() { return !isPartial() && ConstantDescs.INIT_NAME.equals(name); } 1528 1529 boolean isMethod() { return !isPartial() && !isConstructor() && !ConstantDescs.CLASS_INIT_NAME.equals(name); } 1530 1531 Class<?> getEnclosingClass() { return enclosingClass; } 1532 1533 String getName() { return name; } 1534 1535 String getDescriptor() { return descriptor; } 1536 1537 } 1538 1539 private static Class<?> toClass(Type o) { 1540 if (o instanceof GenericArrayType gat) 1541 return toClass(gat.getGenericComponentType()).arrayType(); 1542 return (Class<?>)o; 1543 } 1544 1545 /** 1546 * If this {@code Class} object represents a local or anonymous 1547 * class within a constructor, returns a {@link 1548 * java.lang.reflect.Constructor Constructor} object representing 1549 * the immediately enclosing constructor of the underlying 1550 * class. Returns {@code null} otherwise. In particular, this 1551 * method returns {@code null} if the underlying class is a local 1552 * or anonymous class immediately enclosed by a class or 1553 * interface declaration, instance initializer or static initializer. 1554 * 1555 * @return the immediately enclosing constructor of the underlying class, if 1556 * that class is a local or anonymous class; otherwise {@code null}. 1557 * 1558 * @since 1.5 1559 */ 1560 public Constructor<?> getEnclosingConstructor() { 1561 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1562 1563 if (enclosingInfo == null) 1564 return null; 1565 else { 1566 if (!enclosingInfo.isConstructor()) 1567 return null; 1568 1569 ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(), 1570 getFactory()); 1571 Type [] parameterTypes = typeInfo.getParameterTypes(); 1572 Class<?>[] parameterClasses = new Class<?>[parameterTypes.length]; 1573 1574 // Convert Types to Classes; returned types *should* 1575 // be class objects since the methodDescriptor's used 1576 // don't have generics information 1577 for (int i = 0; i < parameterClasses.length; i++) 1578 parameterClasses[i] = toClass(parameterTypes[i]); 1579 1580 1581 final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass(); 1582 Constructor<?>[] candidates = enclosingCandidate 1583 .privateGetDeclaredConstructors(false); 1584 /* 1585 * Loop over all declared constructors; match number 1586 * of and type of parameters. 1587 */ 1588 ReflectionFactory fact = getReflectionFactory(); 1589 for (Constructor<?> c : candidates) { 1590 if (arrayContentsEq(parameterClasses, 1591 fact.getExecutableSharedParameterTypes(c))) { 1592 return fact.copyConstructor(c); 1593 } 1594 } 1595 1596 throw new InternalError("Enclosing constructor not found"); 1597 } 1598 } 1599 1600 1601 /** 1602 * If the class or interface represented by this {@code Class} object 1603 * is a member of another class, returns the {@code Class} object 1604 * representing the class in which it was declared. This method returns 1605 * null if this class or interface is not a member of any other class. If 1606 * this {@code Class} object represents an array class, a primitive 1607 * type, or void, then this method returns null. 1608 * 1609 * @return the declaring class for this class 1610 * @since 1.1 1611 */ 1612 public Class<?> getDeclaringClass() { 1613 return getDeclaringClass0(); 1614 } 1615 1616 private native Class<?> getDeclaringClass0(); 1617 1618 1619 /** 1620 * Returns the immediately enclosing class of the underlying 1621 * class. If the underlying class is a top level class this 1622 * method returns {@code null}. 1623 * @return the immediately enclosing class of the underlying class 1624 * @since 1.5 1625 */ 1626 public Class<?> getEnclosingClass() { 1627 // There are five kinds of classes (or interfaces): 1628 // a) Top level classes 1629 // b) Nested classes (static member classes) 1630 // c) Inner classes (non-static member classes) 1631 // d) Local classes (named classes declared within a method) 1632 // e) Anonymous classes 1633 1634 1635 // JVM Spec 4.7.7: A class must have an EnclosingMethod 1636 // attribute if and only if it is a local class or an 1637 // anonymous class. 1638 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1639 Class<?> enclosingCandidate; 1640 1641 if (enclosingInfo == null) { 1642 // This is a top level or a nested class or an inner class (a, b, or c) 1643 enclosingCandidate = getDeclaringClass0(); 1644 } else { 1645 Class<?> enclosingClass = enclosingInfo.getEnclosingClass(); 1646 // This is a local class or an anonymous class (d or e) 1647 if (enclosingClass == this || enclosingClass == null) 1648 throw new InternalError("Malformed enclosing method information"); 1649 else 1650 enclosingCandidate = enclosingClass; 1651 } 1652 return enclosingCandidate; 1653 } 1654 1655 /** 1656 * Returns the simple name of the underlying class as given in the 1657 * source code. An empty string is returned if the underlying class is 1658 * {@linkplain #isAnonymousClass() anonymous}. 1659 * A {@linkplain #isSynthetic() synthetic class}, one not present 1660 * in source code, can have a non-empty name including special 1661 * characters, such as "{@code $}". 1662 * 1663 * <p>The simple name of an {@linkplain #isArray() array class} is the simple name of the 1664 * component type with "[]" appended. In particular the simple 1665 * name of an array class whose component type is anonymous is "[]". 1666 * 1667 * @return the simple name of the underlying class 1668 * @since 1.5 1669 */ 1670 public String getSimpleName() { 1671 ReflectionData<T> rd = reflectionData(); 1672 String simpleName = rd.simpleName; 1673 if (simpleName == null) { 1674 rd.simpleName = simpleName = getSimpleName0(); 1675 } 1676 return simpleName; 1677 } 1678 1679 private String getSimpleName0() { 1680 if (isArray()) { 1681 return getComponentType().getSimpleName().concat("[]"); 1682 } 1683 String simpleName = getSimpleBinaryName(); 1684 if (simpleName == null) { // top level class 1685 simpleName = getName(); 1686 simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name 1687 } 1688 return simpleName; 1689 } 1690 1691 /** 1692 * Return an informative string for the name of this class or interface. 1693 * 1694 * @return an informative string for the name of this class or interface 1695 * @since 1.8 1696 */ 1697 public String getTypeName() { 1698 if (isArray()) { 1699 try { 1700 Class<?> cl = this; 1701 int dimensions = 0; 1702 do { 1703 dimensions++; 1704 cl = cl.getComponentType(); 1705 } while (cl.isArray()); 1706 return cl.getName().concat("[]".repeat(dimensions)); 1707 } catch (Throwable e) { /*FALLTHRU*/ } 1708 } 1709 return getName(); 1710 } 1711 1712 /** 1713 * Returns the canonical name of the underlying class as 1714 * defined by <cite>The Java Language Specification</cite>. 1715 * Returns {@code null} if the underlying class does not have a canonical 1716 * name. Classes without canonical names include: 1717 * <ul> 1718 * <li>a {@linkplain #isLocalClass() local class} 1719 * <li>a {@linkplain #isAnonymousClass() anonymous class} 1720 * <li>a {@linkplain #isHidden() hidden class} 1721 * <li>an array whose component type does not have a canonical name</li> 1722 * </ul> 1723 * 1724 * The canonical name for a primitive class is the keyword for the 1725 * corresponding primitive type ({@code byte}, {@code short}, 1726 * {@code char}, {@code int}, and so on). 1727 * 1728 * <p>An array type has a canonical name if and only if its 1729 * component type has a canonical name. When an array type has a 1730 * canonical name, it is equal to the canonical name of the 1731 * component type followed by "{@code []}". 1732 * 1733 * @return the canonical name of the underlying class if it exists, and 1734 * {@code null} otherwise. 1735 * @jls 6.7 Fully Qualified Names and Canonical Names 1736 * @since 1.5 1737 */ 1738 public String getCanonicalName() { 1739 ReflectionData<T> rd = reflectionData(); 1740 String canonicalName = rd.canonicalName; 1741 if (canonicalName == null) { 1742 rd.canonicalName = canonicalName = getCanonicalName0(); 1743 } 1744 return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName; 1745 } 1746 1747 private String getCanonicalName0() { 1748 if (isArray()) { 1749 String canonicalName = getComponentType().getCanonicalName(); 1750 if (canonicalName != null) 1751 return canonicalName.concat("[]"); 1752 else 1753 return ReflectionData.NULL_SENTINEL; 1754 } 1755 if (isHidden() || isLocalOrAnonymousClass()) 1756 return ReflectionData.NULL_SENTINEL; 1757 Class<?> enclosingClass = getEnclosingClass(); 1758 if (enclosingClass == null) { // top level class 1759 return getName(); 1760 } else { 1761 String enclosingName = enclosingClass.getCanonicalName(); 1762 if (enclosingName == null) 1763 return ReflectionData.NULL_SENTINEL; 1764 String simpleName = getSimpleName(); 1765 return new StringBuilder(enclosingName.length() + simpleName.length() + 1) 1766 .append(enclosingName) 1767 .append('.') 1768 .append(simpleName) 1769 .toString(); 1770 } 1771 } 1772 1773 /** 1774 * Returns {@code true} if and only if the underlying class 1775 * is an anonymous class. 1776 * 1777 * @apiNote 1778 * An anonymous class is not a {@linkplain #isHidden() hidden class}. 1779 * 1780 * @return {@code true} if and only if this class is an anonymous class. 1781 * @since 1.5 1782 * @jls 15.9.5 Anonymous Class Declarations 1783 */ 1784 public boolean isAnonymousClass() { 1785 return !isArray() && isLocalOrAnonymousClass() && 1786 getSimpleBinaryName0() == null; 1787 } 1788 1789 /** 1790 * Returns {@code true} if and only if the underlying class 1791 * is a local class. 1792 * 1793 * @return {@code true} if and only if this class is a local class. 1794 * @since 1.5 1795 * @jls 14.3 Local Class and Interface Declarations 1796 */ 1797 public boolean isLocalClass() { 1798 return isLocalOrAnonymousClass() && 1799 (isArray() || getSimpleBinaryName0() != null); 1800 } 1801 1802 /** 1803 * Returns {@code true} if and only if the underlying class 1804 * is a member class. 1805 * 1806 * @return {@code true} if and only if this class is a member class. 1807 * @since 1.5 1808 * @jls 8.5 Member Class and Interface Declarations 1809 */ 1810 public boolean isMemberClass() { 1811 return !isLocalOrAnonymousClass() && getDeclaringClass0() != null; 1812 } 1813 1814 /** 1815 * Returns the "simple binary name" of the underlying class, i.e., 1816 * the binary name without the leading enclosing class name. 1817 * Returns {@code null} if the underlying class is a top level 1818 * class. 1819 */ 1820 private String getSimpleBinaryName() { 1821 if (isTopLevelClass()) 1822 return null; 1823 String name = getSimpleBinaryName0(); 1824 if (name == null) // anonymous class 1825 return ""; 1826 return name; 1827 } 1828 1829 private native String getSimpleBinaryName0(); 1830 1831 /** 1832 * Returns {@code true} if this is a top level class. Returns {@code false} 1833 * otherwise. 1834 */ 1835 private boolean isTopLevelClass() { 1836 return !isLocalOrAnonymousClass() && getDeclaringClass0() == null; 1837 } 1838 1839 /** 1840 * Returns {@code true} if this is a local class or an anonymous 1841 * class. Returns {@code false} otherwise. 1842 */ 1843 private boolean isLocalOrAnonymousClass() { 1844 // JVM Spec 4.7.7: A class must have an EnclosingMethod 1845 // attribute if and only if it is a local class or an 1846 // anonymous class. 1847 return hasEnclosingMethodInfo(); 1848 } 1849 1850 private boolean hasEnclosingMethodInfo() { 1851 Object[] enclosingInfo = getEnclosingMethod0(); 1852 if (enclosingInfo != null) { 1853 EnclosingMethodInfo.validate(enclosingInfo); 1854 return true; 1855 } 1856 return false; 1857 } 1858 1859 /** 1860 * Returns an array containing {@code Class} objects representing all 1861 * the public classes and interfaces that are members of the class 1862 * represented by this {@code Class} object. This includes public 1863 * class and interface members inherited from superclasses and public class 1864 * and interface members declared by the class. This method returns an 1865 * array of length 0 if this {@code Class} object has no public member 1866 * classes or interfaces. This method also returns an array of length 0 if 1867 * this {@code Class} object represents a primitive type, an array 1868 * class, or void. 1869 * 1870 * @return the array of {@code Class} objects representing the public 1871 * members of this class 1872 * @since 1.1 1873 */ 1874 public Class<?>[] getClasses() { 1875 List<Class<?>> list = new ArrayList<>(); 1876 Class<?> currentClass = Class.this; 1877 while (currentClass != null) { 1878 for (Class<?> m : currentClass.getDeclaredClasses()) { 1879 if (Modifier.isPublic(m.getModifiers())) { 1880 list.add(m); 1881 } 1882 } 1883 currentClass = currentClass.getSuperclass(); 1884 } 1885 return list.toArray(new Class<?>[0]); 1886 } 1887 1888 1889 /** 1890 * Returns an array containing {@code Field} objects reflecting all 1891 * the accessible public fields of the class or interface represented by 1892 * this {@code Class} object. 1893 * 1894 * <p> If this {@code Class} object represents a class or interface with 1895 * no accessible public fields, then this method returns an array of length 1896 * 0. 1897 * 1898 * <p> If this {@code Class} object represents a class, then this method 1899 * returns the public fields of the class and of all its superclasses and 1900 * superinterfaces. 1901 * 1902 * <p> If this {@code Class} object represents an interface, then this 1903 * method returns the fields of the interface and of all its 1904 * superinterfaces. 1905 * 1906 * <p> If this {@code Class} object represents an array type, a primitive 1907 * type, or void, then this method returns an array of length 0. 1908 * 1909 * <p> The elements in the returned array are not sorted and are not in any 1910 * particular order. 1911 * 1912 * @return the array of {@code Field} objects representing the 1913 * public fields 1914 * 1915 * @since 1.1 1916 * @jls 8.2 Class Members 1917 * @jls 8.3 Field Declarations 1918 */ 1919 public Field[] getFields() { 1920 return copyFields(privateGetPublicFields()); 1921 } 1922 1923 1924 /** 1925 * Returns an array containing {@code Method} objects reflecting all the 1926 * public methods of the class or interface represented by this {@code 1927 * Class} object, including those declared by the class or interface and 1928 * those inherited from superclasses and superinterfaces. 1929 * 1930 * <p> If this {@code Class} object represents an array type, then the 1931 * returned array has a {@code Method} object for each of the public 1932 * methods inherited by the array type from {@code Object}. It does not 1933 * contain a {@code Method} object for {@code clone()}. 1934 * 1935 * <p> If this {@code Class} object represents an interface then the 1936 * returned array does not contain any implicitly declared methods from 1937 * {@code Object}. Therefore, if no methods are explicitly declared in 1938 * this interface or any of its superinterfaces then the returned array 1939 * has length 0. (Note that a {@code Class} object which represents a class 1940 * always has public methods, inherited from {@code Object}.) 1941 * 1942 * <p> The returned array never contains methods with names {@value 1943 * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}. 1944 * 1945 * <p> The elements in the returned array are not sorted and are not in any 1946 * particular order. 1947 * 1948 * <p> Generally, the result is computed as with the following 4 step algorithm. 1949 * Let C be the class or interface represented by this {@code Class} object: 1950 * <ol> 1951 * <li> A union of methods is composed of: 1952 * <ol type="a"> 1953 * <li> C's declared public instance and static methods as returned by 1954 * {@link #getDeclaredMethods()} and filtered to include only public 1955 * methods.</li> 1956 * <li> If C is a class other than {@code Object}, then include the result 1957 * of invoking this algorithm recursively on the superclass of C.</li> 1958 * <li> Include the results of invoking this algorithm recursively on all 1959 * direct superinterfaces of C, but include only instance methods.</li> 1960 * </ol></li> 1961 * <li> Union from step 1 is partitioned into subsets of methods with same 1962 * signature (name, parameter types) and return type.</li> 1963 * <li> Within each such subset only the most specific methods are selected. 1964 * Let method M be a method from a set of methods with same signature 1965 * and return type. M is most specific if there is no such method 1966 * N != M from the same set, such that N is more specific than M. 1967 * N is more specific than M if: 1968 * <ol type="a"> 1969 * <li> N is declared by a class and M is declared by an interface; or</li> 1970 * <li> N and M are both declared by classes or both by interfaces and 1971 * N's declaring type is the same as or a subtype of M's declaring type 1972 * (clearly, if M's and N's declaring types are the same type, then 1973 * M and N are the same method).</li> 1974 * </ol></li> 1975 * <li> The result of this algorithm is the union of all selected methods from 1976 * step 3.</li> 1977 * </ol> 1978 * 1979 * @apiNote There may be more than one method with a particular name 1980 * and parameter types in a class because while the Java language forbids a 1981 * class to declare multiple methods with the same signature but different 1982 * return types, the Java virtual machine does not. This 1983 * increased flexibility in the virtual machine can be used to 1984 * implement various language features. For example, covariant 1985 * returns can be implemented with {@linkplain 1986 * java.lang.reflect.Method#isBridge bridge methods}; the bridge 1987 * method and the overriding method would have the same 1988 * signature but different return types. 1989 * 1990 * @return the array of {@code Method} objects representing the 1991 * public methods of this class 1992 * 1993 * @jls 8.2 Class Members 1994 * @jls 8.4 Method Declarations 1995 * @since 1.1 1996 */ 1997 public Method[] getMethods() { 1998 return copyMethods(privateGetPublicMethods()); 1999 } 2000 2001 2002 /** 2003 * Returns an array containing {@code Constructor} objects reflecting 2004 * all the public constructors of the class represented by this 2005 * {@code Class} object. An array of length 0 is returned if the 2006 * class has no public constructors, or if the class is an array class, or 2007 * if the class reflects a primitive type or void. 2008 * 2009 * @apiNote 2010 * While this method returns an array of {@code 2011 * Constructor<T>} objects (that is an array of constructors from 2012 * this class), the return type of this method is {@code 2013 * Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as 2014 * might be expected. This less informative return type is 2015 * necessary since after being returned from this method, the 2016 * array could be modified to hold {@code Constructor} objects for 2017 * different classes, which would violate the type guarantees of 2018 * {@code Constructor<T>[]}. 2019 * 2020 * @return the array of {@code Constructor} objects representing the 2021 * public constructors of this class 2022 * 2023 * @see #getDeclaredConstructors() 2024 * @since 1.1 2025 */ 2026 public Constructor<?>[] getConstructors() { 2027 return copyConstructors(privateGetDeclaredConstructors(true)); 2028 } 2029 2030 2031 /** 2032 * Returns a {@code Field} object that reflects the specified public member 2033 * field of the class or interface represented by this {@code Class} 2034 * object. The {@code name} parameter is a {@code String} specifying the 2035 * simple name of the desired field. 2036 * 2037 * <p> The field to be reflected is determined by the algorithm that 2038 * follows. Let C be the class or interface represented by this {@code Class} object: 2039 * 2040 * <OL> 2041 * <LI> If C declares a public field with the name specified, that is the 2042 * field to be reflected.</LI> 2043 * <LI> If no field was found in step 1 above, this algorithm is applied 2044 * recursively to each direct superinterface of C. The direct 2045 * superinterfaces are searched in the order they were declared.</LI> 2046 * <LI> If no field was found in steps 1 and 2 above, and C has a 2047 * superclass S, then this algorithm is invoked recursively upon S. 2048 * If C has no superclass, then a {@code NoSuchFieldException} 2049 * is thrown.</LI> 2050 * </OL> 2051 * 2052 * <p> If this {@code Class} object represents an array type, then this 2053 * method does not find the {@code length} field of the array type. 2054 * 2055 * @param name the field name 2056 * @return the {@code Field} object of this class specified by 2057 * {@code name} 2058 * @throws NoSuchFieldException if a field with the specified name is 2059 * not found. 2060 * @throws NullPointerException if {@code name} is {@code null} 2061 * 2062 * @since 1.1 2063 * @jls 8.2 Class Members 2064 * @jls 8.3 Field Declarations 2065 */ 2066 public Field getField(String name) throws NoSuchFieldException { 2067 Objects.requireNonNull(name); 2068 Field field = getField0(name); 2069 if (field == null) { 2070 throw new NoSuchFieldException(name); 2071 } 2072 return getReflectionFactory().copyField(field); 2073 } 2074 2075 2076 /** 2077 * Returns a {@code Method} object that reflects the specified public 2078 * member method of the class or interface represented by this 2079 * {@code Class} object. The {@code name} parameter is a 2080 * {@code String} specifying the simple name of the desired method. The 2081 * {@code parameterTypes} parameter is an array of {@code Class} 2082 * objects that identify the method's formal parameter types, in declared 2083 * order. If {@code parameterTypes} is {@code null}, it is 2084 * treated as if it were an empty array. 2085 * 2086 * <p> If this {@code Class} object represents an array type, then this 2087 * method finds any public method inherited by the array type from 2088 * {@code Object} except method {@code clone()}. 2089 * 2090 * <p> If this {@code Class} object represents an interface then this 2091 * method does not find any implicitly declared method from 2092 * {@code Object}. Therefore, if no methods are explicitly declared in 2093 * this interface or any of its superinterfaces, then this method does not 2094 * find any method. 2095 * 2096 * <p> This method does not find any method with name {@value 2097 * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}. 2098 * 2099 * <p> Generally, the method to be reflected is determined by the 4 step 2100 * algorithm that follows. 2101 * Let C be the class or interface represented by this {@code Class} object: 2102 * <ol> 2103 * <li> A union of methods is composed of: 2104 * <ol type="a"> 2105 * <li> C's declared public instance and static methods as returned by 2106 * {@link #getDeclaredMethods()} and filtered to include only public 2107 * methods that match given {@code name} and {@code parameterTypes}</li> 2108 * <li> If C is a class other than {@code Object}, then include the result 2109 * of invoking this algorithm recursively on the superclass of C.</li> 2110 * <li> Include the results of invoking this algorithm recursively on all 2111 * direct superinterfaces of C, but include only instance methods.</li> 2112 * </ol></li> 2113 * <li> This union is partitioned into subsets of methods with same 2114 * return type (the selection of methods from step 1 also guarantees that 2115 * they have the same method name and parameter types).</li> 2116 * <li> Within each such subset only the most specific methods are selected. 2117 * Let method M be a method from a set of methods with same VM 2118 * signature (return type, name, parameter types). 2119 * M is most specific if there is no such method N != M from the same 2120 * set, such that N is more specific than M. N is more specific than M 2121 * if: 2122 * <ol type="a"> 2123 * <li> N is declared by a class and M is declared by an interface; or</li> 2124 * <li> N and M are both declared by classes or both by interfaces and 2125 * N's declaring type is the same as or a subtype of M's declaring type 2126 * (clearly, if M's and N's declaring types are the same type, then 2127 * M and N are the same method).</li> 2128 * </ol></li> 2129 * <li> The result of this algorithm is chosen arbitrarily from the methods 2130 * with most specific return type among all selected methods from step 3. 2131 * Let R be a return type of a method M from the set of all selected methods 2132 * from step 3. M is a method with most specific return type if there is 2133 * no such method N != M from the same set, having return type S != R, 2134 * such that S is a subtype of R as determined by 2135 * R.class.{@link #isAssignableFrom}(S.class). 2136 * </ol> 2137 * 2138 * @apiNote There may be more than one method with matching name and 2139 * parameter types in a class because while the Java language forbids a 2140 * class to declare multiple methods with the same signature but different 2141 * return types, the Java virtual machine does not. This 2142 * increased flexibility in the virtual machine can be used to 2143 * implement various language features. For example, covariant 2144 * returns can be implemented with {@linkplain 2145 * java.lang.reflect.Method#isBridge bridge methods}; the bridge 2146 * method and the overriding method would have the same 2147 * signature but different return types. This method would return the 2148 * overriding method as it would have a more specific return type. 2149 * 2150 * @param name the name of the method 2151 * @param parameterTypes the list of parameters 2152 * @return the {@code Method} object that matches the specified 2153 * {@code name} and {@code parameterTypes} 2154 * @throws NoSuchMethodException if a matching method is not found 2155 * or if the name is {@value ConstantDescs#INIT_NAME} or 2156 * {@value ConstantDescs#CLASS_INIT_NAME}. 2157 * @throws NullPointerException if {@code name} is {@code null} 2158 * 2159 * @jls 8.2 Class Members 2160 * @jls 8.4 Method Declarations 2161 * @since 1.1 2162 */ 2163 public Method getMethod(String name, Class<?>... parameterTypes) 2164 throws NoSuchMethodException { 2165 Objects.requireNonNull(name); 2166 Method method = getMethod0(name, parameterTypes); 2167 if (method == null) { 2168 throw new NoSuchMethodException(methodToString(name, parameterTypes)); 2169 } 2170 return getReflectionFactory().copyMethod(method); 2171 } 2172 2173 /** 2174 * Returns a {@code Constructor} object that reflects the specified 2175 * public constructor of the class represented by this {@code Class} 2176 * object. The {@code parameterTypes} parameter is an array of 2177 * {@code Class} objects that identify the constructor's formal 2178 * parameter types, in declared order. 2179 * 2180 * If this {@code Class} object represents an inner class 2181 * declared in a non-static context, the formal parameter types 2182 * include the explicit enclosing instance as the first parameter. 2183 * 2184 * <p> The constructor to reflect is the public constructor of the class 2185 * represented by this {@code Class} object whose formal parameter 2186 * types match those specified by {@code parameterTypes}. 2187 * 2188 * @param parameterTypes the parameter array 2189 * @return the {@code Constructor} object of the public constructor that 2190 * matches the specified {@code parameterTypes} 2191 * @throws NoSuchMethodException if a matching constructor is not found, 2192 * including when this {@code Class} object represents 2193 * an interface, a primitive type, an array class, or void. 2194 * 2195 * @see #getDeclaredConstructor(Class[]) 2196 * @since 1.1 2197 */ 2198 public Constructor<T> getConstructor(Class<?>... parameterTypes) 2199 throws NoSuchMethodException { 2200 return getReflectionFactory().copyConstructor( 2201 getConstructor0(parameterTypes, Member.PUBLIC)); 2202 } 2203 2204 2205 /** 2206 * Returns an array of {@code Class} objects reflecting all the 2207 * classes and interfaces declared as members of the class represented by 2208 * this {@code Class} object. This includes public, protected, default 2209 * (package) access, and private classes and interfaces declared by the 2210 * class, but excludes inherited classes and interfaces. This method 2211 * returns an array of length 0 if the class declares no classes or 2212 * interfaces as members, or if this {@code Class} object represents a 2213 * primitive type, an array class, or void. 2214 * 2215 * @return the array of {@code Class} objects representing all the 2216 * declared members of this class 2217 * 2218 * @since 1.1 2219 * @jls 8.5 Member Class and Interface Declarations 2220 */ 2221 public Class<?>[] getDeclaredClasses() { 2222 return getDeclaredClasses0(); 2223 } 2224 2225 2226 /** 2227 * Returns an array of {@code Field} objects reflecting all the fields 2228 * declared by the class or interface represented by this 2229 * {@code Class} object. This includes public, protected, default 2230 * (package) access, and private fields, but excludes inherited fields. 2231 * 2232 * <p> If this {@code Class} object represents a class or interface with no 2233 * declared fields, then this method returns an array of length 0. 2234 * 2235 * <p> If this {@code Class} object represents an array type, a primitive 2236 * type, or void, then this method returns an array of length 0. 2237 * 2238 * <p> The elements in the returned array are not sorted and are not in any 2239 * particular order. 2240 * 2241 * @return the array of {@code Field} objects representing all the 2242 * declared fields of this class 2243 * 2244 * @since 1.1 2245 * @jls 8.2 Class Members 2246 * @jls 8.3 Field Declarations 2247 */ 2248 public Field[] getDeclaredFields() { 2249 return copyFields(privateGetDeclaredFields(false)); 2250 } 2251 2252 /** 2253 * Returns an array of {@code RecordComponent} objects representing all the 2254 * record components of this record class, or {@code null} if this class is 2255 * not a record class. 2256 * 2257 * <p> The components are returned in the same order that they are declared 2258 * in the record header. The array is empty if this record class has no 2259 * components. If the class is not a record class, that is {@link 2260 * #isRecord()} returns {@code false}, then this method returns {@code null}. 2261 * Conversely, if {@link #isRecord()} returns {@code true}, then this method 2262 * returns a non-null value. 2263 * 2264 * @apiNote 2265 * <p> The following method can be used to find the record canonical constructor: 2266 * 2267 * {@snippet lang="java" : 2268 * static <T extends Record> Constructor<T> getCanonicalConstructor(Class<T> cls) 2269 * throws NoSuchMethodException { 2270 * Class<?>[] paramTypes = 2271 * Arrays.stream(cls.getRecordComponents()) 2272 * .map(RecordComponent::getType) 2273 * .toArray(Class<?>[]::new); 2274 * return cls.getDeclaredConstructor(paramTypes); 2275 * }} 2276 * 2277 * @return An array of {@code RecordComponent} objects representing all the 2278 * record components of this record class, or {@code null} if this 2279 * class is not a record class 2280 * 2281 * @jls 8.10 Record Classes 2282 * @since 16 2283 */ 2284 public RecordComponent[] getRecordComponents() { 2285 if (!isRecord()) { 2286 return null; 2287 } 2288 return getRecordComponents0(); 2289 } 2290 2291 /** 2292 * Returns an array containing {@code Method} objects reflecting all the 2293 * declared methods of the class or interface represented by this {@code 2294 * Class} object, including public, protected, default (package) 2295 * access, and private methods, but excluding inherited methods. 2296 * The declared methods may include methods <em>not</em> in the 2297 * source of the class or interface, including {@linkplain 2298 * Method#isBridge bridge methods} and other {@linkplain 2299 * Executable#isSynthetic synthetic} methods added by compilers. 2300 * 2301 * <p> If this {@code Class} object represents a class or interface that 2302 * has multiple declared methods with the same name and parameter types, 2303 * but different return types, then the returned array has a {@code Method} 2304 * object for each such method. 2305 * 2306 * <p> If this {@code Class} object represents a class or interface that 2307 * has a class initialization method {@value ConstantDescs#CLASS_INIT_NAME}, 2308 * then the returned array does <em>not</em> have a corresponding {@code 2309 * Method} object. 2310 * 2311 * <p> If this {@code Class} object represents a class or interface with no 2312 * declared methods, then the returned array has length 0. 2313 * 2314 * <p> If this {@code Class} object represents an array type, a primitive 2315 * type, or void, then the returned array has length 0. 2316 * 2317 * <p> The elements in the returned array are not sorted and are not in any 2318 * particular order. 2319 * 2320 * @return the array of {@code Method} objects representing all the 2321 * declared methods of this class 2322 * 2323 * @jls 8.2 Class Members 2324 * @jls 8.4 Method Declarations 2325 * @see <a 2326 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 2327 * programming language and JVM modeling in core reflection</a> 2328 * @since 1.1 2329 */ 2330 public Method[] getDeclaredMethods() { 2331 return copyMethods(privateGetDeclaredMethods(false)); 2332 } 2333 2334 /** 2335 * Returns an array of {@code Constructor} objects reflecting all the 2336 * constructors implicitly or explicitly declared by the class represented by this 2337 * {@code Class} object. These are public, protected, default 2338 * (package) access, and private constructors. The elements in the array 2339 * returned are not sorted and are not in any particular order. If the 2340 * class has a default constructor (JLS {@jls 8.8.9}), it is included in the returned array. 2341 * If a record class has a canonical constructor (JLS {@jls 2342 * 8.10.4.1}, {@jls 8.10.4.2}), it is included in the returned array. 2343 * 2344 * This method returns an array of length 0 if this {@code Class} 2345 * object represents an interface, a primitive type, an array class, or 2346 * void. 2347 * 2348 * @return the array of {@code Constructor} objects representing all the 2349 * declared constructors of this class 2350 * 2351 * @since 1.1 2352 * @see #getConstructors() 2353 * @jls 8.8 Constructor Declarations 2354 */ 2355 public Constructor<?>[] getDeclaredConstructors() { 2356 return copyConstructors(privateGetDeclaredConstructors(false)); 2357 } 2358 2359 2360 /** 2361 * Returns a {@code Field} object that reflects the specified declared 2362 * field of the class or interface represented by this {@code Class} 2363 * object. The {@code name} parameter is a {@code String} that specifies 2364 * the simple name of the desired field. 2365 * 2366 * <p> If this {@code Class} object represents an array type, then this 2367 * method does not find the {@code length} field of the array type. 2368 * 2369 * @param name the name of the field 2370 * @return the {@code Field} object for the specified field in this 2371 * class 2372 * @throws NoSuchFieldException if a field with the specified name is 2373 * not found. 2374 * @throws NullPointerException if {@code name} is {@code null} 2375 * 2376 * @since 1.1 2377 * @jls 8.2 Class Members 2378 * @jls 8.3 Field Declarations 2379 */ 2380 public Field getDeclaredField(String name) throws NoSuchFieldException { 2381 Objects.requireNonNull(name); 2382 Field field = searchFields(privateGetDeclaredFields(false), name); 2383 if (field == null) { 2384 throw new NoSuchFieldException(name); 2385 } 2386 return getReflectionFactory().copyField(field); 2387 } 2388 2389 2390 /** 2391 * Returns a {@code Method} object that reflects the specified 2392 * declared method of the class or interface represented by this 2393 * {@code Class} object. The {@code name} parameter is a 2394 * {@code String} that specifies the simple name of the desired 2395 * method, and the {@code parameterTypes} parameter is an array of 2396 * {@code Class} objects that identify the method's formal parameter 2397 * types, in declared order. If more than one method with the same 2398 * parameter types is declared in a class, and one of these methods has a 2399 * return type that is more specific than any of the others, that method is 2400 * returned; otherwise one of the methods is chosen arbitrarily. If the 2401 * name is {@value ConstantDescs#INIT_NAME} or {@value 2402 * ConstantDescs#CLASS_INIT_NAME} a {@code NoSuchMethodException} 2403 * is raised. 2404 * 2405 * <p> If this {@code Class} object represents an array type, then this 2406 * method does not find the {@code clone()} method. 2407 * 2408 * @param name the name of the method 2409 * @param parameterTypes the parameter array 2410 * @return the {@code Method} object for the method of this class 2411 * matching the specified name and parameters 2412 * @throws NoSuchMethodException if a matching method is not found. 2413 * @throws NullPointerException if {@code name} is {@code null} 2414 * 2415 * @jls 8.2 Class Members 2416 * @jls 8.4 Method Declarations 2417 * @since 1.1 2418 */ 2419 public Method getDeclaredMethod(String name, Class<?>... parameterTypes) 2420 throws NoSuchMethodException { 2421 Objects.requireNonNull(name); 2422 Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes); 2423 if (method == null) { 2424 throw new NoSuchMethodException(methodToString(name, parameterTypes)); 2425 } 2426 return getReflectionFactory().copyMethod(method); 2427 } 2428 2429 /** 2430 * Returns the list of {@code Method} objects for the declared public 2431 * methods of this class or interface that have the specified method name 2432 * and parameter types. 2433 * 2434 * @param name the name of the method 2435 * @param parameterTypes the parameter array 2436 * @return the list of {@code Method} objects for the public methods of 2437 * this class matching the specified name and parameters 2438 */ 2439 List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) { 2440 Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true); 2441 ReflectionFactory factory = getReflectionFactory(); 2442 List<Method> result = new ArrayList<>(); 2443 for (Method method : methods) { 2444 if (method.getName().equals(name) 2445 && Arrays.equals( 2446 factory.getExecutableSharedParameterTypes(method), 2447 parameterTypes)) { 2448 result.add(factory.copyMethod(method)); 2449 } 2450 } 2451 return result; 2452 } 2453 2454 /** 2455 * Returns the most specific {@code Method} object of this class, super class or 2456 * interface that have the specified method name and parameter types. 2457 * 2458 * @param publicOnly true if only public methods are examined, otherwise all methods 2459 * @param name the name of the method 2460 * @param parameterTypes the parameter array 2461 * @return the {@code Method} object for the method found from this class matching 2462 * the specified name and parameters, or null if not found 2463 */ 2464 Method findMethod(boolean publicOnly, String name, Class<?>... parameterTypes) { 2465 PublicMethods.MethodList res = getMethodsRecursive(name, parameterTypes, true, publicOnly); 2466 return res == null ? null : getReflectionFactory().copyMethod(res.getMostSpecific()); 2467 } 2468 2469 /** 2470 * Returns a {@code Constructor} object that reflects the specified 2471 * constructor of the class represented by this 2472 * {@code Class} object. The {@code parameterTypes} parameter is 2473 * an array of {@code Class} objects that identify the constructor's 2474 * formal parameter types, in declared order. 2475 * 2476 * If this {@code Class} object represents an inner class 2477 * declared in a non-static context, the formal parameter types 2478 * include the explicit enclosing instance as the first parameter. 2479 * 2480 * @param parameterTypes the parameter array 2481 * @return The {@code Constructor} object for the constructor with the 2482 * specified parameter list 2483 * @throws NoSuchMethodException if a matching constructor is not found, 2484 * including when this {@code Class} object represents 2485 * an interface, a primitive type, an array class, or void. 2486 * 2487 * @see #getConstructor(Class[]) 2488 * @since 1.1 2489 */ 2490 public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes) 2491 throws NoSuchMethodException { 2492 return getReflectionFactory().copyConstructor( 2493 getConstructor0(parameterTypes, Member.DECLARED)); 2494 } 2495 2496 /** 2497 * Finds a resource with a given name. 2498 * 2499 * <p> If this class is in a named {@link Module Module} then this method 2500 * will attempt to find the resource in the module. This is done by 2501 * delegating to the module's class loader {@link 2502 * ClassLoader#findResource(String,String) findResource(String,String)} 2503 * method, invoking it with the module name and the absolute name of the 2504 * resource. Resources in named modules are subject to the rules for 2505 * encapsulation specified in the {@code Module} {@link 2506 * Module#getResourceAsStream getResourceAsStream} method and so this 2507 * method returns {@code null} when the resource is a 2508 * non-"{@code .class}" resource in a package that is not open to the 2509 * caller's module. 2510 * 2511 * <p> Otherwise, if this class is not in a named module then the rules for 2512 * searching resources associated with a given class are implemented by the 2513 * defining {@linkplain ClassLoader class loader} of the class. This method 2514 * delegates to this {@code Class} object's class loader. 2515 * If this {@code Class} object was loaded by the bootstrap class loader, 2516 * the method delegates to {@link ClassLoader#getSystemResourceAsStream}. 2517 * 2518 * <p> Before delegation, an absolute resource name is constructed from the 2519 * given resource name using this algorithm: 2520 * 2521 * <ul> 2522 * 2523 * <li> If the {@code name} begins with a {@code '/'} 2524 * (<code>'\u002f'</code>), then the absolute name of the resource is the 2525 * portion of the {@code name} following the {@code '/'}. 2526 * 2527 * <li> Otherwise, the absolute name is of the following form: 2528 * 2529 * <blockquote> 2530 * {@code modified_package_name/name} 2531 * </blockquote> 2532 * 2533 * <p> Where the {@code modified_package_name} is the package name of this 2534 * object with {@code '/'} substituted for {@code '.'} 2535 * (<code>'\u002e'</code>). 2536 * 2537 * </ul> 2538 * 2539 * @param name name of the desired resource 2540 * @return A {@link java.io.InputStream} object; {@code null} if no 2541 * resource with this name is found, or the resource is in a package 2542 * that is not {@linkplain Module#isOpen(String, Module) open} to at 2543 * least the caller module. 2544 * @throws NullPointerException If {@code name} is {@code null} 2545 * 2546 * @see Module#getResourceAsStream(String) 2547 * @since 1.1 2548 */ 2549 @CallerSensitive 2550 public InputStream getResourceAsStream(String name) { 2551 name = resolveName(name); 2552 2553 Module thisModule = getModule(); 2554 if (thisModule.isNamed()) { 2555 // check if resource can be located by caller 2556 if (Resources.canEncapsulate(name) 2557 && !isOpenToCaller(name, Reflection.getCallerClass())) { 2558 return null; 2559 } 2560 2561 // resource not encapsulated or in package open to caller 2562 String mn = thisModule.getName(); 2563 ClassLoader cl = classLoader; 2564 try { 2565 2566 // special-case built-in class loaders to avoid the 2567 // need for a URL connection 2568 if (cl == null) { 2569 return BootLoader.findResourceAsStream(mn, name); 2570 } else if (cl instanceof BuiltinClassLoader bcl) { 2571 return bcl.findResourceAsStream(mn, name); 2572 } else { 2573 URL url = cl.findResource(mn, name); 2574 return (url != null) ? url.openStream() : null; 2575 } 2576 2577 } catch (IOException | SecurityException e) { 2578 return null; 2579 } 2580 } 2581 2582 // unnamed module 2583 ClassLoader cl = classLoader; 2584 if (cl == null) { 2585 return ClassLoader.getSystemResourceAsStream(name); 2586 } else { 2587 return cl.getResourceAsStream(name); 2588 } 2589 } 2590 2591 /** 2592 * Finds a resource with a given name. 2593 * 2594 * <p> If this class is in a named {@link Module Module} then this method 2595 * will attempt to find the resource in the module. This is done by 2596 * delegating to the module's class loader {@link 2597 * ClassLoader#findResource(String,String) findResource(String,String)} 2598 * method, invoking it with the module name and the absolute name of the 2599 * resource. Resources in named modules are subject to the rules for 2600 * encapsulation specified in the {@code Module} {@link 2601 * Module#getResourceAsStream getResourceAsStream} method and so this 2602 * method returns {@code null} when the resource is a 2603 * non-"{@code .class}" resource in a package that is not open to the 2604 * caller's module. 2605 * 2606 * <p> Otherwise, if this class is not in a named module then the rules for 2607 * searching resources associated with a given class are implemented by the 2608 * defining {@linkplain ClassLoader class loader} of the class. This method 2609 * delegates to this {@code Class} object's class loader. 2610 * If this {@code Class} object was loaded by the bootstrap class loader, 2611 * the method delegates to {@link ClassLoader#getSystemResource}. 2612 * 2613 * <p> Before delegation, an absolute resource name is constructed from the 2614 * given resource name using this algorithm: 2615 * 2616 * <ul> 2617 * 2618 * <li> If the {@code name} begins with a {@code '/'} 2619 * (<code>'\u002f'</code>), then the absolute name of the resource is the 2620 * portion of the {@code name} following the {@code '/'}. 2621 * 2622 * <li> Otherwise, the absolute name is of the following form: 2623 * 2624 * <blockquote> 2625 * {@code modified_package_name/name} 2626 * </blockquote> 2627 * 2628 * <p> Where the {@code modified_package_name} is the package name of this 2629 * object with {@code '/'} substituted for {@code '.'} 2630 * (<code>'\u002e'</code>). 2631 * 2632 * </ul> 2633 * 2634 * @param name name of the desired resource 2635 * @return A {@link java.net.URL} object; {@code null} if no resource with 2636 * this name is found, the resource cannot be located by a URL, or the 2637 * resource is in a package that is not 2638 * {@linkplain Module#isOpen(String, Module) open} to at least the caller 2639 * module. 2640 * @throws NullPointerException If {@code name} is {@code null} 2641 * @since 1.1 2642 */ 2643 @CallerSensitive 2644 public URL getResource(String name) { 2645 name = resolveName(name); 2646 2647 Module thisModule = getModule(); 2648 if (thisModule.isNamed()) { 2649 // check if resource can be located by caller 2650 if (Resources.canEncapsulate(name) 2651 && !isOpenToCaller(name, Reflection.getCallerClass())) { 2652 return null; 2653 } 2654 2655 // resource not encapsulated or in package open to caller 2656 String mn = thisModule.getName(); 2657 ClassLoader cl = classLoader; 2658 try { 2659 if (cl == null) { 2660 return BootLoader.findResource(mn, name); 2661 } else { 2662 return cl.findResource(mn, name); 2663 } 2664 } catch (IOException ioe) { 2665 return null; 2666 } 2667 } 2668 2669 // unnamed module 2670 ClassLoader cl = classLoader; 2671 if (cl == null) { 2672 return ClassLoader.getSystemResource(name); 2673 } else { 2674 return cl.getResource(name); 2675 } 2676 } 2677 2678 /** 2679 * Returns true if a resource with the given name can be located by the 2680 * given caller. All resources in a module can be located by code in 2681 * the module. For other callers, then the package needs to be open to 2682 * the caller. 2683 */ 2684 private boolean isOpenToCaller(String name, Class<?> caller) { 2685 // assert getModule().isNamed(); 2686 Module thisModule = getModule(); 2687 Module callerModule = (caller != null) ? caller.getModule() : null; 2688 if (callerModule != thisModule) { 2689 String pn = Resources.toPackageName(name); 2690 if (thisModule.getDescriptor().packages().contains(pn)) { 2691 if (callerModule == null) { 2692 // no caller, return true if the package is open to all modules 2693 return thisModule.isOpen(pn); 2694 } 2695 if (!thisModule.isOpen(pn, callerModule)) { 2696 // package not open to caller 2697 return false; 2698 } 2699 } 2700 } 2701 return true; 2702 } 2703 2704 private transient final ProtectionDomain protectionDomain; 2705 2706 /** Holder for the protection domain returned when the internal domain is null */ 2707 private static class Holder { 2708 private static final ProtectionDomain allPermDomain; 2709 static { 2710 Permissions perms = new Permissions(); 2711 perms.add(new AllPermission()); 2712 allPermDomain = new ProtectionDomain(null, perms); 2713 } 2714 } 2715 2716 /** 2717 * Returns the {@code ProtectionDomain} of this class. 2718 * 2719 * @return the ProtectionDomain of this class 2720 * 2721 * @see java.security.ProtectionDomain 2722 * @since 1.2 2723 */ 2724 public ProtectionDomain getProtectionDomain() { 2725 if (protectionDomain == null) { 2726 return Holder.allPermDomain; 2727 } else { 2728 return protectionDomain; 2729 } 2730 } 2731 2732 /* 2733 * Returns the Class object for the named primitive type. Type parameter T 2734 * avoids redundant casts for trusted code. 2735 */ 2736 static native <T> Class<T> getPrimitiveClass(String name); 2737 2738 /** 2739 * Add a package name prefix if the name is not absolute. Remove leading "/" 2740 * if name is absolute 2741 */ 2742 private String resolveName(String name) { 2743 if (!name.startsWith("/")) { 2744 String baseName = getPackageName(); 2745 if (!baseName.isEmpty()) { 2746 int len = baseName.length() + 1 + name.length(); 2747 StringBuilder sb = new StringBuilder(len); 2748 name = sb.append(baseName.replace('.', '/')) 2749 .append('/') 2750 .append(name) 2751 .toString(); 2752 } 2753 } else { 2754 name = name.substring(1); 2755 } 2756 return name; 2757 } 2758 2759 /** 2760 * Atomic operations support. 2761 */ 2762 private static class Atomic { 2763 // initialize Unsafe machinery here, since we need to call Class.class instance method 2764 // and have to avoid calling it in the static initializer of the Class class... 2765 private static final Unsafe unsafe = Unsafe.getUnsafe(); 2766 // offset of Class.reflectionData instance field 2767 private static final long reflectionDataOffset 2768 = unsafe.objectFieldOffset(Class.class, "reflectionData"); 2769 // offset of Class.annotationType instance field 2770 private static final long annotationTypeOffset 2771 = unsafe.objectFieldOffset(Class.class, "annotationType"); 2772 // offset of Class.annotationData instance field 2773 private static final long annotationDataOffset 2774 = unsafe.objectFieldOffset(Class.class, "annotationData"); 2775 2776 static <T> boolean casReflectionData(Class<?> clazz, 2777 SoftReference<ReflectionData<T>> oldData, 2778 SoftReference<ReflectionData<T>> newData) { 2779 return unsafe.compareAndSetReference(clazz, reflectionDataOffset, oldData, newData); 2780 } 2781 2782 static boolean casAnnotationType(Class<?> clazz, 2783 AnnotationType oldType, 2784 AnnotationType newType) { 2785 return unsafe.compareAndSetReference(clazz, annotationTypeOffset, oldType, newType); 2786 } 2787 2788 static boolean casAnnotationData(Class<?> clazz, 2789 AnnotationData oldData, 2790 AnnotationData newData) { 2791 return unsafe.compareAndSetReference(clazz, annotationDataOffset, oldData, newData); 2792 } 2793 } 2794 2795 /** 2796 * Reflection support. 2797 */ 2798 2799 // Reflection data caches various derived names and reflective members. Cached 2800 // values may be invalidated when JVM TI RedefineClasses() is called 2801 private static class ReflectionData<T> { 2802 volatile Field[] declaredFields; 2803 volatile Field[] publicFields; 2804 volatile Method[] declaredMethods; 2805 volatile Method[] publicMethods; 2806 volatile Constructor<T>[] declaredConstructors; 2807 volatile Constructor<T>[] publicConstructors; 2808 // Intermediate results for getFields and getMethods 2809 volatile Field[] declaredPublicFields; 2810 volatile Method[] declaredPublicMethods; 2811 volatile Class<?>[] interfaces; 2812 2813 // Cached names 2814 String simpleName; 2815 String canonicalName; 2816 static final String NULL_SENTINEL = new String(); 2817 2818 // Value of classRedefinedCount when we created this ReflectionData instance 2819 final int redefinedCount; 2820 2821 ReflectionData(int redefinedCount) { 2822 this.redefinedCount = redefinedCount; 2823 } 2824 } 2825 2826 private transient volatile SoftReference<ReflectionData<T>> reflectionData; 2827 2828 // Incremented by the VM on each call to JVM TI RedefineClasses() 2829 // that redefines this class or a superclass. 2830 private transient volatile int classRedefinedCount; 2831 2832 // Lazily create and cache ReflectionData 2833 private ReflectionData<T> reflectionData() { 2834 SoftReference<ReflectionData<T>> reflectionData = this.reflectionData; 2835 int classRedefinedCount = this.classRedefinedCount; 2836 ReflectionData<T> rd; 2837 if (reflectionData != null && 2838 (rd = reflectionData.get()) != null && 2839 rd.redefinedCount == classRedefinedCount) { 2840 return rd; 2841 } 2842 // else no SoftReference or cleared SoftReference or stale ReflectionData 2843 // -> create and replace new instance 2844 return newReflectionData(reflectionData, classRedefinedCount); 2845 } 2846 2847 private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData, 2848 int classRedefinedCount) { 2849 while (true) { 2850 ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount); 2851 // try to CAS it... 2852 if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) { 2853 return rd; 2854 } 2855 // else retry 2856 oldReflectionData = this.reflectionData; 2857 classRedefinedCount = this.classRedefinedCount; 2858 if (oldReflectionData != null && 2859 (rd = oldReflectionData.get()) != null && 2860 rd.redefinedCount == classRedefinedCount) { 2861 return rd; 2862 } 2863 } 2864 } 2865 2866 // Generic signature handling 2867 private native String getGenericSignature0(); 2868 2869 // Generic info repository; lazily initialized 2870 private transient volatile ClassRepository genericInfo; 2871 2872 // accessor for factory 2873 private GenericsFactory getFactory() { 2874 // create scope and factory 2875 return CoreReflectionFactory.make(this, ClassScope.make(this)); 2876 } 2877 2878 // accessor for generic info repository; 2879 // generic info is lazily initialized 2880 private ClassRepository getGenericInfo() { 2881 ClassRepository genericInfo = this.genericInfo; 2882 if (genericInfo == null) { 2883 String signature = getGenericSignature0(); 2884 if (signature == null) { 2885 genericInfo = ClassRepository.NONE; 2886 } else { 2887 genericInfo = ClassRepository.make(signature, getFactory()); 2888 } 2889 this.genericInfo = genericInfo; 2890 } 2891 return (genericInfo != ClassRepository.NONE) ? genericInfo : null; 2892 } 2893 2894 // Annotations handling 2895 native byte[] getRawAnnotations(); 2896 // Since 1.8 2897 native byte[] getRawTypeAnnotations(); 2898 static byte[] getExecutableTypeAnnotationBytes(Executable ex) { 2899 return getReflectionFactory().getExecutableTypeAnnotationBytes(ex); 2900 } 2901 2902 native ConstantPool getConstantPool(); 2903 2904 // 2905 // 2906 // java.lang.reflect.Field handling 2907 // 2908 // 2909 2910 // Returns an array of "root" fields. These Field objects must NOT 2911 // be propagated to the outside world, but must instead be copied 2912 // via ReflectionFactory.copyField. 2913 private Field[] privateGetDeclaredFields(boolean publicOnly) { 2914 Field[] res; 2915 ReflectionData<T> rd = reflectionData(); 2916 res = publicOnly ? rd.declaredPublicFields : rd.declaredFields; 2917 if (res != null) return res; 2918 // No cached value available; request value from VM 2919 res = Reflection.filterFields(this, getDeclaredFields0(publicOnly)); 2920 if (publicOnly) { 2921 rd.declaredPublicFields = res; 2922 } else { 2923 rd.declaredFields = res; 2924 } 2925 return res; 2926 } 2927 2928 // Returns an array of "root" fields. These Field objects must NOT 2929 // be propagated to the outside world, but must instead be copied 2930 // via ReflectionFactory.copyField. 2931 private Field[] privateGetPublicFields() { 2932 Field[] res; 2933 ReflectionData<T> rd = reflectionData(); 2934 res = rd.publicFields; 2935 if (res != null) return res; 2936 2937 // Use a linked hash set to ensure order is preserved and 2938 // fields from common super interfaces are not duplicated 2939 LinkedHashSet<Field> fields = new LinkedHashSet<>(); 2940 2941 // Local fields 2942 addAll(fields, privateGetDeclaredFields(true)); 2943 2944 // Direct superinterfaces, recursively 2945 for (Class<?> si : getInterfaces(/* cloneArray */ false)) { 2946 addAll(fields, si.privateGetPublicFields()); 2947 } 2948 2949 // Direct superclass, recursively 2950 Class<?> sc = getSuperclass(); 2951 if (sc != null) { 2952 addAll(fields, sc.privateGetPublicFields()); 2953 } 2954 2955 res = fields.toArray(new Field[0]); 2956 rd.publicFields = res; 2957 return res; 2958 } 2959 2960 private static void addAll(Collection<Field> c, Field[] o) { 2961 for (Field f : o) { 2962 c.add(f); 2963 } 2964 } 2965 2966 2967 // 2968 // 2969 // java.lang.reflect.Constructor handling 2970 // 2971 // 2972 2973 // Returns an array of "root" constructors. These Constructor 2974 // objects must NOT be propagated to the outside world, but must 2975 // instead be copied via ReflectionFactory.copyConstructor. 2976 private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) { 2977 Constructor<T>[] res; 2978 ReflectionData<T> rd = reflectionData(); 2979 res = publicOnly ? rd.publicConstructors : rd.declaredConstructors; 2980 if (res != null) return res; 2981 // No cached value available; request value from VM 2982 if (isInterface()) { 2983 @SuppressWarnings("unchecked") 2984 Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0]; 2985 res = temporaryRes; 2986 } else { 2987 res = getDeclaredConstructors0(publicOnly); 2988 } 2989 if (publicOnly) { 2990 rd.publicConstructors = res; 2991 } else { 2992 rd.declaredConstructors = res; 2993 } 2994 return res; 2995 } 2996 2997 // 2998 // 2999 // java.lang.reflect.Method handling 3000 // 3001 // 3002 3003 // Returns an array of "root" methods. These Method objects must NOT 3004 // be propagated to the outside world, but must instead be copied 3005 // via ReflectionFactory.copyMethod. 3006 private Method[] privateGetDeclaredMethods(boolean publicOnly) { 3007 Method[] res; 3008 ReflectionData<T> rd = reflectionData(); 3009 res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods; 3010 if (res != null) return res; 3011 // No cached value available; request value from VM 3012 res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly)); 3013 if (publicOnly) { 3014 rd.declaredPublicMethods = res; 3015 } else { 3016 rd.declaredMethods = res; 3017 } 3018 return res; 3019 } 3020 3021 // Returns an array of "root" methods. These Method objects must NOT 3022 // be propagated to the outside world, but must instead be copied 3023 // via ReflectionFactory.copyMethod. 3024 private Method[] privateGetPublicMethods() { 3025 Method[] res; 3026 ReflectionData<T> rd = reflectionData(); 3027 res = rd.publicMethods; 3028 if (res != null) return res; 3029 3030 // No cached value available; compute value recursively. 3031 // Start by fetching public declared methods... 3032 PublicMethods pms = new PublicMethods(); 3033 for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) { 3034 pms.merge(m); 3035 } 3036 // ...then recur over superclass methods... 3037 Class<?> sc = getSuperclass(); 3038 if (sc != null) { 3039 for (Method m : sc.privateGetPublicMethods()) { 3040 pms.merge(m); 3041 } 3042 } 3043 // ...and finally over direct superinterfaces. 3044 for (Class<?> intf : getInterfaces(/* cloneArray */ false)) { 3045 for (Method m : intf.privateGetPublicMethods()) { 3046 // static interface methods are not inherited 3047 if (!Modifier.isStatic(m.getModifiers())) { 3048 pms.merge(m); 3049 } 3050 } 3051 } 3052 3053 res = pms.toArray(); 3054 rd.publicMethods = res; 3055 return res; 3056 } 3057 3058 3059 // 3060 // Helpers for fetchers of one field, method, or constructor 3061 // 3062 3063 // This method does not copy the returned Field object! 3064 private static Field searchFields(Field[] fields, String name) { 3065 for (Field field : fields) { 3066 if (field.getName().equals(name)) { 3067 return field; 3068 } 3069 } 3070 return null; 3071 } 3072 3073 // Returns a "root" Field object. This Field object must NOT 3074 // be propagated to the outside world, but must instead be copied 3075 // via ReflectionFactory.copyField. 3076 private Field getField0(String name) { 3077 // Note: the intent is that the search algorithm this routine 3078 // uses be equivalent to the ordering imposed by 3079 // privateGetPublicFields(). It fetches only the declared 3080 // public fields for each class, however, to reduce the number 3081 // of Field objects which have to be created for the common 3082 // case where the field being requested is declared in the 3083 // class which is being queried. 3084 Field res; 3085 // Search declared public fields 3086 if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) { 3087 return res; 3088 } 3089 // Direct superinterfaces, recursively 3090 Class<?>[] interfaces = getInterfaces(/* cloneArray */ false); 3091 for (Class<?> c : interfaces) { 3092 if ((res = c.getField0(name)) != null) { 3093 return res; 3094 } 3095 } 3096 // Direct superclass, recursively 3097 if (!isInterface()) { 3098 Class<?> c = getSuperclass(); 3099 if (c != null) { 3100 if ((res = c.getField0(name)) != null) { 3101 return res; 3102 } 3103 } 3104 } 3105 return null; 3106 } 3107 3108 // This method does not copy the returned Method object! 3109 private static Method searchMethods(Method[] methods, 3110 String name, 3111 Class<?>[] parameterTypes) 3112 { 3113 ReflectionFactory fact = getReflectionFactory(); 3114 Method res = null; 3115 for (Method m : methods) { 3116 if (m.getName().equals(name) 3117 && arrayContentsEq(parameterTypes, 3118 fact.getExecutableSharedParameterTypes(m)) 3119 && (res == null 3120 || (res.getReturnType() != m.getReturnType() 3121 && res.getReturnType().isAssignableFrom(m.getReturnType())))) 3122 res = m; 3123 } 3124 return res; 3125 } 3126 3127 private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0]; 3128 3129 // Returns a "root" Method object. This Method object must NOT 3130 // be propagated to the outside world, but must instead be copied 3131 // via ReflectionFactory.copyMethod. 3132 private Method getMethod0(String name, Class<?>[] parameterTypes) { 3133 PublicMethods.MethodList res = getMethodsRecursive( 3134 name, 3135 parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes, 3136 /* includeStatic */ true, /* publicOnly */ true); 3137 return res == null ? null : res.getMostSpecific(); 3138 } 3139 3140 // Returns a list of "root" Method objects. These Method objects must NOT 3141 // be propagated to the outside world, but must instead be copied 3142 // via ReflectionFactory.copyMethod. 3143 private PublicMethods.MethodList getMethodsRecursive(String name, 3144 Class<?>[] parameterTypes, 3145 boolean includeStatic, 3146 boolean publicOnly) { 3147 // 1st check declared methods 3148 Method[] methods = privateGetDeclaredMethods(publicOnly); 3149 PublicMethods.MethodList res = PublicMethods.MethodList 3150 .filter(methods, name, parameterTypes, includeStatic); 3151 // if there is at least one match among declared methods, we need not 3152 // search any further as such match surely overrides matching methods 3153 // declared in superclass(es) or interface(s). 3154 if (res != null) { 3155 return res; 3156 } 3157 3158 // if there was no match among declared methods, 3159 // we must consult the superclass (if any) recursively... 3160 Class<?> sc = getSuperclass(); 3161 if (sc != null) { 3162 res = sc.getMethodsRecursive(name, parameterTypes, includeStatic, publicOnly); 3163 } 3164 3165 // ...and coalesce the superclass methods with methods obtained 3166 // from directly implemented interfaces excluding static methods... 3167 for (Class<?> intf : getInterfaces(/* cloneArray */ false)) { 3168 res = PublicMethods.MethodList.merge( 3169 res, intf.getMethodsRecursive(name, parameterTypes, /* includeStatic */ false, publicOnly)); 3170 } 3171 3172 return res; 3173 } 3174 3175 // Returns a "root" Constructor object. This Constructor object must NOT 3176 // be propagated to the outside world, but must instead be copied 3177 // via ReflectionFactory.copyConstructor. 3178 private Constructor<T> getConstructor0(Class<?>[] parameterTypes, 3179 int which) throws NoSuchMethodException 3180 { 3181 ReflectionFactory fact = getReflectionFactory(); 3182 Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC)); 3183 for (Constructor<T> constructor : constructors) { 3184 if (arrayContentsEq(parameterTypes, 3185 fact.getExecutableSharedParameterTypes(constructor))) { 3186 return constructor; 3187 } 3188 } 3189 throw new NoSuchMethodException(methodToString("<init>", parameterTypes)); 3190 } 3191 3192 // 3193 // Other helpers and base implementation 3194 // 3195 3196 private static boolean arrayContentsEq(Object[] a1, Object[] a2) { 3197 if (a1 == null) { 3198 return a2 == null || a2.length == 0; 3199 } 3200 3201 if (a2 == null) { 3202 return a1.length == 0; 3203 } 3204 3205 if (a1.length != a2.length) { 3206 return false; 3207 } 3208 3209 for (int i = 0; i < a1.length; i++) { 3210 if (a1[i] != a2[i]) { 3211 return false; 3212 } 3213 } 3214 3215 return true; 3216 } 3217 3218 private static Field[] copyFields(Field[] arg) { 3219 Field[] out = new Field[arg.length]; 3220 ReflectionFactory fact = getReflectionFactory(); 3221 for (int i = 0; i < arg.length; i++) { 3222 out[i] = fact.copyField(arg[i]); 3223 } 3224 return out; 3225 } 3226 3227 private static Method[] copyMethods(Method[] arg) { 3228 Method[] out = new Method[arg.length]; 3229 ReflectionFactory fact = getReflectionFactory(); 3230 for (int i = 0; i < arg.length; i++) { 3231 out[i] = fact.copyMethod(arg[i]); 3232 } 3233 return out; 3234 } 3235 3236 private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) { 3237 Constructor<U>[] out = arg.clone(); 3238 ReflectionFactory fact = getReflectionFactory(); 3239 for (int i = 0; i < out.length; i++) { 3240 out[i] = fact.copyConstructor(out[i]); 3241 } 3242 return out; 3243 } 3244 3245 private native Field[] getDeclaredFields0(boolean publicOnly); 3246 private native Method[] getDeclaredMethods0(boolean publicOnly); 3247 private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly); 3248 private native Class<?>[] getDeclaredClasses0(); 3249 3250 /* 3251 * Returns an array containing the components of the Record attribute, 3252 * or null if the attribute is not present. 3253 * 3254 * Note that this method returns non-null array on a class with 3255 * the Record attribute even if this class is not a record. 3256 */ 3257 private native RecordComponent[] getRecordComponents0(); 3258 private native boolean isRecord0(); 3259 3260 /** 3261 * Helper method to get the method name from arguments. 3262 */ 3263 private String methodToString(String name, Class<?>[] argTypes) { 3264 return getName() + '.' + name + 3265 ((argTypes == null || argTypes.length == 0) ? 3266 "()" : 3267 Arrays.stream(argTypes) 3268 .map(c -> c == null ? "null" : c.getName()) 3269 .collect(Collectors.joining(",", "(", ")"))); 3270 } 3271 3272 /** use serialVersionUID from JDK 1.1 for interoperability */ 3273 @java.io.Serial 3274 private static final long serialVersionUID = 3206093459760846163L; 3275 3276 3277 /** 3278 * Class Class is special cased within the Serialization Stream Protocol. 3279 * 3280 * A Class instance is written initially into an ObjectOutputStream in the 3281 * following format: 3282 * <pre> 3283 * {@code TC_CLASS} ClassDescriptor 3284 * A ClassDescriptor is a special cased serialization of 3285 * a {@code java.io.ObjectStreamClass} instance. 3286 * </pre> 3287 * A new handle is generated for the initial time the class descriptor 3288 * is written into the stream. Future references to the class descriptor 3289 * are written as references to the initial class descriptor instance. 3290 * 3291 * @see java.io.ObjectStreamClass 3292 */ 3293 @java.io.Serial 3294 private static final ObjectStreamField[] serialPersistentFields = 3295 new ObjectStreamField[0]; 3296 3297 3298 /** 3299 * Returns the assertion status that would be assigned to this 3300 * class if it were to be initialized at the time this method is invoked. 3301 * If this class has had its assertion status set, the most recent 3302 * setting will be returned; otherwise, if any package default assertion 3303 * status pertains to this class, the most recent setting for the most 3304 * specific pertinent package default assertion status is returned; 3305 * otherwise, if this class is not a system class (i.e., it has a 3306 * class loader) its class loader's default assertion status is returned; 3307 * otherwise, the system class default assertion status is returned. 3308 * 3309 * @apiNote 3310 * Few programmers will have any need for this method; it is provided 3311 * for the benefit of the JDK itself. (It allows a class to determine at 3312 * the time that it is initialized whether assertions should be enabled.) 3313 * Note that this method is not guaranteed to return the actual 3314 * assertion status that was (or will be) associated with the specified 3315 * class when it was (or will be) initialized. 3316 * 3317 * @return the desired assertion status of the specified class. 3318 * @see java.lang.ClassLoader#setClassAssertionStatus 3319 * @see java.lang.ClassLoader#setPackageAssertionStatus 3320 * @see java.lang.ClassLoader#setDefaultAssertionStatus 3321 * @since 1.4 3322 */ 3323 public boolean desiredAssertionStatus() { 3324 ClassLoader loader = classLoader; 3325 // If the loader is null this is a system class, so ask the VM 3326 if (loader == null) 3327 return desiredAssertionStatus0(this); 3328 3329 // If the classloader has been initialized with the assertion 3330 // directives, ask it. Otherwise, ask the VM. 3331 synchronized(loader.assertionLock) { 3332 if (loader.classAssertionStatus != null) { 3333 return loader.desiredAssertionStatus(getName()); 3334 } 3335 } 3336 return desiredAssertionStatus0(this); 3337 } 3338 3339 // Retrieves the desired assertion status of this class from the VM 3340 private static native boolean desiredAssertionStatus0(Class<?> clazz); 3341 3342 /** 3343 * Returns true if and only if this class was declared as an enum in the 3344 * source code. 3345 * 3346 * Note that {@link java.lang.Enum} is not itself an enum class. 3347 * 3348 * Also note that if an enum constant is declared with a class body, 3349 * the class of that enum constant object is an anonymous class 3350 * and <em>not</em> the class of the declaring enum class. The 3351 * {@link Enum#getDeclaringClass} method of an enum constant can 3352 * be used to get the class of the enum class declaring the 3353 * constant. 3354 * 3355 * @return true if and only if this class was declared as an enum in the 3356 * source code 3357 * @since 1.5 3358 * @jls 8.9.1 Enum Constants 3359 */ 3360 public boolean isEnum() { 3361 // An enum must both directly extend java.lang.Enum and have 3362 // the ENUM bit set; classes for specialized enum constants 3363 // don't do the former. 3364 return (this.getModifiers() & ENUM) != 0 && 3365 this.getSuperclass() == java.lang.Enum.class; 3366 } 3367 3368 /** 3369 * Returns {@code true} if and only if this class is a record class. 3370 * 3371 * <p> The {@linkplain #getSuperclass() direct superclass} of a record 3372 * class is {@code java.lang.Record}. A record class is {@linkplain 3373 * Modifier#FINAL final}. A record class has (possibly zero) record 3374 * components; {@link #getRecordComponents()} returns a non-null but 3375 * possibly empty value for a record. 3376 * 3377 * <p> Note that class {@link Record} is not a record class and thus 3378 * invoking this method on class {@code Record} returns {@code false}. 3379 * 3380 * @return true if and only if this class is a record class, otherwise false 3381 * @jls 8.10 Record Classes 3382 * @since 16 3383 */ 3384 public boolean isRecord() { 3385 // this superclass and final modifier check is not strictly necessary 3386 // they are intrinsified and serve as a fast-path check 3387 return getSuperclass() == java.lang.Record.class && 3388 (this.getModifiers() & Modifier.FINAL) != 0 && 3389 isRecord0(); 3390 } 3391 3392 // Fetches the factory for reflective objects 3393 private static ReflectionFactory getReflectionFactory() { 3394 var factory = reflectionFactory; 3395 if (factory != null) { 3396 return factory; 3397 } 3398 return reflectionFactory = ReflectionFactory.getReflectionFactory(); 3399 } 3400 private static ReflectionFactory reflectionFactory; 3401 3402 /** 3403 * When CDS is enabled, the Class class may be aot-initialized. However, 3404 * we can't archive reflectionFactory, so we reset it to null, so it 3405 * will be allocated again at runtime. 3406 */ 3407 private static void resetArchivedStates() { 3408 reflectionFactory = null; 3409 } 3410 3411 /** 3412 * Returns the elements of this enum class or null if this 3413 * Class object does not represent an enum class. 3414 * 3415 * @return an array containing the values comprising the enum class 3416 * represented by this {@code Class} object in the order they're 3417 * declared, or null if this {@code Class} object does not 3418 * represent an enum class 3419 * @since 1.5 3420 * @jls 8.9.1 Enum Constants 3421 */ 3422 public T[] getEnumConstants() { 3423 T[] values = getEnumConstantsShared(); 3424 return (values != null) ? values.clone() : null; 3425 } 3426 3427 /** 3428 * Returns the elements of this enum class or null if this 3429 * Class object does not represent an enum class; 3430 * identical to getEnumConstants except that the result is 3431 * uncloned, cached, and shared by all callers. 3432 */ 3433 T[] getEnumConstantsShared() { 3434 T[] constants = enumConstants; 3435 if (constants == null) { 3436 if (!isEnum()) return null; 3437 try { 3438 final Method values = getMethod("values"); 3439 values.setAccessible(true); 3440 @SuppressWarnings("unchecked") 3441 T[] temporaryConstants = (T[])values.invoke(null); 3442 enumConstants = constants = temporaryConstants; 3443 } 3444 // These can happen when users concoct enum-like classes 3445 // that don't comply with the enum spec. 3446 catch (InvocationTargetException | NoSuchMethodException | 3447 IllegalAccessException | NullPointerException | 3448 ClassCastException ex) { return null; } 3449 } 3450 return constants; 3451 } 3452 private transient volatile T[] enumConstants; 3453 3454 /** 3455 * Returns a map from simple name to enum constant. This package-private 3456 * method is used internally by Enum to implement 3457 * {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)} 3458 * efficiently. Note that the map is returned by this method is 3459 * created lazily on first use. Typically it won't ever get created. 3460 */ 3461 Map<String, T> enumConstantDirectory() { 3462 Map<String, T> directory = enumConstantDirectory; 3463 if (directory == null) { 3464 T[] universe = getEnumConstantsShared(); 3465 if (universe == null) 3466 throw new IllegalArgumentException( 3467 getName() + " is not an enum class"); 3468 directory = HashMap.newHashMap(universe.length); 3469 for (T constant : universe) { 3470 directory.put(((Enum<?>)constant).name(), constant); 3471 } 3472 enumConstantDirectory = directory; 3473 } 3474 return directory; 3475 } 3476 private transient volatile Map<String, T> enumConstantDirectory; 3477 3478 /** 3479 * Casts an object to the class or interface represented 3480 * by this {@code Class} object. 3481 * 3482 * @param obj the object to be cast 3483 * @return the object after casting, or null if obj is null 3484 * 3485 * @throws ClassCastException if the object is not 3486 * null and is not assignable to the type T. 3487 * 3488 * @since 1.5 3489 */ 3490 @SuppressWarnings("unchecked") 3491 @IntrinsicCandidate 3492 public T cast(Object obj) { 3493 if (obj != null && !isInstance(obj)) 3494 throw new ClassCastException(cannotCastMsg(obj)); 3495 return (T) obj; 3496 } 3497 3498 private String cannotCastMsg(Object obj) { 3499 return "Cannot cast " + obj.getClass().getName() + " to " + getName(); 3500 } 3501 3502 /** 3503 * Casts this {@code Class} object to represent a subclass of the class 3504 * represented by the specified class object. Checks that the cast 3505 * is valid, and throws a {@code ClassCastException} if it is not. If 3506 * this method succeeds, it always returns a reference to this {@code Class} object. 3507 * 3508 * <p>This method is useful when a client needs to "narrow" the type of 3509 * a {@code Class} object to pass it to an API that restricts the 3510 * {@code Class} objects that it is willing to accept. A cast would 3511 * generate a compile-time warning, as the correctness of the cast 3512 * could not be checked at runtime (because generic types are implemented 3513 * by erasure). 3514 * 3515 * @param <U> the type to cast this {@code Class} object to 3516 * @param clazz the class of the type to cast this {@code Class} object to 3517 * @return this {@code Class} object, cast to represent a subclass of 3518 * the specified class object. 3519 * @throws ClassCastException if this {@code Class} object does not 3520 * represent a subclass of the specified class (here "subclass" includes 3521 * the class itself). 3522 * @since 1.5 3523 */ 3524 @SuppressWarnings("unchecked") 3525 public <U> Class<? extends U> asSubclass(Class<U> clazz) { 3526 if (clazz.isAssignableFrom(this)) 3527 return (Class<? extends U>) this; 3528 else 3529 throw new ClassCastException(this.toString()); 3530 } 3531 3532 /** 3533 * {@inheritDoc} 3534 * <p>Note that any annotation returned by this method is a 3535 * declaration annotation. 3536 * 3537 * @throws NullPointerException {@inheritDoc} 3538 * @since 1.5 3539 */ 3540 @Override 3541 @SuppressWarnings("unchecked") 3542 public <A extends Annotation> A getAnnotation(Class<A> annotationClass) { 3543 Objects.requireNonNull(annotationClass); 3544 3545 return (A) annotationData().annotations.get(annotationClass); 3546 } 3547 3548 /** 3549 * {@inheritDoc} 3550 * @throws NullPointerException {@inheritDoc} 3551 * @since 1.5 3552 */ 3553 @Override 3554 public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) { 3555 return GenericDeclaration.super.isAnnotationPresent(annotationClass); 3556 } 3557 3558 /** 3559 * {@inheritDoc} 3560 * <p>Note that any annotations returned by this method are 3561 * declaration annotations. 3562 * 3563 * @throws NullPointerException {@inheritDoc} 3564 * @since 1.8 3565 */ 3566 @Override 3567 public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) { 3568 Objects.requireNonNull(annotationClass); 3569 3570 AnnotationData annotationData = annotationData(); 3571 return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations, 3572 this, 3573 annotationClass); 3574 } 3575 3576 /** 3577 * {@inheritDoc} 3578 * <p>Note that any annotations returned by this method are 3579 * declaration annotations. 3580 * 3581 * @since 1.5 3582 */ 3583 @Override 3584 public Annotation[] getAnnotations() { 3585 return AnnotationParser.toArray(annotationData().annotations); 3586 } 3587 3588 /** 3589 * {@inheritDoc} 3590 * <p>Note that any annotation returned by this method is a 3591 * declaration annotation. 3592 * 3593 * @throws NullPointerException {@inheritDoc} 3594 * @since 1.8 3595 */ 3596 @Override 3597 @SuppressWarnings("unchecked") 3598 public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) { 3599 Objects.requireNonNull(annotationClass); 3600 3601 return (A) annotationData().declaredAnnotations.get(annotationClass); 3602 } 3603 3604 /** 3605 * {@inheritDoc} 3606 * <p>Note that any annotations returned by this method are 3607 * declaration annotations. 3608 * 3609 * @throws NullPointerException {@inheritDoc} 3610 * @since 1.8 3611 */ 3612 @Override 3613 public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) { 3614 Objects.requireNonNull(annotationClass); 3615 3616 return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations, 3617 annotationClass); 3618 } 3619 3620 /** 3621 * {@inheritDoc} 3622 * <p>Note that any annotations returned by this method are 3623 * declaration annotations. 3624 * 3625 * @since 1.5 3626 */ 3627 @Override 3628 public Annotation[] getDeclaredAnnotations() { 3629 return AnnotationParser.toArray(annotationData().declaredAnnotations); 3630 } 3631 3632 // annotation data that might get invalidated when JVM TI RedefineClasses() is called 3633 private static class AnnotationData { 3634 final Map<Class<? extends Annotation>, Annotation> annotations; 3635 final Map<Class<? extends Annotation>, Annotation> declaredAnnotations; 3636 3637 // Value of classRedefinedCount when we created this AnnotationData instance 3638 final int redefinedCount; 3639 3640 AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations, 3641 Map<Class<? extends Annotation>, Annotation> declaredAnnotations, 3642 int redefinedCount) { 3643 this.annotations = annotations; 3644 this.declaredAnnotations = declaredAnnotations; 3645 this.redefinedCount = redefinedCount; 3646 } 3647 } 3648 3649 // Annotations cache 3650 @SuppressWarnings("UnusedDeclaration") 3651 private transient volatile AnnotationData annotationData; 3652 3653 private AnnotationData annotationData() { 3654 while (true) { // retry loop 3655 AnnotationData annotationData = this.annotationData; 3656 int classRedefinedCount = this.classRedefinedCount; 3657 if (annotationData != null && 3658 annotationData.redefinedCount == classRedefinedCount) { 3659 return annotationData; 3660 } 3661 // null or stale annotationData -> optimistically create new instance 3662 AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount); 3663 // try to install it 3664 if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) { 3665 // successfully installed new AnnotationData 3666 return newAnnotationData; 3667 } 3668 } 3669 } 3670 3671 private AnnotationData createAnnotationData(int classRedefinedCount) { 3672 Map<Class<? extends Annotation>, Annotation> declaredAnnotations = 3673 AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this); 3674 Class<?> superClass = getSuperclass(); 3675 Map<Class<? extends Annotation>, Annotation> annotations = null; 3676 if (superClass != null) { 3677 Map<Class<? extends Annotation>, Annotation> superAnnotations = 3678 superClass.annotationData().annotations; 3679 for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) { 3680 Class<? extends Annotation> annotationClass = e.getKey(); 3681 if (AnnotationType.getInstance(annotationClass).isInherited()) { 3682 if (annotations == null) { // lazy construction 3683 annotations = LinkedHashMap.newLinkedHashMap(Math.max( 3684 declaredAnnotations.size(), 3685 Math.min(12, declaredAnnotations.size() + superAnnotations.size()) 3686 ) 3687 ); 3688 } 3689 annotations.put(annotationClass, e.getValue()); 3690 } 3691 } 3692 } 3693 if (annotations == null) { 3694 // no inherited annotations -> share the Map with declaredAnnotations 3695 annotations = declaredAnnotations; 3696 } else { 3697 // at least one inherited annotation -> declared may override inherited 3698 annotations.putAll(declaredAnnotations); 3699 } 3700 return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount); 3701 } 3702 3703 // Annotation interfaces cache their internal (AnnotationType) form 3704 3705 @SuppressWarnings("UnusedDeclaration") 3706 private transient volatile AnnotationType annotationType; 3707 3708 boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) { 3709 return Atomic.casAnnotationType(this, oldType, newType); 3710 } 3711 3712 AnnotationType getAnnotationType() { 3713 return annotationType; 3714 } 3715 3716 Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() { 3717 return annotationData().declaredAnnotations; 3718 } 3719 3720 /* Backing store of user-defined values pertaining to this class. 3721 * Maintained by the ClassValue class. 3722 */ 3723 transient ClassValue.ClassValueMap classValueMap; 3724 3725 /** 3726 * Returns an {@code AnnotatedType} object that represents the use of a 3727 * type to specify the superclass of the entity represented by this {@code 3728 * Class} object. (The <em>use</em> of type Foo to specify the superclass 3729 * in '... extends Foo' is distinct from the <em>declaration</em> of class 3730 * Foo.) 3731 * 3732 * <p> If this {@code Class} object represents a class whose declaration 3733 * does not explicitly indicate an annotated superclass, then the return 3734 * value is an {@code AnnotatedType} object representing an element with no 3735 * annotations. 3736 * 3737 * <p> If this {@code Class} represents either the {@code Object} class, an 3738 * interface type, an array type, a primitive type, or void, the return 3739 * value is {@code null}. 3740 * 3741 * @return an object representing the superclass 3742 * @since 1.8 3743 */ 3744 public AnnotatedType getAnnotatedSuperclass() { 3745 if (this == Object.class || 3746 isInterface() || 3747 isArray() || 3748 isPrimitive() || 3749 this == Void.TYPE) { 3750 return null; 3751 } 3752 3753 return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this); 3754 } 3755 3756 /** 3757 * Returns an array of {@code AnnotatedType} objects that represent the use 3758 * of types to specify superinterfaces of the entity represented by this 3759 * {@code Class} object. (The <em>use</em> of type Foo to specify a 3760 * superinterface in '... implements Foo' is distinct from the 3761 * <em>declaration</em> of interface Foo.) 3762 * 3763 * <p> If this {@code Class} object represents a class, the return value is 3764 * an array containing objects representing the uses of interface types to 3765 * specify interfaces implemented by the class. The order of the objects in 3766 * the array corresponds to the order of the interface types used in the 3767 * 'implements' clause of the declaration of this {@code Class} object. 3768 * 3769 * <p> If this {@code Class} object represents an interface, the return 3770 * value is an array containing objects representing the uses of interface 3771 * types to specify interfaces directly extended by the interface. The 3772 * order of the objects in the array corresponds to the order of the 3773 * interface types used in the 'extends' clause of the declaration of this 3774 * {@code Class} object. 3775 * 3776 * <p> If this {@code Class} object represents a class or interface whose 3777 * declaration does not explicitly indicate any annotated superinterfaces, 3778 * the return value is an array of length 0. 3779 * 3780 * <p> If this {@code Class} object represents either the {@code Object} 3781 * class, an array type, a primitive type, or void, the return value is an 3782 * array of length 0. 3783 * 3784 * @return an array representing the superinterfaces 3785 * @since 1.8 3786 */ 3787 public AnnotatedType[] getAnnotatedInterfaces() { 3788 return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this); 3789 } 3790 3791 private native Class<?> getNestHost0(); 3792 3793 /** 3794 * Returns the nest host of the <a href=#nest>nest</a> to which the class 3795 * or interface represented by this {@code Class} object belongs. 3796 * Every class and interface belongs to exactly one nest. 3797 * 3798 * If the nest host of this class or interface has previously 3799 * been determined, then this method returns the nest host. 3800 * If the nest host of this class or interface has 3801 * not previously been determined, then this method determines the nest 3802 * host using the algorithm of JVMS 5.4.4, and returns it. 3803 * 3804 * Often, a class or interface belongs to a nest consisting only of itself, 3805 * in which case this method returns {@code this} to indicate that the class 3806 * or interface is the nest host. 3807 * 3808 * <p>If this {@code Class} object represents a primitive type, an array type, 3809 * or {@code void}, then this method returns {@code this}, 3810 * indicating that the represented entity belongs to the nest consisting only of 3811 * itself, and is the nest host. 3812 * 3813 * @return the nest host of this class or interface 3814 * 3815 * @since 11 3816 * @jvms 4.7.28 The {@code NestHost} Attribute 3817 * @jvms 4.7.29 The {@code NestMembers} Attribute 3818 * @jvms 5.4.4 Access Control 3819 */ 3820 public Class<?> getNestHost() { 3821 if (isPrimitive() || isArray()) { 3822 return this; 3823 } 3824 return getNestHost0(); 3825 } 3826 3827 /** 3828 * Determines if the given {@code Class} is a nestmate of the 3829 * class or interface represented by this {@code Class} object. 3830 * Two classes or interfaces are nestmates 3831 * if they have the same {@linkplain #getNestHost() nest host}. 3832 * 3833 * @param c the class to check 3834 * @return {@code true} if this class and {@code c} are members of 3835 * the same nest; and {@code false} otherwise. 3836 * 3837 * @since 11 3838 */ 3839 public boolean isNestmateOf(Class<?> c) { 3840 if (this == c) { 3841 return true; 3842 } 3843 if (isPrimitive() || isArray() || 3844 c.isPrimitive() || c.isArray()) { 3845 return false; 3846 } 3847 3848 return getNestHost() == c.getNestHost(); 3849 } 3850 3851 private native Class<?>[] getNestMembers0(); 3852 3853 /** 3854 * Returns an array containing {@code Class} objects representing all the 3855 * classes and interfaces that are members of the nest to which the class 3856 * or interface represented by this {@code Class} object belongs. 3857 * 3858 * First, this method obtains the {@linkplain #getNestHost() nest host}, 3859 * {@code H}, of the nest to which the class or interface represented by 3860 * this {@code Class} object belongs. The zeroth element of the returned 3861 * array is {@code H}. 3862 * 3863 * Then, for each class or interface {@code C} which is recorded by {@code H} 3864 * as being a member of its nest, this method attempts to obtain the {@code Class} 3865 * object for {@code C} (using {@linkplain #getClassLoader() the defining class 3866 * loader} of the current {@code Class} object), and then obtains the 3867 * {@linkplain #getNestHost() nest host} of the nest to which {@code C} belongs. 3868 * The classes and interfaces which are recorded by {@code H} as being members 3869 * of its nest, and for which {@code H} can be determined as their nest host, 3870 * are indicated by subsequent elements of the returned array. The order of 3871 * such elements is unspecified. Duplicates are permitted. 3872 * 3873 * <p>If this {@code Class} object represents a primitive type, an array type, 3874 * or {@code void}, then this method returns a single-element array containing 3875 * {@code this}. 3876 * 3877 * @apiNote 3878 * The returned array includes only the nest members recorded in the {@code NestMembers} 3879 * attribute, and not any hidden classes that were added to the nest via 3880 * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 3881 * Lookup::defineHiddenClass}. 3882 * 3883 * @return an array of all classes and interfaces in the same nest as 3884 * this class or interface 3885 * 3886 * @since 11 3887 * @see #getNestHost() 3888 * @jvms 4.7.28 The {@code NestHost} Attribute 3889 * @jvms 4.7.29 The {@code NestMembers} Attribute 3890 */ 3891 public Class<?>[] getNestMembers() { 3892 if (isPrimitive() || isArray()) { 3893 return new Class<?>[] { this }; 3894 } 3895 Class<?>[] members = getNestMembers0(); 3896 // Can't actually enable this due to bootstrapping issues 3897 // assert(members.length != 1 || members[0] == this); // expected invariant from VM 3898 return members; 3899 } 3900 3901 /** 3902 * Returns the descriptor string of the entity (class, interface, array class, 3903 * primitive type, or {@code void}) represented by this {@code Class} object. 3904 * 3905 * <p> If this {@code Class} object represents a class or interface, 3906 * not an array class, then: 3907 * <ul> 3908 * <li> If the class or interface is not {@linkplain Class#isHidden() hidden}, 3909 * then the result is a field descriptor (JVMS {@jvms 4.3.2}) 3910 * for the class or interface. Calling 3911 * {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor} 3912 * with the result descriptor string produces a {@link ClassDesc ClassDesc} 3913 * describing this class or interface. 3914 * <li> If the class or interface is {@linkplain Class#isHidden() hidden}, 3915 * then the result is a string of the form: 3916 * <blockquote> 3917 * {@code "L" +} <em>N</em> {@code + "." + <suffix> + ";"} 3918 * </blockquote> 3919 * where <em>N</em> is the {@linkplain ClassLoader##binary-name binary name} 3920 * encoded in internal form indicated by the {@code class} file passed to 3921 * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 3922 * Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name. 3923 * A hidden class or interface has no {@linkplain ClassDesc nominal descriptor}. 3924 * The result string is not a type descriptor. 3925 * </ul> 3926 * 3927 * <p> If this {@code Class} object represents an array class, then 3928 * the result is a string consisting of one or more '{@code [}' characters 3929 * representing the depth of the array nesting, followed by the 3930 * descriptor string of the element type. 3931 * <ul> 3932 * <li> If the element type is not a {@linkplain Class#isHidden() hidden} class 3933 * or interface, then this array class can be described nominally. 3934 * Calling {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor} 3935 * with the result descriptor string produces a {@link ClassDesc ClassDesc} 3936 * describing this array class. 3937 * <li> If the element type is a {@linkplain Class#isHidden() hidden} class or 3938 * interface, then this array class cannot be described nominally. 3939 * The result string is not a type descriptor. 3940 * </ul> 3941 * 3942 * <p> If this {@code Class} object represents a primitive type or 3943 * {@code void}, then the result is a field descriptor string which 3944 * is a one-letter code corresponding to a primitive type or {@code void} 3945 * ({@code "B", "C", "D", "F", "I", "J", "S", "Z", "V"}) (JVMS {@jvms 4.3.2}). 3946 * 3947 * @return the descriptor string for this {@code Class} object 3948 * @jvms 4.3.2 Field Descriptors 3949 * @since 12 3950 */ 3951 @Override 3952 public String descriptorString() { 3953 if (isPrimitive()) 3954 return Wrapper.forPrimitiveType(this).basicTypeString(); 3955 3956 if (isArray()) { 3957 return "[".concat(componentType.descriptorString()); 3958 } else if (isHidden()) { 3959 String name = getName(); 3960 int index = name.indexOf('/'); 3961 return new StringBuilder(name.length() + 2) 3962 .append('L') 3963 .append(name.substring(0, index).replace('.', '/')) 3964 .append('.') 3965 .append(name, index + 1, name.length()) 3966 .append(';') 3967 .toString(); 3968 } else { 3969 String name = getName().replace('.', '/'); 3970 return StringConcatHelper.concat("L", name, ";"); 3971 } 3972 } 3973 3974 /** 3975 * Returns the component type of this {@code Class}, if it describes 3976 * an array type, or {@code null} otherwise. 3977 * 3978 * @implSpec 3979 * Equivalent to {@link Class#getComponentType()}. 3980 * 3981 * @return a {@code Class} describing the component type, or {@code null} 3982 * if this {@code Class} does not describe an array type 3983 * @since 12 3984 */ 3985 @Override 3986 public Class<?> componentType() { 3987 return isArray() ? componentType : null; 3988 } 3989 3990 /** 3991 * Returns a {@code Class} for an array type whose component type 3992 * is described by this {@linkplain Class}. 3993 * 3994 * @throws UnsupportedOperationException if this component type is {@linkplain 3995 * Void#TYPE void} or if the number of dimensions of the resulting array 3996 * type would exceed 255. 3997 * @return a {@code Class} describing the array type 3998 * @jvms 4.3.2 Field Descriptors 3999 * @jvms 4.4.1 The {@code CONSTANT_Class_info} Structure 4000 * @since 12 4001 */ 4002 @Override 4003 public Class<?> arrayType() { 4004 try { 4005 return Array.newInstance(this, 0).getClass(); 4006 } catch (IllegalArgumentException iae) { 4007 throw new UnsupportedOperationException(iae); 4008 } 4009 } 4010 4011 /** 4012 * Returns a nominal descriptor for this instance, if one can be 4013 * constructed, or an empty {@link Optional} if one cannot be. 4014 * 4015 * @return An {@link Optional} containing the resulting nominal descriptor, 4016 * or an empty {@link Optional} if one cannot be constructed. 4017 * @since 12 4018 */ 4019 @Override 4020 public Optional<ClassDesc> describeConstable() { 4021 Class<?> c = isArray() ? elementType() : this; 4022 return c.isHidden() ? Optional.empty() 4023 : Optional.of(ConstantUtils.classDesc(this)); 4024 } 4025 4026 /** 4027 * Returns {@code true} if and only if the underlying class is a hidden class. 4028 * 4029 * @return {@code true} if and only if this class is a hidden class. 4030 * 4031 * @since 15 4032 * @see MethodHandles.Lookup#defineHiddenClass 4033 * @see Class##hiddenClasses Hidden Classes 4034 */ 4035 @IntrinsicCandidate 4036 public native boolean isHidden(); 4037 4038 /** 4039 * Returns an array containing {@code Class} objects representing the 4040 * direct subinterfaces or subclasses permitted to extend or 4041 * implement this class or interface if it is sealed. The order of such elements 4042 * is unspecified. The array is empty if this sealed class or interface has no 4043 * permitted subclass. If this {@code Class} object represents a primitive type, 4044 * {@code void}, an array type, or a class or interface that is not sealed, 4045 * that is {@link #isSealed()} returns {@code false}, then this method returns {@code null}. 4046 * Conversely, if {@link #isSealed()} returns {@code true}, then this method 4047 * returns a non-null value. 4048 * 4049 * For each class or interface {@code C} which is recorded as a permitted 4050 * direct subinterface or subclass of this class or interface, 4051 * this method attempts to obtain the {@code Class} 4052 * object for {@code C} (using {@linkplain #getClassLoader() the defining class 4053 * loader} of the current {@code Class} object). 4054 * The {@code Class} objects which can be obtained and which are direct 4055 * subinterfaces or subclasses of this class or interface, 4056 * are indicated by elements of the returned array. If a {@code Class} object 4057 * cannot be obtained, it is silently ignored, and not included in the result 4058 * array. 4059 * 4060 * @return an array of {@code Class} objects of the permitted subclasses of this class 4061 * or interface, or {@code null} if this class or interface is not sealed. 4062 * 4063 * @jls 8.1 Class Declarations 4064 * @jls 9.1 Interface Declarations 4065 * @since 17 4066 */ 4067 public Class<?>[] getPermittedSubclasses() { 4068 Class<?>[] subClasses; 4069 if (isArray() || isPrimitive() || (subClasses = getPermittedSubclasses0()) == null) { 4070 return null; 4071 } 4072 if (subClasses.length > 0) { 4073 if (Arrays.stream(subClasses).anyMatch(c -> !isDirectSubType(c))) { 4074 subClasses = Arrays.stream(subClasses) 4075 .filter(this::isDirectSubType) 4076 .toArray(s -> new Class<?>[s]); 4077 } 4078 } 4079 return subClasses; 4080 } 4081 4082 private boolean isDirectSubType(Class<?> c) { 4083 if (isInterface()) { 4084 for (Class<?> i : c.getInterfaces(/* cloneArray */ false)) { 4085 if (i == this) { 4086 return true; 4087 } 4088 } 4089 } else { 4090 return c.getSuperclass() == this; 4091 } 4092 return false; 4093 } 4094 4095 /** 4096 * Returns {@code true} if and only if this {@code Class} object represents 4097 * a sealed class or interface. If this {@code Class} object represents a 4098 * primitive type, {@code void}, or an array type, this method returns 4099 * {@code false}. A sealed class or interface has (possibly zero) permitted 4100 * subclasses; {@link #getPermittedSubclasses()} returns a non-null but 4101 * possibly empty value for a sealed class or interface. 4102 * 4103 * @return {@code true} if and only if this {@code Class} object represents 4104 * a sealed class or interface. 4105 * 4106 * @jls 8.1 Class Declarations 4107 * @jls 9.1 Interface Declarations 4108 * @since 17 4109 */ 4110 public boolean isSealed() { 4111 if (isArray() || isPrimitive()) { 4112 return false; 4113 } 4114 return getPermittedSubclasses() != null; 4115 } 4116 4117 private native Class<?>[] getPermittedSubclasses0(); 4118 4119 /* 4120 * Return the class's major and minor class file version packed into an int. 4121 * The high order 16 bits contain the class's minor version. The low order 4122 * 16 bits contain the class's major version. 4123 * 4124 * If the class is an array type then the class file version of its element 4125 * type is returned. If the class is a primitive type then the latest class 4126 * file major version is returned and zero is returned for the minor version. 4127 */ 4128 private int getClassFileVersion() { 4129 Class<?> c = isArray() ? elementType() : this; 4130 return c.getClassFileVersion0(); 4131 } 4132 4133 private native int getClassFileVersion0(); 4134 4135 /* 4136 * Return the access flags as they were in the class's bytecode, including 4137 * the original setting of ACC_SUPER. 4138 * 4139 * If the class is an array type then the access flags of the element type is 4140 * returned. If the class is a primitive then ACC_ABSTRACT | ACC_FINAL | ACC_PUBLIC. 4141 */ 4142 private int getClassAccessFlagsRaw() { 4143 Class<?> c = isArray() ? elementType() : this; 4144 return c.getClassAccessFlagsRaw0(); 4145 } 4146 4147 private native int getClassAccessFlagsRaw0(); 4148 }