1 /*
   2  * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Annotation;
  29 import java.lang.constant.ClassDesc;
  30 import java.lang.constant.ConstantDescs;
  31 import java.lang.invoke.TypeDescriptor;
  32 import java.lang.invoke.MethodHandles;
  33 import java.lang.ref.SoftReference;
  34 import java.io.IOException;
  35 import java.io.InputStream;
  36 import java.io.ObjectStreamField;
  37 import java.lang.reflect.AnnotatedElement;
  38 import java.lang.reflect.AnnotatedType;
  39 import java.lang.reflect.AccessFlag;
  40 import java.lang.reflect.Array;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Executable;
  43 import java.lang.reflect.Field;
  44 import java.lang.reflect.GenericArrayType;
  45 import java.lang.reflect.GenericDeclaration;
  46 import java.lang.reflect.InvocationTargetException;
  47 import java.lang.reflect.Member;
  48 import java.lang.reflect.Method;
  49 import java.lang.reflect.Modifier;
  50 import java.lang.reflect.Proxy;
  51 import java.lang.reflect.RecordComponent;
  52 import java.lang.reflect.Type;
  53 import java.lang.reflect.TypeVariable;
  54 import java.lang.constant.Constable;
  55 import java.net.URL;
  56 import java.security.AllPermission;
  57 import java.security.Permissions;
  58 import java.security.ProtectionDomain;
  59 import java.util.ArrayList;
  60 import java.util.Arrays;
  61 import java.util.Collection;
  62 import java.util.HashMap;
  63 import java.util.LinkedHashMap;
  64 import java.util.LinkedHashSet;
  65 import java.util.List;
  66 import java.util.Map;
  67 import java.util.Objects;
  68 import java.util.Optional;
  69 import java.util.Set;
  70 import java.util.stream.Collectors;
  71 
  72 import jdk.internal.constant.ConstantUtils;
  73 import jdk.internal.loader.BootLoader;
  74 import jdk.internal.loader.BuiltinClassLoader;
  75 import jdk.internal.misc.Unsafe;
  76 import jdk.internal.module.Resources;
  77 import jdk.internal.reflect.CallerSensitive;
  78 import jdk.internal.reflect.CallerSensitiveAdapter;
  79 import jdk.internal.reflect.ConstantPool;
  80 import jdk.internal.reflect.Reflection;
  81 import jdk.internal.reflect.ReflectionFactory;
  82 import jdk.internal.vm.annotation.IntrinsicCandidate;
  83 import jdk.internal.vm.annotation.Stable;
  84 
  85 import sun.invoke.util.Wrapper;
  86 import sun.reflect.generics.factory.CoreReflectionFactory;
  87 import sun.reflect.generics.factory.GenericsFactory;
  88 import sun.reflect.generics.repository.ClassRepository;
  89 import sun.reflect.generics.repository.MethodRepository;
  90 import sun.reflect.generics.repository.ConstructorRepository;
  91 import sun.reflect.generics.scope.ClassScope;
  92 import sun.reflect.annotation.*;
  93 
  94 /**
  95  * Instances of the class {@code Class} represent classes and
  96  * interfaces in a running Java application. An enum class and a record
  97  * class are kinds of class; an annotation interface is a kind of
  98  * interface. Every array also belongs to a class that is reflected as
  99  * a {@code Class} object that is shared by all arrays with the same
 100  * element type and number of dimensions.  The primitive Java types
 101  * ({@code boolean}, {@code byte}, {@code char}, {@code short}, {@code
 102  * int}, {@code long}, {@code float}, and {@code double}), and the
 103  * keyword {@code void} are also represented as {@code Class} objects.
 104  *
 105  * <p> {@code Class} has no public constructor. Instead a {@code Class}
 106  * object is constructed automatically by the Java Virtual Machine when
 107  * a class is derived from the bytes of a {@code class} file through
 108  * the invocation of one of the following methods:
 109  * <ul>
 110  * <li> {@link ClassLoader#defineClass(String, byte[], int, int) ClassLoader::defineClass}
 111  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[])
 112  *      java.lang.invoke.MethodHandles.Lookup::defineClass}
 113  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 114  *      java.lang.invoke.MethodHandles.Lookup::defineHiddenClass}
 115  * </ul>
 116  *
 117  * <p> The methods of class {@code Class} expose many characteristics of a
 118  * class or interface. Most characteristics are derived from the {@code class}
 119  * file that the class loader passed to the Java Virtual Machine or
 120  * from the {@code class} file passed to {@code Lookup::defineClass}
 121  * or {@code Lookup::defineHiddenClass}.
 122  * A few characteristics are determined by the class loading environment
 123  * at run time, such as the module returned by {@link #getModule() getModule()}.
 124  *
 125  * <p> The following example uses a {@code Class} object to print the
 126  * class name of an object:
 127  *
 128  * {@snippet lang="java" :
 129  * void printClassName(Object obj) {
 130  *     System.out.println("The class of " + obj +
 131  *                        " is " + obj.getClass().getName());
 132  * }}
 133  *
 134  * It is also possible to get the {@code Class} object for a named
 135  * class or interface (or for {@code void}) using a <dfn>class literal</dfn>
 136  * (JLS {@jls 15.8.2}).
 137  * For example:
 138  *
 139  * {@snippet lang="java" :
 140  * System.out.println("The name of class Foo is: " + Foo.class.getName()); // @highlight substring="Foo.class"
 141  * }
 142  *
 143  * <p> Some methods of class {@code Class} expose whether the declaration of
 144  * a class or interface in Java source code was <em>enclosed</em> within
 145  * another declaration. Other methods describe how a class or interface
 146  * is situated in a <dfn>{@index "nest"}</dfn>. A nest is a set of
 147  * classes and interfaces, in the same run-time package, that
 148  * allow mutual access to their {@code private} members.
 149  * The classes and interfaces are known as <dfn>{@index "nestmates"}</dfn>
 150  * (JVMS {@jvms 4.7.29}).
 151  * One nestmate acts as the
 152  * <dfn>nest host</dfn> (JVMS {@jvms 4.7.28}), and enumerates the other nestmates which
 153  * belong to the nest; each of them in turn records it as the nest host.
 154  * The classes and interfaces which belong to a nest, including its host, are
 155  * determined when
 156  * {@code class} files are generated, for example, a Java compiler
 157  * will typically record a top-level class as the host of a nest where the
 158  * other members are the classes and interfaces whose declarations are
 159  * enclosed within the top-level class declaration.
 160  *
 161  * <h2><a id=hiddenClasses>Hidden Classes</a></h2>
 162  * A class or interface created by the invocation of
 163  * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 164  * Lookup::defineHiddenClass} is a {@linkplain Class#isHidden() <dfn>hidden</dfn>}
 165  * class or interface.
 166  * All kinds of class, including enum classes and record classes, may be
 167  * hidden classes; all kinds of interface, including annotation interfaces,
 168  * may be hidden interfaces.
 169  *
 170  * The {@linkplain #getName() name of a hidden class or interface} is
 171  * not a {@linkplain ClassLoader##binary-name binary name},
 172  * which means the following:
 173  * <ul>
 174  * <li>A hidden class or interface cannot be referenced by the constant pools
 175  *     of other classes and interfaces.
 176  * <li>A hidden class or interface cannot be described in
 177  *     {@linkplain java.lang.constant.ConstantDesc <em>nominal form</em>} by
 178  *     {@link #describeConstable() Class::describeConstable},
 179  *     {@link ClassDesc#of(String) ClassDesc::of}, or
 180  *     {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}.
 181  * <li>A hidden class or interface cannot be discovered by {@link #forName Class::forName}
 182  *     or {@link ClassLoader#loadClass(String, boolean) ClassLoader::loadClass}.
 183  * </ul>
 184  *
 185  * A hidden class or interface is never an array class, but may be
 186  * the element type of an array. In all other respects, the fact that
 187  * a class or interface is hidden has no bearing on the characteristics
 188  * exposed by the methods of class {@code Class}.
 189  *
 190  * <h2><a id=implicitClasses>Implicitly Declared Classes</a></h2>
 191  *
 192  * Conventionally, a Java compiler, starting from a source file for an
 193  * implicitly declared class, say {@code HelloWorld.java}, creates a
 194  * similarly-named {@code class} file, {@code HelloWorld.class}, where
 195  * the class stored in that {@code class} file is named {@code
 196  * "HelloWorld"}, matching the base names of the source and {@code
 197  * class} files.
 198  *
 199  * For the {@code Class} object of an implicitly declared class {@code
 200  * HelloWorld}, the methods to get the {@linkplain #getName name} and
 201  * {@linkplain #getTypeName type name} return results
 202  * equal to {@code "HelloWorld"}. The {@linkplain #getSimpleName
 203  * simple name} of such an implicitly declared class is {@code "HelloWorld"} and
 204  * the {@linkplain #getCanonicalName canonical name} is {@code "HelloWorld"}.
 205  *
 206  * @param <T> the type of the class modeled by this {@code Class}
 207  * object.  For example, the type of {@code String.class} is {@code
 208  * Class<String>}.  Use {@code Class<?>} if the class being modeled is
 209  * unknown.
 210  *
 211  * @see     java.lang.ClassLoader#defineClass(byte[], int, int)
 212  * @since   1.0
 213  */
 214 public final class Class<T> implements java.io.Serializable,
 215                               GenericDeclaration,
 216                               Type,
 217                               AnnotatedElement,
 218                               TypeDescriptor.OfField<Class<?>>,
 219                               Constable {
 220     private static final int ANNOTATION= 0x00002000;
 221     private static final int ENUM      = 0x00004000;
 222     private static final int SYNTHETIC = 0x00001000;
 223 
 224     private static native void registerNatives();
 225     static {
 226         runtimeSetup();
 227     }
 228 
 229     // Called from JVM when loading an AOT cache
 230     private static void runtimeSetup() {
 231         registerNatives();
 232     }
 233 
 234     /*
 235      * Private constructor. Only the Java Virtual Machine creates Class objects.
 236      * This constructor is not used and prevents the default constructor being
 237      * generated.
 238      */
 239     private Class(ClassLoader loader, Class<?> arrayComponentType) {
 240         // Initialize final field for classLoader.  The initialization value of non-null
 241         // prevents future JIT optimizations from assuming this final field is null.
 242         classLoader = loader;
 243         componentType = arrayComponentType;
 244     }
 245 
 246     /**
 247      * Converts the object to a string. The string representation is the
 248      * string "class" or "interface", followed by a space, and then by the
 249      * name of the class in the format returned by {@code getName}.
 250      * If this {@code Class} object represents a primitive type,
 251      * this method returns the name of the primitive type.  If
 252      * this {@code Class} object represents void this method returns
 253      * "void". If this {@code Class} object represents an array type,
 254      * this method returns "class " followed by {@code getName}.
 255      *
 256      * @return a string representation of this {@code Class} object.
 257      */
 258     public String toString() {
 259         String kind = isInterface() ? "interface " : isPrimitive() ? "" : "class ";
 260         return kind.concat(getName());
 261     }
 262 
 263     /**
 264      * Returns a string describing this {@code Class}, including
 265      * information about modifiers, {@link #isSealed() sealed}/{@code
 266      * non-sealed} status, and type parameters.
 267      *
 268      * The string is formatted as a list of type modifiers, if any,
 269      * followed by the kind of type (empty string for primitive types
 270      * and {@code class}, {@code enum}, {@code interface},
 271      * {@code @interface}, or {@code record} as appropriate), followed
 272      * by the type's name, followed by an angle-bracketed
 273      * comma-separated list of the type's type parameters, if any,
 274      * including informative bounds on the type parameters, if any.
 275      *
 276      * A space is used to separate modifiers from one another and to
 277      * separate any modifiers from the kind of type. The modifiers
 278      * occur in canonical order. If there are no type parameters, the
 279      * type parameter list is elided.
 280      *
 281      * For an array type, the string starts with the type name,
 282      * followed by an angle-bracketed comma-separated list of the
 283      * type's type parameters, if any, followed by a sequence of
 284      * {@code []} characters, one set of brackets per dimension of
 285      * the array.
 286      *
 287      * <p>Note that since information about the runtime representation
 288      * of a type is being generated, modifiers not present on the
 289      * originating source code or illegal on the originating source
 290      * code may be present.
 291      *
 292      * @return a string describing this {@code Class}, including
 293      * information about modifiers and type parameters
 294      *
 295      * @since 1.8
 296      */
 297     public String toGenericString() {
 298         if (isPrimitive()) {
 299             return toString();
 300         } else {
 301             StringBuilder sb = new StringBuilder();
 302             Class<?> component = this;
 303             int arrayDepth = 0;
 304 
 305             if (isArray()) {
 306                 do {
 307                     arrayDepth++;
 308                     component = component.getComponentType();
 309                 } while (component.isArray());
 310                 sb.append(component.getName());
 311             } else {
 312                 // Class modifiers are a superset of interface modifiers
 313                 int modifiers = getModifiers() & Modifier.classModifiers();
 314                 if (modifiers != 0) {
 315                     sb.append(Modifier.toString(modifiers));
 316                     sb.append(' ');
 317                 }
 318 
 319                 // A class cannot be strictfp and sealed/non-sealed so
 320                 // it is sufficient to check for sealed-ness after all
 321                 // modifiers are printed.
 322                 addSealingInfo(modifiers, sb);
 323 
 324                 if (isAnnotation()) {
 325                     sb.append('@');
 326                 }
 327                 if (isInterface()) { // Note: all annotation interfaces are interfaces
 328                     sb.append("interface");
 329                 } else {
 330                     if (isEnum())
 331                         sb.append("enum");
 332                     else if (isRecord())
 333                         sb.append("record");
 334                     else
 335                         sb.append("class");
 336                 }
 337                 sb.append(' ');
 338                 sb.append(getName());
 339             }
 340 
 341             TypeVariable<?>[] typeparms = component.getTypeParameters();
 342             if (typeparms.length > 0) {
 343                 sb.append(Arrays.stream(typeparms)
 344                           .map(Class::typeVarBounds)
 345                           .collect(Collectors.joining(",", "<", ">")));
 346             }
 347 
 348             if (arrayDepth > 0) sb.append("[]".repeat(arrayDepth));
 349 
 350             return sb.toString();
 351         }
 352     }
 353 
 354     private void addSealingInfo(int modifiers, StringBuilder sb) {
 355         // A class can be final XOR sealed XOR non-sealed.
 356         if (Modifier.isFinal(modifiers)) {
 357             return; // no-op
 358         } else {
 359             if (isSealed()) {
 360                 sb.append("sealed ");
 361                 return;
 362             } else {
 363                 // Check for sealed ancestor, which implies this class
 364                 // is non-sealed.
 365                 if (hasSealedAncestor(this)) {
 366                     sb.append("non-sealed ");
 367                 }
 368             }
 369         }
 370     }
 371 
 372     private boolean hasSealedAncestor(Class<?> clazz) {
 373         // From JLS 8.1.1.2:
 374         // "It is a compile-time error if a class has a sealed direct
 375         // superclass or a sealed direct superinterface, and is not
 376         // declared final, sealed, or non-sealed either explicitly or
 377         // implicitly.
 378         // Thus, an effect of the sealed keyword is to force all
 379         // direct subclasses to explicitly declare whether they are
 380         // final, sealed, or non-sealed. This avoids accidentally
 381         // exposing a sealed class hierarchy to unwanted subclassing."
 382 
 383         // Therefore, will just check direct superclass and
 384         // superinterfaces.
 385         var superclass = clazz.getSuperclass();
 386         if (superclass != null && superclass.isSealed()) {
 387             return true;
 388         }
 389         for (var superinterface : clazz.getInterfaces()) {
 390             if (superinterface.isSealed()) {
 391                 return true;
 392             }
 393         }
 394         return false;
 395     }
 396 
 397     static String typeVarBounds(TypeVariable<?> typeVar) {
 398         Type[] bounds = typeVar.getBounds();
 399         if (bounds.length == 1 && bounds[0].equals(Object.class)) {
 400             return typeVar.getName();
 401         } else {
 402             return typeVar.getName() + " extends " +
 403                 Arrays.stream(bounds)
 404                 .map(Type::getTypeName)
 405                 .collect(Collectors.joining(" & "));
 406         }
 407     }
 408 
 409     /**
 410      * Returns the {@code Class} object associated with the class or
 411      * interface with the given string name.  Invoking this method is
 412      * equivalent to:
 413      *
 414      * {@snippet lang="java" :
 415      * Class.forName(className, true, currentLoader)
 416      * }
 417      *
 418      * where {@code currentLoader} denotes the defining class loader of
 419      * the current class.
 420      *
 421      * <p> For example, the following code fragment returns the
 422      * runtime {@code Class} object for the class named
 423      * {@code java.lang.Thread}:
 424      *
 425      * {@snippet lang="java" :
 426      * Class<?> t = Class.forName("java.lang.Thread");
 427      * }
 428      * <p>
 429      * A call to {@code forName("X")} causes the class named
 430      * {@code X} to be initialized.
 431      *
 432      * <p>
 433      * In cases where this method is called from a context where there is no
 434      * caller frame on the stack (e.g. when called directly from a JNI
 435      * attached thread), the system class loader is used.
 436      *
 437      * @param     className the {@linkplain ClassLoader##binary-name binary name}
 438      *                      of the class or the string representing an array type
 439      * @return    the {@code Class} object for the class with the
 440      *            specified name.
 441      * @throws    LinkageError if the linkage fails
 442      * @throws    ExceptionInInitializerError if the initialization provoked
 443      *            by this method fails
 444      * @throws    ClassNotFoundException if the class cannot be located
 445      *
 446      * @jls 12.2 Loading of Classes and Interfaces
 447      * @jls 12.3 Linking of Classes and Interfaces
 448      * @jls 12.4 Initialization of Classes and Interfaces
 449      */
 450     @CallerSensitive
 451     public static Class<?> forName(String className)
 452                 throws ClassNotFoundException {
 453         Class<?> caller = Reflection.getCallerClass();
 454         return forName(className, caller);
 455     }
 456 
 457     // Caller-sensitive adapter method for reflective invocation
 458     @CallerSensitiveAdapter
 459     private static Class<?> forName(String className, Class<?> caller)
 460             throws ClassNotFoundException {
 461         ClassLoader loader = (caller == null) ? ClassLoader.getSystemClassLoader()
 462                                               : ClassLoader.getClassLoader(caller);
 463         if (loader instanceof BuiltinClassLoader bcl) {
 464             if (bcl.usePositiveCache) {
 465                 Class<?> result = bcl.checkPositiveLookupCache(className);
 466                 if (result != null) {
 467                     return result;
 468                 }
 469             }
 470             if (bcl.useNegativeCache && bcl.checkNegativeLookupCache(className)) {
 471                 throw new ClassNotFoundException(className);
 472             }
 473         }
 474         return forName0(className, true, loader, caller);
 475     }
 476 
 477     /**
 478      * Returns the {@code Class} object associated with the class or
 479      * interface with the given string name, using the given class loader.
 480      * Given the {@linkplain ClassLoader##binary-name binary name} for a class or interface,
 481      * this method attempts to locate and load the class or interface. The specified
 482      * class loader is used to load the class or interface.  If the parameter
 483      * {@code loader} is {@code null}, the class is loaded through the bootstrap
 484      * class loader.  The class is initialized only if the
 485      * {@code initialize} parameter is {@code true} and if it has
 486      * not been initialized earlier.
 487      *
 488      * <p> This method cannot be used to obtain any of the {@code Class} objects
 489      * representing primitive types or void, hidden classes or interfaces,
 490      * or array classes whose element type is a hidden class or interface.
 491      * If {@code name} denotes a primitive type or void, for example {@code I},
 492      * an attempt will be made to locate a user-defined class in the unnamed package
 493      * whose name is {@code I} instead.
 494      * To obtain a {@code Class} object for a named primitive type
 495      * such as {@code int} or {@code long} use {@link
 496      * #forPrimitiveName(String)}.
 497      *
 498      * <p> To obtain the {@code Class} object associated with an array class,
 499      * the name consists of one or more {@code '['} representing the depth
 500      * of the array nesting, followed by the element type as encoded in
 501      * {@linkplain ##nameFormat the table} specified in {@code Class.getName()}.
 502      *
 503      * <p> Examples:
 504      * {@snippet lang="java" :
 505      * Class<?> threadClass = Class.forName("java.lang.Thread", false, currentLoader);
 506      * Class<?> stringArrayClass = Class.forName("[Ljava.lang.String;", false, currentLoader);
 507      * Class<?> intArrayClass = Class.forName("[[[I", false, currentLoader);   // Class of int[][][]
 508      * Class<?> nestedClass = Class.forName("java.lang.Character$UnicodeBlock", false, currentLoader);
 509      * Class<?> fooClass = Class.forName("Foo", true, currentLoader);
 510      * }
 511      *
 512      * <p> A call to {@code getName()} on the {@code Class} object returned
 513      * from {@code forName(}<i>N</i>{@code )} returns <i>N</i>.
 514      *
 515      * <p> A call to {@code forName("[L}<i>N</i>{@code ;")} causes the element type
 516      * named <i>N</i> to be loaded but not initialized regardless of the value
 517      * of the {@code initialize} parameter.
 518      *
 519      * @apiNote
 520      * This method throws errors related to loading, linking or initializing
 521      * as specified in Sections {@jls 12.2}, {@jls 12.3}, and {@jls 12.4} of
 522      * <cite>The Java Language Specification</cite>.
 523      * In addition, this method does not check whether the requested class
 524      * is accessible to its caller.
 525      *
 526      * @param name       the {@linkplain ClassLoader##binary-name binary name}
 527      *                   of the class or the string representing an array class
 528      *
 529      * @param initialize if {@code true} the class will be initialized
 530      *                   (which implies linking). See Section {@jls
 531      *                   12.4} of <cite>The Java Language
 532      *                   Specification</cite>.
 533      * @param loader     class loader from which the class must be loaded
 534      * @return           class object representing the desired class
 535      *
 536      * @throws    LinkageError if the linkage fails
 537      * @throws    ExceptionInInitializerError if the initialization provoked
 538      *            by this method fails
 539      * @throws    ClassNotFoundException if the class cannot be located by
 540      *            the specified class loader
 541      *
 542      * @see       java.lang.Class#forName(String)
 543      * @see       java.lang.ClassLoader
 544      *
 545      * @jls 12.2 Loading of Classes and Interfaces
 546      * @jls 12.3 Linking of Classes and Interfaces
 547      * @jls 12.4 Initialization of Classes and Interfaces
 548      * @jls 13.1 The Form of a Binary
 549      * @since     1.2
 550      */
 551     public static Class<?> forName(String name, boolean initialize, ClassLoader loader)
 552         throws ClassNotFoundException
 553     {
 554         if (loader instanceof BuiltinClassLoader bcl) {
 555             if (bcl.usePositiveCache) {
 556                 Class<?> result = bcl.checkPositiveLookupCache(name);
 557                 if (result != null) {
 558                     return result;
 559                 }
 560             }
 561            if (bcl.useNegativeCache && bcl.checkNegativeLookupCache(name)) {
 562                 throw new ClassNotFoundException(name);
 563             }
 564         }
 565         return forName0(name, initialize, loader, null);
 566     }
 567 
 568     /** Called after security check for system loader access checks have been made. */
 569     private static native Class<?> forName0(String name, boolean initialize,
 570                                             ClassLoader loader,
 571                                             Class<?> caller)
 572         throws ClassNotFoundException;
 573 
 574 
 575     /**
 576      * Returns the {@code Class} with the given {@linkplain ClassLoader##binary-name
 577      * binary name} in the given module.
 578      *
 579      * <p> This method attempts to locate and load the class or interface.
 580      * It does not link the class, and does not run the class initializer.
 581      * If the class is not found, this method returns {@code null}. </p>
 582      *
 583      * <p> If the class loader of the given module defines other modules and
 584      * the given name is a class defined in a different module, this method
 585      * returns {@code null} after the class is loaded. </p>
 586      *
 587      * <p> This method does not check whether the requested class is
 588      * accessible to its caller. </p>
 589      *
 590      * @apiNote
 591      * This method does not support loading of array types, unlike
 592      * {@link #forName(String, boolean, ClassLoader)}. The class name must be
 593      * a binary name.  This method returns {@code null} on failure rather than
 594      * throwing a {@link ClassNotFoundException}, as is done by
 595      * the {@link #forName(String, boolean, ClassLoader)} method.
 596      *
 597      * @param  module   A module
 598      * @param  name     The {@linkplain ClassLoader##binary-name binary name}
 599      *                  of the class
 600      * @return {@code Class} object of the given name defined in the given module;
 601      *         {@code null} if not found.
 602      *
 603      * @throws NullPointerException if the given module or name is {@code null}
 604      *
 605      * @throws LinkageError if the linkage fails
 606      *
 607      * @jls 12.2 Loading of Classes and Interfaces
 608      * @jls 12.3 Linking of Classes and Interfaces
 609      * @since 9
 610      */
 611     public static Class<?> forName(Module module, String name) {
 612         Objects.requireNonNull(module);
 613         Objects.requireNonNull(name);
 614 
 615         ClassLoader cl = module.getClassLoader();
 616         if (cl != null) {
 617             return cl.loadClass(module, name);
 618         } else {
 619             return BootLoader.loadClass(module, name);
 620         }
 621     }
 622 
 623     /**
 624      * {@return the {@code Class} object associated with the
 625      * {@linkplain #isPrimitive() primitive type} of the given name}
 626      * If the argument is not the name of a primitive type, {@code
 627      * null} is returned.
 628      *
 629      * @param primitiveName the name of the primitive type to find
 630      *
 631      * @throws NullPointerException if the argument is {@code null}
 632      *
 633      * @jls 4.2 Primitive Types and Values
 634      * @jls 15.8.2 Class Literals
 635      * @since 22
 636      */
 637     public static Class<?> forPrimitiveName(String primitiveName) {
 638         return switch(primitiveName) {
 639         // Integral types
 640         case "int"     -> int.class;
 641         case "long"    -> long.class;
 642         case "short"   -> short.class;
 643         case "char"    -> char.class;
 644         case "byte"    -> byte.class;
 645 
 646         // Floating-point types
 647         case "float"   -> float.class;
 648         case "double"  -> double.class;
 649 
 650         // Other types
 651         case "boolean" -> boolean.class;
 652         case "void"    -> void.class;
 653 
 654         default        -> null;
 655         };
 656     }
 657 
 658     /**
 659      * Creates a new instance of the class represented by this {@code Class}
 660      * object.  The class is instantiated as if by a {@code new}
 661      * expression with an empty argument list.  The class is initialized if it
 662      * has not already been initialized.
 663      *
 664      * @deprecated This method propagates any exception thrown by the
 665      * nullary constructor, including a checked exception.  Use of
 666      * this method effectively bypasses the compile-time exception
 667      * checking that would otherwise be performed by the compiler.
 668      * The {@link
 669      * java.lang.reflect.Constructor#newInstance(java.lang.Object...)
 670      * Constructor.newInstance} method avoids this problem by wrapping
 671      * any exception thrown by the constructor in a (checked) {@link
 672      * java.lang.reflect.InvocationTargetException}.
 673      *
 674      * <p>The call
 675      *
 676      * {@snippet lang="java" :
 677      * clazz.newInstance()
 678      * }
 679      *
 680      * can be replaced by
 681      *
 682      * {@snippet lang="java" :
 683      * clazz.getDeclaredConstructor().newInstance()
 684      * }
 685      *
 686      * The latter sequence of calls is inferred to be able to throw
 687      * the additional exception types {@link
 688      * InvocationTargetException} and {@link
 689      * NoSuchMethodException}. Both of these exception types are
 690      * subclasses of {@link ReflectiveOperationException}.
 691      *
 692      * @return  a newly allocated instance of the class represented by this
 693      *          object.
 694      * @throws  IllegalAccessException  if the class or its nullary
 695      *          constructor is not accessible.
 696      * @throws  InstantiationException
 697      *          if this {@code Class} represents an abstract class,
 698      *          an interface, an array class, a primitive type, or void;
 699      *          or if the class has no nullary constructor;
 700      *          or if the instantiation fails for some other reason.
 701      * @throws  ExceptionInInitializerError if the initialization
 702      *          provoked by this method fails.
 703      */
 704     @CallerSensitive
 705     @Deprecated(since="9")
 706     public T newInstance()
 707         throws InstantiationException, IllegalAccessException
 708     {
 709         // Constructor lookup
 710         Constructor<T> tmpConstructor = cachedConstructor;
 711         if (tmpConstructor == null) {
 712             if (this == Class.class) {
 713                 throw new IllegalAccessException(
 714                     "Can not call newInstance() on the Class for java.lang.Class"
 715                 );
 716             }
 717             try {
 718                 Class<?>[] empty = {};
 719                 final Constructor<T> c = getReflectionFactory().copyConstructor(
 720                     getConstructor0(empty, Member.DECLARED));
 721                 // Disable accessibility checks on the constructor
 722                 // access check is done with the true caller
 723                 c.setAccessible(true);
 724                 cachedConstructor = tmpConstructor = c;
 725             } catch (NoSuchMethodException e) {
 726                 throw (InstantiationException)
 727                     new InstantiationException(getName()).initCause(e);
 728             }
 729         }
 730 
 731         try {
 732             Class<?> caller = Reflection.getCallerClass();
 733             return getReflectionFactory().newInstance(tmpConstructor, null, caller);
 734         } catch (InvocationTargetException e) {
 735             Unsafe.getUnsafe().throwException(e.getTargetException());
 736             // Not reached
 737             return null;
 738         }
 739     }
 740 
 741     private transient volatile Constructor<T> cachedConstructor;
 742 
 743     /**
 744      * Determines if the specified {@code Object} is assignment-compatible
 745      * with the object represented by this {@code Class}.  This method is
 746      * the dynamic equivalent of the Java language {@code instanceof}
 747      * operator. The method returns {@code true} if the specified
 748      * {@code Object} argument is non-null and can be cast to the
 749      * reference type represented by this {@code Class} object without
 750      * raising a {@code ClassCastException.} It returns {@code false}
 751      * otherwise.
 752      *
 753      * <p> Specifically, if this {@code Class} object represents a
 754      * declared class, this method returns {@code true} if the specified
 755      * {@code Object} argument is an instance of the represented class (or
 756      * of any of its subclasses); it returns {@code false} otherwise. If
 757      * this {@code Class} object represents an array class, this method
 758      * returns {@code true} if the specified {@code Object} argument
 759      * can be converted to an object of the array class by an identity
 760      * conversion or by a widening reference conversion; it returns
 761      * {@code false} otherwise. If this {@code Class} object
 762      * represents an interface, this method returns {@code true} if the
 763      * class or any superclass of the specified {@code Object} argument
 764      * implements this interface; it returns {@code false} otherwise. If
 765      * this {@code Class} object represents a primitive type, this method
 766      * returns {@code false}.
 767      *
 768      * @param   obj the object to check
 769      * @return  true if {@code obj} is an instance of this class
 770      *
 771      * @since 1.1
 772      */
 773     @IntrinsicCandidate
 774     public native boolean isInstance(Object obj);
 775 
 776 
 777     /**
 778      * Determines if the class or interface represented by this
 779      * {@code Class} object is either the same as, or is a superclass or
 780      * superinterface of, the class or interface represented by the specified
 781      * {@code Class} parameter. It returns {@code true} if so;
 782      * otherwise it returns {@code false}. If this {@code Class}
 783      * object represents a primitive type, this method returns
 784      * {@code true} if the specified {@code Class} parameter is
 785      * exactly this {@code Class} object; otherwise it returns
 786      * {@code false}.
 787      *
 788      * <p> Specifically, this method tests whether the type represented by the
 789      * specified {@code Class} parameter can be converted to the type
 790      * represented by this {@code Class} object via an identity conversion
 791      * or via a widening reference conversion. See <cite>The Java Language
 792      * Specification</cite>, sections {@jls 5.1.1} and {@jls 5.1.4},
 793      * for details.
 794      *
 795      * @param     cls the {@code Class} object to be checked
 796      * @return    the {@code boolean} value indicating whether objects of the
 797      *            type {@code cls} can be assigned to objects of this class
 798      * @throws    NullPointerException if the specified Class parameter is
 799      *            null.
 800      * @since     1.1
 801      */
 802     @IntrinsicCandidate
 803     public native boolean isAssignableFrom(Class<?> cls);
 804 
 805 
 806     /**
 807      * Determines if this {@code Class} object represents an
 808      * interface type.
 809      *
 810      * @return  {@code true} if this {@code Class} object represents an interface;
 811      *          {@code false} otherwise.
 812      */
 813     @IntrinsicCandidate
 814     public native boolean isInterface();
 815 
 816 
 817     /**
 818      * Determines if this {@code Class} object represents an array class.
 819      *
 820      * @return  {@code true} if this {@code Class} object represents an array class;
 821      *          {@code false} otherwise.
 822      * @since   1.1
 823      */
 824     @IntrinsicCandidate
 825     public native boolean isArray();
 826 
 827 
 828     /**
 829      * Determines if this {@code Class} object represents a primitive
 830      * type or void.
 831      *
 832      * <p> There are nine predefined {@code Class} objects to
 833      * represent the eight primitive types and void.  These are
 834      * created by the Java Virtual Machine, and have the same
 835      * {@linkplain #getName() names} as the primitive types that they
 836      * represent, namely {@code boolean}, {@code byte}, {@code char},
 837      * {@code short}, {@code int}, {@code long}, {@code float}, and
 838      * {@code double}.
 839      *
 840      * <p>No other class objects are considered primitive.
 841      *
 842      * @apiNote
 843      * A {@code Class} object represented by a primitive type can be
 844      * accessed via the {@code TYPE} public static final variables
 845      * defined in the primitive wrapper classes such as {@link
 846      * java.lang.Integer#TYPE Integer.TYPE}. In the Java programming
 847      * language, the objects may be referred to by a class literal
 848      * expression such as {@code int.class}.  The {@code Class} object
 849      * for void can be expressed as {@code void.class} or {@link
 850      * java.lang.Void#TYPE Void.TYPE}.
 851      *
 852      * @return true if and only if this class represents a primitive type
 853      *
 854      * @see     java.lang.Boolean#TYPE
 855      * @see     java.lang.Character#TYPE
 856      * @see     java.lang.Byte#TYPE
 857      * @see     java.lang.Short#TYPE
 858      * @see     java.lang.Integer#TYPE
 859      * @see     java.lang.Long#TYPE
 860      * @see     java.lang.Float#TYPE
 861      * @see     java.lang.Double#TYPE
 862      * @see     java.lang.Void#TYPE
 863      * @since 1.1
 864      * @jls 15.8.2 Class Literals
 865      */
 866     @IntrinsicCandidate
 867     public native boolean isPrimitive();
 868 
 869     /**
 870      * Returns true if this {@code Class} object represents an annotation
 871      * interface.  Note that if this method returns true, {@link #isInterface()}
 872      * would also return true, as all annotation interfaces are also interfaces.
 873      *
 874      * @return {@code true} if this {@code Class} object represents an annotation
 875      *      interface; {@code false} otherwise
 876      * @since 1.5
 877      */
 878     public boolean isAnnotation() {
 879         return (getModifiers() & ANNOTATION) != 0;
 880     }
 881 
 882     /**
 883      *{@return {@code true} if and only if this class has the synthetic modifier
 884      * bit set}
 885      *
 886      * @jls 13.1 The Form of a Binary
 887      * @jvms 4.1 The {@code ClassFile} Structure
 888      * @see <a
 889      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
 890      * programming language and JVM modeling in core reflection</a>
 891      * @since 1.5
 892      */
 893     public boolean isSynthetic() {
 894         return (getModifiers() & SYNTHETIC) != 0;
 895     }
 896 
 897     /**
 898      * Returns the  name of the entity (class, interface, array class,
 899      * primitive type, or void) represented by this {@code Class} object.
 900      *
 901      * <p> If this {@code Class} object represents a class or interface,
 902      * not an array class, then:
 903      * <ul>
 904      * <li> If the class or interface is not {@linkplain #isHidden() hidden},
 905      *      then the {@linkplain ClassLoader##binary-name binary name}
 906      *      of the class or interface is returned.
 907      * <li> If the class or interface is hidden, then the result is a string
 908      *      of the form: {@code N + '/' + <suffix>}
 909      *      where {@code N} is the {@linkplain ClassLoader##binary-name binary name}
 910      *      indicated by the {@code class} file passed to
 911      *      {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 912      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
 913      * </ul>
 914      *
 915      * <p> If this {@code Class} object represents an array class, then
 916      * the result is a string consisting of one or more '{@code [}' characters
 917      * representing the depth of the array nesting, followed by the element
 918      * type as encoded using the following table:
 919      *
 920      * <blockquote><table class="striped" id="nameFormat">
 921      * <caption style="display:none">Element types and encodings</caption>
 922      * <thead>
 923      * <tr><th scope="col"> Element Type <th scope="col"> Encoding
 924      * </thead>
 925      * <tbody style="text-align:left">
 926      * <tr><th scope="row"> {@code boolean} <td style="text-align:center"> {@code Z}
 927      * <tr><th scope="row"> {@code byte}    <td style="text-align:center"> {@code B}
 928      * <tr><th scope="row"> {@code char}    <td style="text-align:center"> {@code C}
 929      * <tr><th scope="row"> class or interface with {@linkplain ClassLoader##binary-name binary name} <i>N</i>
 930      *                                      <td style="text-align:center"> {@code L}<em>N</em>{@code ;}
 931      * <tr><th scope="row"> {@code double}  <td style="text-align:center"> {@code D}
 932      * <tr><th scope="row"> {@code float}   <td style="text-align:center"> {@code F}
 933      * <tr><th scope="row"> {@code int}     <td style="text-align:center"> {@code I}
 934      * <tr><th scope="row"> {@code long}    <td style="text-align:center"> {@code J}
 935      * <tr><th scope="row"> {@code short}   <td style="text-align:center"> {@code S}
 936      * </tbody>
 937      * </table></blockquote>
 938      *
 939      * <p> If this {@code Class} object represents a primitive type or {@code void},
 940      * then the result is a string with the same spelling as the Java language
 941      * keyword which corresponds to the primitive type or {@code void}.
 942      *
 943      * <p> Examples:
 944      * <blockquote><pre>
 945      * String.class.getName()
 946      *     returns "java.lang.String"
 947      * Character.UnicodeBlock.class.getName()
 948      *     returns "java.lang.Character$UnicodeBlock"
 949      * byte.class.getName()
 950      *     returns "byte"
 951      * (new Object[3]).getClass().getName()
 952      *     returns "[Ljava.lang.Object;"
 953      * (new int[3][4][5][6][7][8][9]).getClass().getName()
 954      *     returns "[[[[[[[I"
 955      * </pre></blockquote>
 956      *
 957      * @apiNote
 958      * Distinct class objects can have the same name but different class loaders.
 959      *
 960      * @return  the name of the class, interface, or other entity
 961      *          represented by this {@code Class} object.
 962      * @jls 13.1 The Form of a Binary
 963      */
 964     public String getName() {
 965         String name = this.name;
 966         return name != null ? name : initClassName();
 967     }
 968 
 969     // Cache the name to reduce the number of calls into the VM.
 970     // This field would be set by VM itself during initClassName call.
 971     private transient String name;
 972     private native String initClassName();
 973 
 974     /**
 975      * Returns the class loader for the class.  Some implementations may use
 976      * null to represent the bootstrap class loader. This method will return
 977      * null in such implementations if this class was loaded by the bootstrap
 978      * class loader.
 979      *
 980      * <p>If this {@code Class} object
 981      * represents a primitive type or void, null is returned.
 982      *
 983      * @return  the class loader that loaded the class or interface
 984      *          represented by this {@code Class} object.
 985      * @see java.lang.ClassLoader
 986      */
 987     public ClassLoader getClassLoader() {
 988         return classLoader;
 989     }
 990 
 991     // Package-private to allow ClassLoader access
 992     ClassLoader getClassLoader0() { return classLoader; }
 993 
 994     /**
 995      * Returns the module that this class or interface is a member of.
 996      *
 997      * If this class represents an array type then this method returns the
 998      * {@code Module} for the element type. If this class represents a
 999      * primitive type or void, then the {@code Module} object for the
1000      * {@code java.base} module is returned.
1001      *
1002      * If this class is in an unnamed module then the {@linkplain
1003      * ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class
1004      * loader for this class is returned.
1005      *
1006      * @return the module that this class or interface is a member of
1007      *
1008      * @since 9
1009      */
1010     public Module getModule() {
1011         return module;
1012     }
1013 
1014     // set by VM
1015     @Stable
1016     private transient Module module;
1017 
1018     // Initialized in JVM not by private constructor
1019     // This field is filtered from reflection access, i.e. getDeclaredField
1020     // will throw NoSuchFieldException
1021     private final ClassLoader classLoader;
1022 
1023     private transient Object classData; // Set by VM
1024     private transient Object[] signers; // Read by VM, mutable
1025 
1026     // package-private
1027     Object getClassData() {
1028         return classData;
1029     }
1030 
1031     /**
1032      * Returns an array of {@code TypeVariable} objects that represent the
1033      * type variables declared by the generic declaration represented by this
1034      * {@code GenericDeclaration} object, in declaration order.  Returns an
1035      * array of length 0 if the underlying generic declaration declares no type
1036      * variables.
1037      *
1038      * @return an array of {@code TypeVariable} objects that represent
1039      *     the type variables declared by this generic declaration
1040      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1041      *     signature of this generic declaration does not conform to
1042      *     the format specified in section {@jvms 4.7.9} of
1043      *     <cite>The Java Virtual Machine Specification</cite>
1044      * @since 1.5
1045      */
1046     @SuppressWarnings("unchecked")
1047     public TypeVariable<Class<T>>[] getTypeParameters() {
1048         ClassRepository info = getGenericInfo();
1049         if (info != null)
1050             return (TypeVariable<Class<T>>[])info.getTypeParameters();
1051         else
1052             return (TypeVariable<Class<T>>[])new TypeVariable<?>[0];
1053     }
1054 
1055 
1056     /**
1057      * Returns the {@code Class} representing the direct superclass of the
1058      * entity (class, interface, primitive type or void) represented by
1059      * this {@code Class}.  If this {@code Class} represents either the
1060      * {@code Object} class, an interface, a primitive type, or void, then
1061      * null is returned.  If this {@code Class} object represents an array class
1062      * then the {@code Class} object representing the {@code Object} class is
1063      * returned.
1064      *
1065      * @return the direct superclass of the class represented by this {@code Class} object
1066      */
1067     @IntrinsicCandidate
1068     public native Class<? super T> getSuperclass();
1069 
1070 
1071     /**
1072      * Returns the {@code Type} representing the direct superclass of
1073      * the entity (class, interface, primitive type or void) represented by
1074      * this {@code Class} object.
1075      *
1076      * <p>If the superclass is a parameterized type, the {@code Type}
1077      * object returned must accurately reflect the actual type
1078      * arguments used in the source code. The parameterized type
1079      * representing the superclass is created if it had not been
1080      * created before. See the declaration of {@link
1081      * java.lang.reflect.ParameterizedType ParameterizedType} for the
1082      * semantics of the creation process for parameterized types.  If
1083      * this {@code Class} object represents either the {@code Object}
1084      * class, an interface, a primitive type, or void, then null is
1085      * returned.  If this {@code Class} object represents an array class
1086      * then the {@code Class} object representing the {@code Object} class is
1087      * returned.
1088      *
1089      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1090      *     class signature does not conform to the format specified in
1091      *     section {@jvms 4.7.9} of <cite>The Java Virtual
1092      *     Machine Specification</cite>
1093      * @throws TypeNotPresentException if the generic superclass
1094      *     refers to a non-existent type declaration
1095      * @throws java.lang.reflect.MalformedParameterizedTypeException if the
1096      *     generic superclass refers to a parameterized type that cannot be
1097      *     instantiated  for any reason
1098      * @return the direct superclass of the class represented by this {@code Class} object
1099      * @since 1.5
1100      */
1101     public Type getGenericSuperclass() {
1102         ClassRepository info = getGenericInfo();
1103         if (info == null) {
1104             return getSuperclass();
1105         }
1106 
1107         // Historical irregularity:
1108         // Generic signature marks interfaces with superclass = Object
1109         // but this API returns null for interfaces
1110         if (isInterface()) {
1111             return null;
1112         }
1113 
1114         return info.getSuperclass();
1115     }
1116 
1117     /**
1118      * Gets the package of this class.
1119      *
1120      * <p>If this class represents an array type, a primitive type or void,
1121      * this method returns {@code null}.
1122      *
1123      * @return the package of this class.
1124      */
1125     public Package getPackage() {
1126         if (isPrimitive() || isArray()) {
1127             return null;
1128         }
1129         ClassLoader cl = classLoader;
1130         return cl != null ? cl.definePackage(this)
1131                           : BootLoader.definePackage(this);
1132     }
1133 
1134     /**
1135      * Returns the fully qualified package name.
1136      *
1137      * <p> If this class is a top level class, then this method returns the fully
1138      * qualified name of the package that the class is a member of, or the
1139      * empty string if the class is in an unnamed package.
1140      *
1141      * <p> If this class is a member class, then this method is equivalent to
1142      * invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass
1143      * enclosing class}.
1144      *
1145      * <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain
1146      * #isAnonymousClass() anonymous class}, then this method is equivalent to
1147      * invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass
1148      * declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or
1149      * {@linkplain #getEnclosingConstructor enclosing constructor}.
1150      *
1151      * <p> If this class represents an array type then this method returns the
1152      * package name of the element type. If this class represents a primitive
1153      * type or void then the package name "{@code java.lang}" is returned.
1154      *
1155      * @return the fully qualified package name
1156      *
1157      * @since 9
1158      * @jls 6.7 Fully Qualified Names and Canonical Names
1159      */
1160     public String getPackageName() {
1161         String pn = this.packageName;
1162         if (pn == null) {
1163             Class<?> c = isArray() ? elementType() : this;
1164             if (c.isPrimitive()) {
1165                 pn = "java.lang";
1166             } else {
1167                 String cn = c.getName();
1168                 int dot = cn.lastIndexOf('.');
1169                 pn = (dot != -1) ? cn.substring(0, dot).intern() : "";
1170             }
1171             this.packageName = pn;
1172         }
1173         return pn;
1174     }
1175 
1176     // cached package name
1177     private transient String packageName;
1178 
1179     /**
1180      * Returns the interfaces directly implemented by the class or interface
1181      * represented by this {@code Class} object.
1182      *
1183      * <p>If this {@code Class} object represents a class, the return value is an array
1184      * containing objects representing all interfaces directly implemented by
1185      * the class.  The order of the interface objects in the array corresponds
1186      * to the order of the interface names in the {@code implements} clause of
1187      * the declaration of the class represented by this {@code Class} object.  For example,
1188      * given the declaration:
1189      * <blockquote>
1190      * {@code class Shimmer implements FloorWax, DessertTopping { ... }}
1191      * </blockquote>
1192      * suppose the value of {@code s} is an instance of
1193      * {@code Shimmer}; the value of the expression:
1194      * <blockquote>
1195      * {@code s.getClass().getInterfaces()[0]}
1196      * </blockquote>
1197      * is the {@code Class} object that represents interface
1198      * {@code FloorWax}; and the value of:
1199      * <blockquote>
1200      * {@code s.getClass().getInterfaces()[1]}
1201      * </blockquote>
1202      * is the {@code Class} object that represents interface
1203      * {@code DessertTopping}.
1204      *
1205      * <p>If this {@code Class} object represents an interface, the array contains objects
1206      * representing all interfaces directly extended by the interface.  The
1207      * order of the interface objects in the array corresponds to the order of
1208      * the interface names in the {@code extends} clause of the declaration of
1209      * the interface represented by this {@code Class} object.
1210      *
1211      * <p>If this {@code Class} object represents a class or interface that implements no
1212      * interfaces, the method returns an array of length 0.
1213      *
1214      * <p>If this {@code Class} object represents a primitive type or void, the method
1215      * returns an array of length 0.
1216      *
1217      * <p>If this {@code Class} object represents an array type, the
1218      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1219      * returned in that order.
1220      *
1221      * @return an array of interfaces directly implemented by this class
1222      */
1223     public Class<?>[] getInterfaces() {
1224         // defensively copy before handing over to user code
1225         return getInterfaces(true);
1226     }
1227 
1228     private Class<?>[] getInterfaces(boolean cloneArray) {
1229         ReflectionData<T> rd = reflectionData();
1230         Class<?>[] interfaces = rd.interfaces;
1231         if (interfaces == null) {
1232             interfaces = getInterfaces0();
1233             rd.interfaces = interfaces;
1234         }
1235         // defensively copy if requested
1236         return cloneArray ? interfaces.clone() : interfaces;
1237     }
1238 
1239     private native Class<?>[] getInterfaces0();
1240 
1241     /**
1242      * Returns the {@code Type}s representing the interfaces
1243      * directly implemented by the class or interface represented by
1244      * this {@code Class} object.
1245      *
1246      * <p>If a superinterface is a parameterized type, the
1247      * {@code Type} object returned for it must accurately reflect
1248      * the actual type arguments used in the source code. The
1249      * parameterized type representing each superinterface is created
1250      * if it had not been created before. See the declaration of
1251      * {@link java.lang.reflect.ParameterizedType ParameterizedType}
1252      * for the semantics of the creation process for parameterized
1253      * types.
1254      *
1255      * <p>If this {@code Class} object represents a class, the return value is an array
1256      * containing objects representing all interfaces directly implemented by
1257      * the class.  The order of the interface objects in the array corresponds
1258      * to the order of the interface names in the {@code implements} clause of
1259      * the declaration of the class represented by this {@code Class} object.
1260      *
1261      * <p>If this {@code Class} object represents an interface, the array contains objects
1262      * representing all interfaces directly extended by the interface.  The
1263      * order of the interface objects in the array corresponds to the order of
1264      * the interface names in the {@code extends} clause of the declaration of
1265      * the interface represented by this {@code Class} object.
1266      *
1267      * <p>If this {@code Class} object represents a class or interface that implements no
1268      * interfaces, the method returns an array of length 0.
1269      *
1270      * <p>If this {@code Class} object represents a primitive type or void, the method
1271      * returns an array of length 0.
1272      *
1273      * <p>If this {@code Class} object represents an array type, the
1274      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1275      * returned in that order.
1276      *
1277      * @throws java.lang.reflect.GenericSignatureFormatError
1278      *     if the generic class signature does not conform to the
1279      *     format specified in section {@jvms 4.7.9} of <cite>The
1280      *     Java Virtual Machine Specification</cite>
1281      * @throws TypeNotPresentException if any of the generic
1282      *     superinterfaces refers to a non-existent type declaration
1283      * @throws java.lang.reflect.MalformedParameterizedTypeException
1284      *     if any of the generic superinterfaces refer to a parameterized
1285      *     type that cannot be instantiated for any reason
1286      * @return an array of interfaces directly implemented by this class
1287      * @since 1.5
1288      */
1289     public Type[] getGenericInterfaces() {
1290         ClassRepository info = getGenericInfo();
1291         return (info == null) ?  getInterfaces() : info.getSuperInterfaces();
1292     }
1293 
1294 
1295     /**
1296      * Returns the {@code Class} representing the component type of an
1297      * array.  If this class does not represent an array class this method
1298      * returns null.
1299      *
1300      * @return the {@code Class} representing the component type of this
1301      * class if this class is an array
1302      * @see     java.lang.reflect.Array
1303      * @since 1.1
1304      */
1305     public Class<?> getComponentType() {
1306         // Only return for array types. Storage may be reused for Class for instance types.
1307         if (isArray()) {
1308             return componentType;
1309         } else {
1310             return null;
1311         }
1312     }
1313 
1314     private final Class<?> componentType;
1315 
1316     /*
1317      * Returns the {@code Class} representing the element type of an array class.
1318      * If this class does not represent an array class, then this method returns
1319      * {@code null}.
1320      */
1321     private Class<?> elementType() {
1322         if (!isArray()) return null;
1323 
1324         Class<?> c = this;
1325         while (c.isArray()) {
1326             c = c.getComponentType();
1327         }
1328         return c;
1329     }
1330 
1331     /**
1332      * Returns the Java language modifiers for this class or interface, encoded
1333      * in an integer. The modifiers consist of the Java Virtual Machine's
1334      * constants for {@code public}, {@code protected},
1335      * {@code private}, {@code final}, {@code static},
1336      * {@code abstract} and {@code interface}; they should be decoded
1337      * using the methods of class {@code Modifier}.
1338      *
1339      * <p> If the underlying class is an array class:
1340      * <ul>
1341      * <li> its {@code public}, {@code private} and {@code protected}
1342      *      modifiers are the same as those of its component type
1343      * <li> its {@code abstract} and {@code final} modifiers are always
1344      *      {@code true}
1345      * <li> its interface modifier is always {@code false}, even when
1346      *      the component type is an interface
1347      * </ul>
1348      * If this {@code Class} object represents a primitive type or
1349      * void, its {@code public}, {@code abstract}, and {@code final}
1350      * modifiers are always {@code true}.
1351      * For {@code Class} objects representing void, primitive types, and
1352      * arrays, the values of other modifiers are {@code false} other
1353      * than as specified above.
1354      *
1355      * <p> The modifier encodings are defined in section {@jvms 4.1}
1356      * of <cite>The Java Virtual Machine Specification</cite>.
1357      *
1358      * @return the {@code int} representing the modifiers for this class
1359      * @see     java.lang.reflect.Modifier
1360      * @see #accessFlags()
1361      * @see <a
1362      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
1363      * programming language and JVM modeling in core reflection</a>
1364      * @since 1.1
1365      * @jls 8.1.1 Class Modifiers
1366      * @jls 9.1.1 Interface Modifiers
1367      * @jvms 4.1 The {@code ClassFile} Structure
1368      */
1369     @IntrinsicCandidate
1370     public native int getModifiers();
1371 
1372     /**
1373      * {@return an unmodifiable set of the {@linkplain AccessFlag access
1374      * flags} for this class, possibly empty}
1375      *
1376      * <p> If the underlying class is an array class:
1377      * <ul>
1378      * <li> its {@code PUBLIC}, {@code PRIVATE} and {@code PROTECTED}
1379      *      access flags are the same as those of its component type
1380      * <li> its {@code ABSTRACT} and {@code FINAL} flags are present
1381      * <li> its {@code INTERFACE} flag is absent, even when the
1382      *      component type is an interface
1383      * </ul>
1384      * If this {@code Class} object represents a primitive type or
1385      * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and
1386      * {@code FINAL}.
1387      * For {@code Class} objects representing void, primitive types, and
1388      * arrays, access flags are absent other than as specified above.
1389      *
1390      * @see #getModifiers()
1391      * @jvms 4.1 The ClassFile Structure
1392      * @jvms 4.7.6 The InnerClasses Attribute
1393      * @since 20
1394      */
1395     public Set<AccessFlag> accessFlags() {
1396         // Location.CLASS allows SUPER and AccessFlag.MODULE which
1397         // INNER_CLASS forbids. INNER_CLASS allows PRIVATE, PROTECTED,
1398         // and STATIC, which are not allowed on Location.CLASS.
1399         // Use getClassAccessFlagsRaw to expose SUPER status.
1400         var location = (isMemberClass() || isLocalClass() ||
1401                         isAnonymousClass() || isArray()) ?
1402             AccessFlag.Location.INNER_CLASS :
1403             AccessFlag.Location.CLASS;
1404         return AccessFlag.maskToAccessFlags((location == AccessFlag.Location.CLASS) ?
1405                                             getClassAccessFlagsRaw() :
1406                                             getModifiers(),
1407                                             location);
1408     }
1409 
1410     /**
1411      * Gets the signers of this class.
1412      *
1413      * @return  the signers of this class, or null if there are no signers.  In
1414      *          particular, this method returns null if this {@code Class} object represents
1415      *          a primitive type or void.
1416      * @since   1.1
1417      */
1418     public Object[] getSigners() {
1419         var signers = this.signers;
1420         return signers == null ? null : signers.clone();
1421     }
1422 
1423     /**
1424      * Set the signers of this class.
1425      */
1426     void setSigners(Object[] signers) {
1427         if (!isPrimitive() && !isArray()) {
1428             this.signers = signers;
1429         }
1430     }
1431 
1432     /**
1433      * If this {@code Class} object represents a local or anonymous
1434      * class within a method, returns a {@link
1435      * java.lang.reflect.Method Method} object representing the
1436      * immediately enclosing method of the underlying class. Returns
1437      * {@code null} otherwise.
1438      *
1439      * In particular, this method returns {@code null} if the underlying
1440      * class is a local or anonymous class immediately enclosed by a class or
1441      * interface declaration, instance initializer or static initializer.
1442      *
1443      * @return the immediately enclosing method of the underlying class, if
1444      *     that class is a local or anonymous class; otherwise {@code null}.
1445      *
1446      * @since 1.5
1447      */
1448     public Method getEnclosingMethod() {
1449         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1450 
1451         if (enclosingInfo == null)
1452             return null;
1453         else {
1454             if (!enclosingInfo.isMethod())
1455                 return null;
1456 
1457             MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(),
1458                                                               getFactory());
1459             Class<?>   returnType       = toClass(typeInfo.getReturnType());
1460             Type []    parameterTypes   = typeInfo.getParameterTypes();
1461             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1462 
1463             // Convert Types to Classes; returned types *should*
1464             // be class objects since the methodDescriptor's used
1465             // don't have generics information
1466             for(int i = 0; i < parameterClasses.length; i++)
1467                 parameterClasses[i] = toClass(parameterTypes[i]);
1468 
1469             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1470             Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false);
1471 
1472             /*
1473              * Loop over all declared methods; match method name,
1474              * number of and type of parameters, *and* return
1475              * type.  Matching return type is also necessary
1476              * because of covariant returns, etc.
1477              */
1478             ReflectionFactory fact = getReflectionFactory();
1479             for (Method m : candidates) {
1480                 if (m.getName().equals(enclosingInfo.getName()) &&
1481                     arrayContentsEq(parameterClasses,
1482                                     fact.getExecutableSharedParameterTypes(m))) {
1483                     // finally, check return type
1484                     if (m.getReturnType().equals(returnType)) {
1485                         return fact.copyMethod(m);
1486                     }
1487                 }
1488             }
1489 
1490             throw new InternalError("Enclosing method not found");
1491         }
1492     }
1493 
1494     private native Object[] getEnclosingMethod0();
1495 
1496     private EnclosingMethodInfo getEnclosingMethodInfo() {
1497         Object[] enclosingInfo = getEnclosingMethod0();
1498         if (enclosingInfo == null)
1499             return null;
1500         else {
1501             return new EnclosingMethodInfo(enclosingInfo);
1502         }
1503     }
1504 
1505     private static final class EnclosingMethodInfo {
1506         private final Class<?> enclosingClass;
1507         private final String name;
1508         private final String descriptor;
1509 
1510         static void validate(Object[] enclosingInfo) {
1511             if (enclosingInfo.length != 3)
1512                 throw new InternalError("Malformed enclosing method information");
1513             try {
1514                 // The array is expected to have three elements:
1515 
1516                 // the immediately enclosing class
1517                 Class<?> enclosingClass = (Class<?>)enclosingInfo[0];
1518                 assert(enclosingClass != null);
1519 
1520                 // the immediately enclosing method or constructor's
1521                 // name (can be null).
1522                 String name = (String)enclosingInfo[1];
1523 
1524                 // the immediately enclosing method or constructor's
1525                 // descriptor (null iff name is).
1526                 String descriptor = (String)enclosingInfo[2];
1527                 assert((name != null && descriptor != null) || name == descriptor);
1528             } catch (ClassCastException cce) {
1529                 throw new InternalError("Invalid type in enclosing method information", cce);
1530             }
1531         }
1532 
1533         EnclosingMethodInfo(Object[] enclosingInfo) {
1534             validate(enclosingInfo);
1535             this.enclosingClass = (Class<?>)enclosingInfo[0];
1536             this.name = (String)enclosingInfo[1];
1537             this.descriptor = (String)enclosingInfo[2];
1538         }
1539 
1540         boolean isPartial() {
1541             return enclosingClass == null || name == null || descriptor == null;
1542         }
1543 
1544         boolean isConstructor() { return !isPartial() && ConstantDescs.INIT_NAME.equals(name); }
1545 
1546         boolean isMethod() { return !isPartial() && !isConstructor() && !ConstantDescs.CLASS_INIT_NAME.equals(name); }
1547 
1548         Class<?> getEnclosingClass() { return enclosingClass; }
1549 
1550         String getName() { return name; }
1551 
1552         String getDescriptor() { return descriptor; }
1553 
1554     }
1555 
1556     private static Class<?> toClass(Type o) {
1557         if (o instanceof GenericArrayType gat)
1558             return toClass(gat.getGenericComponentType()).arrayType();
1559         return (Class<?>)o;
1560      }
1561 
1562     /**
1563      * If this {@code Class} object represents a local or anonymous
1564      * class within a constructor, returns a {@link
1565      * java.lang.reflect.Constructor Constructor} object representing
1566      * the immediately enclosing constructor of the underlying
1567      * class. Returns {@code null} otherwise.  In particular, this
1568      * method returns {@code null} if the underlying class is a local
1569      * or anonymous class immediately enclosed by a class or
1570      * interface declaration, instance initializer or static initializer.
1571      *
1572      * @return the immediately enclosing constructor of the underlying class, if
1573      *     that class is a local or anonymous class; otherwise {@code null}.
1574      *
1575      * @since 1.5
1576      */
1577     public Constructor<?> getEnclosingConstructor() {
1578         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1579 
1580         if (enclosingInfo == null)
1581             return null;
1582         else {
1583             if (!enclosingInfo.isConstructor())
1584                 return null;
1585 
1586             ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(),
1587                                                                         getFactory());
1588             Type []    parameterTypes   = typeInfo.getParameterTypes();
1589             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1590 
1591             // Convert Types to Classes; returned types *should*
1592             // be class objects since the methodDescriptor's used
1593             // don't have generics information
1594             for (int i = 0; i < parameterClasses.length; i++)
1595                 parameterClasses[i] = toClass(parameterTypes[i]);
1596 
1597 
1598             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1599             Constructor<?>[] candidates = enclosingCandidate
1600                     .privateGetDeclaredConstructors(false);
1601             /*
1602              * Loop over all declared constructors; match number
1603              * of and type of parameters.
1604              */
1605             ReflectionFactory fact = getReflectionFactory();
1606             for (Constructor<?> c : candidates) {
1607                 if (arrayContentsEq(parameterClasses,
1608                                     fact.getExecutableSharedParameterTypes(c))) {
1609                     return fact.copyConstructor(c);
1610                 }
1611             }
1612 
1613             throw new InternalError("Enclosing constructor not found");
1614         }
1615     }
1616 
1617 
1618     /**
1619      * If the class or interface represented by this {@code Class} object
1620      * is a member of another class, returns the {@code Class} object
1621      * representing the class in which it was declared.  This method returns
1622      * null if this class or interface is not a member of any other class.  If
1623      * this {@code Class} object represents an array class, a primitive
1624      * type, or void, then this method returns null.
1625      *
1626      * @return the declaring class for this class
1627      * @since 1.1
1628      */
1629     public Class<?> getDeclaringClass() {
1630         return getDeclaringClass0();
1631     }
1632 
1633     private native Class<?> getDeclaringClass0();
1634 
1635 
1636     /**
1637      * Returns the immediately enclosing class of the underlying
1638      * class.  If the underlying class is a top level class this
1639      * method returns {@code null}.
1640      * @return the immediately enclosing class of the underlying class
1641      * @since 1.5
1642      */
1643     public Class<?> getEnclosingClass() {
1644         // There are five kinds of classes (or interfaces):
1645         // a) Top level classes
1646         // b) Nested classes (static member classes)
1647         // c) Inner classes (non-static member classes)
1648         // d) Local classes (named classes declared within a method)
1649         // e) Anonymous classes
1650 
1651 
1652         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1653         // attribute if and only if it is a local class or an
1654         // anonymous class.
1655         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1656         Class<?> enclosingCandidate;
1657 
1658         if (enclosingInfo == null) {
1659             // This is a top level or a nested class or an inner class (a, b, or c)
1660             enclosingCandidate = getDeclaringClass0();
1661         } else {
1662             Class<?> enclosingClass = enclosingInfo.getEnclosingClass();
1663             // This is a local class or an anonymous class (d or e)
1664             if (enclosingClass == this || enclosingClass == null)
1665                 throw new InternalError("Malformed enclosing method information");
1666             else
1667                 enclosingCandidate = enclosingClass;
1668         }
1669         return enclosingCandidate;
1670     }
1671 
1672     /**
1673      * Returns the simple name of the underlying class as given in the
1674      * source code. An empty string is returned if the underlying class is
1675      * {@linkplain #isAnonymousClass() anonymous}.
1676      * A {@linkplain #isSynthetic() synthetic class}, one not present
1677      * in source code, can have a non-empty name including special
1678      * characters, such as "{@code $}".
1679      *
1680      * <p>The simple name of an {@linkplain #isArray() array class} is the simple name of the
1681      * component type with "[]" appended.  In particular the simple
1682      * name of an array class whose component type is anonymous is "[]".
1683      *
1684      * @return the simple name of the underlying class
1685      * @since 1.5
1686      */
1687     public String getSimpleName() {
1688         ReflectionData<T> rd = reflectionData();
1689         String simpleName = rd.simpleName;
1690         if (simpleName == null) {
1691             rd.simpleName = simpleName = getSimpleName0();
1692         }
1693         return simpleName;
1694     }
1695 
1696     private String getSimpleName0() {
1697         if (isArray()) {
1698             return getComponentType().getSimpleName().concat("[]");
1699         }
1700         String simpleName = getSimpleBinaryName();
1701         if (simpleName == null) { // top level class
1702             simpleName = getName();
1703             simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name
1704         }
1705         return simpleName;
1706     }
1707 
1708     /**
1709      * Return an informative string for the name of this class or interface.
1710      *
1711      * @return an informative string for the name of this class or interface
1712      * @since 1.8
1713      */
1714     public String getTypeName() {
1715         if (isArray()) {
1716             try {
1717                 Class<?> cl = this;
1718                 int dimensions = 0;
1719                 do {
1720                     dimensions++;
1721                     cl = cl.getComponentType();
1722                 } while (cl.isArray());
1723                 return cl.getName().concat("[]".repeat(dimensions));
1724             } catch (Throwable e) { /*FALLTHRU*/ }
1725         }
1726         return getName();
1727     }
1728 
1729     /**
1730      * Returns the canonical name of the underlying class as
1731      * defined by <cite>The Java Language Specification</cite>.
1732      * Returns {@code null} if the underlying class does not have a canonical
1733      * name. Classes without canonical names include:
1734      * <ul>
1735      * <li>a {@linkplain #isLocalClass() local class}
1736      * <li>a {@linkplain #isAnonymousClass() anonymous class}
1737      * <li>a {@linkplain #isHidden() hidden class}
1738      * <li>an array whose component type does not have a canonical name</li>
1739      * </ul>
1740      *
1741      * The canonical name for a primitive class is the keyword for the
1742      * corresponding primitive type ({@code byte}, {@code short},
1743      * {@code char}, {@code int}, and so on).
1744      *
1745      * <p>An array type has a canonical name if and only if its
1746      * component type has a canonical name. When an array type has a
1747      * canonical name, it is equal to the canonical name of the
1748      * component type followed by "{@code []}".
1749      *
1750      * @return the canonical name of the underlying class if it exists, and
1751      * {@code null} otherwise.
1752      * @jls 6.7 Fully Qualified Names and Canonical Names
1753      * @since 1.5
1754      */
1755     public String getCanonicalName() {
1756         ReflectionData<T> rd = reflectionData();
1757         String canonicalName = rd.canonicalName;
1758         if (canonicalName == null) {
1759             rd.canonicalName = canonicalName = getCanonicalName0();
1760         }
1761         return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName;
1762     }
1763 
1764     private String getCanonicalName0() {
1765         if (isArray()) {
1766             String canonicalName = getComponentType().getCanonicalName();
1767             if (canonicalName != null)
1768                 return canonicalName.concat("[]");
1769             else
1770                 return ReflectionData.NULL_SENTINEL;
1771         }
1772         if (isHidden() || isLocalOrAnonymousClass())
1773             return ReflectionData.NULL_SENTINEL;
1774         Class<?> enclosingClass = getEnclosingClass();
1775         if (enclosingClass == null) { // top level class
1776             return getName();
1777         } else {
1778             String enclosingName = enclosingClass.getCanonicalName();
1779             if (enclosingName == null)
1780                 return ReflectionData.NULL_SENTINEL;
1781             String simpleName = getSimpleName();
1782             return new StringBuilder(enclosingName.length() + simpleName.length() + 1)
1783                     .append(enclosingName)
1784                     .append('.')
1785                     .append(simpleName)
1786                     .toString();
1787         }
1788     }
1789 
1790     /**
1791      * Returns {@code true} if and only if the underlying class
1792      * is an anonymous class.
1793      *
1794      * @apiNote
1795      * An anonymous class is not a {@linkplain #isHidden() hidden class}.
1796      *
1797      * @return {@code true} if and only if this class is an anonymous class.
1798      * @since 1.5
1799      * @jls 15.9.5 Anonymous Class Declarations
1800      */
1801     public boolean isAnonymousClass() {
1802         return !isArray() && isLocalOrAnonymousClass() &&
1803                 getSimpleBinaryName0() == null;
1804     }
1805 
1806     /**
1807      * Returns {@code true} if and only if the underlying class
1808      * is a local class.
1809      *
1810      * @return {@code true} if and only if this class is a local class.
1811      * @since 1.5
1812      * @jls 14.3 Local Class and Interface Declarations
1813      */
1814     public boolean isLocalClass() {
1815         return isLocalOrAnonymousClass() &&
1816                 (isArray() || getSimpleBinaryName0() != null);
1817     }
1818 
1819     /**
1820      * Returns {@code true} if and only if the underlying class
1821      * is a member class.
1822      *
1823      * @return {@code true} if and only if this class is a member class.
1824      * @since 1.5
1825      * @jls 8.5 Member Class and Interface Declarations
1826      */
1827     public boolean isMemberClass() {
1828         return !isLocalOrAnonymousClass() && getDeclaringClass0() != null;
1829     }
1830 
1831     /**
1832      * Returns the "simple binary name" of the underlying class, i.e.,
1833      * the binary name without the leading enclosing class name.
1834      * Returns {@code null} if the underlying class is a top level
1835      * class.
1836      */
1837     private String getSimpleBinaryName() {
1838         if (isTopLevelClass())
1839             return null;
1840         String name = getSimpleBinaryName0();
1841         if (name == null) // anonymous class
1842             return "";
1843         return name;
1844     }
1845 
1846     private native String getSimpleBinaryName0();
1847 
1848     /**
1849      * Returns {@code true} if this is a top level class.  Returns {@code false}
1850      * otherwise.
1851      */
1852     private boolean isTopLevelClass() {
1853         return !isLocalOrAnonymousClass() && getDeclaringClass0() == null;
1854     }
1855 
1856     /**
1857      * Returns {@code true} if this is a local class or an anonymous
1858      * class.  Returns {@code false} otherwise.
1859      */
1860     private boolean isLocalOrAnonymousClass() {
1861         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1862         // attribute if and only if it is a local class or an
1863         // anonymous class.
1864         return hasEnclosingMethodInfo();
1865     }
1866 
1867     private boolean hasEnclosingMethodInfo() {
1868         Object[] enclosingInfo = getEnclosingMethod0();
1869         if (enclosingInfo != null) {
1870             EnclosingMethodInfo.validate(enclosingInfo);
1871             return true;
1872         }
1873         return false;
1874     }
1875 
1876     /**
1877      * Returns an array containing {@code Class} objects representing all
1878      * the public classes and interfaces that are members of the class
1879      * represented by this {@code Class} object.  This includes public
1880      * class and interface members inherited from superclasses and public class
1881      * and interface members declared by the class.  This method returns an
1882      * array of length 0 if this {@code Class} object has no public member
1883      * classes or interfaces.  This method also returns an array of length 0 if
1884      * this {@code Class} object represents a primitive type, an array
1885      * class, or void.
1886      *
1887      * @return the array of {@code Class} objects representing the public
1888      *         members of this class
1889      * @since 1.1
1890      */
1891     public Class<?>[] getClasses() {
1892         List<Class<?>> list = new ArrayList<>();
1893         Class<?> currentClass = Class.this;
1894         while (currentClass != null) {
1895             for (Class<?> m : currentClass.getDeclaredClasses()) {
1896                 if (Modifier.isPublic(m.getModifiers())) {
1897                     list.add(m);
1898                 }
1899             }
1900             currentClass = currentClass.getSuperclass();
1901         }
1902         return list.toArray(new Class<?>[0]);
1903     }
1904 
1905 
1906     /**
1907      * Returns an array containing {@code Field} objects reflecting all
1908      * the accessible public fields of the class or interface represented by
1909      * this {@code Class} object.
1910      *
1911      * <p> If this {@code Class} object represents a class or interface with
1912      * no accessible public fields, then this method returns an array of length
1913      * 0.
1914      *
1915      * <p> If this {@code Class} object represents a class, then this method
1916      * returns the public fields of the class and of all its superclasses and
1917      * superinterfaces.
1918      *
1919      * <p> If this {@code Class} object represents an interface, then this
1920      * method returns the fields of the interface and of all its
1921      * superinterfaces.
1922      *
1923      * <p> If this {@code Class} object represents an array type, a primitive
1924      * type, or void, then this method returns an array of length 0.
1925      *
1926      * <p> The elements in the returned array are not sorted and are not in any
1927      * particular order.
1928      *
1929      * @return the array of {@code Field} objects representing the
1930      *         public fields
1931      *
1932      * @since 1.1
1933      * @jls 8.2 Class Members
1934      * @jls 8.3 Field Declarations
1935      */
1936     public Field[] getFields() {
1937         return copyFields(privateGetPublicFields());
1938     }
1939 
1940 
1941     /**
1942      * Returns an array containing {@code Method} objects reflecting all the
1943      * public methods of the class or interface represented by this {@code
1944      * Class} object, including those declared by the class or interface and
1945      * those inherited from superclasses and superinterfaces.
1946      *
1947      * <p> If this {@code Class} object represents an array type, then the
1948      * returned array has a {@code Method} object for each of the public
1949      * methods inherited by the array type from {@code Object}. It does not
1950      * contain a {@code Method} object for {@code clone()}.
1951      *
1952      * <p> If this {@code Class} object represents an interface then the
1953      * returned array does not contain any implicitly declared methods from
1954      * {@code Object}. Therefore, if no methods are explicitly declared in
1955      * this interface or any of its superinterfaces then the returned array
1956      * has length 0. (Note that a {@code Class} object which represents a class
1957      * always has public methods, inherited from {@code Object}.)
1958      *
1959      * <p> The returned array never contains methods with names {@value
1960      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
1961      *
1962      * <p> The elements in the returned array are not sorted and are not in any
1963      * particular order.
1964      *
1965      * <p> Generally, the result is computed as with the following 4 step algorithm.
1966      * Let C be the class or interface represented by this {@code Class} object:
1967      * <ol>
1968      * <li> A union of methods is composed of:
1969      *   <ol type="a">
1970      *   <li> C's declared public instance and static methods as returned by
1971      *        {@link #getDeclaredMethods()} and filtered to include only public
1972      *        methods.</li>
1973      *   <li> If C is a class other than {@code Object}, then include the result
1974      *        of invoking this algorithm recursively on the superclass of C.</li>
1975      *   <li> Include the results of invoking this algorithm recursively on all
1976      *        direct superinterfaces of C, but include only instance methods.</li>
1977      *   </ol></li>
1978      * <li> Union from step 1 is partitioned into subsets of methods with same
1979      *      signature (name, parameter types) and return type.</li>
1980      * <li> Within each such subset only the most specific methods are selected.
1981      *      Let method M be a method from a set of methods with same signature
1982      *      and return type. M is most specific if there is no such method
1983      *      N != M from the same set, such that N is more specific than M.
1984      *      N is more specific than M if:
1985      *   <ol type="a">
1986      *   <li> N is declared by a class and M is declared by an interface; or</li>
1987      *   <li> N and M are both declared by classes or both by interfaces and
1988      *        N's declaring type is the same as or a subtype of M's declaring type
1989      *        (clearly, if M's and N's declaring types are the same type, then
1990      *        M and N are the same method).</li>
1991      *   </ol></li>
1992      * <li> The result of this algorithm is the union of all selected methods from
1993      *      step 3.</li>
1994      * </ol>
1995      *
1996      * @apiNote There may be more than one method with a particular name
1997      * and parameter types in a class because while the Java language forbids a
1998      * class to declare multiple methods with the same signature but different
1999      * return types, the Java virtual machine does not.  This
2000      * increased flexibility in the virtual machine can be used to
2001      * implement various language features.  For example, covariant
2002      * returns can be implemented with {@linkplain
2003      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
2004      * method and the overriding method would have the same
2005      * signature but different return types.
2006      *
2007      * @return the array of {@code Method} objects representing the
2008      *         public methods of this class
2009      *
2010      * @jls 8.2 Class Members
2011      * @jls 8.4 Method Declarations
2012      * @since 1.1
2013      */
2014     public Method[] getMethods() {
2015         return copyMethods(privateGetPublicMethods());
2016     }
2017 
2018 
2019     /**
2020      * Returns an array containing {@code Constructor} objects reflecting
2021      * all the public constructors of the class represented by this
2022      * {@code Class} object.  An array of length 0 is returned if the
2023      * class has no public constructors, or if the class is an array class, or
2024      * if the class reflects a primitive type or void.
2025      *
2026      * @apiNote
2027      * While this method returns an array of {@code
2028      * Constructor<T>} objects (that is an array of constructors from
2029      * this class), the return type of this method is {@code
2030      * Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as
2031      * might be expected.  This less informative return type is
2032      * necessary since after being returned from this method, the
2033      * array could be modified to hold {@code Constructor} objects for
2034      * different classes, which would violate the type guarantees of
2035      * {@code Constructor<T>[]}.
2036      *
2037      * @return the array of {@code Constructor} objects representing the
2038      *         public constructors of this class
2039      *
2040      * @see #getDeclaredConstructors()
2041      * @since 1.1
2042      */
2043     public Constructor<?>[] getConstructors() {
2044         return copyConstructors(privateGetDeclaredConstructors(true));
2045     }
2046 
2047 
2048     /**
2049      * Returns a {@code Field} object that reflects the specified public member
2050      * field of the class or interface represented by this {@code Class}
2051      * object. The {@code name} parameter is a {@code String} specifying the
2052      * simple name of the desired field.
2053      *
2054      * <p> The field to be reflected is determined by the algorithm that
2055      * follows.  Let C be the class or interface represented by this {@code Class} object:
2056      *
2057      * <OL>
2058      * <LI> If C declares a public field with the name specified, that is the
2059      *      field to be reflected.</LI>
2060      * <LI> If no field was found in step 1 above, this algorithm is applied
2061      *      recursively to each direct superinterface of C. The direct
2062      *      superinterfaces are searched in the order they were declared.</LI>
2063      * <LI> If no field was found in steps 1 and 2 above, and C has a
2064      *      superclass S, then this algorithm is invoked recursively upon S.
2065      *      If C has no superclass, then a {@code NoSuchFieldException}
2066      *      is thrown.</LI>
2067      * </OL>
2068      *
2069      * <p> If this {@code Class} object represents an array type, then this
2070      * method does not find the {@code length} field of the array type.
2071      *
2072      * @param name the field name
2073      * @return the {@code Field} object of this class specified by
2074      *         {@code name}
2075      * @throws NoSuchFieldException if a field with the specified name is
2076      *         not found.
2077      * @throws NullPointerException if {@code name} is {@code null}
2078      *
2079      * @since 1.1
2080      * @jls 8.2 Class Members
2081      * @jls 8.3 Field Declarations
2082      */
2083     public Field getField(String name) throws NoSuchFieldException {
2084         Objects.requireNonNull(name);
2085         Field field = getField0(name);
2086         if (field == null) {
2087             throw new NoSuchFieldException(name);
2088         }
2089         return getReflectionFactory().copyField(field);
2090     }
2091 
2092 
2093     /**
2094      * Returns a {@code Method} object that reflects the specified public
2095      * member method of the class or interface represented by this
2096      * {@code Class} object. The {@code name} parameter is a
2097      * {@code String} specifying the simple name of the desired method. The
2098      * {@code parameterTypes} parameter is an array of {@code Class}
2099      * objects that identify the method's formal parameter types, in declared
2100      * order. If {@code parameterTypes} is {@code null}, it is
2101      * treated as if it were an empty array.
2102      *
2103      * <p> If this {@code Class} object represents an array type, then this
2104      * method finds any public method inherited by the array type from
2105      * {@code Object} except method {@code clone()}.
2106      *
2107      * <p> If this {@code Class} object represents an interface then this
2108      * method does not find any implicitly declared method from
2109      * {@code Object}. Therefore, if no methods are explicitly declared in
2110      * this interface or any of its superinterfaces, then this method does not
2111      * find any method.
2112      *
2113      * <p> This method does not find any method with name {@value
2114      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
2115      *
2116      * <p> Generally, the method to be reflected is determined by the 4 step
2117      * algorithm that follows.
2118      * Let C be the class or interface represented by this {@code Class} object:
2119      * <ol>
2120      * <li> A union of methods is composed of:
2121      *   <ol type="a">
2122      *   <li> C's declared public instance and static methods as returned by
2123      *        {@link #getDeclaredMethods()} and filtered to include only public
2124      *        methods that match given {@code name} and {@code parameterTypes}</li>
2125      *   <li> If C is a class other than {@code Object}, then include the result
2126      *        of invoking this algorithm recursively on the superclass of C.</li>
2127      *   <li> Include the results of invoking this algorithm recursively on all
2128      *        direct superinterfaces of C, but include only instance methods.</li>
2129      *   </ol></li>
2130      * <li> This union is partitioned into subsets of methods with same
2131      *      return type (the selection of methods from step 1 also guarantees that
2132      *      they have the same method name and parameter types).</li>
2133      * <li> Within each such subset only the most specific methods are selected.
2134      *      Let method M be a method from a set of methods with same VM
2135      *      signature (return type, name, parameter types).
2136      *      M is most specific if there is no such method N != M from the same
2137      *      set, such that N is more specific than M. N is more specific than M
2138      *      if:
2139      *   <ol type="a">
2140      *   <li> N is declared by a class and M is declared by an interface; or</li>
2141      *   <li> N and M are both declared by classes or both by interfaces and
2142      *        N's declaring type is the same as or a subtype of M's declaring type
2143      *        (clearly, if M's and N's declaring types are the same type, then
2144      *        M and N are the same method).</li>
2145      *   </ol></li>
2146      * <li> The result of this algorithm is chosen arbitrarily from the methods
2147      *      with most specific return type among all selected methods from step 3.
2148      *      Let R be a return type of a method M from the set of all selected methods
2149      *      from step 3. M is a method with most specific return type if there is
2150      *      no such method N != M from the same set, having return type S != R,
2151      *      such that S is a subtype of R as determined by
2152      *      R.class.{@link #isAssignableFrom}(S.class).
2153      * </ol>
2154      *
2155      * @apiNote There may be more than one method with matching name and
2156      * parameter types in a class because while the Java language forbids a
2157      * class to declare multiple methods with the same signature but different
2158      * return types, the Java virtual machine does not.  This
2159      * increased flexibility in the virtual machine can be used to
2160      * implement various language features.  For example, covariant
2161      * returns can be implemented with {@linkplain
2162      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
2163      * method and the overriding method would have the same
2164      * signature but different return types. This method would return the
2165      * overriding method as it would have a more specific return type.
2166      *
2167      * @param name the name of the method
2168      * @param parameterTypes the list of parameters
2169      * @return the {@code Method} object that matches the specified
2170      *         {@code name} and {@code parameterTypes}
2171      * @throws NoSuchMethodException if a matching method is not found
2172      *         or if the name is {@value ConstantDescs#INIT_NAME} or
2173      *         {@value ConstantDescs#CLASS_INIT_NAME}.
2174      * @throws NullPointerException if {@code name} is {@code null}
2175      *
2176      * @jls 8.2 Class Members
2177      * @jls 8.4 Method Declarations
2178      * @since 1.1
2179      */
2180     public Method getMethod(String name, Class<?>... parameterTypes)
2181             throws NoSuchMethodException {
2182         Objects.requireNonNull(name);
2183         Method method = getMethod0(name, parameterTypes);
2184         if (method == null) {
2185             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2186         }
2187         return getReflectionFactory().copyMethod(method);
2188     }
2189 
2190     /**
2191      * Returns a {@code Constructor} object that reflects the specified
2192      * public constructor of the class represented by this {@code Class}
2193      * object. The {@code parameterTypes} parameter is an array of
2194      * {@code Class} objects that identify the constructor's formal
2195      * parameter types, in declared order.
2196      *
2197      * If this {@code Class} object represents an inner class
2198      * declared in a non-static context, the formal parameter types
2199      * include the explicit enclosing instance as the first parameter.
2200      *
2201      * <p> The constructor to reflect is the public constructor of the class
2202      * represented by this {@code Class} object whose formal parameter
2203      * types match those specified by {@code parameterTypes}.
2204      *
2205      * @param parameterTypes the parameter array
2206      * @return the {@code Constructor} object of the public constructor that
2207      *         matches the specified {@code parameterTypes}
2208      * @throws NoSuchMethodException if a matching constructor is not found,
2209      *         including when this {@code Class} object represents
2210      *         an interface, a primitive type, an array class, or void.
2211      *
2212      * @see #getDeclaredConstructor(Class[])
2213      * @since 1.1
2214      */
2215     public Constructor<T> getConstructor(Class<?>... parameterTypes)
2216             throws NoSuchMethodException {
2217         return getReflectionFactory().copyConstructor(
2218             getConstructor0(parameterTypes, Member.PUBLIC));
2219     }
2220 
2221 
2222     /**
2223      * Returns an array of {@code Class} objects reflecting all the
2224      * classes and interfaces declared as members of the class represented by
2225      * this {@code Class} object. This includes public, protected, default
2226      * (package) access, and private classes and interfaces declared by the
2227      * class, but excludes inherited classes and interfaces.  This method
2228      * returns an array of length 0 if the class declares no classes or
2229      * interfaces as members, or if this {@code Class} object represents a
2230      * primitive type, an array class, or void.
2231      *
2232      * @return the array of {@code Class} objects representing all the
2233      *         declared members of this class
2234      *
2235      * @since 1.1
2236      * @jls 8.5 Member Class and Interface Declarations
2237      */
2238     public Class<?>[] getDeclaredClasses() {
2239         return getDeclaredClasses0();
2240     }
2241 
2242 
2243     /**
2244      * Returns an array of {@code Field} objects reflecting all the fields
2245      * declared by the class or interface represented by this
2246      * {@code Class} object. This includes public, protected, default
2247      * (package) access, and private fields, but excludes inherited fields.
2248      *
2249      * <p> If this {@code Class} object represents a class or interface with no
2250      * declared fields, then this method returns an array of length 0.
2251      *
2252      * <p> If this {@code Class} object represents an array type, a primitive
2253      * type, or void, then this method returns an array of length 0.
2254      *
2255      * <p> The elements in the returned array are not sorted and are not in any
2256      * particular order.
2257      *
2258      * @return  the array of {@code Field} objects representing all the
2259      *          declared fields of this class
2260      *
2261      * @since 1.1
2262      * @jls 8.2 Class Members
2263      * @jls 8.3 Field Declarations
2264      */
2265     public Field[] getDeclaredFields() {
2266         return copyFields(privateGetDeclaredFields(false));
2267     }
2268 
2269     /**
2270      * Returns an array of {@code RecordComponent} objects representing all the
2271      * record components of this record class, or {@code null} if this class is
2272      * not a record class.
2273      *
2274      * <p> The components are returned in the same order that they are declared
2275      * in the record header. The array is empty if this record class has no
2276      * components. If the class is not a record class, that is {@link
2277      * #isRecord()} returns {@code false}, then this method returns {@code null}.
2278      * Conversely, if {@link #isRecord()} returns {@code true}, then this method
2279      * returns a non-null value.
2280      *
2281      * @apiNote
2282      * <p> The following method can be used to find the record canonical constructor:
2283      *
2284      * {@snippet lang="java" :
2285      * static <T extends Record> Constructor<T> getCanonicalConstructor(Class<T> cls)
2286      *     throws NoSuchMethodException {
2287      *   Class<?>[] paramTypes =
2288      *     Arrays.stream(cls.getRecordComponents())
2289      *           .map(RecordComponent::getType)
2290      *           .toArray(Class<?>[]::new);
2291      *   return cls.getDeclaredConstructor(paramTypes);
2292      * }}
2293      *
2294      * @return  An array of {@code RecordComponent} objects representing all the
2295      *          record components of this record class, or {@code null} if this
2296      *          class is not a record class
2297      *
2298      * @jls 8.10 Record Classes
2299      * @since 16
2300      */
2301     public RecordComponent[] getRecordComponents() {
2302         if (!isRecord()) {
2303             return null;
2304         }
2305         return getRecordComponents0();
2306     }
2307 
2308     /**
2309      * Returns an array containing {@code Method} objects reflecting all the
2310      * declared methods of the class or interface represented by this {@code
2311      * Class} object, including public, protected, default (package)
2312      * access, and private methods, but excluding inherited methods.
2313      * The declared methods may include methods <em>not</em> in the
2314      * source of the class or interface, including {@linkplain
2315      * Method#isBridge bridge methods} and other {@linkplain
2316      * Executable#isSynthetic synthetic} methods added by compilers.
2317      *
2318      * <p> If this {@code Class} object represents a class or interface that
2319      * has multiple declared methods with the same name and parameter types,
2320      * but different return types, then the returned array has a {@code Method}
2321      * object for each such method.
2322      *
2323      * <p> If this {@code Class} object represents a class or interface that
2324      * has a class initialization method {@value ConstantDescs#CLASS_INIT_NAME},
2325      * then the returned array does <em>not</em> have a corresponding {@code
2326      * Method} object.
2327      *
2328      * <p> If this {@code Class} object represents a class or interface with no
2329      * declared methods, then the returned array has length 0.
2330      *
2331      * <p> If this {@code Class} object represents an array type, a primitive
2332      * type, or void, then the returned array has length 0.
2333      *
2334      * <p> The elements in the returned array are not sorted and are not in any
2335      * particular order.
2336      *
2337      * @return  the array of {@code Method} objects representing all the
2338      *          declared methods of this class
2339      *
2340      * @jls 8.2 Class Members
2341      * @jls 8.4 Method Declarations
2342      * @see <a
2343      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
2344      * programming language and JVM modeling in core reflection</a>
2345      * @since 1.1
2346      */
2347     public Method[] getDeclaredMethods() {
2348         return copyMethods(privateGetDeclaredMethods(false));
2349     }
2350 
2351     /**
2352      * Returns an array of {@code Constructor} objects reflecting all the
2353      * constructors implicitly or explicitly declared by the class represented by this
2354      * {@code Class} object. These are public, protected, default
2355      * (package) access, and private constructors.  The elements in the array
2356      * returned are not sorted and are not in any particular order.  If the
2357      * class has a default constructor (JLS {@jls 8.8.9}), it is included in the returned array.
2358      * If a record class has a canonical constructor (JLS {@jls
2359      * 8.10.4.1}, {@jls 8.10.4.2}), it is included in the returned array.
2360      *
2361      * This method returns an array of length 0 if this {@code Class}
2362      * object represents an interface, a primitive type, an array class, or
2363      * void.
2364      *
2365      * @return  the array of {@code Constructor} objects representing all the
2366      *          declared constructors of this class
2367      *
2368      * @since 1.1
2369      * @see #getConstructors()
2370      * @jls 8.8 Constructor Declarations
2371      */
2372     public Constructor<?>[] getDeclaredConstructors() {
2373         return copyConstructors(privateGetDeclaredConstructors(false));
2374     }
2375 
2376 
2377     /**
2378      * Returns a {@code Field} object that reflects the specified declared
2379      * field of the class or interface represented by this {@code Class}
2380      * object. The {@code name} parameter is a {@code String} that specifies
2381      * the simple name of the desired field.
2382      *
2383      * <p> If this {@code Class} object represents an array type, then this
2384      * method does not find the {@code length} field of the array type.
2385      *
2386      * @param name the name of the field
2387      * @return  the {@code Field} object for the specified field in this
2388      *          class
2389      * @throws  NoSuchFieldException if a field with the specified name is
2390      *          not found.
2391      * @throws  NullPointerException if {@code name} is {@code null}
2392      *
2393      * @since 1.1
2394      * @jls 8.2 Class Members
2395      * @jls 8.3 Field Declarations
2396      */
2397     public Field getDeclaredField(String name) throws NoSuchFieldException {
2398         Objects.requireNonNull(name);
2399         Field field = searchFields(privateGetDeclaredFields(false), name);
2400         if (field == null) {
2401             throw new NoSuchFieldException(name);
2402         }
2403         return getReflectionFactory().copyField(field);
2404     }
2405 
2406 
2407     /**
2408      * Returns a {@code Method} object that reflects the specified
2409      * declared method of the class or interface represented by this
2410      * {@code Class} object. The {@code name} parameter is a
2411      * {@code String} that specifies the simple name of the desired
2412      * method, and the {@code parameterTypes} parameter is an array of
2413      * {@code Class} objects that identify the method's formal parameter
2414      * types, in declared order.  If more than one method with the same
2415      * parameter types is declared in a class, and one of these methods has a
2416      * return type that is more specific than any of the others, that method is
2417      * returned; otherwise one of the methods is chosen arbitrarily.  If the
2418      * name is {@value ConstantDescs#INIT_NAME} or {@value
2419      * ConstantDescs#CLASS_INIT_NAME} a {@code NoSuchMethodException}
2420      * is raised.
2421      *
2422      * <p> If this {@code Class} object represents an array type, then this
2423      * method does not find the {@code clone()} method.
2424      *
2425      * @param name the name of the method
2426      * @param parameterTypes the parameter array
2427      * @return  the {@code Method} object for the method of this class
2428      *          matching the specified name and parameters
2429      * @throws  NoSuchMethodException if a matching method is not found.
2430      * @throws  NullPointerException if {@code name} is {@code null}
2431      *
2432      * @jls 8.2 Class Members
2433      * @jls 8.4 Method Declarations
2434      * @since 1.1
2435      */
2436     public Method getDeclaredMethod(String name, Class<?>... parameterTypes)
2437             throws NoSuchMethodException {
2438         Objects.requireNonNull(name);
2439         Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);
2440         if (method == null) {
2441             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2442         }
2443         return getReflectionFactory().copyMethod(method);
2444     }
2445 
2446     /**
2447      * Returns the list of {@code Method} objects for the declared public
2448      * methods of this class or interface that have the specified method name
2449      * and parameter types.
2450      *
2451      * @param name the name of the method
2452      * @param parameterTypes the parameter array
2453      * @return the list of {@code Method} objects for the public methods of
2454      *         this class matching the specified name and parameters
2455      */
2456     List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) {
2457         Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true);
2458         ReflectionFactory factory = getReflectionFactory();
2459         List<Method> result = new ArrayList<>();
2460         for (Method method : methods) {
2461             if (method.getName().equals(name)
2462                 && Arrays.equals(
2463                     factory.getExecutableSharedParameterTypes(method),
2464                     parameterTypes)) {
2465                 result.add(factory.copyMethod(method));
2466             }
2467         }
2468         return result;
2469     }
2470 
2471     /**
2472      * Returns the most specific {@code Method} object of this class, super class or
2473      * interface that have the specified method name and parameter types.
2474      *
2475      * @param publicOnly true if only public methods are examined, otherwise all methods
2476      * @param name the name of the method
2477      * @param parameterTypes the parameter array
2478      * @return the {@code Method} object for the method found from this class matching
2479      * the specified name and parameters, or null if not found
2480      */
2481     Method findMethod(boolean publicOnly, String name, Class<?>... parameterTypes) {
2482         PublicMethods.MethodList res = getMethodsRecursive(name, parameterTypes, true, publicOnly);
2483         return res == null ? null : getReflectionFactory().copyMethod(res.getMostSpecific());
2484     }
2485 
2486     /**
2487      * Returns a {@code Constructor} object that reflects the specified
2488      * constructor of the class represented by this
2489      * {@code Class} object.  The {@code parameterTypes} parameter is
2490      * an array of {@code Class} objects that identify the constructor's
2491      * formal parameter types, in declared order.
2492      *
2493      * If this {@code Class} object represents an inner class
2494      * declared in a non-static context, the formal parameter types
2495      * include the explicit enclosing instance as the first parameter.
2496      *
2497      * @param parameterTypes the parameter array
2498      * @return  The {@code Constructor} object for the constructor with the
2499      *          specified parameter list
2500      * @throws  NoSuchMethodException if a matching constructor is not found,
2501      *          including when this {@code Class} object represents
2502      *          an interface, a primitive type, an array class, or void.
2503      *
2504      * @see #getConstructor(Class[])
2505      * @since 1.1
2506      */
2507     public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes)
2508             throws NoSuchMethodException {
2509         return getReflectionFactory().copyConstructor(
2510             getConstructor0(parameterTypes, Member.DECLARED));
2511     }
2512 
2513     /**
2514      * Finds a resource with a given name.
2515      *
2516      * <p> If this class is in a named {@link Module Module} then this method
2517      * will attempt to find the resource in the module. This is done by
2518      * delegating to the module's class loader {@link
2519      * ClassLoader#findResource(String,String) findResource(String,String)}
2520      * method, invoking it with the module name and the absolute name of the
2521      * resource. Resources in named modules are subject to the rules for
2522      * encapsulation specified in the {@code Module} {@link
2523      * Module#getResourceAsStream getResourceAsStream} method and so this
2524      * method returns {@code null} when the resource is a
2525      * non-"{@code .class}" resource in a package that is not open to the
2526      * caller's module.
2527      *
2528      * <p> Otherwise, if this class is not in a named module then the rules for
2529      * searching resources associated with a given class are implemented by the
2530      * defining {@linkplain ClassLoader class loader} of the class.  This method
2531      * delegates to this {@code Class} object's class loader.
2532      * If this {@code Class} object was loaded by the bootstrap class loader,
2533      * the method delegates to {@link ClassLoader#getSystemResourceAsStream}.
2534      *
2535      * <p> Before delegation, an absolute resource name is constructed from the
2536      * given resource name using this algorithm:
2537      *
2538      * <ul>
2539      *
2540      * <li> If the {@code name} begins with a {@code '/'}
2541      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2542      * portion of the {@code name} following the {@code '/'}.
2543      *
2544      * <li> Otherwise, the absolute name is of the following form:
2545      *
2546      * <blockquote>
2547      *   {@code modified_package_name/name}
2548      * </blockquote>
2549      *
2550      * <p> Where the {@code modified_package_name} is the package name of this
2551      * object with {@code '/'} substituted for {@code '.'}
2552      * (<code>'&#92;u002e'</code>).
2553      *
2554      * </ul>
2555      *
2556      * @param  name name of the desired resource
2557      * @return  A {@link java.io.InputStream} object; {@code null} if no
2558      *          resource with this name is found, or the resource is in a package
2559      *          that is not {@linkplain Module#isOpen(String, Module) open} to at
2560      *          least the caller module.
2561      * @throws  NullPointerException If {@code name} is {@code null}
2562      *
2563      * @see Module#getResourceAsStream(String)
2564      * @since  1.1
2565      */
2566     @CallerSensitive
2567     public InputStream getResourceAsStream(String name) {
2568         name = resolveName(name);
2569 
2570         Module thisModule = getModule();
2571         if (thisModule.isNamed()) {
2572             // check if resource can be located by caller
2573             if (Resources.canEncapsulate(name)
2574                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2575                 return null;
2576             }
2577 
2578             // resource not encapsulated or in package open to caller
2579             String mn = thisModule.getName();
2580             ClassLoader cl = classLoader;
2581             try {
2582 
2583                 // special-case built-in class loaders to avoid the
2584                 // need for a URL connection
2585                 if (cl == null) {
2586                     return BootLoader.findResourceAsStream(mn, name);
2587                 } else if (cl instanceof BuiltinClassLoader bcl) {
2588                     return bcl.findResourceAsStream(mn, name);
2589                 } else {
2590                     URL url = cl.findResource(mn, name);
2591                     return (url != null) ? url.openStream() : null;
2592                 }
2593 
2594             } catch (IOException | SecurityException e) {
2595                 return null;
2596             }
2597         }
2598 
2599         // unnamed module
2600         ClassLoader cl = classLoader;
2601         if (cl == null) {
2602             return ClassLoader.getSystemResourceAsStream(name);
2603         } else {
2604             return cl.getResourceAsStream(name);
2605         }
2606     }
2607 
2608     /**
2609      * Finds a resource with a given name.
2610      *
2611      * <p> If this class is in a named {@link Module Module} then this method
2612      * will attempt to find the resource in the module. This is done by
2613      * delegating to the module's class loader {@link
2614      * ClassLoader#findResource(String,String) findResource(String,String)}
2615      * method, invoking it with the module name and the absolute name of the
2616      * resource. Resources in named modules are subject to the rules for
2617      * encapsulation specified in the {@code Module} {@link
2618      * Module#getResourceAsStream getResourceAsStream} method and so this
2619      * method returns {@code null} when the resource is a
2620      * non-"{@code .class}" resource in a package that is not open to the
2621      * caller's module.
2622      *
2623      * <p> Otherwise, if this class is not in a named module then the rules for
2624      * searching resources associated with a given class are implemented by the
2625      * defining {@linkplain ClassLoader class loader} of the class.  This method
2626      * delegates to this {@code Class} object's class loader.
2627      * If this {@code Class} object was loaded by the bootstrap class loader,
2628      * the method delegates to {@link ClassLoader#getSystemResource}.
2629      *
2630      * <p> Before delegation, an absolute resource name is constructed from the
2631      * given resource name using this algorithm:
2632      *
2633      * <ul>
2634      *
2635      * <li> If the {@code name} begins with a {@code '/'}
2636      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2637      * portion of the {@code name} following the {@code '/'}.
2638      *
2639      * <li> Otherwise, the absolute name is of the following form:
2640      *
2641      * <blockquote>
2642      *   {@code modified_package_name/name}
2643      * </blockquote>
2644      *
2645      * <p> Where the {@code modified_package_name} is the package name of this
2646      * object with {@code '/'} substituted for {@code '.'}
2647      * (<code>'&#92;u002e'</code>).
2648      *
2649      * </ul>
2650      *
2651      * @param  name name of the desired resource
2652      * @return A {@link java.net.URL} object; {@code null} if no resource with
2653      *         this name is found, the resource cannot be located by a URL, or the
2654      *         resource is in a package that is not
2655      *         {@linkplain Module#isOpen(String, Module) open} to at least the caller
2656      *         module.
2657      * @throws NullPointerException If {@code name} is {@code null}
2658      * @since  1.1
2659      */
2660     @CallerSensitive
2661     public URL getResource(String name) {
2662         name = resolveName(name);
2663 
2664         Module thisModule = getModule();
2665         if (thisModule.isNamed()) {
2666             // check if resource can be located by caller
2667             if (Resources.canEncapsulate(name)
2668                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2669                 return null;
2670             }
2671 
2672             // resource not encapsulated or in package open to caller
2673             String mn = thisModule.getName();
2674             ClassLoader cl = classLoader;
2675             try {
2676                 if (cl == null) {
2677                     return BootLoader.findResource(mn, name);
2678                 } else {
2679                     return cl.findResource(mn, name);
2680                 }
2681             } catch (IOException ioe) {
2682                 return null;
2683             }
2684         }
2685 
2686         // unnamed module
2687         ClassLoader cl = classLoader;
2688         if (cl == null) {
2689             return ClassLoader.getSystemResource(name);
2690         } else {
2691             return cl.getResource(name);
2692         }
2693     }
2694 
2695     /**
2696      * Returns true if a resource with the given name can be located by the
2697      * given caller. All resources in a module can be located by code in
2698      * the module. For other callers, then the package needs to be open to
2699      * the caller.
2700      */
2701     private boolean isOpenToCaller(String name, Class<?> caller) {
2702         // assert getModule().isNamed();
2703         Module thisModule = getModule();
2704         Module callerModule = (caller != null) ? caller.getModule() : null;
2705         if (callerModule != thisModule) {
2706             String pn = Resources.toPackageName(name);
2707             if (thisModule.getDescriptor().packages().contains(pn)) {
2708                 if (callerModule == null) {
2709                     // no caller, return true if the package is open to all modules
2710                     return thisModule.isOpen(pn);
2711                 }
2712                 if (!thisModule.isOpen(pn, callerModule)) {
2713                     // package not open to caller
2714                     return false;
2715                 }
2716             }
2717         }
2718         return true;
2719     }
2720 
2721     /**
2722      * Returns the {@code ProtectionDomain} of this class.
2723      *
2724      * @return the ProtectionDomain of this class
2725      *
2726      * @see java.security.ProtectionDomain
2727      * @since 1.2
2728      */
2729     public ProtectionDomain getProtectionDomain() {
2730         return protectionDomain();
2731     }
2732 
2733     /** Holder for the protection domain returned when the internal domain is null */
2734     private static class Holder {
2735         private static final ProtectionDomain allPermDomain;
2736         static {
2737             Permissions perms = new Permissions();
2738             perms.add(new AllPermission());
2739             allPermDomain = new ProtectionDomain(null, perms);
2740         }
2741     }
2742 
2743     // package-private
2744     ProtectionDomain protectionDomain() {
2745         ProtectionDomain pd = getProtectionDomain0();
2746         if (pd == null) {
2747             return Holder.allPermDomain;
2748         } else {
2749             return pd;
2750         }
2751     }
2752 
2753     /**
2754      * Returns the ProtectionDomain of this class.
2755      */
2756     private native ProtectionDomain getProtectionDomain0();
2757 
2758     /*
2759      * Returns the Class object for the named primitive type. Type parameter T
2760      * avoids redundant casts for trusted code.
2761      */
2762     static native <T> Class<T> getPrimitiveClass(String name);
2763 
2764     /**
2765      * Add a package name prefix if the name is not absolute. Remove leading "/"
2766      * if name is absolute
2767      */
2768     private String resolveName(String name) {
2769         if (!name.startsWith("/")) {
2770             String baseName = getPackageName();
2771             if (!baseName.isEmpty()) {
2772                 int len = baseName.length() + 1 + name.length();
2773                 StringBuilder sb = new StringBuilder(len);
2774                 name = sb.append(baseName.replace('.', '/'))
2775                     .append('/')
2776                     .append(name)
2777                     .toString();
2778             }
2779         } else {
2780             name = name.substring(1);
2781         }
2782         return name;
2783     }
2784 
2785     /**
2786      * Atomic operations support.
2787      */
2788     private static class Atomic {
2789         // initialize Unsafe machinery here, since we need to call Class.class instance method
2790         // and have to avoid calling it in the static initializer of the Class class...
2791         private static final Unsafe unsafe = Unsafe.getUnsafe();
2792         // offset of Class.reflectionData instance field
2793         private static final long reflectionDataOffset
2794                 = unsafe.objectFieldOffset(Class.class, "reflectionData");
2795         // offset of Class.annotationType instance field
2796         private static final long annotationTypeOffset
2797                 = unsafe.objectFieldOffset(Class.class, "annotationType");
2798         // offset of Class.annotationData instance field
2799         private static final long annotationDataOffset
2800                 = unsafe.objectFieldOffset(Class.class, "annotationData");
2801 
2802         static <T> boolean casReflectionData(Class<?> clazz,
2803                                              ReflectionData<T> oldData,
2804                                              ReflectionData<T> newData) {
2805             return unsafe.compareAndSetReference(clazz, reflectionDataOffset, oldData, newData);
2806         }
2807 
2808         static boolean casAnnotationType(Class<?> clazz,
2809                                          AnnotationType oldType,
2810                                          AnnotationType newType) {
2811             return unsafe.compareAndSetReference(clazz, annotationTypeOffset, oldType, newType);
2812         }
2813 
2814         static boolean casAnnotationData(Class<?> clazz,
2815                                          AnnotationData oldData,
2816                                          AnnotationData newData) {
2817             return unsafe.compareAndSetReference(clazz, annotationDataOffset, oldData, newData);
2818         }
2819     }
2820 
2821     /**
2822      * Reflection support.
2823      */
2824 
2825     // Reflection data caches various derived names and reflective members. Cached
2826     // values may be invalidated when JVM TI RedefineClasses() is called
2827     private static class ReflectionData<T> {
2828         volatile Field[] declaredFields;
2829         volatile Field[] publicFields;
2830         volatile Method[] declaredMethods;
2831         volatile Method[] publicMethods;
2832         volatile Constructor<T>[] declaredConstructors;
2833         volatile Constructor<T>[] publicConstructors;
2834         // Intermediate results for getFields and getMethods
2835         volatile Field[] declaredPublicFields;
2836         volatile Method[] declaredPublicMethods;
2837         volatile Class<?>[] interfaces;
2838 
2839         // Cached names
2840         String simpleName;
2841         String canonicalName;
2842         static final String NULL_SENTINEL = new String();
2843 
2844         // Value of classRedefinedCount when we created this ReflectionData instance
2845         final int redefinedCount;
2846 
2847         ReflectionData(int redefinedCount) {
2848             this.redefinedCount = redefinedCount;
2849         }
2850     }
2851 
2852     private transient volatile ReflectionData<T> reflectionData;
2853 
2854     // Incremented by the VM on each call to JVM TI RedefineClasses()
2855     // that redefines this class or a superclass.
2856     private transient volatile int classRedefinedCount;
2857 
2858     // Lazily create and cache ReflectionData
2859     private ReflectionData<T> reflectionData() {
2860         ReflectionData<T> reflectionData = this.reflectionData;
2861         int classRedefinedCount = this.classRedefinedCount;
2862         if (reflectionData != null &&
2863             reflectionData.redefinedCount == classRedefinedCount) {
2864             return reflectionData;
2865         }
2866         // else no SoftReference or cleared SoftReference or stale ReflectionData
2867         // -> create and replace new instance
2868         return newReflectionData(reflectionData, classRedefinedCount);
2869     }
2870 
2871     private ReflectionData<T> newReflectionData(ReflectionData<T> oldReflectionData,
2872                                                 int classRedefinedCount) {
2873         while (true) {
2874             ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount);
2875             // try to CAS it...
2876             if (Atomic.casReflectionData(this, oldReflectionData, rd)) {
2877                 return rd;
2878             }
2879             // else retry
2880             oldReflectionData = this.reflectionData;
2881             classRedefinedCount = this.classRedefinedCount;
2882             if (oldReflectionData != null && oldReflectionData.redefinedCount == classRedefinedCount) {
2883                 return rd;
2884             }
2885         }
2886     }
2887 
2888     // Generic signature handling
2889     private native String getGenericSignature0();
2890 
2891     // Generic info repository; lazily initialized
2892     private transient volatile ClassRepository genericInfo;
2893 
2894     // accessor for factory
2895     private GenericsFactory getFactory() {
2896         // create scope and factory
2897         return CoreReflectionFactory.make(this, ClassScope.make(this));
2898     }
2899 
2900     // accessor for generic info repository;
2901     // generic info is lazily initialized
2902     private ClassRepository getGenericInfo() {
2903         ClassRepository genericInfo = this.genericInfo;
2904         if (genericInfo == null) {
2905             String signature = getGenericSignature0();
2906             if (signature == null) {
2907                 genericInfo = ClassRepository.NONE;
2908             } else {
2909                 genericInfo = ClassRepository.make(signature, getFactory());
2910             }
2911             this.genericInfo = genericInfo;
2912         }
2913         return (genericInfo != ClassRepository.NONE) ? genericInfo : null;
2914     }
2915 
2916     // Annotations handling
2917     native byte[] getRawAnnotations();
2918     // Since 1.8
2919     native byte[] getRawTypeAnnotations();
2920     static byte[] getExecutableTypeAnnotationBytes(Executable ex) {
2921         return getReflectionFactory().getExecutableTypeAnnotationBytes(ex);
2922     }
2923 
2924     native ConstantPool getConstantPool();
2925 
2926     //
2927     //
2928     // java.lang.reflect.Field handling
2929     //
2930     //
2931 
2932     // Returns an array of "root" fields. These Field objects must NOT
2933     // be propagated to the outside world, but must instead be copied
2934     // via ReflectionFactory.copyField.
2935     private Field[] privateGetDeclaredFields(boolean publicOnly) {
2936         Field[] res;
2937         ReflectionData<T> rd = reflectionData();
2938         res = publicOnly ? rd.declaredPublicFields : rd.declaredFields;
2939         if (res != null) return res;
2940         // No cached value available; request value from VM
2941         res = Reflection.filterFields(this, getDeclaredFields0(publicOnly));
2942         if (publicOnly) {
2943             rd.declaredPublicFields = res;
2944         } else {
2945             rd.declaredFields = res;
2946         }
2947         return res;
2948     }
2949 
2950     // Returns an array of "root" fields. These Field objects must NOT
2951     // be propagated to the outside world, but must instead be copied
2952     // via ReflectionFactory.copyField.
2953     private Field[] privateGetPublicFields() {
2954         Field[] res;
2955         ReflectionData<T> rd = reflectionData();
2956         res = rd.publicFields;
2957         if (res != null) return res;
2958 
2959         // Use a linked hash set to ensure order is preserved and
2960         // fields from common super interfaces are not duplicated
2961         LinkedHashSet<Field> fields = new LinkedHashSet<>();
2962 
2963         // Local fields
2964         addAll(fields, privateGetDeclaredFields(true));
2965 
2966         // Direct superinterfaces, recursively
2967         for (Class<?> si : getInterfaces(/* cloneArray */ false)) {
2968             addAll(fields, si.privateGetPublicFields());
2969         }
2970 
2971         // Direct superclass, recursively
2972         Class<?> sc = getSuperclass();
2973         if (sc != null) {
2974             addAll(fields, sc.privateGetPublicFields());
2975         }
2976 
2977         res = fields.toArray(new Field[0]);
2978         rd.publicFields = res;
2979         return res;
2980     }
2981 
2982     private static void addAll(Collection<Field> c, Field[] o) {
2983         for (Field f : o) {
2984             c.add(f);
2985         }
2986     }
2987 
2988 
2989     //
2990     //
2991     // java.lang.reflect.Constructor handling
2992     //
2993     //
2994 
2995     // Returns an array of "root" constructors. These Constructor
2996     // objects must NOT be propagated to the outside world, but must
2997     // instead be copied via ReflectionFactory.copyConstructor.
2998     private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) {
2999         Constructor<T>[] res;
3000         ReflectionData<T> rd = reflectionData();
3001         res = publicOnly ? rd.publicConstructors : rd.declaredConstructors;
3002         if (res != null) return res;
3003         // No cached value available; request value from VM
3004         if (isInterface()) {
3005             @SuppressWarnings("unchecked")
3006             Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0];
3007             res = temporaryRes;
3008         } else {
3009             res = getDeclaredConstructors0(publicOnly);
3010         }
3011         if (publicOnly) {
3012             rd.publicConstructors = res;
3013         } else {
3014             rd.declaredConstructors = res;
3015         }
3016         return res;
3017     }
3018 
3019     //
3020     //
3021     // java.lang.reflect.Method handling
3022     //
3023     //
3024 
3025     // Returns an array of "root" methods. These Method objects must NOT
3026     // be propagated to the outside world, but must instead be copied
3027     // via ReflectionFactory.copyMethod.
3028     private Method[] privateGetDeclaredMethods(boolean publicOnly) {
3029         Method[] res;
3030         ReflectionData<T> rd = reflectionData();
3031         res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods;
3032         if (res != null) return res;
3033         // No cached value available; request value from VM
3034         res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly));
3035         if (publicOnly) {
3036             rd.declaredPublicMethods = res;
3037         } else {
3038             rd.declaredMethods = res;
3039         }
3040         return res;
3041     }
3042 
3043     // Returns an array of "root" methods. These Method objects must NOT
3044     // be propagated to the outside world, but must instead be copied
3045     // via ReflectionFactory.copyMethod.
3046     private Method[] privateGetPublicMethods() {
3047         Method[] res;
3048         ReflectionData<T> rd = reflectionData();
3049         res = rd.publicMethods;
3050         if (res != null) return res;
3051 
3052         // No cached value available; compute value recursively.
3053         // Start by fetching public declared methods...
3054         PublicMethods pms = new PublicMethods();
3055         for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) {
3056             pms.merge(m);
3057         }
3058         // ...then recur over superclass methods...
3059         Class<?> sc = getSuperclass();
3060         if (sc != null) {
3061             for (Method m : sc.privateGetPublicMethods()) {
3062                 pms.merge(m);
3063             }
3064         }
3065         // ...and finally over direct superinterfaces.
3066         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3067             for (Method m : intf.privateGetPublicMethods()) {
3068                 // static interface methods are not inherited
3069                 if (!Modifier.isStatic(m.getModifiers())) {
3070                     pms.merge(m);
3071                 }
3072             }
3073         }
3074 
3075         res = pms.toArray();
3076         rd.publicMethods = res;
3077         return res;
3078     }
3079 
3080 
3081     //
3082     // Helpers for fetchers of one field, method, or constructor
3083     //
3084 
3085     // This method does not copy the returned Field object!
3086     private static Field searchFields(Field[] fields, String name) {
3087         for (Field field : fields) {
3088             if (field.getName().equals(name)) {
3089                 return field;
3090             }
3091         }
3092         return null;
3093     }
3094 
3095     // Returns a "root" Field object. This Field object must NOT
3096     // be propagated to the outside world, but must instead be copied
3097     // via ReflectionFactory.copyField.
3098     private Field getField0(String name) {
3099         // Note: the intent is that the search algorithm this routine
3100         // uses be equivalent to the ordering imposed by
3101         // privateGetPublicFields(). It fetches only the declared
3102         // public fields for each class, however, to reduce the number
3103         // of Field objects which have to be created for the common
3104         // case where the field being requested is declared in the
3105         // class which is being queried.
3106         Field res;
3107         // Search declared public fields
3108         if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) {
3109             return res;
3110         }
3111         // Direct superinterfaces, recursively
3112         Class<?>[] interfaces = getInterfaces(/* cloneArray */ false);
3113         for (Class<?> c : interfaces) {
3114             if ((res = c.getField0(name)) != null) {
3115                 return res;
3116             }
3117         }
3118         // Direct superclass, recursively
3119         if (!isInterface()) {
3120             Class<?> c = getSuperclass();
3121             if (c != null) {
3122                 if ((res = c.getField0(name)) != null) {
3123                     return res;
3124                 }
3125             }
3126         }
3127         return null;
3128     }
3129 
3130     // This method does not copy the returned Method object!
3131     private static Method searchMethods(Method[] methods,
3132                                         String name,
3133                                         Class<?>[] parameterTypes)
3134     {
3135         ReflectionFactory fact = getReflectionFactory();
3136         Method res = null;
3137         for (Method m : methods) {
3138             if (m.getName().equals(name)
3139                 && arrayContentsEq(parameterTypes,
3140                                    fact.getExecutableSharedParameterTypes(m))
3141                 && (res == null
3142                     || (res.getReturnType() != m.getReturnType()
3143                         && res.getReturnType().isAssignableFrom(m.getReturnType()))))
3144                 res = m;
3145         }
3146         return res;
3147     }
3148 
3149     private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
3150 
3151     // Returns a "root" Method object. This Method object must NOT
3152     // be propagated to the outside world, but must instead be copied
3153     // via ReflectionFactory.copyMethod.
3154     private Method getMethod0(String name, Class<?>[] parameterTypes) {
3155         PublicMethods.MethodList res = getMethodsRecursive(
3156             name,
3157             parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes,
3158             /* includeStatic */ true, /* publicOnly */ true);
3159         return res == null ? null : res.getMostSpecific();
3160     }
3161 
3162     // Returns a list of "root" Method objects. These Method objects must NOT
3163     // be propagated to the outside world, but must instead be copied
3164     // via ReflectionFactory.copyMethod.
3165     private PublicMethods.MethodList getMethodsRecursive(String name,
3166                                                          Class<?>[] parameterTypes,
3167                                                          boolean includeStatic,
3168                                                          boolean publicOnly) {
3169         // 1st check declared methods
3170         Method[] methods = privateGetDeclaredMethods(publicOnly);
3171         PublicMethods.MethodList res = PublicMethods.MethodList
3172             .filter(methods, name, parameterTypes, includeStatic);
3173         // if there is at least one match among declared methods, we need not
3174         // search any further as such match surely overrides matching methods
3175         // declared in superclass(es) or interface(s).
3176         if (res != null) {
3177             return res;
3178         }
3179 
3180         // if there was no match among declared methods,
3181         // we must consult the superclass (if any) recursively...
3182         Class<?> sc = getSuperclass();
3183         if (sc != null) {
3184             res = sc.getMethodsRecursive(name, parameterTypes, includeStatic, publicOnly);
3185         }
3186 
3187         // ...and coalesce the superclass methods with methods obtained
3188         // from directly implemented interfaces excluding static methods...
3189         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3190             res = PublicMethods.MethodList.merge(
3191                 res, intf.getMethodsRecursive(name, parameterTypes, /* includeStatic */ false, publicOnly));
3192         }
3193 
3194         return res;
3195     }
3196 
3197     // Returns a "root" Constructor object. This Constructor object must NOT
3198     // be propagated to the outside world, but must instead be copied
3199     // via ReflectionFactory.copyConstructor.
3200     private Constructor<T> getConstructor0(Class<?>[] parameterTypes,
3201                                         int which) throws NoSuchMethodException
3202     {
3203         ReflectionFactory fact = getReflectionFactory();
3204         Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC));
3205         for (Constructor<T> constructor : constructors) {
3206             if (arrayContentsEq(parameterTypes,
3207                                 fact.getExecutableSharedParameterTypes(constructor))) {
3208                 return constructor;
3209             }
3210         }
3211         throw new NoSuchMethodException(methodToString("<init>", parameterTypes));
3212     }
3213 
3214     //
3215     // Other helpers and base implementation
3216     //
3217 
3218     private static boolean arrayContentsEq(Object[] a1, Object[] a2) {
3219         if (a1 == null) {
3220             return a2 == null || a2.length == 0;
3221         }
3222 
3223         if (a2 == null) {
3224             return a1.length == 0;
3225         }
3226 
3227         if (a1.length != a2.length) {
3228             return false;
3229         }
3230 
3231         for (int i = 0; i < a1.length; i++) {
3232             if (a1[i] != a2[i]) {
3233                 return false;
3234             }
3235         }
3236 
3237         return true;
3238     }
3239 
3240     private static Field[] copyFields(Field[] arg) {
3241         Field[] out = new Field[arg.length];
3242         ReflectionFactory fact = getReflectionFactory();
3243         for (int i = 0; i < arg.length; i++) {
3244             out[i] = fact.copyField(arg[i]);
3245         }
3246         return out;
3247     }
3248 
3249     private static Method[] copyMethods(Method[] arg) {
3250         Method[] out = new Method[arg.length];
3251         ReflectionFactory fact = getReflectionFactory();
3252         for (int i = 0; i < arg.length; i++) {
3253             out[i] = fact.copyMethod(arg[i]);
3254         }
3255         return out;
3256     }
3257 
3258     private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) {
3259         Constructor<U>[] out = arg.clone();
3260         ReflectionFactory fact = getReflectionFactory();
3261         for (int i = 0; i < out.length; i++) {
3262             out[i] = fact.copyConstructor(out[i]);
3263         }
3264         return out;
3265     }
3266 
3267     private native Field[]       getDeclaredFields0(boolean publicOnly);
3268     private native Method[]      getDeclaredMethods0(boolean publicOnly);
3269     private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly);
3270     private native Class<?>[]    getDeclaredClasses0();
3271 
3272     /*
3273      * Returns an array containing the components of the Record attribute,
3274      * or null if the attribute is not present.
3275      *
3276      * Note that this method returns non-null array on a class with
3277      * the Record attribute even if this class is not a record.
3278      */
3279     private native RecordComponent[] getRecordComponents0();
3280     private native boolean       isRecord0();
3281 
3282     /**
3283      * Helper method to get the method name from arguments.
3284      */
3285     private String methodToString(String name, Class<?>[] argTypes) {
3286         return getName() + '.' + name +
3287                 ((argTypes == null || argTypes.length == 0) ?
3288                 "()" :
3289                 Arrays.stream(argTypes)
3290                         .map(c -> c == null ? "null" : c.getName())
3291                         .collect(Collectors.joining(",", "(", ")")));
3292     }
3293 
3294     /** use serialVersionUID from JDK 1.1 for interoperability */
3295     @java.io.Serial
3296     private static final long serialVersionUID = 3206093459760846163L;
3297 
3298 
3299     /**
3300      * Class Class is special cased within the Serialization Stream Protocol.
3301      *
3302      * A Class instance is written initially into an ObjectOutputStream in the
3303      * following format:
3304      * <pre>
3305      *      {@code TC_CLASS} ClassDescriptor
3306      *      A ClassDescriptor is a special cased serialization of
3307      *      a {@code java.io.ObjectStreamClass} instance.
3308      * </pre>
3309      * A new handle is generated for the initial time the class descriptor
3310      * is written into the stream. Future references to the class descriptor
3311      * are written as references to the initial class descriptor instance.
3312      *
3313      * @see java.io.ObjectStreamClass
3314      */
3315     @java.io.Serial
3316     private static final ObjectStreamField[] serialPersistentFields =
3317         new ObjectStreamField[0];
3318 
3319 
3320     /**
3321      * Returns the assertion status that would be assigned to this
3322      * class if it were to be initialized at the time this method is invoked.
3323      * If this class has had its assertion status set, the most recent
3324      * setting will be returned; otherwise, if any package default assertion
3325      * status pertains to this class, the most recent setting for the most
3326      * specific pertinent package default assertion status is returned;
3327      * otherwise, if this class is not a system class (i.e., it has a
3328      * class loader) its class loader's default assertion status is returned;
3329      * otherwise, the system class default assertion status is returned.
3330      *
3331      * @apiNote
3332      * Few programmers will have any need for this method; it is provided
3333      * for the benefit of the JDK itself.  (It allows a class to determine at
3334      * the time that it is initialized whether assertions should be enabled.)
3335      * Note that this method is not guaranteed to return the actual
3336      * assertion status that was (or will be) associated with the specified
3337      * class when it was (or will be) initialized.
3338      *
3339      * @return the desired assertion status of the specified class.
3340      * @see    java.lang.ClassLoader#setClassAssertionStatus
3341      * @see    java.lang.ClassLoader#setPackageAssertionStatus
3342      * @see    java.lang.ClassLoader#setDefaultAssertionStatus
3343      * @since  1.4
3344      */
3345     public boolean desiredAssertionStatus() {
3346         ClassLoader loader = classLoader;
3347         // If the loader is null this is a system class, so ask the VM
3348         if (loader == null)
3349             return desiredAssertionStatus0(this);
3350 
3351         // If the classloader has been initialized with the assertion
3352         // directives, ask it. Otherwise, ask the VM.
3353         synchronized(loader.assertionLock) {
3354             if (loader.classAssertionStatus != null) {
3355                 return loader.desiredAssertionStatus(getName());
3356             }
3357         }
3358         return desiredAssertionStatus0(this);
3359     }
3360 
3361     // Retrieves the desired assertion status of this class from the VM
3362     private static native boolean desiredAssertionStatus0(Class<?> clazz);
3363 
3364     /**
3365      * Returns true if and only if this class was declared as an enum in the
3366      * source code.
3367      *
3368      * Note that {@link java.lang.Enum} is not itself an enum class.
3369      *
3370      * Also note that if an enum constant is declared with a class body,
3371      * the class of that enum constant object is an anonymous class
3372      * and <em>not</em> the class of the declaring enum class. The
3373      * {@link Enum#getDeclaringClass} method of an enum constant can
3374      * be used to get the class of the enum class declaring the
3375      * constant.
3376      *
3377      * @return true if and only if this class was declared as an enum in the
3378      *     source code
3379      * @since 1.5
3380      * @jls 8.9.1 Enum Constants
3381      */
3382     public boolean isEnum() {
3383         // An enum must both directly extend java.lang.Enum and have
3384         // the ENUM bit set; classes for specialized enum constants
3385         // don't do the former.
3386         return (this.getModifiers() & ENUM) != 0 &&
3387         this.getSuperclass() == java.lang.Enum.class;
3388     }
3389 
3390     /**
3391      * Returns {@code true} if and only if this class is a record class.
3392      *
3393      * <p> The {@linkplain #getSuperclass() direct superclass} of a record
3394      * class is {@code java.lang.Record}. A record class is {@linkplain
3395      * Modifier#FINAL final}. A record class has (possibly zero) record
3396      * components; {@link #getRecordComponents()} returns a non-null but
3397      * possibly empty value for a record.
3398      *
3399      * <p> Note that class {@link Record} is not a record class and thus
3400      * invoking this method on class {@code Record} returns {@code false}.
3401      *
3402      * @return true if and only if this class is a record class, otherwise false
3403      * @jls 8.10 Record Classes
3404      * @since 16
3405      */
3406     public boolean isRecord() {
3407         // this superclass and final modifier check is not strictly necessary
3408         // they are intrinsified and serve as a fast-path check
3409         return getSuperclass() == java.lang.Record.class &&
3410                 (this.getModifiers() & Modifier.FINAL) != 0 &&
3411                 isRecord0();
3412     }
3413 
3414     // Fetches the factory for reflective objects
3415     private static ReflectionFactory getReflectionFactory() {
3416         var factory = reflectionFactory;
3417         if (factory != null) {
3418             return factory;
3419         }
3420         return reflectionFactory = ReflectionFactory.getReflectionFactory();
3421     }
3422     private static ReflectionFactory reflectionFactory;
3423 
3424     /**
3425      * When CDS is enabled, the Class class may be aot-initialized. However,
3426      * we can't archive reflectionFactory, so we reset it to null, so it
3427      * will be allocated again at runtime.
3428      */
3429     private static void resetArchivedStates() {
3430         reflectionFactory = null;
3431     }
3432 
3433     /**
3434      * Returns the elements of this enum class or null if this
3435      * Class object does not represent an enum class.
3436      *
3437      * @return an array containing the values comprising the enum class
3438      *     represented by this {@code Class} object in the order they're
3439      *     declared, or null if this {@code Class} object does not
3440      *     represent an enum class
3441      * @since 1.5
3442      * @jls 8.9.1 Enum Constants
3443      */
3444     public T[] getEnumConstants() {
3445         T[] values = getEnumConstantsShared();
3446         return (values != null) ? values.clone() : null;
3447     }
3448 
3449     /**
3450      * Returns the elements of this enum class or null if this
3451      * Class object does not represent an enum class;
3452      * identical to getEnumConstants except that the result is
3453      * uncloned, cached, and shared by all callers.
3454      */
3455     T[] getEnumConstantsShared() {
3456         T[] constants = enumConstants;
3457         if (constants == null) {
3458             if (!isEnum()) return null;
3459             try {
3460                 final Method values = getMethod("values");
3461                 values.setAccessible(true);
3462                 @SuppressWarnings("unchecked")
3463                 T[] temporaryConstants = (T[])values.invoke(null);
3464                 enumConstants = constants = temporaryConstants;
3465             }
3466             // These can happen when users concoct enum-like classes
3467             // that don't comply with the enum spec.
3468             catch (InvocationTargetException | NoSuchMethodException |
3469                    IllegalAccessException | NullPointerException |
3470                    ClassCastException ex) { return null; }
3471         }
3472         return constants;
3473     }
3474     private transient volatile T[] enumConstants;
3475 
3476     /**
3477      * Returns a map from simple name to enum constant.  This package-private
3478      * method is used internally by Enum to implement
3479      * {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)}
3480      * efficiently.  Note that the map is returned by this method is
3481      * created lazily on first use.  Typically it won't ever get created.
3482      */
3483     Map<String, T> enumConstantDirectory() {
3484         Map<String, T> directory = enumConstantDirectory;
3485         if (directory == null) {
3486             T[] universe = getEnumConstantsShared();
3487             if (universe == null)
3488                 throw new IllegalArgumentException(
3489                     getName() + " is not an enum class");
3490             directory = HashMap.newHashMap(universe.length);
3491             for (T constant : universe) {
3492                 directory.put(((Enum<?>)constant).name(), constant);
3493             }
3494             enumConstantDirectory = directory;
3495         }
3496         return directory;
3497     }
3498     private transient volatile Map<String, T> enumConstantDirectory;
3499 
3500     /**
3501      * Casts an object to the class or interface represented
3502      * by this {@code Class} object.
3503      *
3504      * @param obj the object to be cast
3505      * @return the object after casting, or null if obj is null
3506      *
3507      * @throws ClassCastException if the object is not
3508      * null and is not assignable to the type T.
3509      *
3510      * @since 1.5
3511      */
3512     @SuppressWarnings("unchecked")
3513     @IntrinsicCandidate
3514     public T cast(Object obj) {
3515         if (obj != null && !isInstance(obj))
3516             throw new ClassCastException(cannotCastMsg(obj));
3517         return (T) obj;
3518     }
3519 
3520     private String cannotCastMsg(Object obj) {
3521         return "Cannot cast " + obj.getClass().getName() + " to " + getName();
3522     }
3523 
3524     /**
3525      * Casts this {@code Class} object to represent a subclass of the class
3526      * represented by the specified class object.  Checks that the cast
3527      * is valid, and throws a {@code ClassCastException} if it is not.  If
3528      * this method succeeds, it always returns a reference to this {@code Class} object.
3529      *
3530      * <p>This method is useful when a client needs to "narrow" the type of
3531      * a {@code Class} object to pass it to an API that restricts the
3532      * {@code Class} objects that it is willing to accept.  A cast would
3533      * generate a compile-time warning, as the correctness of the cast
3534      * could not be checked at runtime (because generic types are implemented
3535      * by erasure).
3536      *
3537      * @param <U> the type to cast this {@code Class} object to
3538      * @param clazz the class of the type to cast this {@code Class} object to
3539      * @return this {@code Class} object, cast to represent a subclass of
3540      *    the specified class object.
3541      * @throws ClassCastException if this {@code Class} object does not
3542      *    represent a subclass of the specified class (here "subclass" includes
3543      *    the class itself).
3544      * @since 1.5
3545      */
3546     @SuppressWarnings("unchecked")
3547     public <U> Class<? extends U> asSubclass(Class<U> clazz) {
3548         if (clazz.isAssignableFrom(this))
3549             return (Class<? extends U>) this;
3550         else
3551             throw new ClassCastException(this.toString());
3552     }
3553 
3554     /**
3555      * {@inheritDoc}
3556      * <p>Note that any annotation returned by this method is a
3557      * declaration annotation.
3558      *
3559      * @throws NullPointerException {@inheritDoc}
3560      * @since 1.5
3561      */
3562     @Override
3563     @SuppressWarnings("unchecked")
3564     public <A extends Annotation> A getAnnotation(Class<A> annotationClass) {
3565         Objects.requireNonNull(annotationClass);
3566 
3567         return (A) annotationData().annotations.get(annotationClass);
3568     }
3569 
3570     /**
3571      * {@inheritDoc}
3572      * @throws NullPointerException {@inheritDoc}
3573      * @since 1.5
3574      */
3575     @Override
3576     public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) {
3577         return GenericDeclaration.super.isAnnotationPresent(annotationClass);
3578     }
3579 
3580     /**
3581      * {@inheritDoc}
3582      * <p>Note that any annotations returned by this method are
3583      * declaration annotations.
3584      *
3585      * @throws NullPointerException {@inheritDoc}
3586      * @since 1.8
3587      */
3588     @Override
3589     public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) {
3590         Objects.requireNonNull(annotationClass);
3591 
3592         AnnotationData annotationData = annotationData();
3593         return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations,
3594                                                           this,
3595                                                           annotationClass);
3596     }
3597 
3598     /**
3599      * {@inheritDoc}
3600      * <p>Note that any annotations returned by this method are
3601      * declaration annotations.
3602      *
3603      * @since 1.5
3604      */
3605     @Override
3606     public Annotation[] getAnnotations() {
3607         return AnnotationParser.toArray(annotationData().annotations);
3608     }
3609 
3610     /**
3611      * {@inheritDoc}
3612      * <p>Note that any annotation returned by this method is a
3613      * declaration annotation.
3614      *
3615      * @throws NullPointerException {@inheritDoc}
3616      * @since 1.8
3617      */
3618     @Override
3619     @SuppressWarnings("unchecked")
3620     public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) {
3621         Objects.requireNonNull(annotationClass);
3622 
3623         return (A) annotationData().declaredAnnotations.get(annotationClass);
3624     }
3625 
3626     /**
3627      * {@inheritDoc}
3628      * <p>Note that any annotations returned by this method are
3629      * declaration annotations.
3630      *
3631      * @throws NullPointerException {@inheritDoc}
3632      * @since 1.8
3633      */
3634     @Override
3635     public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) {
3636         Objects.requireNonNull(annotationClass);
3637 
3638         return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations,
3639                                                                  annotationClass);
3640     }
3641 
3642     /**
3643      * {@inheritDoc}
3644      * <p>Note that any annotations returned by this method are
3645      * declaration annotations.
3646      *
3647      * @since 1.5
3648      */
3649     @Override
3650     public Annotation[] getDeclaredAnnotations()  {
3651         return AnnotationParser.toArray(annotationData().declaredAnnotations);
3652     }
3653 
3654     // annotation data that might get invalidated when JVM TI RedefineClasses() is called
3655     private static class AnnotationData {
3656         final Map<Class<? extends Annotation>, Annotation> annotations;
3657         final Map<Class<? extends Annotation>, Annotation> declaredAnnotations;
3658 
3659         // Value of classRedefinedCount when we created this AnnotationData instance
3660         final int redefinedCount;
3661 
3662         AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations,
3663                        Map<Class<? extends Annotation>, Annotation> declaredAnnotations,
3664                        int redefinedCount) {
3665             this.annotations = annotations;
3666             this.declaredAnnotations = declaredAnnotations;
3667             this.redefinedCount = redefinedCount;
3668         }
3669     }
3670 
3671     // Annotations cache
3672     @SuppressWarnings("UnusedDeclaration")
3673     private transient volatile AnnotationData annotationData;
3674 
3675     private AnnotationData annotationData() {
3676         while (true) { // retry loop
3677             AnnotationData annotationData = this.annotationData;
3678             int classRedefinedCount = this.classRedefinedCount;
3679             if (annotationData != null &&
3680                 annotationData.redefinedCount == classRedefinedCount) {
3681                 return annotationData;
3682             }
3683             // null or stale annotationData -> optimistically create new instance
3684             AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount);
3685             // try to install it
3686             if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) {
3687                 // successfully installed new AnnotationData
3688                 return newAnnotationData;
3689             }
3690         }
3691     }
3692 
3693     private AnnotationData createAnnotationData(int classRedefinedCount) {
3694         Map<Class<? extends Annotation>, Annotation> declaredAnnotations =
3695             AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this);
3696         Class<?> superClass = getSuperclass();
3697         Map<Class<? extends Annotation>, Annotation> annotations = null;
3698         if (superClass != null) {
3699             Map<Class<? extends Annotation>, Annotation> superAnnotations =
3700                 superClass.annotationData().annotations;
3701             for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) {
3702                 Class<? extends Annotation> annotationClass = e.getKey();
3703                 if (AnnotationType.getInstance(annotationClass).isInherited()) {
3704                     if (annotations == null) { // lazy construction
3705                         annotations = LinkedHashMap.newLinkedHashMap(Math.max(
3706                                 declaredAnnotations.size(),
3707                                 Math.min(12, declaredAnnotations.size() + superAnnotations.size())
3708                             )
3709                         );
3710                     }
3711                     annotations.put(annotationClass, e.getValue());
3712                 }
3713             }
3714         }
3715         if (annotations == null) {
3716             // no inherited annotations -> share the Map with declaredAnnotations
3717             annotations = declaredAnnotations;
3718         } else {
3719             // at least one inherited annotation -> declared may override inherited
3720             annotations.putAll(declaredAnnotations);
3721         }
3722         return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount);
3723     }
3724 
3725     // Annotation interfaces cache their internal (AnnotationType) form
3726 
3727     @SuppressWarnings("UnusedDeclaration")
3728     private transient volatile AnnotationType annotationType;
3729 
3730     boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) {
3731         return Atomic.casAnnotationType(this, oldType, newType);
3732     }
3733 
3734     AnnotationType getAnnotationType() {
3735         return annotationType;
3736     }
3737 
3738     Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() {
3739         return annotationData().declaredAnnotations;
3740     }
3741 
3742     /* Backing store of user-defined values pertaining to this class.
3743      * Maintained by the ClassValue class.
3744      */
3745     transient ClassValue.ClassValueMap classValueMap;
3746 
3747     /**
3748      * Returns an {@code AnnotatedType} object that represents the use of a
3749      * type to specify the superclass of the entity represented by this {@code
3750      * Class} object. (The <em>use</em> of type Foo to specify the superclass
3751      * in '...  extends Foo' is distinct from the <em>declaration</em> of class
3752      * Foo.)
3753      *
3754      * <p> If this {@code Class} object represents a class whose declaration
3755      * does not explicitly indicate an annotated superclass, then the return
3756      * value is an {@code AnnotatedType} object representing an element with no
3757      * annotations.
3758      *
3759      * <p> If this {@code Class} represents either the {@code Object} class, an
3760      * interface type, an array type, a primitive type, or void, the return
3761      * value is {@code null}.
3762      *
3763      * @return an object representing the superclass
3764      * @since 1.8
3765      */
3766     public AnnotatedType getAnnotatedSuperclass() {
3767         if (this == Object.class ||
3768                 isInterface() ||
3769                 isArray() ||
3770                 isPrimitive() ||
3771                 this == Void.TYPE) {
3772             return null;
3773         }
3774 
3775         return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this);
3776     }
3777 
3778     /**
3779      * Returns an array of {@code AnnotatedType} objects that represent the use
3780      * of types to specify superinterfaces of the entity represented by this
3781      * {@code Class} object. (The <em>use</em> of type Foo to specify a
3782      * superinterface in '... implements Foo' is distinct from the
3783      * <em>declaration</em> of interface Foo.)
3784      *
3785      * <p> If this {@code Class} object represents a class, the return value is
3786      * an array containing objects representing the uses of interface types to
3787      * specify interfaces implemented by the class. The order of the objects in
3788      * the array corresponds to the order of the interface types used in the
3789      * 'implements' clause of the declaration of this {@code Class} object.
3790      *
3791      * <p> If this {@code Class} object represents an interface, the return
3792      * value is an array containing objects representing the uses of interface
3793      * types to specify interfaces directly extended by the interface. The
3794      * order of the objects in the array corresponds to the order of the
3795      * interface types used in the 'extends' clause of the declaration of this
3796      * {@code Class} object.
3797      *
3798      * <p> If this {@code Class} object represents a class or interface whose
3799      * declaration does not explicitly indicate any annotated superinterfaces,
3800      * the return value is an array of length 0.
3801      *
3802      * <p> If this {@code Class} object represents either the {@code Object}
3803      * class, an array type, a primitive type, or void, the return value is an
3804      * array of length 0.
3805      *
3806      * @return an array representing the superinterfaces
3807      * @since 1.8
3808      */
3809     public AnnotatedType[] getAnnotatedInterfaces() {
3810          return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this);
3811     }
3812 
3813     private native Class<?> getNestHost0();
3814 
3815     /**
3816      * Returns the nest host of the <a href=#nest>nest</a> to which the class
3817      * or interface represented by this {@code Class} object belongs.
3818      * Every class and interface belongs to exactly one nest.
3819      *
3820      * If the nest host of this class or interface has previously
3821      * been determined, then this method returns the nest host.
3822      * If the nest host of this class or interface has
3823      * not previously been determined, then this method determines the nest
3824      * host using the algorithm of JVMS 5.4.4, and returns it.
3825      *
3826      * Often, a class or interface belongs to a nest consisting only of itself,
3827      * in which case this method returns {@code this} to indicate that the class
3828      * or interface is the nest host.
3829      *
3830      * <p>If this {@code Class} object represents a primitive type, an array type,
3831      * or {@code void}, then this method returns {@code this},
3832      * indicating that the represented entity belongs to the nest consisting only of
3833      * itself, and is the nest host.
3834      *
3835      * @return the nest host of this class or interface
3836      *
3837      * @since 11
3838      * @jvms 4.7.28 The {@code NestHost} Attribute
3839      * @jvms 4.7.29 The {@code NestMembers} Attribute
3840      * @jvms 5.4.4 Access Control
3841      */
3842     public Class<?> getNestHost() {
3843         if (isPrimitive() || isArray()) {
3844             return this;
3845         }
3846         return getNestHost0();
3847     }
3848 
3849     /**
3850      * Determines if the given {@code Class} is a nestmate of the
3851      * class or interface represented by this {@code Class} object.
3852      * Two classes or interfaces are nestmates
3853      * if they have the same {@linkplain #getNestHost() nest host}.
3854      *
3855      * @param c the class to check
3856      * @return {@code true} if this class and {@code c} are members of
3857      * the same nest; and {@code false} otherwise.
3858      *
3859      * @since 11
3860      */
3861     public boolean isNestmateOf(Class<?> c) {
3862         if (this == c) {
3863             return true;
3864         }
3865         if (isPrimitive() || isArray() ||
3866             c.isPrimitive() || c.isArray()) {
3867             return false;
3868         }
3869 
3870         return getNestHost() == c.getNestHost();
3871     }
3872 
3873     private native Class<?>[] getNestMembers0();
3874 
3875     /**
3876      * Returns an array containing {@code Class} objects representing all the
3877      * classes and interfaces that are members of the nest to which the class
3878      * or interface represented by this {@code Class} object belongs.
3879      *
3880      * First, this method obtains the {@linkplain #getNestHost() nest host},
3881      * {@code H}, of the nest to which the class or interface represented by
3882      * this {@code Class} object belongs. The zeroth element of the returned
3883      * array is {@code H}.
3884      *
3885      * Then, for each class or interface {@code C} which is recorded by {@code H}
3886      * as being a member of its nest, this method attempts to obtain the {@code Class}
3887      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
3888      * loader} of the current {@code Class} object), and then obtains the
3889      * {@linkplain #getNestHost() nest host} of the nest to which {@code C} belongs.
3890      * The classes and interfaces which are recorded by {@code H} as being members
3891      * of its nest, and for which {@code H} can be determined as their nest host,
3892      * are indicated by subsequent elements of the returned array. The order of
3893      * such elements is unspecified. Duplicates are permitted.
3894      *
3895      * <p>If this {@code Class} object represents a primitive type, an array type,
3896      * or {@code void}, then this method returns a single-element array containing
3897      * {@code this}.
3898      *
3899      * @apiNote
3900      * The returned array includes only the nest members recorded in the {@code NestMembers}
3901      * attribute, and not any hidden classes that were added to the nest via
3902      * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3903      * Lookup::defineHiddenClass}.
3904      *
3905      * @return an array of all classes and interfaces in the same nest as
3906      * this class or interface
3907      *
3908      * @since 11
3909      * @see #getNestHost()
3910      * @jvms 4.7.28 The {@code NestHost} Attribute
3911      * @jvms 4.7.29 The {@code NestMembers} Attribute
3912      */
3913     public Class<?>[] getNestMembers() {
3914         if (isPrimitive() || isArray()) {
3915             return new Class<?>[] { this };
3916         }
3917         Class<?>[] members = getNestMembers0();
3918         // Can't actually enable this due to bootstrapping issues
3919         // assert(members.length != 1 || members[0] == this); // expected invariant from VM
3920         return members;
3921     }
3922 
3923     /**
3924      * Returns the descriptor string of the entity (class, interface, array class,
3925      * primitive type, or {@code void}) represented by this {@code Class} object.
3926      *
3927      * <p> If this {@code Class} object represents a class or interface,
3928      * not an array class, then:
3929      * <ul>
3930      * <li> If the class or interface is not {@linkplain Class#isHidden() hidden},
3931      *      then the result is a field descriptor (JVMS {@jvms 4.3.2})
3932      *      for the class or interface. Calling
3933      *      {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3934      *      with the result descriptor string produces a {@link ClassDesc ClassDesc}
3935      *      describing this class or interface.
3936      * <li> If the class or interface is {@linkplain Class#isHidden() hidden},
3937      *      then the result is a string of the form:
3938      *      <blockquote>
3939      *      {@code "L" +} <em>N</em> {@code + "." + <suffix> + ";"}
3940      *      </blockquote>
3941      *      where <em>N</em> is the {@linkplain ClassLoader##binary-name binary name}
3942      *      encoded in internal form indicated by the {@code class} file passed to
3943      *      {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3944      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
3945      *      A hidden class or interface has no {@linkplain ClassDesc nominal descriptor}.
3946      *      The result string is not a type descriptor.
3947      * </ul>
3948      *
3949      * <p> If this {@code Class} object represents an array class, then
3950      * the result is a string consisting of one or more '{@code [}' characters
3951      * representing the depth of the array nesting, followed by the
3952      * descriptor string of the element type.
3953      * <ul>
3954      * <li> If the element type is not a {@linkplain Class#isHidden() hidden} class
3955      * or interface, then this array class can be described nominally.
3956      * Calling {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3957      * with the result descriptor string produces a {@link ClassDesc ClassDesc}
3958      * describing this array class.
3959      * <li> If the element type is a {@linkplain Class#isHidden() hidden} class or
3960      * interface, then this array class cannot be described nominally.
3961      * The result string is not a type descriptor.
3962      * </ul>
3963      *
3964      * <p> If this {@code Class} object represents a primitive type or
3965      * {@code void}, then the result is a field descriptor string which
3966      * is a one-letter code corresponding to a primitive type or {@code void}
3967      * ({@code "B", "C", "D", "F", "I", "J", "S", "Z", "V"}) (JVMS {@jvms 4.3.2}).
3968      *
3969      * @return the descriptor string for this {@code Class} object
3970      * @jvms 4.3.2 Field Descriptors
3971      * @since 12
3972      */
3973     @Override
3974     public String descriptorString() {
3975         if (isPrimitive())
3976             return Wrapper.forPrimitiveType(this).basicTypeString();
3977 
3978         if (isArray()) {
3979             return "[".concat(componentType.descriptorString());
3980         } else if (isHidden()) {
3981             String name = getName();
3982             int index = name.indexOf('/');
3983             return new StringBuilder(name.length() + 2)
3984                     .append('L')
3985                     .append(name.substring(0, index).replace('.', '/'))
3986                     .append('.')
3987                     .append(name, index + 1, name.length())
3988                     .append(';')
3989                     .toString();
3990         } else {
3991             String name = getName().replace('.', '/');
3992             return StringConcatHelper.concat("L", name, ";");
3993         }
3994     }
3995 
3996     /**
3997      * Returns the component type of this {@code Class}, if it describes
3998      * an array type, or {@code null} otherwise.
3999      *
4000      * @implSpec
4001      * Equivalent to {@link Class#getComponentType()}.
4002      *
4003      * @return a {@code Class} describing the component type, or {@code null}
4004      * if this {@code Class} does not describe an array type
4005      * @since 12
4006      */
4007     @Override
4008     public Class<?> componentType() {
4009         return isArray() ? componentType : null;
4010     }
4011 
4012     /**
4013      * Returns a {@code Class} for an array type whose component type
4014      * is described by this {@linkplain Class}.
4015      *
4016      * @throws UnsupportedOperationException if this component type is {@linkplain
4017      *         Void#TYPE void} or if the number of dimensions of the resulting array
4018      *         type would exceed 255.
4019      * @return a {@code Class} describing the array type
4020      * @jvms 4.3.2 Field Descriptors
4021      * @jvms 4.4.1 The {@code CONSTANT_Class_info} Structure
4022      * @since 12
4023      */
4024     @Override
4025     public Class<?> arrayType() {
4026         try {
4027             return Array.newInstance(this, 0).getClass();
4028         } catch (IllegalArgumentException iae) {
4029             throw new UnsupportedOperationException(iae);
4030         }
4031     }
4032 
4033     /**
4034      * Returns a nominal descriptor for this instance, if one can be
4035      * constructed, or an empty {@link Optional} if one cannot be.
4036      *
4037      * @return An {@link Optional} containing the resulting nominal descriptor,
4038      * or an empty {@link Optional} if one cannot be constructed.
4039      * @since 12
4040      */
4041     @Override
4042     public Optional<ClassDesc> describeConstable() {
4043         Class<?> c = isArray() ? elementType() : this;
4044         return c.isHidden() ? Optional.empty()
4045                             : Optional.of(ConstantUtils.classDesc(this));
4046    }
4047 
4048     /**
4049      * Returns {@code true} if and only if the underlying class is a hidden class.
4050      *
4051      * @return {@code true} if and only if this class is a hidden class.
4052      *
4053      * @since 15
4054      * @see MethodHandles.Lookup#defineHiddenClass
4055      * @see Class##hiddenClasses Hidden Classes
4056      */
4057     @IntrinsicCandidate
4058     public native boolean isHidden();
4059 
4060     /**
4061      * Returns an array containing {@code Class} objects representing the
4062      * direct subinterfaces or subclasses permitted to extend or
4063      * implement this class or interface if it is sealed.  The order of such elements
4064      * is unspecified. The array is empty if this sealed class or interface has no
4065      * permitted subclass. If this {@code Class} object represents a primitive type,
4066      * {@code void}, an array type, or a class or interface that is not sealed,
4067      * that is {@link #isSealed()} returns {@code false}, then this method returns {@code null}.
4068      * Conversely, if {@link #isSealed()} returns {@code true}, then this method
4069      * returns a non-null value.
4070      *
4071      * For each class or interface {@code C} which is recorded as a permitted
4072      * direct subinterface or subclass of this class or interface,
4073      * this method attempts to obtain the {@code Class}
4074      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
4075      * loader} of the current {@code Class} object).
4076      * The {@code Class} objects which can be obtained and which are direct
4077      * subinterfaces or subclasses of this class or interface,
4078      * are indicated by elements of the returned array. If a {@code Class} object
4079      * cannot be obtained, it is silently ignored, and not included in the result
4080      * array.
4081      *
4082      * @return an array of {@code Class} objects of the permitted subclasses of this class
4083      *         or interface, or {@code null} if this class or interface is not sealed.
4084      *
4085      * @jls 8.1 Class Declarations
4086      * @jls 9.1 Interface Declarations
4087      * @since 17
4088      */
4089     public Class<?>[] getPermittedSubclasses() {
4090         Class<?>[] subClasses;
4091         if (isArray() || isPrimitive() || (subClasses = getPermittedSubclasses0()) == null) {
4092             return null;
4093         }
4094         if (subClasses.length > 0) {
4095             if (Arrays.stream(subClasses).anyMatch(c -> !isDirectSubType(c))) {
4096                 subClasses = Arrays.stream(subClasses)
4097                                    .filter(this::isDirectSubType)
4098                                    .toArray(s -> new Class<?>[s]);
4099             }
4100         }
4101         return subClasses;
4102     }
4103 
4104     private boolean isDirectSubType(Class<?> c) {
4105         if (isInterface()) {
4106             for (Class<?> i : c.getInterfaces(/* cloneArray */ false)) {
4107                 if (i == this) {
4108                     return true;
4109                 }
4110             }
4111         } else {
4112             return c.getSuperclass() == this;
4113         }
4114         return false;
4115     }
4116 
4117     /**
4118      * Returns {@code true} if and only if this {@code Class} object represents
4119      * a sealed class or interface. If this {@code Class} object represents a
4120      * primitive type, {@code void}, or an array type, this method returns
4121      * {@code false}. A sealed class or interface has (possibly zero) permitted
4122      * subclasses; {@link #getPermittedSubclasses()} returns a non-null but
4123      * possibly empty value for a sealed class or interface.
4124      *
4125      * @return {@code true} if and only if this {@code Class} object represents
4126      * a sealed class or interface.
4127      *
4128      * @jls 8.1 Class Declarations
4129      * @jls 9.1 Interface Declarations
4130      * @since 17
4131      */
4132     public boolean isSealed() {
4133         if (isArray() || isPrimitive()) {
4134             return false;
4135         }
4136         return getPermittedSubclasses() != null;
4137     }
4138 
4139     private native Class<?>[] getPermittedSubclasses0();
4140 
4141     /*
4142      * Return the class's major and minor class file version packed into an int.
4143      * The high order 16 bits contain the class's minor version.  The low order
4144      * 16 bits contain the class's major version.
4145      *
4146      * If the class is an array type then the class file version of its element
4147      * type is returned.  If the class is a primitive type then the latest class
4148      * file major version is returned and zero is returned for the minor version.
4149      */
4150     private int getClassFileVersion() {
4151         Class<?> c = isArray() ? elementType() : this;
4152         return c.getClassFileVersion0();
4153     }
4154 
4155     private native int getClassFileVersion0();
4156 
4157     /*
4158      * Return the access flags as they were in the class's bytecode, including
4159      * the original setting of ACC_SUPER.
4160      *
4161      * If the class is an array type then the access flags of the element type is
4162      * returned.  If the class is a primitive then ACC_ABSTRACT | ACC_FINAL | ACC_PUBLIC.
4163      */
4164     private int getClassAccessFlagsRaw() {
4165         Class<?> c = isArray() ? elementType() : this;
4166         return c.getClassAccessFlagsRaw0();
4167     }
4168 
4169     private native int getClassAccessFlagsRaw0();
4170 
4171     // Support for "OLD" CDS workflow -- {
4172     private static final int RD_PUBLIC_METHODS          = (1 <<  0);
4173     private static final int RD_PUBLIC_FIELDS           = (1 <<  1);
4174     private static final int RD_DECLARED_CTORS          = (1 <<  2);
4175     private static final int RD_PUBLIC_CTORS = (1 <<  3);
4176     private static final int RD_DECLARED_METHODS        = (1 <<  4);
4177     private static final int RD_DECLARED_PUBLIC_METHODS = (1 <<  5);
4178     private static final int RD_DECLARED_FIELDS         = (1 <<  6);
4179     private static final int RD_DECLARED_PUBLIC_FIELDS  = (1 <<  7);
4180     private static final int RD_DECLARED_INTERFACES     = (1 <<  8);
4181     private static final int RD_DECLARED_SIMPLE_NAME    = (1 <<  9);
4182     private static final int RD_DECLARED_CANONICAL_NAME = (1 << 10);
4183     private static final int CLS_NAME = (1 << 10);
4184 
4185 
4186     private int encodeReflectionData() {
4187         int flags = CLS_NAME;
4188         if (reflectionData != null) {
4189             flags = (reflectionData.publicMethods         != null ? RD_PUBLIC_METHODS          : 0) |
4190                     (reflectionData.publicFields          != null ? RD_PUBLIC_FIELDS           : 0) |
4191                     (reflectionData.declaredConstructors  != null ? RD_DECLARED_CTORS          : 0) |
4192                     (reflectionData.publicConstructors    != null ? RD_PUBLIC_CTORS            : 0) |
4193                     (reflectionData.declaredMethods       != null ? RD_DECLARED_METHODS        : 0) |
4194                     (reflectionData.declaredPublicMethods != null ? RD_DECLARED_PUBLIC_METHODS : 0) |
4195                     (reflectionData.declaredFields        != null ? RD_DECLARED_FIELDS         : 0) |
4196                     (reflectionData.declaredPublicFields  != null ? RD_DECLARED_PUBLIC_FIELDS  : 0) |
4197                     (reflectionData.interfaces            != null ? RD_DECLARED_INTERFACES     : 0) |
4198                     (reflectionData.simpleName            != null ? RD_DECLARED_SIMPLE_NAME    : 0) |
4199                     (reflectionData.canonicalName         != null ? RD_DECLARED_CANONICAL_NAME : 0);
4200         }
4201         return flags;
4202     }
4203     private void generateReflectionData(int flags) {
4204         if ((flags & CLS_NAME                  ) != 0) { getName();                             } // String name
4205         if ((flags & RD_PUBLIC_METHODS         ) != 0) { privateGetPublicMethods();             } // Method[] publicMethods;
4206         if ((flags & RD_PUBLIC_FIELDS          ) != 0) { privateGetPublicFields();              } // Field[] publicFields;
4207         if ((flags & RD_DECLARED_CTORS         ) != 0) { privateGetDeclaredConstructors(false); } // Constructor<T>[] declaredConstructors;
4208         if ((flags & RD_PUBLIC_CTORS           ) != 0) { privateGetDeclaredConstructors(true);  } // Constructor<T>[] publicConstructors;
4209         if ((flags & RD_DECLARED_METHODS       ) != 0) { privateGetDeclaredMethods(false);      } // Method[] declaredMethods;
4210         if ((flags & RD_DECLARED_PUBLIC_METHODS) != 0) { privateGetDeclaredMethods(true);       } // Method[] declaredPublicMethods;
4211         if ((flags & RD_DECLARED_FIELDS        ) != 0) { privateGetDeclaredFields(false);       } // Field[] declaredFields;
4212         if ((flags & RD_DECLARED_PUBLIC_FIELDS ) != 0) { privateGetDeclaredFields(true);        } // Field[] declaredPublicFields;
4213         if ((flags & RD_DECLARED_INTERFACES    ) != 0) { getInterfaces(false);                  } // Class<?>[] interfaces;
4214         if ((flags & RD_DECLARED_SIMPLE_NAME   ) != 0) { getSimpleName();                       } // String simpleName;
4215         if ((flags & RD_DECLARED_CANONICAL_NAME) != 0) { getCanonicalName();                    } // String canonicalName;
4216     }
4217 
4218     // -- }
4219 }