1 /* 2 * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.annotation.Annotation; 29 import java.lang.constant.ClassDesc; 30 import java.lang.constant.ConstantDescs; 31 import java.lang.invoke.TypeDescriptor; 32 import java.lang.invoke.MethodHandles; 33 import java.lang.ref.SoftReference; 34 import java.io.IOException; 35 import java.io.InputStream; 36 import java.io.ObjectStreamField; 37 import java.lang.reflect.AnnotatedElement; 38 import java.lang.reflect.AnnotatedType; 39 import java.lang.reflect.AccessFlag; 40 import java.lang.reflect.Array; 41 import java.lang.reflect.Constructor; 42 import java.lang.reflect.Executable; 43 import java.lang.reflect.Field; 44 import java.lang.reflect.GenericArrayType; 45 import java.lang.reflect.GenericDeclaration; 46 import java.lang.reflect.InvocationTargetException; 47 import java.lang.reflect.Member; 48 import java.lang.reflect.Method; 49 import java.lang.reflect.Modifier; 50 import java.lang.reflect.Proxy; 51 import java.lang.reflect.RecordComponent; 52 import java.lang.reflect.Type; 53 import java.lang.reflect.TypeVariable; 54 import java.lang.constant.Constable; 55 import java.net.URL; 56 import java.security.Permissions; 57 import java.security.ProtectionDomain; 58 import java.util.ArrayList; 59 import java.util.Arrays; 60 import java.util.Collection; 61 import java.util.HashMap; 62 import java.util.HashSet; 63 import java.util.LinkedHashMap; 64 import java.util.LinkedHashSet; 65 import java.util.List; 66 import java.util.Map; 67 import java.util.Objects; 68 import java.util.Optional; 69 import java.util.Set; 70 import java.util.stream.Collectors; 71 72 import jdk.internal.constant.ConstantUtils; 73 import jdk.internal.loader.BootLoader; 74 import jdk.internal.loader.BuiltinClassLoader; 75 import jdk.internal.misc.Unsafe; 76 import jdk.internal.module.Resources; 77 import jdk.internal.reflect.CallerSensitive; 78 import jdk.internal.reflect.CallerSensitiveAdapter; 79 import jdk.internal.reflect.ConstantPool; 80 import jdk.internal.reflect.Reflection; 81 import jdk.internal.reflect.ReflectionFactory; 82 import jdk.internal.vm.annotation.IntrinsicCandidate; 83 import jdk.internal.vm.annotation.Stable; 84 85 import sun.invoke.util.Wrapper; 86 import sun.reflect.generics.factory.CoreReflectionFactory; 87 import sun.reflect.generics.factory.GenericsFactory; 88 import sun.reflect.generics.repository.ClassRepository; 89 import sun.reflect.generics.repository.MethodRepository; 90 import sun.reflect.generics.repository.ConstructorRepository; 91 import sun.reflect.generics.scope.ClassScope; 92 import sun.security.util.SecurityConstants; 93 import sun.reflect.annotation.*; 94 import sun.reflect.misc.ReflectUtil; 95 96 /** 97 * Instances of the class {@code Class} represent classes and 98 * interfaces in a running Java application. An enum class and a record 99 * class are kinds of class; an annotation interface is a kind of 100 * interface. Every array also belongs to a class that is reflected as 101 * a {@code Class} object that is shared by all arrays with the same 102 * element type and number of dimensions. The primitive Java types 103 * ({@code boolean}, {@code byte}, {@code char}, {@code short}, {@code 104 * int}, {@code long}, {@code float}, and {@code double}), and the 105 * keyword {@code void} are also represented as {@code Class} objects. 106 * 107 * <p> {@code Class} has no public constructor. Instead a {@code Class} 108 * object is constructed automatically by the Java Virtual Machine when 109 * a class is derived from the bytes of a {@code class} file through 110 * the invocation of one of the following methods: 111 * <ul> 112 * <li> {@link ClassLoader#defineClass(String, byte[], int, int) ClassLoader::defineClass} 113 * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[]) 114 * java.lang.invoke.MethodHandles.Lookup::defineClass} 115 * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 116 * java.lang.invoke.MethodHandles.Lookup::defineHiddenClass} 117 * </ul> 118 * 119 * <p> The methods of class {@code Class} expose many characteristics of a 120 * class or interface. Most characteristics are derived from the {@code class} 121 * file that the class loader passed to the Java Virtual Machine or 122 * from the {@code class} file passed to {@code Lookup::defineClass} 123 * or {@code Lookup::defineHiddenClass}. 124 * A few characteristics are determined by the class loading environment 125 * at run time, such as the module returned by {@link #getModule() getModule()}. 126 * 127 * <p> The following example uses a {@code Class} object to print the 128 * class name of an object: 129 * 130 * {@snippet lang="java" : 131 * void printClassName(Object obj) { 132 * System.out.println("The class of " + obj + 133 * " is " + obj.getClass().getName()); 134 * }} 135 * 136 * It is also possible to get the {@code Class} object for a named 137 * class or interface (or for {@code void}) using a <dfn>class literal</dfn> 138 * (JLS {@jls 15.8.2}). 139 * For example: 140 * 141 * {@snippet lang="java" : 142 * System.out.println("The name of class Foo is: " + Foo.class.getName()); // @highlight substring="Foo.class" 143 * } 144 * 145 * <p> Some methods of class {@code Class} expose whether the declaration of 146 * a class or interface in Java source code was <em>enclosed</em> within 147 * another declaration. Other methods describe how a class or interface 148 * is situated in a <dfn>{@index "nest"}</dfn>. A nest is a set of 149 * classes and interfaces, in the same run-time package, that 150 * allow mutual access to their {@code private} members. 151 * The classes and interfaces are known as <dfn>{@index "nestmates"}</dfn> 152 * (JVMS {@jvms 4.7.29}). 153 * One nestmate acts as the 154 * <dfn>nest host</dfn> (JVMS {@jvms 4.7.28}), and enumerates the other nestmates which 155 * belong to the nest; each of them in turn records it as the nest host. 156 * The classes and interfaces which belong to a nest, including its host, are 157 * determined when 158 * {@code class} files are generated, for example, a Java compiler 159 * will typically record a top-level class as the host of a nest where the 160 * other members are the classes and interfaces whose declarations are 161 * enclosed within the top-level class declaration. 162 * 163 * <h2><a id=hiddenClasses>Hidden Classes</a></h2> 164 * A class or interface created by the invocation of 165 * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 166 * Lookup::defineHiddenClass} is a {@linkplain Class#isHidden() <dfn>hidden</dfn>} 167 * class or interface. 168 * All kinds of class, including enum classes and record classes, may be 169 * hidden classes; all kinds of interface, including annotation interfaces, 170 * may be hidden interfaces. 171 * 172 * The {@linkplain #getName() name of a hidden class or interface} is 173 * not a {@linkplain ClassLoader##binary-name binary name}, 174 * which means the following: 175 * <ul> 176 * <li>A hidden class or interface cannot be referenced by the constant pools 177 * of other classes and interfaces. 178 * <li>A hidden class or interface cannot be described in 179 * {@linkplain java.lang.constant.ConstantDesc <em>nominal form</em>} by 180 * {@link #describeConstable() Class::describeConstable}, 181 * {@link ClassDesc#of(String) ClassDesc::of}, or 182 * {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}. 183 * <li>A hidden class or interface cannot be discovered by {@link #forName Class::forName} 184 * or {@link ClassLoader#loadClass(String, boolean) ClassLoader::loadClass}. 185 * </ul> 186 * 187 * A hidden class or interface is never an array class, but may be 188 * the element type of an array. In all other respects, the fact that 189 * a class or interface is hidden has no bearing on the characteristics 190 * exposed by the methods of class {@code Class}. 191 * 192 * <h2><a id=implicitClasses>Implicitly Declared Classes</a></h2> 193 * 194 * Conventionally, a Java compiler, starting from a source file for an 195 * implicitly declared class, say {@code HelloWorld.java}, creates a 196 * similarly-named {@code class} file, {@code HelloWorld.class}, where 197 * the class stored in that {@code class} file is named {@code 198 * "HelloWorld"}, matching the base names of the source and {@code 199 * class} files. 200 * 201 * For the {@code Class} object of an implicitly declared class {@code 202 * HelloWorld}, the methods to get the {@linkplain #getName name} and 203 * {@linkplain #getTypeName type name} return results 204 * equal to {@code "HelloWorld"}. The {@linkplain #getSimpleName 205 * simple name} of such an implicitly declared class is {@code "HelloWorld"} and 206 * the {@linkplain #getCanonicalName canonical name} is {@code "HelloWorld"}. 207 * 208 * @param <T> the type of the class modeled by this {@code Class} 209 * object. For example, the type of {@code String.class} is {@code 210 * Class<String>}. Use {@code Class<?>} if the class being modeled is 211 * unknown. 212 * 213 * @see java.lang.ClassLoader#defineClass(byte[], int, int) 214 * @since 1.0 215 */ 216 public final class Class<T> implements java.io.Serializable, 217 GenericDeclaration, 218 Type, 219 AnnotatedElement, 220 TypeDescriptor.OfField<Class<?>>, 221 Constable { 222 private static final int ANNOTATION= 0x00002000; 223 private static final int ENUM = 0x00004000; 224 private static final int SYNTHETIC = 0x00001000; 225 226 private static native void registerNatives(); 227 static { 228 runtimeSetup(); 229 } 230 231 // Called from JVM when loading an AOT cache 232 private static void runtimeSetup() { 233 registerNatives(); 234 } 235 236 /* 237 * Private constructor. Only the Java Virtual Machine creates Class objects. 238 * This constructor is not used and prevents the default constructor being 239 * generated. 240 */ 241 private Class(ClassLoader loader, Class<?> arrayComponentType) { 242 // Initialize final field for classLoader. The initialization value of non-null 243 // prevents future JIT optimizations from assuming this final field is null. 244 classLoader = loader; 245 componentType = arrayComponentType; 246 } 247 248 /** 249 * Converts the object to a string. The string representation is the 250 * string "class" or "interface", followed by a space, and then by the 251 * name of the class in the format returned by {@code getName}. 252 * If this {@code Class} object represents a primitive type, 253 * this method returns the name of the primitive type. If 254 * this {@code Class} object represents void this method returns 255 * "void". If this {@code Class} object represents an array type, 256 * this method returns "class " followed by {@code getName}. 257 * 258 * @return a string representation of this {@code Class} object. 259 */ 260 public String toString() { 261 String kind = isInterface() ? "interface " : isPrimitive() ? "" : "class "; 262 return kind.concat(getName()); 263 } 264 265 /** 266 * Returns a string describing this {@code Class}, including 267 * information about modifiers, {@link #isSealed() sealed}/{@code 268 * non-sealed} status, and type parameters. 269 * 270 * The string is formatted as a list of type modifiers, if any, 271 * followed by the kind of type (empty string for primitive types 272 * and {@code class}, {@code enum}, {@code interface}, 273 * {@code @interface}, or {@code record} as appropriate), followed 274 * by the type's name, followed by an angle-bracketed 275 * comma-separated list of the type's type parameters, if any, 276 * including informative bounds on the type parameters, if any. 277 * 278 * A space is used to separate modifiers from one another and to 279 * separate any modifiers from the kind of type. The modifiers 280 * occur in canonical order. If there are no type parameters, the 281 * type parameter list is elided. 282 * 283 * For an array type, the string starts with the type name, 284 * followed by an angle-bracketed comma-separated list of the 285 * type's type parameters, if any, followed by a sequence of 286 * {@code []} characters, one set of brackets per dimension of 287 * the array. 288 * 289 * <p>Note that since information about the runtime representation 290 * of a type is being generated, modifiers not present on the 291 * originating source code or illegal on the originating source 292 * code may be present. 293 * 294 * @return a string describing this {@code Class}, including 295 * information about modifiers and type parameters 296 * 297 * @since 1.8 298 */ 299 public String toGenericString() { 300 if (isPrimitive()) { 301 return toString(); 302 } else { 303 StringBuilder sb = new StringBuilder(); 304 Class<?> component = this; 305 int arrayDepth = 0; 306 307 if (isArray()) { 308 do { 309 arrayDepth++; 310 component = component.getComponentType(); 311 } while (component.isArray()); 312 sb.append(component.getName()); 313 } else { 314 // Class modifiers are a superset of interface modifiers 315 int modifiers = getModifiers() & Modifier.classModifiers(); 316 if (modifiers != 0) { 317 sb.append(Modifier.toString(modifiers)); 318 sb.append(' '); 319 } 320 321 // A class cannot be strictfp and sealed/non-sealed so 322 // it is sufficient to check for sealed-ness after all 323 // modifiers are printed. 324 addSealingInfo(modifiers, sb); 325 326 if (isAnnotation()) { 327 sb.append('@'); 328 } 329 if (isInterface()) { // Note: all annotation interfaces are interfaces 330 sb.append("interface"); 331 } else { 332 if (isEnum()) 333 sb.append("enum"); 334 else if (isRecord()) 335 sb.append("record"); 336 else 337 sb.append("class"); 338 } 339 sb.append(' '); 340 sb.append(getName()); 341 } 342 343 TypeVariable<?>[] typeparms = component.getTypeParameters(); 344 if (typeparms.length > 0) { 345 sb.append(Arrays.stream(typeparms) 346 .map(Class::typeVarBounds) 347 .collect(Collectors.joining(",", "<", ">"))); 348 } 349 350 if (arrayDepth > 0) sb.append("[]".repeat(arrayDepth)); 351 352 return sb.toString(); 353 } 354 } 355 356 private void addSealingInfo(int modifiers, StringBuilder sb) { 357 // A class can be final XOR sealed XOR non-sealed. 358 if (Modifier.isFinal(modifiers)) { 359 return; // no-op 360 } else { 361 if (isSealed()) { 362 sb.append("sealed "); 363 return; 364 } else { 365 // Check for sealed ancestor, which implies this class 366 // is non-sealed. 367 if (hasSealedAncestor(this)) { 368 sb.append("non-sealed "); 369 } 370 } 371 } 372 } 373 374 private boolean hasSealedAncestor(Class<?> clazz) { 375 // From JLS 8.1.1.2: 376 // "It is a compile-time error if a class has a sealed direct 377 // superclass or a sealed direct superinterface, and is not 378 // declared final, sealed, or non-sealed either explicitly or 379 // implicitly. 380 // Thus, an effect of the sealed keyword is to force all 381 // direct subclasses to explicitly declare whether they are 382 // final, sealed, or non-sealed. This avoids accidentally 383 // exposing a sealed class hierarchy to unwanted subclassing." 384 385 // Therefore, will just check direct superclass and 386 // superinterfaces. 387 var superclass = clazz.getSuperclass(); 388 if (superclass != null && superclass.isSealed()) { 389 return true; 390 } 391 for (var superinterface : clazz.getInterfaces()) { 392 if (superinterface.isSealed()) { 393 return true; 394 } 395 } 396 return false; 397 } 398 399 static String typeVarBounds(TypeVariable<?> typeVar) { 400 Type[] bounds = typeVar.getBounds(); 401 if (bounds.length == 1 && bounds[0].equals(Object.class)) { 402 return typeVar.getName(); 403 } else { 404 return typeVar.getName() + " extends " + 405 Arrays.stream(bounds) 406 .map(Type::getTypeName) 407 .collect(Collectors.joining(" & ")); 408 } 409 } 410 411 /** 412 * Returns the {@code Class} object associated with the class or 413 * interface with the given string name. Invoking this method is 414 * equivalent to: 415 * 416 * {@snippet lang="java" : 417 * Class.forName(className, true, currentLoader) 418 * } 419 * 420 * where {@code currentLoader} denotes the defining class loader of 421 * the current class. 422 * 423 * <p> For example, the following code fragment returns the 424 * runtime {@code Class} object for the class named 425 * {@code java.lang.Thread}: 426 * 427 * {@snippet lang="java" : 428 * Class<?> t = Class.forName("java.lang.Thread"); 429 * } 430 * <p> 431 * A call to {@code forName("X")} causes the class named 432 * {@code X} to be initialized. 433 * 434 * <p> 435 * In cases where this method is called from a context where there is no 436 * caller frame on the stack (e.g. when called directly from a JNI 437 * attached thread), the system class loader is used. 438 * 439 * @param className the {@linkplain ClassLoader##binary-name binary name} 440 * of the class or the string representing an array type 441 * @return the {@code Class} object for the class with the 442 * specified name. 443 * @throws LinkageError if the linkage fails 444 * @throws ExceptionInInitializerError if the initialization provoked 445 * by this method fails 446 * @throws ClassNotFoundException if the class cannot be located 447 * 448 * @jls 12.2 Loading of Classes and Interfaces 449 * @jls 12.3 Linking of Classes and Interfaces 450 * @jls 12.4 Initialization of Classes and Interfaces 451 */ 452 @CallerSensitive 453 public static Class<?> forName(String className) 454 throws ClassNotFoundException { 455 Class<?> caller = Reflection.getCallerClass(); 456 return forName(className, caller); 457 } 458 459 // Caller-sensitive adapter method for reflective invocation 460 @CallerSensitiveAdapter 461 private static Class<?> forName(String className, Class<?> caller) 462 throws ClassNotFoundException { 463 ClassLoader loader = (caller == null) ? ClassLoader.getSystemClassLoader() 464 : ClassLoader.getClassLoader(caller); 465 if (loader instanceof BuiltinClassLoader bcl) { 466 if (bcl.usePositiveCache) { 467 Class<?> result = bcl.checkPositiveLookupCache(className); 468 if (result != null) { 469 return result; 470 } 471 } 472 if (bcl.useNegativeCache && bcl.checkNegativeLookupCache(className)) { 473 throw new ClassNotFoundException(className); 474 } 475 } 476 return forName0(className, true, loader, caller); 477 } 478 479 /** 480 * Returns the {@code Class} object associated with the class or 481 * interface with the given string name, using the given class loader. 482 * Given the {@linkplain ClassLoader##binary-name binary name} for a class or interface, 483 * this method attempts to locate and load the class or interface. The specified 484 * class loader is used to load the class or interface. If the parameter 485 * {@code loader} is {@code null}, the class is loaded through the bootstrap 486 * class loader. The class is initialized only if the 487 * {@code initialize} parameter is {@code true} and if it has 488 * not been initialized earlier. 489 * 490 * <p> This method cannot be used to obtain any of the {@code Class} objects 491 * representing primitive types or void, hidden classes or interfaces, 492 * or array classes whose element type is a hidden class or interface. 493 * If {@code name} denotes a primitive type or void, for example {@code I}, 494 * an attempt will be made to locate a user-defined class in the unnamed package 495 * whose name is {@code I} instead. 496 * To obtain a {@code Class} object for a named primitive type 497 * such as {@code int} or {@code long} use {@link 498 * #forPrimitiveName(String)}. 499 * 500 * <p> To obtain the {@code Class} object associated with an array class, 501 * the name consists of one or more {@code '['} representing the depth 502 * of the array nesting, followed by the element type as encoded in 503 * {@linkplain ##nameFormat the table} specified in {@code Class.getName()}. 504 * 505 * <p> Examples: 506 * {@snippet lang="java" : 507 * Class<?> threadClass = Class.forName("java.lang.Thread", false, currentLoader); 508 * Class<?> stringArrayClass = Class.forName("[Ljava.lang.String;", false, currentLoader); 509 * Class<?> intArrayClass = Class.forName("[[[I", false, currentLoader); // Class of int[][][] 510 * Class<?> nestedClass = Class.forName("java.lang.Character$UnicodeBlock", false, currentLoader); 511 * Class<?> fooClass = Class.forName("Foo", true, currentLoader); 512 * } 513 * 514 * <p> A call to {@code getName()} on the {@code Class} object returned 515 * from {@code forName(}<i>N</i>{@code )} returns <i>N</i>. 516 * 517 * <p> A call to {@code forName("[L}<i>N</i>{@code ;")} causes the element type 518 * named <i>N</i> to be loaded but not initialized regardless of the value 519 * of the {@code initialize} parameter. 520 * 521 * @apiNote 522 * This method throws errors related to loading, linking or initializing 523 * as specified in Sections {@jls 12.2}, {@jls 12.3}, and {@jls 12.4} of 524 * <cite>The Java Language Specification</cite>. 525 * In addition, this method does not check whether the requested class 526 * is accessible to its caller. 527 * 528 * @param name the {@linkplain ClassLoader##binary-name binary name} 529 * of the class or the string representing an array class 530 * 531 * @param initialize if {@code true} the class will be initialized 532 * (which implies linking). See Section {@jls 533 * 12.4} of <cite>The Java Language 534 * Specification</cite>. 535 * @param loader class loader from which the class must be loaded 536 * @return class object representing the desired class 537 * 538 * @throws LinkageError if the linkage fails 539 * @throws ExceptionInInitializerError if the initialization provoked 540 * by this method fails 541 * @throws ClassNotFoundException if the class cannot be located by 542 * the specified class loader 543 * 544 * @see java.lang.Class#forName(String) 545 * @see java.lang.ClassLoader 546 * 547 * @jls 12.2 Loading of Classes and Interfaces 548 * @jls 12.3 Linking of Classes and Interfaces 549 * @jls 12.4 Initialization of Classes and Interfaces 550 * @jls 13.1 The Form of a Binary 551 * @since 1.2 552 */ 553 public static Class<?> forName(String name, boolean initialize, ClassLoader loader) 554 throws ClassNotFoundException 555 { 556 if (loader instanceof BuiltinClassLoader bcl) { 557 if (bcl.usePositiveCache) { 558 Class<?> result = bcl.checkPositiveLookupCache(name); 559 if (result != null) { 560 return result; 561 } 562 } 563 if (bcl.useNegativeCache && bcl.checkNegativeLookupCache(name)) { 564 throw new ClassNotFoundException(name); 565 } 566 } 567 return forName0(name, initialize, loader, null); 568 } 569 570 /** Called after security check for system loader access checks have been made. */ 571 private static native Class<?> forName0(String name, boolean initialize, 572 ClassLoader loader, 573 Class<?> caller) 574 throws ClassNotFoundException; 575 576 577 /** 578 * Returns the {@code Class} with the given {@linkplain ClassLoader##binary-name 579 * binary name} in the given module. 580 * 581 * <p> This method attempts to locate and load the class or interface. 582 * It does not link the class, and does not run the class initializer. 583 * If the class is not found, this method returns {@code null}. </p> 584 * 585 * <p> If the class loader of the given module defines other modules and 586 * the given name is a class defined in a different module, this method 587 * returns {@code null} after the class is loaded. </p> 588 * 589 * <p> This method does not check whether the requested class is 590 * accessible to its caller. </p> 591 * 592 * @apiNote 593 * This method does not support loading of array types, unlike 594 * {@link #forName(String, boolean, ClassLoader)}. The class name must be 595 * a binary name. This method returns {@code null} on failure rather than 596 * throwing a {@link ClassNotFoundException}, as is done by 597 * the {@link #forName(String, boolean, ClassLoader)} method. 598 * 599 * @param module A module 600 * @param name The {@linkplain ClassLoader##binary-name binary name} 601 * of the class 602 * @return {@code Class} object of the given name defined in the given module; 603 * {@code null} if not found. 604 * 605 * @throws NullPointerException if the given module or name is {@code null} 606 * 607 * @throws LinkageError if the linkage fails 608 * 609 * @jls 12.2 Loading of Classes and Interfaces 610 * @jls 12.3 Linking of Classes and Interfaces 611 * @since 9 612 */ 613 public static Class<?> forName(Module module, String name) { 614 Objects.requireNonNull(module); 615 Objects.requireNonNull(name); 616 617 ClassLoader cl = module.getClassLoader(); 618 if (cl != null) { 619 return cl.loadClass(module, name); 620 } else { 621 return BootLoader.loadClass(module, name); 622 } 623 } 624 625 /** 626 * {@return the {@code Class} object associated with the 627 * {@linkplain #isPrimitive() primitive type} of the given name} 628 * If the argument is not the name of a primitive type, {@code 629 * null} is returned. 630 * 631 * @param primitiveName the name of the primitive type to find 632 * 633 * @throws NullPointerException if the argument is {@code null} 634 * 635 * @jls 4.2 Primitive Types and Values 636 * @jls 15.8.2 Class Literals 637 * @since 22 638 */ 639 public static Class<?> forPrimitiveName(String primitiveName) { 640 return switch(primitiveName) { 641 // Integral types 642 case "int" -> int.class; 643 case "long" -> long.class; 644 case "short" -> short.class; 645 case "char" -> char.class; 646 case "byte" -> byte.class; 647 648 // Floating-point types 649 case "float" -> float.class; 650 case "double" -> double.class; 651 652 // Other types 653 case "boolean" -> boolean.class; 654 case "void" -> void.class; 655 656 default -> null; 657 }; 658 } 659 660 /** 661 * Creates a new instance of the class represented by this {@code Class} 662 * object. The class is instantiated as if by a {@code new} 663 * expression with an empty argument list. The class is initialized if it 664 * has not already been initialized. 665 * 666 * @deprecated This method propagates any exception thrown by the 667 * nullary constructor, including a checked exception. Use of 668 * this method effectively bypasses the compile-time exception 669 * checking that would otherwise be performed by the compiler. 670 * The {@link 671 * java.lang.reflect.Constructor#newInstance(java.lang.Object...) 672 * Constructor.newInstance} method avoids this problem by wrapping 673 * any exception thrown by the constructor in a (checked) {@link 674 * java.lang.reflect.InvocationTargetException}. 675 * 676 * <p>The call 677 * 678 * {@snippet lang="java" : 679 * clazz.newInstance() 680 * } 681 * 682 * can be replaced by 683 * 684 * {@snippet lang="java" : 685 * clazz.getDeclaredConstructor().newInstance() 686 * } 687 * 688 * The latter sequence of calls is inferred to be able to throw 689 * the additional exception types {@link 690 * InvocationTargetException} and {@link 691 * NoSuchMethodException}. Both of these exception types are 692 * subclasses of {@link ReflectiveOperationException}. 693 * 694 * @return a newly allocated instance of the class represented by this 695 * object. 696 * @throws IllegalAccessException if the class or its nullary 697 * constructor is not accessible. 698 * @throws InstantiationException 699 * if this {@code Class} represents an abstract class, 700 * an interface, an array class, a primitive type, or void; 701 * or if the class has no nullary constructor; 702 * or if the instantiation fails for some other reason. 703 * @throws ExceptionInInitializerError if the initialization 704 * provoked by this method fails. 705 */ 706 @CallerSensitive 707 @Deprecated(since="9") 708 public T newInstance() 709 throws InstantiationException, IllegalAccessException 710 { 711 // Constructor lookup 712 Constructor<T> tmpConstructor = cachedConstructor; 713 if (tmpConstructor == null) { 714 if (this == Class.class) { 715 throw new IllegalAccessException( 716 "Can not call newInstance() on the Class for java.lang.Class" 717 ); 718 } 719 try { 720 Class<?>[] empty = {}; 721 final Constructor<T> c = getReflectionFactory().copyConstructor( 722 getConstructor0(empty, Member.DECLARED)); 723 // Disable accessibility checks on the constructor 724 // access check is done with the true caller 725 c.setAccessible(true); 726 cachedConstructor = tmpConstructor = c; 727 } catch (NoSuchMethodException e) { 728 throw (InstantiationException) 729 new InstantiationException(getName()).initCause(e); 730 } 731 } 732 733 try { 734 Class<?> caller = Reflection.getCallerClass(); 735 return getReflectionFactory().newInstance(tmpConstructor, null, caller); 736 } catch (InvocationTargetException e) { 737 Unsafe.getUnsafe().throwException(e.getTargetException()); 738 // Not reached 739 return null; 740 } 741 } 742 743 private transient volatile Constructor<T> cachedConstructor; 744 745 /** 746 * Determines if the specified {@code Object} is assignment-compatible 747 * with the object represented by this {@code Class}. This method is 748 * the dynamic equivalent of the Java language {@code instanceof} 749 * operator. The method returns {@code true} if the specified 750 * {@code Object} argument is non-null and can be cast to the 751 * reference type represented by this {@code Class} object without 752 * raising a {@code ClassCastException.} It returns {@code false} 753 * otherwise. 754 * 755 * <p> Specifically, if this {@code Class} object represents a 756 * declared class, this method returns {@code true} if the specified 757 * {@code Object} argument is an instance of the represented class (or 758 * of any of its subclasses); it returns {@code false} otherwise. If 759 * this {@code Class} object represents an array class, this method 760 * returns {@code true} if the specified {@code Object} argument 761 * can be converted to an object of the array class by an identity 762 * conversion or by a widening reference conversion; it returns 763 * {@code false} otherwise. If this {@code Class} object 764 * represents an interface, this method returns {@code true} if the 765 * class or any superclass of the specified {@code Object} argument 766 * implements this interface; it returns {@code false} otherwise. If 767 * this {@code Class} object represents a primitive type, this method 768 * returns {@code false}. 769 * 770 * @param obj the object to check 771 * @return true if {@code obj} is an instance of this class 772 * 773 * @since 1.1 774 */ 775 @IntrinsicCandidate 776 public native boolean isInstance(Object obj); 777 778 779 /** 780 * Determines if the class or interface represented by this 781 * {@code Class} object is either the same as, or is a superclass or 782 * superinterface of, the class or interface represented by the specified 783 * {@code Class} parameter. It returns {@code true} if so; 784 * otherwise it returns {@code false}. If this {@code Class} 785 * object represents a primitive type, this method returns 786 * {@code true} if the specified {@code Class} parameter is 787 * exactly this {@code Class} object; otherwise it returns 788 * {@code false}. 789 * 790 * <p> Specifically, this method tests whether the type represented by the 791 * specified {@code Class} parameter can be converted to the type 792 * represented by this {@code Class} object via an identity conversion 793 * or via a widening reference conversion. See <cite>The Java Language 794 * Specification</cite>, sections {@jls 5.1.1} and {@jls 5.1.4}, 795 * for details. 796 * 797 * @param cls the {@code Class} object to be checked 798 * @return the {@code boolean} value indicating whether objects of the 799 * type {@code cls} can be assigned to objects of this class 800 * @throws NullPointerException if the specified Class parameter is 801 * null. 802 * @since 1.1 803 */ 804 @IntrinsicCandidate 805 public native boolean isAssignableFrom(Class<?> cls); 806 807 808 /** 809 * Determines if this {@code Class} object represents an 810 * interface type. 811 * 812 * @return {@code true} if this {@code Class} object represents an interface; 813 * {@code false} otherwise. 814 */ 815 @IntrinsicCandidate 816 public native boolean isInterface(); 817 818 819 /** 820 * Determines if this {@code Class} object represents an array class. 821 * 822 * @return {@code true} if this {@code Class} object represents an array class; 823 * {@code false} otherwise. 824 * @since 1.1 825 */ 826 @IntrinsicCandidate 827 public native boolean isArray(); 828 829 830 /** 831 * Determines if this {@code Class} object represents a primitive 832 * type or void. 833 * 834 * <p> There are nine predefined {@code Class} objects to 835 * represent the eight primitive types and void. These are 836 * created by the Java Virtual Machine, and have the same 837 * {@linkplain #getName() names} as the primitive types that they 838 * represent, namely {@code boolean}, {@code byte}, {@code char}, 839 * {@code short}, {@code int}, {@code long}, {@code float}, and 840 * {@code double}. 841 * 842 * <p>No other class objects are considered primitive. 843 * 844 * @apiNote 845 * A {@code Class} object represented by a primitive type can be 846 * accessed via the {@code TYPE} public static final variables 847 * defined in the primitive wrapper classes such as {@link 848 * java.lang.Integer#TYPE Integer.TYPE}. In the Java programming 849 * language, the objects may be referred to by a class literal 850 * expression such as {@code int.class}. The {@code Class} object 851 * for void can be expressed as {@code void.class} or {@link 852 * java.lang.Void#TYPE Void.TYPE}. 853 * 854 * @return true if and only if this class represents a primitive type 855 * 856 * @see java.lang.Boolean#TYPE 857 * @see java.lang.Character#TYPE 858 * @see java.lang.Byte#TYPE 859 * @see java.lang.Short#TYPE 860 * @see java.lang.Integer#TYPE 861 * @see java.lang.Long#TYPE 862 * @see java.lang.Float#TYPE 863 * @see java.lang.Double#TYPE 864 * @see java.lang.Void#TYPE 865 * @since 1.1 866 * @jls 15.8.2 Class Literals 867 */ 868 @IntrinsicCandidate 869 public native boolean isPrimitive(); 870 871 /** 872 * Returns true if this {@code Class} object represents an annotation 873 * interface. Note that if this method returns true, {@link #isInterface()} 874 * would also return true, as all annotation interfaces are also interfaces. 875 * 876 * @return {@code true} if this {@code Class} object represents an annotation 877 * interface; {@code false} otherwise 878 * @since 1.5 879 */ 880 public boolean isAnnotation() { 881 return (getModifiers() & ANNOTATION) != 0; 882 } 883 884 /** 885 *{@return {@code true} if and only if this class has the synthetic modifier 886 * bit set} 887 * 888 * @jls 13.1 The Form of a Binary 889 * @jvms 4.1 The {@code ClassFile} Structure 890 * @see <a 891 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 892 * programming language and JVM modeling in core reflection</a> 893 * @since 1.5 894 */ 895 public boolean isSynthetic() { 896 return (getModifiers() & SYNTHETIC) != 0; 897 } 898 899 /** 900 * Returns the name of the entity (class, interface, array class, 901 * primitive type, or void) represented by this {@code Class} object. 902 * 903 * <p> If this {@code Class} object represents a class or interface, 904 * not an array class, then: 905 * <ul> 906 * <li> If the class or interface is not {@linkplain #isHidden() hidden}, 907 * then the {@linkplain ClassLoader##binary-name binary name} 908 * of the class or interface is returned. 909 * <li> If the class or interface is hidden, then the result is a string 910 * of the form: {@code N + '/' + <suffix>} 911 * where {@code N} is the {@linkplain ClassLoader##binary-name binary name} 912 * indicated by the {@code class} file passed to 913 * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 914 * Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name. 915 * </ul> 916 * 917 * <p> If this {@code Class} object represents an array class, then 918 * the result is a string consisting of one or more '{@code [}' characters 919 * representing the depth of the array nesting, followed by the element 920 * type as encoded using the following table: 921 * 922 * <blockquote><table class="striped" id="nameFormat"> 923 * <caption style="display:none">Element types and encodings</caption> 924 * <thead> 925 * <tr><th scope="col"> Element Type <th scope="col"> Encoding 926 * </thead> 927 * <tbody style="text-align:left"> 928 * <tr><th scope="row"> {@code boolean} <td style="text-align:center"> {@code Z} 929 * <tr><th scope="row"> {@code byte} <td style="text-align:center"> {@code B} 930 * <tr><th scope="row"> {@code char} <td style="text-align:center"> {@code C} 931 * <tr><th scope="row"> class or interface with {@linkplain ClassLoader##binary-name binary name} <i>N</i> 932 * <td style="text-align:center"> {@code L}<em>N</em>{@code ;} 933 * <tr><th scope="row"> {@code double} <td style="text-align:center"> {@code D} 934 * <tr><th scope="row"> {@code float} <td style="text-align:center"> {@code F} 935 * <tr><th scope="row"> {@code int} <td style="text-align:center"> {@code I} 936 * <tr><th scope="row"> {@code long} <td style="text-align:center"> {@code J} 937 * <tr><th scope="row"> {@code short} <td style="text-align:center"> {@code S} 938 * </tbody> 939 * </table></blockquote> 940 * 941 * <p> If this {@code Class} object represents a primitive type or {@code void}, 942 * then the result is a string with the same spelling as the Java language 943 * keyword which corresponds to the primitive type or {@code void}. 944 * 945 * <p> Examples: 946 * <blockquote><pre> 947 * String.class.getName() 948 * returns "java.lang.String" 949 * Character.UnicodeBlock.class.getName() 950 * returns "java.lang.Character$UnicodeBlock" 951 * byte.class.getName() 952 * returns "byte" 953 * (new Object[3]).getClass().getName() 954 * returns "[Ljava.lang.Object;" 955 * (new int[3][4][5][6][7][8][9]).getClass().getName() 956 * returns "[[[[[[[I" 957 * </pre></blockquote> 958 * 959 * @apiNote 960 * Distinct class objects can have the same name but different class loaders. 961 * 962 * @return the name of the class, interface, or other entity 963 * represented by this {@code Class} object. 964 * @jls 13.1 The Form of a Binary 965 */ 966 public String getName() { 967 String name = this.name; 968 return name != null ? name : initClassName(); 969 } 970 971 // Cache the name to reduce the number of calls into the VM. 972 // This field would be set by VM itself during initClassName call. 973 private transient String name; 974 private native String initClassName(); 975 976 /** 977 * Returns the class loader for the class. Some implementations may use 978 * null to represent the bootstrap class loader. This method will return 979 * null in such implementations if this class was loaded by the bootstrap 980 * class loader. 981 * 982 * <p>If this {@code Class} object 983 * represents a primitive type or void, null is returned. 984 * 985 * @return the class loader that loaded the class or interface 986 * represented by this {@code Class} object. 987 * @see java.lang.ClassLoader 988 */ 989 public ClassLoader getClassLoader() { 990 return classLoader; 991 } 992 993 // Package-private to allow ClassLoader access 994 ClassLoader getClassLoader0() { return classLoader; } 995 996 /** 997 * Returns the module that this class or interface is a member of. 998 * 999 * If this class represents an array type then this method returns the 1000 * {@code Module} for the element type. If this class represents a 1001 * primitive type or void, then the {@code Module} object for the 1002 * {@code java.base} module is returned. 1003 * 1004 * If this class is in an unnamed module then the {@linkplain 1005 * ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class 1006 * loader for this class is returned. 1007 * 1008 * @return the module that this class or interface is a member of 1009 * 1010 * @since 9 1011 */ 1012 public Module getModule() { 1013 return module; 1014 } 1015 1016 // set by VM 1017 @Stable 1018 private transient Module module; 1019 1020 // Initialized in JVM not by private constructor 1021 // This field is filtered from reflection access, i.e. getDeclaredField 1022 // will throw NoSuchFieldException 1023 private final ClassLoader classLoader; 1024 1025 private transient Object classData; // Set by VM 1026 private transient Object[] signers; // Read by VM, mutable 1027 1028 // package-private 1029 Object getClassData() { 1030 return classData; 1031 } 1032 1033 /** 1034 * Returns an array of {@code TypeVariable} objects that represent the 1035 * type variables declared by the generic declaration represented by this 1036 * {@code GenericDeclaration} object, in declaration order. Returns an 1037 * array of length 0 if the underlying generic declaration declares no type 1038 * variables. 1039 * 1040 * @return an array of {@code TypeVariable} objects that represent 1041 * the type variables declared by this generic declaration 1042 * @throws java.lang.reflect.GenericSignatureFormatError if the generic 1043 * signature of this generic declaration does not conform to 1044 * the format specified in section {@jvms 4.7.9} of 1045 * <cite>The Java Virtual Machine Specification</cite> 1046 * @since 1.5 1047 */ 1048 @SuppressWarnings("unchecked") 1049 public TypeVariable<Class<T>>[] getTypeParameters() { 1050 ClassRepository info = getGenericInfo(); 1051 if (info != null) 1052 return (TypeVariable<Class<T>>[])info.getTypeParameters(); 1053 else 1054 return (TypeVariable<Class<T>>[])new TypeVariable<?>[0]; 1055 } 1056 1057 1058 /** 1059 * Returns the {@code Class} representing the direct superclass of the 1060 * entity (class, interface, primitive type or void) represented by 1061 * this {@code Class}. If this {@code Class} represents either the 1062 * {@code Object} class, an interface, a primitive type, or void, then 1063 * null is returned. If this {@code Class} object represents an array class 1064 * then the {@code Class} object representing the {@code Object} class is 1065 * returned. 1066 * 1067 * @return the direct superclass of the class represented by this {@code Class} object 1068 */ 1069 @IntrinsicCandidate 1070 public native Class<? super T> getSuperclass(); 1071 1072 1073 /** 1074 * Returns the {@code Type} representing the direct superclass of 1075 * the entity (class, interface, primitive type or void) represented by 1076 * this {@code Class} object. 1077 * 1078 * <p>If the superclass is a parameterized type, the {@code Type} 1079 * object returned must accurately reflect the actual type 1080 * arguments used in the source code. The parameterized type 1081 * representing the superclass is created if it had not been 1082 * created before. See the declaration of {@link 1083 * java.lang.reflect.ParameterizedType ParameterizedType} for the 1084 * semantics of the creation process for parameterized types. If 1085 * this {@code Class} object represents either the {@code Object} 1086 * class, an interface, a primitive type, or void, then null is 1087 * returned. If this {@code Class} object represents an array class 1088 * then the {@code Class} object representing the {@code Object} class is 1089 * returned. 1090 * 1091 * @throws java.lang.reflect.GenericSignatureFormatError if the generic 1092 * class signature does not conform to the format specified in 1093 * section {@jvms 4.7.9} of <cite>The Java Virtual 1094 * Machine Specification</cite> 1095 * @throws TypeNotPresentException if the generic superclass 1096 * refers to a non-existent type declaration 1097 * @throws java.lang.reflect.MalformedParameterizedTypeException if the 1098 * generic superclass refers to a parameterized type that cannot be 1099 * instantiated for any reason 1100 * @return the direct superclass of the class represented by this {@code Class} object 1101 * @since 1.5 1102 */ 1103 public Type getGenericSuperclass() { 1104 ClassRepository info = getGenericInfo(); 1105 if (info == null) { 1106 return getSuperclass(); 1107 } 1108 1109 // Historical irregularity: 1110 // Generic signature marks interfaces with superclass = Object 1111 // but this API returns null for interfaces 1112 if (isInterface()) { 1113 return null; 1114 } 1115 1116 return info.getSuperclass(); 1117 } 1118 1119 /** 1120 * Gets the package of this class. 1121 * 1122 * <p>If this class represents an array type, a primitive type or void, 1123 * this method returns {@code null}. 1124 * 1125 * @return the package of this class. 1126 */ 1127 public Package getPackage() { 1128 if (isPrimitive() || isArray()) { 1129 return null; 1130 } 1131 ClassLoader cl = classLoader; 1132 return cl != null ? cl.definePackage(this) 1133 : BootLoader.definePackage(this); 1134 } 1135 1136 /** 1137 * Returns the fully qualified package name. 1138 * 1139 * <p> If this class is a top level class, then this method returns the fully 1140 * qualified name of the package that the class is a member of, or the 1141 * empty string if the class is in an unnamed package. 1142 * 1143 * <p> If this class is a member class, then this method is equivalent to 1144 * invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass 1145 * enclosing class}. 1146 * 1147 * <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain 1148 * #isAnonymousClass() anonymous class}, then this method is equivalent to 1149 * invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass 1150 * declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or 1151 * {@linkplain #getEnclosingConstructor enclosing constructor}. 1152 * 1153 * <p> If this class represents an array type then this method returns the 1154 * package name of the element type. If this class represents a primitive 1155 * type or void then the package name "{@code java.lang}" is returned. 1156 * 1157 * @return the fully qualified package name 1158 * 1159 * @since 9 1160 * @jls 6.7 Fully Qualified Names and Canonical Names 1161 */ 1162 public String getPackageName() { 1163 String pn = this.packageName; 1164 if (pn == null) { 1165 Class<?> c = isArray() ? elementType() : this; 1166 if (c.isPrimitive()) { 1167 pn = "java.lang"; 1168 } else { 1169 String cn = c.getName(); 1170 int dot = cn.lastIndexOf('.'); 1171 pn = (dot != -1) ? cn.substring(0, dot).intern() : ""; 1172 } 1173 this.packageName = pn; 1174 } 1175 return pn; 1176 } 1177 1178 // cached package name 1179 private transient String packageName; 1180 1181 /** 1182 * Returns the interfaces directly implemented by the class or interface 1183 * represented by this {@code Class} object. 1184 * 1185 * <p>If this {@code Class} object represents a class, the return value is an array 1186 * containing objects representing all interfaces directly implemented by 1187 * the class. The order of the interface objects in the array corresponds 1188 * to the order of the interface names in the {@code implements} clause of 1189 * the declaration of the class represented by this {@code Class} object. For example, 1190 * given the declaration: 1191 * <blockquote> 1192 * {@code class Shimmer implements FloorWax, DessertTopping { ... }} 1193 * </blockquote> 1194 * suppose the value of {@code s} is an instance of 1195 * {@code Shimmer}; the value of the expression: 1196 * <blockquote> 1197 * {@code s.getClass().getInterfaces()[0]} 1198 * </blockquote> 1199 * is the {@code Class} object that represents interface 1200 * {@code FloorWax}; and the value of: 1201 * <blockquote> 1202 * {@code s.getClass().getInterfaces()[1]} 1203 * </blockquote> 1204 * is the {@code Class} object that represents interface 1205 * {@code DessertTopping}. 1206 * 1207 * <p>If this {@code Class} object represents an interface, the array contains objects 1208 * representing all interfaces directly extended by the interface. The 1209 * order of the interface objects in the array corresponds to the order of 1210 * the interface names in the {@code extends} clause of the declaration of 1211 * the interface represented by this {@code Class} object. 1212 * 1213 * <p>If this {@code Class} object represents a class or interface that implements no 1214 * interfaces, the method returns an array of length 0. 1215 * 1216 * <p>If this {@code Class} object represents a primitive type or void, the method 1217 * returns an array of length 0. 1218 * 1219 * <p>If this {@code Class} object represents an array type, the 1220 * interfaces {@code Cloneable} and {@code java.io.Serializable} are 1221 * returned in that order. 1222 * 1223 * @return an array of interfaces directly implemented by this class 1224 */ 1225 public Class<?>[] getInterfaces() { 1226 // defensively copy before handing over to user code 1227 return getInterfaces(true); 1228 } 1229 1230 private Class<?>[] getInterfaces(boolean cloneArray) { 1231 ReflectionData<T> rd = reflectionData(); 1232 if (rd == null) { 1233 // no cloning required 1234 return getInterfaces0(); 1235 } else { 1236 Class<?>[] interfaces = rd.interfaces; 1237 if (interfaces == null) { 1238 interfaces = getInterfaces0(); 1239 rd.interfaces = interfaces; 1240 } 1241 // defensively copy if requested 1242 return cloneArray ? interfaces.clone() : interfaces; 1243 } 1244 } 1245 1246 private native Class<?>[] getInterfaces0(); 1247 1248 /** 1249 * Returns the {@code Type}s representing the interfaces 1250 * directly implemented by the class or interface represented by 1251 * this {@code Class} object. 1252 * 1253 * <p>If a superinterface is a parameterized type, the 1254 * {@code Type} object returned for it must accurately reflect 1255 * the actual type arguments used in the source code. The 1256 * parameterized type representing each superinterface is created 1257 * if it had not been created before. See the declaration of 1258 * {@link java.lang.reflect.ParameterizedType ParameterizedType} 1259 * for the semantics of the creation process for parameterized 1260 * types. 1261 * 1262 * <p>If this {@code Class} object represents a class, the return value is an array 1263 * containing objects representing all interfaces directly implemented by 1264 * the class. The order of the interface objects in the array corresponds 1265 * to the order of the interface names in the {@code implements} clause of 1266 * the declaration of the class represented by this {@code Class} object. 1267 * 1268 * <p>If this {@code Class} object represents an interface, the array contains objects 1269 * representing all interfaces directly extended by the interface. The 1270 * order of the interface objects in the array corresponds to the order of 1271 * the interface names in the {@code extends} clause of the declaration of 1272 * the interface represented by this {@code Class} object. 1273 * 1274 * <p>If this {@code Class} object represents a class or interface that implements no 1275 * interfaces, the method returns an array of length 0. 1276 * 1277 * <p>If this {@code Class} object represents a primitive type or void, the method 1278 * returns an array of length 0. 1279 * 1280 * <p>If this {@code Class} object represents an array type, the 1281 * interfaces {@code Cloneable} and {@code java.io.Serializable} are 1282 * returned in that order. 1283 * 1284 * @throws java.lang.reflect.GenericSignatureFormatError 1285 * if the generic class signature does not conform to the 1286 * format specified in section {@jvms 4.7.9} of <cite>The 1287 * Java Virtual Machine Specification</cite> 1288 * @throws TypeNotPresentException if any of the generic 1289 * superinterfaces refers to a non-existent type declaration 1290 * @throws java.lang.reflect.MalformedParameterizedTypeException 1291 * if any of the generic superinterfaces refer to a parameterized 1292 * type that cannot be instantiated for any reason 1293 * @return an array of interfaces directly implemented by this class 1294 * @since 1.5 1295 */ 1296 public Type[] getGenericInterfaces() { 1297 ClassRepository info = getGenericInfo(); 1298 return (info == null) ? getInterfaces() : info.getSuperInterfaces(); 1299 } 1300 1301 1302 /** 1303 * Returns the {@code Class} representing the component type of an 1304 * array. If this class does not represent an array class this method 1305 * returns null. 1306 * 1307 * @return the {@code Class} representing the component type of this 1308 * class if this class is an array 1309 * @see java.lang.reflect.Array 1310 * @since 1.1 1311 */ 1312 public Class<?> getComponentType() { 1313 // Only return for array types. Storage may be reused for Class for instance types. 1314 if (isArray()) { 1315 return componentType; 1316 } else { 1317 return null; 1318 } 1319 } 1320 1321 private final Class<?> componentType; 1322 1323 /* 1324 * Returns the {@code Class} representing the element type of an array class. 1325 * If this class does not represent an array class, then this method returns 1326 * {@code null}. 1327 */ 1328 private Class<?> elementType() { 1329 if (!isArray()) return null; 1330 1331 Class<?> c = this; 1332 while (c.isArray()) { 1333 c = c.getComponentType(); 1334 } 1335 return c; 1336 } 1337 1338 /** 1339 * Returns the Java language modifiers for this class or interface, encoded 1340 * in an integer. The modifiers consist of the Java Virtual Machine's 1341 * constants for {@code public}, {@code protected}, 1342 * {@code private}, {@code final}, {@code static}, 1343 * {@code abstract} and {@code interface}; they should be decoded 1344 * using the methods of class {@code Modifier}. 1345 * 1346 * <p> If the underlying class is an array class: 1347 * <ul> 1348 * <li> its {@code public}, {@code private} and {@code protected} 1349 * modifiers are the same as those of its component type 1350 * <li> its {@code abstract} and {@code final} modifiers are always 1351 * {@code true} 1352 * <li> its interface modifier is always {@code false}, even when 1353 * the component type is an interface 1354 * </ul> 1355 * If this {@code Class} object represents a primitive type or 1356 * void, its {@code public}, {@code abstract}, and {@code final} 1357 * modifiers are always {@code true}. 1358 * For {@code Class} objects representing void, primitive types, and 1359 * arrays, the values of other modifiers are {@code false} other 1360 * than as specified above. 1361 * 1362 * <p> The modifier encodings are defined in section {@jvms 4.1} 1363 * of <cite>The Java Virtual Machine Specification</cite>. 1364 * 1365 * @return the {@code int} representing the modifiers for this class 1366 * @see java.lang.reflect.Modifier 1367 * @see #accessFlags() 1368 * @see <a 1369 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 1370 * programming language and JVM modeling in core reflection</a> 1371 * @since 1.1 1372 * @jls 8.1.1 Class Modifiers 1373 * @jls 9.1.1 Interface Modifiers 1374 * @jvms 4.1 The {@code ClassFile} Structure 1375 */ 1376 @IntrinsicCandidate 1377 public native int getModifiers(); 1378 1379 /** 1380 * {@return an unmodifiable set of the {@linkplain AccessFlag access 1381 * flags} for this class, possibly empty} 1382 * 1383 * <p> If the underlying class is an array class: 1384 * <ul> 1385 * <li> its {@code PUBLIC}, {@code PRIVATE} and {@code PROTECTED} 1386 * access flags are the same as those of its component type 1387 * <li> its {@code ABSTRACT} and {@code FINAL} flags are present 1388 * <li> its {@code INTERFACE} flag is absent, even when the 1389 * component type is an interface 1390 * </ul> 1391 * If this {@code Class} object represents a primitive type or 1392 * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and 1393 * {@code FINAL}. 1394 * For {@code Class} objects representing void, primitive types, and 1395 * arrays, access flags are absent other than as specified above. 1396 * 1397 * @see #getModifiers() 1398 * @jvms 4.1 The ClassFile Structure 1399 * @jvms 4.7.6 The InnerClasses Attribute 1400 * @since 20 1401 */ 1402 public Set<AccessFlag> accessFlags() { 1403 // Location.CLASS allows SUPER and AccessFlag.MODULE which 1404 // INNER_CLASS forbids. INNER_CLASS allows PRIVATE, PROTECTED, 1405 // and STATIC, which are not allowed on Location.CLASS. 1406 // Use getClassAccessFlagsRaw to expose SUPER status. 1407 var location = (isMemberClass() || isLocalClass() || 1408 isAnonymousClass() || isArray()) ? 1409 AccessFlag.Location.INNER_CLASS : 1410 AccessFlag.Location.CLASS; 1411 return AccessFlag.maskToAccessFlags((location == AccessFlag.Location.CLASS) ? 1412 getClassAccessFlagsRaw() : 1413 getModifiers(), 1414 location); 1415 } 1416 1417 /** 1418 * Gets the signers of this class. 1419 * 1420 * @return the signers of this class, or null if there are no signers. In 1421 * particular, this method returns null if this {@code Class} object represents 1422 * a primitive type or void. 1423 * @since 1.1 1424 */ 1425 public Object[] getSigners() { 1426 var signers = this.signers; 1427 return signers == null ? null : signers.clone(); 1428 } 1429 1430 /** 1431 * Set the signers of this class. 1432 */ 1433 void setSigners(Object[] signers) { 1434 if (!isPrimitive() && !isArray()) { 1435 this.signers = signers; 1436 } 1437 } 1438 1439 /** 1440 * If this {@code Class} object represents a local or anonymous 1441 * class within a method, returns a {@link 1442 * java.lang.reflect.Method Method} object representing the 1443 * immediately enclosing method of the underlying class. Returns 1444 * {@code null} otherwise. 1445 * 1446 * In particular, this method returns {@code null} if the underlying 1447 * class is a local or anonymous class immediately enclosed by a class or 1448 * interface declaration, instance initializer or static initializer. 1449 * 1450 * @return the immediately enclosing method of the underlying class, if 1451 * that class is a local or anonymous class; otherwise {@code null}. 1452 * 1453 * @since 1.5 1454 */ 1455 public Method getEnclosingMethod() { 1456 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1457 1458 if (enclosingInfo == null) 1459 return null; 1460 else { 1461 if (!enclosingInfo.isMethod()) 1462 return null; 1463 1464 MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(), 1465 getFactory()); 1466 Class<?> returnType = toClass(typeInfo.getReturnType()); 1467 Type [] parameterTypes = typeInfo.getParameterTypes(); 1468 Class<?>[] parameterClasses = new Class<?>[parameterTypes.length]; 1469 1470 // Convert Types to Classes; returned types *should* 1471 // be class objects since the methodDescriptor's used 1472 // don't have generics information 1473 for(int i = 0; i < parameterClasses.length; i++) 1474 parameterClasses[i] = toClass(parameterTypes[i]); 1475 1476 final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass(); 1477 Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false); 1478 1479 /* 1480 * Loop over all declared methods; match method name, 1481 * number of and type of parameters, *and* return 1482 * type. Matching return type is also necessary 1483 * because of covariant returns, etc. 1484 */ 1485 ReflectionFactory fact = getReflectionFactory(); 1486 for (Method m : candidates) { 1487 if (m.getName().equals(enclosingInfo.getName()) && 1488 arrayContentsEq(parameterClasses, 1489 fact.getExecutableSharedParameterTypes(m))) { 1490 // finally, check return type 1491 if (m.getReturnType().equals(returnType)) { 1492 return fact.copyMethod(m); 1493 } 1494 } 1495 } 1496 1497 throw new InternalError("Enclosing method not found"); 1498 } 1499 } 1500 1501 private native Object[] getEnclosingMethod0(); 1502 1503 private EnclosingMethodInfo getEnclosingMethodInfo() { 1504 Object[] enclosingInfo = getEnclosingMethod0(); 1505 if (enclosingInfo == null) 1506 return null; 1507 else { 1508 return new EnclosingMethodInfo(enclosingInfo); 1509 } 1510 } 1511 1512 private static final class EnclosingMethodInfo { 1513 private final Class<?> enclosingClass; 1514 private final String name; 1515 private final String descriptor; 1516 1517 static void validate(Object[] enclosingInfo) { 1518 if (enclosingInfo.length != 3) 1519 throw new InternalError("Malformed enclosing method information"); 1520 try { 1521 // The array is expected to have three elements: 1522 1523 // the immediately enclosing class 1524 Class<?> enclosingClass = (Class<?>)enclosingInfo[0]; 1525 assert(enclosingClass != null); 1526 1527 // the immediately enclosing method or constructor's 1528 // name (can be null). 1529 String name = (String)enclosingInfo[1]; 1530 1531 // the immediately enclosing method or constructor's 1532 // descriptor (null iff name is). 1533 String descriptor = (String)enclosingInfo[2]; 1534 assert((name != null && descriptor != null) || name == descriptor); 1535 } catch (ClassCastException cce) { 1536 throw new InternalError("Invalid type in enclosing method information", cce); 1537 } 1538 } 1539 1540 EnclosingMethodInfo(Object[] enclosingInfo) { 1541 validate(enclosingInfo); 1542 this.enclosingClass = (Class<?>)enclosingInfo[0]; 1543 this.name = (String)enclosingInfo[1]; 1544 this.descriptor = (String)enclosingInfo[2]; 1545 } 1546 1547 boolean isPartial() { 1548 return enclosingClass == null || name == null || descriptor == null; 1549 } 1550 1551 boolean isConstructor() { return !isPartial() && ConstantDescs.INIT_NAME.equals(name); } 1552 1553 boolean isMethod() { return !isPartial() && !isConstructor() && !ConstantDescs.CLASS_INIT_NAME.equals(name); } 1554 1555 Class<?> getEnclosingClass() { return enclosingClass; } 1556 1557 String getName() { return name; } 1558 1559 String getDescriptor() { return descriptor; } 1560 1561 } 1562 1563 private static Class<?> toClass(Type o) { 1564 if (o instanceof GenericArrayType gat) 1565 return toClass(gat.getGenericComponentType()).arrayType(); 1566 return (Class<?>)o; 1567 } 1568 1569 /** 1570 * If this {@code Class} object represents a local or anonymous 1571 * class within a constructor, returns a {@link 1572 * java.lang.reflect.Constructor Constructor} object representing 1573 * the immediately enclosing constructor of the underlying 1574 * class. Returns {@code null} otherwise. In particular, this 1575 * method returns {@code null} if the underlying class is a local 1576 * or anonymous class immediately enclosed by a class or 1577 * interface declaration, instance initializer or static initializer. 1578 * 1579 * @return the immediately enclosing constructor of the underlying class, if 1580 * that class is a local or anonymous class; otherwise {@code null}. 1581 * 1582 * @since 1.5 1583 */ 1584 public Constructor<?> getEnclosingConstructor() { 1585 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1586 1587 if (enclosingInfo == null) 1588 return null; 1589 else { 1590 if (!enclosingInfo.isConstructor()) 1591 return null; 1592 1593 ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(), 1594 getFactory()); 1595 Type [] parameterTypes = typeInfo.getParameterTypes(); 1596 Class<?>[] parameterClasses = new Class<?>[parameterTypes.length]; 1597 1598 // Convert Types to Classes; returned types *should* 1599 // be class objects since the methodDescriptor's used 1600 // don't have generics information 1601 for (int i = 0; i < parameterClasses.length; i++) 1602 parameterClasses[i] = toClass(parameterTypes[i]); 1603 1604 1605 final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass(); 1606 Constructor<?>[] candidates = enclosingCandidate 1607 .privateGetDeclaredConstructors(false); 1608 /* 1609 * Loop over all declared constructors; match number 1610 * of and type of parameters. 1611 */ 1612 ReflectionFactory fact = getReflectionFactory(); 1613 for (Constructor<?> c : candidates) { 1614 if (arrayContentsEq(parameterClasses, 1615 fact.getExecutableSharedParameterTypes(c))) { 1616 return fact.copyConstructor(c); 1617 } 1618 } 1619 1620 throw new InternalError("Enclosing constructor not found"); 1621 } 1622 } 1623 1624 1625 /** 1626 * If the class or interface represented by this {@code Class} object 1627 * is a member of another class, returns the {@code Class} object 1628 * representing the class in which it was declared. This method returns 1629 * null if this class or interface is not a member of any other class. If 1630 * this {@code Class} object represents an array class, a primitive 1631 * type, or void, then this method returns null. 1632 * 1633 * @return the declaring class for this class 1634 * @since 1.1 1635 */ 1636 public Class<?> getDeclaringClass() { 1637 return getDeclaringClass0(); 1638 } 1639 1640 private native Class<?> getDeclaringClass0(); 1641 1642 1643 /** 1644 * Returns the immediately enclosing class of the underlying 1645 * class. If the underlying class is a top level class this 1646 * method returns {@code null}. 1647 * @return the immediately enclosing class of the underlying class 1648 * @since 1.5 1649 */ 1650 public Class<?> getEnclosingClass() { 1651 // There are five kinds of classes (or interfaces): 1652 // a) Top level classes 1653 // b) Nested classes (static member classes) 1654 // c) Inner classes (non-static member classes) 1655 // d) Local classes (named classes declared within a method) 1656 // e) Anonymous classes 1657 1658 1659 // JVM Spec 4.7.7: A class must have an EnclosingMethod 1660 // attribute if and only if it is a local class or an 1661 // anonymous class. 1662 EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo(); 1663 Class<?> enclosingCandidate; 1664 1665 if (enclosingInfo == null) { 1666 // This is a top level or a nested class or an inner class (a, b, or c) 1667 enclosingCandidate = getDeclaringClass0(); 1668 } else { 1669 Class<?> enclosingClass = enclosingInfo.getEnclosingClass(); 1670 // This is a local class or an anonymous class (d or e) 1671 if (enclosingClass == this || enclosingClass == null) 1672 throw new InternalError("Malformed enclosing method information"); 1673 else 1674 enclosingCandidate = enclosingClass; 1675 } 1676 return enclosingCandidate; 1677 } 1678 1679 /** 1680 * Returns the simple name of the underlying class as given in the 1681 * source code. An empty string is returned if the underlying class is 1682 * {@linkplain #isAnonymousClass() anonymous}. 1683 * A {@linkplain #isSynthetic() synthetic class}, one not present 1684 * in source code, can have a non-empty name including special 1685 * characters, such as "{@code $}". 1686 * 1687 * <p>The simple name of an {@linkplain #isArray() array class} is the simple name of the 1688 * component type with "[]" appended. In particular the simple 1689 * name of an array class whose component type is anonymous is "[]". 1690 * 1691 * @return the simple name of the underlying class 1692 * @since 1.5 1693 */ 1694 public String getSimpleName() { 1695 ReflectionData<T> rd = reflectionData(); 1696 String simpleName = rd.simpleName; 1697 if (simpleName == null) { 1698 rd.simpleName = simpleName = getSimpleName0(); 1699 } 1700 return simpleName; 1701 } 1702 1703 private String getSimpleName0() { 1704 if (isArray()) { 1705 return getComponentType().getSimpleName().concat("[]"); 1706 } 1707 String simpleName = getSimpleBinaryName(); 1708 if (simpleName == null) { // top level class 1709 simpleName = getName(); 1710 simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name 1711 } 1712 return simpleName; 1713 } 1714 1715 /** 1716 * Return an informative string for the name of this class or interface. 1717 * 1718 * @return an informative string for the name of this class or interface 1719 * @since 1.8 1720 */ 1721 public String getTypeName() { 1722 if (isArray()) { 1723 try { 1724 Class<?> cl = this; 1725 int dimensions = 0; 1726 do { 1727 dimensions++; 1728 cl = cl.getComponentType(); 1729 } while (cl.isArray()); 1730 return cl.getName().concat("[]".repeat(dimensions)); 1731 } catch (Throwable e) { /*FALLTHRU*/ } 1732 } 1733 return getName(); 1734 } 1735 1736 /** 1737 * Returns the canonical name of the underlying class as 1738 * defined by <cite>The Java Language Specification</cite>. 1739 * Returns {@code null} if the underlying class does not have a canonical 1740 * name. Classes without canonical names include: 1741 * <ul> 1742 * <li>a {@linkplain #isLocalClass() local class} 1743 * <li>a {@linkplain #isAnonymousClass() anonymous class} 1744 * <li>a {@linkplain #isHidden() hidden class} 1745 * <li>an array whose component type does not have a canonical name</li> 1746 * </ul> 1747 * 1748 * The canonical name for a primitive class is the keyword for the 1749 * corresponding primitive type ({@code byte}, {@code short}, 1750 * {@code char}, {@code int}, and so on). 1751 * 1752 * <p>An array type has a canonical name if and only if its 1753 * component type has a canonical name. When an array type has a 1754 * canonical name, it is equal to the canonical name of the 1755 * component type followed by "{@code []}". 1756 * 1757 * @return the canonical name of the underlying class if it exists, and 1758 * {@code null} otherwise. 1759 * @jls 6.7 Fully Qualified Names and Canonical Names 1760 * @since 1.5 1761 */ 1762 public String getCanonicalName() { 1763 ReflectionData<T> rd = reflectionData(); 1764 String canonicalName = rd.canonicalName; 1765 if (canonicalName == null) { 1766 rd.canonicalName = canonicalName = getCanonicalName0(); 1767 } 1768 return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName; 1769 } 1770 1771 private String getCanonicalName0() { 1772 if (isArray()) { 1773 String canonicalName = getComponentType().getCanonicalName(); 1774 if (canonicalName != null) 1775 return canonicalName.concat("[]"); 1776 else 1777 return ReflectionData.NULL_SENTINEL; 1778 } 1779 if (isHidden() || isLocalOrAnonymousClass()) 1780 return ReflectionData.NULL_SENTINEL; 1781 Class<?> enclosingClass = getEnclosingClass(); 1782 if (enclosingClass == null) { // top level class 1783 return getName(); 1784 } else { 1785 String enclosingName = enclosingClass.getCanonicalName(); 1786 if (enclosingName == null) 1787 return ReflectionData.NULL_SENTINEL; 1788 String simpleName = getSimpleName(); 1789 return new StringBuilder(enclosingName.length() + simpleName.length() + 1) 1790 .append(enclosingName) 1791 .append('.') 1792 .append(simpleName) 1793 .toString(); 1794 } 1795 } 1796 1797 /** 1798 * Returns {@code true} if and only if the underlying class 1799 * is an anonymous class. 1800 * 1801 * @apiNote 1802 * An anonymous class is not a {@linkplain #isHidden() hidden class}. 1803 * 1804 * @return {@code true} if and only if this class is an anonymous class. 1805 * @since 1.5 1806 * @jls 15.9.5 Anonymous Class Declarations 1807 */ 1808 public boolean isAnonymousClass() { 1809 return !isArray() && isLocalOrAnonymousClass() && 1810 getSimpleBinaryName0() == null; 1811 } 1812 1813 /** 1814 * Returns {@code true} if and only if the underlying class 1815 * is a local class. 1816 * 1817 * @return {@code true} if and only if this class is a local class. 1818 * @since 1.5 1819 * @jls 14.3 Local Class and Interface Declarations 1820 */ 1821 public boolean isLocalClass() { 1822 return isLocalOrAnonymousClass() && 1823 (isArray() || getSimpleBinaryName0() != null); 1824 } 1825 1826 /** 1827 * Returns {@code true} if and only if the underlying class 1828 * is a member class. 1829 * 1830 * @return {@code true} if and only if this class is a member class. 1831 * @since 1.5 1832 * @jls 8.5 Member Class and Interface Declarations 1833 */ 1834 public boolean isMemberClass() { 1835 return !isLocalOrAnonymousClass() && getDeclaringClass0() != null; 1836 } 1837 1838 /** 1839 * Returns the "simple binary name" of the underlying class, i.e., 1840 * the binary name without the leading enclosing class name. 1841 * Returns {@code null} if the underlying class is a top level 1842 * class. 1843 */ 1844 private String getSimpleBinaryName() { 1845 if (isTopLevelClass()) 1846 return null; 1847 String name = getSimpleBinaryName0(); 1848 if (name == null) // anonymous class 1849 return ""; 1850 return name; 1851 } 1852 1853 private native String getSimpleBinaryName0(); 1854 1855 /** 1856 * Returns {@code true} if this is a top level class. Returns {@code false} 1857 * otherwise. 1858 */ 1859 private boolean isTopLevelClass() { 1860 return !isLocalOrAnonymousClass() && getDeclaringClass0() == null; 1861 } 1862 1863 /** 1864 * Returns {@code true} if this is a local class or an anonymous 1865 * class. Returns {@code false} otherwise. 1866 */ 1867 private boolean isLocalOrAnonymousClass() { 1868 // JVM Spec 4.7.7: A class must have an EnclosingMethod 1869 // attribute if and only if it is a local class or an 1870 // anonymous class. 1871 return hasEnclosingMethodInfo(); 1872 } 1873 1874 private boolean hasEnclosingMethodInfo() { 1875 Object[] enclosingInfo = getEnclosingMethod0(); 1876 if (enclosingInfo != null) { 1877 EnclosingMethodInfo.validate(enclosingInfo); 1878 return true; 1879 } 1880 return false; 1881 } 1882 1883 /** 1884 * Returns an array containing {@code Class} objects representing all 1885 * the public classes and interfaces that are members of the class 1886 * represented by this {@code Class} object. This includes public 1887 * class and interface members inherited from superclasses and public class 1888 * and interface members declared by the class. This method returns an 1889 * array of length 0 if this {@code Class} object has no public member 1890 * classes or interfaces. This method also returns an array of length 0 if 1891 * this {@code Class} object represents a primitive type, an array 1892 * class, or void. 1893 * 1894 * @return the array of {@code Class} objects representing the public 1895 * members of this class 1896 * @since 1.1 1897 */ 1898 public Class<?>[] getClasses() { 1899 List<Class<?>> list = new ArrayList<>(); 1900 Class<?> currentClass = Class.this; 1901 while (currentClass != null) { 1902 for (Class<?> m : currentClass.getDeclaredClasses()) { 1903 if (Modifier.isPublic(m.getModifiers())) { 1904 list.add(m); 1905 } 1906 } 1907 currentClass = currentClass.getSuperclass(); 1908 } 1909 return list.toArray(new Class<?>[0]); 1910 } 1911 1912 1913 /** 1914 * Returns an array containing {@code Field} objects reflecting all 1915 * the accessible public fields of the class or interface represented by 1916 * this {@code Class} object. 1917 * 1918 * <p> If this {@code Class} object represents a class or interface with 1919 * no accessible public fields, then this method returns an array of length 1920 * 0. 1921 * 1922 * <p> If this {@code Class} object represents a class, then this method 1923 * returns the public fields of the class and of all its superclasses and 1924 * superinterfaces. 1925 * 1926 * <p> If this {@code Class} object represents an interface, then this 1927 * method returns the fields of the interface and of all its 1928 * superinterfaces. 1929 * 1930 * <p> If this {@code Class} object represents an array type, a primitive 1931 * type, or void, then this method returns an array of length 0. 1932 * 1933 * <p> The elements in the returned array are not sorted and are not in any 1934 * particular order. 1935 * 1936 * @return the array of {@code Field} objects representing the 1937 * public fields 1938 * 1939 * @since 1.1 1940 * @jls 8.2 Class Members 1941 * @jls 8.3 Field Declarations 1942 */ 1943 public Field[] getFields() { 1944 return copyFields(privateGetPublicFields()); 1945 } 1946 1947 1948 /** 1949 * Returns an array containing {@code Method} objects reflecting all the 1950 * public methods of the class or interface represented by this {@code 1951 * Class} object, including those declared by the class or interface and 1952 * those inherited from superclasses and superinterfaces. 1953 * 1954 * <p> If this {@code Class} object represents an array type, then the 1955 * returned array has a {@code Method} object for each of the public 1956 * methods inherited by the array type from {@code Object}. It does not 1957 * contain a {@code Method} object for {@code clone()}. 1958 * 1959 * <p> If this {@code Class} object represents an interface then the 1960 * returned array does not contain any implicitly declared methods from 1961 * {@code Object}. Therefore, if no methods are explicitly declared in 1962 * this interface or any of its superinterfaces then the returned array 1963 * has length 0. (Note that a {@code Class} object which represents a class 1964 * always has public methods, inherited from {@code Object}.) 1965 * 1966 * <p> The returned array never contains methods with names {@value 1967 * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}. 1968 * 1969 * <p> The elements in the returned array are not sorted and are not in any 1970 * particular order. 1971 * 1972 * <p> Generally, the result is computed as with the following 4 step algorithm. 1973 * Let C be the class or interface represented by this {@code Class} object: 1974 * <ol> 1975 * <li> A union of methods is composed of: 1976 * <ol type="a"> 1977 * <li> C's declared public instance and static methods as returned by 1978 * {@link #getDeclaredMethods()} and filtered to include only public 1979 * methods.</li> 1980 * <li> If C is a class other than {@code Object}, then include the result 1981 * of invoking this algorithm recursively on the superclass of C.</li> 1982 * <li> Include the results of invoking this algorithm recursively on all 1983 * direct superinterfaces of C, but include only instance methods.</li> 1984 * </ol></li> 1985 * <li> Union from step 1 is partitioned into subsets of methods with same 1986 * signature (name, parameter types) and return type.</li> 1987 * <li> Within each such subset only the most specific methods are selected. 1988 * Let method M be a method from a set of methods with same signature 1989 * and return type. M is most specific if there is no such method 1990 * N != M from the same set, such that N is more specific than M. 1991 * N is more specific than M if: 1992 * <ol type="a"> 1993 * <li> N is declared by a class and M is declared by an interface; or</li> 1994 * <li> N and M are both declared by classes or both by interfaces and 1995 * N's declaring type is the same as or a subtype of M's declaring type 1996 * (clearly, if M's and N's declaring types are the same type, then 1997 * M and N are the same method).</li> 1998 * </ol></li> 1999 * <li> The result of this algorithm is the union of all selected methods from 2000 * step 3.</li> 2001 * </ol> 2002 * 2003 * @apiNote There may be more than one method with a particular name 2004 * and parameter types in a class because while the Java language forbids a 2005 * class to declare multiple methods with the same signature but different 2006 * return types, the Java virtual machine does not. This 2007 * increased flexibility in the virtual machine can be used to 2008 * implement various language features. For example, covariant 2009 * returns can be implemented with {@linkplain 2010 * java.lang.reflect.Method#isBridge bridge methods}; the bridge 2011 * method and the overriding method would have the same 2012 * signature but different return types. 2013 * 2014 * @return the array of {@code Method} objects representing the 2015 * public methods of this class 2016 * 2017 * @jls 8.2 Class Members 2018 * @jls 8.4 Method Declarations 2019 * @since 1.1 2020 */ 2021 public Method[] getMethods() { 2022 return copyMethods(privateGetPublicMethods()); 2023 } 2024 2025 2026 /** 2027 * Returns an array containing {@code Constructor} objects reflecting 2028 * all the public constructors of the class represented by this 2029 * {@code Class} object. An array of length 0 is returned if the 2030 * class has no public constructors, or if the class is an array class, or 2031 * if the class reflects a primitive type or void. 2032 * 2033 * @apiNote 2034 * While this method returns an array of {@code 2035 * Constructor<T>} objects (that is an array of constructors from 2036 * this class), the return type of this method is {@code 2037 * Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as 2038 * might be expected. This less informative return type is 2039 * necessary since after being returned from this method, the 2040 * array could be modified to hold {@code Constructor} objects for 2041 * different classes, which would violate the type guarantees of 2042 * {@code Constructor<T>[]}. 2043 * 2044 * @return the array of {@code Constructor} objects representing the 2045 * public constructors of this class 2046 * 2047 * @see #getDeclaredConstructors() 2048 * @since 1.1 2049 */ 2050 public Constructor<?>[] getConstructors() { 2051 return copyConstructors(privateGetDeclaredConstructors(true)); 2052 } 2053 2054 2055 /** 2056 * Returns a {@code Field} object that reflects the specified public member 2057 * field of the class or interface represented by this {@code Class} 2058 * object. The {@code name} parameter is a {@code String} specifying the 2059 * simple name of the desired field. 2060 * 2061 * <p> The field to be reflected is determined by the algorithm that 2062 * follows. Let C be the class or interface represented by this {@code Class} object: 2063 * 2064 * <OL> 2065 * <LI> If C declares a public field with the name specified, that is the 2066 * field to be reflected.</LI> 2067 * <LI> If no field was found in step 1 above, this algorithm is applied 2068 * recursively to each direct superinterface of C. The direct 2069 * superinterfaces are searched in the order they were declared.</LI> 2070 * <LI> If no field was found in steps 1 and 2 above, and C has a 2071 * superclass S, then this algorithm is invoked recursively upon S. 2072 * If C has no superclass, then a {@code NoSuchFieldException} 2073 * is thrown.</LI> 2074 * </OL> 2075 * 2076 * <p> If this {@code Class} object represents an array type, then this 2077 * method does not find the {@code length} field of the array type. 2078 * 2079 * @param name the field name 2080 * @return the {@code Field} object of this class specified by 2081 * {@code name} 2082 * @throws NoSuchFieldException if a field with the specified name is 2083 * not found. 2084 * @throws NullPointerException if {@code name} is {@code null} 2085 * 2086 * @since 1.1 2087 * @jls 8.2 Class Members 2088 * @jls 8.3 Field Declarations 2089 */ 2090 public Field getField(String name) throws NoSuchFieldException { 2091 Objects.requireNonNull(name); 2092 Field field = getField0(name); 2093 if (field == null) { 2094 throw new NoSuchFieldException(name); 2095 } 2096 return getReflectionFactory().copyField(field); 2097 } 2098 2099 2100 /** 2101 * Returns a {@code Method} object that reflects the specified public 2102 * member method of the class or interface represented by this 2103 * {@code Class} object. The {@code name} parameter is a 2104 * {@code String} specifying the simple name of the desired method. The 2105 * {@code parameterTypes} parameter is an array of {@code Class} 2106 * objects that identify the method's formal parameter types, in declared 2107 * order. If {@code parameterTypes} is {@code null}, it is 2108 * treated as if it were an empty array. 2109 * 2110 * <p> If this {@code Class} object represents an array type, then this 2111 * method finds any public method inherited by the array type from 2112 * {@code Object} except method {@code clone()}. 2113 * 2114 * <p> If this {@code Class} object represents an interface then this 2115 * method does not find any implicitly declared method from 2116 * {@code Object}. Therefore, if no methods are explicitly declared in 2117 * this interface or any of its superinterfaces, then this method does not 2118 * find any method. 2119 * 2120 * <p> This method does not find any method with name {@value 2121 * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}. 2122 * 2123 * <p> Generally, the method to be reflected is determined by the 4 step 2124 * algorithm that follows. 2125 * Let C be the class or interface represented by this {@code Class} object: 2126 * <ol> 2127 * <li> A union of methods is composed of: 2128 * <ol type="a"> 2129 * <li> C's declared public instance and static methods as returned by 2130 * {@link #getDeclaredMethods()} and filtered to include only public 2131 * methods that match given {@code name} and {@code parameterTypes}</li> 2132 * <li> If C is a class other than {@code Object}, then include the result 2133 * of invoking this algorithm recursively on the superclass of C.</li> 2134 * <li> Include the results of invoking this algorithm recursively on all 2135 * direct superinterfaces of C, but include only instance methods.</li> 2136 * </ol></li> 2137 * <li> This union is partitioned into subsets of methods with same 2138 * return type (the selection of methods from step 1 also guarantees that 2139 * they have the same method name and parameter types).</li> 2140 * <li> Within each such subset only the most specific methods are selected. 2141 * Let method M be a method from a set of methods with same VM 2142 * signature (return type, name, parameter types). 2143 * M is most specific if there is no such method N != M from the same 2144 * set, such that N is more specific than M. N is more specific than M 2145 * if: 2146 * <ol type="a"> 2147 * <li> N is declared by a class and M is declared by an interface; or</li> 2148 * <li> N and M are both declared by classes or both by interfaces and 2149 * N's declaring type is the same as or a subtype of M's declaring type 2150 * (clearly, if M's and N's declaring types are the same type, then 2151 * M and N are the same method).</li> 2152 * </ol></li> 2153 * <li> The result of this algorithm is chosen arbitrarily from the methods 2154 * with most specific return type among all selected methods from step 3. 2155 * Let R be a return type of a method M from the set of all selected methods 2156 * from step 3. M is a method with most specific return type if there is 2157 * no such method N != M from the same set, having return type S != R, 2158 * such that S is a subtype of R as determined by 2159 * R.class.{@link #isAssignableFrom}(S.class). 2160 * </ol> 2161 * 2162 * @apiNote There may be more than one method with matching name and 2163 * parameter types in a class because while the Java language forbids a 2164 * class to declare multiple methods with the same signature but different 2165 * return types, the Java virtual machine does not. This 2166 * increased flexibility in the virtual machine can be used to 2167 * implement various language features. For example, covariant 2168 * returns can be implemented with {@linkplain 2169 * java.lang.reflect.Method#isBridge bridge methods}; the bridge 2170 * method and the overriding method would have the same 2171 * signature but different return types. This method would return the 2172 * overriding method as it would have a more specific return type. 2173 * 2174 * @param name the name of the method 2175 * @param parameterTypes the list of parameters 2176 * @return the {@code Method} object that matches the specified 2177 * {@code name} and {@code parameterTypes} 2178 * @throws NoSuchMethodException if a matching method is not found 2179 * or if the name is {@value ConstantDescs#INIT_NAME} or 2180 * {@value ConstantDescs#CLASS_INIT_NAME}. 2181 * @throws NullPointerException if {@code name} is {@code null} 2182 * 2183 * @jls 8.2 Class Members 2184 * @jls 8.4 Method Declarations 2185 * @since 1.1 2186 */ 2187 public Method getMethod(String name, Class<?>... parameterTypes) 2188 throws NoSuchMethodException { 2189 Objects.requireNonNull(name); 2190 Method method = getMethod0(name, parameterTypes); 2191 if (method == null) { 2192 throw new NoSuchMethodException(methodToString(name, parameterTypes)); 2193 } 2194 return getReflectionFactory().copyMethod(method); 2195 } 2196 2197 /** 2198 * Returns a {@code Constructor} object that reflects the specified 2199 * public constructor of the class represented by this {@code Class} 2200 * object. The {@code parameterTypes} parameter is an array of 2201 * {@code Class} objects that identify the constructor's formal 2202 * parameter types, in declared order. 2203 * 2204 * If this {@code Class} object represents an inner class 2205 * declared in a non-static context, the formal parameter types 2206 * include the explicit enclosing instance as the first parameter. 2207 * 2208 * <p> The constructor to reflect is the public constructor of the class 2209 * represented by this {@code Class} object whose formal parameter 2210 * types match those specified by {@code parameterTypes}. 2211 * 2212 * @param parameterTypes the parameter array 2213 * @return the {@code Constructor} object of the public constructor that 2214 * matches the specified {@code parameterTypes} 2215 * @throws NoSuchMethodException if a matching constructor is not found, 2216 * including when this {@code Class} object represents 2217 * an interface, a primitive type, an array class, or void. 2218 * 2219 * @see #getDeclaredConstructor(Class[]) 2220 * @since 1.1 2221 */ 2222 public Constructor<T> getConstructor(Class<?>... parameterTypes) 2223 throws NoSuchMethodException { 2224 return getReflectionFactory().copyConstructor( 2225 getConstructor0(parameterTypes, Member.PUBLIC)); 2226 } 2227 2228 2229 /** 2230 * Returns an array of {@code Class} objects reflecting all the 2231 * classes and interfaces declared as members of the class represented by 2232 * this {@code Class} object. This includes public, protected, default 2233 * (package) access, and private classes and interfaces declared by the 2234 * class, but excludes inherited classes and interfaces. This method 2235 * returns an array of length 0 if the class declares no classes or 2236 * interfaces as members, or if this {@code Class} object represents a 2237 * primitive type, an array class, or void. 2238 * 2239 * @return the array of {@code Class} objects representing all the 2240 * declared members of this class 2241 * 2242 * @since 1.1 2243 * @jls 8.5 Member Class and Interface Declarations 2244 */ 2245 public Class<?>[] getDeclaredClasses() { 2246 return getDeclaredClasses0(); 2247 } 2248 2249 2250 /** 2251 * Returns an array of {@code Field} objects reflecting all the fields 2252 * declared by the class or interface represented by this 2253 * {@code Class} object. This includes public, protected, default 2254 * (package) access, and private fields, but excludes inherited fields. 2255 * 2256 * <p> If this {@code Class} object represents a class or interface with no 2257 * declared fields, then this method returns an array of length 0. 2258 * 2259 * <p> If this {@code Class} object represents an array type, a primitive 2260 * type, or void, then this method returns an array of length 0. 2261 * 2262 * <p> The elements in the returned array are not sorted and are not in any 2263 * particular order. 2264 * 2265 * @return the array of {@code Field} objects representing all the 2266 * declared fields of this class 2267 * 2268 * @since 1.1 2269 * @jls 8.2 Class Members 2270 * @jls 8.3 Field Declarations 2271 */ 2272 public Field[] getDeclaredFields() { 2273 return copyFields(privateGetDeclaredFields(false)); 2274 } 2275 2276 /** 2277 * Returns an array of {@code RecordComponent} objects representing all the 2278 * record components of this record class, or {@code null} if this class is 2279 * not a record class. 2280 * 2281 * <p> The components are returned in the same order that they are declared 2282 * in the record header. The array is empty if this record class has no 2283 * components. If the class is not a record class, that is {@link 2284 * #isRecord()} returns {@code false}, then this method returns {@code null}. 2285 * Conversely, if {@link #isRecord()} returns {@code true}, then this method 2286 * returns a non-null value. 2287 * 2288 * @apiNote 2289 * <p> The following method can be used to find the record canonical constructor: 2290 * 2291 * {@snippet lang="java" : 2292 * static <T extends Record> Constructor<T> getCanonicalConstructor(Class<T> cls) 2293 * throws NoSuchMethodException { 2294 * Class<?>[] paramTypes = 2295 * Arrays.stream(cls.getRecordComponents()) 2296 * .map(RecordComponent::getType) 2297 * .toArray(Class<?>[]::new); 2298 * return cls.getDeclaredConstructor(paramTypes); 2299 * }} 2300 * 2301 * @return An array of {@code RecordComponent} objects representing all the 2302 * record components of this record class, or {@code null} if this 2303 * class is not a record class 2304 * 2305 * @jls 8.10 Record Classes 2306 * @since 16 2307 */ 2308 public RecordComponent[] getRecordComponents() { 2309 if (!isRecord()) { 2310 return null; 2311 } 2312 return getRecordComponents0(); 2313 } 2314 2315 /** 2316 * Returns an array containing {@code Method} objects reflecting all the 2317 * declared methods of the class or interface represented by this {@code 2318 * Class} object, including public, protected, default (package) 2319 * access, and private methods, but excluding inherited methods. 2320 * The declared methods may include methods <em>not</em> in the 2321 * source of the class or interface, including {@linkplain 2322 * Method#isBridge bridge methods} and other {@linkplain 2323 * Executable#isSynthetic synthetic} methods added by compilers. 2324 * 2325 * <p> If this {@code Class} object represents a class or interface that 2326 * has multiple declared methods with the same name and parameter types, 2327 * but different return types, then the returned array has a {@code Method} 2328 * object for each such method. 2329 * 2330 * <p> If this {@code Class} object represents a class or interface that 2331 * has a class initialization method {@value ConstantDescs#CLASS_INIT_NAME}, 2332 * then the returned array does <em>not</em> have a corresponding {@code 2333 * Method} object. 2334 * 2335 * <p> If this {@code Class} object represents a class or interface with no 2336 * declared methods, then the returned array has length 0. 2337 * 2338 * <p> If this {@code Class} object represents an array type, a primitive 2339 * type, or void, then the returned array has length 0. 2340 * 2341 * <p> The elements in the returned array are not sorted and are not in any 2342 * particular order. 2343 * 2344 * @return the array of {@code Method} objects representing all the 2345 * declared methods of this class 2346 * 2347 * @jls 8.2 Class Members 2348 * @jls 8.4 Method Declarations 2349 * @see <a 2350 * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java 2351 * programming language and JVM modeling in core reflection</a> 2352 * @since 1.1 2353 */ 2354 public Method[] getDeclaredMethods() { 2355 return copyMethods(privateGetDeclaredMethods(false)); 2356 } 2357 2358 /** 2359 * Returns an array of {@code Constructor} objects reflecting all the 2360 * constructors implicitly or explicitly declared by the class represented by this 2361 * {@code Class} object. These are public, protected, default 2362 * (package) access, and private constructors. The elements in the array 2363 * returned are not sorted and are not in any particular order. If the 2364 * class has a default constructor (JLS {@jls 8.8.9}), it is included in the returned array. 2365 * If a record class has a canonical constructor (JLS {@jls 2366 * 8.10.4.1}, {@jls 8.10.4.2}), it is included in the returned array. 2367 * 2368 * This method returns an array of length 0 if this {@code Class} 2369 * object represents an interface, a primitive type, an array class, or 2370 * void. 2371 * 2372 * @return the array of {@code Constructor} objects representing all the 2373 * declared constructors of this class 2374 * 2375 * @since 1.1 2376 * @see #getConstructors() 2377 * @jls 8.8 Constructor Declarations 2378 */ 2379 public Constructor<?>[] getDeclaredConstructors() { 2380 return copyConstructors(privateGetDeclaredConstructors(false)); 2381 } 2382 2383 2384 /** 2385 * Returns a {@code Field} object that reflects the specified declared 2386 * field of the class or interface represented by this {@code Class} 2387 * object. The {@code name} parameter is a {@code String} that specifies 2388 * the simple name of the desired field. 2389 * 2390 * <p> If this {@code Class} object represents an array type, then this 2391 * method does not find the {@code length} field of the array type. 2392 * 2393 * @param name the name of the field 2394 * @return the {@code Field} object for the specified field in this 2395 * class 2396 * @throws NoSuchFieldException if a field with the specified name is 2397 * not found. 2398 * @throws NullPointerException if {@code name} is {@code null} 2399 * 2400 * @since 1.1 2401 * @jls 8.2 Class Members 2402 * @jls 8.3 Field Declarations 2403 */ 2404 public Field getDeclaredField(String name) throws NoSuchFieldException { 2405 Objects.requireNonNull(name); 2406 Field field = searchFields(privateGetDeclaredFields(false), name); 2407 if (field == null) { 2408 throw new NoSuchFieldException(name); 2409 } 2410 return getReflectionFactory().copyField(field); 2411 } 2412 2413 2414 /** 2415 * Returns a {@code Method} object that reflects the specified 2416 * declared method of the class or interface represented by this 2417 * {@code Class} object. The {@code name} parameter is a 2418 * {@code String} that specifies the simple name of the desired 2419 * method, and the {@code parameterTypes} parameter is an array of 2420 * {@code Class} objects that identify the method's formal parameter 2421 * types, in declared order. If more than one method with the same 2422 * parameter types is declared in a class, and one of these methods has a 2423 * return type that is more specific than any of the others, that method is 2424 * returned; otherwise one of the methods is chosen arbitrarily. If the 2425 * name is {@value ConstantDescs#INIT_NAME} or {@value 2426 * ConstantDescs#CLASS_INIT_NAME} a {@code NoSuchMethodException} 2427 * is raised. 2428 * 2429 * <p> If this {@code Class} object represents an array type, then this 2430 * method does not find the {@code clone()} method. 2431 * 2432 * @param name the name of the method 2433 * @param parameterTypes the parameter array 2434 * @return the {@code Method} object for the method of this class 2435 * matching the specified name and parameters 2436 * @throws NoSuchMethodException if a matching method is not found. 2437 * @throws NullPointerException if {@code name} is {@code null} 2438 * 2439 * @jls 8.2 Class Members 2440 * @jls 8.4 Method Declarations 2441 * @since 1.1 2442 */ 2443 public Method getDeclaredMethod(String name, Class<?>... parameterTypes) 2444 throws NoSuchMethodException { 2445 Objects.requireNonNull(name); 2446 Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes); 2447 if (method == null) { 2448 throw new NoSuchMethodException(methodToString(name, parameterTypes)); 2449 } 2450 return getReflectionFactory().copyMethod(method); 2451 } 2452 2453 /** 2454 * Returns the list of {@code Method} objects for the declared public 2455 * methods of this class or interface that have the specified method name 2456 * and parameter types. 2457 * 2458 * @param name the name of the method 2459 * @param parameterTypes the parameter array 2460 * @return the list of {@code Method} objects for the public methods of 2461 * this class matching the specified name and parameters 2462 */ 2463 List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) { 2464 Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true); 2465 ReflectionFactory factory = getReflectionFactory(); 2466 List<Method> result = new ArrayList<>(); 2467 for (Method method : methods) { 2468 if (method.getName().equals(name) 2469 && Arrays.equals( 2470 factory.getExecutableSharedParameterTypes(method), 2471 parameterTypes)) { 2472 result.add(factory.copyMethod(method)); 2473 } 2474 } 2475 return result; 2476 } 2477 2478 /** 2479 * Returns the most specific {@code Method} object of this class, super class or 2480 * interface that have the specified method name and parameter types. 2481 * 2482 * @param publicOnly true if only public methods are examined, otherwise all methods 2483 * @param name the name of the method 2484 * @param parameterTypes the parameter array 2485 * @return the {@code Method} object for the method found from this class matching 2486 * the specified name and parameters, or null if not found 2487 */ 2488 Method findMethod(boolean publicOnly, String name, Class<?>... parameterTypes) { 2489 PublicMethods.MethodList res = getMethodsRecursive(name, parameterTypes, true, publicOnly); 2490 return res == null ? null : getReflectionFactory().copyMethod(res.getMostSpecific()); 2491 } 2492 2493 /** 2494 * Returns a {@code Constructor} object that reflects the specified 2495 * constructor of the class represented by this 2496 * {@code Class} object. The {@code parameterTypes} parameter is 2497 * an array of {@code Class} objects that identify the constructor's 2498 * formal parameter types, in declared order. 2499 * 2500 * If this {@code Class} object represents an inner class 2501 * declared in a non-static context, the formal parameter types 2502 * include the explicit enclosing instance as the first parameter. 2503 * 2504 * @param parameterTypes the parameter array 2505 * @return The {@code Constructor} object for the constructor with the 2506 * specified parameter list 2507 * @throws NoSuchMethodException if a matching constructor is not found, 2508 * including when this {@code Class} object represents 2509 * an interface, a primitive type, an array class, or void. 2510 * 2511 * @see #getConstructor(Class[]) 2512 * @since 1.1 2513 */ 2514 public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes) 2515 throws NoSuchMethodException { 2516 return getReflectionFactory().copyConstructor( 2517 getConstructor0(parameterTypes, Member.DECLARED)); 2518 } 2519 2520 /** 2521 * Finds a resource with a given name. 2522 * 2523 * <p> If this class is in a named {@link Module Module} then this method 2524 * will attempt to find the resource in the module. This is done by 2525 * delegating to the module's class loader {@link 2526 * ClassLoader#findResource(String,String) findResource(String,String)} 2527 * method, invoking it with the module name and the absolute name of the 2528 * resource. Resources in named modules are subject to the rules for 2529 * encapsulation specified in the {@code Module} {@link 2530 * Module#getResourceAsStream getResourceAsStream} method and so this 2531 * method returns {@code null} when the resource is a 2532 * non-"{@code .class}" resource in a package that is not open to the 2533 * caller's module. 2534 * 2535 * <p> Otherwise, if this class is not in a named module then the rules for 2536 * searching resources associated with a given class are implemented by the 2537 * defining {@linkplain ClassLoader class loader} of the class. This method 2538 * delegates to this {@code Class} object's class loader. 2539 * If this {@code Class} object was loaded by the bootstrap class loader, 2540 * the method delegates to {@link ClassLoader#getSystemResourceAsStream}. 2541 * 2542 * <p> Before delegation, an absolute resource name is constructed from the 2543 * given resource name using this algorithm: 2544 * 2545 * <ul> 2546 * 2547 * <li> If the {@code name} begins with a {@code '/'} 2548 * (<code>'\u002f'</code>), then the absolute name of the resource is the 2549 * portion of the {@code name} following the {@code '/'}. 2550 * 2551 * <li> Otherwise, the absolute name is of the following form: 2552 * 2553 * <blockquote> 2554 * {@code modified_package_name/name} 2555 * </blockquote> 2556 * 2557 * <p> Where the {@code modified_package_name} is the package name of this 2558 * object with {@code '/'} substituted for {@code '.'} 2559 * (<code>'\u002e'</code>). 2560 * 2561 * </ul> 2562 * 2563 * @param name name of the desired resource 2564 * @return A {@link java.io.InputStream} object; {@code null} if no 2565 * resource with this name is found, or the resource is in a package 2566 * that is not {@linkplain Module#isOpen(String, Module) open} to at 2567 * least the caller module. 2568 * @throws NullPointerException If {@code name} is {@code null} 2569 * 2570 * @see Module#getResourceAsStream(String) 2571 * @since 1.1 2572 */ 2573 @CallerSensitive 2574 public InputStream getResourceAsStream(String name) { 2575 name = resolveName(name); 2576 2577 Module thisModule = getModule(); 2578 if (thisModule.isNamed()) { 2579 // check if resource can be located by caller 2580 if (Resources.canEncapsulate(name) 2581 && !isOpenToCaller(name, Reflection.getCallerClass())) { 2582 return null; 2583 } 2584 2585 // resource not encapsulated or in package open to caller 2586 String mn = thisModule.getName(); 2587 ClassLoader cl = classLoader; 2588 try { 2589 2590 // special-case built-in class loaders to avoid the 2591 // need for a URL connection 2592 if (cl == null) { 2593 return BootLoader.findResourceAsStream(mn, name); 2594 } else if (cl instanceof BuiltinClassLoader bcl) { 2595 return bcl.findResourceAsStream(mn, name); 2596 } else { 2597 URL url = cl.findResource(mn, name); 2598 return (url != null) ? url.openStream() : null; 2599 } 2600 2601 } catch (IOException | SecurityException e) { 2602 return null; 2603 } 2604 } 2605 2606 // unnamed module 2607 ClassLoader cl = classLoader; 2608 if (cl == null) { 2609 return ClassLoader.getSystemResourceAsStream(name); 2610 } else { 2611 return cl.getResourceAsStream(name); 2612 } 2613 } 2614 2615 /** 2616 * Finds a resource with a given name. 2617 * 2618 * <p> If this class is in a named {@link Module Module} then this method 2619 * will attempt to find the resource in the module. This is done by 2620 * delegating to the module's class loader {@link 2621 * ClassLoader#findResource(String,String) findResource(String,String)} 2622 * method, invoking it with the module name and the absolute name of the 2623 * resource. Resources in named modules are subject to the rules for 2624 * encapsulation specified in the {@code Module} {@link 2625 * Module#getResourceAsStream getResourceAsStream} method and so this 2626 * method returns {@code null} when the resource is a 2627 * non-"{@code .class}" resource in a package that is not open to the 2628 * caller's module. 2629 * 2630 * <p> Otherwise, if this class is not in a named module then the rules for 2631 * searching resources associated with a given class are implemented by the 2632 * defining {@linkplain ClassLoader class loader} of the class. This method 2633 * delegates to this {@code Class} object's class loader. 2634 * If this {@code Class} object was loaded by the bootstrap class loader, 2635 * the method delegates to {@link ClassLoader#getSystemResource}. 2636 * 2637 * <p> Before delegation, an absolute resource name is constructed from the 2638 * given resource name using this algorithm: 2639 * 2640 * <ul> 2641 * 2642 * <li> If the {@code name} begins with a {@code '/'} 2643 * (<code>'\u002f'</code>), then the absolute name of the resource is the 2644 * portion of the {@code name} following the {@code '/'}. 2645 * 2646 * <li> Otherwise, the absolute name is of the following form: 2647 * 2648 * <blockquote> 2649 * {@code modified_package_name/name} 2650 * </blockquote> 2651 * 2652 * <p> Where the {@code modified_package_name} is the package name of this 2653 * object with {@code '/'} substituted for {@code '.'} 2654 * (<code>'\u002e'</code>). 2655 * 2656 * </ul> 2657 * 2658 * @param name name of the desired resource 2659 * @return A {@link java.net.URL} object; {@code null} if no resource with 2660 * this name is found, the resource cannot be located by a URL, or the 2661 * resource is in a package that is not 2662 * {@linkplain Module#isOpen(String, Module) open} to at least the caller 2663 * module. 2664 * @throws NullPointerException If {@code name} is {@code null} 2665 * @since 1.1 2666 */ 2667 @CallerSensitive 2668 public URL getResource(String name) { 2669 name = resolveName(name); 2670 2671 Module thisModule = getModule(); 2672 if (thisModule.isNamed()) { 2673 // check if resource can be located by caller 2674 if (Resources.canEncapsulate(name) 2675 && !isOpenToCaller(name, Reflection.getCallerClass())) { 2676 return null; 2677 } 2678 2679 // resource not encapsulated or in package open to caller 2680 String mn = thisModule.getName(); 2681 ClassLoader cl = classLoader; 2682 try { 2683 if (cl == null) { 2684 return BootLoader.findResource(mn, name); 2685 } else { 2686 return cl.findResource(mn, name); 2687 } 2688 } catch (IOException ioe) { 2689 return null; 2690 } 2691 } 2692 2693 // unnamed module 2694 ClassLoader cl = classLoader; 2695 if (cl == null) { 2696 return ClassLoader.getSystemResource(name); 2697 } else { 2698 return cl.getResource(name); 2699 } 2700 } 2701 2702 /** 2703 * Returns true if a resource with the given name can be located by the 2704 * given caller. All resources in a module can be located by code in 2705 * the module. For other callers, then the package needs to be open to 2706 * the caller. 2707 */ 2708 private boolean isOpenToCaller(String name, Class<?> caller) { 2709 // assert getModule().isNamed(); 2710 Module thisModule = getModule(); 2711 Module callerModule = (caller != null) ? caller.getModule() : null; 2712 if (callerModule != thisModule) { 2713 String pn = Resources.toPackageName(name); 2714 if (thisModule.getDescriptor().packages().contains(pn)) { 2715 if (callerModule == null) { 2716 // no caller, return true if the package is open to all modules 2717 return thisModule.isOpen(pn); 2718 } 2719 if (!thisModule.isOpen(pn, callerModule)) { 2720 // package not open to caller 2721 return false; 2722 } 2723 } 2724 } 2725 return true; 2726 } 2727 2728 /** 2729 * Returns the {@code ProtectionDomain} of this class. 2730 * 2731 * @return the ProtectionDomain of this class 2732 * 2733 * @see java.security.ProtectionDomain 2734 * @since 1.2 2735 */ 2736 public ProtectionDomain getProtectionDomain() { 2737 return protectionDomain(); 2738 } 2739 2740 /** Holder for the protection domain returned when the internal domain is null */ 2741 private static class Holder { 2742 private static final ProtectionDomain allPermDomain; 2743 static { 2744 Permissions perms = new Permissions(); 2745 perms.add(SecurityConstants.ALL_PERMISSION); 2746 allPermDomain = new ProtectionDomain(null, perms); 2747 } 2748 } 2749 2750 // package-private 2751 ProtectionDomain protectionDomain() { 2752 ProtectionDomain pd = getProtectionDomain0(); 2753 if (pd == null) { 2754 return Holder.allPermDomain; 2755 } else { 2756 return pd; 2757 } 2758 } 2759 2760 /** 2761 * Returns the ProtectionDomain of this class. 2762 */ 2763 private native ProtectionDomain getProtectionDomain0(); 2764 2765 /* 2766 * Returns the Class object for the named primitive type. Type parameter T 2767 * avoids redundant casts for trusted code. 2768 */ 2769 static native <T> Class<T> getPrimitiveClass(String name); 2770 2771 /** 2772 * Add a package name prefix if the name is not absolute. Remove leading "/" 2773 * if name is absolute 2774 */ 2775 private String resolveName(String name) { 2776 if (!name.startsWith("/")) { 2777 String baseName = getPackageName(); 2778 if (!baseName.isEmpty()) { 2779 int len = baseName.length() + 1 + name.length(); 2780 StringBuilder sb = new StringBuilder(len); 2781 name = sb.append(baseName.replace('.', '/')) 2782 .append('/') 2783 .append(name) 2784 .toString(); 2785 } 2786 } else { 2787 name = name.substring(1); 2788 } 2789 return name; 2790 } 2791 2792 /** 2793 * Atomic operations support. 2794 */ 2795 private static class Atomic { 2796 // initialize Unsafe machinery here, since we need to call Class.class instance method 2797 // and have to avoid calling it in the static initializer of the Class class... 2798 private static final Unsafe unsafe = Unsafe.getUnsafe(); 2799 // offset of Class.reflectionData instance field 2800 private static final long reflectionDataOffset 2801 = unsafe.objectFieldOffset(Class.class, "reflectionData"); 2802 // offset of Class.annotationType instance field 2803 private static final long annotationTypeOffset 2804 = unsafe.objectFieldOffset(Class.class, "annotationType"); 2805 // offset of Class.annotationData instance field 2806 private static final long annotationDataOffset 2807 = unsafe.objectFieldOffset(Class.class, "annotationData"); 2808 2809 static <T> boolean casReflectionData(Class<?> clazz, 2810 ReflectionData<T> oldData, 2811 ReflectionData<T> newData) { 2812 return unsafe.compareAndSetReference(clazz, reflectionDataOffset, oldData, newData); 2813 } 2814 2815 static boolean casAnnotationType(Class<?> clazz, 2816 AnnotationType oldType, 2817 AnnotationType newType) { 2818 return unsafe.compareAndSetReference(clazz, annotationTypeOffset, oldType, newType); 2819 } 2820 2821 static boolean casAnnotationData(Class<?> clazz, 2822 AnnotationData oldData, 2823 AnnotationData newData) { 2824 return unsafe.compareAndSetReference(clazz, annotationDataOffset, oldData, newData); 2825 } 2826 } 2827 2828 /** 2829 * Reflection support. 2830 */ 2831 2832 // Reflection data caches various derived names and reflective members. Cached 2833 // values may be invalidated when JVM TI RedefineClasses() is called 2834 private static class ReflectionData<T> { 2835 volatile Field[] declaredFields; 2836 volatile Field[] publicFields; 2837 volatile Method[] declaredMethods; 2838 volatile Method[] publicMethods; 2839 volatile Constructor<T>[] declaredConstructors; 2840 volatile Constructor<T>[] publicConstructors; 2841 // Intermediate results for getFields and getMethods 2842 volatile Field[] declaredPublicFields; 2843 volatile Method[] declaredPublicMethods; 2844 volatile Class<?>[] interfaces; 2845 2846 // Cached names 2847 String simpleName; 2848 String canonicalName; 2849 static final String NULL_SENTINEL = new String(); 2850 2851 // Value of classRedefinedCount when we created this ReflectionData instance 2852 final int redefinedCount; 2853 2854 ReflectionData(int redefinedCount) { 2855 this.redefinedCount = redefinedCount; 2856 } 2857 } 2858 2859 private transient volatile ReflectionData<T> reflectionData; 2860 2861 // Incremented by the VM on each call to JVM TI RedefineClasses() 2862 // that redefines this class or a superclass. 2863 private transient volatile int classRedefinedCount; 2864 2865 // Lazily create and cache ReflectionData 2866 private ReflectionData<T> reflectionData() { 2867 ReflectionData<T> reflectionData = this.reflectionData; 2868 int classRedefinedCount = this.classRedefinedCount; 2869 if (reflectionData != null && 2870 reflectionData.redefinedCount == classRedefinedCount) { 2871 return reflectionData; 2872 } 2873 // else no SoftReference or cleared SoftReference or stale ReflectionData 2874 // -> create and replace new instance 2875 return newReflectionData(reflectionData, classRedefinedCount); 2876 } 2877 2878 private ReflectionData<T> newReflectionData(ReflectionData<T> oldReflectionData, 2879 int classRedefinedCount) { 2880 while (true) { 2881 ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount); 2882 // try to CAS it... 2883 if (Atomic.casReflectionData(this, oldReflectionData, rd)) { 2884 return rd; 2885 } 2886 // else retry 2887 oldReflectionData = this.reflectionData; 2888 classRedefinedCount = this.classRedefinedCount; 2889 if (oldReflectionData != null && oldReflectionData.redefinedCount == classRedefinedCount) { 2890 return rd; 2891 } 2892 } 2893 } 2894 2895 // Generic signature handling 2896 private native String getGenericSignature0(); 2897 2898 // Generic info repository; lazily initialized 2899 private transient volatile ClassRepository genericInfo; 2900 2901 // accessor for factory 2902 private GenericsFactory getFactory() { 2903 // create scope and factory 2904 return CoreReflectionFactory.make(this, ClassScope.make(this)); 2905 } 2906 2907 // accessor for generic info repository; 2908 // generic info is lazily initialized 2909 private ClassRepository getGenericInfo() { 2910 ClassRepository genericInfo = this.genericInfo; 2911 if (genericInfo == null) { 2912 String signature = getGenericSignature0(); 2913 if (signature == null) { 2914 genericInfo = ClassRepository.NONE; 2915 } else { 2916 genericInfo = ClassRepository.make(signature, getFactory()); 2917 } 2918 this.genericInfo = genericInfo; 2919 } 2920 return (genericInfo != ClassRepository.NONE) ? genericInfo : null; 2921 } 2922 2923 // Annotations handling 2924 native byte[] getRawAnnotations(); 2925 // Since 1.8 2926 native byte[] getRawTypeAnnotations(); 2927 static byte[] getExecutableTypeAnnotationBytes(Executable ex) { 2928 return getReflectionFactory().getExecutableTypeAnnotationBytes(ex); 2929 } 2930 2931 native ConstantPool getConstantPool(); 2932 2933 // 2934 // 2935 // java.lang.reflect.Field handling 2936 // 2937 // 2938 2939 // Returns an array of "root" fields. These Field objects must NOT 2940 // be propagated to the outside world, but must instead be copied 2941 // via ReflectionFactory.copyField. 2942 private Field[] privateGetDeclaredFields(boolean publicOnly) { 2943 Field[] res; 2944 ReflectionData<T> rd = reflectionData(); 2945 if (rd != null) { 2946 res = publicOnly ? rd.declaredPublicFields : rd.declaredFields; 2947 if (res != null) return res; 2948 } 2949 // No cached value available; request value from VM 2950 res = Reflection.filterFields(this, getDeclaredFields0(publicOnly)); 2951 if (rd != null) { 2952 if (publicOnly) { 2953 rd.declaredPublicFields = res; 2954 } else { 2955 rd.declaredFields = res; 2956 } 2957 } 2958 return res; 2959 } 2960 2961 // Returns an array of "root" fields. These Field objects must NOT 2962 // be propagated to the outside world, but must instead be copied 2963 // via ReflectionFactory.copyField. 2964 private Field[] privateGetPublicFields() { 2965 Field[] res; 2966 ReflectionData<T> rd = reflectionData(); 2967 if (rd != null) { 2968 res = rd.publicFields; 2969 if (res != null) return res; 2970 } 2971 2972 // Use a linked hash set to ensure order is preserved and 2973 // fields from common super interfaces are not duplicated 2974 LinkedHashSet<Field> fields = new LinkedHashSet<>(); 2975 2976 // Local fields 2977 addAll(fields, privateGetDeclaredFields(true)); 2978 2979 // Direct superinterfaces, recursively 2980 for (Class<?> si : getInterfaces(/* cloneArray */ false)) { 2981 addAll(fields, si.privateGetPublicFields()); 2982 } 2983 2984 // Direct superclass, recursively 2985 Class<?> sc = getSuperclass(); 2986 if (sc != null) { 2987 addAll(fields, sc.privateGetPublicFields()); 2988 } 2989 2990 res = fields.toArray(new Field[0]); 2991 if (rd != null) { 2992 rd.publicFields = res; 2993 } 2994 return res; 2995 } 2996 2997 private static void addAll(Collection<Field> c, Field[] o) { 2998 for (Field f : o) { 2999 c.add(f); 3000 } 3001 } 3002 3003 3004 // 3005 // 3006 // java.lang.reflect.Constructor handling 3007 // 3008 // 3009 3010 // Returns an array of "root" constructors. These Constructor 3011 // objects must NOT be propagated to the outside world, but must 3012 // instead be copied via ReflectionFactory.copyConstructor. 3013 private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) { 3014 Constructor<T>[] res; 3015 ReflectionData<T> rd = reflectionData(); 3016 if (rd != null) { 3017 res = publicOnly ? rd.publicConstructors : rd.declaredConstructors; 3018 if (res != null) return res; 3019 } 3020 // No cached value available; request value from VM 3021 if (isInterface()) { 3022 @SuppressWarnings("unchecked") 3023 Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0]; 3024 res = temporaryRes; 3025 } else { 3026 res = getDeclaredConstructors0(publicOnly); 3027 } 3028 if (rd != null) { 3029 if (publicOnly) { 3030 rd.publicConstructors = res; 3031 } else { 3032 rd.declaredConstructors = res; 3033 } 3034 } 3035 return res; 3036 } 3037 3038 // 3039 // 3040 // java.lang.reflect.Method handling 3041 // 3042 // 3043 3044 // Returns an array of "root" methods. These Method objects must NOT 3045 // be propagated to the outside world, but must instead be copied 3046 // via ReflectionFactory.copyMethod. 3047 private Method[] privateGetDeclaredMethods(boolean publicOnly) { 3048 Method[] res; 3049 ReflectionData<T> rd = reflectionData(); 3050 if (rd != null) { 3051 res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods; 3052 if (res != null) return res; 3053 } 3054 // No cached value available; request value from VM 3055 res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly)); 3056 if (rd != null) { 3057 if (publicOnly) { 3058 rd.declaredPublicMethods = res; 3059 } else { 3060 rd.declaredMethods = res; 3061 } 3062 } 3063 return res; 3064 } 3065 3066 // Returns an array of "root" methods. These Method objects must NOT 3067 // be propagated to the outside world, but must instead be copied 3068 // via ReflectionFactory.copyMethod. 3069 private Method[] privateGetPublicMethods() { 3070 Method[] res; 3071 ReflectionData<T> rd = reflectionData(); 3072 if (rd != null) { 3073 res = rd.publicMethods; 3074 if (res != null) return res; 3075 } 3076 3077 // No cached value available; compute value recursively. 3078 // Start by fetching public declared methods... 3079 PublicMethods pms = new PublicMethods(); 3080 for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) { 3081 pms.merge(m); 3082 } 3083 // ...then recur over superclass methods... 3084 Class<?> sc = getSuperclass(); 3085 if (sc != null) { 3086 for (Method m : sc.privateGetPublicMethods()) { 3087 pms.merge(m); 3088 } 3089 } 3090 // ...and finally over direct superinterfaces. 3091 for (Class<?> intf : getInterfaces(/* cloneArray */ false)) { 3092 for (Method m : intf.privateGetPublicMethods()) { 3093 // static interface methods are not inherited 3094 if (!Modifier.isStatic(m.getModifiers())) { 3095 pms.merge(m); 3096 } 3097 } 3098 } 3099 3100 res = pms.toArray(); 3101 if (rd != null) { 3102 rd.publicMethods = res; 3103 } 3104 return res; 3105 } 3106 3107 3108 // 3109 // Helpers for fetchers of one field, method, or constructor 3110 // 3111 3112 // This method does not copy the returned Field object! 3113 private static Field searchFields(Field[] fields, String name) { 3114 for (Field field : fields) { 3115 if (field.getName().equals(name)) { 3116 return field; 3117 } 3118 } 3119 return null; 3120 } 3121 3122 // Returns a "root" Field object. This Field object must NOT 3123 // be propagated to the outside world, but must instead be copied 3124 // via ReflectionFactory.copyField. 3125 private Field getField0(String name) { 3126 // Note: the intent is that the search algorithm this routine 3127 // uses be equivalent to the ordering imposed by 3128 // privateGetPublicFields(). It fetches only the declared 3129 // public fields for each class, however, to reduce the number 3130 // of Field objects which have to be created for the common 3131 // case where the field being requested is declared in the 3132 // class which is being queried. 3133 Field res; 3134 // Search declared public fields 3135 if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) { 3136 return res; 3137 } 3138 // Direct superinterfaces, recursively 3139 Class<?>[] interfaces = getInterfaces(/* cloneArray */ false); 3140 for (Class<?> c : interfaces) { 3141 if ((res = c.getField0(name)) != null) { 3142 return res; 3143 } 3144 } 3145 // Direct superclass, recursively 3146 if (!isInterface()) { 3147 Class<?> c = getSuperclass(); 3148 if (c != null) { 3149 if ((res = c.getField0(name)) != null) { 3150 return res; 3151 } 3152 } 3153 } 3154 return null; 3155 } 3156 3157 // This method does not copy the returned Method object! 3158 private static Method searchMethods(Method[] methods, 3159 String name, 3160 Class<?>[] parameterTypes) 3161 { 3162 ReflectionFactory fact = getReflectionFactory(); 3163 Method res = null; 3164 for (Method m : methods) { 3165 if (m.getName().equals(name) 3166 && arrayContentsEq(parameterTypes, 3167 fact.getExecutableSharedParameterTypes(m)) 3168 && (res == null 3169 || (res.getReturnType() != m.getReturnType() 3170 && res.getReturnType().isAssignableFrom(m.getReturnType())))) 3171 res = m; 3172 } 3173 return res; 3174 } 3175 3176 private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0]; 3177 3178 // Returns a "root" Method object. This Method object must NOT 3179 // be propagated to the outside world, but must instead be copied 3180 // via ReflectionFactory.copyMethod. 3181 private Method getMethod0(String name, Class<?>[] parameterTypes) { 3182 PublicMethods.MethodList res = getMethodsRecursive( 3183 name, 3184 parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes, 3185 /* includeStatic */ true, /* publicOnly */ true); 3186 return res == null ? null : res.getMostSpecific(); 3187 } 3188 3189 // Returns a list of "root" Method objects. These Method objects must NOT 3190 // be propagated to the outside world, but must instead be copied 3191 // via ReflectionFactory.copyMethod. 3192 private PublicMethods.MethodList getMethodsRecursive(String name, 3193 Class<?>[] parameterTypes, 3194 boolean includeStatic, 3195 boolean publicOnly) { 3196 // 1st check declared methods 3197 Method[] methods = privateGetDeclaredMethods(publicOnly); 3198 PublicMethods.MethodList res = PublicMethods.MethodList 3199 .filter(methods, name, parameterTypes, includeStatic); 3200 // if there is at least one match among declared methods, we need not 3201 // search any further as such match surely overrides matching methods 3202 // declared in superclass(es) or interface(s). 3203 if (res != null) { 3204 return res; 3205 } 3206 3207 // if there was no match among declared methods, 3208 // we must consult the superclass (if any) recursively... 3209 Class<?> sc = getSuperclass(); 3210 if (sc != null) { 3211 res = sc.getMethodsRecursive(name, parameterTypes, includeStatic, publicOnly); 3212 } 3213 3214 // ...and coalesce the superclass methods with methods obtained 3215 // from directly implemented interfaces excluding static methods... 3216 for (Class<?> intf : getInterfaces(/* cloneArray */ false)) { 3217 res = PublicMethods.MethodList.merge( 3218 res, intf.getMethodsRecursive(name, parameterTypes, /* includeStatic */ false, publicOnly)); 3219 } 3220 3221 return res; 3222 } 3223 3224 // Returns a "root" Constructor object. This Constructor object must NOT 3225 // be propagated to the outside world, but must instead be copied 3226 // via ReflectionFactory.copyConstructor. 3227 private Constructor<T> getConstructor0(Class<?>[] parameterTypes, 3228 int which) throws NoSuchMethodException 3229 { 3230 ReflectionFactory fact = getReflectionFactory(); 3231 Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC)); 3232 for (Constructor<T> constructor : constructors) { 3233 if (arrayContentsEq(parameterTypes, 3234 fact.getExecutableSharedParameterTypes(constructor))) { 3235 return constructor; 3236 } 3237 } 3238 throw new NoSuchMethodException(methodToString("<init>", parameterTypes)); 3239 } 3240 3241 // 3242 // Other helpers and base implementation 3243 // 3244 3245 private static boolean arrayContentsEq(Object[] a1, Object[] a2) { 3246 if (a1 == null) { 3247 return a2 == null || a2.length == 0; 3248 } 3249 3250 if (a2 == null) { 3251 return a1.length == 0; 3252 } 3253 3254 if (a1.length != a2.length) { 3255 return false; 3256 } 3257 3258 for (int i = 0; i < a1.length; i++) { 3259 if (a1[i] != a2[i]) { 3260 return false; 3261 } 3262 } 3263 3264 return true; 3265 } 3266 3267 private static Field[] copyFields(Field[] arg) { 3268 Field[] out = new Field[arg.length]; 3269 ReflectionFactory fact = getReflectionFactory(); 3270 for (int i = 0; i < arg.length; i++) { 3271 out[i] = fact.copyField(arg[i]); 3272 } 3273 return out; 3274 } 3275 3276 private static Method[] copyMethods(Method[] arg) { 3277 Method[] out = new Method[arg.length]; 3278 ReflectionFactory fact = getReflectionFactory(); 3279 for (int i = 0; i < arg.length; i++) { 3280 out[i] = fact.copyMethod(arg[i]); 3281 } 3282 return out; 3283 } 3284 3285 private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) { 3286 Constructor<U>[] out = arg.clone(); 3287 ReflectionFactory fact = getReflectionFactory(); 3288 for (int i = 0; i < out.length; i++) { 3289 out[i] = fact.copyConstructor(out[i]); 3290 } 3291 return out; 3292 } 3293 3294 private native Field[] getDeclaredFields0(boolean publicOnly); 3295 private native Method[] getDeclaredMethods0(boolean publicOnly); 3296 private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly); 3297 private native Class<?>[] getDeclaredClasses0(); 3298 3299 /* 3300 * Returns an array containing the components of the Record attribute, 3301 * or null if the attribute is not present. 3302 * 3303 * Note that this method returns non-null array on a class with 3304 * the Record attribute even if this class is not a record. 3305 */ 3306 private native RecordComponent[] getRecordComponents0(); 3307 private native boolean isRecord0(); 3308 3309 /** 3310 * Helper method to get the method name from arguments. 3311 */ 3312 private String methodToString(String name, Class<?>[] argTypes) { 3313 return getName() + '.' + name + 3314 ((argTypes == null || argTypes.length == 0) ? 3315 "()" : 3316 Arrays.stream(argTypes) 3317 .map(c -> c == null ? "null" : c.getName()) 3318 .collect(Collectors.joining(",", "(", ")"))); 3319 } 3320 3321 /** use serialVersionUID from JDK 1.1 for interoperability */ 3322 @java.io.Serial 3323 private static final long serialVersionUID = 3206093459760846163L; 3324 3325 3326 /** 3327 * Class Class is special cased within the Serialization Stream Protocol. 3328 * 3329 * A Class instance is written initially into an ObjectOutputStream in the 3330 * following format: 3331 * <pre> 3332 * {@code TC_CLASS} ClassDescriptor 3333 * A ClassDescriptor is a special cased serialization of 3334 * a {@code java.io.ObjectStreamClass} instance. 3335 * </pre> 3336 * A new handle is generated for the initial time the class descriptor 3337 * is written into the stream. Future references to the class descriptor 3338 * are written as references to the initial class descriptor instance. 3339 * 3340 * @see java.io.ObjectStreamClass 3341 */ 3342 @java.io.Serial 3343 private static final ObjectStreamField[] serialPersistentFields = 3344 new ObjectStreamField[0]; 3345 3346 3347 /** 3348 * Returns the assertion status that would be assigned to this 3349 * class if it were to be initialized at the time this method is invoked. 3350 * If this class has had its assertion status set, the most recent 3351 * setting will be returned; otherwise, if any package default assertion 3352 * status pertains to this class, the most recent setting for the most 3353 * specific pertinent package default assertion status is returned; 3354 * otherwise, if this class is not a system class (i.e., it has a 3355 * class loader) its class loader's default assertion status is returned; 3356 * otherwise, the system class default assertion status is returned. 3357 * 3358 * @apiNote 3359 * Few programmers will have any need for this method; it is provided 3360 * for the benefit of the JDK itself. (It allows a class to determine at 3361 * the time that it is initialized whether assertions should be enabled.) 3362 * Note that this method is not guaranteed to return the actual 3363 * assertion status that was (or will be) associated with the specified 3364 * class when it was (or will be) initialized. 3365 * 3366 * @return the desired assertion status of the specified class. 3367 * @see java.lang.ClassLoader#setClassAssertionStatus 3368 * @see java.lang.ClassLoader#setPackageAssertionStatus 3369 * @see java.lang.ClassLoader#setDefaultAssertionStatus 3370 * @since 1.4 3371 */ 3372 public boolean desiredAssertionStatus() { 3373 ClassLoader loader = classLoader; 3374 // If the loader is null this is a system class, so ask the VM 3375 if (loader == null) 3376 return desiredAssertionStatus0(this); 3377 3378 // If the classloader has been initialized with the assertion 3379 // directives, ask it. Otherwise, ask the VM. 3380 synchronized(loader.assertionLock) { 3381 if (loader.classAssertionStatus != null) { 3382 return loader.desiredAssertionStatus(getName()); 3383 } 3384 } 3385 return desiredAssertionStatus0(this); 3386 } 3387 3388 // Retrieves the desired assertion status of this class from the VM 3389 private static native boolean desiredAssertionStatus0(Class<?> clazz); 3390 3391 /** 3392 * Returns true if and only if this class was declared as an enum in the 3393 * source code. 3394 * 3395 * Note that {@link java.lang.Enum} is not itself an enum class. 3396 * 3397 * Also note that if an enum constant is declared with a class body, 3398 * the class of that enum constant object is an anonymous class 3399 * and <em>not</em> the class of the declaring enum class. The 3400 * {@link Enum#getDeclaringClass} method of an enum constant can 3401 * be used to get the class of the enum class declaring the 3402 * constant. 3403 * 3404 * @return true if and only if this class was declared as an enum in the 3405 * source code 3406 * @since 1.5 3407 * @jls 8.9.1 Enum Constants 3408 */ 3409 public boolean isEnum() { 3410 // An enum must both directly extend java.lang.Enum and have 3411 // the ENUM bit set; classes for specialized enum constants 3412 // don't do the former. 3413 return (this.getModifiers() & ENUM) != 0 && 3414 this.getSuperclass() == java.lang.Enum.class; 3415 } 3416 3417 /** 3418 * Returns {@code true} if and only if this class is a record class. 3419 * 3420 * <p> The {@linkplain #getSuperclass() direct superclass} of a record 3421 * class is {@code java.lang.Record}. A record class is {@linkplain 3422 * Modifier#FINAL final}. A record class has (possibly zero) record 3423 * components; {@link #getRecordComponents()} returns a non-null but 3424 * possibly empty value for a record. 3425 * 3426 * <p> Note that class {@link Record} is not a record class and thus 3427 * invoking this method on class {@code Record} returns {@code false}. 3428 * 3429 * @return true if and only if this class is a record class, otherwise false 3430 * @jls 8.10 Record Classes 3431 * @since 16 3432 */ 3433 public boolean isRecord() { 3434 // this superclass and final modifier check is not strictly necessary 3435 // they are intrinsified and serve as a fast-path check 3436 return getSuperclass() == java.lang.Record.class && 3437 (this.getModifiers() & Modifier.FINAL) != 0 && 3438 isRecord0(); 3439 } 3440 3441 // Fetches the factory for reflective objects 3442 private static ReflectionFactory getReflectionFactory() { 3443 var factory = reflectionFactory; 3444 if (factory != null) { 3445 return factory; 3446 } 3447 return reflectionFactory = ReflectionFactory.getReflectionFactory(); 3448 } 3449 private static ReflectionFactory reflectionFactory; 3450 3451 /** 3452 * When CDS is enabled, the Class class may be aot-initialized. However, 3453 * we can't archive reflectionFactory, so we reset it to null, so it 3454 * will be allocated again at runtime. 3455 */ 3456 private static void resetArchivedStates() { 3457 reflectionFactory = null; 3458 } 3459 3460 /** 3461 * Returns the elements of this enum class or null if this 3462 * Class object does not represent an enum class. 3463 * 3464 * @return an array containing the values comprising the enum class 3465 * represented by this {@code Class} object in the order they're 3466 * declared, or null if this {@code Class} object does not 3467 * represent an enum class 3468 * @since 1.5 3469 * @jls 8.9.1 Enum Constants 3470 */ 3471 public T[] getEnumConstants() { 3472 T[] values = getEnumConstantsShared(); 3473 return (values != null) ? values.clone() : null; 3474 } 3475 3476 /** 3477 * Returns the elements of this enum class or null if this 3478 * Class object does not represent an enum class; 3479 * identical to getEnumConstants except that the result is 3480 * uncloned, cached, and shared by all callers. 3481 */ 3482 T[] getEnumConstantsShared() { 3483 T[] constants = enumConstants; 3484 if (constants == null) { 3485 if (!isEnum()) return null; 3486 try { 3487 final Method values = getMethod("values"); 3488 values.setAccessible(true); 3489 @SuppressWarnings("unchecked") 3490 T[] temporaryConstants = (T[])values.invoke(null); 3491 enumConstants = constants = temporaryConstants; 3492 } 3493 // These can happen when users concoct enum-like classes 3494 // that don't comply with the enum spec. 3495 catch (InvocationTargetException | NoSuchMethodException | 3496 IllegalAccessException | NullPointerException | 3497 ClassCastException ex) { return null; } 3498 } 3499 return constants; 3500 } 3501 private transient volatile T[] enumConstants; 3502 3503 /** 3504 * Returns a map from simple name to enum constant. This package-private 3505 * method is used internally by Enum to implement 3506 * {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)} 3507 * efficiently. Note that the map is returned by this method is 3508 * created lazily on first use. Typically it won't ever get created. 3509 */ 3510 Map<String, T> enumConstantDirectory() { 3511 Map<String, T> directory = enumConstantDirectory; 3512 if (directory == null) { 3513 T[] universe = getEnumConstantsShared(); 3514 if (universe == null) 3515 throw new IllegalArgumentException( 3516 getName() + " is not an enum class"); 3517 directory = HashMap.newHashMap(universe.length); 3518 for (T constant : universe) { 3519 directory.put(((Enum<?>)constant).name(), constant); 3520 } 3521 enumConstantDirectory = directory; 3522 } 3523 return directory; 3524 } 3525 private transient volatile Map<String, T> enumConstantDirectory; 3526 3527 /** 3528 * Casts an object to the class or interface represented 3529 * by this {@code Class} object. 3530 * 3531 * @param obj the object to be cast 3532 * @return the object after casting, or null if obj is null 3533 * 3534 * @throws ClassCastException if the object is not 3535 * null and is not assignable to the type T. 3536 * 3537 * @since 1.5 3538 */ 3539 @SuppressWarnings("unchecked") 3540 @IntrinsicCandidate 3541 public T cast(Object obj) { 3542 if (obj != null && !isInstance(obj)) 3543 throw new ClassCastException(cannotCastMsg(obj)); 3544 return (T) obj; 3545 } 3546 3547 private String cannotCastMsg(Object obj) { 3548 return "Cannot cast " + obj.getClass().getName() + " to " + getName(); 3549 } 3550 3551 /** 3552 * Casts this {@code Class} object to represent a subclass of the class 3553 * represented by the specified class object. Checks that the cast 3554 * is valid, and throws a {@code ClassCastException} if it is not. If 3555 * this method succeeds, it always returns a reference to this {@code Class} object. 3556 * 3557 * <p>This method is useful when a client needs to "narrow" the type of 3558 * a {@code Class} object to pass it to an API that restricts the 3559 * {@code Class} objects that it is willing to accept. A cast would 3560 * generate a compile-time warning, as the correctness of the cast 3561 * could not be checked at runtime (because generic types are implemented 3562 * by erasure). 3563 * 3564 * @param <U> the type to cast this {@code Class} object to 3565 * @param clazz the class of the type to cast this {@code Class} object to 3566 * @return this {@code Class} object, cast to represent a subclass of 3567 * the specified class object. 3568 * @throws ClassCastException if this {@code Class} object does not 3569 * represent a subclass of the specified class (here "subclass" includes 3570 * the class itself). 3571 * @since 1.5 3572 */ 3573 @SuppressWarnings("unchecked") 3574 public <U> Class<? extends U> asSubclass(Class<U> clazz) { 3575 if (clazz.isAssignableFrom(this)) 3576 return (Class<? extends U>) this; 3577 else 3578 throw new ClassCastException(this.toString()); 3579 } 3580 3581 /** 3582 * {@inheritDoc} 3583 * <p>Note that any annotation returned by this method is a 3584 * declaration annotation. 3585 * 3586 * @throws NullPointerException {@inheritDoc} 3587 * @since 1.5 3588 */ 3589 @Override 3590 @SuppressWarnings("unchecked") 3591 public <A extends Annotation> A getAnnotation(Class<A> annotationClass) { 3592 Objects.requireNonNull(annotationClass); 3593 3594 return (A) annotationData().annotations.get(annotationClass); 3595 } 3596 3597 /** 3598 * {@inheritDoc} 3599 * @throws NullPointerException {@inheritDoc} 3600 * @since 1.5 3601 */ 3602 @Override 3603 public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) { 3604 return GenericDeclaration.super.isAnnotationPresent(annotationClass); 3605 } 3606 3607 /** 3608 * {@inheritDoc} 3609 * <p>Note that any annotations returned by this method are 3610 * declaration annotations. 3611 * 3612 * @throws NullPointerException {@inheritDoc} 3613 * @since 1.8 3614 */ 3615 @Override 3616 public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) { 3617 Objects.requireNonNull(annotationClass); 3618 3619 AnnotationData annotationData = annotationData(); 3620 return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations, 3621 this, 3622 annotationClass); 3623 } 3624 3625 /** 3626 * {@inheritDoc} 3627 * <p>Note that any annotations returned by this method are 3628 * declaration annotations. 3629 * 3630 * @since 1.5 3631 */ 3632 @Override 3633 public Annotation[] getAnnotations() { 3634 return AnnotationParser.toArray(annotationData().annotations); 3635 } 3636 3637 /** 3638 * {@inheritDoc} 3639 * <p>Note that any annotation returned by this method is a 3640 * declaration annotation. 3641 * 3642 * @throws NullPointerException {@inheritDoc} 3643 * @since 1.8 3644 */ 3645 @Override 3646 @SuppressWarnings("unchecked") 3647 public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) { 3648 Objects.requireNonNull(annotationClass); 3649 3650 return (A) annotationData().declaredAnnotations.get(annotationClass); 3651 } 3652 3653 /** 3654 * {@inheritDoc} 3655 * <p>Note that any annotations returned by this method are 3656 * declaration annotations. 3657 * 3658 * @throws NullPointerException {@inheritDoc} 3659 * @since 1.8 3660 */ 3661 @Override 3662 public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) { 3663 Objects.requireNonNull(annotationClass); 3664 3665 return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations, 3666 annotationClass); 3667 } 3668 3669 /** 3670 * {@inheritDoc} 3671 * <p>Note that any annotations returned by this method are 3672 * declaration annotations. 3673 * 3674 * @since 1.5 3675 */ 3676 @Override 3677 public Annotation[] getDeclaredAnnotations() { 3678 return AnnotationParser.toArray(annotationData().declaredAnnotations); 3679 } 3680 3681 // annotation data that might get invalidated when JVM TI RedefineClasses() is called 3682 private static class AnnotationData { 3683 final Map<Class<? extends Annotation>, Annotation> annotations; 3684 final Map<Class<? extends Annotation>, Annotation> declaredAnnotations; 3685 3686 // Value of classRedefinedCount when we created this AnnotationData instance 3687 final int redefinedCount; 3688 3689 AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations, 3690 Map<Class<? extends Annotation>, Annotation> declaredAnnotations, 3691 int redefinedCount) { 3692 this.annotations = annotations; 3693 this.declaredAnnotations = declaredAnnotations; 3694 this.redefinedCount = redefinedCount; 3695 } 3696 } 3697 3698 // Annotations cache 3699 @SuppressWarnings("UnusedDeclaration") 3700 private transient volatile AnnotationData annotationData; 3701 3702 private AnnotationData annotationData() { 3703 while (true) { // retry loop 3704 AnnotationData annotationData = this.annotationData; 3705 int classRedefinedCount = this.classRedefinedCount; 3706 if (annotationData != null && 3707 annotationData.redefinedCount == classRedefinedCount) { 3708 return annotationData; 3709 } 3710 // null or stale annotationData -> optimistically create new instance 3711 AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount); 3712 // try to install it 3713 if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) { 3714 // successfully installed new AnnotationData 3715 return newAnnotationData; 3716 } 3717 } 3718 } 3719 3720 private AnnotationData createAnnotationData(int classRedefinedCount) { 3721 Map<Class<? extends Annotation>, Annotation> declaredAnnotations = 3722 AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this); 3723 Class<?> superClass = getSuperclass(); 3724 Map<Class<? extends Annotation>, Annotation> annotations = null; 3725 if (superClass != null) { 3726 Map<Class<? extends Annotation>, Annotation> superAnnotations = 3727 superClass.annotationData().annotations; 3728 for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) { 3729 Class<? extends Annotation> annotationClass = e.getKey(); 3730 if (AnnotationType.getInstance(annotationClass).isInherited()) { 3731 if (annotations == null) { // lazy construction 3732 annotations = LinkedHashMap.newLinkedHashMap(Math.max( 3733 declaredAnnotations.size(), 3734 Math.min(12, declaredAnnotations.size() + superAnnotations.size()) 3735 ) 3736 ); 3737 } 3738 annotations.put(annotationClass, e.getValue()); 3739 } 3740 } 3741 } 3742 if (annotations == null) { 3743 // no inherited annotations -> share the Map with declaredAnnotations 3744 annotations = declaredAnnotations; 3745 } else { 3746 // at least one inherited annotation -> declared may override inherited 3747 annotations.putAll(declaredAnnotations); 3748 } 3749 return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount); 3750 } 3751 3752 // Annotation interfaces cache their internal (AnnotationType) form 3753 3754 @SuppressWarnings("UnusedDeclaration") 3755 private transient volatile AnnotationType annotationType; 3756 3757 boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) { 3758 return Atomic.casAnnotationType(this, oldType, newType); 3759 } 3760 3761 AnnotationType getAnnotationType() { 3762 return annotationType; 3763 } 3764 3765 Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() { 3766 return annotationData().declaredAnnotations; 3767 } 3768 3769 /* Backing store of user-defined values pertaining to this class. 3770 * Maintained by the ClassValue class. 3771 */ 3772 transient ClassValue.ClassValueMap classValueMap; 3773 3774 /** 3775 * Returns an {@code AnnotatedType} object that represents the use of a 3776 * type to specify the superclass of the entity represented by this {@code 3777 * Class} object. (The <em>use</em> of type Foo to specify the superclass 3778 * in '... extends Foo' is distinct from the <em>declaration</em> of class 3779 * Foo.) 3780 * 3781 * <p> If this {@code Class} object represents a class whose declaration 3782 * does not explicitly indicate an annotated superclass, then the return 3783 * value is an {@code AnnotatedType} object representing an element with no 3784 * annotations. 3785 * 3786 * <p> If this {@code Class} represents either the {@code Object} class, an 3787 * interface type, an array type, a primitive type, or void, the return 3788 * value is {@code null}. 3789 * 3790 * @return an object representing the superclass 3791 * @since 1.8 3792 */ 3793 public AnnotatedType getAnnotatedSuperclass() { 3794 if (this == Object.class || 3795 isInterface() || 3796 isArray() || 3797 isPrimitive() || 3798 this == Void.TYPE) { 3799 return null; 3800 } 3801 3802 return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this); 3803 } 3804 3805 /** 3806 * Returns an array of {@code AnnotatedType} objects that represent the use 3807 * of types to specify superinterfaces of the entity represented by this 3808 * {@code Class} object. (The <em>use</em> of type Foo to specify a 3809 * superinterface in '... implements Foo' is distinct from the 3810 * <em>declaration</em> of interface Foo.) 3811 * 3812 * <p> If this {@code Class} object represents a class, the return value is 3813 * an array containing objects representing the uses of interface types to 3814 * specify interfaces implemented by the class. The order of the objects in 3815 * the array corresponds to the order of the interface types used in the 3816 * 'implements' clause of the declaration of this {@code Class} object. 3817 * 3818 * <p> If this {@code Class} object represents an interface, the return 3819 * value is an array containing objects representing the uses of interface 3820 * types to specify interfaces directly extended by the interface. The 3821 * order of the objects in the array corresponds to the order of the 3822 * interface types used in the 'extends' clause of the declaration of this 3823 * {@code Class} object. 3824 * 3825 * <p> If this {@code Class} object represents a class or interface whose 3826 * declaration does not explicitly indicate any annotated superinterfaces, 3827 * the return value is an array of length 0. 3828 * 3829 * <p> If this {@code Class} object represents either the {@code Object} 3830 * class, an array type, a primitive type, or void, the return value is an 3831 * array of length 0. 3832 * 3833 * @return an array representing the superinterfaces 3834 * @since 1.8 3835 */ 3836 public AnnotatedType[] getAnnotatedInterfaces() { 3837 return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this); 3838 } 3839 3840 private native Class<?> getNestHost0(); 3841 3842 /** 3843 * Returns the nest host of the <a href=#nest>nest</a> to which the class 3844 * or interface represented by this {@code Class} object belongs. 3845 * Every class and interface belongs to exactly one nest. 3846 * 3847 * If the nest host of this class or interface has previously 3848 * been determined, then this method returns the nest host. 3849 * If the nest host of this class or interface has 3850 * not previously been determined, then this method determines the nest 3851 * host using the algorithm of JVMS 5.4.4, and returns it. 3852 * 3853 * Often, a class or interface belongs to a nest consisting only of itself, 3854 * in which case this method returns {@code this} to indicate that the class 3855 * or interface is the nest host. 3856 * 3857 * <p>If this {@code Class} object represents a primitive type, an array type, 3858 * or {@code void}, then this method returns {@code this}, 3859 * indicating that the represented entity belongs to the nest consisting only of 3860 * itself, and is the nest host. 3861 * 3862 * @return the nest host of this class or interface 3863 * 3864 * @since 11 3865 * @jvms 4.7.28 The {@code NestHost} Attribute 3866 * @jvms 4.7.29 The {@code NestMembers} Attribute 3867 * @jvms 5.4.4 Access Control 3868 */ 3869 public Class<?> getNestHost() { 3870 if (isPrimitive() || isArray()) { 3871 return this; 3872 } 3873 return getNestHost0(); 3874 } 3875 3876 /** 3877 * Determines if the given {@code Class} is a nestmate of the 3878 * class or interface represented by this {@code Class} object. 3879 * Two classes or interfaces are nestmates 3880 * if they have the same {@linkplain #getNestHost() nest host}. 3881 * 3882 * @param c the class to check 3883 * @return {@code true} if this class and {@code c} are members of 3884 * the same nest; and {@code false} otherwise. 3885 * 3886 * @since 11 3887 */ 3888 public boolean isNestmateOf(Class<?> c) { 3889 if (this == c) { 3890 return true; 3891 } 3892 if (isPrimitive() || isArray() || 3893 c.isPrimitive() || c.isArray()) { 3894 return false; 3895 } 3896 3897 return getNestHost() == c.getNestHost(); 3898 } 3899 3900 private native Class<?>[] getNestMembers0(); 3901 3902 /** 3903 * Returns an array containing {@code Class} objects representing all the 3904 * classes and interfaces that are members of the nest to which the class 3905 * or interface represented by this {@code Class} object belongs. 3906 * 3907 * First, this method obtains the {@linkplain #getNestHost() nest host}, 3908 * {@code H}, of the nest to which the class or interface represented by 3909 * this {@code Class} object belongs. The zeroth element of the returned 3910 * array is {@code H}. 3911 * 3912 * Then, for each class or interface {@code C} which is recorded by {@code H} 3913 * as being a member of its nest, this method attempts to obtain the {@code Class} 3914 * object for {@code C} (using {@linkplain #getClassLoader() the defining class 3915 * loader} of the current {@code Class} object), and then obtains the 3916 * {@linkplain #getNestHost() nest host} of the nest to which {@code C} belongs. 3917 * The classes and interfaces which are recorded by {@code H} as being members 3918 * of its nest, and for which {@code H} can be determined as their nest host, 3919 * are indicated by subsequent elements of the returned array. The order of 3920 * such elements is unspecified. Duplicates are permitted. 3921 * 3922 * <p>If this {@code Class} object represents a primitive type, an array type, 3923 * or {@code void}, then this method returns a single-element array containing 3924 * {@code this}. 3925 * 3926 * @apiNote 3927 * The returned array includes only the nest members recorded in the {@code NestMembers} 3928 * attribute, and not any hidden classes that were added to the nest via 3929 * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 3930 * Lookup::defineHiddenClass}. 3931 * 3932 * @return an array of all classes and interfaces in the same nest as 3933 * this class or interface 3934 * 3935 * @since 11 3936 * @see #getNestHost() 3937 * @jvms 4.7.28 The {@code NestHost} Attribute 3938 * @jvms 4.7.29 The {@code NestMembers} Attribute 3939 */ 3940 public Class<?>[] getNestMembers() { 3941 if (isPrimitive() || isArray()) { 3942 return new Class<?>[] { this }; 3943 } 3944 Class<?>[] members = getNestMembers0(); 3945 // Can't actually enable this due to bootstrapping issues 3946 // assert(members.length != 1 || members[0] == this); // expected invariant from VM 3947 return members; 3948 } 3949 3950 /** 3951 * Returns the descriptor string of the entity (class, interface, array class, 3952 * primitive type, or {@code void}) represented by this {@code Class} object. 3953 * 3954 * <p> If this {@code Class} object represents a class or interface, 3955 * not an array class, then: 3956 * <ul> 3957 * <li> If the class or interface is not {@linkplain Class#isHidden() hidden}, 3958 * then the result is a field descriptor (JVMS {@jvms 4.3.2}) 3959 * for the class or interface. Calling 3960 * {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor} 3961 * with the result descriptor string produces a {@link ClassDesc ClassDesc} 3962 * describing this class or interface. 3963 * <li> If the class or interface is {@linkplain Class#isHidden() hidden}, 3964 * then the result is a string of the form: 3965 * <blockquote> 3966 * {@code "L" +} <em>N</em> {@code + "." + <suffix> + ";"} 3967 * </blockquote> 3968 * where <em>N</em> is the {@linkplain ClassLoader##binary-name binary name} 3969 * encoded in internal form indicated by the {@code class} file passed to 3970 * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...) 3971 * Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name. 3972 * A hidden class or interface has no {@linkplain ClassDesc nominal descriptor}. 3973 * The result string is not a type descriptor. 3974 * </ul> 3975 * 3976 * <p> If this {@code Class} object represents an array class, then 3977 * the result is a string consisting of one or more '{@code [}' characters 3978 * representing the depth of the array nesting, followed by the 3979 * descriptor string of the element type. 3980 * <ul> 3981 * <li> If the element type is not a {@linkplain Class#isHidden() hidden} class 3982 * or interface, then this array class can be described nominally. 3983 * Calling {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor} 3984 * with the result descriptor string produces a {@link ClassDesc ClassDesc} 3985 * describing this array class. 3986 * <li> If the element type is a {@linkplain Class#isHidden() hidden} class or 3987 * interface, then this array class cannot be described nominally. 3988 * The result string is not a type descriptor. 3989 * </ul> 3990 * 3991 * <p> If this {@code Class} object represents a primitive type or 3992 * {@code void}, then the result is a field descriptor string which 3993 * is a one-letter code corresponding to a primitive type or {@code void} 3994 * ({@code "B", "C", "D", "F", "I", "J", "S", "Z", "V"}) (JVMS {@jvms 4.3.2}). 3995 * 3996 * @return the descriptor string for this {@code Class} object 3997 * @jvms 4.3.2 Field Descriptors 3998 * @since 12 3999 */ 4000 @Override 4001 public String descriptorString() { 4002 if (isPrimitive()) 4003 return Wrapper.forPrimitiveType(this).basicTypeString(); 4004 4005 if (isArray()) { 4006 return "[".concat(componentType.descriptorString()); 4007 } else if (isHidden()) { 4008 String name = getName(); 4009 int index = name.indexOf('/'); 4010 return new StringBuilder(name.length() + 2) 4011 .append('L') 4012 .append(name.substring(0, index).replace('.', '/')) 4013 .append('.') 4014 .append(name, index + 1, name.length()) 4015 .append(';') 4016 .toString(); 4017 } else { 4018 String name = getName().replace('.', '/'); 4019 return StringConcatHelper.concat("L", name, ";"); 4020 } 4021 } 4022 4023 /** 4024 * Returns the component type of this {@code Class}, if it describes 4025 * an array type, or {@code null} otherwise. 4026 * 4027 * @implSpec 4028 * Equivalent to {@link Class#getComponentType()}. 4029 * 4030 * @return a {@code Class} describing the component type, or {@code null} 4031 * if this {@code Class} does not describe an array type 4032 * @since 12 4033 */ 4034 @Override 4035 public Class<?> componentType() { 4036 return isArray() ? componentType : null; 4037 } 4038 4039 /** 4040 * Returns a {@code Class} for an array type whose component type 4041 * is described by this {@linkplain Class}. 4042 * 4043 * @throws UnsupportedOperationException if this component type is {@linkplain 4044 * Void#TYPE void} or if the number of dimensions of the resulting array 4045 * type would exceed 255. 4046 * @return a {@code Class} describing the array type 4047 * @jvms 4.3.2 Field Descriptors 4048 * @jvms 4.4.1 The {@code CONSTANT_Class_info} Structure 4049 * @since 12 4050 */ 4051 @Override 4052 public Class<?> arrayType() { 4053 try { 4054 return Array.newInstance(this, 0).getClass(); 4055 } catch (IllegalArgumentException iae) { 4056 throw new UnsupportedOperationException(iae); 4057 } 4058 } 4059 4060 /** 4061 * Returns a nominal descriptor for this instance, if one can be 4062 * constructed, or an empty {@link Optional} if one cannot be. 4063 * 4064 * @return An {@link Optional} containing the resulting nominal descriptor, 4065 * or an empty {@link Optional} if one cannot be constructed. 4066 * @since 12 4067 */ 4068 @Override 4069 public Optional<ClassDesc> describeConstable() { 4070 Class<?> c = isArray() ? elementType() : this; 4071 return c.isHidden() ? Optional.empty() 4072 : Optional.of(ConstantUtils.classDesc(this)); 4073 } 4074 4075 /** 4076 * Returns {@code true} if and only if the underlying class is a hidden class. 4077 * 4078 * @return {@code true} if and only if this class is a hidden class. 4079 * 4080 * @since 15 4081 * @see MethodHandles.Lookup#defineHiddenClass 4082 * @see Class##hiddenClasses Hidden Classes 4083 */ 4084 @IntrinsicCandidate 4085 public native boolean isHidden(); 4086 4087 /** 4088 * Returns an array containing {@code Class} objects representing the 4089 * direct subinterfaces or subclasses permitted to extend or 4090 * implement this class or interface if it is sealed. The order of such elements 4091 * is unspecified. The array is empty if this sealed class or interface has no 4092 * permitted subclass. If this {@code Class} object represents a primitive type, 4093 * {@code void}, an array type, or a class or interface that is not sealed, 4094 * that is {@link #isSealed()} returns {@code false}, then this method returns {@code null}. 4095 * Conversely, if {@link #isSealed()} returns {@code true}, then this method 4096 * returns a non-null value. 4097 * 4098 * For each class or interface {@code C} which is recorded as a permitted 4099 * direct subinterface or subclass of this class or interface, 4100 * this method attempts to obtain the {@code Class} 4101 * object for {@code C} (using {@linkplain #getClassLoader() the defining class 4102 * loader} of the current {@code Class} object). 4103 * The {@code Class} objects which can be obtained and which are direct 4104 * subinterfaces or subclasses of this class or interface, 4105 * are indicated by elements of the returned array. If a {@code Class} object 4106 * cannot be obtained, it is silently ignored, and not included in the result 4107 * array. 4108 * 4109 * @return an array of {@code Class} objects of the permitted subclasses of this class 4110 * or interface, or {@code null} if this class or interface is not sealed. 4111 * 4112 * @jls 8.1 Class Declarations 4113 * @jls 9.1 Interface Declarations 4114 * @since 17 4115 */ 4116 public Class<?>[] getPermittedSubclasses() { 4117 Class<?>[] subClasses; 4118 if (isArray() || isPrimitive() || (subClasses = getPermittedSubclasses0()) == null) { 4119 return null; 4120 } 4121 if (subClasses.length > 0) { 4122 if (Arrays.stream(subClasses).anyMatch(c -> !isDirectSubType(c))) { 4123 subClasses = Arrays.stream(subClasses) 4124 .filter(this::isDirectSubType) 4125 .toArray(s -> new Class<?>[s]); 4126 } 4127 } 4128 return subClasses; 4129 } 4130 4131 private boolean isDirectSubType(Class<?> c) { 4132 if (isInterface()) { 4133 for (Class<?> i : c.getInterfaces(/* cloneArray */ false)) { 4134 if (i == this) { 4135 return true; 4136 } 4137 } 4138 } else { 4139 return c.getSuperclass() == this; 4140 } 4141 return false; 4142 } 4143 4144 /** 4145 * Returns {@code true} if and only if this {@code Class} object represents 4146 * a sealed class or interface. If this {@code Class} object represents a 4147 * primitive type, {@code void}, or an array type, this method returns 4148 * {@code false}. A sealed class or interface has (possibly zero) permitted 4149 * subclasses; {@link #getPermittedSubclasses()} returns a non-null but 4150 * possibly empty value for a sealed class or interface. 4151 * 4152 * @return {@code true} if and only if this {@code Class} object represents 4153 * a sealed class or interface. 4154 * 4155 * @jls 8.1 Class Declarations 4156 * @jls 9.1 Interface Declarations 4157 * @since 17 4158 */ 4159 public boolean isSealed() { 4160 if (isArray() || isPrimitive()) { 4161 return false; 4162 } 4163 return getPermittedSubclasses() != null; 4164 } 4165 4166 private native Class<?>[] getPermittedSubclasses0(); 4167 4168 /* 4169 * Return the class's major and minor class file version packed into an int. 4170 * The high order 16 bits contain the class's minor version. The low order 4171 * 16 bits contain the class's major version. 4172 * 4173 * If the class is an array type then the class file version of its element 4174 * type is returned. If the class is a primitive type then the latest class 4175 * file major version is returned and zero is returned for the minor version. 4176 */ 4177 private int getClassFileVersion() { 4178 Class<?> c = isArray() ? elementType() : this; 4179 return c.getClassFileVersion0(); 4180 } 4181 4182 private native int getClassFileVersion0(); 4183 4184 /* 4185 * Return the access flags as they were in the class's bytecode, including 4186 * the original setting of ACC_SUPER. 4187 * 4188 * If the class is an array type then the access flags of the element type is 4189 * returned. If the class is a primitive then ACC_ABSTRACT | ACC_FINAL | ACC_PUBLIC. 4190 */ 4191 private int getClassAccessFlagsRaw() { 4192 Class<?> c = isArray() ? elementType() : this; 4193 return c.getClassAccessFlagsRaw0(); 4194 } 4195 4196 private native int getClassAccessFlagsRaw0(); 4197 4198 // Support for "OLD" CDS workflow -- { 4199 private static final int RD_PUBLIC_METHODS = (1 << 0); 4200 private static final int RD_PUBLIC_FIELDS = (1 << 1); 4201 private static final int RD_DECLARED_CTORS = (1 << 2); 4202 private static final int RD_PUBLIC_CTORS = (1 << 3); 4203 private static final int RD_DECLARED_METHODS = (1 << 4); 4204 private static final int RD_DECLARED_PUBLIC_METHODS = (1 << 5); 4205 private static final int RD_DECLARED_FIELDS = (1 << 6); 4206 private static final int RD_DECLARED_PUBLIC_FIELDS = (1 << 7); 4207 private static final int RD_DECLARED_INTERFACES = (1 << 8); 4208 private static final int RD_DECLARED_SIMPLE_NAME = (1 << 9); 4209 private static final int RD_DECLARED_CANONICAL_NAME = (1 << 10); 4210 private static final int CLS_NAME = (1 << 10); 4211 4212 4213 private int encodeReflectionData() { 4214 int flags = CLS_NAME; 4215 if (reflectionData != null) { 4216 flags = (reflectionData.publicMethods != null ? RD_PUBLIC_METHODS : 0) | 4217 (reflectionData.publicFields != null ? RD_PUBLIC_FIELDS : 0) | 4218 (reflectionData.declaredConstructors != null ? RD_DECLARED_CTORS : 0) | 4219 (reflectionData.publicConstructors != null ? RD_PUBLIC_CTORS : 0) | 4220 (reflectionData.declaredMethods != null ? RD_DECLARED_METHODS : 0) | 4221 (reflectionData.declaredPublicMethods != null ? RD_DECLARED_PUBLIC_METHODS : 0) | 4222 (reflectionData.declaredFields != null ? RD_DECLARED_FIELDS : 0) | 4223 (reflectionData.declaredPublicFields != null ? RD_DECLARED_PUBLIC_FIELDS : 0) | 4224 (reflectionData.interfaces != null ? RD_DECLARED_INTERFACES : 0) | 4225 (reflectionData.simpleName != null ? RD_DECLARED_SIMPLE_NAME : 0) | 4226 (reflectionData.canonicalName != null ? RD_DECLARED_CANONICAL_NAME : 0); 4227 } 4228 return flags; 4229 } 4230 private void generateReflectionData(int flags) { 4231 if ((flags & CLS_NAME ) != 0) { getName(); } // String name 4232 if ((flags & RD_PUBLIC_METHODS ) != 0) { privateGetPublicMethods(); } // Method[] publicMethods; 4233 if ((flags & RD_PUBLIC_FIELDS ) != 0) { privateGetPublicFields(); } // Field[] publicFields; 4234 if ((flags & RD_DECLARED_CTORS ) != 0) { privateGetDeclaredConstructors(false); } // Constructor<T>[] declaredConstructors; 4235 if ((flags & RD_PUBLIC_CTORS ) != 0) { privateGetDeclaredConstructors(true); } // Constructor<T>[] publicConstructors; 4236 if ((flags & RD_DECLARED_METHODS ) != 0) { privateGetDeclaredMethods(false); } // Method[] declaredMethods; 4237 if ((flags & RD_DECLARED_PUBLIC_METHODS) != 0) { privateGetDeclaredMethods(true); } // Method[] declaredPublicMethods; 4238 if ((flags & RD_DECLARED_FIELDS ) != 0) { privateGetDeclaredFields(false); } // Field[] declaredFields; 4239 if ((flags & RD_DECLARED_PUBLIC_FIELDS ) != 0) { privateGetDeclaredFields(true); } // Field[] declaredPublicFields; 4240 if ((flags & RD_DECLARED_INTERFACES ) != 0) { getInterfaces(false); } // Class<?>[] interfaces; 4241 if ((flags & RD_DECLARED_SIMPLE_NAME ) != 0) { getSimpleName(); } // String simpleName; 4242 if ((flags & RD_DECLARED_CANONICAL_NAME) != 0) { getCanonicalName(); } // String canonicalName; 4243 } 4244 4245 // -- } 4246 }