1 /*
   2  * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Annotation;
  29 import java.lang.constant.ClassDesc;
  30 import java.lang.constant.ConstantDescs;
  31 import java.lang.invoke.TypeDescriptor;
  32 import java.lang.invoke.MethodHandles;
  33 import java.lang.ref.SoftReference;
  34 import java.io.IOException;
  35 import java.io.InputStream;
  36 import java.io.ObjectStreamField;
  37 import java.lang.reflect.AnnotatedElement;
  38 import java.lang.reflect.AnnotatedType;
  39 import java.lang.reflect.AccessFlag;
  40 import java.lang.reflect.Array;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Executable;
  43 import java.lang.reflect.Field;
  44 import java.lang.reflect.GenericArrayType;
  45 import java.lang.reflect.GenericDeclaration;
  46 import java.lang.reflect.InvocationTargetException;
  47 import java.lang.reflect.Member;
  48 import java.lang.reflect.Method;
  49 import java.lang.reflect.Modifier;
  50 import java.lang.reflect.Proxy;
  51 import java.lang.reflect.RecordComponent;
  52 import java.lang.reflect.Type;
  53 import java.lang.reflect.TypeVariable;
  54 import java.lang.constant.Constable;
  55 import java.net.URL;
  56 import java.security.Permissions;
  57 import java.security.ProtectionDomain;
  58 import java.util.ArrayList;
  59 import java.util.Arrays;
  60 import java.util.Collection;
  61 import java.util.HashMap;
  62 import java.util.HashSet;
  63 import java.util.LinkedHashMap;
  64 import java.util.LinkedHashSet;
  65 import java.util.List;
  66 import java.util.Map;
  67 import java.util.Objects;
  68 import java.util.Optional;
  69 import java.util.Set;
  70 import java.util.stream.Collectors;
  71 
  72 import jdk.internal.constant.ConstantUtils;
  73 import jdk.internal.loader.BootLoader;
  74 import jdk.internal.loader.BuiltinClassLoader;
  75 import jdk.internal.misc.Unsafe;
  76 import jdk.internal.module.Resources;
  77 import jdk.internal.reflect.CallerSensitive;
  78 import jdk.internal.reflect.CallerSensitiveAdapter;
  79 import jdk.internal.reflect.ConstantPool;
  80 import jdk.internal.reflect.Reflection;
  81 import jdk.internal.reflect.ReflectionFactory;
  82 import jdk.internal.vm.annotation.IntrinsicCandidate;
  83 import jdk.internal.vm.annotation.Stable;
  84 
  85 import sun.invoke.util.Wrapper;
  86 import sun.reflect.generics.factory.CoreReflectionFactory;
  87 import sun.reflect.generics.factory.GenericsFactory;
  88 import sun.reflect.generics.repository.ClassRepository;
  89 import sun.reflect.generics.repository.MethodRepository;
  90 import sun.reflect.generics.repository.ConstructorRepository;
  91 import sun.reflect.generics.scope.ClassScope;
  92 import sun.security.util.SecurityConstants;
  93 import sun.reflect.annotation.*;
  94 import sun.reflect.misc.ReflectUtil;
  95 
  96 /**
  97  * Instances of the class {@code Class} represent classes and
  98  * interfaces in a running Java application. An enum class and a record
  99  * class are kinds of class; an annotation interface is a kind of
 100  * interface. Every array also belongs to a class that is reflected as
 101  * a {@code Class} object that is shared by all arrays with the same
 102  * element type and number of dimensions.  The primitive Java types
 103  * ({@code boolean}, {@code byte}, {@code char}, {@code short}, {@code
 104  * int}, {@code long}, {@code float}, and {@code double}), and the
 105  * keyword {@code void} are also represented as {@code Class} objects.
 106  *
 107  * <p> {@code Class} has no public constructor. Instead a {@code Class}
 108  * object is constructed automatically by the Java Virtual Machine when
 109  * a class is derived from the bytes of a {@code class} file through
 110  * the invocation of one of the following methods:
 111  * <ul>
 112  * <li> {@link ClassLoader#defineClass(String, byte[], int, int) ClassLoader::defineClass}
 113  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[])
 114  *      java.lang.invoke.MethodHandles.Lookup::defineClass}
 115  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 116  *      java.lang.invoke.MethodHandles.Lookup::defineHiddenClass}
 117  * </ul>
 118  *
 119  * <p> The methods of class {@code Class} expose many characteristics of a
 120  * class or interface. Most characteristics are derived from the {@code class}
 121  * file that the class loader passed to the Java Virtual Machine or
 122  * from the {@code class} file passed to {@code Lookup::defineClass}
 123  * or {@code Lookup::defineHiddenClass}.
 124  * A few characteristics are determined by the class loading environment
 125  * at run time, such as the module returned by {@link #getModule() getModule()}.
 126  *
 127  * <p> The following example uses a {@code Class} object to print the
 128  * class name of an object:
 129  *
 130  * {@snippet lang="java" :
 131  * void printClassName(Object obj) {
 132  *     System.out.println("The class of " + obj +
 133  *                        " is " + obj.getClass().getName());
 134  * }}
 135  *
 136  * It is also possible to get the {@code Class} object for a named
 137  * class or interface (or for {@code void}) using a <dfn>class literal</dfn>
 138  * (JLS {@jls 15.8.2}).
 139  * For example:
 140  *
 141  * {@snippet lang="java" :
 142  * System.out.println("The name of class Foo is: " + Foo.class.getName()); // @highlight substring="Foo.class"
 143  * }
 144  *
 145  * <p> Some methods of class {@code Class} expose whether the declaration of
 146  * a class or interface in Java source code was <em>enclosed</em> within
 147  * another declaration. Other methods describe how a class or interface
 148  * is situated in a <dfn>{@index "nest"}</dfn>. A nest is a set of
 149  * classes and interfaces, in the same run-time package, that
 150  * allow mutual access to their {@code private} members.
 151  * The classes and interfaces are known as <dfn>{@index "nestmates"}</dfn>
 152  * (JVMS {@jvms 4.7.29}).
 153  * One nestmate acts as the
 154  * <dfn>nest host</dfn> (JVMS {@jvms 4.7.28}), and enumerates the other nestmates which
 155  * belong to the nest; each of them in turn records it as the nest host.
 156  * The classes and interfaces which belong to a nest, including its host, are
 157  * determined when
 158  * {@code class} files are generated, for example, a Java compiler
 159  * will typically record a top-level class as the host of a nest where the
 160  * other members are the classes and interfaces whose declarations are
 161  * enclosed within the top-level class declaration.
 162  *
 163  * <h2><a id=hiddenClasses>Hidden Classes</a></h2>
 164  * A class or interface created by the invocation of
 165  * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 166  * Lookup::defineHiddenClass} is a {@linkplain Class#isHidden() <dfn>hidden</dfn>}
 167  * class or interface.
 168  * All kinds of class, including enum classes and record classes, may be
 169  * hidden classes; all kinds of interface, including annotation interfaces,
 170  * may be hidden interfaces.
 171  *
 172  * The {@linkplain #getName() name of a hidden class or interface} is
 173  * not a {@linkplain ClassLoader##binary-name binary name},
 174  * which means the following:
 175  * <ul>
 176  * <li>A hidden class or interface cannot be referenced by the constant pools
 177  *     of other classes and interfaces.
 178  * <li>A hidden class or interface cannot be described in
 179  *     {@linkplain java.lang.constant.ConstantDesc <em>nominal form</em>} by
 180  *     {@link #describeConstable() Class::describeConstable},
 181  *     {@link ClassDesc#of(String) ClassDesc::of}, or
 182  *     {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}.
 183  * <li>A hidden class or interface cannot be discovered by {@link #forName Class::forName}
 184  *     or {@link ClassLoader#loadClass(String, boolean) ClassLoader::loadClass}.
 185  * </ul>
 186  *
 187  * A hidden class or interface is never an array class, but may be
 188  * the element type of an array. In all other respects, the fact that
 189  * a class or interface is hidden has no bearing on the characteristics
 190  * exposed by the methods of class {@code Class}.
 191  *
 192  * <h2><a id=implicitClasses>Implicitly Declared Classes</a></h2>
 193  *
 194  * Conventionally, a Java compiler, starting from a source file for an
 195  * implicitly declared class, say {@code HelloWorld.java}, creates a
 196  * similarly-named {@code class} file, {@code HelloWorld.class}, where
 197  * the class stored in that {@code class} file is named {@code
 198  * "HelloWorld"}, matching the base names of the source and {@code
 199  * class} files.
 200  *
 201  * For the {@code Class} object of an implicitly declared class {@code
 202  * HelloWorld}, the methods to get the {@linkplain #getName name} and
 203  * {@linkplain #getTypeName type name} return results
 204  * equal to {@code "HelloWorld"}. The {@linkplain #getSimpleName
 205  * simple name} of such an implicitly declared class is {@code "HelloWorld"} and
 206  * the {@linkplain #getCanonicalName canonical name} is {@code "HelloWorld"}.
 207  *
 208  * @param <T> the type of the class modeled by this {@code Class}
 209  * object.  For example, the type of {@code String.class} is {@code
 210  * Class<String>}.  Use {@code Class<?>} if the class being modeled is
 211  * unknown.
 212  *
 213  * @see     java.lang.ClassLoader#defineClass(byte[], int, int)
 214  * @since   1.0
 215  */
 216 public final class Class<T> implements java.io.Serializable,
 217                               GenericDeclaration,
 218                               Type,
 219                               AnnotatedElement,
 220                               TypeDescriptor.OfField<Class<?>>,
 221                               Constable {
 222     private static final int ANNOTATION= 0x00002000;
 223     private static final int ENUM      = 0x00004000;
 224     private static final int SYNTHETIC = 0x00001000;
 225 
 226     private static native void registerNatives();
 227     static {
 228         runtimeSetup();
 229     }
 230 
 231     // Called from JVM when loading an AOT cache
 232     private static void runtimeSetup() {
 233         registerNatives();
 234     }
 235 
 236     /*
 237      * Private constructor. Only the Java Virtual Machine creates Class objects.
 238      * This constructor is not used and prevents the default constructor being
 239      * generated.
 240      */
 241     private Class(ClassLoader loader, Class<?> arrayComponentType) {
 242         // Initialize final field for classLoader.  The initialization value of non-null
 243         // prevents future JIT optimizations from assuming this final field is null.
 244         classLoader = loader;
 245         componentType = arrayComponentType;
 246     }
 247 
 248     /**
 249      * Converts the object to a string. The string representation is the
 250      * string "class" or "interface", followed by a space, and then by the
 251      * name of the class in the format returned by {@code getName}.
 252      * If this {@code Class} object represents a primitive type,
 253      * this method returns the name of the primitive type.  If
 254      * this {@code Class} object represents void this method returns
 255      * "void". If this {@code Class} object represents an array type,
 256      * this method returns "class " followed by {@code getName}.
 257      *
 258      * @return a string representation of this {@code Class} object.
 259      */
 260     public String toString() {
 261         String kind = isInterface() ? "interface " : isPrimitive() ? "" : "class ";
 262         return kind.concat(getName());
 263     }
 264 
 265     /**
 266      * Returns a string describing this {@code Class}, including
 267      * information about modifiers, {@link #isSealed() sealed}/{@code
 268      * non-sealed} status, and type parameters.
 269      *
 270      * The string is formatted as a list of type modifiers, if any,
 271      * followed by the kind of type (empty string for primitive types
 272      * and {@code class}, {@code enum}, {@code interface},
 273      * {@code @interface}, or {@code record} as appropriate), followed
 274      * by the type's name, followed by an angle-bracketed
 275      * comma-separated list of the type's type parameters, if any,
 276      * including informative bounds on the type parameters, if any.
 277      *
 278      * A space is used to separate modifiers from one another and to
 279      * separate any modifiers from the kind of type. The modifiers
 280      * occur in canonical order. If there are no type parameters, the
 281      * type parameter list is elided.
 282      *
 283      * For an array type, the string starts with the type name,
 284      * followed by an angle-bracketed comma-separated list of the
 285      * type's type parameters, if any, followed by a sequence of
 286      * {@code []} characters, one set of brackets per dimension of
 287      * the array.
 288      *
 289      * <p>Note that since information about the runtime representation
 290      * of a type is being generated, modifiers not present on the
 291      * originating source code or illegal on the originating source
 292      * code may be present.
 293      *
 294      * @return a string describing this {@code Class}, including
 295      * information about modifiers and type parameters
 296      *
 297      * @since 1.8
 298      */
 299     public String toGenericString() {
 300         if (isPrimitive()) {
 301             return toString();
 302         } else {
 303             StringBuilder sb = new StringBuilder();
 304             Class<?> component = this;
 305             int arrayDepth = 0;
 306 
 307             if (isArray()) {
 308                 do {
 309                     arrayDepth++;
 310                     component = component.getComponentType();
 311                 } while (component.isArray());
 312                 sb.append(component.getName());
 313             } else {
 314                 // Class modifiers are a superset of interface modifiers
 315                 int modifiers = getModifiers() & Modifier.classModifiers();
 316                 if (modifiers != 0) {
 317                     sb.append(Modifier.toString(modifiers));
 318                     sb.append(' ');
 319                 }
 320 
 321                 // A class cannot be strictfp and sealed/non-sealed so
 322                 // it is sufficient to check for sealed-ness after all
 323                 // modifiers are printed.
 324                 addSealingInfo(modifiers, sb);
 325 
 326                 if (isAnnotation()) {
 327                     sb.append('@');
 328                 }
 329                 if (isInterface()) { // Note: all annotation interfaces are interfaces
 330                     sb.append("interface");
 331                 } else {
 332                     if (isEnum())
 333                         sb.append("enum");
 334                     else if (isRecord())
 335                         sb.append("record");
 336                     else
 337                         sb.append("class");
 338                 }
 339                 sb.append(' ');
 340                 sb.append(getName());
 341             }
 342 
 343             TypeVariable<?>[] typeparms = component.getTypeParameters();
 344             if (typeparms.length > 0) {
 345                 sb.append(Arrays.stream(typeparms)
 346                           .map(Class::typeVarBounds)
 347                           .collect(Collectors.joining(",", "<", ">")));
 348             }
 349 
 350             if (arrayDepth > 0) sb.append("[]".repeat(arrayDepth));
 351 
 352             return sb.toString();
 353         }
 354     }
 355 
 356     private void addSealingInfo(int modifiers, StringBuilder sb) {
 357         // A class can be final XOR sealed XOR non-sealed.
 358         if (Modifier.isFinal(modifiers)) {
 359             return; // no-op
 360         } else {
 361             if (isSealed()) {
 362                 sb.append("sealed ");
 363                 return;
 364             } else {
 365                 // Check for sealed ancestor, which implies this class
 366                 // is non-sealed.
 367                 if (hasSealedAncestor(this)) {
 368                     sb.append("non-sealed ");
 369                 }
 370             }
 371         }
 372     }
 373 
 374     private boolean hasSealedAncestor(Class<?> clazz) {
 375         // From JLS 8.1.1.2:
 376         // "It is a compile-time error if a class has a sealed direct
 377         // superclass or a sealed direct superinterface, and is not
 378         // declared final, sealed, or non-sealed either explicitly or
 379         // implicitly.
 380         // Thus, an effect of the sealed keyword is to force all
 381         // direct subclasses to explicitly declare whether they are
 382         // final, sealed, or non-sealed. This avoids accidentally
 383         // exposing a sealed class hierarchy to unwanted subclassing."
 384 
 385         // Therefore, will just check direct superclass and
 386         // superinterfaces.
 387         var superclass = clazz.getSuperclass();
 388         if (superclass != null && superclass.isSealed()) {
 389             return true;
 390         }
 391         for (var superinterface : clazz.getInterfaces()) {
 392             if (superinterface.isSealed()) {
 393                 return true;
 394             }
 395         }
 396         return false;
 397     }
 398 
 399     static String typeVarBounds(TypeVariable<?> typeVar) {
 400         Type[] bounds = typeVar.getBounds();
 401         if (bounds.length == 1 && bounds[0].equals(Object.class)) {
 402             return typeVar.getName();
 403         } else {
 404             return typeVar.getName() + " extends " +
 405                 Arrays.stream(bounds)
 406                 .map(Type::getTypeName)
 407                 .collect(Collectors.joining(" & "));
 408         }
 409     }
 410 
 411     /**
 412      * Returns the {@code Class} object associated with the class or
 413      * interface with the given string name.  Invoking this method is
 414      * equivalent to:
 415      *
 416      * {@snippet lang="java" :
 417      * Class.forName(className, true, currentLoader)
 418      * }
 419      *
 420      * where {@code currentLoader} denotes the defining class loader of
 421      * the current class.
 422      *
 423      * <p> For example, the following code fragment returns the
 424      * runtime {@code Class} object for the class named
 425      * {@code java.lang.Thread}:
 426      *
 427      * {@snippet lang="java" :
 428      * Class<?> t = Class.forName("java.lang.Thread");
 429      * }
 430      * <p>
 431      * A call to {@code forName("X")} causes the class named
 432      * {@code X} to be initialized.
 433      *
 434      * <p>
 435      * In cases where this method is called from a context where there is no
 436      * caller frame on the stack (e.g. when called directly from a JNI
 437      * attached thread), the system class loader is used.
 438      *
 439      * @param     className the {@linkplain ClassLoader##binary-name binary name}
 440      *                      of the class or the string representing an array type
 441      * @return    the {@code Class} object for the class with the
 442      *            specified name.
 443      * @throws    LinkageError if the linkage fails
 444      * @throws    ExceptionInInitializerError if the initialization provoked
 445      *            by this method fails
 446      * @throws    ClassNotFoundException if the class cannot be located
 447      *
 448      * @jls 12.2 Loading of Classes and Interfaces
 449      * @jls 12.3 Linking of Classes and Interfaces
 450      * @jls 12.4 Initialization of Classes and Interfaces
 451      */
 452     @CallerSensitive
 453     public static Class<?> forName(String className)
 454                 throws ClassNotFoundException {
 455         Class<?> caller = Reflection.getCallerClass();
 456         return forName(className, caller);
 457     }
 458 
 459     // Caller-sensitive adapter method for reflective invocation
 460     @CallerSensitiveAdapter
 461     private static Class<?> forName(String className, Class<?> caller)
 462             throws ClassNotFoundException {
 463         ClassLoader loader = (caller == null) ? ClassLoader.getSystemClassLoader()
 464                                               : ClassLoader.getClassLoader(caller);
 465         return forName0(className, true, loader, caller);
 466     }
 467 
 468     /**
 469      * Returns the {@code Class} object associated with the class or
 470      * interface with the given string name, using the given class loader.
 471      * Given the {@linkplain ClassLoader##binary-name binary name} for a class or interface,
 472      * this method attempts to locate and load the class or interface. The specified
 473      * class loader is used to load the class or interface.  If the parameter
 474      * {@code loader} is {@code null}, the class is loaded through the bootstrap
 475      * class loader.  The class is initialized only if the
 476      * {@code initialize} parameter is {@code true} and if it has
 477      * not been initialized earlier.
 478      *
 479      * <p> This method cannot be used to obtain any of the {@code Class} objects
 480      * representing primitive types or void, hidden classes or interfaces,
 481      * or array classes whose element type is a hidden class or interface.
 482      * If {@code name} denotes a primitive type or void, for example {@code I},
 483      * an attempt will be made to locate a user-defined class in the unnamed package
 484      * whose name is {@code I} instead.
 485      * To obtain a {@code Class} object for a named primitive type
 486      * such as {@code int} or {@code long} use {@link
 487      * #forPrimitiveName(String)}.
 488      *
 489      * <p> To obtain the {@code Class} object associated with an array class,
 490      * the name consists of one or more {@code '['} representing the depth
 491      * of the array nesting, followed by the element type as encoded in
 492      * {@linkplain ##nameFormat the table} specified in {@code Class.getName()}.
 493      *
 494      * <p> Examples:
 495      * {@snippet lang="java" :
 496      * Class<?> threadClass = Class.forName("java.lang.Thread", false, currentLoader);
 497      * Class<?> stringArrayClass = Class.forName("[Ljava.lang.String;", false, currentLoader);
 498      * Class<?> intArrayClass = Class.forName("[[[I", false, currentLoader);   // Class of int[][][]
 499      * Class<?> nestedClass = Class.forName("java.lang.Character$UnicodeBlock", false, currentLoader);
 500      * Class<?> fooClass = Class.forName("Foo", true, currentLoader);
 501      * }
 502      *
 503      * <p> A call to {@code getName()} on the {@code Class} object returned
 504      * from {@code forName(}<i>N</i>{@code )} returns <i>N</i>.
 505      *
 506      * <p> A call to {@code forName("[L}<i>N</i>{@code ;")} causes the element type
 507      * named <i>N</i> to be loaded but not initialized regardless of the value
 508      * of the {@code initialize} parameter.
 509      *
 510      * @apiNote
 511      * This method throws errors related to loading, linking or initializing
 512      * as specified in Sections {@jls 12.2}, {@jls 12.3}, and {@jls 12.4} of
 513      * <cite>The Java Language Specification</cite>.
 514      * In addition, this method does not check whether the requested class
 515      * is accessible to its caller.
 516      *
 517      * @param name       the {@linkplain ClassLoader##binary-name binary name}
 518      *                   of the class or the string representing an array class
 519      *
 520      * @param initialize if {@code true} the class will be initialized
 521      *                   (which implies linking). See Section {@jls
 522      *                   12.4} of <cite>The Java Language
 523      *                   Specification</cite>.
 524      * @param loader     class loader from which the class must be loaded
 525      * @return           class object representing the desired class
 526      *
 527      * @throws    LinkageError if the linkage fails
 528      * @throws    ExceptionInInitializerError if the initialization provoked
 529      *            by this method fails
 530      * @throws    ClassNotFoundException if the class cannot be located by
 531      *            the specified class loader
 532      *
 533      * @see       java.lang.Class#forName(String)
 534      * @see       java.lang.ClassLoader
 535      *
 536      * @jls 12.2 Loading of Classes and Interfaces
 537      * @jls 12.3 Linking of Classes and Interfaces
 538      * @jls 12.4 Initialization of Classes and Interfaces
 539      * @jls 13.1 The Form of a Binary
 540      * @since     1.2
 541      */
 542     public static Class<?> forName(String name, boolean initialize, ClassLoader loader)
 543         throws ClassNotFoundException
 544     {
 545         return forName0(name, initialize, loader, null);
 546     }
 547 
 548     /** Called after security check for system loader access checks have been made. */
 549     private static native Class<?> forName0(String name, boolean initialize,
 550                                             ClassLoader loader,
 551                                             Class<?> caller)
 552         throws ClassNotFoundException;
 553 
 554 
 555     /**
 556      * Returns the {@code Class} with the given {@linkplain ClassLoader##binary-name
 557      * binary name} in the given module.
 558      *
 559      * <p> This method attempts to locate and load the class or interface.
 560      * It does not link the class, and does not run the class initializer.
 561      * If the class is not found, this method returns {@code null}. </p>
 562      *
 563      * <p> If the class loader of the given module defines other modules and
 564      * the given name is a class defined in a different module, this method
 565      * returns {@code null} after the class is loaded. </p>
 566      *
 567      * <p> This method does not check whether the requested class is
 568      * accessible to its caller. </p>
 569      *
 570      * @apiNote
 571      * This method does not support loading of array types, unlike
 572      * {@link #forName(String, boolean, ClassLoader)}. The class name must be
 573      * a binary name.  This method returns {@code null} on failure rather than
 574      * throwing a {@link ClassNotFoundException}, as is done by
 575      * the {@link #forName(String, boolean, ClassLoader)} method.
 576      *
 577      * @param  module   A module
 578      * @param  name     The {@linkplain ClassLoader##binary-name binary name}
 579      *                  of the class
 580      * @return {@code Class} object of the given name defined in the given module;
 581      *         {@code null} if not found.
 582      *
 583      * @throws NullPointerException if the given module or name is {@code null}
 584      *
 585      * @throws LinkageError if the linkage fails
 586      *
 587      * @jls 12.2 Loading of Classes and Interfaces
 588      * @jls 12.3 Linking of Classes and Interfaces
 589      * @since 9
 590      */
 591     public static Class<?> forName(Module module, String name) {
 592         Objects.requireNonNull(module);
 593         Objects.requireNonNull(name);
 594 
 595         ClassLoader cl = module.getClassLoader();
 596         if (cl != null) {
 597             return cl.loadClass(module, name);
 598         } else {
 599             return BootLoader.loadClass(module, name);
 600         }
 601     }
 602 
 603     /**
 604      * {@return the {@code Class} object associated with the
 605      * {@linkplain #isPrimitive() primitive type} of the given name}
 606      * If the argument is not the name of a primitive type, {@code
 607      * null} is returned.
 608      *
 609      * @param primitiveName the name of the primitive type to find
 610      *
 611      * @throws NullPointerException if the argument is {@code null}
 612      *
 613      * @jls 4.2 Primitive Types and Values
 614      * @jls 15.8.2 Class Literals
 615      * @since 22
 616      */
 617     public static Class<?> forPrimitiveName(String primitiveName) {
 618         return switch(primitiveName) {
 619         // Integral types
 620         case "int"     -> int.class;
 621         case "long"    -> long.class;
 622         case "short"   -> short.class;
 623         case "char"    -> char.class;
 624         case "byte"    -> byte.class;
 625 
 626         // Floating-point types
 627         case "float"   -> float.class;
 628         case "double"  -> double.class;
 629 
 630         // Other types
 631         case "boolean" -> boolean.class;
 632         case "void"    -> void.class;
 633 
 634         default        -> null;
 635         };
 636     }
 637 
 638     /**
 639      * Creates a new instance of the class represented by this {@code Class}
 640      * object.  The class is instantiated as if by a {@code new}
 641      * expression with an empty argument list.  The class is initialized if it
 642      * has not already been initialized.
 643      *
 644      * @deprecated This method propagates any exception thrown by the
 645      * nullary constructor, including a checked exception.  Use of
 646      * this method effectively bypasses the compile-time exception
 647      * checking that would otherwise be performed by the compiler.
 648      * The {@link
 649      * java.lang.reflect.Constructor#newInstance(java.lang.Object...)
 650      * Constructor.newInstance} method avoids this problem by wrapping
 651      * any exception thrown by the constructor in a (checked) {@link
 652      * java.lang.reflect.InvocationTargetException}.
 653      *
 654      * <p>The call
 655      *
 656      * {@snippet lang="java" :
 657      * clazz.newInstance()
 658      * }
 659      *
 660      * can be replaced by
 661      *
 662      * {@snippet lang="java" :
 663      * clazz.getDeclaredConstructor().newInstance()
 664      * }
 665      *
 666      * The latter sequence of calls is inferred to be able to throw
 667      * the additional exception types {@link
 668      * InvocationTargetException} and {@link
 669      * NoSuchMethodException}. Both of these exception types are
 670      * subclasses of {@link ReflectiveOperationException}.
 671      *
 672      * @return  a newly allocated instance of the class represented by this
 673      *          object.
 674      * @throws  IllegalAccessException  if the class or its nullary
 675      *          constructor is not accessible.
 676      * @throws  InstantiationException
 677      *          if this {@code Class} represents an abstract class,
 678      *          an interface, an array class, a primitive type, or void;
 679      *          or if the class has no nullary constructor;
 680      *          or if the instantiation fails for some other reason.
 681      * @throws  ExceptionInInitializerError if the initialization
 682      *          provoked by this method fails.
 683      */
 684     @CallerSensitive
 685     @Deprecated(since="9")
 686     public T newInstance()
 687         throws InstantiationException, IllegalAccessException
 688     {
 689         // Constructor lookup
 690         Constructor<T> tmpConstructor = cachedConstructor;
 691         if (tmpConstructor == null) {
 692             if (this == Class.class) {
 693                 throw new IllegalAccessException(
 694                     "Can not call newInstance() on the Class for java.lang.Class"
 695                 );
 696             }
 697             try {
 698                 Class<?>[] empty = {};
 699                 final Constructor<T> c = getReflectionFactory().copyConstructor(
 700                     getConstructor0(empty, Member.DECLARED));
 701                 // Disable accessibility checks on the constructor
 702                 // access check is done with the true caller
 703                 c.setAccessible(true);
 704                 cachedConstructor = tmpConstructor = c;
 705             } catch (NoSuchMethodException e) {
 706                 throw (InstantiationException)
 707                     new InstantiationException(getName()).initCause(e);
 708             }
 709         }
 710 
 711         try {
 712             Class<?> caller = Reflection.getCallerClass();
 713             return getReflectionFactory().newInstance(tmpConstructor, null, caller);
 714         } catch (InvocationTargetException e) {
 715             Unsafe.getUnsafe().throwException(e.getTargetException());
 716             // Not reached
 717             return null;
 718         }
 719     }
 720 
 721     private transient volatile Constructor<T> cachedConstructor;
 722 
 723     /**
 724      * Determines if the specified {@code Object} is assignment-compatible
 725      * with the object represented by this {@code Class}.  This method is
 726      * the dynamic equivalent of the Java language {@code instanceof}
 727      * operator. The method returns {@code true} if the specified
 728      * {@code Object} argument is non-null and can be cast to the
 729      * reference type represented by this {@code Class} object without
 730      * raising a {@code ClassCastException.} It returns {@code false}
 731      * otherwise.
 732      *
 733      * <p> Specifically, if this {@code Class} object represents a
 734      * declared class, this method returns {@code true} if the specified
 735      * {@code Object} argument is an instance of the represented class (or
 736      * of any of its subclasses); it returns {@code false} otherwise. If
 737      * this {@code Class} object represents an array class, this method
 738      * returns {@code true} if the specified {@code Object} argument
 739      * can be converted to an object of the array class by an identity
 740      * conversion or by a widening reference conversion; it returns
 741      * {@code false} otherwise. If this {@code Class} object
 742      * represents an interface, this method returns {@code true} if the
 743      * class or any superclass of the specified {@code Object} argument
 744      * implements this interface; it returns {@code false} otherwise. If
 745      * this {@code Class} object represents a primitive type, this method
 746      * returns {@code false}.
 747      *
 748      * @param   obj the object to check
 749      * @return  true if {@code obj} is an instance of this class
 750      *
 751      * @since 1.1
 752      */
 753     @IntrinsicCandidate
 754     public native boolean isInstance(Object obj);
 755 
 756 
 757     /**
 758      * Determines if the class or interface represented by this
 759      * {@code Class} object is either the same as, or is a superclass or
 760      * superinterface of, the class or interface represented by the specified
 761      * {@code Class} parameter. It returns {@code true} if so;
 762      * otherwise it returns {@code false}. If this {@code Class}
 763      * object represents a primitive type, this method returns
 764      * {@code true} if the specified {@code Class} parameter is
 765      * exactly this {@code Class} object; otherwise it returns
 766      * {@code false}.
 767      *
 768      * <p> Specifically, this method tests whether the type represented by the
 769      * specified {@code Class} parameter can be converted to the type
 770      * represented by this {@code Class} object via an identity conversion
 771      * or via a widening reference conversion. See <cite>The Java Language
 772      * Specification</cite>, sections {@jls 5.1.1} and {@jls 5.1.4},
 773      * for details.
 774      *
 775      * @param     cls the {@code Class} object to be checked
 776      * @return    the {@code boolean} value indicating whether objects of the
 777      *            type {@code cls} can be assigned to objects of this class
 778      * @throws    NullPointerException if the specified Class parameter is
 779      *            null.
 780      * @since     1.1
 781      */
 782     @IntrinsicCandidate
 783     public native boolean isAssignableFrom(Class<?> cls);
 784 
 785 
 786     /**
 787      * Determines if this {@code Class} object represents an
 788      * interface type.
 789      *
 790      * @return  {@code true} if this {@code Class} object represents an interface;
 791      *          {@code false} otherwise.
 792      */
 793     @IntrinsicCandidate
 794     public native boolean isInterface();
 795 
 796 
 797     /**
 798      * Determines if this {@code Class} object represents an array class.
 799      *
 800      * @return  {@code true} if this {@code Class} object represents an array class;
 801      *          {@code false} otherwise.
 802      * @since   1.1
 803      */
 804     @IntrinsicCandidate
 805     public native boolean isArray();
 806 
 807 
 808     /**
 809      * Determines if this {@code Class} object represents a primitive
 810      * type or void.
 811      *
 812      * <p> There are nine predefined {@code Class} objects to
 813      * represent the eight primitive types and void.  These are
 814      * created by the Java Virtual Machine, and have the same
 815      * {@linkplain #getName() names} as the primitive types that they
 816      * represent, namely {@code boolean}, {@code byte}, {@code char},
 817      * {@code short}, {@code int}, {@code long}, {@code float}, and
 818      * {@code double}.
 819      *
 820      * <p>No other class objects are considered primitive.
 821      *
 822      * @apiNote
 823      * A {@code Class} object represented by a primitive type can be
 824      * accessed via the {@code TYPE} public static final variables
 825      * defined in the primitive wrapper classes such as {@link
 826      * java.lang.Integer#TYPE Integer.TYPE}. In the Java programming
 827      * language, the objects may be referred to by a class literal
 828      * expression such as {@code int.class}.  The {@code Class} object
 829      * for void can be expressed as {@code void.class} or {@link
 830      * java.lang.Void#TYPE Void.TYPE}.
 831      *
 832      * @return true if and only if this class represents a primitive type
 833      *
 834      * @see     java.lang.Boolean#TYPE
 835      * @see     java.lang.Character#TYPE
 836      * @see     java.lang.Byte#TYPE
 837      * @see     java.lang.Short#TYPE
 838      * @see     java.lang.Integer#TYPE
 839      * @see     java.lang.Long#TYPE
 840      * @see     java.lang.Float#TYPE
 841      * @see     java.lang.Double#TYPE
 842      * @see     java.lang.Void#TYPE
 843      * @since 1.1
 844      * @jls 15.8.2 Class Literals
 845      */
 846     @IntrinsicCandidate
 847     public native boolean isPrimitive();
 848 
 849     /**
 850      * Returns true if this {@code Class} object represents an annotation
 851      * interface.  Note that if this method returns true, {@link #isInterface()}
 852      * would also return true, as all annotation interfaces are also interfaces.
 853      *
 854      * @return {@code true} if this {@code Class} object represents an annotation
 855      *      interface; {@code false} otherwise
 856      * @since 1.5
 857      */
 858     public boolean isAnnotation() {
 859         return (getModifiers() & ANNOTATION) != 0;
 860     }
 861 
 862     /**
 863      *{@return {@code true} if and only if this class has the synthetic modifier
 864      * bit set}
 865      *
 866      * @jls 13.1 The Form of a Binary
 867      * @jvms 4.1 The {@code ClassFile} Structure
 868      * @see <a
 869      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
 870      * programming language and JVM modeling in core reflection</a>
 871      * @since 1.5
 872      */
 873     public boolean isSynthetic() {
 874         return (getModifiers() & SYNTHETIC) != 0;
 875     }
 876 
 877     /**
 878      * Returns the  name of the entity (class, interface, array class,
 879      * primitive type, or void) represented by this {@code Class} object.
 880      *
 881      * <p> If this {@code Class} object represents a class or interface,
 882      * not an array class, then:
 883      * <ul>
 884      * <li> If the class or interface is not {@linkplain #isHidden() hidden},
 885      *      then the {@linkplain ClassLoader##binary-name binary name}
 886      *      of the class or interface is returned.
 887      * <li> If the class or interface is hidden, then the result is a string
 888      *      of the form: {@code N + '/' + <suffix>}
 889      *      where {@code N} is the {@linkplain ClassLoader##binary-name binary name}
 890      *      indicated by the {@code class} file passed to
 891      *      {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 892      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
 893      * </ul>
 894      *
 895      * <p> If this {@code Class} object represents an array class, then
 896      * the result is a string consisting of one or more '{@code [}' characters
 897      * representing the depth of the array nesting, followed by the element
 898      * type as encoded using the following table:
 899      *
 900      * <blockquote><table class="striped" id="nameFormat">
 901      * <caption style="display:none">Element types and encodings</caption>
 902      * <thead>
 903      * <tr><th scope="col"> Element Type <th scope="col"> Encoding
 904      * </thead>
 905      * <tbody style="text-align:left">
 906      * <tr><th scope="row"> {@code boolean} <td style="text-align:center"> {@code Z}
 907      * <tr><th scope="row"> {@code byte}    <td style="text-align:center"> {@code B}
 908      * <tr><th scope="row"> {@code char}    <td style="text-align:center"> {@code C}
 909      * <tr><th scope="row"> class or interface with {@linkplain ClassLoader##binary-name binary name} <i>N</i>
 910      *                                      <td style="text-align:center"> {@code L}<em>N</em>{@code ;}
 911      * <tr><th scope="row"> {@code double}  <td style="text-align:center"> {@code D}
 912      * <tr><th scope="row"> {@code float}   <td style="text-align:center"> {@code F}
 913      * <tr><th scope="row"> {@code int}     <td style="text-align:center"> {@code I}
 914      * <tr><th scope="row"> {@code long}    <td style="text-align:center"> {@code J}
 915      * <tr><th scope="row"> {@code short}   <td style="text-align:center"> {@code S}
 916      * </tbody>
 917      * </table></blockquote>
 918      *
 919      * <p> If this {@code Class} object represents a primitive type or {@code void},
 920      * then the result is a string with the same spelling as the Java language
 921      * keyword which corresponds to the primitive type or {@code void}.
 922      *
 923      * <p> Examples:
 924      * <blockquote><pre>
 925      * String.class.getName()
 926      *     returns "java.lang.String"
 927      * Character.UnicodeBlock.class.getName()
 928      *     returns "java.lang.Character$UnicodeBlock"
 929      * byte.class.getName()
 930      *     returns "byte"
 931      * (new Object[3]).getClass().getName()
 932      *     returns "[Ljava.lang.Object;"
 933      * (new int[3][4][5][6][7][8][9]).getClass().getName()
 934      *     returns "[[[[[[[I"
 935      * </pre></blockquote>
 936      *
 937      * @apiNote
 938      * Distinct class objects can have the same name but different class loaders.
 939      *
 940      * @return  the name of the class, interface, or other entity
 941      *          represented by this {@code Class} object.
 942      * @jls 13.1 The Form of a Binary
 943      */
 944     public String getName() {
 945         String name = this.name;
 946         return name != null ? name : initClassName();
 947     }
 948 
 949     // Cache the name to reduce the number of calls into the VM.
 950     // This field would be set by VM itself during initClassName call.
 951     private transient String name;
 952     private native String initClassName();
 953 
 954     /**
 955      * Returns the class loader for the class.  Some implementations may use
 956      * null to represent the bootstrap class loader. This method will return
 957      * null in such implementations if this class was loaded by the bootstrap
 958      * class loader.
 959      *
 960      * <p>If this {@code Class} object
 961      * represents a primitive type or void, null is returned.
 962      *
 963      * @return  the class loader that loaded the class or interface
 964      *          represented by this {@code Class} object.
 965      * @see java.lang.ClassLoader
 966      */
 967     public ClassLoader getClassLoader() {
 968         return classLoader;
 969     }
 970 
 971     // Package-private to allow ClassLoader access
 972     ClassLoader getClassLoader0() { return classLoader; }
 973 
 974     /**
 975      * Returns the module that this class or interface is a member of.
 976      *
 977      * If this class represents an array type then this method returns the
 978      * {@code Module} for the element type. If this class represents a
 979      * primitive type or void, then the {@code Module} object for the
 980      * {@code java.base} module is returned.
 981      *
 982      * If this class is in an unnamed module then the {@linkplain
 983      * ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class
 984      * loader for this class is returned.
 985      *
 986      * @return the module that this class or interface is a member of
 987      *
 988      * @since 9
 989      */
 990     public Module getModule() {
 991         return module;
 992     }
 993 
 994     // set by VM
 995     @Stable
 996     private transient Module module;
 997 
 998     // Initialized in JVM not by private constructor
 999     // This field is filtered from reflection access, i.e. getDeclaredField
1000     // will throw NoSuchFieldException
1001     private final ClassLoader classLoader;
1002 
1003     private transient Object classData; // Set by VM
1004     private transient Object[] signers; // Read by VM, mutable
1005 
1006     // package-private
1007     Object getClassData() {
1008         return classData;
1009     }
1010 
1011     /**
1012      * Returns an array of {@code TypeVariable} objects that represent the
1013      * type variables declared by the generic declaration represented by this
1014      * {@code GenericDeclaration} object, in declaration order.  Returns an
1015      * array of length 0 if the underlying generic declaration declares no type
1016      * variables.
1017      *
1018      * @return an array of {@code TypeVariable} objects that represent
1019      *     the type variables declared by this generic declaration
1020      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1021      *     signature of this generic declaration does not conform to
1022      *     the format specified in section {@jvms 4.7.9} of
1023      *     <cite>The Java Virtual Machine Specification</cite>
1024      * @since 1.5
1025      */
1026     @SuppressWarnings("unchecked")
1027     public TypeVariable<Class<T>>[] getTypeParameters() {
1028         ClassRepository info = getGenericInfo();
1029         if (info != null)
1030             return (TypeVariable<Class<T>>[])info.getTypeParameters();
1031         else
1032             return (TypeVariable<Class<T>>[])new TypeVariable<?>[0];
1033     }
1034 
1035 
1036     /**
1037      * Returns the {@code Class} representing the direct superclass of the
1038      * entity (class, interface, primitive type or void) represented by
1039      * this {@code Class}.  If this {@code Class} represents either the
1040      * {@code Object} class, an interface, a primitive type, or void, then
1041      * null is returned.  If this {@code Class} object represents an array class
1042      * then the {@code Class} object representing the {@code Object} class is
1043      * returned.
1044      *
1045      * @return the direct superclass of the class represented by this {@code Class} object
1046      */
1047     @IntrinsicCandidate
1048     public native Class<? super T> getSuperclass();
1049 
1050 
1051     /**
1052      * Returns the {@code Type} representing the direct superclass of
1053      * the entity (class, interface, primitive type or void) represented by
1054      * this {@code Class} object.
1055      *
1056      * <p>If the superclass is a parameterized type, the {@code Type}
1057      * object returned must accurately reflect the actual type
1058      * arguments used in the source code. The parameterized type
1059      * representing the superclass is created if it had not been
1060      * created before. See the declaration of {@link
1061      * java.lang.reflect.ParameterizedType ParameterizedType} for the
1062      * semantics of the creation process for parameterized types.  If
1063      * this {@code Class} object represents either the {@code Object}
1064      * class, an interface, a primitive type, or void, then null is
1065      * returned.  If this {@code Class} object represents an array class
1066      * then the {@code Class} object representing the {@code Object} class is
1067      * returned.
1068      *
1069      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1070      *     class signature does not conform to the format specified in
1071      *     section {@jvms 4.7.9} of <cite>The Java Virtual
1072      *     Machine Specification</cite>
1073      * @throws TypeNotPresentException if the generic superclass
1074      *     refers to a non-existent type declaration
1075      * @throws java.lang.reflect.MalformedParameterizedTypeException if the
1076      *     generic superclass refers to a parameterized type that cannot be
1077      *     instantiated  for any reason
1078      * @return the direct superclass of the class represented by this {@code Class} object
1079      * @since 1.5
1080      */
1081     public Type getGenericSuperclass() {
1082         ClassRepository info = getGenericInfo();
1083         if (info == null) {
1084             return getSuperclass();
1085         }
1086 
1087         // Historical irregularity:
1088         // Generic signature marks interfaces with superclass = Object
1089         // but this API returns null for interfaces
1090         if (isInterface()) {
1091             return null;
1092         }
1093 
1094         return info.getSuperclass();
1095     }
1096 
1097     /**
1098      * Gets the package of this class.
1099      *
1100      * <p>If this class represents an array type, a primitive type or void,
1101      * this method returns {@code null}.
1102      *
1103      * @return the package of this class.
1104      */
1105     public Package getPackage() {
1106         if (isPrimitive() || isArray()) {
1107             return null;
1108         }
1109         ClassLoader cl = classLoader;
1110         return cl != null ? cl.definePackage(this)
1111                           : BootLoader.definePackage(this);
1112     }
1113 
1114     /**
1115      * Returns the fully qualified package name.
1116      *
1117      * <p> If this class is a top level class, then this method returns the fully
1118      * qualified name of the package that the class is a member of, or the
1119      * empty string if the class is in an unnamed package.
1120      *
1121      * <p> If this class is a member class, then this method is equivalent to
1122      * invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass
1123      * enclosing class}.
1124      *
1125      * <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain
1126      * #isAnonymousClass() anonymous class}, then this method is equivalent to
1127      * invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass
1128      * declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or
1129      * {@linkplain #getEnclosingConstructor enclosing constructor}.
1130      *
1131      * <p> If this class represents an array type then this method returns the
1132      * package name of the element type. If this class represents a primitive
1133      * type or void then the package name "{@code java.lang}" is returned.
1134      *
1135      * @return the fully qualified package name
1136      *
1137      * @since 9
1138      * @jls 6.7 Fully Qualified Names and Canonical Names
1139      */
1140     public String getPackageName() {
1141         String pn = this.packageName;
1142         if (pn == null) {
1143             Class<?> c = isArray() ? elementType() : this;
1144             if (c.isPrimitive()) {
1145                 pn = "java.lang";
1146             } else {
1147                 String cn = c.getName();
1148                 int dot = cn.lastIndexOf('.');
1149                 pn = (dot != -1) ? cn.substring(0, dot).intern() : "";
1150             }
1151             this.packageName = pn;
1152         }
1153         return pn;
1154     }
1155 
1156     // cached package name
1157     private transient String packageName;
1158 
1159     /**
1160      * Returns the interfaces directly implemented by the class or interface
1161      * represented by this {@code Class} object.
1162      *
1163      * <p>If this {@code Class} object represents a class, the return value is an array
1164      * containing objects representing all interfaces directly implemented by
1165      * the class.  The order of the interface objects in the array corresponds
1166      * to the order of the interface names in the {@code implements} clause of
1167      * the declaration of the class represented by this {@code Class} object.  For example,
1168      * given the declaration:
1169      * <blockquote>
1170      * {@code class Shimmer implements FloorWax, DessertTopping { ... }}
1171      * </blockquote>
1172      * suppose the value of {@code s} is an instance of
1173      * {@code Shimmer}; the value of the expression:
1174      * <blockquote>
1175      * {@code s.getClass().getInterfaces()[0]}
1176      * </blockquote>
1177      * is the {@code Class} object that represents interface
1178      * {@code FloorWax}; and the value of:
1179      * <blockquote>
1180      * {@code s.getClass().getInterfaces()[1]}
1181      * </blockquote>
1182      * is the {@code Class} object that represents interface
1183      * {@code DessertTopping}.
1184      *
1185      * <p>If this {@code Class} object represents an interface, the array contains objects
1186      * representing all interfaces directly extended by the interface.  The
1187      * order of the interface objects in the array corresponds to the order of
1188      * the interface names in the {@code extends} clause of the declaration of
1189      * the interface represented by this {@code Class} object.
1190      *
1191      * <p>If this {@code Class} object represents a class or interface that implements no
1192      * interfaces, the method returns an array of length 0.
1193      *
1194      * <p>If this {@code Class} object represents a primitive type or void, the method
1195      * returns an array of length 0.
1196      *
1197      * <p>If this {@code Class} object represents an array type, the
1198      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1199      * returned in that order.
1200      *
1201      * @return an array of interfaces directly implemented by this class
1202      */
1203     public Class<?>[] getInterfaces() {
1204         // defensively copy before handing over to user code
1205         return getInterfaces(true);
1206     }
1207 
1208     private Class<?>[] getInterfaces(boolean cloneArray) {
1209         ReflectionData<T> rd = reflectionData();
1210         if (rd == null) {
1211             // no cloning required
1212             return getInterfaces0();
1213         } else {
1214             Class<?>[] interfaces = rd.interfaces;
1215             if (interfaces == null) {
1216                 interfaces = getInterfaces0();
1217                 rd.interfaces = interfaces;
1218             }
1219             // defensively copy if requested
1220             return cloneArray ? interfaces.clone() : interfaces;
1221         }
1222     }
1223 
1224     private native Class<?>[] getInterfaces0();
1225 
1226     /**
1227      * Returns the {@code Type}s representing the interfaces
1228      * directly implemented by the class or interface represented by
1229      * this {@code Class} object.
1230      *
1231      * <p>If a superinterface is a parameterized type, the
1232      * {@code Type} object returned for it must accurately reflect
1233      * the actual type arguments used in the source code. The
1234      * parameterized type representing each superinterface is created
1235      * if it had not been created before. See the declaration of
1236      * {@link java.lang.reflect.ParameterizedType ParameterizedType}
1237      * for the semantics of the creation process for parameterized
1238      * types.
1239      *
1240      * <p>If this {@code Class} object represents a class, the return value is an array
1241      * containing objects representing all interfaces directly implemented by
1242      * the class.  The order of the interface objects in the array corresponds
1243      * to the order of the interface names in the {@code implements} clause of
1244      * the declaration of the class represented by this {@code Class} object.
1245      *
1246      * <p>If this {@code Class} object represents an interface, the array contains objects
1247      * representing all interfaces directly extended by the interface.  The
1248      * order of the interface objects in the array corresponds to the order of
1249      * the interface names in the {@code extends} clause of the declaration of
1250      * the interface represented by this {@code Class} object.
1251      *
1252      * <p>If this {@code Class} object represents a class or interface that implements no
1253      * interfaces, the method returns an array of length 0.
1254      *
1255      * <p>If this {@code Class} object represents a primitive type or void, the method
1256      * returns an array of length 0.
1257      *
1258      * <p>If this {@code Class} object represents an array type, the
1259      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1260      * returned in that order.
1261      *
1262      * @throws java.lang.reflect.GenericSignatureFormatError
1263      *     if the generic class signature does not conform to the
1264      *     format specified in section {@jvms 4.7.9} of <cite>The
1265      *     Java Virtual Machine Specification</cite>
1266      * @throws TypeNotPresentException if any of the generic
1267      *     superinterfaces refers to a non-existent type declaration
1268      * @throws java.lang.reflect.MalformedParameterizedTypeException
1269      *     if any of the generic superinterfaces refer to a parameterized
1270      *     type that cannot be instantiated for any reason
1271      * @return an array of interfaces directly implemented by this class
1272      * @since 1.5
1273      */
1274     public Type[] getGenericInterfaces() {
1275         ClassRepository info = getGenericInfo();
1276         return (info == null) ?  getInterfaces() : info.getSuperInterfaces();
1277     }
1278 
1279 
1280     /**
1281      * Returns the {@code Class} representing the component type of an
1282      * array.  If this class does not represent an array class this method
1283      * returns null.
1284      *
1285      * @return the {@code Class} representing the component type of this
1286      * class if this class is an array
1287      * @see     java.lang.reflect.Array
1288      * @since 1.1
1289      */
1290     public Class<?> getComponentType() {
1291         // Only return for array types. Storage may be reused for Class for instance types.
1292         if (isArray()) {
1293             return componentType;
1294         } else {
1295             return null;
1296         }
1297     }
1298 
1299     private final Class<?> componentType;
1300 
1301     /*
1302      * Returns the {@code Class} representing the element type of an array class.
1303      * If this class does not represent an array class, then this method returns
1304      * {@code null}.
1305      */
1306     private Class<?> elementType() {
1307         if (!isArray()) return null;
1308 
1309         Class<?> c = this;
1310         while (c.isArray()) {
1311             c = c.getComponentType();
1312         }
1313         return c;
1314     }
1315 
1316     /**
1317      * Returns the Java language modifiers for this class or interface, encoded
1318      * in an integer. The modifiers consist of the Java Virtual Machine's
1319      * constants for {@code public}, {@code protected},
1320      * {@code private}, {@code final}, {@code static},
1321      * {@code abstract} and {@code interface}; they should be decoded
1322      * using the methods of class {@code Modifier}.
1323      *
1324      * <p> If the underlying class is an array class:
1325      * <ul>
1326      * <li> its {@code public}, {@code private} and {@code protected}
1327      *      modifiers are the same as those of its component type
1328      * <li> its {@code abstract} and {@code final} modifiers are always
1329      *      {@code true}
1330      * <li> its interface modifier is always {@code false}, even when
1331      *      the component type is an interface
1332      * </ul>
1333      * If this {@code Class} object represents a primitive type or
1334      * void, its {@code public}, {@code abstract}, and {@code final}
1335      * modifiers are always {@code true}.
1336      * For {@code Class} objects representing void, primitive types, and
1337      * arrays, the values of other modifiers are {@code false} other
1338      * than as specified above.
1339      *
1340      * <p> The modifier encodings are defined in section {@jvms 4.1}
1341      * of <cite>The Java Virtual Machine Specification</cite>.
1342      *
1343      * @return the {@code int} representing the modifiers for this class
1344      * @see     java.lang.reflect.Modifier
1345      * @see #accessFlags()
1346      * @see <a
1347      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
1348      * programming language and JVM modeling in core reflection</a>
1349      * @since 1.1
1350      * @jls 8.1.1 Class Modifiers
1351      * @jls 9.1.1 Interface Modifiers
1352      * @jvms 4.1 The {@code ClassFile} Structure
1353      */
1354     @IntrinsicCandidate
1355     public native int getModifiers();
1356 
1357     /**
1358      * {@return an unmodifiable set of the {@linkplain AccessFlag access
1359      * flags} for this class, possibly empty}
1360      *
1361      * <p> If the underlying class is an array class:
1362      * <ul>
1363      * <li> its {@code PUBLIC}, {@code PRIVATE} and {@code PROTECTED}
1364      *      access flags are the same as those of its component type
1365      * <li> its {@code ABSTRACT} and {@code FINAL} flags are present
1366      * <li> its {@code INTERFACE} flag is absent, even when the
1367      *      component type is an interface
1368      * </ul>
1369      * If this {@code Class} object represents a primitive type or
1370      * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and
1371      * {@code FINAL}.
1372      * For {@code Class} objects representing void, primitive types, and
1373      * arrays, access flags are absent other than as specified above.
1374      *
1375      * @see #getModifiers()
1376      * @jvms 4.1 The ClassFile Structure
1377      * @jvms 4.7.6 The InnerClasses Attribute
1378      * @since 20
1379      */
1380     public Set<AccessFlag> accessFlags() {
1381         // Location.CLASS allows SUPER and AccessFlag.MODULE which
1382         // INNER_CLASS forbids. INNER_CLASS allows PRIVATE, PROTECTED,
1383         // and STATIC, which are not allowed on Location.CLASS.
1384         // Use getClassAccessFlagsRaw to expose SUPER status.
1385         var location = (isMemberClass() || isLocalClass() ||
1386                         isAnonymousClass() || isArray()) ?
1387             AccessFlag.Location.INNER_CLASS :
1388             AccessFlag.Location.CLASS;
1389         return AccessFlag.maskToAccessFlags((location == AccessFlag.Location.CLASS) ?
1390                                             getClassAccessFlagsRaw() :
1391                                             getModifiers(),
1392                                             location);
1393     }
1394 
1395     /**
1396      * Gets the signers of this class.
1397      *
1398      * @return  the signers of this class, or null if there are no signers.  In
1399      *          particular, this method returns null if this {@code Class} object represents
1400      *          a primitive type or void.
1401      * @since   1.1
1402      */
1403     public Object[] getSigners() {
1404         var signers = this.signers;
1405         return signers == null ? null : signers.clone();
1406     }
1407 
1408     /**
1409      * Set the signers of this class.
1410      */
1411     void setSigners(Object[] signers) {
1412         if (!isPrimitive() && !isArray()) {
1413             this.signers = signers;
1414         }
1415     }
1416 
1417     /**
1418      * If this {@code Class} object represents a local or anonymous
1419      * class within a method, returns a {@link
1420      * java.lang.reflect.Method Method} object representing the
1421      * immediately enclosing method of the underlying class. Returns
1422      * {@code null} otherwise.
1423      *
1424      * In particular, this method returns {@code null} if the underlying
1425      * class is a local or anonymous class immediately enclosed by a class or
1426      * interface declaration, instance initializer or static initializer.
1427      *
1428      * @return the immediately enclosing method of the underlying class, if
1429      *     that class is a local or anonymous class; otherwise {@code null}.
1430      *
1431      * @since 1.5
1432      */
1433     public Method getEnclosingMethod() {
1434         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1435 
1436         if (enclosingInfo == null)
1437             return null;
1438         else {
1439             if (!enclosingInfo.isMethod())
1440                 return null;
1441 
1442             MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(),
1443                                                               getFactory());
1444             Class<?>   returnType       = toClass(typeInfo.getReturnType());
1445             Type []    parameterTypes   = typeInfo.getParameterTypes();
1446             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1447 
1448             // Convert Types to Classes; returned types *should*
1449             // be class objects since the methodDescriptor's used
1450             // don't have generics information
1451             for(int i = 0; i < parameterClasses.length; i++)
1452                 parameterClasses[i] = toClass(parameterTypes[i]);
1453 
1454             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1455             Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false);
1456 
1457             /*
1458              * Loop over all declared methods; match method name,
1459              * number of and type of parameters, *and* return
1460              * type.  Matching return type is also necessary
1461              * because of covariant returns, etc.
1462              */
1463             ReflectionFactory fact = getReflectionFactory();
1464             for (Method m : candidates) {
1465                 if (m.getName().equals(enclosingInfo.getName()) &&
1466                     arrayContentsEq(parameterClasses,
1467                                     fact.getExecutableSharedParameterTypes(m))) {
1468                     // finally, check return type
1469                     if (m.getReturnType().equals(returnType)) {
1470                         return fact.copyMethod(m);
1471                     }
1472                 }
1473             }
1474 
1475             throw new InternalError("Enclosing method not found");
1476         }
1477     }
1478 
1479     private native Object[] getEnclosingMethod0();
1480 
1481     private EnclosingMethodInfo getEnclosingMethodInfo() {
1482         Object[] enclosingInfo = getEnclosingMethod0();
1483         if (enclosingInfo == null)
1484             return null;
1485         else {
1486             return new EnclosingMethodInfo(enclosingInfo);
1487         }
1488     }
1489 
1490     private static final class EnclosingMethodInfo {
1491         private final Class<?> enclosingClass;
1492         private final String name;
1493         private final String descriptor;
1494 
1495         static void validate(Object[] enclosingInfo) {
1496             if (enclosingInfo.length != 3)
1497                 throw new InternalError("Malformed enclosing method information");
1498             try {
1499                 // The array is expected to have three elements:
1500 
1501                 // the immediately enclosing class
1502                 Class<?> enclosingClass = (Class<?>)enclosingInfo[0];
1503                 assert(enclosingClass != null);
1504 
1505                 // the immediately enclosing method or constructor's
1506                 // name (can be null).
1507                 String name = (String)enclosingInfo[1];
1508 
1509                 // the immediately enclosing method or constructor's
1510                 // descriptor (null iff name is).
1511                 String descriptor = (String)enclosingInfo[2];
1512                 assert((name != null && descriptor != null) || name == descriptor);
1513             } catch (ClassCastException cce) {
1514                 throw new InternalError("Invalid type in enclosing method information", cce);
1515             }
1516         }
1517 
1518         EnclosingMethodInfo(Object[] enclosingInfo) {
1519             validate(enclosingInfo);
1520             this.enclosingClass = (Class<?>)enclosingInfo[0];
1521             this.name = (String)enclosingInfo[1];
1522             this.descriptor = (String)enclosingInfo[2];
1523         }
1524 
1525         boolean isPartial() {
1526             return enclosingClass == null || name == null || descriptor == null;
1527         }
1528 
1529         boolean isConstructor() { return !isPartial() && ConstantDescs.INIT_NAME.equals(name); }
1530 
1531         boolean isMethod() { return !isPartial() && !isConstructor() && !ConstantDescs.CLASS_INIT_NAME.equals(name); }
1532 
1533         Class<?> getEnclosingClass() { return enclosingClass; }
1534 
1535         String getName() { return name; }
1536 
1537         String getDescriptor() { return descriptor; }
1538 
1539     }
1540 
1541     private static Class<?> toClass(Type o) {
1542         if (o instanceof GenericArrayType gat)
1543             return toClass(gat.getGenericComponentType()).arrayType();
1544         return (Class<?>)o;
1545      }
1546 
1547     /**
1548      * If this {@code Class} object represents a local or anonymous
1549      * class within a constructor, returns a {@link
1550      * java.lang.reflect.Constructor Constructor} object representing
1551      * the immediately enclosing constructor of the underlying
1552      * class. Returns {@code null} otherwise.  In particular, this
1553      * method returns {@code null} if the underlying class is a local
1554      * or anonymous class immediately enclosed by a class or
1555      * interface declaration, instance initializer or static initializer.
1556      *
1557      * @return the immediately enclosing constructor of the underlying class, if
1558      *     that class is a local or anonymous class; otherwise {@code null}.
1559      *
1560      * @since 1.5
1561      */
1562     public Constructor<?> getEnclosingConstructor() {
1563         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1564 
1565         if (enclosingInfo == null)
1566             return null;
1567         else {
1568             if (!enclosingInfo.isConstructor())
1569                 return null;
1570 
1571             ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(),
1572                                                                         getFactory());
1573             Type []    parameterTypes   = typeInfo.getParameterTypes();
1574             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1575 
1576             // Convert Types to Classes; returned types *should*
1577             // be class objects since the methodDescriptor's used
1578             // don't have generics information
1579             for (int i = 0; i < parameterClasses.length; i++)
1580                 parameterClasses[i] = toClass(parameterTypes[i]);
1581 
1582 
1583             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1584             Constructor<?>[] candidates = enclosingCandidate
1585                     .privateGetDeclaredConstructors(false);
1586             /*
1587              * Loop over all declared constructors; match number
1588              * of and type of parameters.
1589              */
1590             ReflectionFactory fact = getReflectionFactory();
1591             for (Constructor<?> c : candidates) {
1592                 if (arrayContentsEq(parameterClasses,
1593                                     fact.getExecutableSharedParameterTypes(c))) {
1594                     return fact.copyConstructor(c);
1595                 }
1596             }
1597 
1598             throw new InternalError("Enclosing constructor not found");
1599         }
1600     }
1601 
1602 
1603     /**
1604      * If the class or interface represented by this {@code Class} object
1605      * is a member of another class, returns the {@code Class} object
1606      * representing the class in which it was declared.  This method returns
1607      * null if this class or interface is not a member of any other class.  If
1608      * this {@code Class} object represents an array class, a primitive
1609      * type, or void, then this method returns null.
1610      *
1611      * @return the declaring class for this class
1612      * @since 1.1
1613      */
1614     public Class<?> getDeclaringClass() {
1615         return getDeclaringClass0();
1616     }
1617 
1618     private native Class<?> getDeclaringClass0();
1619 
1620 
1621     /**
1622      * Returns the immediately enclosing class of the underlying
1623      * class.  If the underlying class is a top level class this
1624      * method returns {@code null}.
1625      * @return the immediately enclosing class of the underlying class
1626      * @since 1.5
1627      */
1628     public Class<?> getEnclosingClass() {
1629         // There are five kinds of classes (or interfaces):
1630         // a) Top level classes
1631         // b) Nested classes (static member classes)
1632         // c) Inner classes (non-static member classes)
1633         // d) Local classes (named classes declared within a method)
1634         // e) Anonymous classes
1635 
1636 
1637         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1638         // attribute if and only if it is a local class or an
1639         // anonymous class.
1640         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1641         Class<?> enclosingCandidate;
1642 
1643         if (enclosingInfo == null) {
1644             // This is a top level or a nested class or an inner class (a, b, or c)
1645             enclosingCandidate = getDeclaringClass0();
1646         } else {
1647             Class<?> enclosingClass = enclosingInfo.getEnclosingClass();
1648             // This is a local class or an anonymous class (d or e)
1649             if (enclosingClass == this || enclosingClass == null)
1650                 throw new InternalError("Malformed enclosing method information");
1651             else
1652                 enclosingCandidate = enclosingClass;
1653         }
1654         return enclosingCandidate;
1655     }
1656 
1657     /**
1658      * Returns the simple name of the underlying class as given in the
1659      * source code. An empty string is returned if the underlying class is
1660      * {@linkplain #isAnonymousClass() anonymous}.
1661      * A {@linkplain #isSynthetic() synthetic class}, one not present
1662      * in source code, can have a non-empty name including special
1663      * characters, such as "{@code $}".
1664      *
1665      * <p>The simple name of an {@linkplain #isArray() array class} is the simple name of the
1666      * component type with "[]" appended.  In particular the simple
1667      * name of an array class whose component type is anonymous is "[]".
1668      *
1669      * @return the simple name of the underlying class
1670      * @since 1.5
1671      */
1672     public String getSimpleName() {
1673         ReflectionData<T> rd = reflectionData();
1674         String simpleName = rd.simpleName;
1675         if (simpleName == null) {
1676             rd.simpleName = simpleName = getSimpleName0();
1677         }
1678         return simpleName;
1679     }
1680 
1681     private String getSimpleName0() {
1682         if (isArray()) {
1683             return getComponentType().getSimpleName().concat("[]");
1684         }
1685         String simpleName = getSimpleBinaryName();
1686         if (simpleName == null) { // top level class
1687             simpleName = getName();
1688             simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name
1689         }
1690         return simpleName;
1691     }
1692 
1693     /**
1694      * Return an informative string for the name of this class or interface.
1695      *
1696      * @return an informative string for the name of this class or interface
1697      * @since 1.8
1698      */
1699     public String getTypeName() {
1700         if (isArray()) {
1701             try {
1702                 Class<?> cl = this;
1703                 int dimensions = 0;
1704                 do {
1705                     dimensions++;
1706                     cl = cl.getComponentType();
1707                 } while (cl.isArray());
1708                 return cl.getName().concat("[]".repeat(dimensions));
1709             } catch (Throwable e) { /*FALLTHRU*/ }
1710         }
1711         return getName();
1712     }
1713 
1714     /**
1715      * Returns the canonical name of the underlying class as
1716      * defined by <cite>The Java Language Specification</cite>.
1717      * Returns {@code null} if the underlying class does not have a canonical
1718      * name. Classes without canonical names include:
1719      * <ul>
1720      * <li>a {@linkplain #isLocalClass() local class}
1721      * <li>a {@linkplain #isAnonymousClass() anonymous class}
1722      * <li>a {@linkplain #isHidden() hidden class}
1723      * <li>an array whose component type does not have a canonical name</li>
1724      * </ul>
1725      *
1726      * The canonical name for a primitive class is the keyword for the
1727      * corresponding primitive type ({@code byte}, {@code short},
1728      * {@code char}, {@code int}, and so on).
1729      *
1730      * <p>An array type has a canonical name if and only if its
1731      * component type has a canonical name. When an array type has a
1732      * canonical name, it is equal to the canonical name of the
1733      * component type followed by "{@code []}".
1734      *
1735      * @return the canonical name of the underlying class if it exists, and
1736      * {@code null} otherwise.
1737      * @jls 6.7 Fully Qualified Names and Canonical Names
1738      * @since 1.5
1739      */
1740     public String getCanonicalName() {
1741         ReflectionData<T> rd = reflectionData();
1742         String canonicalName = rd.canonicalName;
1743         if (canonicalName == null) {
1744             rd.canonicalName = canonicalName = getCanonicalName0();
1745         }
1746         return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName;
1747     }
1748 
1749     private String getCanonicalName0() {
1750         if (isArray()) {
1751             String canonicalName = getComponentType().getCanonicalName();
1752             if (canonicalName != null)
1753                 return canonicalName.concat("[]");
1754             else
1755                 return ReflectionData.NULL_SENTINEL;
1756         }
1757         if (isHidden() || isLocalOrAnonymousClass())
1758             return ReflectionData.NULL_SENTINEL;
1759         Class<?> enclosingClass = getEnclosingClass();
1760         if (enclosingClass == null) { // top level class
1761             return getName();
1762         } else {
1763             String enclosingName = enclosingClass.getCanonicalName();
1764             if (enclosingName == null)
1765                 return ReflectionData.NULL_SENTINEL;
1766             String simpleName = getSimpleName();
1767             return new StringBuilder(enclosingName.length() + simpleName.length() + 1)
1768                     .append(enclosingName)
1769                     .append('.')
1770                     .append(simpleName)
1771                     .toString();
1772         }
1773     }
1774 
1775     /**
1776      * Returns {@code true} if and only if the underlying class
1777      * is an anonymous class.
1778      *
1779      * @apiNote
1780      * An anonymous class is not a {@linkplain #isHidden() hidden class}.
1781      *
1782      * @return {@code true} if and only if this class is an anonymous class.
1783      * @since 1.5
1784      * @jls 15.9.5 Anonymous Class Declarations
1785      */
1786     public boolean isAnonymousClass() {
1787         return !isArray() && isLocalOrAnonymousClass() &&
1788                 getSimpleBinaryName0() == null;
1789     }
1790 
1791     /**
1792      * Returns {@code true} if and only if the underlying class
1793      * is a local class.
1794      *
1795      * @return {@code true} if and only if this class is a local class.
1796      * @since 1.5
1797      * @jls 14.3 Local Class and Interface Declarations
1798      */
1799     public boolean isLocalClass() {
1800         return isLocalOrAnonymousClass() &&
1801                 (isArray() || getSimpleBinaryName0() != null);
1802     }
1803 
1804     /**
1805      * Returns {@code true} if and only if the underlying class
1806      * is a member class.
1807      *
1808      * @return {@code true} if and only if this class is a member class.
1809      * @since 1.5
1810      * @jls 8.5 Member Class and Interface Declarations
1811      */
1812     public boolean isMemberClass() {
1813         return !isLocalOrAnonymousClass() && getDeclaringClass0() != null;
1814     }
1815 
1816     /**
1817      * Returns the "simple binary name" of the underlying class, i.e.,
1818      * the binary name without the leading enclosing class name.
1819      * Returns {@code null} if the underlying class is a top level
1820      * class.
1821      */
1822     private String getSimpleBinaryName() {
1823         if (isTopLevelClass())
1824             return null;
1825         String name = getSimpleBinaryName0();
1826         if (name == null) // anonymous class
1827             return "";
1828         return name;
1829     }
1830 
1831     private native String getSimpleBinaryName0();
1832 
1833     /**
1834      * Returns {@code true} if this is a top level class.  Returns {@code false}
1835      * otherwise.
1836      */
1837     private boolean isTopLevelClass() {
1838         return !isLocalOrAnonymousClass() && getDeclaringClass0() == null;
1839     }
1840 
1841     /**
1842      * Returns {@code true} if this is a local class or an anonymous
1843      * class.  Returns {@code false} otherwise.
1844      */
1845     private boolean isLocalOrAnonymousClass() {
1846         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1847         // attribute if and only if it is a local class or an
1848         // anonymous class.
1849         return hasEnclosingMethodInfo();
1850     }
1851 
1852     private boolean hasEnclosingMethodInfo() {
1853         Object[] enclosingInfo = getEnclosingMethod0();
1854         if (enclosingInfo != null) {
1855             EnclosingMethodInfo.validate(enclosingInfo);
1856             return true;
1857         }
1858         return false;
1859     }
1860 
1861     /**
1862      * Returns an array containing {@code Class} objects representing all
1863      * the public classes and interfaces that are members of the class
1864      * represented by this {@code Class} object.  This includes public
1865      * class and interface members inherited from superclasses and public class
1866      * and interface members declared by the class.  This method returns an
1867      * array of length 0 if this {@code Class} object has no public member
1868      * classes or interfaces.  This method also returns an array of length 0 if
1869      * this {@code Class} object represents a primitive type, an array
1870      * class, or void.
1871      *
1872      * @return the array of {@code Class} objects representing the public
1873      *         members of this class
1874      * @since 1.1
1875      */
1876     public Class<?>[] getClasses() {
1877         List<Class<?>> list = new ArrayList<>();
1878         Class<?> currentClass = Class.this;
1879         while (currentClass != null) {
1880             for (Class<?> m : currentClass.getDeclaredClasses()) {
1881                 if (Modifier.isPublic(m.getModifiers())) {
1882                     list.add(m);
1883                 }
1884             }
1885             currentClass = currentClass.getSuperclass();
1886         }
1887         return list.toArray(new Class<?>[0]);
1888     }
1889 
1890 
1891     /**
1892      * Returns an array containing {@code Field} objects reflecting all
1893      * the accessible public fields of the class or interface represented by
1894      * this {@code Class} object.
1895      *
1896      * <p> If this {@code Class} object represents a class or interface with
1897      * no accessible public fields, then this method returns an array of length
1898      * 0.
1899      *
1900      * <p> If this {@code Class} object represents a class, then this method
1901      * returns the public fields of the class and of all its superclasses and
1902      * superinterfaces.
1903      *
1904      * <p> If this {@code Class} object represents an interface, then this
1905      * method returns the fields of the interface and of all its
1906      * superinterfaces.
1907      *
1908      * <p> If this {@code Class} object represents an array type, a primitive
1909      * type, or void, then this method returns an array of length 0.
1910      *
1911      * <p> The elements in the returned array are not sorted and are not in any
1912      * particular order.
1913      *
1914      * @return the array of {@code Field} objects representing the
1915      *         public fields
1916      *
1917      * @since 1.1
1918      * @jls 8.2 Class Members
1919      * @jls 8.3 Field Declarations
1920      */
1921     public Field[] getFields() {
1922         return copyFields(privateGetPublicFields());
1923     }
1924 
1925 
1926     /**
1927      * Returns an array containing {@code Method} objects reflecting all the
1928      * public methods of the class or interface represented by this {@code
1929      * Class} object, including those declared by the class or interface and
1930      * those inherited from superclasses and superinterfaces.
1931      *
1932      * <p> If this {@code Class} object represents an array type, then the
1933      * returned array has a {@code Method} object for each of the public
1934      * methods inherited by the array type from {@code Object}. It does not
1935      * contain a {@code Method} object for {@code clone()}.
1936      *
1937      * <p> If this {@code Class} object represents an interface then the
1938      * returned array does not contain any implicitly declared methods from
1939      * {@code Object}. Therefore, if no methods are explicitly declared in
1940      * this interface or any of its superinterfaces then the returned array
1941      * has length 0. (Note that a {@code Class} object which represents a class
1942      * always has public methods, inherited from {@code Object}.)
1943      *
1944      * <p> The returned array never contains methods with names {@value
1945      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
1946      *
1947      * <p> The elements in the returned array are not sorted and are not in any
1948      * particular order.
1949      *
1950      * <p> Generally, the result is computed as with the following 4 step algorithm.
1951      * Let C be the class or interface represented by this {@code Class} object:
1952      * <ol>
1953      * <li> A union of methods is composed of:
1954      *   <ol type="a">
1955      *   <li> C's declared public instance and static methods as returned by
1956      *        {@link #getDeclaredMethods()} and filtered to include only public
1957      *        methods.</li>
1958      *   <li> If C is a class other than {@code Object}, then include the result
1959      *        of invoking this algorithm recursively on the superclass of C.</li>
1960      *   <li> Include the results of invoking this algorithm recursively on all
1961      *        direct superinterfaces of C, but include only instance methods.</li>
1962      *   </ol></li>
1963      * <li> Union from step 1 is partitioned into subsets of methods with same
1964      *      signature (name, parameter types) and return type.</li>
1965      * <li> Within each such subset only the most specific methods are selected.
1966      *      Let method M be a method from a set of methods with same signature
1967      *      and return type. M is most specific if there is no such method
1968      *      N != M from the same set, such that N is more specific than M.
1969      *      N is more specific than M if:
1970      *   <ol type="a">
1971      *   <li> N is declared by a class and M is declared by an interface; or</li>
1972      *   <li> N and M are both declared by classes or both by interfaces and
1973      *        N's declaring type is the same as or a subtype of M's declaring type
1974      *        (clearly, if M's and N's declaring types are the same type, then
1975      *        M and N are the same method).</li>
1976      *   </ol></li>
1977      * <li> The result of this algorithm is the union of all selected methods from
1978      *      step 3.</li>
1979      * </ol>
1980      *
1981      * @apiNote There may be more than one method with a particular name
1982      * and parameter types in a class because while the Java language forbids a
1983      * class to declare multiple methods with the same signature but different
1984      * return types, the Java virtual machine does not.  This
1985      * increased flexibility in the virtual machine can be used to
1986      * implement various language features.  For example, covariant
1987      * returns can be implemented with {@linkplain
1988      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
1989      * method and the overriding method would have the same
1990      * signature but different return types.
1991      *
1992      * @return the array of {@code Method} objects representing the
1993      *         public methods of this class
1994      *
1995      * @jls 8.2 Class Members
1996      * @jls 8.4 Method Declarations
1997      * @since 1.1
1998      */
1999     public Method[] getMethods() {
2000         return copyMethods(privateGetPublicMethods());
2001     }
2002 
2003 
2004     /**
2005      * Returns an array containing {@code Constructor} objects reflecting
2006      * all the public constructors of the class represented by this
2007      * {@code Class} object.  An array of length 0 is returned if the
2008      * class has no public constructors, or if the class is an array class, or
2009      * if the class reflects a primitive type or void.
2010      *
2011      * @apiNote
2012      * While this method returns an array of {@code
2013      * Constructor<T>} objects (that is an array of constructors from
2014      * this class), the return type of this method is {@code
2015      * Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as
2016      * might be expected.  This less informative return type is
2017      * necessary since after being returned from this method, the
2018      * array could be modified to hold {@code Constructor} objects for
2019      * different classes, which would violate the type guarantees of
2020      * {@code Constructor<T>[]}.
2021      *
2022      * @return the array of {@code Constructor} objects representing the
2023      *         public constructors of this class
2024      *
2025      * @see #getDeclaredConstructors()
2026      * @since 1.1
2027      */
2028     public Constructor<?>[] getConstructors() {
2029         return copyConstructors(privateGetDeclaredConstructors(true));
2030     }
2031 
2032 
2033     /**
2034      * Returns a {@code Field} object that reflects the specified public member
2035      * field of the class or interface represented by this {@code Class}
2036      * object. The {@code name} parameter is a {@code String} specifying the
2037      * simple name of the desired field.
2038      *
2039      * <p> The field to be reflected is determined by the algorithm that
2040      * follows.  Let C be the class or interface represented by this {@code Class} object:
2041      *
2042      * <OL>
2043      * <LI> If C declares a public field with the name specified, that is the
2044      *      field to be reflected.</LI>
2045      * <LI> If no field was found in step 1 above, this algorithm is applied
2046      *      recursively to each direct superinterface of C. The direct
2047      *      superinterfaces are searched in the order they were declared.</LI>
2048      * <LI> If no field was found in steps 1 and 2 above, and C has a
2049      *      superclass S, then this algorithm is invoked recursively upon S.
2050      *      If C has no superclass, then a {@code NoSuchFieldException}
2051      *      is thrown.</LI>
2052      * </OL>
2053      *
2054      * <p> If this {@code Class} object represents an array type, then this
2055      * method does not find the {@code length} field of the array type.
2056      *
2057      * @param name the field name
2058      * @return the {@code Field} object of this class specified by
2059      *         {@code name}
2060      * @throws NoSuchFieldException if a field with the specified name is
2061      *         not found.
2062      * @throws NullPointerException if {@code name} is {@code null}
2063      *
2064      * @since 1.1
2065      * @jls 8.2 Class Members
2066      * @jls 8.3 Field Declarations
2067      */
2068     public Field getField(String name) throws NoSuchFieldException {
2069         Objects.requireNonNull(name);
2070         Field field = getField0(name);
2071         if (field == null) {
2072             throw new NoSuchFieldException(name);
2073         }
2074         return getReflectionFactory().copyField(field);
2075     }
2076 
2077 
2078     /**
2079      * Returns a {@code Method} object that reflects the specified public
2080      * member method of the class or interface represented by this
2081      * {@code Class} object. The {@code name} parameter is a
2082      * {@code String} specifying the simple name of the desired method. The
2083      * {@code parameterTypes} parameter is an array of {@code Class}
2084      * objects that identify the method's formal parameter types, in declared
2085      * order. If {@code parameterTypes} is {@code null}, it is
2086      * treated as if it were an empty array.
2087      *
2088      * <p> If this {@code Class} object represents an array type, then this
2089      * method finds any public method inherited by the array type from
2090      * {@code Object} except method {@code clone()}.
2091      *
2092      * <p> If this {@code Class} object represents an interface then this
2093      * method does not find any implicitly declared method from
2094      * {@code Object}. Therefore, if no methods are explicitly declared in
2095      * this interface or any of its superinterfaces, then this method does not
2096      * find any method.
2097      *
2098      * <p> This method does not find any method with name {@value
2099      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
2100      *
2101      * <p> Generally, the method to be reflected is determined by the 4 step
2102      * algorithm that follows.
2103      * Let C be the class or interface represented by this {@code Class} object:
2104      * <ol>
2105      * <li> A union of methods is composed of:
2106      *   <ol type="a">
2107      *   <li> C's declared public instance and static methods as returned by
2108      *        {@link #getDeclaredMethods()} and filtered to include only public
2109      *        methods that match given {@code name} and {@code parameterTypes}</li>
2110      *   <li> If C is a class other than {@code Object}, then include the result
2111      *        of invoking this algorithm recursively on the superclass of C.</li>
2112      *   <li> Include the results of invoking this algorithm recursively on all
2113      *        direct superinterfaces of C, but include only instance methods.</li>
2114      *   </ol></li>
2115      * <li> This union is partitioned into subsets of methods with same
2116      *      return type (the selection of methods from step 1 also guarantees that
2117      *      they have the same method name and parameter types).</li>
2118      * <li> Within each such subset only the most specific methods are selected.
2119      *      Let method M be a method from a set of methods with same VM
2120      *      signature (return type, name, parameter types).
2121      *      M is most specific if there is no such method N != M from the same
2122      *      set, such that N is more specific than M. N is more specific than M
2123      *      if:
2124      *   <ol type="a">
2125      *   <li> N is declared by a class and M is declared by an interface; or</li>
2126      *   <li> N and M are both declared by classes or both by interfaces and
2127      *        N's declaring type is the same as or a subtype of M's declaring type
2128      *        (clearly, if M's and N's declaring types are the same type, then
2129      *        M and N are the same method).</li>
2130      *   </ol></li>
2131      * <li> The result of this algorithm is chosen arbitrarily from the methods
2132      *      with most specific return type among all selected methods from step 3.
2133      *      Let R be a return type of a method M from the set of all selected methods
2134      *      from step 3. M is a method with most specific return type if there is
2135      *      no such method N != M from the same set, having return type S != R,
2136      *      such that S is a subtype of R as determined by
2137      *      R.class.{@link #isAssignableFrom}(S.class).
2138      * </ol>
2139      *
2140      * @apiNote There may be more than one method with matching name and
2141      * parameter types in a class because while the Java language forbids a
2142      * class to declare multiple methods with the same signature but different
2143      * return types, the Java virtual machine does not.  This
2144      * increased flexibility in the virtual machine can be used to
2145      * implement various language features.  For example, covariant
2146      * returns can be implemented with {@linkplain
2147      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
2148      * method and the overriding method would have the same
2149      * signature but different return types. This method would return the
2150      * overriding method as it would have a more specific return type.
2151      *
2152      * @param name the name of the method
2153      * @param parameterTypes the list of parameters
2154      * @return the {@code Method} object that matches the specified
2155      *         {@code name} and {@code parameterTypes}
2156      * @throws NoSuchMethodException if a matching method is not found
2157      *         or if the name is {@value ConstantDescs#INIT_NAME} or
2158      *         {@value ConstantDescs#CLASS_INIT_NAME}.
2159      * @throws NullPointerException if {@code name} is {@code null}
2160      *
2161      * @jls 8.2 Class Members
2162      * @jls 8.4 Method Declarations
2163      * @since 1.1
2164      */
2165     public Method getMethod(String name, Class<?>... parameterTypes)
2166             throws NoSuchMethodException {
2167         Objects.requireNonNull(name);
2168         Method method = getMethod0(name, parameterTypes);
2169         if (method == null) {
2170             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2171         }
2172         return getReflectionFactory().copyMethod(method);
2173     }
2174 
2175     /**
2176      * Returns a {@code Constructor} object that reflects the specified
2177      * public constructor of the class represented by this {@code Class}
2178      * object. The {@code parameterTypes} parameter is an array of
2179      * {@code Class} objects that identify the constructor's formal
2180      * parameter types, in declared order.
2181      *
2182      * If this {@code Class} object represents an inner class
2183      * declared in a non-static context, the formal parameter types
2184      * include the explicit enclosing instance as the first parameter.
2185      *
2186      * <p> The constructor to reflect is the public constructor of the class
2187      * represented by this {@code Class} object whose formal parameter
2188      * types match those specified by {@code parameterTypes}.
2189      *
2190      * @param parameterTypes the parameter array
2191      * @return the {@code Constructor} object of the public constructor that
2192      *         matches the specified {@code parameterTypes}
2193      * @throws NoSuchMethodException if a matching constructor is not found,
2194      *         including when this {@code Class} object represents
2195      *         an interface, a primitive type, an array class, or void.
2196      *
2197      * @see #getDeclaredConstructor(Class[])
2198      * @since 1.1
2199      */
2200     public Constructor<T> getConstructor(Class<?>... parameterTypes)
2201             throws NoSuchMethodException {
2202         return getReflectionFactory().copyConstructor(
2203             getConstructor0(parameterTypes, Member.PUBLIC));
2204     }
2205 
2206 
2207     /**
2208      * Returns an array of {@code Class} objects reflecting all the
2209      * classes and interfaces declared as members of the class represented by
2210      * this {@code Class} object. This includes public, protected, default
2211      * (package) access, and private classes and interfaces declared by the
2212      * class, but excludes inherited classes and interfaces.  This method
2213      * returns an array of length 0 if the class declares no classes or
2214      * interfaces as members, or if this {@code Class} object represents a
2215      * primitive type, an array class, or void.
2216      *
2217      * @return the array of {@code Class} objects representing all the
2218      *         declared members of this class
2219      *
2220      * @since 1.1
2221      * @jls 8.5 Member Class and Interface Declarations
2222      */
2223     public Class<?>[] getDeclaredClasses() {
2224         return getDeclaredClasses0();
2225     }
2226 
2227 
2228     /**
2229      * Returns an array of {@code Field} objects reflecting all the fields
2230      * declared by the class or interface represented by this
2231      * {@code Class} object. This includes public, protected, default
2232      * (package) access, and private fields, but excludes inherited fields.
2233      *
2234      * <p> If this {@code Class} object represents a class or interface with no
2235      * declared fields, then this method returns an array of length 0.
2236      *
2237      * <p> If this {@code Class} object represents an array type, a primitive
2238      * type, or void, then this method returns an array of length 0.
2239      *
2240      * <p> The elements in the returned array are not sorted and are not in any
2241      * particular order.
2242      *
2243      * @return  the array of {@code Field} objects representing all the
2244      *          declared fields of this class
2245      *
2246      * @since 1.1
2247      * @jls 8.2 Class Members
2248      * @jls 8.3 Field Declarations
2249      */
2250     public Field[] getDeclaredFields() {
2251         return copyFields(privateGetDeclaredFields(false));
2252     }
2253 
2254     /**
2255      * Returns an array of {@code RecordComponent} objects representing all the
2256      * record components of this record class, or {@code null} if this class is
2257      * not a record class.
2258      *
2259      * <p> The components are returned in the same order that they are declared
2260      * in the record header. The array is empty if this record class has no
2261      * components. If the class is not a record class, that is {@link
2262      * #isRecord()} returns {@code false}, then this method returns {@code null}.
2263      * Conversely, if {@link #isRecord()} returns {@code true}, then this method
2264      * returns a non-null value.
2265      *
2266      * @apiNote
2267      * <p> The following method can be used to find the record canonical constructor:
2268      *
2269      * {@snippet lang="java" :
2270      * static <T extends Record> Constructor<T> getCanonicalConstructor(Class<T> cls)
2271      *     throws NoSuchMethodException {
2272      *   Class<?>[] paramTypes =
2273      *     Arrays.stream(cls.getRecordComponents())
2274      *           .map(RecordComponent::getType)
2275      *           .toArray(Class<?>[]::new);
2276      *   return cls.getDeclaredConstructor(paramTypes);
2277      * }}
2278      *
2279      * @return  An array of {@code RecordComponent} objects representing all the
2280      *          record components of this record class, or {@code null} if this
2281      *          class is not a record class
2282      *
2283      * @jls 8.10 Record Classes
2284      * @since 16
2285      */
2286     public RecordComponent[] getRecordComponents() {
2287         if (!isRecord()) {
2288             return null;
2289         }
2290         return getRecordComponents0();
2291     }
2292 
2293     /**
2294      * Returns an array containing {@code Method} objects reflecting all the
2295      * declared methods of the class or interface represented by this {@code
2296      * Class} object, including public, protected, default (package)
2297      * access, and private methods, but excluding inherited methods.
2298      * The declared methods may include methods <em>not</em> in the
2299      * source of the class or interface, including {@linkplain
2300      * Method#isBridge bridge methods} and other {@linkplain
2301      * Executable#isSynthetic synthetic} methods added by compilers.
2302      *
2303      * <p> If this {@code Class} object represents a class or interface that
2304      * has multiple declared methods with the same name and parameter types,
2305      * but different return types, then the returned array has a {@code Method}
2306      * object for each such method.
2307      *
2308      * <p> If this {@code Class} object represents a class or interface that
2309      * has a class initialization method {@value ConstantDescs#CLASS_INIT_NAME},
2310      * then the returned array does <em>not</em> have a corresponding {@code
2311      * Method} object.
2312      *
2313      * <p> If this {@code Class} object represents a class or interface with no
2314      * declared methods, then the returned array has length 0.
2315      *
2316      * <p> If this {@code Class} object represents an array type, a primitive
2317      * type, or void, then the returned array has length 0.
2318      *
2319      * <p> The elements in the returned array are not sorted and are not in any
2320      * particular order.
2321      *
2322      * @return  the array of {@code Method} objects representing all the
2323      *          declared methods of this class
2324      *
2325      * @jls 8.2 Class Members
2326      * @jls 8.4 Method Declarations
2327      * @see <a
2328      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
2329      * programming language and JVM modeling in core reflection</a>
2330      * @since 1.1
2331      */
2332     public Method[] getDeclaredMethods() {
2333         return copyMethods(privateGetDeclaredMethods(false));
2334     }
2335 
2336     /**
2337      * Returns an array of {@code Constructor} objects reflecting all the
2338      * constructors implicitly or explicitly declared by the class represented by this
2339      * {@code Class} object. These are public, protected, default
2340      * (package) access, and private constructors.  The elements in the array
2341      * returned are not sorted and are not in any particular order.  If the
2342      * class has a default constructor (JLS {@jls 8.8.9}), it is included in the returned array.
2343      * If a record class has a canonical constructor (JLS {@jls
2344      * 8.10.4.1}, {@jls 8.10.4.2}), it is included in the returned array.
2345      *
2346      * This method returns an array of length 0 if this {@code Class}
2347      * object represents an interface, a primitive type, an array class, or
2348      * void.
2349      *
2350      * @return  the array of {@code Constructor} objects representing all the
2351      *          declared constructors of this class
2352      *
2353      * @since 1.1
2354      * @see #getConstructors()
2355      * @jls 8.8 Constructor Declarations
2356      */
2357     public Constructor<?>[] getDeclaredConstructors() {
2358         return copyConstructors(privateGetDeclaredConstructors(false));
2359     }
2360 
2361 
2362     /**
2363      * Returns a {@code Field} object that reflects the specified declared
2364      * field of the class or interface represented by this {@code Class}
2365      * object. The {@code name} parameter is a {@code String} that specifies
2366      * the simple name of the desired field.
2367      *
2368      * <p> If this {@code Class} object represents an array type, then this
2369      * method does not find the {@code length} field of the array type.
2370      *
2371      * @param name the name of the field
2372      * @return  the {@code Field} object for the specified field in this
2373      *          class
2374      * @throws  NoSuchFieldException if a field with the specified name is
2375      *          not found.
2376      * @throws  NullPointerException if {@code name} is {@code null}
2377      *
2378      * @since 1.1
2379      * @jls 8.2 Class Members
2380      * @jls 8.3 Field Declarations
2381      */
2382     public Field getDeclaredField(String name) throws NoSuchFieldException {
2383         Objects.requireNonNull(name);
2384         Field field = searchFields(privateGetDeclaredFields(false), name);
2385         if (field == null) {
2386             throw new NoSuchFieldException(name);
2387         }
2388         return getReflectionFactory().copyField(field);
2389     }
2390 
2391 
2392     /**
2393      * Returns a {@code Method} object that reflects the specified
2394      * declared method of the class or interface represented by this
2395      * {@code Class} object. The {@code name} parameter is a
2396      * {@code String} that specifies the simple name of the desired
2397      * method, and the {@code parameterTypes} parameter is an array of
2398      * {@code Class} objects that identify the method's formal parameter
2399      * types, in declared order.  If more than one method with the same
2400      * parameter types is declared in a class, and one of these methods has a
2401      * return type that is more specific than any of the others, that method is
2402      * returned; otherwise one of the methods is chosen arbitrarily.  If the
2403      * name is {@value ConstantDescs#INIT_NAME} or {@value
2404      * ConstantDescs#CLASS_INIT_NAME} a {@code NoSuchMethodException}
2405      * is raised.
2406      *
2407      * <p> If this {@code Class} object represents an array type, then this
2408      * method does not find the {@code clone()} method.
2409      *
2410      * @param name the name of the method
2411      * @param parameterTypes the parameter array
2412      * @return  the {@code Method} object for the method of this class
2413      *          matching the specified name and parameters
2414      * @throws  NoSuchMethodException if a matching method is not found.
2415      * @throws  NullPointerException if {@code name} is {@code null}
2416      *
2417      * @jls 8.2 Class Members
2418      * @jls 8.4 Method Declarations
2419      * @since 1.1
2420      */
2421     public Method getDeclaredMethod(String name, Class<?>... parameterTypes)
2422             throws NoSuchMethodException {
2423         Objects.requireNonNull(name);
2424         Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);
2425         if (method == null) {
2426             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2427         }
2428         return getReflectionFactory().copyMethod(method);
2429     }
2430 
2431     /**
2432      * Returns the list of {@code Method} objects for the declared public
2433      * methods of this class or interface that have the specified method name
2434      * and parameter types.
2435      *
2436      * @param name the name of the method
2437      * @param parameterTypes the parameter array
2438      * @return the list of {@code Method} objects for the public methods of
2439      *         this class matching the specified name and parameters
2440      */
2441     List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) {
2442         Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true);
2443         ReflectionFactory factory = getReflectionFactory();
2444         List<Method> result = new ArrayList<>();
2445         for (Method method : methods) {
2446             if (method.getName().equals(name)
2447                 && Arrays.equals(
2448                     factory.getExecutableSharedParameterTypes(method),
2449                     parameterTypes)) {
2450                 result.add(factory.copyMethod(method));
2451             }
2452         }
2453         return result;
2454     }
2455 
2456     /**
2457      * Returns the most specific {@code Method} object of this class, super class or
2458      * interface that have the specified method name and parameter types.
2459      *
2460      * @param publicOnly true if only public methods are examined, otherwise all methods
2461      * @param name the name of the method
2462      * @param parameterTypes the parameter array
2463      * @return the {@code Method} object for the method found from this class matching
2464      * the specified name and parameters, or null if not found
2465      */
2466     Method findMethod(boolean publicOnly, String name, Class<?>... parameterTypes) {
2467         PublicMethods.MethodList res = getMethodsRecursive(name, parameterTypes, true, publicOnly);
2468         return res == null ? null : getReflectionFactory().copyMethod(res.getMostSpecific());
2469     }
2470 
2471     /**
2472      * Returns a {@code Constructor} object that reflects the specified
2473      * constructor of the class represented by this
2474      * {@code Class} object.  The {@code parameterTypes} parameter is
2475      * an array of {@code Class} objects that identify the constructor's
2476      * formal parameter types, in declared order.
2477      *
2478      * If this {@code Class} object represents an inner class
2479      * declared in a non-static context, the formal parameter types
2480      * include the explicit enclosing instance as the first parameter.
2481      *
2482      * @param parameterTypes the parameter array
2483      * @return  The {@code Constructor} object for the constructor with the
2484      *          specified parameter list
2485      * @throws  NoSuchMethodException if a matching constructor is not found,
2486      *          including when this {@code Class} object represents
2487      *          an interface, a primitive type, an array class, or void.
2488      *
2489      * @see #getConstructor(Class[])
2490      * @since 1.1
2491      */
2492     public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes)
2493             throws NoSuchMethodException {
2494         return getReflectionFactory().copyConstructor(
2495             getConstructor0(parameterTypes, Member.DECLARED));
2496     }
2497 
2498     /**
2499      * Finds a resource with a given name.
2500      *
2501      * <p> If this class is in a named {@link Module Module} then this method
2502      * will attempt to find the resource in the module. This is done by
2503      * delegating to the module's class loader {@link
2504      * ClassLoader#findResource(String,String) findResource(String,String)}
2505      * method, invoking it with the module name and the absolute name of the
2506      * resource. Resources in named modules are subject to the rules for
2507      * encapsulation specified in the {@code Module} {@link
2508      * Module#getResourceAsStream getResourceAsStream} method and so this
2509      * method returns {@code null} when the resource is a
2510      * non-"{@code .class}" resource in a package that is not open to the
2511      * caller's module.
2512      *
2513      * <p> Otherwise, if this class is not in a named module then the rules for
2514      * searching resources associated with a given class are implemented by the
2515      * defining {@linkplain ClassLoader class loader} of the class.  This method
2516      * delegates to this {@code Class} object's class loader.
2517      * If this {@code Class} object was loaded by the bootstrap class loader,
2518      * the method delegates to {@link ClassLoader#getSystemResourceAsStream}.
2519      *
2520      * <p> Before delegation, an absolute resource name is constructed from the
2521      * given resource name using this algorithm:
2522      *
2523      * <ul>
2524      *
2525      * <li> If the {@code name} begins with a {@code '/'}
2526      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2527      * portion of the {@code name} following the {@code '/'}.
2528      *
2529      * <li> Otherwise, the absolute name is of the following form:
2530      *
2531      * <blockquote>
2532      *   {@code modified_package_name/name}
2533      * </blockquote>
2534      *
2535      * <p> Where the {@code modified_package_name} is the package name of this
2536      * object with {@code '/'} substituted for {@code '.'}
2537      * (<code>'&#92;u002e'</code>).
2538      *
2539      * </ul>
2540      *
2541      * @param  name name of the desired resource
2542      * @return  A {@link java.io.InputStream} object; {@code null} if no
2543      *          resource with this name is found, or the resource is in a package
2544      *          that is not {@linkplain Module#isOpen(String, Module) open} to at
2545      *          least the caller module.
2546      * @throws  NullPointerException If {@code name} is {@code null}
2547      *
2548      * @see Module#getResourceAsStream(String)
2549      * @since  1.1
2550      */
2551     @CallerSensitive
2552     public InputStream getResourceAsStream(String name) {
2553         name = resolveName(name);
2554 
2555         Module thisModule = getModule();
2556         if (thisModule.isNamed()) {
2557             // check if resource can be located by caller
2558             if (Resources.canEncapsulate(name)
2559                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2560                 return null;
2561             }
2562 
2563             // resource not encapsulated or in package open to caller
2564             String mn = thisModule.getName();
2565             ClassLoader cl = classLoader;
2566             try {
2567 
2568                 // special-case built-in class loaders to avoid the
2569                 // need for a URL connection
2570                 if (cl == null) {
2571                     return BootLoader.findResourceAsStream(mn, name);
2572                 } else if (cl instanceof BuiltinClassLoader bcl) {
2573                     return bcl.findResourceAsStream(mn, name);
2574                 } else {
2575                     URL url = cl.findResource(mn, name);
2576                     return (url != null) ? url.openStream() : null;
2577                 }
2578 
2579             } catch (IOException | SecurityException e) {
2580                 return null;
2581             }
2582         }
2583 
2584         // unnamed module
2585         ClassLoader cl = classLoader;
2586         if (cl == null) {
2587             return ClassLoader.getSystemResourceAsStream(name);
2588         } else {
2589             return cl.getResourceAsStream(name);
2590         }
2591     }
2592 
2593     /**
2594      * Finds a resource with a given name.
2595      *
2596      * <p> If this class is in a named {@link Module Module} then this method
2597      * will attempt to find the resource in the module. This is done by
2598      * delegating to the module's class loader {@link
2599      * ClassLoader#findResource(String,String) findResource(String,String)}
2600      * method, invoking it with the module name and the absolute name of the
2601      * resource. Resources in named modules are subject to the rules for
2602      * encapsulation specified in the {@code Module} {@link
2603      * Module#getResourceAsStream getResourceAsStream} method and so this
2604      * method returns {@code null} when the resource is a
2605      * non-"{@code .class}" resource in a package that is not open to the
2606      * caller's module.
2607      *
2608      * <p> Otherwise, if this class is not in a named module then the rules for
2609      * searching resources associated with a given class are implemented by the
2610      * defining {@linkplain ClassLoader class loader} of the class.  This method
2611      * delegates to this {@code Class} object's class loader.
2612      * If this {@code Class} object was loaded by the bootstrap class loader,
2613      * the method delegates to {@link ClassLoader#getSystemResource}.
2614      *
2615      * <p> Before delegation, an absolute resource name is constructed from the
2616      * given resource name using this algorithm:
2617      *
2618      * <ul>
2619      *
2620      * <li> If the {@code name} begins with a {@code '/'}
2621      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2622      * portion of the {@code name} following the {@code '/'}.
2623      *
2624      * <li> Otherwise, the absolute name is of the following form:
2625      *
2626      * <blockquote>
2627      *   {@code modified_package_name/name}
2628      * </blockquote>
2629      *
2630      * <p> Where the {@code modified_package_name} is the package name of this
2631      * object with {@code '/'} substituted for {@code '.'}
2632      * (<code>'&#92;u002e'</code>).
2633      *
2634      * </ul>
2635      *
2636      * @param  name name of the desired resource
2637      * @return A {@link java.net.URL} object; {@code null} if no resource with
2638      *         this name is found, the resource cannot be located by a URL, or the
2639      *         resource is in a package that is not
2640      *         {@linkplain Module#isOpen(String, Module) open} to at least the caller
2641      *         module.
2642      * @throws NullPointerException If {@code name} is {@code null}
2643      * @since  1.1
2644      */
2645     @CallerSensitive
2646     public URL getResource(String name) {
2647         name = resolveName(name);
2648 
2649         Module thisModule = getModule();
2650         if (thisModule.isNamed()) {
2651             // check if resource can be located by caller
2652             if (Resources.canEncapsulate(name)
2653                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2654                 return null;
2655             }
2656 
2657             // resource not encapsulated or in package open to caller
2658             String mn = thisModule.getName();
2659             ClassLoader cl = classLoader;
2660             try {
2661                 if (cl == null) {
2662                     return BootLoader.findResource(mn, name);
2663                 } else {
2664                     return cl.findResource(mn, name);
2665                 }
2666             } catch (IOException ioe) {
2667                 return null;
2668             }
2669         }
2670 
2671         // unnamed module
2672         ClassLoader cl = classLoader;
2673         if (cl == null) {
2674             return ClassLoader.getSystemResource(name);
2675         } else {
2676             return cl.getResource(name);
2677         }
2678     }
2679 
2680     /**
2681      * Returns true if a resource with the given name can be located by the
2682      * given caller. All resources in a module can be located by code in
2683      * the module. For other callers, then the package needs to be open to
2684      * the caller.
2685      */
2686     private boolean isOpenToCaller(String name, Class<?> caller) {
2687         // assert getModule().isNamed();
2688         Module thisModule = getModule();
2689         Module callerModule = (caller != null) ? caller.getModule() : null;
2690         if (callerModule != thisModule) {
2691             String pn = Resources.toPackageName(name);
2692             if (thisModule.getDescriptor().packages().contains(pn)) {
2693                 if (callerModule == null) {
2694                     // no caller, return true if the package is open to all modules
2695                     return thisModule.isOpen(pn);
2696                 }
2697                 if (!thisModule.isOpen(pn, callerModule)) {
2698                     // package not open to caller
2699                     return false;
2700                 }
2701             }
2702         }
2703         return true;
2704     }
2705 
2706     /**
2707      * Returns the {@code ProtectionDomain} of this class.
2708      *
2709      * @return the ProtectionDomain of this class
2710      *
2711      * @see java.security.ProtectionDomain
2712      * @since 1.2
2713      */
2714     public ProtectionDomain getProtectionDomain() {
2715         return protectionDomain();
2716     }
2717 
2718     /** Holder for the protection domain returned when the internal domain is null */
2719     private static class Holder {
2720         private static final ProtectionDomain allPermDomain;
2721         static {
2722             Permissions perms = new Permissions();
2723             perms.add(SecurityConstants.ALL_PERMISSION);
2724             allPermDomain = new ProtectionDomain(null, perms);
2725         }
2726     }
2727 
2728     // package-private
2729     ProtectionDomain protectionDomain() {
2730         ProtectionDomain pd = getProtectionDomain0();
2731         if (pd == null) {
2732             return Holder.allPermDomain;
2733         } else {
2734             return pd;
2735         }
2736     }
2737 
2738     /**
2739      * Returns the ProtectionDomain of this class.
2740      */
2741     private native ProtectionDomain getProtectionDomain0();
2742 
2743     /*
2744      * Returns the Class object for the named primitive type. Type parameter T
2745      * avoids redundant casts for trusted code.
2746      */
2747     static native <T> Class<T> getPrimitiveClass(String name);
2748 
2749     /**
2750      * Add a package name prefix if the name is not absolute. Remove leading "/"
2751      * if name is absolute
2752      */
2753     private String resolveName(String name) {
2754         if (!name.startsWith("/")) {
2755             String baseName = getPackageName();
2756             if (!baseName.isEmpty()) {
2757                 int len = baseName.length() + 1 + name.length();
2758                 StringBuilder sb = new StringBuilder(len);
2759                 name = sb.append(baseName.replace('.', '/'))
2760                     .append('/')
2761                     .append(name)
2762                     .toString();
2763             }
2764         } else {
2765             name = name.substring(1);
2766         }
2767         return name;
2768     }
2769 
2770     /**
2771      * Atomic operations support.
2772      */
2773     private static class Atomic {
2774         // initialize Unsafe machinery here, since we need to call Class.class instance method
2775         // and have to avoid calling it in the static initializer of the Class class...
2776         private static final Unsafe unsafe = Unsafe.getUnsafe();
2777         // offset of Class.reflectionData instance field
2778         private static final long reflectionDataOffset
2779                 = unsafe.objectFieldOffset(Class.class, "reflectionData");
2780         // offset of Class.annotationType instance field
2781         private static final long annotationTypeOffset
2782                 = unsafe.objectFieldOffset(Class.class, "annotationType");
2783         // offset of Class.annotationData instance field
2784         private static final long annotationDataOffset
2785                 = unsafe.objectFieldOffset(Class.class, "annotationData");
2786 
2787         static <T> boolean casReflectionData(Class<?> clazz,
2788                                              SoftReference<ReflectionData<T>> oldData,
2789                                              SoftReference<ReflectionData<T>> newData) {
2790             return unsafe.compareAndSetReference(clazz, reflectionDataOffset, oldData, newData);
2791         }
2792 
2793         static boolean casAnnotationType(Class<?> clazz,
2794                                          AnnotationType oldType,
2795                                          AnnotationType newType) {
2796             return unsafe.compareAndSetReference(clazz, annotationTypeOffset, oldType, newType);
2797         }
2798 
2799         static boolean casAnnotationData(Class<?> clazz,
2800                                          AnnotationData oldData,
2801                                          AnnotationData newData) {
2802             return unsafe.compareAndSetReference(clazz, annotationDataOffset, oldData, newData);
2803         }
2804     }
2805 
2806     /**
2807      * Reflection support.
2808      */
2809 
2810     // Reflection data caches various derived names and reflective members. Cached
2811     // values may be invalidated when JVM TI RedefineClasses() is called
2812     private static class ReflectionData<T> {
2813         volatile Field[] declaredFields;
2814         volatile Field[] publicFields;
2815         volatile Method[] declaredMethods;
2816         volatile Method[] publicMethods;
2817         volatile Constructor<T>[] declaredConstructors;
2818         volatile Constructor<T>[] publicConstructors;
2819         // Intermediate results for getFields and getMethods
2820         volatile Field[] declaredPublicFields;
2821         volatile Method[] declaredPublicMethods;
2822         volatile Class<?>[] interfaces;
2823 
2824         // Cached names
2825         String simpleName;
2826         String canonicalName;
2827         static final String NULL_SENTINEL = new String();
2828 
2829         // Value of classRedefinedCount when we created this ReflectionData instance
2830         final int redefinedCount;
2831 
2832         ReflectionData(int redefinedCount) {
2833             this.redefinedCount = redefinedCount;
2834         }
2835     }
2836 
2837     private transient volatile SoftReference<ReflectionData<T>> reflectionData;
2838 
2839     // Incremented by the VM on each call to JVM TI RedefineClasses()
2840     // that redefines this class or a superclass.
2841     private transient volatile int classRedefinedCount;
2842 
2843     // Lazily create and cache ReflectionData
2844     private ReflectionData<T> reflectionData() {
2845         SoftReference<ReflectionData<T>> reflectionData = this.reflectionData;
2846         int classRedefinedCount = this.classRedefinedCount;
2847         ReflectionData<T> rd;
2848         if (reflectionData != null &&
2849             (rd = reflectionData.get()) != null &&
2850             rd.redefinedCount == classRedefinedCount) {
2851             return rd;
2852         }
2853         // else no SoftReference or cleared SoftReference or stale ReflectionData
2854         // -> create and replace new instance
2855         return newReflectionData(reflectionData, classRedefinedCount);
2856     }
2857 
2858     private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData,
2859                                                 int classRedefinedCount) {
2860         while (true) {
2861             ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount);
2862             // try to CAS it...
2863             if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) {
2864                 return rd;
2865             }
2866             // else retry
2867             oldReflectionData = this.reflectionData;
2868             classRedefinedCount = this.classRedefinedCount;
2869             if (oldReflectionData != null &&
2870                 (rd = oldReflectionData.get()) != null &&
2871                 rd.redefinedCount == classRedefinedCount) {
2872                 return rd;
2873             }
2874         }
2875     }
2876 
2877     // Generic signature handling
2878     private native String getGenericSignature0();
2879 
2880     // Generic info repository; lazily initialized
2881     private transient volatile ClassRepository genericInfo;
2882 
2883     // accessor for factory
2884     private GenericsFactory getFactory() {
2885         // create scope and factory
2886         return CoreReflectionFactory.make(this, ClassScope.make(this));
2887     }
2888 
2889     // accessor for generic info repository;
2890     // generic info is lazily initialized
2891     private ClassRepository getGenericInfo() {
2892         ClassRepository genericInfo = this.genericInfo;
2893         if (genericInfo == null) {
2894             String signature = getGenericSignature0();
2895             if (signature == null) {
2896                 genericInfo = ClassRepository.NONE;
2897             } else {
2898                 genericInfo = ClassRepository.make(signature, getFactory());
2899             }
2900             this.genericInfo = genericInfo;
2901         }
2902         return (genericInfo != ClassRepository.NONE) ? genericInfo : null;
2903     }
2904 
2905     // Annotations handling
2906     native byte[] getRawAnnotations();
2907     // Since 1.8
2908     native byte[] getRawTypeAnnotations();
2909     static byte[] getExecutableTypeAnnotationBytes(Executable ex) {
2910         return getReflectionFactory().getExecutableTypeAnnotationBytes(ex);
2911     }
2912 
2913     native ConstantPool getConstantPool();
2914 
2915     //
2916     //
2917     // java.lang.reflect.Field handling
2918     //
2919     //
2920 
2921     // Returns an array of "root" fields. These Field objects must NOT
2922     // be propagated to the outside world, but must instead be copied
2923     // via ReflectionFactory.copyField.
2924     private Field[] privateGetDeclaredFields(boolean publicOnly) {
2925         Field[] res;
2926         ReflectionData<T> rd = reflectionData();
2927         if (rd != null) {
2928             res = publicOnly ? rd.declaredPublicFields : rd.declaredFields;
2929             if (res != null) return res;
2930         }
2931         // No cached value available; request value from VM
2932         res = Reflection.filterFields(this, getDeclaredFields0(publicOnly));
2933         if (rd != null) {
2934             if (publicOnly) {
2935                 rd.declaredPublicFields = res;
2936             } else {
2937                 rd.declaredFields = res;
2938             }
2939         }
2940         return res;
2941     }
2942 
2943     // Returns an array of "root" fields. These Field objects must NOT
2944     // be propagated to the outside world, but must instead be copied
2945     // via ReflectionFactory.copyField.
2946     private Field[] privateGetPublicFields() {
2947         Field[] res;
2948         ReflectionData<T> rd = reflectionData();
2949         if (rd != null) {
2950             res = rd.publicFields;
2951             if (res != null) return res;
2952         }
2953 
2954         // Use a linked hash set to ensure order is preserved and
2955         // fields from common super interfaces are not duplicated
2956         LinkedHashSet<Field> fields = new LinkedHashSet<>();
2957 
2958         // Local fields
2959         addAll(fields, privateGetDeclaredFields(true));
2960 
2961         // Direct superinterfaces, recursively
2962         for (Class<?> si : getInterfaces(/* cloneArray */ false)) {
2963             addAll(fields, si.privateGetPublicFields());
2964         }
2965 
2966         // Direct superclass, recursively
2967         Class<?> sc = getSuperclass();
2968         if (sc != null) {
2969             addAll(fields, sc.privateGetPublicFields());
2970         }
2971 
2972         res = fields.toArray(new Field[0]);
2973         if (rd != null) {
2974             rd.publicFields = res;
2975         }
2976         return res;
2977     }
2978 
2979     private static void addAll(Collection<Field> c, Field[] o) {
2980         for (Field f : o) {
2981             c.add(f);
2982         }
2983     }
2984 
2985 
2986     //
2987     //
2988     // java.lang.reflect.Constructor handling
2989     //
2990     //
2991 
2992     // Returns an array of "root" constructors. These Constructor
2993     // objects must NOT be propagated to the outside world, but must
2994     // instead be copied via ReflectionFactory.copyConstructor.
2995     private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) {
2996         Constructor<T>[] res;
2997         ReflectionData<T> rd = reflectionData();
2998         if (rd != null) {
2999             res = publicOnly ? rd.publicConstructors : rd.declaredConstructors;
3000             if (res != null) return res;
3001         }
3002         // No cached value available; request value from VM
3003         if (isInterface()) {
3004             @SuppressWarnings("unchecked")
3005             Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0];
3006             res = temporaryRes;
3007         } else {
3008             res = getDeclaredConstructors0(publicOnly);
3009         }
3010         if (rd != null) {
3011             if (publicOnly) {
3012                 rd.publicConstructors = res;
3013             } else {
3014                 rd.declaredConstructors = res;
3015             }
3016         }
3017         return res;
3018     }
3019 
3020     //
3021     //
3022     // java.lang.reflect.Method handling
3023     //
3024     //
3025 
3026     // Returns an array of "root" methods. These Method objects must NOT
3027     // be propagated to the outside world, but must instead be copied
3028     // via ReflectionFactory.copyMethod.
3029     private Method[] privateGetDeclaredMethods(boolean publicOnly) {
3030         Method[] res;
3031         ReflectionData<T> rd = reflectionData();
3032         if (rd != null) {
3033             res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods;
3034             if (res != null) return res;
3035         }
3036         // No cached value available; request value from VM
3037         res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly));
3038         if (rd != null) {
3039             if (publicOnly) {
3040                 rd.declaredPublicMethods = res;
3041             } else {
3042                 rd.declaredMethods = res;
3043             }
3044         }
3045         return res;
3046     }
3047 
3048     // Returns an array of "root" methods. These Method objects must NOT
3049     // be propagated to the outside world, but must instead be copied
3050     // via ReflectionFactory.copyMethod.
3051     private Method[] privateGetPublicMethods() {
3052         Method[] res;
3053         ReflectionData<T> rd = reflectionData();
3054         if (rd != null) {
3055             res = rd.publicMethods;
3056             if (res != null) return res;
3057         }
3058 
3059         // No cached value available; compute value recursively.
3060         // Start by fetching public declared methods...
3061         PublicMethods pms = new PublicMethods();
3062         for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) {
3063             pms.merge(m);
3064         }
3065         // ...then recur over superclass methods...
3066         Class<?> sc = getSuperclass();
3067         if (sc != null) {
3068             for (Method m : sc.privateGetPublicMethods()) {
3069                 pms.merge(m);
3070             }
3071         }
3072         // ...and finally over direct superinterfaces.
3073         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3074             for (Method m : intf.privateGetPublicMethods()) {
3075                 // static interface methods are not inherited
3076                 if (!Modifier.isStatic(m.getModifiers())) {
3077                     pms.merge(m);
3078                 }
3079             }
3080         }
3081 
3082         res = pms.toArray();
3083         if (rd != null) {
3084             rd.publicMethods = res;
3085         }
3086         return res;
3087     }
3088 
3089 
3090     //
3091     // Helpers for fetchers of one field, method, or constructor
3092     //
3093 
3094     // This method does not copy the returned Field object!
3095     private static Field searchFields(Field[] fields, String name) {
3096         for (Field field : fields) {
3097             if (field.getName().equals(name)) {
3098                 return field;
3099             }
3100         }
3101         return null;
3102     }
3103 
3104     // Returns a "root" Field object. This Field object must NOT
3105     // be propagated to the outside world, but must instead be copied
3106     // via ReflectionFactory.copyField.
3107     private Field getField0(String name) {
3108         // Note: the intent is that the search algorithm this routine
3109         // uses be equivalent to the ordering imposed by
3110         // privateGetPublicFields(). It fetches only the declared
3111         // public fields for each class, however, to reduce the number
3112         // of Field objects which have to be created for the common
3113         // case where the field being requested is declared in the
3114         // class which is being queried.
3115         Field res;
3116         // Search declared public fields
3117         if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) {
3118             return res;
3119         }
3120         // Direct superinterfaces, recursively
3121         Class<?>[] interfaces = getInterfaces(/* cloneArray */ false);
3122         for (Class<?> c : interfaces) {
3123             if ((res = c.getField0(name)) != null) {
3124                 return res;
3125             }
3126         }
3127         // Direct superclass, recursively
3128         if (!isInterface()) {
3129             Class<?> c = getSuperclass();
3130             if (c != null) {
3131                 if ((res = c.getField0(name)) != null) {
3132                     return res;
3133                 }
3134             }
3135         }
3136         return null;
3137     }
3138 
3139     // This method does not copy the returned Method object!
3140     private static Method searchMethods(Method[] methods,
3141                                         String name,
3142                                         Class<?>[] parameterTypes)
3143     {
3144         ReflectionFactory fact = getReflectionFactory();
3145         Method res = null;
3146         for (Method m : methods) {
3147             if (m.getName().equals(name)
3148                 && arrayContentsEq(parameterTypes,
3149                                    fact.getExecutableSharedParameterTypes(m))
3150                 && (res == null
3151                     || (res.getReturnType() != m.getReturnType()
3152                         && res.getReturnType().isAssignableFrom(m.getReturnType()))))
3153                 res = m;
3154         }
3155         return res;
3156     }
3157 
3158     private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
3159 
3160     // Returns a "root" Method object. This Method object must NOT
3161     // be propagated to the outside world, but must instead be copied
3162     // via ReflectionFactory.copyMethod.
3163     private Method getMethod0(String name, Class<?>[] parameterTypes) {
3164         PublicMethods.MethodList res = getMethodsRecursive(
3165             name,
3166             parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes,
3167             /* includeStatic */ true, /* publicOnly */ true);
3168         return res == null ? null : res.getMostSpecific();
3169     }
3170 
3171     // Returns a list of "root" Method objects. These Method objects must NOT
3172     // be propagated to the outside world, but must instead be copied
3173     // via ReflectionFactory.copyMethod.
3174     private PublicMethods.MethodList getMethodsRecursive(String name,
3175                                                          Class<?>[] parameterTypes,
3176                                                          boolean includeStatic,
3177                                                          boolean publicOnly) {
3178         // 1st check declared methods
3179         Method[] methods = privateGetDeclaredMethods(publicOnly);
3180         PublicMethods.MethodList res = PublicMethods.MethodList
3181             .filter(methods, name, parameterTypes, includeStatic);
3182         // if there is at least one match among declared methods, we need not
3183         // search any further as such match surely overrides matching methods
3184         // declared in superclass(es) or interface(s).
3185         if (res != null) {
3186             return res;
3187         }
3188 
3189         // if there was no match among declared methods,
3190         // we must consult the superclass (if any) recursively...
3191         Class<?> sc = getSuperclass();
3192         if (sc != null) {
3193             res = sc.getMethodsRecursive(name, parameterTypes, includeStatic, publicOnly);
3194         }
3195 
3196         // ...and coalesce the superclass methods with methods obtained
3197         // from directly implemented interfaces excluding static methods...
3198         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3199             res = PublicMethods.MethodList.merge(
3200                 res, intf.getMethodsRecursive(name, parameterTypes, /* includeStatic */ false, publicOnly));
3201         }
3202 
3203         return res;
3204     }
3205 
3206     // Returns a "root" Constructor object. This Constructor object must NOT
3207     // be propagated to the outside world, but must instead be copied
3208     // via ReflectionFactory.copyConstructor.
3209     private Constructor<T> getConstructor0(Class<?>[] parameterTypes,
3210                                         int which) throws NoSuchMethodException
3211     {
3212         ReflectionFactory fact = getReflectionFactory();
3213         Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC));
3214         for (Constructor<T> constructor : constructors) {
3215             if (arrayContentsEq(parameterTypes,
3216                                 fact.getExecutableSharedParameterTypes(constructor))) {
3217                 return constructor;
3218             }
3219         }
3220         throw new NoSuchMethodException(methodToString("<init>", parameterTypes));
3221     }
3222 
3223     //
3224     // Other helpers and base implementation
3225     //
3226 
3227     private static boolean arrayContentsEq(Object[] a1, Object[] a2) {
3228         if (a1 == null) {
3229             return a2 == null || a2.length == 0;
3230         }
3231 
3232         if (a2 == null) {
3233             return a1.length == 0;
3234         }
3235 
3236         if (a1.length != a2.length) {
3237             return false;
3238         }
3239 
3240         for (int i = 0; i < a1.length; i++) {
3241             if (a1[i] != a2[i]) {
3242                 return false;
3243             }
3244         }
3245 
3246         return true;
3247     }
3248 
3249     private static Field[] copyFields(Field[] arg) {
3250         Field[] out = new Field[arg.length];
3251         ReflectionFactory fact = getReflectionFactory();
3252         for (int i = 0; i < arg.length; i++) {
3253             out[i] = fact.copyField(arg[i]);
3254         }
3255         return out;
3256     }
3257 
3258     private static Method[] copyMethods(Method[] arg) {
3259         Method[] out = new Method[arg.length];
3260         ReflectionFactory fact = getReflectionFactory();
3261         for (int i = 0; i < arg.length; i++) {
3262             out[i] = fact.copyMethod(arg[i]);
3263         }
3264         return out;
3265     }
3266 
3267     private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) {
3268         Constructor<U>[] out = arg.clone();
3269         ReflectionFactory fact = getReflectionFactory();
3270         for (int i = 0; i < out.length; i++) {
3271             out[i] = fact.copyConstructor(out[i]);
3272         }
3273         return out;
3274     }
3275 
3276     private native Field[]       getDeclaredFields0(boolean publicOnly);
3277     private native Method[]      getDeclaredMethods0(boolean publicOnly);
3278     private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly);
3279     private native Class<?>[]    getDeclaredClasses0();
3280 
3281     /*
3282      * Returns an array containing the components of the Record attribute,
3283      * or null if the attribute is not present.
3284      *
3285      * Note that this method returns non-null array on a class with
3286      * the Record attribute even if this class is not a record.
3287      */
3288     private native RecordComponent[] getRecordComponents0();
3289     private native boolean       isRecord0();
3290 
3291     /**
3292      * Helper method to get the method name from arguments.
3293      */
3294     private String methodToString(String name, Class<?>[] argTypes) {
3295         return getName() + '.' + name +
3296                 ((argTypes == null || argTypes.length == 0) ?
3297                 "()" :
3298                 Arrays.stream(argTypes)
3299                         .map(c -> c == null ? "null" : c.getName())
3300                         .collect(Collectors.joining(",", "(", ")")));
3301     }
3302 
3303     /** use serialVersionUID from JDK 1.1 for interoperability */
3304     @java.io.Serial
3305     private static final long serialVersionUID = 3206093459760846163L;
3306 
3307 
3308     /**
3309      * Class Class is special cased within the Serialization Stream Protocol.
3310      *
3311      * A Class instance is written initially into an ObjectOutputStream in the
3312      * following format:
3313      * <pre>
3314      *      {@code TC_CLASS} ClassDescriptor
3315      *      A ClassDescriptor is a special cased serialization of
3316      *      a {@code java.io.ObjectStreamClass} instance.
3317      * </pre>
3318      * A new handle is generated for the initial time the class descriptor
3319      * is written into the stream. Future references to the class descriptor
3320      * are written as references to the initial class descriptor instance.
3321      *
3322      * @see java.io.ObjectStreamClass
3323      */
3324     @java.io.Serial
3325     private static final ObjectStreamField[] serialPersistentFields =
3326         new ObjectStreamField[0];
3327 
3328 
3329     /**
3330      * Returns the assertion status that would be assigned to this
3331      * class if it were to be initialized at the time this method is invoked.
3332      * If this class has had its assertion status set, the most recent
3333      * setting will be returned; otherwise, if any package default assertion
3334      * status pertains to this class, the most recent setting for the most
3335      * specific pertinent package default assertion status is returned;
3336      * otherwise, if this class is not a system class (i.e., it has a
3337      * class loader) its class loader's default assertion status is returned;
3338      * otherwise, the system class default assertion status is returned.
3339      *
3340      * @apiNote
3341      * Few programmers will have any need for this method; it is provided
3342      * for the benefit of the JDK itself.  (It allows a class to determine at
3343      * the time that it is initialized whether assertions should be enabled.)
3344      * Note that this method is not guaranteed to return the actual
3345      * assertion status that was (or will be) associated with the specified
3346      * class when it was (or will be) initialized.
3347      *
3348      * @return the desired assertion status of the specified class.
3349      * @see    java.lang.ClassLoader#setClassAssertionStatus
3350      * @see    java.lang.ClassLoader#setPackageAssertionStatus
3351      * @see    java.lang.ClassLoader#setDefaultAssertionStatus
3352      * @since  1.4
3353      */
3354     public boolean desiredAssertionStatus() {
3355         ClassLoader loader = classLoader;
3356         // If the loader is null this is a system class, so ask the VM
3357         if (loader == null)
3358             return desiredAssertionStatus0(this);
3359 
3360         // If the classloader has been initialized with the assertion
3361         // directives, ask it. Otherwise, ask the VM.
3362         synchronized(loader.assertionLock) {
3363             if (loader.classAssertionStatus != null) {
3364                 return loader.desiredAssertionStatus(getName());
3365             }
3366         }
3367         return desiredAssertionStatus0(this);
3368     }
3369 
3370     // Retrieves the desired assertion status of this class from the VM
3371     private static native boolean desiredAssertionStatus0(Class<?> clazz);
3372 
3373     /**
3374      * Returns true if and only if this class was declared as an enum in the
3375      * source code.
3376      *
3377      * Note that {@link java.lang.Enum} is not itself an enum class.
3378      *
3379      * Also note that if an enum constant is declared with a class body,
3380      * the class of that enum constant object is an anonymous class
3381      * and <em>not</em> the class of the declaring enum class. The
3382      * {@link Enum#getDeclaringClass} method of an enum constant can
3383      * be used to get the class of the enum class declaring the
3384      * constant.
3385      *
3386      * @return true if and only if this class was declared as an enum in the
3387      *     source code
3388      * @since 1.5
3389      * @jls 8.9.1 Enum Constants
3390      */
3391     public boolean isEnum() {
3392         // An enum must both directly extend java.lang.Enum and have
3393         // the ENUM bit set; classes for specialized enum constants
3394         // don't do the former.
3395         return (this.getModifiers() & ENUM) != 0 &&
3396         this.getSuperclass() == java.lang.Enum.class;
3397     }
3398 
3399     /**
3400      * Returns {@code true} if and only if this class is a record class.
3401      *
3402      * <p> The {@linkplain #getSuperclass() direct superclass} of a record
3403      * class is {@code java.lang.Record}. A record class is {@linkplain
3404      * Modifier#FINAL final}. A record class has (possibly zero) record
3405      * components; {@link #getRecordComponents()} returns a non-null but
3406      * possibly empty value for a record.
3407      *
3408      * <p> Note that class {@link Record} is not a record class and thus
3409      * invoking this method on class {@code Record} returns {@code false}.
3410      *
3411      * @return true if and only if this class is a record class, otherwise false
3412      * @jls 8.10 Record Classes
3413      * @since 16
3414      */
3415     public boolean isRecord() {
3416         // this superclass and final modifier check is not strictly necessary
3417         // they are intrinsified and serve as a fast-path check
3418         return getSuperclass() == java.lang.Record.class &&
3419                 (this.getModifiers() & Modifier.FINAL) != 0 &&
3420                 isRecord0();
3421     }
3422 
3423     // Fetches the factory for reflective objects
3424     private static ReflectionFactory getReflectionFactory() {
3425         var factory = reflectionFactory;
3426         if (factory != null) {
3427             return factory;
3428         }
3429         return reflectionFactory = ReflectionFactory.getReflectionFactory();
3430     }
3431     private static ReflectionFactory reflectionFactory;
3432 
3433     /**
3434      * When CDS is enabled, the Class class may be aot-initialized. However,
3435      * we can't archive reflectionFactory, so we reset it to null, so it
3436      * will be allocated again at runtime.
3437      */
3438     private static void resetArchivedStates() {
3439         reflectionFactory = null;
3440     }
3441 
3442     /**
3443      * Returns the elements of this enum class or null if this
3444      * Class object does not represent an enum class.
3445      *
3446      * @return an array containing the values comprising the enum class
3447      *     represented by this {@code Class} object in the order they're
3448      *     declared, or null if this {@code Class} object does not
3449      *     represent an enum class
3450      * @since 1.5
3451      * @jls 8.9.1 Enum Constants
3452      */
3453     public T[] getEnumConstants() {
3454         T[] values = getEnumConstantsShared();
3455         return (values != null) ? values.clone() : null;
3456     }
3457 
3458     /**
3459      * Returns the elements of this enum class or null if this
3460      * Class object does not represent an enum class;
3461      * identical to getEnumConstants except that the result is
3462      * uncloned, cached, and shared by all callers.
3463      */
3464     T[] getEnumConstantsShared() {
3465         T[] constants = enumConstants;
3466         if (constants == null) {
3467             if (!isEnum()) return null;
3468             try {
3469                 final Method values = getMethod("values");
3470                 values.setAccessible(true);
3471                 @SuppressWarnings("unchecked")
3472                 T[] temporaryConstants = (T[])values.invoke(null);
3473                 enumConstants = constants = temporaryConstants;
3474             }
3475             // These can happen when users concoct enum-like classes
3476             // that don't comply with the enum spec.
3477             catch (InvocationTargetException | NoSuchMethodException |
3478                    IllegalAccessException | NullPointerException |
3479                    ClassCastException ex) { return null; }
3480         }
3481         return constants;
3482     }
3483     private transient volatile T[] enumConstants;
3484 
3485     /**
3486      * Returns a map from simple name to enum constant.  This package-private
3487      * method is used internally by Enum to implement
3488      * {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)}
3489      * efficiently.  Note that the map is returned by this method is
3490      * created lazily on first use.  Typically it won't ever get created.
3491      */
3492     Map<String, T> enumConstantDirectory() {
3493         Map<String, T> directory = enumConstantDirectory;
3494         if (directory == null) {
3495             T[] universe = getEnumConstantsShared();
3496             if (universe == null)
3497                 throw new IllegalArgumentException(
3498                     getName() + " is not an enum class");
3499             directory = HashMap.newHashMap(universe.length);
3500             for (T constant : universe) {
3501                 directory.put(((Enum<?>)constant).name(), constant);
3502             }
3503             enumConstantDirectory = directory;
3504         }
3505         return directory;
3506     }
3507     private transient volatile Map<String, T> enumConstantDirectory;
3508 
3509     /**
3510      * Casts an object to the class or interface represented
3511      * by this {@code Class} object.
3512      *
3513      * @param obj the object to be cast
3514      * @return the object after casting, or null if obj is null
3515      *
3516      * @throws ClassCastException if the object is not
3517      * null and is not assignable to the type T.
3518      *
3519      * @since 1.5
3520      */
3521     @SuppressWarnings("unchecked")
3522     @IntrinsicCandidate
3523     public T cast(Object obj) {
3524         if (obj != null && !isInstance(obj))
3525             throw new ClassCastException(cannotCastMsg(obj));
3526         return (T) obj;
3527     }
3528 
3529     private String cannotCastMsg(Object obj) {
3530         return "Cannot cast " + obj.getClass().getName() + " to " + getName();
3531     }
3532 
3533     /**
3534      * Casts this {@code Class} object to represent a subclass of the class
3535      * represented by the specified class object.  Checks that the cast
3536      * is valid, and throws a {@code ClassCastException} if it is not.  If
3537      * this method succeeds, it always returns a reference to this {@code Class} object.
3538      *
3539      * <p>This method is useful when a client needs to "narrow" the type of
3540      * a {@code Class} object to pass it to an API that restricts the
3541      * {@code Class} objects that it is willing to accept.  A cast would
3542      * generate a compile-time warning, as the correctness of the cast
3543      * could not be checked at runtime (because generic types are implemented
3544      * by erasure).
3545      *
3546      * @param <U> the type to cast this {@code Class} object to
3547      * @param clazz the class of the type to cast this {@code Class} object to
3548      * @return this {@code Class} object, cast to represent a subclass of
3549      *    the specified class object.
3550      * @throws ClassCastException if this {@code Class} object does not
3551      *    represent a subclass of the specified class (here "subclass" includes
3552      *    the class itself).
3553      * @since 1.5
3554      */
3555     @SuppressWarnings("unchecked")
3556     public <U> Class<? extends U> asSubclass(Class<U> clazz) {
3557         if (clazz.isAssignableFrom(this))
3558             return (Class<? extends U>) this;
3559         else
3560             throw new ClassCastException(this.toString());
3561     }
3562 
3563     /**
3564      * {@inheritDoc}
3565      * <p>Note that any annotation returned by this method is a
3566      * declaration annotation.
3567      *
3568      * @throws NullPointerException {@inheritDoc}
3569      * @since 1.5
3570      */
3571     @Override
3572     @SuppressWarnings("unchecked")
3573     public <A extends Annotation> A getAnnotation(Class<A> annotationClass) {
3574         Objects.requireNonNull(annotationClass);
3575 
3576         return (A) annotationData().annotations.get(annotationClass);
3577     }
3578 
3579     /**
3580      * {@inheritDoc}
3581      * @throws NullPointerException {@inheritDoc}
3582      * @since 1.5
3583      */
3584     @Override
3585     public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) {
3586         return GenericDeclaration.super.isAnnotationPresent(annotationClass);
3587     }
3588 
3589     /**
3590      * {@inheritDoc}
3591      * <p>Note that any annotations returned by this method are
3592      * declaration annotations.
3593      *
3594      * @throws NullPointerException {@inheritDoc}
3595      * @since 1.8
3596      */
3597     @Override
3598     public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) {
3599         Objects.requireNonNull(annotationClass);
3600 
3601         AnnotationData annotationData = annotationData();
3602         return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations,
3603                                                           this,
3604                                                           annotationClass);
3605     }
3606 
3607     /**
3608      * {@inheritDoc}
3609      * <p>Note that any annotations returned by this method are
3610      * declaration annotations.
3611      *
3612      * @since 1.5
3613      */
3614     @Override
3615     public Annotation[] getAnnotations() {
3616         return AnnotationParser.toArray(annotationData().annotations);
3617     }
3618 
3619     /**
3620      * {@inheritDoc}
3621      * <p>Note that any annotation returned by this method is a
3622      * declaration annotation.
3623      *
3624      * @throws NullPointerException {@inheritDoc}
3625      * @since 1.8
3626      */
3627     @Override
3628     @SuppressWarnings("unchecked")
3629     public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) {
3630         Objects.requireNonNull(annotationClass);
3631 
3632         return (A) annotationData().declaredAnnotations.get(annotationClass);
3633     }
3634 
3635     /**
3636      * {@inheritDoc}
3637      * <p>Note that any annotations returned by this method are
3638      * declaration annotations.
3639      *
3640      * @throws NullPointerException {@inheritDoc}
3641      * @since 1.8
3642      */
3643     @Override
3644     public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) {
3645         Objects.requireNonNull(annotationClass);
3646 
3647         return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations,
3648                                                                  annotationClass);
3649     }
3650 
3651     /**
3652      * {@inheritDoc}
3653      * <p>Note that any annotations returned by this method are
3654      * declaration annotations.
3655      *
3656      * @since 1.5
3657      */
3658     @Override
3659     public Annotation[] getDeclaredAnnotations()  {
3660         return AnnotationParser.toArray(annotationData().declaredAnnotations);
3661     }
3662 
3663     // annotation data that might get invalidated when JVM TI RedefineClasses() is called
3664     private static class AnnotationData {
3665         final Map<Class<? extends Annotation>, Annotation> annotations;
3666         final Map<Class<? extends Annotation>, Annotation> declaredAnnotations;
3667 
3668         // Value of classRedefinedCount when we created this AnnotationData instance
3669         final int redefinedCount;
3670 
3671         AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations,
3672                        Map<Class<? extends Annotation>, Annotation> declaredAnnotations,
3673                        int redefinedCount) {
3674             this.annotations = annotations;
3675             this.declaredAnnotations = declaredAnnotations;
3676             this.redefinedCount = redefinedCount;
3677         }
3678     }
3679 
3680     // Annotations cache
3681     @SuppressWarnings("UnusedDeclaration")
3682     private transient volatile AnnotationData annotationData;
3683 
3684     private AnnotationData annotationData() {
3685         while (true) { // retry loop
3686             AnnotationData annotationData = this.annotationData;
3687             int classRedefinedCount = this.classRedefinedCount;
3688             if (annotationData != null &&
3689                 annotationData.redefinedCount == classRedefinedCount) {
3690                 return annotationData;
3691             }
3692             // null or stale annotationData -> optimistically create new instance
3693             AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount);
3694             // try to install it
3695             if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) {
3696                 // successfully installed new AnnotationData
3697                 return newAnnotationData;
3698             }
3699         }
3700     }
3701 
3702     private AnnotationData createAnnotationData(int classRedefinedCount) {
3703         Map<Class<? extends Annotation>, Annotation> declaredAnnotations =
3704             AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this);
3705         Class<?> superClass = getSuperclass();
3706         Map<Class<? extends Annotation>, Annotation> annotations = null;
3707         if (superClass != null) {
3708             Map<Class<? extends Annotation>, Annotation> superAnnotations =
3709                 superClass.annotationData().annotations;
3710             for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) {
3711                 Class<? extends Annotation> annotationClass = e.getKey();
3712                 if (AnnotationType.getInstance(annotationClass).isInherited()) {
3713                     if (annotations == null) { // lazy construction
3714                         annotations = LinkedHashMap.newLinkedHashMap(Math.max(
3715                                 declaredAnnotations.size(),
3716                                 Math.min(12, declaredAnnotations.size() + superAnnotations.size())
3717                             )
3718                         );
3719                     }
3720                     annotations.put(annotationClass, e.getValue());
3721                 }
3722             }
3723         }
3724         if (annotations == null) {
3725             // no inherited annotations -> share the Map with declaredAnnotations
3726             annotations = declaredAnnotations;
3727         } else {
3728             // at least one inherited annotation -> declared may override inherited
3729             annotations.putAll(declaredAnnotations);
3730         }
3731         return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount);
3732     }
3733 
3734     // Annotation interfaces cache their internal (AnnotationType) form
3735 
3736     @SuppressWarnings("UnusedDeclaration")
3737     private transient volatile AnnotationType annotationType;
3738 
3739     boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) {
3740         return Atomic.casAnnotationType(this, oldType, newType);
3741     }
3742 
3743     AnnotationType getAnnotationType() {
3744         return annotationType;
3745     }
3746 
3747     Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() {
3748         return annotationData().declaredAnnotations;
3749     }
3750 
3751     /* Backing store of user-defined values pertaining to this class.
3752      * Maintained by the ClassValue class.
3753      */
3754     transient ClassValue.ClassValueMap classValueMap;
3755 
3756     /**
3757      * Returns an {@code AnnotatedType} object that represents the use of a
3758      * type to specify the superclass of the entity represented by this {@code
3759      * Class} object. (The <em>use</em> of type Foo to specify the superclass
3760      * in '...  extends Foo' is distinct from the <em>declaration</em> of class
3761      * Foo.)
3762      *
3763      * <p> If this {@code Class} object represents a class whose declaration
3764      * does not explicitly indicate an annotated superclass, then the return
3765      * value is an {@code AnnotatedType} object representing an element with no
3766      * annotations.
3767      *
3768      * <p> If this {@code Class} represents either the {@code Object} class, an
3769      * interface type, an array type, a primitive type, or void, the return
3770      * value is {@code null}.
3771      *
3772      * @return an object representing the superclass
3773      * @since 1.8
3774      */
3775     public AnnotatedType getAnnotatedSuperclass() {
3776         if (this == Object.class ||
3777                 isInterface() ||
3778                 isArray() ||
3779                 isPrimitive() ||
3780                 this == Void.TYPE) {
3781             return null;
3782         }
3783 
3784         return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this);
3785     }
3786 
3787     /**
3788      * Returns an array of {@code AnnotatedType} objects that represent the use
3789      * of types to specify superinterfaces of the entity represented by this
3790      * {@code Class} object. (The <em>use</em> of type Foo to specify a
3791      * superinterface in '... implements Foo' is distinct from the
3792      * <em>declaration</em> of interface Foo.)
3793      *
3794      * <p> If this {@code Class} object represents a class, the return value is
3795      * an array containing objects representing the uses of interface types to
3796      * specify interfaces implemented by the class. The order of the objects in
3797      * the array corresponds to the order of the interface types used in the
3798      * 'implements' clause of the declaration of this {@code Class} object.
3799      *
3800      * <p> If this {@code Class} object represents an interface, the return
3801      * value is an array containing objects representing the uses of interface
3802      * types to specify interfaces directly extended by the interface. The
3803      * order of the objects in the array corresponds to the order of the
3804      * interface types used in the 'extends' clause of the declaration of this
3805      * {@code Class} object.
3806      *
3807      * <p> If this {@code Class} object represents a class or interface whose
3808      * declaration does not explicitly indicate any annotated superinterfaces,
3809      * the return value is an array of length 0.
3810      *
3811      * <p> If this {@code Class} object represents either the {@code Object}
3812      * class, an array type, a primitive type, or void, the return value is an
3813      * array of length 0.
3814      *
3815      * @return an array representing the superinterfaces
3816      * @since 1.8
3817      */
3818     public AnnotatedType[] getAnnotatedInterfaces() {
3819          return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this);
3820     }
3821 
3822     private native Class<?> getNestHost0();
3823 
3824     /**
3825      * Returns the nest host of the <a href=#nest>nest</a> to which the class
3826      * or interface represented by this {@code Class} object belongs.
3827      * Every class and interface belongs to exactly one nest.
3828      *
3829      * If the nest host of this class or interface has previously
3830      * been determined, then this method returns the nest host.
3831      * If the nest host of this class or interface has
3832      * not previously been determined, then this method determines the nest
3833      * host using the algorithm of JVMS 5.4.4, and returns it.
3834      *
3835      * Often, a class or interface belongs to a nest consisting only of itself,
3836      * in which case this method returns {@code this} to indicate that the class
3837      * or interface is the nest host.
3838      *
3839      * <p>If this {@code Class} object represents a primitive type, an array type,
3840      * or {@code void}, then this method returns {@code this},
3841      * indicating that the represented entity belongs to the nest consisting only of
3842      * itself, and is the nest host.
3843      *
3844      * @return the nest host of this class or interface
3845      *
3846      * @since 11
3847      * @jvms 4.7.28 The {@code NestHost} Attribute
3848      * @jvms 4.7.29 The {@code NestMembers} Attribute
3849      * @jvms 5.4.4 Access Control
3850      */
3851     public Class<?> getNestHost() {
3852         if (isPrimitive() || isArray()) {
3853             return this;
3854         }
3855         return getNestHost0();
3856     }
3857 
3858     /**
3859      * Determines if the given {@code Class} is a nestmate of the
3860      * class or interface represented by this {@code Class} object.
3861      * Two classes or interfaces are nestmates
3862      * if they have the same {@linkplain #getNestHost() nest host}.
3863      *
3864      * @param c the class to check
3865      * @return {@code true} if this class and {@code c} are members of
3866      * the same nest; and {@code false} otherwise.
3867      *
3868      * @since 11
3869      */
3870     public boolean isNestmateOf(Class<?> c) {
3871         if (this == c) {
3872             return true;
3873         }
3874         if (isPrimitive() || isArray() ||
3875             c.isPrimitive() || c.isArray()) {
3876             return false;
3877         }
3878 
3879         return getNestHost() == c.getNestHost();
3880     }
3881 
3882     private native Class<?>[] getNestMembers0();
3883 
3884     /**
3885      * Returns an array containing {@code Class} objects representing all the
3886      * classes and interfaces that are members of the nest to which the class
3887      * or interface represented by this {@code Class} object belongs.
3888      *
3889      * First, this method obtains the {@linkplain #getNestHost() nest host},
3890      * {@code H}, of the nest to which the class or interface represented by
3891      * this {@code Class} object belongs. The zeroth element of the returned
3892      * array is {@code H}.
3893      *
3894      * Then, for each class or interface {@code C} which is recorded by {@code H}
3895      * as being a member of its nest, this method attempts to obtain the {@code Class}
3896      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
3897      * loader} of the current {@code Class} object), and then obtains the
3898      * {@linkplain #getNestHost() nest host} of the nest to which {@code C} belongs.
3899      * The classes and interfaces which are recorded by {@code H} as being members
3900      * of its nest, and for which {@code H} can be determined as their nest host,
3901      * are indicated by subsequent elements of the returned array. The order of
3902      * such elements is unspecified. Duplicates are permitted.
3903      *
3904      * <p>If this {@code Class} object represents a primitive type, an array type,
3905      * or {@code void}, then this method returns a single-element array containing
3906      * {@code this}.
3907      *
3908      * @apiNote
3909      * The returned array includes only the nest members recorded in the {@code NestMembers}
3910      * attribute, and not any hidden classes that were added to the nest via
3911      * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3912      * Lookup::defineHiddenClass}.
3913      *
3914      * @return an array of all classes and interfaces in the same nest as
3915      * this class or interface
3916      *
3917      * @since 11
3918      * @see #getNestHost()
3919      * @jvms 4.7.28 The {@code NestHost} Attribute
3920      * @jvms 4.7.29 The {@code NestMembers} Attribute
3921      */
3922     public Class<?>[] getNestMembers() {
3923         if (isPrimitive() || isArray()) {
3924             return new Class<?>[] { this };
3925         }
3926         Class<?>[] members = getNestMembers0();
3927         // Can't actually enable this due to bootstrapping issues
3928         // assert(members.length != 1 || members[0] == this); // expected invariant from VM
3929         return members;
3930     }
3931 
3932     /**
3933      * Returns the descriptor string of the entity (class, interface, array class,
3934      * primitive type, or {@code void}) represented by this {@code Class} object.
3935      *
3936      * <p> If this {@code Class} object represents a class or interface,
3937      * not an array class, then:
3938      * <ul>
3939      * <li> If the class or interface is not {@linkplain Class#isHidden() hidden},
3940      *      then the result is a field descriptor (JVMS {@jvms 4.3.2})
3941      *      for the class or interface. Calling
3942      *      {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3943      *      with the result descriptor string produces a {@link ClassDesc ClassDesc}
3944      *      describing this class or interface.
3945      * <li> If the class or interface is {@linkplain Class#isHidden() hidden},
3946      *      then the result is a string of the form:
3947      *      <blockquote>
3948      *      {@code "L" +} <em>N</em> {@code + "." + <suffix> + ";"}
3949      *      </blockquote>
3950      *      where <em>N</em> is the {@linkplain ClassLoader##binary-name binary name}
3951      *      encoded in internal form indicated by the {@code class} file passed to
3952      *      {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3953      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
3954      *      A hidden class or interface has no {@linkplain ClassDesc nominal descriptor}.
3955      *      The result string is not a type descriptor.
3956      * </ul>
3957      *
3958      * <p> If this {@code Class} object represents an array class, then
3959      * the result is a string consisting of one or more '{@code [}' characters
3960      * representing the depth of the array nesting, followed by the
3961      * descriptor string of the element type.
3962      * <ul>
3963      * <li> If the element type is not a {@linkplain Class#isHidden() hidden} class
3964      * or interface, then this array class can be described nominally.
3965      * Calling {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3966      * with the result descriptor string produces a {@link ClassDesc ClassDesc}
3967      * describing this array class.
3968      * <li> If the element type is a {@linkplain Class#isHidden() hidden} class or
3969      * interface, then this array class cannot be described nominally.
3970      * The result string is not a type descriptor.
3971      * </ul>
3972      *
3973      * <p> If this {@code Class} object represents a primitive type or
3974      * {@code void}, then the result is a field descriptor string which
3975      * is a one-letter code corresponding to a primitive type or {@code void}
3976      * ({@code "B", "C", "D", "F", "I", "J", "S", "Z", "V"}) (JVMS {@jvms 4.3.2}).
3977      *
3978      * @return the descriptor string for this {@code Class} object
3979      * @jvms 4.3.2 Field Descriptors
3980      * @since 12
3981      */
3982     @Override
3983     public String descriptorString() {
3984         if (isPrimitive())
3985             return Wrapper.forPrimitiveType(this).basicTypeString();
3986 
3987         if (isArray()) {
3988             return "[".concat(componentType.descriptorString());
3989         } else if (isHidden()) {
3990             String name = getName();
3991             int index = name.indexOf('/');
3992             return new StringBuilder(name.length() + 2)
3993                     .append('L')
3994                     .append(name.substring(0, index).replace('.', '/'))
3995                     .append('.')
3996                     .append(name, index + 1, name.length())
3997                     .append(';')
3998                     .toString();
3999         } else {
4000             String name = getName().replace('.', '/');
4001             return StringConcatHelper.concat("L", name, ";");
4002         }
4003     }
4004 
4005     /**
4006      * Returns the component type of this {@code Class}, if it describes
4007      * an array type, or {@code null} otherwise.
4008      *
4009      * @implSpec
4010      * Equivalent to {@link Class#getComponentType()}.
4011      *
4012      * @return a {@code Class} describing the component type, or {@code null}
4013      * if this {@code Class} does not describe an array type
4014      * @since 12
4015      */
4016     @Override
4017     public Class<?> componentType() {
4018         return isArray() ? componentType : null;
4019     }
4020 
4021     /**
4022      * Returns a {@code Class} for an array type whose component type
4023      * is described by this {@linkplain Class}.
4024      *
4025      * @throws UnsupportedOperationException if this component type is {@linkplain
4026      *         Void#TYPE void} or if the number of dimensions of the resulting array
4027      *         type would exceed 255.
4028      * @return a {@code Class} describing the array type
4029      * @jvms 4.3.2 Field Descriptors
4030      * @jvms 4.4.1 The {@code CONSTANT_Class_info} Structure
4031      * @since 12
4032      */
4033     @Override
4034     public Class<?> arrayType() {
4035         try {
4036             return Array.newInstance(this, 0).getClass();
4037         } catch (IllegalArgumentException iae) {
4038             throw new UnsupportedOperationException(iae);
4039         }
4040     }
4041 
4042     /**
4043      * Returns a nominal descriptor for this instance, if one can be
4044      * constructed, or an empty {@link Optional} if one cannot be.
4045      *
4046      * @return An {@link Optional} containing the resulting nominal descriptor,
4047      * or an empty {@link Optional} if one cannot be constructed.
4048      * @since 12
4049      */
4050     @Override
4051     public Optional<ClassDesc> describeConstable() {
4052         Class<?> c = isArray() ? elementType() : this;
4053         return c.isHidden() ? Optional.empty()
4054                             : Optional.of(ConstantUtils.classDesc(this));
4055    }
4056 
4057     /**
4058      * Returns {@code true} if and only if the underlying class is a hidden class.
4059      *
4060      * @return {@code true} if and only if this class is a hidden class.
4061      *
4062      * @since 15
4063      * @see MethodHandles.Lookup#defineHiddenClass
4064      * @see Class##hiddenClasses Hidden Classes
4065      */
4066     @IntrinsicCandidate
4067     public native boolean isHidden();
4068 
4069     /**
4070      * Returns an array containing {@code Class} objects representing the
4071      * direct subinterfaces or subclasses permitted to extend or
4072      * implement this class or interface if it is sealed.  The order of such elements
4073      * is unspecified. The array is empty if this sealed class or interface has no
4074      * permitted subclass. If this {@code Class} object represents a primitive type,
4075      * {@code void}, an array type, or a class or interface that is not sealed,
4076      * that is {@link #isSealed()} returns {@code false}, then this method returns {@code null}.
4077      * Conversely, if {@link #isSealed()} returns {@code true}, then this method
4078      * returns a non-null value.
4079      *
4080      * For each class or interface {@code C} which is recorded as a permitted
4081      * direct subinterface or subclass of this class or interface,
4082      * this method attempts to obtain the {@code Class}
4083      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
4084      * loader} of the current {@code Class} object).
4085      * The {@code Class} objects which can be obtained and which are direct
4086      * subinterfaces or subclasses of this class or interface,
4087      * are indicated by elements of the returned array. If a {@code Class} object
4088      * cannot be obtained, it is silently ignored, and not included in the result
4089      * array.
4090      *
4091      * @return an array of {@code Class} objects of the permitted subclasses of this class
4092      *         or interface, or {@code null} if this class or interface is not sealed.
4093      *
4094      * @jls 8.1 Class Declarations
4095      * @jls 9.1 Interface Declarations
4096      * @since 17
4097      */
4098     public Class<?>[] getPermittedSubclasses() {
4099         Class<?>[] subClasses;
4100         if (isArray() || isPrimitive() || (subClasses = getPermittedSubclasses0()) == null) {
4101             return null;
4102         }
4103         if (subClasses.length > 0) {
4104             if (Arrays.stream(subClasses).anyMatch(c -> !isDirectSubType(c))) {
4105                 subClasses = Arrays.stream(subClasses)
4106                                    .filter(this::isDirectSubType)
4107                                    .toArray(s -> new Class<?>[s]);
4108             }
4109         }
4110         return subClasses;
4111     }
4112 
4113     private boolean isDirectSubType(Class<?> c) {
4114         if (isInterface()) {
4115             for (Class<?> i : c.getInterfaces(/* cloneArray */ false)) {
4116                 if (i == this) {
4117                     return true;
4118                 }
4119             }
4120         } else {
4121             return c.getSuperclass() == this;
4122         }
4123         return false;
4124     }
4125 
4126     /**
4127      * Returns {@code true} if and only if this {@code Class} object represents
4128      * a sealed class or interface. If this {@code Class} object represents a
4129      * primitive type, {@code void}, or an array type, this method returns
4130      * {@code false}. A sealed class or interface has (possibly zero) permitted
4131      * subclasses; {@link #getPermittedSubclasses()} returns a non-null but
4132      * possibly empty value for a sealed class or interface.
4133      *
4134      * @return {@code true} if and only if this {@code Class} object represents
4135      * a sealed class or interface.
4136      *
4137      * @jls 8.1 Class Declarations
4138      * @jls 9.1 Interface Declarations
4139      * @since 17
4140      */
4141     public boolean isSealed() {
4142         if (isArray() || isPrimitive()) {
4143             return false;
4144         }
4145         return getPermittedSubclasses() != null;
4146     }
4147 
4148     private native Class<?>[] getPermittedSubclasses0();
4149 
4150     /*
4151      * Return the class's major and minor class file version packed into an int.
4152      * The high order 16 bits contain the class's minor version.  The low order
4153      * 16 bits contain the class's major version.
4154      *
4155      * If the class is an array type then the class file version of its element
4156      * type is returned.  If the class is a primitive type then the latest class
4157      * file major version is returned and zero is returned for the minor version.
4158      */
4159     private int getClassFileVersion() {
4160         Class<?> c = isArray() ? elementType() : this;
4161         return c.getClassFileVersion0();
4162     }
4163 
4164     private native int getClassFileVersion0();
4165 
4166     /*
4167      * Return the access flags as they were in the class's bytecode, including
4168      * the original setting of ACC_SUPER.
4169      *
4170      * If the class is an array type then the access flags of the element type is
4171      * returned.  If the class is a primitive then ACC_ABSTRACT | ACC_FINAL | ACC_PUBLIC.
4172      */
4173     private int getClassAccessFlagsRaw() {
4174         Class<?> c = isArray() ? elementType() : this;
4175         return c.getClassAccessFlagsRaw0();
4176     }
4177 
4178     private native int getClassAccessFlagsRaw0();
4179 }