1 /*
   2  * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Annotation;
  29 import java.lang.constant.ClassDesc;
  30 import java.lang.constant.ConstantDescs;
  31 import java.lang.invoke.TypeDescriptor;
  32 import java.lang.invoke.MethodHandles;
  33 import java.lang.ref.SoftReference;
  34 import java.io.IOException;
  35 import java.io.InputStream;
  36 import java.io.ObjectStreamField;
  37 import java.lang.reflect.AnnotatedElement;
  38 import java.lang.reflect.AnnotatedType;
  39 import java.lang.reflect.AccessFlag;
  40 import java.lang.reflect.Array;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Executable;
  43 import java.lang.reflect.Field;
  44 import java.lang.reflect.GenericArrayType;
  45 import java.lang.reflect.GenericDeclaration;
  46 import java.lang.reflect.InvocationTargetException;
  47 import java.lang.reflect.Member;
  48 import java.lang.reflect.Method;
  49 import java.lang.reflect.Modifier;
  50 import java.lang.reflect.RecordComponent;
  51 import java.lang.reflect.Type;
  52 import java.lang.reflect.TypeVariable;
  53 import java.lang.constant.Constable;
  54 import java.net.URL;
  55 import java.security.AllPermission;
  56 import java.security.Permissions;
  57 import java.security.ProtectionDomain;
  58 import java.util.ArrayList;
  59 import java.util.Arrays;
  60 import java.util.Collection;
  61 import java.util.HashMap;
  62 import java.util.LinkedHashMap;
  63 import java.util.LinkedHashSet;
  64 import java.util.List;
  65 import java.util.Map;
  66 import java.util.Objects;
  67 import java.util.Optional;
  68 import java.util.Set;
  69 import java.util.stream.Collectors;
  70 
  71 import jdk.internal.constant.ConstantUtils;
  72 import jdk.internal.loader.BootLoader;
  73 import jdk.internal.loader.BuiltinClassLoader;
  74 import jdk.internal.misc.Unsafe;
  75 import jdk.internal.module.Resources;
  76 import jdk.internal.reflect.CallerSensitive;
  77 import jdk.internal.reflect.CallerSensitiveAdapter;
  78 import jdk.internal.reflect.ConstantPool;
  79 import jdk.internal.reflect.Reflection;
  80 import jdk.internal.reflect.ReflectionFactory;
  81 import jdk.internal.vm.annotation.AOTRuntimeSetup;
  82 import jdk.internal.vm.annotation.AOTSafeClassInitializer;
  83 import jdk.internal.vm.annotation.IntrinsicCandidate;
  84 import jdk.internal.vm.annotation.Stable;
  85 
  86 import sun.invoke.util.Wrapper;
  87 import sun.reflect.generics.factory.CoreReflectionFactory;
  88 import sun.reflect.generics.factory.GenericsFactory;
  89 import sun.reflect.generics.repository.ClassRepository;
  90 import sun.reflect.generics.repository.MethodRepository;
  91 import sun.reflect.generics.repository.ConstructorRepository;
  92 import sun.reflect.generics.scope.ClassScope;
  93 import sun.reflect.annotation.*;
  94 
  95 /**
  96  * Instances of the class {@code Class} represent classes and
  97  * interfaces in a running Java application. An enum class and a record
  98  * class are kinds of class; an annotation interface is a kind of
  99  * interface. Every array also belongs to a class that is reflected as
 100  * a {@code Class} object that is shared by all arrays with the same
 101  * element type and number of dimensions.  The primitive Java types
 102  * ({@code boolean}, {@code byte}, {@code char}, {@code short}, {@code
 103  * int}, {@code long}, {@code float}, and {@code double}), and the
 104  * keyword {@code void} are also represented as {@code Class} objects.
 105  *
 106  * <p> {@code Class} has no public constructor. Instead a {@code Class}
 107  * object is constructed automatically by the Java Virtual Machine when
 108  * a class is derived from the bytes of a {@code class} file through
 109  * the invocation of one of the following methods:
 110  * <ul>
 111  * <li> {@link ClassLoader#defineClass(String, byte[], int, int) ClassLoader::defineClass}
 112  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[])
 113  *      java.lang.invoke.MethodHandles.Lookup::defineClass}
 114  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 115  *      java.lang.invoke.MethodHandles.Lookup::defineHiddenClass}
 116  * </ul>
 117  *
 118  * <p> The methods of class {@code Class} expose many characteristics of a
 119  * class or interface. Most characteristics are derived from the {@code class}
 120  * file that the class loader passed to the Java Virtual Machine or
 121  * from the {@code class} file passed to {@code Lookup::defineClass}
 122  * or {@code Lookup::defineHiddenClass}.
 123  * A few characteristics are determined by the class loading environment
 124  * at run time, such as the module returned by {@link #getModule() getModule()}.
 125  *
 126  * <p> The following example uses a {@code Class} object to print the
 127  * class name of an object:
 128  *
 129  * {@snippet lang="java" :
 130  * void printClassName(Object obj) {
 131  *     System.out.println("The class of " + obj +
 132  *                        " is " + obj.getClass().getName());
 133  * }}
 134  *
 135  * It is also possible to get the {@code Class} object for a named
 136  * class or interface (or for {@code void}) using a <dfn>class literal</dfn>
 137  * (JLS {@jls 15.8.2}).
 138  * For example:
 139  *
 140  * {@snippet lang="java" :
 141  * System.out.println("The name of class Foo is: " + Foo.class.getName()); // @highlight substring="Foo.class"
 142  * }
 143  *
 144  * <p> Some methods of class {@code Class} expose whether the declaration of
 145  * a class or interface in Java source code was <em>enclosed</em> within
 146  * another declaration. Other methods describe how a class or interface
 147  * is situated in a <dfn>{@index "nest"}</dfn>. A nest is a set of
 148  * classes and interfaces, in the same run-time package, that
 149  * allow mutual access to their {@code private} members.
 150  * The classes and interfaces are known as <dfn>{@index "nestmates"}</dfn>
 151  * (JVMS {@jvms 4.7.29}).
 152  * One nestmate acts as the
 153  * <dfn>nest host</dfn> (JVMS {@jvms 4.7.28}), and enumerates the other nestmates which
 154  * belong to the nest; each of them in turn records it as the nest host.
 155  * The classes and interfaces which belong to a nest, including its host, are
 156  * determined when
 157  * {@code class} files are generated, for example, a Java compiler
 158  * will typically record a top-level class as the host of a nest where the
 159  * other members are the classes and interfaces whose declarations are
 160  * enclosed within the top-level class declaration.
 161  *
 162  * <h2><a id=hiddenClasses>Hidden Classes</a></h2>
 163  * A class or interface created by the invocation of
 164  * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 165  * Lookup::defineHiddenClass} is a {@linkplain Class#isHidden() <dfn>hidden</dfn>}
 166  * class or interface.
 167  * All kinds of class, including enum classes and record classes, may be
 168  * hidden classes; all kinds of interface, including annotation interfaces,
 169  * may be hidden interfaces.
 170  *
 171  * The {@linkplain #getName() name of a hidden class or interface} is
 172  * not a {@linkplain ClassLoader##binary-name binary name},
 173  * which means the following:
 174  * <ul>
 175  * <li>A hidden class or interface cannot be referenced by the constant pools
 176  *     of other classes and interfaces.
 177  * <li>A hidden class or interface cannot be described in
 178  *     {@linkplain java.lang.constant.ConstantDesc <em>nominal form</em>} by
 179  *     {@link #describeConstable() Class::describeConstable},
 180  *     {@link ClassDesc#of(String) ClassDesc::of}, or
 181  *     {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}.
 182  * <li>A hidden class or interface cannot be discovered by {@link #forName Class::forName}
 183  *     or {@link ClassLoader#loadClass(String, boolean) ClassLoader::loadClass}.
 184  * </ul>
 185  *
 186  * A hidden class or interface is never an array class, but may be
 187  * the element type of an array. In all other respects, the fact that
 188  * a class or interface is hidden has no bearing on the characteristics
 189  * exposed by the methods of class {@code Class}.
 190  *
 191  * <h2><a id=implicitClasses>Implicitly Declared Classes</a></h2>
 192  *
 193  * Conventionally, a Java compiler, starting from a source file for an
 194  * implicitly declared class, say {@code HelloWorld.java}, creates a
 195  * similarly-named {@code class} file, {@code HelloWorld.class}, where
 196  * the class stored in that {@code class} file is named {@code
 197  * "HelloWorld"}, matching the base names of the source and {@code
 198  * class} files.
 199  *
 200  * For the {@code Class} object of an implicitly declared class {@code
 201  * HelloWorld}, the methods to get the {@linkplain #getName name} and
 202  * {@linkplain #getTypeName type name} return results
 203  * equal to {@code "HelloWorld"}. The {@linkplain #getSimpleName
 204  * simple name} of such an implicitly declared class is {@code "HelloWorld"} and
 205  * the {@linkplain #getCanonicalName canonical name} is {@code "HelloWorld"}.
 206  *
 207  * @param <T> the type of the class modeled by this {@code Class}
 208  * object.  For example, the type of {@code String.class} is {@code
 209  * Class<String>}.  Use {@code Class<?>} if the class being modeled is
 210  * unknown.
 211  *
 212  * @see     java.lang.ClassLoader#defineClass(byte[], int, int)
 213  * @since   1.0
 214  */
 215 @AOTSafeClassInitializer
 216 public final class Class<T> implements java.io.Serializable,
 217                               GenericDeclaration,
 218                               Type,
 219                               AnnotatedElement,
 220                               TypeDescriptor.OfField<Class<?>>,
 221                               Constable {
 222     private static final int ANNOTATION= 0x00002000;
 223     private static final int ENUM      = 0x00004000;
 224     private static final int SYNTHETIC = 0x00001000;
 225 
 226     private static native void registerNatives();
 227     static {
 228         runtimeSetup();
 229     }
 230 
 231     /// No significant static final fields; [#resetArchivedStates()] handles
 232     /// prevents storing [#reflectionFactory] into AOT image.
 233     @AOTRuntimeSetup
 234     private static void runtimeSetup() {
 235         registerNatives();
 236     }
 237 
 238     /*
 239      * Private constructor. Only the Java Virtual Machine creates Class objects.
 240      * This constructor is not used and prevents the default constructor being
 241      * generated.
 242      */
 243     private Class(ClassLoader loader, Class<?> arrayComponentType, char mods, ProtectionDomain pd, boolean isPrim, char flags) {
 244         // Initialize final field for classLoader.  The initialization value of non-null
 245         // prevents future JIT optimizations from assuming this final field is null.
 246         // The following assignments are done directly by the VM without calling this constructor.
 247         classLoader = loader;
 248         componentType = arrayComponentType;
 249         modifiers = mods;
 250         protectionDomain = pd;
 251         primitive = isPrim;
 252         classFileAccessFlags = flags;
 253     }
 254 
 255     /**
 256      * Converts the object to a string. The string representation is the
 257      * string "class" or "interface", followed by a space, and then by the
 258      * name of the class in the format returned by {@code getName}.
 259      * If this {@code Class} object represents a primitive type,
 260      * this method returns the name of the primitive type.  If
 261      * this {@code Class} object represents void this method returns
 262      * "void". If this {@code Class} object represents an array type,
 263      * this method returns "class " followed by {@code getName}.
 264      *
 265      * @return a string representation of this {@code Class} object.
 266      */
 267     public String toString() {
 268         String kind = isInterface() ? "interface " : isPrimitive() ? "" : "class ";
 269         return kind.concat(getName());
 270     }
 271 
 272     /**
 273      * Returns a string describing this {@code Class}, including
 274      * information about modifiers, {@link #isSealed() sealed}/{@code
 275      * non-sealed} status, and type parameters.
 276      *
 277      * The string is formatted as a list of type modifiers, if any,
 278      * followed by the kind of type (empty string for primitive types
 279      * and {@code class}, {@code enum}, {@code interface},
 280      * {@code @interface}, or {@code record} as appropriate), followed
 281      * by the type's name, followed by an angle-bracketed
 282      * comma-separated list of the type's type parameters, if any,
 283      * including informative bounds on the type parameters, if any.
 284      *
 285      * A space is used to separate modifiers from one another and to
 286      * separate any modifiers from the kind of type. The modifiers
 287      * occur in canonical order. If there are no type parameters, the
 288      * type parameter list is elided.
 289      *
 290      * For an array type, the string starts with the type name,
 291      * followed by an angle-bracketed comma-separated list of the
 292      * type's type parameters, if any, followed by a sequence of
 293      * {@code []} characters, one set of brackets per dimension of
 294      * the array.
 295      *
 296      * <p>Note that since information about the runtime representation
 297      * of a type is being generated, modifiers not present on the
 298      * originating source code or illegal on the originating source
 299      * code may be present.
 300      *
 301      * @return a string describing this {@code Class}, including
 302      * information about modifiers and type parameters
 303      *
 304      * @since 1.8
 305      */
 306     public String toGenericString() {
 307         if (isPrimitive()) {
 308             return toString();
 309         } else {
 310             StringBuilder sb = new StringBuilder();
 311             Class<?> component = this;
 312             int arrayDepth = 0;
 313 
 314             if (isArray()) {
 315                 do {
 316                     arrayDepth++;
 317                     component = component.getComponentType();
 318                 } while (component.isArray());
 319                 sb.append(component.getName());
 320             } else {
 321                 // Class modifiers are a superset of interface modifiers
 322                 int modifiers = getModifiers() & Modifier.classModifiers();
 323                 if (modifiers != 0) {
 324                     sb.append(Modifier.toString(modifiers));
 325                     sb.append(' ');
 326                 }
 327 
 328                 // A class cannot be strictfp and sealed/non-sealed so
 329                 // it is sufficient to check for sealed-ness after all
 330                 // modifiers are printed.
 331                 addSealingInfo(modifiers, sb);
 332 
 333                 if (isAnnotation()) {
 334                     sb.append('@');
 335                 }
 336                 if (isInterface()) { // Note: all annotation interfaces are interfaces
 337                     sb.append("interface");
 338                 } else {
 339                     if (isEnum())
 340                         sb.append("enum");
 341                     else if (isRecord())
 342                         sb.append("record");
 343                     else
 344                         sb.append("class");
 345                 }
 346                 sb.append(' ');
 347                 sb.append(getName());
 348             }
 349 
 350             TypeVariable<?>[] typeparms = component.getTypeParameters();
 351             if (typeparms.length > 0) {
 352                 sb.append(Arrays.stream(typeparms)
 353                           .map(Class::typeVarBounds)
 354                           .collect(Collectors.joining(",", "<", ">")));
 355             }
 356 
 357             if (arrayDepth > 0) sb.append("[]".repeat(arrayDepth));
 358 
 359             return sb.toString();
 360         }
 361     }
 362 
 363     private void addSealingInfo(int modifiers, StringBuilder sb) {
 364         // A class can be final XOR sealed XOR non-sealed.
 365         if (Modifier.isFinal(modifiers)) {
 366             return; // no-op
 367         } else {
 368             if (isSealed()) {
 369                 sb.append("sealed ");
 370                 return;
 371             } else {
 372                 // Check for sealed ancestor, which implies this class
 373                 // is non-sealed.
 374                 if (hasSealedAncestor(this)) {
 375                     sb.append("non-sealed ");
 376                 }
 377             }
 378         }
 379     }
 380 
 381     private boolean hasSealedAncestor(Class<?> clazz) {
 382         // From JLS 8.1.1.2:
 383         // "It is a compile-time error if a class has a sealed direct
 384         // superclass or a sealed direct superinterface, and is not
 385         // declared final, sealed, or non-sealed either explicitly or
 386         // implicitly.
 387         // Thus, an effect of the sealed keyword is to force all
 388         // direct subclasses to explicitly declare whether they are
 389         // final, sealed, or non-sealed. This avoids accidentally
 390         // exposing a sealed class hierarchy to unwanted subclassing."
 391 
 392         // Therefore, will just check direct superclass and
 393         // superinterfaces.
 394         var superclass = clazz.getSuperclass();
 395         if (superclass != null && superclass.isSealed()) {
 396             return true;
 397         }
 398         for (var superinterface : clazz.getInterfaces()) {
 399             if (superinterface.isSealed()) {
 400                 return true;
 401             }
 402         }
 403         return false;
 404     }
 405 
 406     static String typeVarBounds(TypeVariable<?> typeVar) {
 407         Type[] bounds = typeVar.getBounds();
 408         if (bounds.length == 1 && bounds[0].equals(Object.class)) {
 409             return typeVar.getName();
 410         } else {
 411             return typeVar.getName() + " extends " +
 412                 Arrays.stream(bounds)
 413                 .map(Type::getTypeName)
 414                 .collect(Collectors.joining(" & "));
 415         }
 416     }
 417 
 418     /**
 419      * Returns the {@code Class} object associated with the class or
 420      * interface with the given string name.  Invoking this method is
 421      * equivalent to:
 422      *
 423      * {@snippet lang="java" :
 424      * Class.forName(className, true, currentLoader)
 425      * }
 426      *
 427      * where {@code currentLoader} denotes the defining class loader of
 428      * the current class.
 429      *
 430      * <p> For example, the following code fragment returns the
 431      * runtime {@code Class} object for the class named
 432      * {@code java.lang.Thread}:
 433      *
 434      * {@snippet lang="java" :
 435      * Class<?> t = Class.forName("java.lang.Thread");
 436      * }
 437      * <p>
 438      * A call to {@code forName("X")} causes the class named
 439      * {@code X} to be initialized.
 440      *
 441      * <p>
 442      * In cases where this method is called from a context where there is no
 443      * caller frame on the stack (e.g. when called directly from a JNI
 444      * attached thread), the system class loader is used.
 445      *
 446      * @param     className the {@linkplain ClassLoader##binary-name binary name}
 447      *                      of the class or the string representing an array type
 448      * @return    the {@code Class} object for the class with the
 449      *            specified name.
 450      * @throws    LinkageError if the linkage fails
 451      * @throws    ExceptionInInitializerError if the initialization provoked
 452      *            by this method fails
 453      * @throws    ClassNotFoundException if the class cannot be located
 454      *
 455      * @jls 12.2 Loading of Classes and Interfaces
 456      * @jls 12.3 Linking of Classes and Interfaces
 457      * @jls 12.4 Initialization of Classes and Interfaces
 458      */
 459     @CallerSensitive
 460     public static Class<?> forName(String className)
 461                 throws ClassNotFoundException {
 462         Class<?> caller = Reflection.getCallerClass();
 463         return forName(className, caller);
 464     }
 465 
 466     // Caller-sensitive adapter method for reflective invocation
 467     @CallerSensitiveAdapter
 468     private static Class<?> forName(String className, Class<?> caller)
 469             throws ClassNotFoundException {
 470         ClassLoader loader = (caller == null) ? ClassLoader.getSystemClassLoader()
 471                                               : ClassLoader.getClassLoader(caller);
 472         return forName0(className, true, loader, caller);
 473     }
 474 
 475     /**
 476      * Returns the {@code Class} object associated with the class or
 477      * interface with the given string name, using the given class loader.
 478      * Given the {@linkplain ClassLoader##binary-name binary name} for a class or interface,
 479      * this method attempts to locate and load the class or interface. The specified
 480      * class loader is used to load the class or interface.  If the parameter
 481      * {@code loader} is {@code null}, the class is loaded through the bootstrap
 482      * class loader.  The class is initialized only if the
 483      * {@code initialize} parameter is {@code true} and if it has
 484      * not been initialized earlier.
 485      *
 486      * <p> This method cannot be used to obtain any of the {@code Class} objects
 487      * representing primitive types or void, hidden classes or interfaces,
 488      * or array classes whose element type is a hidden class or interface.
 489      * If {@code name} denotes a primitive type or void, for example {@code I},
 490      * an attempt will be made to locate a user-defined class in the unnamed package
 491      * whose name is {@code I} instead.
 492      * To obtain a {@code Class} object for a named primitive type
 493      * such as {@code int} or {@code long} use {@link
 494      * #forPrimitiveName(String)}.
 495      *
 496      * <p> To obtain the {@code Class} object associated with an array class,
 497      * the name consists of one or more {@code '['} representing the depth
 498      * of the array nesting, followed by the element type as encoded in
 499      * {@linkplain ##nameFormat the table} specified in {@code Class.getName()}.
 500      *
 501      * <p> Examples:
 502      * {@snippet lang="java" :
 503      * Class<?> threadClass = Class.forName("java.lang.Thread", false, currentLoader);
 504      * Class<?> stringArrayClass = Class.forName("[Ljava.lang.String;", false, currentLoader);
 505      * Class<?> intArrayClass = Class.forName("[[[I", false, currentLoader);   // Class of int[][][]
 506      * Class<?> nestedClass = Class.forName("java.lang.Character$UnicodeBlock", false, currentLoader);
 507      * Class<?> fooClass = Class.forName("Foo", true, currentLoader);
 508      * }
 509      *
 510      * <p> A call to {@code getName()} on the {@code Class} object returned
 511      * from {@code forName(}<i>N</i>{@code )} returns <i>N</i>.
 512      *
 513      * <p> A call to {@code forName("[L}<i>N</i>{@code ;")} causes the element type
 514      * named <i>N</i> to be loaded but not initialized regardless of the value
 515      * of the {@code initialize} parameter.
 516      *
 517      * @apiNote
 518      * This method throws errors related to loading, linking or initializing
 519      * as specified in Sections {@jls 12.2}, {@jls 12.3}, and {@jls 12.4} of
 520      * <cite>The Java Language Specification</cite>.
 521      * In addition, this method does not check whether the requested class
 522      * is accessible to its caller.
 523      *
 524      * @param name       the {@linkplain ClassLoader##binary-name binary name}
 525      *                   of the class or the string representing an array class
 526      *
 527      * @param initialize if {@code true} the class will be initialized
 528      *                   (which implies linking). See Section {@jls
 529      *                   12.4} of <cite>The Java Language
 530      *                   Specification</cite>.
 531      * @param loader     class loader from which the class must be loaded
 532      * @return           class object representing the desired class
 533      *
 534      * @throws    LinkageError if the linkage fails
 535      * @throws    ExceptionInInitializerError if the initialization provoked
 536      *            by this method fails
 537      * @throws    ClassNotFoundException if the class cannot be located by
 538      *            the specified class loader
 539      *
 540      * @see       java.lang.Class#forName(String)
 541      * @see       java.lang.ClassLoader
 542      *
 543      * @jls 12.2 Loading of Classes and Interfaces
 544      * @jls 12.3 Linking of Classes and Interfaces
 545      * @jls 12.4 Initialization of Classes and Interfaces
 546      * @jls 13.1 The Form of a Binary
 547      * @since     1.2
 548      */
 549     public static Class<?> forName(String name, boolean initialize, ClassLoader loader)
 550         throws ClassNotFoundException
 551     {
 552         return forName0(name, initialize, loader, null);
 553     }
 554 
 555     /** Called after security check for system loader access checks have been made. */
 556     private static native Class<?> forName0(String name, boolean initialize,
 557                                             ClassLoader loader,
 558                                             Class<?> caller)
 559         throws ClassNotFoundException;
 560 
 561 
 562     /**
 563      * Returns the {@code Class} with the given {@linkplain ClassLoader##binary-name
 564      * binary name} in the given module.
 565      *
 566      * <p> This method attempts to locate and load the class or interface.
 567      * It does not link the class, and does not run the class initializer.
 568      * If the class is not found, this method returns {@code null}. </p>
 569      *
 570      * <p> If the class loader of the given module defines other modules and
 571      * the given name is a class defined in a different module, this method
 572      * returns {@code null} after the class is loaded. </p>
 573      *
 574      * <p> This method does not check whether the requested class is
 575      * accessible to its caller. </p>
 576      *
 577      * @apiNote
 578      * This method does not support loading of array types, unlike
 579      * {@link #forName(String, boolean, ClassLoader)}. The class name must be
 580      * a binary name.  This method returns {@code null} on failure rather than
 581      * throwing a {@link ClassNotFoundException}, as is done by
 582      * the {@link #forName(String, boolean, ClassLoader)} method.
 583      *
 584      * @param  module   A module
 585      * @param  name     The {@linkplain ClassLoader##binary-name binary name}
 586      *                  of the class
 587      * @return {@code Class} object of the given name defined in the given module;
 588      *         {@code null} if not found.
 589      *
 590      * @throws NullPointerException if the given module or name is {@code null}
 591      *
 592      * @throws LinkageError if the linkage fails
 593      *
 594      * @jls 12.2 Loading of Classes and Interfaces
 595      * @jls 12.3 Linking of Classes and Interfaces
 596      * @since 9
 597      */
 598     public static Class<?> forName(Module module, String name) {
 599         Objects.requireNonNull(module);
 600         Objects.requireNonNull(name);
 601 
 602         ClassLoader cl = module.getClassLoader();
 603         if (cl != null) {
 604             return cl.loadClass(module, name);
 605         } else {
 606             return BootLoader.loadClass(module, name);
 607         }
 608     }
 609 
 610     /**
 611      * {@return the {@code Class} object associated with the
 612      * {@linkplain #isPrimitive() primitive type} of the given name}
 613      * If the argument is not the name of a primitive type, {@code
 614      * null} is returned.
 615      *
 616      * @param primitiveName the name of the primitive type to find
 617      *
 618      * @throws NullPointerException if the argument is {@code null}
 619      *
 620      * @jls 4.2 Primitive Types and Values
 621      * @jls 15.8.2 Class Literals
 622      * @since 22
 623      */
 624     public static Class<?> forPrimitiveName(String primitiveName) {
 625         return switch(primitiveName) {
 626         // Integral types
 627         case "int"     -> int.class;
 628         case "long"    -> long.class;
 629         case "short"   -> short.class;
 630         case "char"    -> char.class;
 631         case "byte"    -> byte.class;
 632 
 633         // Floating-point types
 634         case "float"   -> float.class;
 635         case "double"  -> double.class;
 636 
 637         // Other types
 638         case "boolean" -> boolean.class;
 639         case "void"    -> void.class;
 640 
 641         default        -> null;
 642         };
 643     }
 644 
 645     /**
 646      * Creates a new instance of the class represented by this {@code Class}
 647      * object.  The class is instantiated as if by a {@code new}
 648      * expression with an empty argument list.  The class is initialized if it
 649      * has not already been initialized.
 650      *
 651      * @deprecated This method propagates any exception thrown by the
 652      * nullary constructor, including a checked exception.  Use of
 653      * this method effectively bypasses the compile-time exception
 654      * checking that would otherwise be performed by the compiler.
 655      * The {@link
 656      * java.lang.reflect.Constructor#newInstance(java.lang.Object...)
 657      * Constructor.newInstance} method avoids this problem by wrapping
 658      * any exception thrown by the constructor in a (checked) {@link
 659      * java.lang.reflect.InvocationTargetException}.
 660      *
 661      * <p>The call
 662      *
 663      * {@snippet lang="java" :
 664      * clazz.newInstance()
 665      * }
 666      *
 667      * can be replaced by
 668      *
 669      * {@snippet lang="java" :
 670      * clazz.getDeclaredConstructor().newInstance()
 671      * }
 672      *
 673      * The latter sequence of calls is inferred to be able to throw
 674      * the additional exception types {@link
 675      * InvocationTargetException} and {@link
 676      * NoSuchMethodException}. Both of these exception types are
 677      * subclasses of {@link ReflectiveOperationException}.
 678      *
 679      * @return  a newly allocated instance of the class represented by this
 680      *          object.
 681      * @throws  IllegalAccessException  if the class or its nullary
 682      *          constructor is not accessible.
 683      * @throws  InstantiationException
 684      *          if this {@code Class} represents an abstract class,
 685      *          an interface, an array class, a primitive type, or void;
 686      *          or if the class has no nullary constructor;
 687      *          or if the instantiation fails for some other reason.
 688      * @throws  ExceptionInInitializerError if the initialization
 689      *          provoked by this method fails.
 690      */
 691     @CallerSensitive
 692     @Deprecated(since="9")
 693     public T newInstance()
 694         throws InstantiationException, IllegalAccessException
 695     {
 696         // Constructor lookup
 697         Constructor<T> tmpConstructor = cachedConstructor;
 698         if (tmpConstructor == null) {
 699             if (this == Class.class) {
 700                 throw new IllegalAccessException(
 701                     "Can not call newInstance() on the Class for java.lang.Class"
 702                 );
 703             }
 704             try {
 705                 Class<?>[] empty = {};
 706                 final Constructor<T> c = getReflectionFactory().copyConstructor(
 707                     getConstructor0(empty, Member.DECLARED));
 708                 // Disable accessibility checks on the constructor
 709                 // access check is done with the true caller
 710                 c.setAccessible(true);
 711                 cachedConstructor = tmpConstructor = c;
 712             } catch (NoSuchMethodException e) {
 713                 throw (InstantiationException)
 714                     new InstantiationException(getName()).initCause(e);
 715             }
 716         }
 717 
 718         try {
 719             Class<?> caller = Reflection.getCallerClass();
 720             return getReflectionFactory().newInstance(tmpConstructor, null, caller);
 721         } catch (InvocationTargetException e) {
 722             Unsafe.getUnsafe().throwException(e.getTargetException());
 723             // Not reached
 724             return null;
 725         }
 726     }
 727 
 728     private transient volatile Constructor<T> cachedConstructor;
 729 
 730     /**
 731      * Determines if the specified {@code Object} is assignment-compatible
 732      * with the object represented by this {@code Class}.  This method is
 733      * the dynamic equivalent of the Java language {@code instanceof}
 734      * operator. The method returns {@code true} if the specified
 735      * {@code Object} argument is non-null and can be cast to the
 736      * reference type represented by this {@code Class} object without
 737      * raising a {@code ClassCastException.} It returns {@code false}
 738      * otherwise.
 739      *
 740      * <p> Specifically, if this {@code Class} object represents a
 741      * declared class, this method returns {@code true} if the specified
 742      * {@code Object} argument is an instance of the represented class (or
 743      * of any of its subclasses); it returns {@code false} otherwise. If
 744      * this {@code Class} object represents an array class, this method
 745      * returns {@code true} if the specified {@code Object} argument
 746      * can be converted to an object of the array class by an identity
 747      * conversion or by a widening reference conversion; it returns
 748      * {@code false} otherwise. If this {@code Class} object
 749      * represents an interface, this method returns {@code true} if the
 750      * class or any superclass of the specified {@code Object} argument
 751      * implements this interface; it returns {@code false} otherwise. If
 752      * this {@code Class} object represents a primitive type, this method
 753      * returns {@code false}.
 754      *
 755      * @param   obj the object to check
 756      * @return  true if {@code obj} is an instance of this class
 757      *
 758      * @since 1.1
 759      */
 760     @IntrinsicCandidate
 761     public native boolean isInstance(Object obj);
 762 
 763 
 764     /**
 765      * Determines if the class or interface represented by this
 766      * {@code Class} object is either the same as, or is a superclass or
 767      * superinterface of, the class or interface represented by the specified
 768      * {@code Class} parameter. It returns {@code true} if so;
 769      * otherwise it returns {@code false}. If this {@code Class}
 770      * object represents a primitive type, this method returns
 771      * {@code true} if the specified {@code Class} parameter is
 772      * exactly this {@code Class} object; otherwise it returns
 773      * {@code false}.
 774      *
 775      * <p> Specifically, this method tests whether the type represented by the
 776      * specified {@code Class} parameter can be converted to the type
 777      * represented by this {@code Class} object via an identity conversion
 778      * or via a widening reference conversion. See <cite>The Java Language
 779      * Specification</cite>, sections {@jls 5.1.1} and {@jls 5.1.4},
 780      * for details.
 781      *
 782      * @param     cls the {@code Class} object to be checked
 783      * @return    the {@code boolean} value indicating whether objects of the
 784      *            type {@code cls} can be assigned to objects of this class
 785      * @throws    NullPointerException if the specified Class parameter is
 786      *            null.
 787      * @since     1.1
 788      */
 789     @IntrinsicCandidate
 790     public native boolean isAssignableFrom(Class<?> cls);
 791 
 792 
 793     /**
 794      * Determines if this {@code Class} object represents an
 795      * interface type.
 796      *
 797      * @return  {@code true} if this {@code Class} object represents an interface;
 798      *          {@code false} otherwise.
 799      */
 800     public boolean isInterface() {
 801         return Modifier.isInterface(modifiers);
 802     }
 803 
 804 
 805     /**
 806      * Determines if this {@code Class} object represents an array class.
 807      *
 808      * @return  {@code true} if this {@code Class} object represents an array class;
 809      *          {@code false} otherwise.
 810      * @since   1.1
 811      */
 812     public boolean isArray() {
 813         return componentType != null;
 814     }
 815 
 816 
 817     /**
 818      * Determines if this {@code Class} object represents a primitive
 819      * type or void.
 820      *
 821      * <p> There are nine predefined {@code Class} objects to
 822      * represent the eight primitive types and void.  These are
 823      * created by the Java Virtual Machine, and have the same
 824      * {@linkplain #getName() names} as the primitive types that they
 825      * represent, namely {@code boolean}, {@code byte}, {@code char},
 826      * {@code short}, {@code int}, {@code long}, {@code float}, and
 827      * {@code double}.
 828      *
 829      * <p>No other class objects are considered primitive.
 830      *
 831      * @apiNote
 832      * A {@code Class} object represented by a primitive type can be
 833      * accessed via the {@code TYPE} public static final variables
 834      * defined in the primitive wrapper classes such as {@link
 835      * java.lang.Integer#TYPE Integer.TYPE}. In the Java programming
 836      * language, the objects may be referred to by a class literal
 837      * expression such as {@code int.class}.  The {@code Class} object
 838      * for void can be expressed as {@code void.class} or {@link
 839      * java.lang.Void#TYPE Void.TYPE}.
 840      *
 841      * @return true if and only if this class represents a primitive type
 842      *
 843      * @see     java.lang.Boolean#TYPE
 844      * @see     java.lang.Character#TYPE
 845      * @see     java.lang.Byte#TYPE
 846      * @see     java.lang.Short#TYPE
 847      * @see     java.lang.Integer#TYPE
 848      * @see     java.lang.Long#TYPE
 849      * @see     java.lang.Float#TYPE
 850      * @see     java.lang.Double#TYPE
 851      * @see     java.lang.Void#TYPE
 852      * @since 1.1
 853      * @jls 15.8.2 Class Literals
 854      */
 855     public boolean isPrimitive() {
 856         return primitive;
 857     }
 858 
 859     /**
 860      * Returns true if this {@code Class} object represents an annotation
 861      * interface.  Note that if this method returns true, {@link #isInterface()}
 862      * would also return true, as all annotation interfaces are also interfaces.
 863      *
 864      * @return {@code true} if this {@code Class} object represents an annotation
 865      *      interface; {@code false} otherwise
 866      * @since 1.5
 867      */
 868     public boolean isAnnotation() {
 869         return (getModifiers() & ANNOTATION) != 0;
 870     }
 871 
 872     /**
 873      *{@return {@code true} if and only if this class has the synthetic modifier
 874      * bit set}
 875      *
 876      * @jls 13.1 The Form of a Binary
 877      * @jvms 4.1 The {@code ClassFile} Structure
 878      * @see <a
 879      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
 880      * programming language and JVM modeling in core reflection</a>
 881      * @since 1.5
 882      */
 883     public boolean isSynthetic() {
 884         return (getModifiers() & SYNTHETIC) != 0;
 885     }
 886 
 887     /**
 888      * Returns the  name of the entity (class, interface, array class,
 889      * primitive type, or void) represented by this {@code Class} object.
 890      *
 891      * <p> If this {@code Class} object represents a class or interface,
 892      * not an array class, then:
 893      * <ul>
 894      * <li> If the class or interface is not {@linkplain #isHidden() hidden},
 895      *      then the {@linkplain ClassLoader##binary-name binary name}
 896      *      of the class or interface is returned.
 897      * <li> If the class or interface is hidden, then the result is a string
 898      *      of the form: {@code N + '/' + <suffix>}
 899      *      where {@code N} is the {@linkplain ClassLoader##binary-name binary name}
 900      *      indicated by the {@code class} file passed to
 901      *      {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 902      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
 903      * </ul>
 904      *
 905      * <p> If this {@code Class} object represents an array class, then
 906      * the result is a string consisting of one or more '{@code [}' characters
 907      * representing the depth of the array nesting, followed by the element
 908      * type as encoded using the following table:
 909      *
 910      * <blockquote><table class="striped" id="nameFormat">
 911      * <caption style="display:none">Element types and encodings</caption>
 912      * <thead>
 913      * <tr><th scope="col"> Element Type <th scope="col"> Encoding
 914      * </thead>
 915      * <tbody style="text-align:left">
 916      * <tr><th scope="row"> {@code boolean} <td style="text-align:center"> {@code Z}
 917      * <tr><th scope="row"> {@code byte}    <td style="text-align:center"> {@code B}
 918      * <tr><th scope="row"> {@code char}    <td style="text-align:center"> {@code C}
 919      * <tr><th scope="row"> class or interface with {@linkplain ClassLoader##binary-name binary name} <i>N</i>
 920      *                                      <td style="text-align:center"> {@code L}<em>N</em>{@code ;}
 921      * <tr><th scope="row"> {@code double}  <td style="text-align:center"> {@code D}
 922      * <tr><th scope="row"> {@code float}   <td style="text-align:center"> {@code F}
 923      * <tr><th scope="row"> {@code int}     <td style="text-align:center"> {@code I}
 924      * <tr><th scope="row"> {@code long}    <td style="text-align:center"> {@code J}
 925      * <tr><th scope="row"> {@code short}   <td style="text-align:center"> {@code S}
 926      * </tbody>
 927      * </table></blockquote>
 928      *
 929      * <p> If this {@code Class} object represents a primitive type or {@code void},
 930      * then the result is a string with the same spelling as the Java language
 931      * keyword which corresponds to the primitive type or {@code void}.
 932      *
 933      * <p> Examples:
 934      * <blockquote><pre>
 935      * String.class.getName()
 936      *     returns "java.lang.String"
 937      * Character.UnicodeBlock.class.getName()
 938      *     returns "java.lang.Character$UnicodeBlock"
 939      * byte.class.getName()
 940      *     returns "byte"
 941      * (new Object[3]).getClass().getName()
 942      *     returns "[Ljava.lang.Object;"
 943      * (new int[3][4][5][6][7][8][9]).getClass().getName()
 944      *     returns "[[[[[[[I"
 945      * </pre></blockquote>
 946      *
 947      * @apiNote
 948      * Distinct class objects can have the same name but different class loaders.
 949      *
 950      * @return  the name of the class, interface, or other entity
 951      *          represented by this {@code Class} object.
 952      * @jls 13.1 The Form of a Binary
 953      */
 954     public String getName() {
 955         String name = this.name;
 956         return name != null ? name : initClassName();
 957     }
 958 
 959     // Cache the name to reduce the number of calls into the VM.
 960     // This field would be set by VM itself during initClassName call.
 961     private transient String name;
 962     private native String initClassName();
 963 
 964     /**
 965      * Returns the class loader for the class.  Some implementations may use
 966      * null to represent the bootstrap class loader. This method will return
 967      * null in such implementations if this class was loaded by the bootstrap
 968      * class loader.
 969      *
 970      * <p>If this {@code Class} object
 971      * represents a primitive type or void, null is returned.
 972      *
 973      * @return  the class loader that loaded the class or interface
 974      *          represented by this {@code Class} object.
 975      * @see java.lang.ClassLoader
 976      */
 977     public ClassLoader getClassLoader() {
 978         return classLoader;
 979     }
 980 
 981     // Package-private to allow ClassLoader access
 982     ClassLoader getClassLoader0() { return classLoader; }
 983 
 984     /**
 985      * Returns the module that this class or interface is a member of.
 986      *
 987      * If this class represents an array type then this method returns the
 988      * {@code Module} for the element type. If this class represents a
 989      * primitive type or void, then the {@code Module} object for the
 990      * {@code java.base} module is returned.
 991      *
 992      * If this class is in an unnamed module then the {@linkplain
 993      * ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class
 994      * loader for this class is returned.
 995      *
 996      * @return the module that this class or interface is a member of
 997      *
 998      * @since 9
 999      */
1000     public Module getModule() {
1001         return module;
1002     }
1003 
1004     // set by VM
1005     @Stable
1006     private transient Module module;
1007 
1008     // Initialized in JVM not by private constructor
1009     // This field is filtered from reflection access, i.e. getDeclaredField
1010     // will throw NoSuchFieldException
1011     private final ClassLoader classLoader;
1012 
1013     private transient Object classData; // Set by VM
1014     private transient Object[] signers; // Read by VM, mutable
1015     private final transient char modifiers;  // Set by the VM
1016     private final transient char classFileAccessFlags;  // Set by the VM
1017     private final transient boolean primitive;  // Set by the VM if the Class is a primitive type.
1018 
1019     // package-private
1020     Object getClassData() {
1021         return classData;
1022     }
1023 
1024     /**
1025      * Returns an array of {@code TypeVariable} objects that represent the
1026      * type variables declared by the generic declaration represented by this
1027      * {@code GenericDeclaration} object, in declaration order.  Returns an
1028      * array of length 0 if the underlying generic declaration declares no type
1029      * variables.
1030      *
1031      * @return an array of {@code TypeVariable} objects that represent
1032      *     the type variables declared by this generic declaration
1033      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1034      *     signature of this generic declaration does not conform to
1035      *     the format specified in section {@jvms 4.7.9} of
1036      *     <cite>The Java Virtual Machine Specification</cite>
1037      * @since 1.5
1038      */
1039     @SuppressWarnings("unchecked")
1040     public TypeVariable<Class<T>>[] getTypeParameters() {
1041         ClassRepository info = getGenericInfo();
1042         if (info != null)
1043             return (TypeVariable<Class<T>>[])info.getTypeParameters();
1044         else
1045             return (TypeVariable<Class<T>>[])new TypeVariable<?>[0];
1046     }
1047 
1048 
1049     /**
1050      * Returns the {@code Class} representing the direct superclass of the
1051      * entity (class, interface, primitive type or void) represented by
1052      * this {@code Class}.  If this {@code Class} represents either the
1053      * {@code Object} class, an interface, a primitive type, or void, then
1054      * null is returned.  If this {@code Class} object represents an array class
1055      * then the {@code Class} object representing the {@code Object} class is
1056      * returned.
1057      *
1058      * @return the direct superclass of the class represented by this {@code Class} object
1059      */
1060     @IntrinsicCandidate
1061     public native Class<? super T> getSuperclass();
1062 
1063 
1064     /**
1065      * Returns the {@code Type} representing the direct superclass of
1066      * the entity (class, interface, primitive type or void) represented by
1067      * this {@code Class} object.
1068      *
1069      * <p>If the superclass is a parameterized type, the {@code Type}
1070      * object returned must accurately reflect the actual type
1071      * arguments used in the source code. The parameterized type
1072      * representing the superclass is created if it had not been
1073      * created before. See the declaration of {@link
1074      * java.lang.reflect.ParameterizedType ParameterizedType} for the
1075      * semantics of the creation process for parameterized types.  If
1076      * this {@code Class} object represents either the {@code Object}
1077      * class, an interface, a primitive type, or void, then null is
1078      * returned.  If this {@code Class} object represents an array class
1079      * then the {@code Class} object representing the {@code Object} class is
1080      * returned.
1081      *
1082      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1083      *     class signature does not conform to the format specified in
1084      *     section {@jvms 4.7.9} of <cite>The Java Virtual
1085      *     Machine Specification</cite>
1086      * @throws TypeNotPresentException if the generic superclass
1087      *     refers to a non-existent type declaration
1088      * @throws java.lang.reflect.MalformedParameterizedTypeException if the
1089      *     generic superclass refers to a parameterized type that cannot be
1090      *     instantiated  for any reason
1091      * @return the direct superclass of the class represented by this {@code Class} object
1092      * @since 1.5
1093      */
1094     public Type getGenericSuperclass() {
1095         ClassRepository info = getGenericInfo();
1096         if (info == null) {
1097             return getSuperclass();
1098         }
1099 
1100         // Historical irregularity:
1101         // Generic signature marks interfaces with superclass = Object
1102         // but this API returns null for interfaces
1103         if (isInterface()) {
1104             return null;
1105         }
1106 
1107         return info.getSuperclass();
1108     }
1109 
1110     /**
1111      * Gets the package of this class.
1112      *
1113      * <p>If this class represents an array type, a primitive type or void,
1114      * this method returns {@code null}.
1115      *
1116      * @return the package of this class.
1117      */
1118     public Package getPackage() {
1119         if (isPrimitive() || isArray()) {
1120             return null;
1121         }
1122         ClassLoader cl = classLoader;
1123         return cl != null ? cl.definePackage(this)
1124                           : BootLoader.definePackage(this);
1125     }
1126 
1127     /**
1128      * Returns the fully qualified package name.
1129      *
1130      * <p> If this class is a top level class, then this method returns the fully
1131      * qualified name of the package that the class is a member of, or the
1132      * empty string if the class is in an unnamed package.
1133      *
1134      * <p> If this class is a member class, then this method is equivalent to
1135      * invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass
1136      * enclosing class}.
1137      *
1138      * <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain
1139      * #isAnonymousClass() anonymous class}, then this method is equivalent to
1140      * invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass
1141      * declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or
1142      * {@linkplain #getEnclosingConstructor enclosing constructor}.
1143      *
1144      * <p> If this class represents an array type then this method returns the
1145      * package name of the element type. If this class represents a primitive
1146      * type or void then the package name "{@code java.lang}" is returned.
1147      *
1148      * @return the fully qualified package name
1149      *
1150      * @since 9
1151      * @jls 6.7 Fully Qualified Names and Canonical Names
1152      */
1153     public String getPackageName() {
1154         String pn = this.packageName;
1155         if (pn == null) {
1156             Class<?> c = isArray() ? elementType() : this;
1157             if (c.isPrimitive()) {
1158                 pn = "java.lang";
1159             } else {
1160                 String cn = c.getName();
1161                 int dot = cn.lastIndexOf('.');
1162                 pn = (dot != -1) ? cn.substring(0, dot).intern() : "";
1163             }
1164             this.packageName = pn;
1165         }
1166         return pn;
1167     }
1168 
1169     // cached package name
1170     private transient String packageName;
1171 
1172     /**
1173      * Returns the interfaces directly implemented by the class or interface
1174      * represented by this {@code Class} object.
1175      *
1176      * <p>If this {@code Class} object represents a class, the return value is an array
1177      * containing objects representing all interfaces directly implemented by
1178      * the class.  The order of the interface objects in the array corresponds
1179      * to the order of the interface names in the {@code implements} clause of
1180      * the declaration of the class represented by this {@code Class} object.  For example,
1181      * given the declaration:
1182      * <blockquote>
1183      * {@code class Shimmer implements FloorWax, DessertTopping { ... }}
1184      * </blockquote>
1185      * suppose the value of {@code s} is an instance of
1186      * {@code Shimmer}; the value of the expression:
1187      * <blockquote>
1188      * {@code s.getClass().getInterfaces()[0]}
1189      * </blockquote>
1190      * is the {@code Class} object that represents interface
1191      * {@code FloorWax}; and the value of:
1192      * <blockquote>
1193      * {@code s.getClass().getInterfaces()[1]}
1194      * </blockquote>
1195      * is the {@code Class} object that represents interface
1196      * {@code DessertTopping}.
1197      *
1198      * <p>If this {@code Class} object represents an interface, the array contains objects
1199      * representing all interfaces directly extended by the interface.  The
1200      * order of the interface objects in the array corresponds to the order of
1201      * the interface names in the {@code extends} clause of the declaration of
1202      * the interface represented by this {@code Class} object.
1203      *
1204      * <p>If this {@code Class} object represents a class or interface that implements no
1205      * interfaces, the method returns an array of length 0.
1206      *
1207      * <p>If this {@code Class} object represents a primitive type or void, the method
1208      * returns an array of length 0.
1209      *
1210      * <p>If this {@code Class} object represents an array type, the
1211      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1212      * returned in that order.
1213      *
1214      * @return an array of interfaces directly implemented by this class
1215      */
1216     public Class<?>[] getInterfaces() {
1217         // defensively copy before handing over to user code
1218         return getInterfaces(true);
1219     }
1220 
1221     private Class<?>[] getInterfaces(boolean cloneArray) {
1222         ReflectionData<T> rd = reflectionData();
1223         Class<?>[] interfaces = rd.interfaces;
1224         if (interfaces == null) {
1225             interfaces = getInterfaces0();
1226             rd.interfaces = interfaces;
1227         }
1228         // defensively copy if requested
1229         return cloneArray ? interfaces.clone() : interfaces;
1230     }
1231 
1232     private native Class<?>[] getInterfaces0();
1233 
1234     /**
1235      * Returns the {@code Type}s representing the interfaces
1236      * directly implemented by the class or interface represented by
1237      * this {@code Class} object.
1238      *
1239      * <p>If a superinterface is a parameterized type, the
1240      * {@code Type} object returned for it must accurately reflect
1241      * the actual type arguments used in the source code. The
1242      * parameterized type representing each superinterface is created
1243      * if it had not been created before. See the declaration of
1244      * {@link java.lang.reflect.ParameterizedType ParameterizedType}
1245      * for the semantics of the creation process for parameterized
1246      * types.
1247      *
1248      * <p>If this {@code Class} object represents a class, the return value is an array
1249      * containing objects representing all interfaces directly implemented by
1250      * the class.  The order of the interface objects in the array corresponds
1251      * to the order of the interface names in the {@code implements} clause of
1252      * the declaration of the class represented by this {@code Class} object.
1253      *
1254      * <p>If this {@code Class} object represents an interface, the array contains objects
1255      * representing all interfaces directly extended by the interface.  The
1256      * order of the interface objects in the array corresponds to the order of
1257      * the interface names in the {@code extends} clause of the declaration of
1258      * the interface represented by this {@code Class} object.
1259      *
1260      * <p>If this {@code Class} object represents a class or interface that implements no
1261      * interfaces, the method returns an array of length 0.
1262      *
1263      * <p>If this {@code Class} object represents a primitive type or void, the method
1264      * returns an array of length 0.
1265      *
1266      * <p>If this {@code Class} object represents an array type, the
1267      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1268      * returned in that order.
1269      *
1270      * @throws java.lang.reflect.GenericSignatureFormatError
1271      *     if the generic class signature does not conform to the
1272      *     format specified in section {@jvms 4.7.9} of <cite>The
1273      *     Java Virtual Machine Specification</cite>
1274      * @throws TypeNotPresentException if any of the generic
1275      *     superinterfaces refers to a non-existent type declaration
1276      * @throws java.lang.reflect.MalformedParameterizedTypeException
1277      *     if any of the generic superinterfaces refer to a parameterized
1278      *     type that cannot be instantiated for any reason
1279      * @return an array of interfaces directly implemented by this class
1280      * @since 1.5
1281      */
1282     public Type[] getGenericInterfaces() {
1283         ClassRepository info = getGenericInfo();
1284         return (info == null) ?  getInterfaces() : info.getSuperInterfaces();
1285     }
1286 
1287 
1288     /**
1289      * Returns the {@code Class} representing the component type of an
1290      * array.  If this class does not represent an array class this method
1291      * returns null.
1292      *
1293      * @return the {@code Class} representing the component type of this
1294      * class if this class is an array
1295      * @see     java.lang.reflect.Array
1296      * @since 1.1
1297      */
1298     public Class<?> getComponentType() {
1299         return componentType;
1300     }
1301 
1302     // The componentType field's null value is the sole indication that the class
1303     // is an array - see isArray().
1304     private transient final Class<?> componentType;
1305 
1306     /*
1307      * Returns the {@code Class} representing the element type of an array class.
1308      * If this class does not represent an array class, then this method returns
1309      * {@code null}.
1310      */
1311     private Class<?> elementType() {
1312         if (!isArray()) return null;
1313 
1314         Class<?> c = this;
1315         while (c.isArray()) {
1316             c = c.getComponentType();
1317         }
1318         return c;
1319     }
1320 
1321     /**
1322      * Returns the Java language modifiers for this class or interface, encoded
1323      * in an integer. The modifiers consist of the Java Virtual Machine's
1324      * constants for {@code public}, {@code protected},
1325      * {@code private}, {@code final}, {@code static},
1326      * {@code abstract} and {@code interface}; they should be decoded
1327      * using the methods of class {@code Modifier}.
1328      *
1329      * <p> If the underlying class is an array class:
1330      * <ul>
1331      * <li> its {@code public}, {@code private} and {@code protected}
1332      *      modifiers are the same as those of its component type
1333      * <li> its {@code abstract} and {@code final} modifiers are always
1334      *      {@code true}
1335      * <li> its interface modifier is always {@code false}, even when
1336      *      the component type is an interface
1337      * </ul>
1338      * If this {@code Class} object represents a primitive type or
1339      * void, its {@code public}, {@code abstract}, and {@code final}
1340      * modifiers are always {@code true}.
1341      * For {@code Class} objects representing void, primitive types, and
1342      * arrays, the values of other modifiers are {@code false} other
1343      * than as specified above.
1344      *
1345      * <p> The modifier encodings are defined in section {@jvms 4.1}
1346      * of <cite>The Java Virtual Machine Specification</cite>.
1347      *
1348      * @return the {@code int} representing the modifiers for this class
1349      * @see     java.lang.reflect.Modifier
1350      * @see #accessFlags()
1351      * @see <a
1352      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
1353      * programming language and JVM modeling in core reflection</a>
1354      * @since 1.1
1355      * @jls 8.1.1 Class Modifiers
1356      * @jls 9.1.1 Interface Modifiers
1357      * @jvms 4.1 The {@code ClassFile} Structure
1358      */
1359     public int getModifiers() { return modifiers; }
1360 
1361     /**
1362      * {@return an unmodifiable set of the {@linkplain AccessFlag access
1363      * flags} for this class, possibly empty}
1364      *
1365      * <p> If the underlying class is an array class:
1366      * <ul>
1367      * <li> its {@code PUBLIC}, {@code PRIVATE} and {@code PROTECTED}
1368      *      access flags are the same as those of its component type
1369      * <li> its {@code ABSTRACT} and {@code FINAL} flags are present
1370      * <li> its {@code INTERFACE} flag is absent, even when the
1371      *      component type is an interface
1372      * </ul>
1373      * If this {@code Class} object represents a primitive type or
1374      * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and
1375      * {@code FINAL}.
1376      * For {@code Class} objects representing void, primitive types, and
1377      * arrays, access flags are absent other than as specified above.
1378      *
1379      * @see #getModifiers()
1380      * @jvms 4.1 The ClassFile Structure
1381      * @jvms 4.7.6 The InnerClasses Attribute
1382      * @since 20
1383      */
1384     public Set<AccessFlag> accessFlags() {
1385         // Location.CLASS allows SUPER and AccessFlag.MODULE which
1386         // INNER_CLASS forbids. INNER_CLASS allows PRIVATE, PROTECTED,
1387         // and STATIC, which are not allowed on Location.CLASS.
1388         // Use getClassFileAccessFlags to expose SUPER status.
1389         var location = (isMemberClass() || isLocalClass() ||
1390                         isAnonymousClass() || isArray()) ?
1391             AccessFlag.Location.INNER_CLASS :
1392             AccessFlag.Location.CLASS;
1393         return getReflectionFactory().parseAccessFlags((location == AccessFlag.Location.CLASS) ?
1394                         getClassFileAccessFlags() : getModifiers(), location, this);
1395     }
1396 
1397     /**
1398      * Gets the signers of this class.
1399      *
1400      * @return  the signers of this class, or null if there are no signers.  In
1401      *          particular, this method returns null if this {@code Class} object represents
1402      *          a primitive type or void.
1403      * @since   1.1
1404      */
1405     public Object[] getSigners() {
1406         var signers = this.signers;
1407         return signers == null ? null : signers.clone();
1408     }
1409 
1410     /**
1411      * Set the signers of this class.
1412      */
1413     void setSigners(Object[] signers) {
1414         if (!isPrimitive() && !isArray()) {
1415             this.signers = signers;
1416         }
1417     }
1418 
1419     /**
1420      * If this {@code Class} object represents a local or anonymous
1421      * class within a method, returns a {@link
1422      * java.lang.reflect.Method Method} object representing the
1423      * immediately enclosing method of the underlying class. Returns
1424      * {@code null} otherwise.
1425      *
1426      * In particular, this method returns {@code null} if the underlying
1427      * class is a local or anonymous class immediately enclosed by a class or
1428      * interface declaration, instance initializer or static initializer.
1429      *
1430      * @return the immediately enclosing method of the underlying class, if
1431      *     that class is a local or anonymous class; otherwise {@code null}.
1432      *
1433      * @since 1.5
1434      */
1435     public Method getEnclosingMethod() {
1436         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1437 
1438         if (enclosingInfo == null)
1439             return null;
1440         else {
1441             if (!enclosingInfo.isMethod())
1442                 return null;
1443 
1444             MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(),
1445                                                               getFactory());
1446             Class<?>   returnType       = toClass(typeInfo.getReturnType());
1447             Type []    parameterTypes   = typeInfo.getParameterTypes();
1448             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1449 
1450             // Convert Types to Classes; returned types *should*
1451             // be class objects since the methodDescriptor's used
1452             // don't have generics information
1453             for(int i = 0; i < parameterClasses.length; i++)
1454                 parameterClasses[i] = toClass(parameterTypes[i]);
1455 
1456             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1457             Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false);
1458 
1459             /*
1460              * Loop over all declared methods; match method name,
1461              * number of and type of parameters, *and* return
1462              * type.  Matching return type is also necessary
1463              * because of covariant returns, etc.
1464              */
1465             ReflectionFactory fact = getReflectionFactory();
1466             for (Method m : candidates) {
1467                 if (m.getName().equals(enclosingInfo.getName()) &&
1468                     arrayContentsEq(parameterClasses,
1469                                     fact.getExecutableSharedParameterTypes(m))) {
1470                     // finally, check return type
1471                     if (m.getReturnType().equals(returnType)) {
1472                         return fact.copyMethod(m);
1473                     }
1474                 }
1475             }
1476 
1477             throw new InternalError("Enclosing method not found");
1478         }
1479     }
1480 
1481     private native Object[] getEnclosingMethod0();
1482 
1483     private EnclosingMethodInfo getEnclosingMethodInfo() {
1484         Object[] enclosingInfo = getEnclosingMethod0();
1485         if (enclosingInfo == null)
1486             return null;
1487         else {
1488             return new EnclosingMethodInfo(enclosingInfo);
1489         }
1490     }
1491 
1492     private static final class EnclosingMethodInfo {
1493         private final Class<?> enclosingClass;
1494         private final String name;
1495         private final String descriptor;
1496 
1497         static void validate(Object[] enclosingInfo) {
1498             if (enclosingInfo.length != 3)
1499                 throw new InternalError("Malformed enclosing method information");
1500             try {
1501                 // The array is expected to have three elements:
1502 
1503                 // the immediately enclosing class
1504                 Class<?> enclosingClass = (Class<?>)enclosingInfo[0];
1505                 assert(enclosingClass != null);
1506 
1507                 // the immediately enclosing method or constructor's
1508                 // name (can be null).
1509                 String name = (String)enclosingInfo[1];
1510 
1511                 // the immediately enclosing method or constructor's
1512                 // descriptor (null iff name is).
1513                 String descriptor = (String)enclosingInfo[2];
1514                 assert((name != null && descriptor != null) || name == descriptor);
1515             } catch (ClassCastException cce) {
1516                 throw new InternalError("Invalid type in enclosing method information", cce);
1517             }
1518         }
1519 
1520         EnclosingMethodInfo(Object[] enclosingInfo) {
1521             validate(enclosingInfo);
1522             this.enclosingClass = (Class<?>)enclosingInfo[0];
1523             this.name = (String)enclosingInfo[1];
1524             this.descriptor = (String)enclosingInfo[2];
1525         }
1526 
1527         boolean isPartial() {
1528             return enclosingClass == null || name == null || descriptor == null;
1529         }
1530 
1531         boolean isConstructor() { return !isPartial() && ConstantDescs.INIT_NAME.equals(name); }
1532 
1533         boolean isMethod() { return !isPartial() && !isConstructor() && !ConstantDescs.CLASS_INIT_NAME.equals(name); }
1534 
1535         Class<?> getEnclosingClass() { return enclosingClass; }
1536 
1537         String getName() { return name; }
1538 
1539         String getDescriptor() { return descriptor; }
1540 
1541     }
1542 
1543     private static Class<?> toClass(Type o) {
1544         if (o instanceof GenericArrayType gat)
1545             return toClass(gat.getGenericComponentType()).arrayType();
1546         return (Class<?>)o;
1547      }
1548 
1549     /**
1550      * If this {@code Class} object represents a local or anonymous
1551      * class within a constructor, returns a {@link
1552      * java.lang.reflect.Constructor Constructor} object representing
1553      * the immediately enclosing constructor of the underlying
1554      * class. Returns {@code null} otherwise.  In particular, this
1555      * method returns {@code null} if the underlying class is a local
1556      * or anonymous class immediately enclosed by a class or
1557      * interface declaration, instance initializer or static initializer.
1558      *
1559      * @return the immediately enclosing constructor of the underlying class, if
1560      *     that class is a local or anonymous class; otherwise {@code null}.
1561      *
1562      * @since 1.5
1563      */
1564     public Constructor<?> getEnclosingConstructor() {
1565         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1566 
1567         if (enclosingInfo == null)
1568             return null;
1569         else {
1570             if (!enclosingInfo.isConstructor())
1571                 return null;
1572 
1573             ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(),
1574                                                                         getFactory());
1575             Type []    parameterTypes   = typeInfo.getParameterTypes();
1576             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1577 
1578             // Convert Types to Classes; returned types *should*
1579             // be class objects since the methodDescriptor's used
1580             // don't have generics information
1581             for (int i = 0; i < parameterClasses.length; i++)
1582                 parameterClasses[i] = toClass(parameterTypes[i]);
1583 
1584 
1585             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1586             Constructor<?>[] candidates = enclosingCandidate
1587                     .privateGetDeclaredConstructors(false);
1588             /*
1589              * Loop over all declared constructors; match number
1590              * of and type of parameters.
1591              */
1592             ReflectionFactory fact = getReflectionFactory();
1593             for (Constructor<?> c : candidates) {
1594                 if (arrayContentsEq(parameterClasses,
1595                                     fact.getExecutableSharedParameterTypes(c))) {
1596                     return fact.copyConstructor(c);
1597                 }
1598             }
1599 
1600             throw new InternalError("Enclosing constructor not found");
1601         }
1602     }
1603 
1604 
1605     /**
1606      * If the class or interface represented by this {@code Class} object
1607      * is a member of another class, returns the {@code Class} object
1608      * representing the class in which it was declared.  This method returns
1609      * null if this class or interface is not a member of any other class.  If
1610      * this {@code Class} object represents an array class, a primitive
1611      * type, or void, then this method returns null.
1612      *
1613      * @return the declaring class for this class
1614      * @since 1.1
1615      */
1616     public Class<?> getDeclaringClass() {
1617         return getDeclaringClass0();
1618     }
1619 
1620     private native Class<?> getDeclaringClass0();
1621 
1622 
1623     /**
1624      * Returns the immediately enclosing class of the underlying
1625      * class.  If the underlying class is a top level class this
1626      * method returns {@code null}.
1627      * @return the immediately enclosing class of the underlying class
1628      * @since 1.5
1629      */
1630     public Class<?> getEnclosingClass() {
1631         // There are five kinds of classes (or interfaces):
1632         // a) Top level classes
1633         // b) Nested classes (static member classes)
1634         // c) Inner classes (non-static member classes)
1635         // d) Local classes (named classes declared within a method)
1636         // e) Anonymous classes
1637 
1638 
1639         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1640         // attribute if and only if it is a local class or an
1641         // anonymous class.
1642         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1643         Class<?> enclosingCandidate;
1644 
1645         if (enclosingInfo == null) {
1646             // This is a top level or a nested class or an inner class (a, b, or c)
1647             enclosingCandidate = getDeclaringClass0();
1648         } else {
1649             Class<?> enclosingClass = enclosingInfo.getEnclosingClass();
1650             // This is a local class or an anonymous class (d or e)
1651             if (enclosingClass == this || enclosingClass == null)
1652                 throw new InternalError("Malformed enclosing method information");
1653             else
1654                 enclosingCandidate = enclosingClass;
1655         }
1656         return enclosingCandidate;
1657     }
1658 
1659     /**
1660      * Returns the simple name of the underlying class as given in the
1661      * source code. An empty string is returned if the underlying class is
1662      * {@linkplain #isAnonymousClass() anonymous}.
1663      * A {@linkplain #isSynthetic() synthetic class}, one not present
1664      * in source code, can have a non-empty name including special
1665      * characters, such as "{@code $}".
1666      *
1667      * <p>The simple name of an {@linkplain #isArray() array class} is the simple name of the
1668      * component type with "[]" appended.  In particular the simple
1669      * name of an array class whose component type is anonymous is "[]".
1670      *
1671      * @return the simple name of the underlying class
1672      * @since 1.5
1673      */
1674     public String getSimpleName() {
1675         ReflectionData<T> rd = reflectionData();
1676         String simpleName = rd.simpleName;
1677         if (simpleName == null) {
1678             rd.simpleName = simpleName = getSimpleName0();
1679         }
1680         return simpleName;
1681     }
1682 
1683     private String getSimpleName0() {
1684         if (isArray()) {
1685             return getComponentType().getSimpleName().concat("[]");
1686         }
1687         String simpleName = getSimpleBinaryName();
1688         if (simpleName == null) { // top level class
1689             simpleName = getName();
1690             simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name
1691         }
1692         return simpleName;
1693     }
1694 
1695     /**
1696      * Return an informative string for the name of this class or interface.
1697      *
1698      * @return an informative string for the name of this class or interface
1699      * @since 1.8
1700      */
1701     public String getTypeName() {
1702         if (isArray()) {
1703             try {
1704                 Class<?> cl = this;
1705                 int dimensions = 0;
1706                 do {
1707                     dimensions++;
1708                     cl = cl.getComponentType();
1709                 } while (cl.isArray());
1710                 return cl.getName().concat("[]".repeat(dimensions));
1711             } catch (Throwable e) { /*FALLTHRU*/ }
1712         }
1713         return getName();
1714     }
1715 
1716     /**
1717      * Returns the canonical name of the underlying class as
1718      * defined by <cite>The Java Language Specification</cite>.
1719      * Returns {@code null} if the underlying class does not have a canonical
1720      * name. Classes without canonical names include:
1721      * <ul>
1722      * <li>a {@linkplain #isLocalClass() local class}
1723      * <li>a {@linkplain #isAnonymousClass() anonymous class}
1724      * <li>a {@linkplain #isHidden() hidden class}
1725      * <li>an array whose component type does not have a canonical name</li>
1726      * </ul>
1727      *
1728      * The canonical name for a primitive class is the keyword for the
1729      * corresponding primitive type ({@code byte}, {@code short},
1730      * {@code char}, {@code int}, and so on).
1731      *
1732      * <p>An array type has a canonical name if and only if its
1733      * component type has a canonical name. When an array type has a
1734      * canonical name, it is equal to the canonical name of the
1735      * component type followed by "{@code []}".
1736      *
1737      * @return the canonical name of the underlying class if it exists, and
1738      * {@code null} otherwise.
1739      * @jls 6.7 Fully Qualified Names and Canonical Names
1740      * @since 1.5
1741      */
1742     public String getCanonicalName() {
1743         ReflectionData<T> rd = reflectionData();
1744         String canonicalName = rd.canonicalName;
1745         if (canonicalName == null) {
1746             rd.canonicalName = canonicalName = getCanonicalName0();
1747         }
1748         return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName;
1749     }
1750 
1751     private String getCanonicalName0() {
1752         if (isArray()) {
1753             String canonicalName = getComponentType().getCanonicalName();
1754             if (canonicalName != null)
1755                 return canonicalName.concat("[]");
1756             else
1757                 return ReflectionData.NULL_SENTINEL;
1758         }
1759         if (isHidden() || isLocalOrAnonymousClass())
1760             return ReflectionData.NULL_SENTINEL;
1761         Class<?> enclosingClass = getEnclosingClass();
1762         if (enclosingClass == null) { // top level class
1763             return getName();
1764         } else {
1765             String enclosingName = enclosingClass.getCanonicalName();
1766             if (enclosingName == null)
1767                 return ReflectionData.NULL_SENTINEL;
1768             String simpleName = getSimpleName();
1769             return new StringBuilder(enclosingName.length() + simpleName.length() + 1)
1770                     .append(enclosingName)
1771                     .append('.')
1772                     .append(simpleName)
1773                     .toString();
1774         }
1775     }
1776 
1777     /**
1778      * Returns {@code true} if and only if the underlying class
1779      * is an anonymous class.
1780      *
1781      * @apiNote
1782      * An anonymous class is not a {@linkplain #isHidden() hidden class}.
1783      *
1784      * @return {@code true} if and only if this class is an anonymous class.
1785      * @since 1.5
1786      * @jls 15.9.5 Anonymous Class Declarations
1787      */
1788     public boolean isAnonymousClass() {
1789         return !isArray() && isLocalOrAnonymousClass() &&
1790                 getSimpleBinaryName0() == null;
1791     }
1792 
1793     /**
1794      * Returns {@code true} if and only if the underlying class
1795      * is a local class.
1796      *
1797      * @return {@code true} if and only if this class is a local class.
1798      * @since 1.5
1799      * @jls 14.3 Local Class and Interface Declarations
1800      */
1801     public boolean isLocalClass() {
1802         return isLocalOrAnonymousClass() &&
1803                 (isArray() || getSimpleBinaryName0() != null);
1804     }
1805 
1806     /**
1807      * Returns {@code true} if and only if the underlying class
1808      * is a member class.
1809      *
1810      * @return {@code true} if and only if this class is a member class.
1811      * @since 1.5
1812      * @jls 8.5 Member Class and Interface Declarations
1813      */
1814     public boolean isMemberClass() {
1815         return !isLocalOrAnonymousClass() && getDeclaringClass0() != null;
1816     }
1817 
1818     /**
1819      * Returns the "simple binary name" of the underlying class, i.e.,
1820      * the binary name without the leading enclosing class name.
1821      * Returns {@code null} if the underlying class is a top level
1822      * class.
1823      */
1824     private String getSimpleBinaryName() {
1825         if (isTopLevelClass())
1826             return null;
1827         String name = getSimpleBinaryName0();
1828         if (name == null) // anonymous class
1829             return "";
1830         return name;
1831     }
1832 
1833     private native String getSimpleBinaryName0();
1834 
1835     /**
1836      * Returns {@code true} if this is a top level class.  Returns {@code false}
1837      * otherwise.
1838      */
1839     private boolean isTopLevelClass() {
1840         return !isLocalOrAnonymousClass() && getDeclaringClass0() == null;
1841     }
1842 
1843     /**
1844      * Returns {@code true} if this is a local class or an anonymous
1845      * class.  Returns {@code false} otherwise.
1846      */
1847     private boolean isLocalOrAnonymousClass() {
1848         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1849         // attribute if and only if it is a local class or an
1850         // anonymous class.
1851         return hasEnclosingMethodInfo();
1852     }
1853 
1854     private boolean hasEnclosingMethodInfo() {
1855         Object[] enclosingInfo = getEnclosingMethod0();
1856         if (enclosingInfo != null) {
1857             EnclosingMethodInfo.validate(enclosingInfo);
1858             return true;
1859         }
1860         return false;
1861     }
1862 
1863     /**
1864      * Returns an array containing {@code Class} objects representing all
1865      * the public classes and interfaces that are members of the class
1866      * represented by this {@code Class} object.  This includes public
1867      * class and interface members inherited from superclasses and public class
1868      * and interface members declared by the class.  This method returns an
1869      * array of length 0 if this {@code Class} object has no public member
1870      * classes or interfaces.  This method also returns an array of length 0 if
1871      * this {@code Class} object represents a primitive type, an array
1872      * class, or void.
1873      *
1874      * @return the array of {@code Class} objects representing the public
1875      *         members of this class
1876      * @since 1.1
1877      */
1878     public Class<?>[] getClasses() {
1879         List<Class<?>> list = new ArrayList<>();
1880         Class<?> currentClass = Class.this;
1881         while (currentClass != null) {
1882             for (Class<?> m : currentClass.getDeclaredClasses()) {
1883                 if (Modifier.isPublic(m.getModifiers())) {
1884                     list.add(m);
1885                 }
1886             }
1887             currentClass = currentClass.getSuperclass();
1888         }
1889         return list.toArray(new Class<?>[0]);
1890     }
1891 
1892 
1893     /**
1894      * Returns an array containing {@code Field} objects reflecting all
1895      * the accessible public fields of the class or interface represented by
1896      * this {@code Class} object.
1897      *
1898      * <p> If this {@code Class} object represents a class or interface with
1899      * no accessible public fields, then this method returns an array of length
1900      * 0.
1901      *
1902      * <p> If this {@code Class} object represents a class, then this method
1903      * returns the public fields of the class and of all its superclasses and
1904      * superinterfaces.
1905      *
1906      * <p> If this {@code Class} object represents an interface, then this
1907      * method returns the fields of the interface and of all its
1908      * superinterfaces.
1909      *
1910      * <p> If this {@code Class} object represents an array type, a primitive
1911      * type, or void, then this method returns an array of length 0.
1912      *
1913      * <p> The elements in the returned array are not sorted and are not in any
1914      * particular order.
1915      *
1916      * @return the array of {@code Field} objects representing the
1917      *         public fields
1918      *
1919      * @since 1.1
1920      * @jls 8.2 Class Members
1921      * @jls 8.3 Field Declarations
1922      */
1923     public Field[] getFields() {
1924         return copyFields(privateGetPublicFields());
1925     }
1926 
1927 
1928     /**
1929      * Returns an array containing {@code Method} objects reflecting all the
1930      * public methods of the class or interface represented by this {@code
1931      * Class} object, including those declared by the class or interface and
1932      * those inherited from superclasses and superinterfaces.
1933      *
1934      * <p> If this {@code Class} object represents an array type, then the
1935      * returned array has a {@code Method} object for each of the public
1936      * methods inherited by the array type from {@code Object}. It does not
1937      * contain a {@code Method} object for {@code clone()}.
1938      *
1939      * <p> If this {@code Class} object represents an interface then the
1940      * returned array does not contain any implicitly declared methods from
1941      * {@code Object}. Therefore, if no methods are explicitly declared in
1942      * this interface or any of its superinterfaces then the returned array
1943      * has length 0. (Note that a {@code Class} object which represents a class
1944      * always has public methods, inherited from {@code Object}.)
1945      *
1946      * <p> The returned array never contains methods with names {@value
1947      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
1948      *
1949      * <p> The elements in the returned array are not sorted and are not in any
1950      * particular order.
1951      *
1952      * <p> Generally, the result is computed as with the following 4 step algorithm.
1953      * Let C be the class or interface represented by this {@code Class} object:
1954      * <ol>
1955      * <li> A union of methods is composed of:
1956      *   <ol type="a">
1957      *   <li> C's declared public instance and static methods as returned by
1958      *        {@link #getDeclaredMethods()} and filtered to include only public
1959      *        methods.</li>
1960      *   <li> If C is a class other than {@code Object}, then include the result
1961      *        of invoking this algorithm recursively on the superclass of C.</li>
1962      *   <li> Include the results of invoking this algorithm recursively on all
1963      *        direct superinterfaces of C, but include only instance methods.</li>
1964      *   </ol></li>
1965      * <li> Union from step 1 is partitioned into subsets of methods with same
1966      *      signature (name, parameter types) and return type.</li>
1967      * <li> Within each such subset only the most specific methods are selected.
1968      *      Let method M be a method from a set of methods with same signature
1969      *      and return type. M is most specific if there is no such method
1970      *      N != M from the same set, such that N is more specific than M.
1971      *      N is more specific than M if:
1972      *   <ol type="a">
1973      *   <li> N is declared by a class and M is declared by an interface; or</li>
1974      *   <li> N and M are both declared by classes or both by interfaces and
1975      *        N's declaring type is the same as or a subtype of M's declaring type
1976      *        (clearly, if M's and N's declaring types are the same type, then
1977      *        M and N are the same method).</li>
1978      *   </ol></li>
1979      * <li> The result of this algorithm is the union of all selected methods from
1980      *      step 3.</li>
1981      * </ol>
1982      *
1983      * @apiNote There may be more than one method with a particular name
1984      * and parameter types in a class because while the Java language forbids a
1985      * class to declare multiple methods with the same signature but different
1986      * return types, the Java virtual machine does not.  This
1987      * increased flexibility in the virtual machine can be used to
1988      * implement various language features.  For example, covariant
1989      * returns can be implemented with {@linkplain
1990      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
1991      * method and the overriding method would have the same
1992      * signature but different return types.
1993      *
1994      * @return the array of {@code Method} objects representing the
1995      *         public methods of this class
1996      *
1997      * @jls 8.2 Class Members
1998      * @jls 8.4 Method Declarations
1999      * @since 1.1
2000      */
2001     public Method[] getMethods() {
2002         return copyMethods(privateGetPublicMethods());
2003     }
2004 
2005 
2006     /**
2007      * Returns an array containing {@code Constructor} objects reflecting
2008      * all the public constructors of the class represented by this
2009      * {@code Class} object.  An array of length 0 is returned if the
2010      * class has no public constructors, or if the class is an array class, or
2011      * if the class reflects a primitive type or void.
2012      *
2013      * @apiNote
2014      * While this method returns an array of {@code
2015      * Constructor<T>} objects (that is an array of constructors from
2016      * this class), the return type of this method is {@code
2017      * Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as
2018      * might be expected.  This less informative return type is
2019      * necessary since after being returned from this method, the
2020      * array could be modified to hold {@code Constructor} objects for
2021      * different classes, which would violate the type guarantees of
2022      * {@code Constructor<T>[]}.
2023      *
2024      * @return the array of {@code Constructor} objects representing the
2025      *         public constructors of this class
2026      *
2027      * @see #getDeclaredConstructors()
2028      * @since 1.1
2029      */
2030     public Constructor<?>[] getConstructors() {
2031         return copyConstructors(privateGetDeclaredConstructors(true));
2032     }
2033 
2034 
2035     /**
2036      * Returns a {@code Field} object that reflects the specified public member
2037      * field of the class or interface represented by this {@code Class}
2038      * object. The {@code name} parameter is a {@code String} specifying the
2039      * simple name of the desired field.
2040      *
2041      * <p> The field to be reflected is determined by the algorithm that
2042      * follows.  Let C be the class or interface represented by this {@code Class} object:
2043      *
2044      * <OL>
2045      * <LI> If C declares a public field with the name specified, that is the
2046      *      field to be reflected.</LI>
2047      * <LI> If no field was found in step 1 above, this algorithm is applied
2048      *      recursively to each direct superinterface of C. The direct
2049      *      superinterfaces are searched in the order they were declared.</LI>
2050      * <LI> If no field was found in steps 1 and 2 above, and C has a
2051      *      superclass S, then this algorithm is invoked recursively upon S.
2052      *      If C has no superclass, then a {@code NoSuchFieldException}
2053      *      is thrown.</LI>
2054      * </OL>
2055      *
2056      * <p> If this {@code Class} object represents an array type, then this
2057      * method does not find the {@code length} field of the array type.
2058      *
2059      * @param name the field name
2060      * @return the {@code Field} object of this class specified by
2061      *         {@code name}
2062      * @throws NoSuchFieldException if a field with the specified name is
2063      *         not found.
2064      * @throws NullPointerException if {@code name} is {@code null}
2065      *
2066      * @since 1.1
2067      * @jls 8.2 Class Members
2068      * @jls 8.3 Field Declarations
2069      */
2070     public Field getField(String name) throws NoSuchFieldException {
2071         Objects.requireNonNull(name);
2072         Field field = getField0(name);
2073         if (field == null) {
2074             throw new NoSuchFieldException(name);
2075         }
2076         return getReflectionFactory().copyField(field);
2077     }
2078 
2079 
2080     /**
2081      * Returns a {@code Method} object that reflects the specified public
2082      * member method of the class or interface represented by this
2083      * {@code Class} object. The {@code name} parameter is a
2084      * {@code String} specifying the simple name of the desired method. The
2085      * {@code parameterTypes} parameter is an array of {@code Class}
2086      * objects that identify the method's formal parameter types, in declared
2087      * order. If {@code parameterTypes} is {@code null}, it is
2088      * treated as if it were an empty array.
2089      *
2090      * <p> If this {@code Class} object represents an array type, then this
2091      * method finds any public method inherited by the array type from
2092      * {@code Object} except method {@code clone()}.
2093      *
2094      * <p> If this {@code Class} object represents an interface then this
2095      * method does not find any implicitly declared method from
2096      * {@code Object}. Therefore, if no methods are explicitly declared in
2097      * this interface or any of its superinterfaces, then this method does not
2098      * find any method.
2099      *
2100      * <p> This method does not find any method with name {@value
2101      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
2102      *
2103      * <p> Generally, the method to be reflected is determined by the 4 step
2104      * algorithm that follows.
2105      * Let C be the class or interface represented by this {@code Class} object:
2106      * <ol>
2107      * <li> A union of methods is composed of:
2108      *   <ol type="a">
2109      *   <li> C's declared public instance and static methods as returned by
2110      *        {@link #getDeclaredMethods()} and filtered to include only public
2111      *        methods that match given {@code name} and {@code parameterTypes}</li>
2112      *   <li> If C is a class other than {@code Object}, then include the result
2113      *        of invoking this algorithm recursively on the superclass of C.</li>
2114      *   <li> Include the results of invoking this algorithm recursively on all
2115      *        direct superinterfaces of C, but include only instance methods.</li>
2116      *   </ol></li>
2117      * <li> This union is partitioned into subsets of methods with same
2118      *      return type (the selection of methods from step 1 also guarantees that
2119      *      they have the same method name and parameter types).</li>
2120      * <li> Within each such subset only the most specific methods are selected.
2121      *      Let method M be a method from a set of methods with same VM
2122      *      signature (return type, name, parameter types).
2123      *      M is most specific if there is no such method N != M from the same
2124      *      set, such that N is more specific than M. N is more specific than M
2125      *      if:
2126      *   <ol type="a">
2127      *   <li> N is declared by a class and M is declared by an interface; or</li>
2128      *   <li> N and M are both declared by classes or both by interfaces and
2129      *        N's declaring type is the same as or a subtype of M's declaring type
2130      *        (clearly, if M's and N's declaring types are the same type, then
2131      *        M and N are the same method).</li>
2132      *   </ol></li>
2133      * <li> The result of this algorithm is chosen arbitrarily from the methods
2134      *      with most specific return type among all selected methods from step 3.
2135      *      Let R be a return type of a method M from the set of all selected methods
2136      *      from step 3. M is a method with most specific return type if there is
2137      *      no such method N != M from the same set, having return type S != R,
2138      *      such that S is a subtype of R as determined by
2139      *      R.class.{@link #isAssignableFrom}(S.class).
2140      * </ol>
2141      *
2142      * @apiNote There may be more than one method with matching name and
2143      * parameter types in a class because while the Java language forbids a
2144      * class to declare multiple methods with the same signature but different
2145      * return types, the Java virtual machine does not.  This
2146      * increased flexibility in the virtual machine can be used to
2147      * implement various language features.  For example, covariant
2148      * returns can be implemented with {@linkplain
2149      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
2150      * method and the overriding method would have the same
2151      * signature but different return types. This method would return the
2152      * overriding method as it would have a more specific return type.
2153      *
2154      * @param name the name of the method
2155      * @param parameterTypes the list of parameters
2156      * @return the {@code Method} object that matches the specified
2157      *         {@code name} and {@code parameterTypes}
2158      * @throws NoSuchMethodException if a matching method is not found
2159      *         or if the name is {@value ConstantDescs#INIT_NAME} or
2160      *         {@value ConstantDescs#CLASS_INIT_NAME}.
2161      * @throws NullPointerException if {@code name} is {@code null}
2162      *
2163      * @jls 8.2 Class Members
2164      * @jls 8.4 Method Declarations
2165      * @since 1.1
2166      */
2167     public Method getMethod(String name, Class<?>... parameterTypes)
2168             throws NoSuchMethodException {
2169         Objects.requireNonNull(name);
2170         Method method = getMethod0(name, parameterTypes);
2171         if (method == null) {
2172             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2173         }
2174         return getReflectionFactory().copyMethod(method);
2175     }
2176 
2177     /**
2178      * Returns a {@code Constructor} object that reflects the specified
2179      * public constructor of the class represented by this {@code Class}
2180      * object. The {@code parameterTypes} parameter is an array of
2181      * {@code Class} objects that identify the constructor's formal
2182      * parameter types, in declared order.
2183      *
2184      * If this {@code Class} object represents an inner class
2185      * declared in a non-static context, the formal parameter types
2186      * include the explicit enclosing instance as the first parameter.
2187      *
2188      * <p> The constructor to reflect is the public constructor of the class
2189      * represented by this {@code Class} object whose formal parameter
2190      * types match those specified by {@code parameterTypes}.
2191      *
2192      * @param parameterTypes the parameter array
2193      * @return the {@code Constructor} object of the public constructor that
2194      *         matches the specified {@code parameterTypes}
2195      * @throws NoSuchMethodException if a matching constructor is not found,
2196      *         including when this {@code Class} object represents
2197      *         an interface, a primitive type, an array class, or void.
2198      *
2199      * @see #getDeclaredConstructor(Class[])
2200      * @since 1.1
2201      */
2202     public Constructor<T> getConstructor(Class<?>... parameterTypes)
2203             throws NoSuchMethodException {
2204         return getReflectionFactory().copyConstructor(
2205             getConstructor0(parameterTypes, Member.PUBLIC));
2206     }
2207 
2208 
2209     /**
2210      * Returns an array of {@code Class} objects reflecting all the
2211      * classes and interfaces declared as members of the class represented by
2212      * this {@code Class} object. This includes public, protected, default
2213      * (package) access, and private classes and interfaces declared by the
2214      * class, but excludes inherited classes and interfaces.  This method
2215      * returns an array of length 0 if the class declares no classes or
2216      * interfaces as members, or if this {@code Class} object represents a
2217      * primitive type, an array class, or void.
2218      *
2219      * @return the array of {@code Class} objects representing all the
2220      *         declared members of this class
2221      *
2222      * @since 1.1
2223      * @jls 8.5 Member Class and Interface Declarations
2224      */
2225     public Class<?>[] getDeclaredClasses() {
2226         return getDeclaredClasses0();
2227     }
2228 
2229 
2230     /**
2231      * Returns an array of {@code Field} objects reflecting all the fields
2232      * declared by the class or interface represented by this
2233      * {@code Class} object. This includes public, protected, default
2234      * (package) access, and private fields, but excludes inherited fields.
2235      *
2236      * <p> If this {@code Class} object represents a class or interface with no
2237      * declared fields, then this method returns an array of length 0.
2238      *
2239      * <p> If this {@code Class} object represents an array type, a primitive
2240      * type, or void, then this method returns an array of length 0.
2241      *
2242      * <p> The elements in the returned array are not sorted and are not in any
2243      * particular order.
2244      *
2245      * @return  the array of {@code Field} objects representing all the
2246      *          declared fields of this class
2247      *
2248      * @since 1.1
2249      * @jls 8.2 Class Members
2250      * @jls 8.3 Field Declarations
2251      */
2252     public Field[] getDeclaredFields() {
2253         return copyFields(privateGetDeclaredFields(false));
2254     }
2255 
2256     /**
2257      * Returns an array of {@code RecordComponent} objects representing all the
2258      * record components of this record class, or {@code null} if this class is
2259      * not a record class.
2260      *
2261      * <p> The components are returned in the same order that they are declared
2262      * in the record header. The array is empty if this record class has no
2263      * components. If the class is not a record class, that is {@link
2264      * #isRecord()} returns {@code false}, then this method returns {@code null}.
2265      * Conversely, if {@link #isRecord()} returns {@code true}, then this method
2266      * returns a non-null value.
2267      *
2268      * @apiNote
2269      * <p> The following method can be used to find the record canonical constructor:
2270      *
2271      * {@snippet lang="java" :
2272      * static <T extends Record> Constructor<T> getCanonicalConstructor(Class<T> cls)
2273      *     throws NoSuchMethodException {
2274      *   Class<?>[] paramTypes =
2275      *     Arrays.stream(cls.getRecordComponents())
2276      *           .map(RecordComponent::getType)
2277      *           .toArray(Class<?>[]::new);
2278      *   return cls.getDeclaredConstructor(paramTypes);
2279      * }}
2280      *
2281      * @return  An array of {@code RecordComponent} objects representing all the
2282      *          record components of this record class, or {@code null} if this
2283      *          class is not a record class
2284      *
2285      * @jls 8.10 Record Classes
2286      * @since 16
2287      */
2288     public RecordComponent[] getRecordComponents() {
2289         if (!isRecord()) {
2290             return null;
2291         }
2292         return getRecordComponents0();
2293     }
2294 
2295     /**
2296      * Returns an array containing {@code Method} objects reflecting all the
2297      * declared methods of the class or interface represented by this {@code
2298      * Class} object, including public, protected, default (package)
2299      * access, and private methods, but excluding inherited methods.
2300      * The declared methods may include methods <em>not</em> in the
2301      * source of the class or interface, including {@linkplain
2302      * Method#isBridge bridge methods} and other {@linkplain
2303      * Executable#isSynthetic synthetic} methods added by compilers.
2304      *
2305      * <p> If this {@code Class} object represents a class or interface that
2306      * has multiple declared methods with the same name and parameter types,
2307      * but different return types, then the returned array has a {@code Method}
2308      * object for each such method.
2309      *
2310      * <p> If this {@code Class} object represents a class or interface that
2311      * has a class initialization method {@value ConstantDescs#CLASS_INIT_NAME},
2312      * then the returned array does <em>not</em> have a corresponding {@code
2313      * Method} object.
2314      *
2315      * <p> If this {@code Class} object represents a class or interface with no
2316      * declared methods, then the returned array has length 0.
2317      *
2318      * <p> If this {@code Class} object represents an array type, a primitive
2319      * type, or void, then the returned array has length 0.
2320      *
2321      * <p> The elements in the returned array are not sorted and are not in any
2322      * particular order.
2323      *
2324      * @return  the array of {@code Method} objects representing all the
2325      *          declared methods of this class
2326      *
2327      * @jls 8.2 Class Members
2328      * @jls 8.4 Method Declarations
2329      * @see <a
2330      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
2331      * programming language and JVM modeling in core reflection</a>
2332      * @since 1.1
2333      */
2334     public Method[] getDeclaredMethods() {
2335         return copyMethods(privateGetDeclaredMethods(false));
2336     }
2337 
2338     /**
2339      * Returns an array of {@code Constructor} objects reflecting all the
2340      * constructors implicitly or explicitly declared by the class represented by this
2341      * {@code Class} object. These are public, protected, default
2342      * (package) access, and private constructors.  The elements in the array
2343      * returned are not sorted and are not in any particular order.  If the
2344      * class has a default constructor (JLS {@jls 8.8.9}), it is included in the returned array.
2345      * If a record class has a canonical constructor (JLS {@jls
2346      * 8.10.4.1}, {@jls 8.10.4.2}), it is included in the returned array.
2347      *
2348      * This method returns an array of length 0 if this {@code Class}
2349      * object represents an interface, a primitive type, an array class, or
2350      * void.
2351      *
2352      * @return  the array of {@code Constructor} objects representing all the
2353      *          declared constructors of this class
2354      *
2355      * @since 1.1
2356      * @see #getConstructors()
2357      * @jls 8.8 Constructor Declarations
2358      */
2359     public Constructor<?>[] getDeclaredConstructors() {
2360         return copyConstructors(privateGetDeclaredConstructors(false));
2361     }
2362 
2363 
2364     /**
2365      * Returns a {@code Field} object that reflects the specified declared
2366      * field of the class or interface represented by this {@code Class}
2367      * object. The {@code name} parameter is a {@code String} that specifies
2368      * the simple name of the desired field.
2369      *
2370      * <p> If this {@code Class} object represents an array type, then this
2371      * method does not find the {@code length} field of the array type.
2372      *
2373      * @param name the name of the field
2374      * @return  the {@code Field} object for the specified field in this
2375      *          class
2376      * @throws  NoSuchFieldException if a field with the specified name is
2377      *          not found.
2378      * @throws  NullPointerException if {@code name} is {@code null}
2379      *
2380      * @since 1.1
2381      * @jls 8.2 Class Members
2382      * @jls 8.3 Field Declarations
2383      */
2384     public Field getDeclaredField(String name) throws NoSuchFieldException {
2385         Objects.requireNonNull(name);
2386         Field field = searchFields(privateGetDeclaredFields(false), name);
2387         if (field == null) {
2388             throw new NoSuchFieldException(name);
2389         }
2390         return getReflectionFactory().copyField(field);
2391     }
2392 
2393 
2394     /**
2395      * Returns a {@code Method} object that reflects the specified
2396      * declared method of the class or interface represented by this
2397      * {@code Class} object. The {@code name} parameter is a
2398      * {@code String} that specifies the simple name of the desired
2399      * method, and the {@code parameterTypes} parameter is an array of
2400      * {@code Class} objects that identify the method's formal parameter
2401      * types, in declared order.  If more than one method with the same
2402      * parameter types is declared in a class, and one of these methods has a
2403      * return type that is more specific than any of the others, that method is
2404      * returned; otherwise one of the methods is chosen arbitrarily.  If the
2405      * name is {@value ConstantDescs#INIT_NAME} or {@value
2406      * ConstantDescs#CLASS_INIT_NAME} a {@code NoSuchMethodException}
2407      * is raised.
2408      *
2409      * <p> If this {@code Class} object represents an array type, then this
2410      * method does not find the {@code clone()} method.
2411      *
2412      * @param name the name of the method
2413      * @param parameterTypes the parameter array
2414      * @return  the {@code Method} object for the method of this class
2415      *          matching the specified name and parameters
2416      * @throws  NoSuchMethodException if a matching method is not found.
2417      * @throws  NullPointerException if {@code name} is {@code null}
2418      *
2419      * @jls 8.2 Class Members
2420      * @jls 8.4 Method Declarations
2421      * @since 1.1
2422      */
2423     public Method getDeclaredMethod(String name, Class<?>... parameterTypes)
2424             throws NoSuchMethodException {
2425         Objects.requireNonNull(name);
2426         Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);
2427         if (method == null) {
2428             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2429         }
2430         return getReflectionFactory().copyMethod(method);
2431     }
2432 
2433     /**
2434      * Returns the list of {@code Method} objects for the declared public
2435      * methods of this class or interface that have the specified method name
2436      * and parameter types.
2437      *
2438      * @param name the name of the method
2439      * @param parameterTypes the parameter array
2440      * @return the list of {@code Method} objects for the public methods of
2441      *         this class matching the specified name and parameters
2442      */
2443     List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) {
2444         Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true);
2445         ReflectionFactory factory = getReflectionFactory();
2446         List<Method> result = new ArrayList<>();
2447         for (Method method : methods) {
2448             if (method.getName().equals(name)
2449                 && Arrays.equals(
2450                     factory.getExecutableSharedParameterTypes(method),
2451                     parameterTypes)) {
2452                 result.add(factory.copyMethod(method));
2453             }
2454         }
2455         return result;
2456     }
2457 
2458     /**
2459      * Returns the most specific {@code Method} object of this class, super class or
2460      * interface that have the specified method name and parameter types.
2461      *
2462      * @param publicOnly true if only public methods are examined, otherwise all methods
2463      * @param name the name of the method
2464      * @param parameterTypes the parameter array
2465      * @return the {@code Method} object for the method found from this class matching
2466      * the specified name and parameters, or null if not found
2467      */
2468     Method findMethod(boolean publicOnly, String name, Class<?>... parameterTypes) {
2469         PublicMethods.MethodList res = getMethodsRecursive(name, parameterTypes, true, publicOnly);
2470         return res == null ? null : getReflectionFactory().copyMethod(res.getMostSpecific());
2471     }
2472 
2473     /**
2474      * Returns a {@code Constructor} object that reflects the specified
2475      * constructor of the class represented by this
2476      * {@code Class} object.  The {@code parameterTypes} parameter is
2477      * an array of {@code Class} objects that identify the constructor's
2478      * formal parameter types, in declared order.
2479      *
2480      * If this {@code Class} object represents an inner class
2481      * declared in a non-static context, the formal parameter types
2482      * include the explicit enclosing instance as the first parameter.
2483      *
2484      * @param parameterTypes the parameter array
2485      * @return  The {@code Constructor} object for the constructor with the
2486      *          specified parameter list
2487      * @throws  NoSuchMethodException if a matching constructor is not found,
2488      *          including when this {@code Class} object represents
2489      *          an interface, a primitive type, an array class, or void.
2490      *
2491      * @see #getConstructor(Class[])
2492      * @since 1.1
2493      */
2494     public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes)
2495             throws NoSuchMethodException {
2496         return getReflectionFactory().copyConstructor(
2497             getConstructor0(parameterTypes, Member.DECLARED));
2498     }
2499 
2500     /**
2501      * Finds a resource with a given name.
2502      *
2503      * <p> If this class is in a named {@link Module Module} then this method
2504      * will attempt to find the resource in the module. This is done by
2505      * delegating to the module's class loader {@link
2506      * ClassLoader#findResource(String,String) findResource(String,String)}
2507      * method, invoking it with the module name and the absolute name of the
2508      * resource. Resources in named modules are subject to the rules for
2509      * encapsulation specified in the {@code Module} {@link
2510      * Module#getResourceAsStream getResourceAsStream} method and so this
2511      * method returns {@code null} when the resource is a
2512      * non-"{@code .class}" resource in a package that is not open to the
2513      * caller's module.
2514      *
2515      * <p> Otherwise, if this class is not in a named module then the rules for
2516      * searching resources associated with a given class are implemented by the
2517      * defining {@linkplain ClassLoader class loader} of the class.  This method
2518      * delegates to this {@code Class} object's class loader.
2519      * If this {@code Class} object was loaded by the bootstrap class loader,
2520      * the method delegates to {@link ClassLoader#getSystemResourceAsStream}.
2521      *
2522      * <p> Before delegation, an absolute resource name is constructed from the
2523      * given resource name using this algorithm:
2524      *
2525      * <ul>
2526      *
2527      * <li> If the {@code name} begins with a {@code '/'}
2528      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2529      * portion of the {@code name} following the {@code '/'}.
2530      *
2531      * <li> Otherwise, the absolute name is of the following form:
2532      *
2533      * <blockquote>
2534      *   {@code modified_package_name/name}
2535      * </blockquote>
2536      *
2537      * <p> Where the {@code modified_package_name} is the package name of this
2538      * object with {@code '/'} substituted for {@code '.'}
2539      * (<code>'&#92;u002e'</code>).
2540      *
2541      * </ul>
2542      *
2543      * @param  name name of the desired resource
2544      * @return  A {@link java.io.InputStream} object; {@code null} if no
2545      *          resource with this name is found, or the resource is in a package
2546      *          that is not {@linkplain Module#isOpen(String, Module) open} to at
2547      *          least the caller module.
2548      * @throws  NullPointerException If {@code name} is {@code null}
2549      *
2550      * @see Module#getResourceAsStream(String)
2551      * @since  1.1
2552      */
2553     @CallerSensitive
2554     public InputStream getResourceAsStream(String name) {
2555         name = resolveName(name);
2556 
2557         Module thisModule = getModule();
2558         if (thisModule.isNamed()) {
2559             // check if resource can be located by caller
2560             if (Resources.canEncapsulate(name)
2561                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2562                 return null;
2563             }
2564 
2565             // resource not encapsulated or in package open to caller
2566             String mn = thisModule.getName();
2567             ClassLoader cl = classLoader;
2568             try {
2569 
2570                 // special-case built-in class loaders to avoid the
2571                 // need for a URL connection
2572                 if (cl == null) {
2573                     return BootLoader.findResourceAsStream(mn, name);
2574                 } else if (cl instanceof BuiltinClassLoader bcl) {
2575                     return bcl.findResourceAsStream(mn, name);
2576                 } else {
2577                     URL url = cl.findResource(mn, name);
2578                     return (url != null) ? url.openStream() : null;
2579                 }
2580 
2581             } catch (IOException | SecurityException e) {
2582                 return null;
2583             }
2584         }
2585 
2586         // unnamed module
2587         ClassLoader cl = classLoader;
2588         if (cl == null) {
2589             return ClassLoader.getSystemResourceAsStream(name);
2590         } else {
2591             return cl.getResourceAsStream(name);
2592         }
2593     }
2594 
2595     /**
2596      * Finds a resource with a given name.
2597      *
2598      * <p> If this class is in a named {@link Module Module} then this method
2599      * will attempt to find the resource in the module. This is done by
2600      * delegating to the module's class loader {@link
2601      * ClassLoader#findResource(String,String) findResource(String,String)}
2602      * method, invoking it with the module name and the absolute name of the
2603      * resource. Resources in named modules are subject to the rules for
2604      * encapsulation specified in the {@code Module} {@link
2605      * Module#getResourceAsStream getResourceAsStream} method and so this
2606      * method returns {@code null} when the resource is a
2607      * non-"{@code .class}" resource in a package that is not open to the
2608      * caller's module.
2609      *
2610      * <p> Otherwise, if this class is not in a named module then the rules for
2611      * searching resources associated with a given class are implemented by the
2612      * defining {@linkplain ClassLoader class loader} of the class.  This method
2613      * delegates to this {@code Class} object's class loader.
2614      * If this {@code Class} object was loaded by the bootstrap class loader,
2615      * the method delegates to {@link ClassLoader#getSystemResource}.
2616      *
2617      * <p> Before delegation, an absolute resource name is constructed from the
2618      * given resource name using this algorithm:
2619      *
2620      * <ul>
2621      *
2622      * <li> If the {@code name} begins with a {@code '/'}
2623      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2624      * portion of the {@code name} following the {@code '/'}.
2625      *
2626      * <li> Otherwise, the absolute name is of the following form:
2627      *
2628      * <blockquote>
2629      *   {@code modified_package_name/name}
2630      * </blockquote>
2631      *
2632      * <p> Where the {@code modified_package_name} is the package name of this
2633      * object with {@code '/'} substituted for {@code '.'}
2634      * (<code>'&#92;u002e'</code>).
2635      *
2636      * </ul>
2637      *
2638      * @param  name name of the desired resource
2639      * @return A {@link java.net.URL} object; {@code null} if no resource with
2640      *         this name is found, the resource cannot be located by a URL, or the
2641      *         resource is in a package that is not
2642      *         {@linkplain Module#isOpen(String, Module) open} to at least the caller
2643      *         module.
2644      * @throws NullPointerException If {@code name} is {@code null}
2645      * @since  1.1
2646      */
2647     @CallerSensitive
2648     public URL getResource(String name) {
2649         name = resolveName(name);
2650 
2651         Module thisModule = getModule();
2652         if (thisModule.isNamed()) {
2653             // check if resource can be located by caller
2654             if (Resources.canEncapsulate(name)
2655                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2656                 return null;
2657             }
2658 
2659             // resource not encapsulated or in package open to caller
2660             String mn = thisModule.getName();
2661             ClassLoader cl = classLoader;
2662             try {
2663                 if (cl == null) {
2664                     return BootLoader.findResource(mn, name);
2665                 } else {
2666                     return cl.findResource(mn, name);
2667                 }
2668             } catch (IOException ioe) {
2669                 return null;
2670             }
2671         }
2672 
2673         // unnamed module
2674         ClassLoader cl = classLoader;
2675         if (cl == null) {
2676             return ClassLoader.getSystemResource(name);
2677         } else {
2678             return cl.getResource(name);
2679         }
2680     }
2681 
2682     /**
2683      * Returns true if a resource with the given name can be located by the
2684      * given caller. All resources in a module can be located by code in
2685      * the module. For other callers, then the package needs to be open to
2686      * the caller.
2687      */
2688     private boolean isOpenToCaller(String name, Class<?> caller) {
2689         // assert getModule().isNamed();
2690         Module thisModule = getModule();
2691         Module callerModule = (caller != null) ? caller.getModule() : null;
2692         if (callerModule != thisModule) {
2693             String pn = Resources.toPackageName(name);
2694             if (thisModule.getDescriptor().packages().contains(pn)) {
2695                 if (callerModule == null) {
2696                     // no caller, return true if the package is open to all modules
2697                     return thisModule.isOpen(pn);
2698                 }
2699                 if (!thisModule.isOpen(pn, callerModule)) {
2700                     // package not open to caller
2701                     return false;
2702                 }
2703             }
2704         }
2705         return true;
2706     }
2707 
2708     private transient final ProtectionDomain protectionDomain;
2709 
2710     /** Holder for the protection domain returned when the internal domain is null */
2711     private static class Holder {
2712         private static final ProtectionDomain allPermDomain;
2713         static {
2714             Permissions perms = new Permissions();
2715             perms.add(new AllPermission());
2716             allPermDomain = new ProtectionDomain(null, perms);
2717         }
2718     }
2719 
2720     /**
2721      * Returns the {@code ProtectionDomain} of this class.
2722      *
2723      * @return the ProtectionDomain of this class
2724      *
2725      * @see java.security.ProtectionDomain
2726      * @since 1.2
2727      */
2728     public ProtectionDomain getProtectionDomain() {
2729         if (protectionDomain == null) {
2730             return Holder.allPermDomain;
2731         } else {
2732             return protectionDomain;
2733         }
2734     }
2735 
2736     /*
2737      * Returns the Class object for the named primitive type. Type parameter T
2738      * avoids redundant casts for trusted code.
2739      */
2740     static native <T> Class<T> getPrimitiveClass(String name);
2741 
2742     /**
2743      * Add a package name prefix if the name is not absolute. Remove leading "/"
2744      * if name is absolute
2745      */
2746     private String resolveName(String name) {
2747         if (!name.startsWith("/")) {
2748             String baseName = getPackageName();
2749             if (!baseName.isEmpty()) {
2750                 int len = baseName.length() + 1 + name.length();
2751                 StringBuilder sb = new StringBuilder(len);
2752                 name = sb.append(baseName.replace('.', '/'))
2753                     .append('/')
2754                     .append(name)
2755                     .toString();
2756             }
2757         } else {
2758             name = name.substring(1);
2759         }
2760         return name;
2761     }
2762 
2763     /**
2764      * Atomic operations support.
2765      */
2766     private static class Atomic {
2767         // initialize Unsafe machinery here, since we need to call Class.class instance method
2768         // and have to avoid calling it in the static initializer of the Class class...
2769         private static final Unsafe unsafe = Unsafe.getUnsafe();
2770         // offset of Class.reflectionData instance field
2771         private static final long reflectionDataOffset
2772                 = unsafe.objectFieldOffset(Class.class, "reflectionData");
2773         // offset of Class.annotationType instance field
2774         private static final long annotationTypeOffset
2775                 = unsafe.objectFieldOffset(Class.class, "annotationType");
2776         // offset of Class.annotationData instance field
2777         private static final long annotationDataOffset
2778                 = unsafe.objectFieldOffset(Class.class, "annotationData");
2779 
2780         static <T> boolean casReflectionData(Class<?> clazz,
2781                                              SoftReference<ReflectionData<T>> oldData,
2782                                              SoftReference<ReflectionData<T>> newData) {
2783             return unsafe.compareAndSetReference(clazz, reflectionDataOffset, oldData, newData);
2784         }
2785 
2786         static boolean casAnnotationType(Class<?> clazz,
2787                                          AnnotationType oldType,
2788                                          AnnotationType newType) {
2789             return unsafe.compareAndSetReference(clazz, annotationTypeOffset, oldType, newType);
2790         }
2791 
2792         static boolean casAnnotationData(Class<?> clazz,
2793                                          AnnotationData oldData,
2794                                          AnnotationData newData) {
2795             return unsafe.compareAndSetReference(clazz, annotationDataOffset, oldData, newData);
2796         }
2797     }
2798 
2799     /**
2800      * Reflection support.
2801      */
2802 
2803     // Reflection data caches various derived names and reflective members. Cached
2804     // values may be invalidated when JVM TI RedefineClasses() is called
2805     private static class ReflectionData<T> {
2806         volatile Field[] declaredFields;
2807         volatile Field[] publicFields;
2808         volatile Method[] declaredMethods;
2809         volatile Method[] publicMethods;
2810         volatile Constructor<T>[] declaredConstructors;
2811         volatile Constructor<T>[] publicConstructors;
2812         // Intermediate results for getFields and getMethods
2813         volatile Field[] declaredPublicFields;
2814         volatile Method[] declaredPublicMethods;
2815         volatile Class<?>[] interfaces;
2816 
2817         // Cached names
2818         String simpleName;
2819         String canonicalName;
2820         static final String NULL_SENTINEL = new String();
2821 
2822         // Value of classRedefinedCount when we created this ReflectionData instance
2823         final int redefinedCount;
2824 
2825         ReflectionData(int redefinedCount) {
2826             this.redefinedCount = redefinedCount;
2827         }
2828     }
2829 
2830     private transient volatile SoftReference<ReflectionData<T>> reflectionData;
2831 
2832     // Incremented by the VM on each call to JVM TI RedefineClasses()
2833     // that redefines this class or a superclass.
2834     private transient volatile int classRedefinedCount;
2835 
2836     // Lazily create and cache ReflectionData
2837     private ReflectionData<T> reflectionData() {
2838         SoftReference<ReflectionData<T>> reflectionData = this.reflectionData;
2839         int classRedefinedCount = this.classRedefinedCount;
2840         ReflectionData<T> rd;
2841         if (reflectionData != null &&
2842             (rd = reflectionData.get()) != null &&
2843             rd.redefinedCount == classRedefinedCount) {
2844             return rd;
2845         }
2846         // else no SoftReference or cleared SoftReference or stale ReflectionData
2847         // -> create and replace new instance
2848         return newReflectionData(reflectionData, classRedefinedCount);
2849     }
2850 
2851     private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData,
2852                                                 int classRedefinedCount) {
2853         while (true) {
2854             ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount);
2855             // try to CAS it...
2856             if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) {
2857                 return rd;
2858             }
2859             // else retry
2860             oldReflectionData = this.reflectionData;
2861             classRedefinedCount = this.classRedefinedCount;
2862             if (oldReflectionData != null &&
2863                 (rd = oldReflectionData.get()) != null &&
2864                 rd.redefinedCount == classRedefinedCount) {
2865                 return rd;
2866             }
2867         }
2868     }
2869 
2870     // Generic signature handling
2871     private native String getGenericSignature0();
2872 
2873     // Generic info repository; lazily initialized
2874     private transient volatile ClassRepository genericInfo;
2875 
2876     // accessor for factory
2877     private GenericsFactory getFactory() {
2878         // create scope and factory
2879         return CoreReflectionFactory.make(this, ClassScope.make(this));
2880     }
2881 
2882     // accessor for generic info repository;
2883     // generic info is lazily initialized
2884     private ClassRepository getGenericInfo() {
2885         ClassRepository genericInfo = this.genericInfo;
2886         if (genericInfo == null) {
2887             String signature = getGenericSignature0();
2888             if (signature == null) {
2889                 genericInfo = ClassRepository.NONE;
2890             } else {
2891                 genericInfo = ClassRepository.make(signature, getFactory());
2892             }
2893             this.genericInfo = genericInfo;
2894         }
2895         return (genericInfo != ClassRepository.NONE) ? genericInfo : null;
2896     }
2897 
2898     // Annotations handling
2899     native byte[] getRawAnnotations();
2900     // Since 1.8
2901     native byte[] getRawTypeAnnotations();
2902     static byte[] getExecutableTypeAnnotationBytes(Executable ex) {
2903         return getReflectionFactory().getExecutableTypeAnnotationBytes(ex);
2904     }
2905 
2906     native ConstantPool getConstantPool();
2907 
2908     //
2909     //
2910     // java.lang.reflect.Field handling
2911     //
2912     //
2913 
2914     // Returns an array of "root" fields. These Field objects must NOT
2915     // be propagated to the outside world, but must instead be copied
2916     // via ReflectionFactory.copyField.
2917     private Field[] privateGetDeclaredFields(boolean publicOnly) {
2918         Field[] res;
2919         ReflectionData<T> rd = reflectionData();
2920         res = publicOnly ? rd.declaredPublicFields : rd.declaredFields;
2921         if (res != null) return res;
2922         // No cached value available; request value from VM
2923         res = Reflection.filterFields(this, getDeclaredFields0(publicOnly));
2924         if (publicOnly) {
2925             rd.declaredPublicFields = res;
2926         } else {
2927             rd.declaredFields = res;
2928         }
2929         return res;
2930     }
2931 
2932     // Returns an array of "root" fields. These Field objects must NOT
2933     // be propagated to the outside world, but must instead be copied
2934     // via ReflectionFactory.copyField.
2935     private Field[] privateGetPublicFields() {
2936         Field[] res;
2937         ReflectionData<T> rd = reflectionData();
2938         res = rd.publicFields;
2939         if (res != null) return res;
2940 
2941         // Use a linked hash set to ensure order is preserved and
2942         // fields from common super interfaces are not duplicated
2943         LinkedHashSet<Field> fields = new LinkedHashSet<>();
2944 
2945         // Local fields
2946         addAll(fields, privateGetDeclaredFields(true));
2947 
2948         // Direct superinterfaces, recursively
2949         for (Class<?> si : getInterfaces(/* cloneArray */ false)) {
2950             addAll(fields, si.privateGetPublicFields());
2951         }
2952 
2953         // Direct superclass, recursively
2954         Class<?> sc = getSuperclass();
2955         if (sc != null) {
2956             addAll(fields, sc.privateGetPublicFields());
2957         }
2958 
2959         res = fields.toArray(new Field[0]);
2960         rd.publicFields = res;
2961         return res;
2962     }
2963 
2964     private static void addAll(Collection<Field> c, Field[] o) {
2965         for (Field f : o) {
2966             c.add(f);
2967         }
2968     }
2969 
2970 
2971     //
2972     //
2973     // java.lang.reflect.Constructor handling
2974     //
2975     //
2976 
2977     // Returns an array of "root" constructors. These Constructor
2978     // objects must NOT be propagated to the outside world, but must
2979     // instead be copied via ReflectionFactory.copyConstructor.
2980     private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) {
2981         Constructor<T>[] res;
2982         ReflectionData<T> rd = reflectionData();
2983         res = publicOnly ? rd.publicConstructors : rd.declaredConstructors;
2984         if (res != null) return res;
2985         // No cached value available; request value from VM
2986         if (isInterface()) {
2987             @SuppressWarnings("unchecked")
2988             Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0];
2989             res = temporaryRes;
2990         } else {
2991             res = getDeclaredConstructors0(publicOnly);
2992         }
2993         if (publicOnly) {
2994             rd.publicConstructors = res;
2995         } else {
2996             rd.declaredConstructors = res;
2997         }
2998         return res;
2999     }
3000 
3001     //
3002     //
3003     // java.lang.reflect.Method handling
3004     //
3005     //
3006 
3007     // Returns an array of "root" methods. These Method objects must NOT
3008     // be propagated to the outside world, but must instead be copied
3009     // via ReflectionFactory.copyMethod.
3010     private Method[] privateGetDeclaredMethods(boolean publicOnly) {
3011         Method[] res;
3012         ReflectionData<T> rd = reflectionData();
3013         res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods;
3014         if (res != null) return res;
3015         // No cached value available; request value from VM
3016         res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly));
3017         if (publicOnly) {
3018             rd.declaredPublicMethods = res;
3019         } else {
3020             rd.declaredMethods = res;
3021         }
3022         return res;
3023     }
3024 
3025     // Returns an array of "root" methods. These Method objects must NOT
3026     // be propagated to the outside world, but must instead be copied
3027     // via ReflectionFactory.copyMethod.
3028     private Method[] privateGetPublicMethods() {
3029         Method[] res;
3030         ReflectionData<T> rd = reflectionData();
3031         res = rd.publicMethods;
3032         if (res != null) return res;
3033 
3034         // No cached value available; compute value recursively.
3035         // Start by fetching public declared methods...
3036         PublicMethods pms = new PublicMethods();
3037         for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) {
3038             pms.merge(m);
3039         }
3040         // ...then recur over superclass methods...
3041         Class<?> sc = getSuperclass();
3042         if (sc != null) {
3043             for (Method m : sc.privateGetPublicMethods()) {
3044                 pms.merge(m);
3045             }
3046         }
3047         // ...and finally over direct superinterfaces.
3048         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3049             for (Method m : intf.privateGetPublicMethods()) {
3050                 // static interface methods are not inherited
3051                 if (!Modifier.isStatic(m.getModifiers())) {
3052                     pms.merge(m);
3053                 }
3054             }
3055         }
3056 
3057         res = pms.toArray();
3058         rd.publicMethods = res;
3059         return res;
3060     }
3061 
3062 
3063     //
3064     // Helpers for fetchers of one field, method, or constructor
3065     //
3066 
3067     // This method does not copy the returned Field object!
3068     private static Field searchFields(Field[] fields, String name) {
3069         for (Field field : fields) {
3070             if (field.getName().equals(name)) {
3071                 return field;
3072             }
3073         }
3074         return null;
3075     }
3076 
3077     // Returns a "root" Field object. This Field object must NOT
3078     // be propagated to the outside world, but must instead be copied
3079     // via ReflectionFactory.copyField.
3080     private Field getField0(String name) {
3081         // Note: the intent is that the search algorithm this routine
3082         // uses be equivalent to the ordering imposed by
3083         // privateGetPublicFields(). It fetches only the declared
3084         // public fields for each class, however, to reduce the number
3085         // of Field objects which have to be created for the common
3086         // case where the field being requested is declared in the
3087         // class which is being queried.
3088         Field res;
3089         // Search declared public fields
3090         if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) {
3091             return res;
3092         }
3093         // Direct superinterfaces, recursively
3094         Class<?>[] interfaces = getInterfaces(/* cloneArray */ false);
3095         for (Class<?> c : interfaces) {
3096             if ((res = c.getField0(name)) != null) {
3097                 return res;
3098             }
3099         }
3100         // Direct superclass, recursively
3101         if (!isInterface()) {
3102             Class<?> c = getSuperclass();
3103             if (c != null) {
3104                 if ((res = c.getField0(name)) != null) {
3105                     return res;
3106                 }
3107             }
3108         }
3109         return null;
3110     }
3111 
3112     // This method does not copy the returned Method object!
3113     private static Method searchMethods(Method[] methods,
3114                                         String name,
3115                                         Class<?>[] parameterTypes)
3116     {
3117         ReflectionFactory fact = getReflectionFactory();
3118         Method res = null;
3119         for (Method m : methods) {
3120             if (m.getName().equals(name)
3121                 && arrayContentsEq(parameterTypes,
3122                                    fact.getExecutableSharedParameterTypes(m))
3123                 && (res == null
3124                     || (res.getReturnType() != m.getReturnType()
3125                         && res.getReturnType().isAssignableFrom(m.getReturnType()))))
3126                 res = m;
3127         }
3128         return res;
3129     }
3130 
3131     private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
3132 
3133     // Returns a "root" Method object. This Method object must NOT
3134     // be propagated to the outside world, but must instead be copied
3135     // via ReflectionFactory.copyMethod.
3136     private Method getMethod0(String name, Class<?>[] parameterTypes) {
3137         PublicMethods.MethodList res = getMethodsRecursive(
3138             name,
3139             parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes,
3140             /* includeStatic */ true, /* publicOnly */ true);
3141         return res == null ? null : res.getMostSpecific();
3142     }
3143 
3144     // Returns a list of "root" Method objects. These Method objects must NOT
3145     // be propagated to the outside world, but must instead be copied
3146     // via ReflectionFactory.copyMethod.
3147     private PublicMethods.MethodList getMethodsRecursive(String name,
3148                                                          Class<?>[] parameterTypes,
3149                                                          boolean includeStatic,
3150                                                          boolean publicOnly) {
3151         // 1st check declared methods
3152         Method[] methods = privateGetDeclaredMethods(publicOnly);
3153         PublicMethods.MethodList res = PublicMethods.MethodList
3154             .filter(methods, name, parameterTypes, includeStatic);
3155         // if there is at least one match among declared methods, we need not
3156         // search any further as such match surely overrides matching methods
3157         // declared in superclass(es) or interface(s).
3158         if (res != null) {
3159             return res;
3160         }
3161 
3162         // if there was no match among declared methods,
3163         // we must consult the superclass (if any) recursively...
3164         Class<?> sc = getSuperclass();
3165         if (sc != null) {
3166             res = sc.getMethodsRecursive(name, parameterTypes, includeStatic, publicOnly);
3167         }
3168 
3169         // ...and coalesce the superclass methods with methods obtained
3170         // from directly implemented interfaces excluding static methods...
3171         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3172             res = PublicMethods.MethodList.merge(
3173                 res, intf.getMethodsRecursive(name, parameterTypes, /* includeStatic */ false, publicOnly));
3174         }
3175 
3176         return res;
3177     }
3178 
3179     // Returns a "root" Constructor object. This Constructor object must NOT
3180     // be propagated to the outside world, but must instead be copied
3181     // via ReflectionFactory.copyConstructor.
3182     private Constructor<T> getConstructor0(Class<?>[] parameterTypes,
3183                                         int which) throws NoSuchMethodException
3184     {
3185         ReflectionFactory fact = getReflectionFactory();
3186         Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC));
3187         for (Constructor<T> constructor : constructors) {
3188             if (arrayContentsEq(parameterTypes,
3189                                 fact.getExecutableSharedParameterTypes(constructor))) {
3190                 return constructor;
3191             }
3192         }
3193         throw new NoSuchMethodException(methodToString("<init>", parameterTypes));
3194     }
3195 
3196     //
3197     // Other helpers and base implementation
3198     //
3199 
3200     private static boolean arrayContentsEq(Object[] a1, Object[] a2) {
3201         if (a1 == null) {
3202             return a2 == null || a2.length == 0;
3203         }
3204 
3205         if (a2 == null) {
3206             return a1.length == 0;
3207         }
3208 
3209         if (a1.length != a2.length) {
3210             return false;
3211         }
3212 
3213         for (int i = 0; i < a1.length; i++) {
3214             if (a1[i] != a2[i]) {
3215                 return false;
3216             }
3217         }
3218 
3219         return true;
3220     }
3221 
3222     private static Field[] copyFields(Field[] arg) {
3223         Field[] out = new Field[arg.length];
3224         ReflectionFactory fact = getReflectionFactory();
3225         for (int i = 0; i < arg.length; i++) {
3226             out[i] = fact.copyField(arg[i]);
3227         }
3228         return out;
3229     }
3230 
3231     private static Method[] copyMethods(Method[] arg) {
3232         Method[] out = new Method[arg.length];
3233         ReflectionFactory fact = getReflectionFactory();
3234         for (int i = 0; i < arg.length; i++) {
3235             out[i] = fact.copyMethod(arg[i]);
3236         }
3237         return out;
3238     }
3239 
3240     private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) {
3241         Constructor<U>[] out = arg.clone();
3242         ReflectionFactory fact = getReflectionFactory();
3243         for (int i = 0; i < out.length; i++) {
3244             out[i] = fact.copyConstructor(out[i]);
3245         }
3246         return out;
3247     }
3248 
3249     private native Field[]       getDeclaredFields0(boolean publicOnly);
3250     private native Method[]      getDeclaredMethods0(boolean publicOnly);
3251     private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly);
3252     private native Class<?>[]    getDeclaredClasses0();
3253 
3254     /*
3255      * Returns an array containing the components of the Record attribute,
3256      * or null if the attribute is not present.
3257      *
3258      * Note that this method returns non-null array on a class with
3259      * the Record attribute even if this class is not a record.
3260      */
3261     private native RecordComponent[] getRecordComponents0();
3262     private native boolean       isRecord0();
3263 
3264     /**
3265      * Helper method to get the method name from arguments.
3266      */
3267     private String methodToString(String name, Class<?>[] argTypes) {
3268         return getName() + '.' + name +
3269                 ((argTypes == null || argTypes.length == 0) ?
3270                 "()" :
3271                 Arrays.stream(argTypes)
3272                         .map(c -> c == null ? "null" : c.getName())
3273                         .collect(Collectors.joining(",", "(", ")")));
3274     }
3275 
3276     /** use serialVersionUID from JDK 1.1 for interoperability */
3277     @java.io.Serial
3278     private static final long serialVersionUID = 3206093459760846163L;
3279 
3280 
3281     /**
3282      * Class Class is special cased within the Serialization Stream Protocol.
3283      *
3284      * A Class instance is written initially into an ObjectOutputStream in the
3285      * following format:
3286      * <pre>
3287      *      {@code TC_CLASS} ClassDescriptor
3288      *      A ClassDescriptor is a special cased serialization of
3289      *      a {@code java.io.ObjectStreamClass} instance.
3290      * </pre>
3291      * A new handle is generated for the initial time the class descriptor
3292      * is written into the stream. Future references to the class descriptor
3293      * are written as references to the initial class descriptor instance.
3294      *
3295      * @see java.io.ObjectStreamClass
3296      */
3297     @java.io.Serial
3298     private static final ObjectStreamField[] serialPersistentFields =
3299         new ObjectStreamField[0];
3300 
3301 
3302     /**
3303      * Returns the assertion status that would be assigned to this
3304      * class if it were to be initialized at the time this method is invoked.
3305      * If this class has had its assertion status set, the most recent
3306      * setting will be returned; otherwise, if any package default assertion
3307      * status pertains to this class, the most recent setting for the most
3308      * specific pertinent package default assertion status is returned;
3309      * otherwise, if this class is not a system class (i.e., it has a
3310      * class loader) its class loader's default assertion status is returned;
3311      * otherwise, the system class default assertion status is returned.
3312      *
3313      * @apiNote
3314      * Few programmers will have any need for this method; it is provided
3315      * for the benefit of the JDK itself.  (It allows a class to determine at
3316      * the time that it is initialized whether assertions should be enabled.)
3317      * Note that this method is not guaranteed to return the actual
3318      * assertion status that was (or will be) associated with the specified
3319      * class when it was (or will be) initialized.
3320      *
3321      * @return the desired assertion status of the specified class.
3322      * @see    java.lang.ClassLoader#setClassAssertionStatus
3323      * @see    java.lang.ClassLoader#setPackageAssertionStatus
3324      * @see    java.lang.ClassLoader#setDefaultAssertionStatus
3325      * @since  1.4
3326      */
3327     public boolean desiredAssertionStatus() {
3328         ClassLoader loader = classLoader;
3329         // If the loader is null this is a system class, so ask the VM
3330         if (loader == null)
3331             return desiredAssertionStatus0(this);
3332 
3333         // If the classloader has been initialized with the assertion
3334         // directives, ask it. Otherwise, ask the VM.
3335         synchronized(loader.assertionLock) {
3336             if (loader.classAssertionStatus != null) {
3337                 return loader.desiredAssertionStatus(getName());
3338             }
3339         }
3340         return desiredAssertionStatus0(this);
3341     }
3342 
3343     // Retrieves the desired assertion status of this class from the VM
3344     private static native boolean desiredAssertionStatus0(Class<?> clazz);
3345 
3346     /**
3347      * Returns true if and only if this class was declared as an enum in the
3348      * source code.
3349      *
3350      * Note that {@link java.lang.Enum} is not itself an enum class.
3351      *
3352      * Also note that if an enum constant is declared with a class body,
3353      * the class of that enum constant object is an anonymous class
3354      * and <em>not</em> the class of the declaring enum class. The
3355      * {@link Enum#getDeclaringClass} method of an enum constant can
3356      * be used to get the class of the enum class declaring the
3357      * constant.
3358      *
3359      * @return true if and only if this class was declared as an enum in the
3360      *     source code
3361      * @since 1.5
3362      * @jls 8.9.1 Enum Constants
3363      */
3364     public boolean isEnum() {
3365         // An enum must both directly extend java.lang.Enum and have
3366         // the ENUM bit set; classes for specialized enum constants
3367         // don't do the former.
3368         return (this.getModifiers() & ENUM) != 0 &&
3369         this.getSuperclass() == java.lang.Enum.class;
3370     }
3371 
3372     /**
3373      * Returns {@code true} if and only if this class is a record class.
3374      *
3375      * <p> The {@linkplain #getSuperclass() direct superclass} of a record
3376      * class is {@code java.lang.Record}. A record class is {@linkplain
3377      * Modifier#FINAL final}. A record class has (possibly zero) record
3378      * components; {@link #getRecordComponents()} returns a non-null but
3379      * possibly empty value for a record.
3380      *
3381      * <p> Note that class {@link Record} is not a record class and thus
3382      * invoking this method on class {@code Record} returns {@code false}.
3383      *
3384      * @return true if and only if this class is a record class, otherwise false
3385      * @jls 8.10 Record Classes
3386      * @since 16
3387      */
3388     public boolean isRecord() {
3389         // this superclass and final modifier check is not strictly necessary
3390         // they are intrinsified and serve as a fast-path check
3391         return getSuperclass() == java.lang.Record.class &&
3392                 (this.getModifiers() & Modifier.FINAL) != 0 &&
3393                 isRecord0();
3394     }
3395 
3396     // Fetches the factory for reflective objects
3397     private static ReflectionFactory getReflectionFactory() {
3398         var factory = reflectionFactory;
3399         if (factory != null) {
3400             return factory;
3401         }
3402         return reflectionFactory = ReflectionFactory.getReflectionFactory();
3403     }
3404     private static ReflectionFactory reflectionFactory;
3405 
3406     /**
3407      * When CDS is enabled, the Class class may be aot-initialized. However,
3408      * we can't archive reflectionFactory, so we reset it to null, so it
3409      * will be allocated again at runtime.
3410      */
3411     private static void resetArchivedStates() {
3412         reflectionFactory = null;
3413     }
3414 
3415     /**
3416      * Returns the elements of this enum class or null if this
3417      * Class object does not represent an enum class.
3418      *
3419      * @return an array containing the values comprising the enum class
3420      *     represented by this {@code Class} object in the order they're
3421      *     declared, or null if this {@code Class} object does not
3422      *     represent an enum class
3423      * @since 1.5
3424      * @jls 8.9.1 Enum Constants
3425      */
3426     public T[] getEnumConstants() {
3427         T[] values = getEnumConstantsShared();
3428         return (values != null) ? values.clone() : null;
3429     }
3430 
3431     /**
3432      * Returns the elements of this enum class or null if this
3433      * Class object does not represent an enum class;
3434      * identical to getEnumConstants except that the result is
3435      * uncloned, cached, and shared by all callers.
3436      */
3437     T[] getEnumConstantsShared() {
3438         T[] constants = enumConstants;
3439         if (constants == null) {
3440             if (!isEnum()) return null;
3441             try {
3442                 final Method values = getMethod("values");
3443                 values.setAccessible(true);
3444                 @SuppressWarnings("unchecked")
3445                 T[] temporaryConstants = (T[])values.invoke(null);
3446                 enumConstants = constants = temporaryConstants;
3447             }
3448             // These can happen when users concoct enum-like classes
3449             // that don't comply with the enum spec.
3450             catch (InvocationTargetException | NoSuchMethodException |
3451                    IllegalAccessException | NullPointerException |
3452                    ClassCastException ex) { return null; }
3453         }
3454         return constants;
3455     }
3456     private transient volatile T[] enumConstants;
3457 
3458     /**
3459      * Returns a map from simple name to enum constant.  This package-private
3460      * method is used internally by Enum to implement
3461      * {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)}
3462      * efficiently.  Note that the map is returned by this method is
3463      * created lazily on first use.  Typically it won't ever get created.
3464      */
3465     Map<String, T> enumConstantDirectory() {
3466         Map<String, T> directory = enumConstantDirectory;
3467         if (directory == null) {
3468             T[] universe = getEnumConstantsShared();
3469             if (universe == null)
3470                 throw new IllegalArgumentException(
3471                     getName() + " is not an enum class");
3472             directory = HashMap.newHashMap(universe.length);
3473             for (T constant : universe) {
3474                 directory.put(((Enum<?>)constant).name(), constant);
3475             }
3476             enumConstantDirectory = directory;
3477         }
3478         return directory;
3479     }
3480     private transient volatile Map<String, T> enumConstantDirectory;
3481 
3482     /**
3483      * Casts an object to the class or interface represented
3484      * by this {@code Class} object.
3485      *
3486      * @param obj the object to be cast
3487      * @return the object after casting, or null if obj is null
3488      *
3489      * @throws ClassCastException if the object is not
3490      * null and is not assignable to the type T.
3491      *
3492      * @since 1.5
3493      */
3494     @SuppressWarnings("unchecked")
3495     @IntrinsicCandidate
3496     public T cast(Object obj) {
3497         if (obj != null && !isInstance(obj))
3498             throw new ClassCastException(cannotCastMsg(obj));
3499         return (T) obj;
3500     }
3501 
3502     private String cannotCastMsg(Object obj) {
3503         return "Cannot cast " + obj.getClass().getName() + " to " + getName();
3504     }
3505 
3506     /**
3507      * Casts this {@code Class} object to represent a subclass of the class
3508      * represented by the specified class object.  Checks that the cast
3509      * is valid, and throws a {@code ClassCastException} if it is not.  If
3510      * this method succeeds, it always returns a reference to this {@code Class} object.
3511      *
3512      * <p>This method is useful when a client needs to "narrow" the type of
3513      * a {@code Class} object to pass it to an API that restricts the
3514      * {@code Class} objects that it is willing to accept.  A cast would
3515      * generate a compile-time warning, as the correctness of the cast
3516      * could not be checked at runtime (because generic types are implemented
3517      * by erasure).
3518      *
3519      * @param <U> the type to cast this {@code Class} object to
3520      * @param clazz the class of the type to cast this {@code Class} object to
3521      * @return this {@code Class} object, cast to represent a subclass of
3522      *    the specified class object.
3523      * @throws ClassCastException if this {@code Class} object does not
3524      *    represent a subclass of the specified class (here "subclass" includes
3525      *    the class itself).
3526      * @since 1.5
3527      */
3528     @SuppressWarnings("unchecked")
3529     public <U> Class<? extends U> asSubclass(Class<U> clazz) {
3530         if (clazz.isAssignableFrom(this))
3531             return (Class<? extends U>) this;
3532         else
3533             throw new ClassCastException(this.toString());
3534     }
3535 
3536     /**
3537      * {@inheritDoc}
3538      * <p>Note that any annotation returned by this method is a
3539      * declaration annotation.
3540      *
3541      * @throws NullPointerException {@inheritDoc}
3542      * @since 1.5
3543      */
3544     @Override
3545     @SuppressWarnings("unchecked")
3546     public <A extends Annotation> A getAnnotation(Class<A> annotationClass) {
3547         Objects.requireNonNull(annotationClass);
3548 
3549         return (A) annotationData().annotations.get(annotationClass);
3550     }
3551 
3552     /**
3553      * {@inheritDoc}
3554      * @throws NullPointerException {@inheritDoc}
3555      * @since 1.5
3556      */
3557     @Override
3558     public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) {
3559         return GenericDeclaration.super.isAnnotationPresent(annotationClass);
3560     }
3561 
3562     /**
3563      * {@inheritDoc}
3564      * <p>Note that any annotations returned by this method are
3565      * declaration annotations.
3566      *
3567      * @throws NullPointerException {@inheritDoc}
3568      * @since 1.8
3569      */
3570     @Override
3571     public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) {
3572         Objects.requireNonNull(annotationClass);
3573 
3574         AnnotationData annotationData = annotationData();
3575         return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations,
3576                                                           this,
3577                                                           annotationClass);
3578     }
3579 
3580     /**
3581      * {@inheritDoc}
3582      * <p>Note that any annotations returned by this method are
3583      * declaration annotations.
3584      *
3585      * @since 1.5
3586      */
3587     @Override
3588     public Annotation[] getAnnotations() {
3589         return AnnotationParser.toArray(annotationData().annotations);
3590     }
3591 
3592     /**
3593      * {@inheritDoc}
3594      * <p>Note that any annotation returned by this method is a
3595      * declaration annotation.
3596      *
3597      * @throws NullPointerException {@inheritDoc}
3598      * @since 1.8
3599      */
3600     @Override
3601     @SuppressWarnings("unchecked")
3602     public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) {
3603         Objects.requireNonNull(annotationClass);
3604 
3605         return (A) annotationData().declaredAnnotations.get(annotationClass);
3606     }
3607 
3608     /**
3609      * {@inheritDoc}
3610      * <p>Note that any annotations returned by this method are
3611      * declaration annotations.
3612      *
3613      * @throws NullPointerException {@inheritDoc}
3614      * @since 1.8
3615      */
3616     @Override
3617     public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) {
3618         Objects.requireNonNull(annotationClass);
3619 
3620         return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations,
3621                                                                  annotationClass);
3622     }
3623 
3624     /**
3625      * {@inheritDoc}
3626      * <p>Note that any annotations returned by this method are
3627      * declaration annotations.
3628      *
3629      * @since 1.5
3630      */
3631     @Override
3632     public Annotation[] getDeclaredAnnotations()  {
3633         return AnnotationParser.toArray(annotationData().declaredAnnotations);
3634     }
3635 
3636     // annotation data that might get invalidated when JVM TI RedefineClasses() is called
3637     private static class AnnotationData {
3638         final Map<Class<? extends Annotation>, Annotation> annotations;
3639         final Map<Class<? extends Annotation>, Annotation> declaredAnnotations;
3640 
3641         // Value of classRedefinedCount when we created this AnnotationData instance
3642         final int redefinedCount;
3643 
3644         AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations,
3645                        Map<Class<? extends Annotation>, Annotation> declaredAnnotations,
3646                        int redefinedCount) {
3647             this.annotations = annotations;
3648             this.declaredAnnotations = declaredAnnotations;
3649             this.redefinedCount = redefinedCount;
3650         }
3651     }
3652 
3653     // Annotations cache
3654     @SuppressWarnings("UnusedDeclaration")
3655     private transient volatile AnnotationData annotationData;
3656 
3657     private AnnotationData annotationData() {
3658         while (true) { // retry loop
3659             AnnotationData annotationData = this.annotationData;
3660             int classRedefinedCount = this.classRedefinedCount;
3661             if (annotationData != null &&
3662                 annotationData.redefinedCount == classRedefinedCount) {
3663                 return annotationData;
3664             }
3665             // null or stale annotationData -> optimistically create new instance
3666             AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount);
3667             // try to install it
3668             if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) {
3669                 // successfully installed new AnnotationData
3670                 return newAnnotationData;
3671             }
3672         }
3673     }
3674 
3675     private AnnotationData createAnnotationData(int classRedefinedCount) {
3676         Map<Class<? extends Annotation>, Annotation> declaredAnnotations =
3677             AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this);
3678         Class<?> superClass = getSuperclass();
3679         Map<Class<? extends Annotation>, Annotation> annotations = null;
3680         if (superClass != null) {
3681             Map<Class<? extends Annotation>, Annotation> superAnnotations =
3682                 superClass.annotationData().annotations;
3683             for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) {
3684                 Class<? extends Annotation> annotationClass = e.getKey();
3685                 if (AnnotationType.getInstance(annotationClass).isInherited()) {
3686                     if (annotations == null) { // lazy construction
3687                         annotations = LinkedHashMap.newLinkedHashMap(Math.max(
3688                                 declaredAnnotations.size(),
3689                                 Math.min(12, declaredAnnotations.size() + superAnnotations.size())
3690                             )
3691                         );
3692                     }
3693                     annotations.put(annotationClass, e.getValue());
3694                 }
3695             }
3696         }
3697         if (annotations == null) {
3698             // no inherited annotations -> share the Map with declaredAnnotations
3699             annotations = declaredAnnotations;
3700         } else {
3701             // at least one inherited annotation -> declared may override inherited
3702             annotations.putAll(declaredAnnotations);
3703         }
3704         return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount);
3705     }
3706 
3707     // Annotation interfaces cache their internal (AnnotationType) form
3708 
3709     @SuppressWarnings("UnusedDeclaration")
3710     private transient volatile AnnotationType annotationType;
3711 
3712     boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) {
3713         return Atomic.casAnnotationType(this, oldType, newType);
3714     }
3715 
3716     AnnotationType getAnnotationType() {
3717         return annotationType;
3718     }
3719 
3720     Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() {
3721         return annotationData().declaredAnnotations;
3722     }
3723 
3724     /* Backing store of user-defined values pertaining to this class.
3725      * Maintained by the ClassValue class.
3726      */
3727     transient ClassValue.ClassValueMap classValueMap;
3728 
3729     /**
3730      * Returns an {@code AnnotatedType} object that represents the use of a
3731      * type to specify the superclass of the entity represented by this {@code
3732      * Class} object. (The <em>use</em> of type Foo to specify the superclass
3733      * in '...  extends Foo' is distinct from the <em>declaration</em> of class
3734      * Foo.)
3735      *
3736      * <p> If this {@code Class} object represents a class whose declaration
3737      * does not explicitly indicate an annotated superclass, then the return
3738      * value is an {@code AnnotatedType} object representing an element with no
3739      * annotations.
3740      *
3741      * <p> If this {@code Class} represents either the {@code Object} class, an
3742      * interface type, an array type, a primitive type, or void, the return
3743      * value is {@code null}.
3744      *
3745      * @return an object representing the superclass
3746      * @since 1.8
3747      */
3748     public AnnotatedType getAnnotatedSuperclass() {
3749         if (this == Object.class ||
3750                 isInterface() ||
3751                 isArray() ||
3752                 isPrimitive() ||
3753                 this == Void.TYPE) {
3754             return null;
3755         }
3756 
3757         return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this);
3758     }
3759 
3760     /**
3761      * Returns an array of {@code AnnotatedType} objects that represent the use
3762      * of types to specify superinterfaces of the entity represented by this
3763      * {@code Class} object. (The <em>use</em> of type Foo to specify a
3764      * superinterface in '... implements Foo' is distinct from the
3765      * <em>declaration</em> of interface Foo.)
3766      *
3767      * <p> If this {@code Class} object represents a class, the return value is
3768      * an array containing objects representing the uses of interface types to
3769      * specify interfaces implemented by the class. The order of the objects in
3770      * the array corresponds to the order of the interface types used in the
3771      * 'implements' clause of the declaration of this {@code Class} object.
3772      *
3773      * <p> If this {@code Class} object represents an interface, the return
3774      * value is an array containing objects representing the uses of interface
3775      * types to specify interfaces directly extended by the interface. The
3776      * order of the objects in the array corresponds to the order of the
3777      * interface types used in the 'extends' clause of the declaration of this
3778      * {@code Class} object.
3779      *
3780      * <p> If this {@code Class} object represents a class or interface whose
3781      * declaration does not explicitly indicate any annotated superinterfaces,
3782      * the return value is an array of length 0.
3783      *
3784      * <p> If this {@code Class} object represents either the {@code Object}
3785      * class, an array type, a primitive type, or void, the return value is an
3786      * array of length 0.
3787      *
3788      * @return an array representing the superinterfaces
3789      * @since 1.8
3790      */
3791     public AnnotatedType[] getAnnotatedInterfaces() {
3792          return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this);
3793     }
3794 
3795     private native Class<?> getNestHost0();
3796 
3797     /**
3798      * Returns the nest host of the <a href=#nest>nest</a> to which the class
3799      * or interface represented by this {@code Class} object belongs.
3800      * Every class and interface belongs to exactly one nest.
3801      *
3802      * If the nest host of this class or interface has previously
3803      * been determined, then this method returns the nest host.
3804      * If the nest host of this class or interface has
3805      * not previously been determined, then this method determines the nest
3806      * host using the algorithm of JVMS 5.4.4, and returns it.
3807      *
3808      * Often, a class or interface belongs to a nest consisting only of itself,
3809      * in which case this method returns {@code this} to indicate that the class
3810      * or interface is the nest host.
3811      *
3812      * <p>If this {@code Class} object represents a primitive type, an array type,
3813      * or {@code void}, then this method returns {@code this},
3814      * indicating that the represented entity belongs to the nest consisting only of
3815      * itself, and is the nest host.
3816      *
3817      * @return the nest host of this class or interface
3818      *
3819      * @since 11
3820      * @jvms 4.7.28 The {@code NestHost} Attribute
3821      * @jvms 4.7.29 The {@code NestMembers} Attribute
3822      * @jvms 5.4.4 Access Control
3823      */
3824     public Class<?> getNestHost() {
3825         if (isPrimitive() || isArray()) {
3826             return this;
3827         }
3828         return getNestHost0();
3829     }
3830 
3831     /**
3832      * Determines if the given {@code Class} is a nestmate of the
3833      * class or interface represented by this {@code Class} object.
3834      * Two classes or interfaces are nestmates
3835      * if they have the same {@linkplain #getNestHost() nest host}.
3836      *
3837      * @param c the class to check
3838      * @return {@code true} if this class and {@code c} are members of
3839      * the same nest; and {@code false} otherwise.
3840      *
3841      * @since 11
3842      */
3843     public boolean isNestmateOf(Class<?> c) {
3844         if (this == c) {
3845             return true;
3846         }
3847         if (isPrimitive() || isArray() ||
3848             c.isPrimitive() || c.isArray()) {
3849             return false;
3850         }
3851 
3852         return getNestHost() == c.getNestHost();
3853     }
3854 
3855     private native Class<?>[] getNestMembers0();
3856 
3857     /**
3858      * Returns an array containing {@code Class} objects representing all the
3859      * classes and interfaces that are members of the nest to which the class
3860      * or interface represented by this {@code Class} object belongs.
3861      *
3862      * First, this method obtains the {@linkplain #getNestHost() nest host},
3863      * {@code H}, of the nest to which the class or interface represented by
3864      * this {@code Class} object belongs. The zeroth element of the returned
3865      * array is {@code H}.
3866      *
3867      * Then, for each class or interface {@code C} which is recorded by {@code H}
3868      * as being a member of its nest, this method attempts to obtain the {@code Class}
3869      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
3870      * loader} of the current {@code Class} object), and then obtains the
3871      * {@linkplain #getNestHost() nest host} of the nest to which {@code C} belongs.
3872      * The classes and interfaces which are recorded by {@code H} as being members
3873      * of its nest, and for which {@code H} can be determined as their nest host,
3874      * are indicated by subsequent elements of the returned array. The order of
3875      * such elements is unspecified. Duplicates are permitted.
3876      *
3877      * <p>If this {@code Class} object represents a primitive type, an array type,
3878      * or {@code void}, then this method returns a single-element array containing
3879      * {@code this}.
3880      *
3881      * @apiNote
3882      * The returned array includes only the nest members recorded in the {@code NestMembers}
3883      * attribute, and not any hidden classes that were added to the nest via
3884      * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3885      * Lookup::defineHiddenClass}.
3886      *
3887      * @return an array of all classes and interfaces in the same nest as
3888      * this class or interface
3889      *
3890      * @since 11
3891      * @see #getNestHost()
3892      * @jvms 4.7.28 The {@code NestHost} Attribute
3893      * @jvms 4.7.29 The {@code NestMembers} Attribute
3894      */
3895     public Class<?>[] getNestMembers() {
3896         if (isPrimitive() || isArray()) {
3897             return new Class<?>[] { this };
3898         }
3899         Class<?>[] members = getNestMembers0();
3900         // Can't actually enable this due to bootstrapping issues
3901         // assert(members.length != 1 || members[0] == this); // expected invariant from VM
3902         return members;
3903     }
3904 
3905     /**
3906      * Returns the descriptor string of the entity (class, interface, array class,
3907      * primitive type, or {@code void}) represented by this {@code Class} object.
3908      *
3909      * <p> If this {@code Class} object represents a class or interface,
3910      * not an array class, then:
3911      * <ul>
3912      * <li> If the class or interface is not {@linkplain Class#isHidden() hidden},
3913      *      then the result is a field descriptor (JVMS {@jvms 4.3.2})
3914      *      for the class or interface. Calling
3915      *      {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3916      *      with the result descriptor string produces a {@link ClassDesc ClassDesc}
3917      *      describing this class or interface.
3918      * <li> If the class or interface is {@linkplain Class#isHidden() hidden},
3919      *      then the result is a string of the form:
3920      *      <blockquote>
3921      *      {@code "L" +} <em>N</em> {@code + "." + <suffix> + ";"}
3922      *      </blockquote>
3923      *      where <em>N</em> is the {@linkplain ClassLoader##binary-name binary name}
3924      *      encoded in internal form indicated by the {@code class} file passed to
3925      *      {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3926      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
3927      *      A hidden class or interface has no {@linkplain ClassDesc nominal descriptor}.
3928      *      The result string is not a type descriptor.
3929      * </ul>
3930      *
3931      * <p> If this {@code Class} object represents an array class, then
3932      * the result is a string consisting of one or more '{@code [}' characters
3933      * representing the depth of the array nesting, followed by the
3934      * descriptor string of the element type.
3935      * <ul>
3936      * <li> If the element type is not a {@linkplain Class#isHidden() hidden} class
3937      * or interface, then this array class can be described nominally.
3938      * Calling {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3939      * with the result descriptor string produces a {@link ClassDesc ClassDesc}
3940      * describing this array class.
3941      * <li> If the element type is a {@linkplain Class#isHidden() hidden} class or
3942      * interface, then this array class cannot be described nominally.
3943      * The result string is not a type descriptor.
3944      * </ul>
3945      *
3946      * <p> If this {@code Class} object represents a primitive type or
3947      * {@code void}, then the result is a field descriptor string which
3948      * is a one-letter code corresponding to a primitive type or {@code void}
3949      * ({@code "B", "C", "D", "F", "I", "J", "S", "Z", "V"}) (JVMS {@jvms 4.3.2}).
3950      *
3951      * @return the descriptor string for this {@code Class} object
3952      * @jvms 4.3.2 Field Descriptors
3953      * @since 12
3954      */
3955     @Override
3956     public String descriptorString() {
3957         if (isPrimitive())
3958             return Wrapper.forPrimitiveType(this).basicTypeString();
3959 
3960         if (isArray()) {
3961             return "[".concat(componentType.descriptorString());
3962         } else if (isHidden()) {
3963             String name = getName();
3964             int index = name.indexOf('/');
3965             return new StringBuilder(name.length() + 2)
3966                     .append('L')
3967                     .append(name.substring(0, index).replace('.', '/'))
3968                     .append('.')
3969                     .append(name, index + 1, name.length())
3970                     .append(';')
3971                     .toString();
3972         } else {
3973             String name = getName().replace('.', '/');
3974             return StringConcatHelper.concat("L", name, ";");
3975         }
3976     }
3977 
3978     /**
3979      * Returns the component type of this {@code Class}, if it describes
3980      * an array type, or {@code null} otherwise.
3981      *
3982      * @implSpec
3983      * Equivalent to {@link Class#getComponentType()}.
3984      *
3985      * @return a {@code Class} describing the component type, or {@code null}
3986      * if this {@code Class} does not describe an array type
3987      * @since 12
3988      */
3989     @Override
3990     public Class<?> componentType() {
3991         return getComponentType();
3992     }
3993 
3994     /**
3995      * Returns a {@code Class} for an array type whose component type
3996      * is described by this {@linkplain Class}.
3997      *
3998      * @throws UnsupportedOperationException if this component type is {@linkplain
3999      *         Void#TYPE void} or if the number of dimensions of the resulting array
4000      *         type would exceed 255.
4001      * @return a {@code Class} describing the array type
4002      * @jvms 4.3.2 Field Descriptors
4003      * @jvms 4.4.1 The {@code CONSTANT_Class_info} Structure
4004      * @since 12
4005      */
4006     @Override
4007     public Class<?> arrayType() {
4008         try {
4009             return Array.newInstance(this, 0).getClass();
4010         } catch (IllegalArgumentException iae) {
4011             throw new UnsupportedOperationException(iae);
4012         }
4013     }
4014 
4015     /**
4016      * Returns a nominal descriptor for this instance, if one can be
4017      * constructed, or an empty {@link Optional} if one cannot be.
4018      *
4019      * @return An {@link Optional} containing the resulting nominal descriptor,
4020      * or an empty {@link Optional} if one cannot be constructed.
4021      * @since 12
4022      */
4023     @Override
4024     public Optional<ClassDesc> describeConstable() {
4025         Class<?> c = isArray() ? elementType() : this;
4026         return c.isHidden() ? Optional.empty()
4027                             : Optional.of(ConstantUtils.classDesc(this));
4028    }
4029 
4030     /**
4031      * Returns {@code true} if and only if the underlying class is a hidden class.
4032      *
4033      * @return {@code true} if and only if this class is a hidden class.
4034      *
4035      * @since 15
4036      * @see MethodHandles.Lookup#defineHiddenClass
4037      * @see Class##hiddenClasses Hidden Classes
4038      */
4039     @IntrinsicCandidate
4040     public native boolean isHidden();
4041 
4042     /**
4043      * Returns an array containing {@code Class} objects representing the
4044      * direct subinterfaces or subclasses permitted to extend or
4045      * implement this class or interface if it is sealed.  The order of such elements
4046      * is unspecified. The array is empty if this sealed class or interface has no
4047      * permitted subclass. If this {@code Class} object represents a primitive type,
4048      * {@code void}, an array type, or a class or interface that is not sealed,
4049      * that is {@link #isSealed()} returns {@code false}, then this method returns {@code null}.
4050      * Conversely, if {@link #isSealed()} returns {@code true}, then this method
4051      * returns a non-null value.
4052      *
4053      * For each class or interface {@code C} which is recorded as a permitted
4054      * direct subinterface or subclass of this class or interface,
4055      * this method attempts to obtain the {@code Class}
4056      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
4057      * loader} of the current {@code Class} object).
4058      * The {@code Class} objects which can be obtained and which are direct
4059      * subinterfaces or subclasses of this class or interface,
4060      * are indicated by elements of the returned array. If a {@code Class} object
4061      * cannot be obtained, it is silently ignored, and not included in the result
4062      * array.
4063      *
4064      * @return an array of {@code Class} objects of the permitted subclasses of this class
4065      *         or interface, or {@code null} if this class or interface is not sealed.
4066      *
4067      * @jls 8.1 Class Declarations
4068      * @jls 9.1 Interface Declarations
4069      * @since 17
4070      */
4071     public Class<?>[] getPermittedSubclasses() {
4072         Class<?>[] subClasses;
4073         if (isArray() || isPrimitive() || (subClasses = getPermittedSubclasses0()) == null) {
4074             return null;
4075         }
4076         if (subClasses.length > 0) {
4077             if (Arrays.stream(subClasses).anyMatch(c -> !isDirectSubType(c))) {
4078                 subClasses = Arrays.stream(subClasses)
4079                                    .filter(this::isDirectSubType)
4080                                    .toArray(s -> new Class<?>[s]);
4081             }
4082         }
4083         return subClasses;
4084     }
4085 
4086     private boolean isDirectSubType(Class<?> c) {
4087         if (isInterface()) {
4088             for (Class<?> i : c.getInterfaces(/* cloneArray */ false)) {
4089                 if (i == this) {
4090                     return true;
4091                 }
4092             }
4093         } else {
4094             return c.getSuperclass() == this;
4095         }
4096         return false;
4097     }
4098 
4099     /**
4100      * Returns {@code true} if and only if this {@code Class} object represents
4101      * a sealed class or interface. If this {@code Class} object represents a
4102      * primitive type, {@code void}, or an array type, this method returns
4103      * {@code false}. A sealed class or interface has (possibly zero) permitted
4104      * subclasses; {@link #getPermittedSubclasses()} returns a non-null but
4105      * possibly empty value for a sealed class or interface.
4106      *
4107      * @return {@code true} if and only if this {@code Class} object represents
4108      * a sealed class or interface.
4109      *
4110      * @jls 8.1 Class Declarations
4111      * @jls 9.1 Interface Declarations
4112      * @since 17
4113      */
4114     public boolean isSealed() {
4115         if (isArray() || isPrimitive()) {
4116             return false;
4117         }
4118         return getPermittedSubclasses() != null;
4119     }
4120 
4121     private native Class<?>[] getPermittedSubclasses0();
4122 
4123     /*
4124      * Return the class's major and minor class file version packed into an int.
4125      * The high order 16 bits contain the class's minor version.  The low order
4126      * 16 bits contain the class's major version.
4127      *
4128      * If the class is an array type then the class file version of its element
4129      * type is returned.  If the class is a primitive type then the latest class
4130      * file major version is returned and zero is returned for the minor version.
4131      */
4132     int getClassFileVersion() {
4133         Class<?> c = isArray() ? elementType() : this;
4134         return c.getClassFileVersion0();
4135     }
4136 
4137     private native int getClassFileVersion0();
4138 
4139      /**
4140       * Return the access flags as they were in the class's bytecode, including
4141       * the original setting of ACC_SUPER.
4142       *
4143       * If this {@code Class} object represents a primitive type or
4144       * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and
4145       * {@code FINAL}.
4146       * If this {@code Class} object represents an array type, return 0.
4147       */
4148      int getClassFileAccessFlags() {
4149          return classFileAccessFlags;
4150      }
4151 }