1 // 2 // Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved. 3 // Copyright (c) 2014, 2021, Red Hat, Inc. All rights reserved. 4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 // 6 // This code is free software; you can redistribute it and/or modify it 7 // under the terms of the GNU General Public License version 2 only, as 8 // published by the Free Software Foundation. 9 // 10 // This code is distributed in the hope that it will be useful, but WITHOUT 11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 // version 2 for more details (a copy is included in the LICENSE file that 14 // accompanied this code). 15 // 16 // You should have received a copy of the GNU General Public License version 17 // 2 along with this work; if not, write to the Free Software Foundation, 18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 // 20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 // or visit www.oracle.com if you need additional information or have any 22 // questions. 23 // 24 // 25 26 // AArch64 Architecture Description File 27 28 //----------REGISTER DEFINITION BLOCK------------------------------------------ 29 // This information is used by the matcher and the register allocator to 30 // describe individual registers and classes of registers within the target 31 // archtecture. 32 33 register %{ 34 //----------Architecture Description Register Definitions---------------------- 35 // General Registers 36 // "reg_def" name ( register save type, C convention save type, 37 // ideal register type, encoding ); 38 // Register Save Types: 39 // 40 // NS = No-Save: The register allocator assumes that these registers 41 // can be used without saving upon entry to the method, & 42 // that they do not need to be saved at call sites. 43 // 44 // SOC = Save-On-Call: The register allocator assumes that these registers 45 // can be used without saving upon entry to the method, 46 // but that they must be saved at call sites. 47 // 48 // SOE = Save-On-Entry: The register allocator assumes that these registers 49 // must be saved before using them upon entry to the 50 // method, but they do not need to be saved at call 51 // sites. 52 // 53 // AS = Always-Save: The register allocator assumes that these registers 54 // must be saved before using them upon entry to the 55 // method, & that they must be saved at call sites. 56 // 57 // Ideal Register Type is used to determine how to save & restore a 58 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get 59 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI. 60 // 61 // The encoding number is the actual bit-pattern placed into the opcodes. 62 63 // We must define the 64 bit int registers in two 32 bit halves, the 64 // real lower register and a virtual upper half register. upper halves 65 // are used by the register allocator but are not actually supplied as 66 // operands to memory ops. 67 // 68 // follow the C1 compiler in making registers 69 // 70 // r0-r7,r10-r26 volatile (caller save) 71 // r27-r32 system (no save, no allocate) 72 // r8-r9 non-allocatable (so we can use them as scratch regs) 73 // 74 // as regards Java usage. we don't use any callee save registers 75 // because this makes it difficult to de-optimise a frame (see comment 76 // in x86 implementation of Deoptimization::unwind_callee_save_values) 77 // 78 79 // General Registers 80 81 reg_def R0 ( SOC, SOC, Op_RegI, 0, r0->as_VMReg() ); 82 reg_def R0_H ( SOC, SOC, Op_RegI, 0, r0->as_VMReg()->next() ); 83 reg_def R1 ( SOC, SOC, Op_RegI, 1, r1->as_VMReg() ); 84 reg_def R1_H ( SOC, SOC, Op_RegI, 1, r1->as_VMReg()->next() ); 85 reg_def R2 ( SOC, SOC, Op_RegI, 2, r2->as_VMReg() ); 86 reg_def R2_H ( SOC, SOC, Op_RegI, 2, r2->as_VMReg()->next() ); 87 reg_def R3 ( SOC, SOC, Op_RegI, 3, r3->as_VMReg() ); 88 reg_def R3_H ( SOC, SOC, Op_RegI, 3, r3->as_VMReg()->next() ); 89 reg_def R4 ( SOC, SOC, Op_RegI, 4, r4->as_VMReg() ); 90 reg_def R4_H ( SOC, SOC, Op_RegI, 4, r4->as_VMReg()->next() ); 91 reg_def R5 ( SOC, SOC, Op_RegI, 5, r5->as_VMReg() ); 92 reg_def R5_H ( SOC, SOC, Op_RegI, 5, r5->as_VMReg()->next() ); 93 reg_def R6 ( SOC, SOC, Op_RegI, 6, r6->as_VMReg() ); 94 reg_def R6_H ( SOC, SOC, Op_RegI, 6, r6->as_VMReg()->next() ); 95 reg_def R7 ( SOC, SOC, Op_RegI, 7, r7->as_VMReg() ); 96 reg_def R7_H ( SOC, SOC, Op_RegI, 7, r7->as_VMReg()->next() ); 97 reg_def R8 ( NS, SOC, Op_RegI, 8, r8->as_VMReg() ); // rscratch1, non-allocatable 98 reg_def R8_H ( NS, SOC, Op_RegI, 8, r8->as_VMReg()->next() ); 99 reg_def R9 ( NS, SOC, Op_RegI, 9, r9->as_VMReg() ); // rscratch2, non-allocatable 100 reg_def R9_H ( NS, SOC, Op_RegI, 9, r9->as_VMReg()->next() ); 101 reg_def R10 ( SOC, SOC, Op_RegI, 10, r10->as_VMReg() ); 102 reg_def R10_H ( SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next()); 103 reg_def R11 ( SOC, SOC, Op_RegI, 11, r11->as_VMReg() ); 104 reg_def R11_H ( SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next()); 105 reg_def R12 ( SOC, SOC, Op_RegI, 12, r12->as_VMReg() ); 106 reg_def R12_H ( SOC, SOC, Op_RegI, 12, r12->as_VMReg()->next()); 107 reg_def R13 ( SOC, SOC, Op_RegI, 13, r13->as_VMReg() ); 108 reg_def R13_H ( SOC, SOC, Op_RegI, 13, r13->as_VMReg()->next()); 109 reg_def R14 ( SOC, SOC, Op_RegI, 14, r14->as_VMReg() ); 110 reg_def R14_H ( SOC, SOC, Op_RegI, 14, r14->as_VMReg()->next()); 111 reg_def R15 ( SOC, SOC, Op_RegI, 15, r15->as_VMReg() ); 112 reg_def R15_H ( SOC, SOC, Op_RegI, 15, r15->as_VMReg()->next()); 113 reg_def R16 ( SOC, SOC, Op_RegI, 16, r16->as_VMReg() ); 114 reg_def R16_H ( SOC, SOC, Op_RegI, 16, r16->as_VMReg()->next()); 115 reg_def R17 ( SOC, SOC, Op_RegI, 17, r17->as_VMReg() ); 116 reg_def R17_H ( SOC, SOC, Op_RegI, 17, r17->as_VMReg()->next()); 117 reg_def R18 ( SOC, SOC, Op_RegI, 18, r18_tls->as_VMReg() ); 118 reg_def R18_H ( SOC, SOC, Op_RegI, 18, r18_tls->as_VMReg()->next()); 119 reg_def R19 ( SOC, SOE, Op_RegI, 19, r19->as_VMReg() ); 120 reg_def R19_H ( SOC, SOE, Op_RegI, 19, r19->as_VMReg()->next()); 121 reg_def R20 ( SOC, SOE, Op_RegI, 20, r20->as_VMReg() ); // caller esp 122 reg_def R20_H ( SOC, SOE, Op_RegI, 20, r20->as_VMReg()->next()); 123 reg_def R21 ( SOC, SOE, Op_RegI, 21, r21->as_VMReg() ); 124 reg_def R21_H ( SOC, SOE, Op_RegI, 21, r21->as_VMReg()->next()); 125 reg_def R22 ( SOC, SOE, Op_RegI, 22, r22->as_VMReg() ); 126 reg_def R22_H ( SOC, SOE, Op_RegI, 22, r22->as_VMReg()->next()); 127 reg_def R23 ( SOC, SOE, Op_RegI, 23, r23->as_VMReg() ); 128 reg_def R23_H ( SOC, SOE, Op_RegI, 23, r23->as_VMReg()->next()); 129 reg_def R24 ( SOC, SOE, Op_RegI, 24, r24->as_VMReg() ); 130 reg_def R24_H ( SOC, SOE, Op_RegI, 24, r24->as_VMReg()->next()); 131 reg_def R25 ( SOC, SOE, Op_RegI, 25, r25->as_VMReg() ); 132 reg_def R25_H ( SOC, SOE, Op_RegI, 25, r25->as_VMReg()->next()); 133 reg_def R26 ( SOC, SOE, Op_RegI, 26, r26->as_VMReg() ); 134 reg_def R26_H ( SOC, SOE, Op_RegI, 26, r26->as_VMReg()->next()); 135 reg_def R27 ( SOC, SOE, Op_RegI, 27, r27->as_VMReg() ); // heapbase 136 reg_def R27_H ( SOC, SOE, Op_RegI, 27, r27->as_VMReg()->next()); 137 reg_def R28 ( NS, SOE, Op_RegI, 28, r28->as_VMReg() ); // thread 138 reg_def R28_H ( NS, SOE, Op_RegI, 28, r28->as_VMReg()->next()); 139 reg_def R29 ( NS, NS, Op_RegI, 29, r29->as_VMReg() ); // fp 140 reg_def R29_H ( NS, NS, Op_RegI, 29, r29->as_VMReg()->next()); 141 reg_def R30 ( NS, NS, Op_RegI, 30, r30->as_VMReg() ); // lr 142 reg_def R30_H ( NS, NS, Op_RegI, 30, r30->as_VMReg()->next()); 143 reg_def R31 ( NS, NS, Op_RegI, 31, r31_sp->as_VMReg() ); // sp 144 reg_def R31_H ( NS, NS, Op_RegI, 31, r31_sp->as_VMReg()->next()); 145 146 // ---------------------------- 147 // Float/Double/Vector Registers 148 // ---------------------------- 149 150 // Double Registers 151 152 // The rules of ADL require that double registers be defined in pairs. 153 // Each pair must be two 32-bit values, but not necessarily a pair of 154 // single float registers. In each pair, ADLC-assigned register numbers 155 // must be adjacent, with the lower number even. Finally, when the 156 // CPU stores such a register pair to memory, the word associated with 157 // the lower ADLC-assigned number must be stored to the lower address. 158 159 // AArch64 has 32 floating-point registers. Each can store a vector of 160 // single or double precision floating-point values up to 8 * 32 161 // floats, 4 * 64 bit floats or 2 * 128 bit floats. We currently only 162 // use the first float or double element of the vector. 163 164 // for Java use float registers v0-v15 are always save on call whereas 165 // the platform ABI treats v8-v15 as callee save). float registers 166 // v16-v31 are SOC as per the platform spec 167 168 // For SVE vector registers, we simply extend vector register size to 8 169 // 'logical' slots. This is nominally 256 bits but it actually covers 170 // all possible 'physical' SVE vector register lengths from 128 ~ 2048 171 // bits. The 'physical' SVE vector register length is detected during 172 // startup, so the register allocator is able to identify the correct 173 // number of bytes needed for an SVE spill/unspill. 174 // Note that a vector register with 4 slots denotes a 128-bit NEON 175 // register allowing it to be distinguished from the corresponding SVE 176 // vector register when the SVE vector length is 128 bits. 177 178 reg_def V0 ( SOC, SOC, Op_RegF, 0, v0->as_VMReg() ); 179 reg_def V0_H ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next() ); 180 reg_def V0_J ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(2) ); 181 reg_def V0_K ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(3) ); 182 reg_def V0_L ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(4) ); 183 reg_def V0_M ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(5) ); 184 reg_def V0_N ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(6) ); 185 reg_def V0_O ( SOC, SOC, Op_RegF, 0, v0->as_VMReg()->next(7) ); 186 187 reg_def V1 ( SOC, SOC, Op_RegF, 1, v1->as_VMReg() ); 188 reg_def V1_H ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next() ); 189 reg_def V1_J ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(2) ); 190 reg_def V1_K ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(3) ); 191 reg_def V1_L ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(4) ); 192 reg_def V1_M ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(5) ); 193 reg_def V1_N ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(6) ); 194 reg_def V1_O ( SOC, SOC, Op_RegF, 1, v1->as_VMReg()->next(7) ); 195 196 reg_def V2 ( SOC, SOC, Op_RegF, 2, v2->as_VMReg() ); 197 reg_def V2_H ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next() ); 198 reg_def V2_J ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(2) ); 199 reg_def V2_K ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(3) ); 200 reg_def V2_L ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(4) ); 201 reg_def V2_M ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(5) ); 202 reg_def V2_N ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(6) ); 203 reg_def V2_O ( SOC, SOC, Op_RegF, 2, v2->as_VMReg()->next(7) ); 204 205 reg_def V3 ( SOC, SOC, Op_RegF, 3, v3->as_VMReg() ); 206 reg_def V3_H ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next() ); 207 reg_def V3_J ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(2) ); 208 reg_def V3_K ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(3) ); 209 reg_def V3_L ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(4) ); 210 reg_def V3_M ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(5) ); 211 reg_def V3_N ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(6) ); 212 reg_def V3_O ( SOC, SOC, Op_RegF, 3, v3->as_VMReg()->next(7) ); 213 214 reg_def V4 ( SOC, SOC, Op_RegF, 4, v4->as_VMReg() ); 215 reg_def V4_H ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next() ); 216 reg_def V4_J ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(2) ); 217 reg_def V4_K ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(3) ); 218 reg_def V4_L ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(4) ); 219 reg_def V4_M ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(5) ); 220 reg_def V4_N ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(6) ); 221 reg_def V4_O ( SOC, SOC, Op_RegF, 4, v4->as_VMReg()->next(7) ); 222 223 reg_def V5 ( SOC, SOC, Op_RegF, 5, v5->as_VMReg() ); 224 reg_def V5_H ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next() ); 225 reg_def V5_J ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(2) ); 226 reg_def V5_K ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(3) ); 227 reg_def V5_L ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(4) ); 228 reg_def V5_M ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(5) ); 229 reg_def V5_N ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(6) ); 230 reg_def V5_O ( SOC, SOC, Op_RegF, 5, v5->as_VMReg()->next(7) ); 231 232 reg_def V6 ( SOC, SOC, Op_RegF, 6, v6->as_VMReg() ); 233 reg_def V6_H ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next() ); 234 reg_def V6_J ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(2) ); 235 reg_def V6_K ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(3) ); 236 reg_def V6_L ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(4) ); 237 reg_def V6_M ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(5) ); 238 reg_def V6_N ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(6) ); 239 reg_def V6_O ( SOC, SOC, Op_RegF, 6, v6->as_VMReg()->next(7) ); 240 241 reg_def V7 ( SOC, SOC, Op_RegF, 7, v7->as_VMReg() ); 242 reg_def V7_H ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next() ); 243 reg_def V7_J ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(2) ); 244 reg_def V7_K ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(3) ); 245 reg_def V7_L ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(4) ); 246 reg_def V7_M ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(5) ); 247 reg_def V7_N ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(6) ); 248 reg_def V7_O ( SOC, SOC, Op_RegF, 7, v7->as_VMReg()->next(7) ); 249 250 reg_def V8 ( SOC, SOE, Op_RegF, 8, v8->as_VMReg() ); 251 reg_def V8_H ( SOC, SOE, Op_RegF, 8, v8->as_VMReg()->next() ); 252 reg_def V8_J ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(2) ); 253 reg_def V8_K ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(3) ); 254 reg_def V8_L ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(4) ); 255 reg_def V8_M ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(5) ); 256 reg_def V8_N ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(6) ); 257 reg_def V8_O ( SOC, SOC, Op_RegF, 8, v8->as_VMReg()->next(7) ); 258 259 reg_def V9 ( SOC, SOE, Op_RegF, 9, v9->as_VMReg() ); 260 reg_def V9_H ( SOC, SOE, Op_RegF, 9, v9->as_VMReg()->next() ); 261 reg_def V9_J ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(2) ); 262 reg_def V9_K ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(3) ); 263 reg_def V9_L ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(4) ); 264 reg_def V9_M ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(5) ); 265 reg_def V9_N ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(6) ); 266 reg_def V9_O ( SOC, SOC, Op_RegF, 9, v9->as_VMReg()->next(7) ); 267 268 reg_def V10 ( SOC, SOE, Op_RegF, 10, v10->as_VMReg() ); 269 reg_def V10_H ( SOC, SOE, Op_RegF, 10, v10->as_VMReg()->next() ); 270 reg_def V10_J ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(2) ); 271 reg_def V10_K ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(3) ); 272 reg_def V10_L ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(4) ); 273 reg_def V10_M ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(5) ); 274 reg_def V10_N ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(6) ); 275 reg_def V10_O ( SOC, SOC, Op_RegF, 10, v10->as_VMReg()->next(7) ); 276 277 reg_def V11 ( SOC, SOE, Op_RegF, 11, v11->as_VMReg() ); 278 reg_def V11_H ( SOC, SOE, Op_RegF, 11, v11->as_VMReg()->next() ); 279 reg_def V11_J ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(2) ); 280 reg_def V11_K ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(3) ); 281 reg_def V11_L ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(4) ); 282 reg_def V11_M ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(5) ); 283 reg_def V11_N ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(6) ); 284 reg_def V11_O ( SOC, SOC, Op_RegF, 11, v11->as_VMReg()->next(7) ); 285 286 reg_def V12 ( SOC, SOE, Op_RegF, 12, v12->as_VMReg() ); 287 reg_def V12_H ( SOC, SOE, Op_RegF, 12, v12->as_VMReg()->next() ); 288 reg_def V12_J ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(2) ); 289 reg_def V12_K ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(3) ); 290 reg_def V12_L ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(4) ); 291 reg_def V12_M ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(5) ); 292 reg_def V12_N ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(6) ); 293 reg_def V12_O ( SOC, SOC, Op_RegF, 12, v12->as_VMReg()->next(7) ); 294 295 reg_def V13 ( SOC, SOE, Op_RegF, 13, v13->as_VMReg() ); 296 reg_def V13_H ( SOC, SOE, Op_RegF, 13, v13->as_VMReg()->next() ); 297 reg_def V13_J ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(2) ); 298 reg_def V13_K ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(3) ); 299 reg_def V13_L ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(4) ); 300 reg_def V13_M ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(5) ); 301 reg_def V13_N ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(6) ); 302 reg_def V13_O ( SOC, SOC, Op_RegF, 13, v13->as_VMReg()->next(7) ); 303 304 reg_def V14 ( SOC, SOE, Op_RegF, 14, v14->as_VMReg() ); 305 reg_def V14_H ( SOC, SOE, Op_RegF, 14, v14->as_VMReg()->next() ); 306 reg_def V14_J ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(2) ); 307 reg_def V14_K ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(3) ); 308 reg_def V14_L ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(4) ); 309 reg_def V14_M ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(5) ); 310 reg_def V14_N ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(6) ); 311 reg_def V14_O ( SOC, SOC, Op_RegF, 14, v14->as_VMReg()->next(7) ); 312 313 reg_def V15 ( SOC, SOE, Op_RegF, 15, v15->as_VMReg() ); 314 reg_def V15_H ( SOC, SOE, Op_RegF, 15, v15->as_VMReg()->next() ); 315 reg_def V15_J ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(2) ); 316 reg_def V15_K ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(3) ); 317 reg_def V15_L ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(4) ); 318 reg_def V15_M ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(5) ); 319 reg_def V15_N ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(6) ); 320 reg_def V15_O ( SOC, SOC, Op_RegF, 15, v15->as_VMReg()->next(7) ); 321 322 reg_def V16 ( SOC, SOC, Op_RegF, 16, v16->as_VMReg() ); 323 reg_def V16_H ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next() ); 324 reg_def V16_J ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(2) ); 325 reg_def V16_K ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(3) ); 326 reg_def V16_L ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(4) ); 327 reg_def V16_M ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(5) ); 328 reg_def V16_N ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(6) ); 329 reg_def V16_O ( SOC, SOC, Op_RegF, 16, v16->as_VMReg()->next(7) ); 330 331 reg_def V17 ( SOC, SOC, Op_RegF, 17, v17->as_VMReg() ); 332 reg_def V17_H ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next() ); 333 reg_def V17_J ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(2) ); 334 reg_def V17_K ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(3) ); 335 reg_def V17_L ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(4) ); 336 reg_def V17_M ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(5) ); 337 reg_def V17_N ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(6) ); 338 reg_def V17_O ( SOC, SOC, Op_RegF, 17, v17->as_VMReg()->next(7) ); 339 340 reg_def V18 ( SOC, SOC, Op_RegF, 18, v18->as_VMReg() ); 341 reg_def V18_H ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next() ); 342 reg_def V18_J ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(2) ); 343 reg_def V18_K ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(3) ); 344 reg_def V18_L ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(4) ); 345 reg_def V18_M ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(5) ); 346 reg_def V18_N ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(6) ); 347 reg_def V18_O ( SOC, SOC, Op_RegF, 18, v18->as_VMReg()->next(7) ); 348 349 reg_def V19 ( SOC, SOC, Op_RegF, 19, v19->as_VMReg() ); 350 reg_def V19_H ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next() ); 351 reg_def V19_J ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(2) ); 352 reg_def V19_K ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(3) ); 353 reg_def V19_L ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(4) ); 354 reg_def V19_M ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(5) ); 355 reg_def V19_N ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(6) ); 356 reg_def V19_O ( SOC, SOC, Op_RegF, 19, v19->as_VMReg()->next(7) ); 357 358 reg_def V20 ( SOC, SOC, Op_RegF, 20, v20->as_VMReg() ); 359 reg_def V20_H ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next() ); 360 reg_def V20_J ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(2) ); 361 reg_def V20_K ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(3) ); 362 reg_def V20_L ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(4) ); 363 reg_def V20_M ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(5) ); 364 reg_def V20_N ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(6) ); 365 reg_def V20_O ( SOC, SOC, Op_RegF, 20, v20->as_VMReg()->next(7) ); 366 367 reg_def V21 ( SOC, SOC, Op_RegF, 21, v21->as_VMReg() ); 368 reg_def V21_H ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next() ); 369 reg_def V21_J ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(2) ); 370 reg_def V21_K ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(3) ); 371 reg_def V21_L ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(4) ); 372 reg_def V21_M ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(5) ); 373 reg_def V21_N ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(6) ); 374 reg_def V21_O ( SOC, SOC, Op_RegF, 21, v21->as_VMReg()->next(7) ); 375 376 reg_def V22 ( SOC, SOC, Op_RegF, 22, v22->as_VMReg() ); 377 reg_def V22_H ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next() ); 378 reg_def V22_J ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(2) ); 379 reg_def V22_K ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(3) ); 380 reg_def V22_L ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(4) ); 381 reg_def V22_M ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(5) ); 382 reg_def V22_N ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(6) ); 383 reg_def V22_O ( SOC, SOC, Op_RegF, 22, v22->as_VMReg()->next(7) ); 384 385 reg_def V23 ( SOC, SOC, Op_RegF, 23, v23->as_VMReg() ); 386 reg_def V23_H ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next() ); 387 reg_def V23_J ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(2) ); 388 reg_def V23_K ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(3) ); 389 reg_def V23_L ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(4) ); 390 reg_def V23_M ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(5) ); 391 reg_def V23_N ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(6) ); 392 reg_def V23_O ( SOC, SOC, Op_RegF, 23, v23->as_VMReg()->next(7) ); 393 394 reg_def V24 ( SOC, SOC, Op_RegF, 24, v24->as_VMReg() ); 395 reg_def V24_H ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next() ); 396 reg_def V24_J ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(2) ); 397 reg_def V24_K ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(3) ); 398 reg_def V24_L ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(4) ); 399 reg_def V24_M ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(5) ); 400 reg_def V24_N ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(6) ); 401 reg_def V24_O ( SOC, SOC, Op_RegF, 24, v24->as_VMReg()->next(7) ); 402 403 reg_def V25 ( SOC, SOC, Op_RegF, 25, v25->as_VMReg() ); 404 reg_def V25_H ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next() ); 405 reg_def V25_J ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(2) ); 406 reg_def V25_K ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(3) ); 407 reg_def V25_L ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(4) ); 408 reg_def V25_M ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(5) ); 409 reg_def V25_N ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(6) ); 410 reg_def V25_O ( SOC, SOC, Op_RegF, 25, v25->as_VMReg()->next(7) ); 411 412 reg_def V26 ( SOC, SOC, Op_RegF, 26, v26->as_VMReg() ); 413 reg_def V26_H ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next() ); 414 reg_def V26_J ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(2) ); 415 reg_def V26_K ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(3) ); 416 reg_def V26_L ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(4) ); 417 reg_def V26_M ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(5) ); 418 reg_def V26_N ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(6) ); 419 reg_def V26_O ( SOC, SOC, Op_RegF, 26, v26->as_VMReg()->next(7) ); 420 421 reg_def V27 ( SOC, SOC, Op_RegF, 27, v27->as_VMReg() ); 422 reg_def V27_H ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next() ); 423 reg_def V27_J ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(2) ); 424 reg_def V27_K ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(3) ); 425 reg_def V27_L ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(4) ); 426 reg_def V27_M ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(5) ); 427 reg_def V27_N ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(6) ); 428 reg_def V27_O ( SOC, SOC, Op_RegF, 27, v27->as_VMReg()->next(7) ); 429 430 reg_def V28 ( SOC, SOC, Op_RegF, 28, v28->as_VMReg() ); 431 reg_def V28_H ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next() ); 432 reg_def V28_J ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(2) ); 433 reg_def V28_K ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(3) ); 434 reg_def V28_L ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(4) ); 435 reg_def V28_M ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(5) ); 436 reg_def V28_N ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(6) ); 437 reg_def V28_O ( SOC, SOC, Op_RegF, 28, v28->as_VMReg()->next(7) ); 438 439 reg_def V29 ( SOC, SOC, Op_RegF, 29, v29->as_VMReg() ); 440 reg_def V29_H ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next() ); 441 reg_def V29_J ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(2) ); 442 reg_def V29_K ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(3) ); 443 reg_def V29_L ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(4) ); 444 reg_def V29_M ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(5) ); 445 reg_def V29_N ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(6) ); 446 reg_def V29_O ( SOC, SOC, Op_RegF, 29, v29->as_VMReg()->next(7) ); 447 448 reg_def V30 ( SOC, SOC, Op_RegF, 30, v30->as_VMReg() ); 449 reg_def V30_H ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next() ); 450 reg_def V30_J ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(2) ); 451 reg_def V30_K ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(3) ); 452 reg_def V30_L ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(4) ); 453 reg_def V30_M ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(5) ); 454 reg_def V30_N ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(6) ); 455 reg_def V30_O ( SOC, SOC, Op_RegF, 30, v30->as_VMReg()->next(7) ); 456 457 reg_def V31 ( SOC, SOC, Op_RegF, 31, v31->as_VMReg() ); 458 reg_def V31_H ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next() ); 459 reg_def V31_J ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(2) ); 460 reg_def V31_K ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(3) ); 461 reg_def V31_L ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(4) ); 462 reg_def V31_M ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(5) ); 463 reg_def V31_N ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(6) ); 464 reg_def V31_O ( SOC, SOC, Op_RegF, 31, v31->as_VMReg()->next(7) ); 465 466 467 // ---------------------------- 468 // SVE Predicate Registers 469 // ---------------------------- 470 reg_def P0 (SOC, SOC, Op_RegVectMask, 0, p0->as_VMReg()); 471 reg_def P1 (SOC, SOC, Op_RegVectMask, 1, p1->as_VMReg()); 472 reg_def P2 (SOC, SOC, Op_RegVectMask, 2, p2->as_VMReg()); 473 reg_def P3 (SOC, SOC, Op_RegVectMask, 3, p3->as_VMReg()); 474 reg_def P4 (SOC, SOC, Op_RegVectMask, 4, p4->as_VMReg()); 475 reg_def P5 (SOC, SOC, Op_RegVectMask, 5, p5->as_VMReg()); 476 reg_def P6 (SOC, SOC, Op_RegVectMask, 6, p6->as_VMReg()); 477 reg_def P7 (SOC, SOC, Op_RegVectMask, 7, p7->as_VMReg()); 478 reg_def P8 (SOC, SOC, Op_RegVectMask, 8, p8->as_VMReg()); 479 reg_def P9 (SOC, SOC, Op_RegVectMask, 9, p9->as_VMReg()); 480 reg_def P10 (SOC, SOC, Op_RegVectMask, 10, p10->as_VMReg()); 481 reg_def P11 (SOC, SOC, Op_RegVectMask, 11, p11->as_VMReg()); 482 reg_def P12 (SOC, SOC, Op_RegVectMask, 12, p12->as_VMReg()); 483 reg_def P13 (SOC, SOC, Op_RegVectMask, 13, p13->as_VMReg()); 484 reg_def P14 (SOC, SOC, Op_RegVectMask, 14, p14->as_VMReg()); 485 reg_def P15 (SOC, SOC, Op_RegVectMask, 15, p15->as_VMReg()); 486 487 // ---------------------------- 488 // Special Registers 489 // ---------------------------- 490 491 // the AArch64 CSPR status flag register is not directly acessible as 492 // instruction operand. the FPSR status flag register is a system 493 // register which can be written/read using MSR/MRS but again does not 494 // appear as an operand (a code identifying the FSPR occurs as an 495 // immediate value in the instruction). 496 497 reg_def RFLAGS(SOC, SOC, 0, 32, VMRegImpl::Bad()); 498 499 // Specify priority of register selection within phases of register 500 // allocation. Highest priority is first. A useful heuristic is to 501 // give registers a low priority when they are required by machine 502 // instructions, like EAX and EDX on I486, and choose no-save registers 503 // before save-on-call, & save-on-call before save-on-entry. Registers 504 // which participate in fixed calling sequences should come last. 505 // Registers which are used as pairs must fall on an even boundary. 506 507 alloc_class chunk0( 508 // volatiles 509 R10, R10_H, 510 R11, R11_H, 511 R12, R12_H, 512 R13, R13_H, 513 R14, R14_H, 514 R15, R15_H, 515 R16, R16_H, 516 R17, R17_H, 517 R18, R18_H, 518 519 // arg registers 520 R0, R0_H, 521 R1, R1_H, 522 R2, R2_H, 523 R3, R3_H, 524 R4, R4_H, 525 R5, R5_H, 526 R6, R6_H, 527 R7, R7_H, 528 529 // non-volatiles 530 R19, R19_H, 531 R20, R20_H, 532 R21, R21_H, 533 R22, R22_H, 534 R23, R23_H, 535 R24, R24_H, 536 R25, R25_H, 537 R26, R26_H, 538 539 // non-allocatable registers 540 541 R27, R27_H, // heapbase 542 R28, R28_H, // thread 543 R29, R29_H, // fp 544 R30, R30_H, // lr 545 R31, R31_H, // sp 546 R8, R8_H, // rscratch1 547 R9, R9_H, // rscratch2 548 ); 549 550 alloc_class chunk1( 551 552 // no save 553 V16, V16_H, V16_J, V16_K, V16_L, V16_M, V16_N, V16_O, 554 V17, V17_H, V17_J, V17_K, V17_L, V17_M, V17_N, V17_O, 555 V18, V18_H, V18_J, V18_K, V18_L, V18_M, V18_N, V18_O, 556 V19, V19_H, V19_J, V19_K, V19_L, V19_M, V19_N, V19_O, 557 V20, V20_H, V20_J, V20_K, V20_L, V20_M, V20_N, V20_O, 558 V21, V21_H, V21_J, V21_K, V21_L, V21_M, V21_N, V21_O, 559 V22, V22_H, V22_J, V22_K, V22_L, V22_M, V22_N, V22_O, 560 V23, V23_H, V23_J, V23_K, V23_L, V23_M, V23_N, V23_O, 561 V24, V24_H, V24_J, V24_K, V24_L, V24_M, V24_N, V24_O, 562 V25, V25_H, V25_J, V25_K, V25_L, V25_M, V25_N, V25_O, 563 V26, V26_H, V26_J, V26_K, V26_L, V26_M, V26_N, V26_O, 564 V27, V27_H, V27_J, V27_K, V27_L, V27_M, V27_N, V27_O, 565 V28, V28_H, V28_J, V28_K, V28_L, V28_M, V28_N, V28_O, 566 V29, V29_H, V29_J, V29_K, V29_L, V29_M, V29_N, V29_O, 567 V30, V30_H, V30_J, V30_K, V30_L, V30_M, V30_N, V30_O, 568 V31, V31_H, V31_J, V31_K, V31_L, V31_M, V31_N, V31_O, 569 570 // arg registers 571 V0, V0_H, V0_J, V0_K, V0_L, V0_M, V0_N, V0_O, 572 V1, V1_H, V1_J, V1_K, V1_L, V1_M, V1_N, V1_O, 573 V2, V2_H, V2_J, V2_K, V2_L, V2_M, V2_N, V2_O, 574 V3, V3_H, V3_J, V3_K, V3_L, V3_M, V3_N, V3_O, 575 V4, V4_H, V4_J, V4_K, V4_L, V4_M, V4_N, V4_O, 576 V5, V5_H, V5_J, V5_K, V5_L, V5_M, V5_N, V5_O, 577 V6, V6_H, V6_J, V6_K, V6_L, V6_M, V6_N, V6_O, 578 V7, V7_H, V7_J, V7_K, V7_L, V7_M, V7_N, V7_O, 579 580 // non-volatiles 581 V8, V8_H, V8_J, V8_K, V8_L, V8_M, V8_N, V8_O, 582 V9, V9_H, V9_J, V9_K, V9_L, V9_M, V9_N, V9_O, 583 V10, V10_H, V10_J, V10_K, V10_L, V10_M, V10_N, V10_O, 584 V11, V11_H, V11_J, V11_K, V11_L, V11_M, V11_N, V11_O, 585 V12, V12_H, V12_J, V12_K, V12_L, V12_M, V12_N, V12_O, 586 V13, V13_H, V13_J, V13_K, V13_L, V13_M, V13_N, V13_O, 587 V14, V14_H, V14_J, V14_K, V14_L, V14_M, V14_N, V14_O, 588 V15, V15_H, V15_J, V15_K, V15_L, V15_M, V15_N, V15_O, 589 ); 590 591 alloc_class chunk2 ( 592 P0, 593 P1, 594 P2, 595 P3, 596 P4, 597 P5, 598 P6, 599 P7, 600 601 P8, 602 P9, 603 P10, 604 P11, 605 P12, 606 P13, 607 P14, 608 P15, 609 ); 610 611 alloc_class chunk3(RFLAGS); 612 613 //----------Architecture Description Register Classes-------------------------- 614 // Several register classes are automatically defined based upon information in 615 // this architecture description. 616 // 1) reg_class inline_cache_reg ( /* as def'd in frame section */ ) 617 // 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ ) 618 // 619 620 // Class for all 32 bit general purpose registers 621 reg_class all_reg32( 622 R0, 623 R1, 624 R2, 625 R3, 626 R4, 627 R5, 628 R6, 629 R7, 630 R10, 631 R11, 632 R12, 633 R13, 634 R14, 635 R15, 636 R16, 637 R17, 638 R18, 639 R19, 640 R20, 641 R21, 642 R22, 643 R23, 644 R24, 645 R25, 646 R26, 647 R27, 648 R28, 649 R29, 650 R30, 651 R31 652 ); 653 654 655 // Class for all 32 bit integer registers (excluding SP which 656 // will never be used as an integer register) 657 reg_class any_reg32 %{ 658 return _ANY_REG32_mask; 659 %} 660 661 // Singleton class for R0 int register 662 reg_class int_r0_reg(R0); 663 664 // Singleton class for R2 int register 665 reg_class int_r2_reg(R2); 666 667 // Singleton class for R3 int register 668 reg_class int_r3_reg(R3); 669 670 // Singleton class for R4 int register 671 reg_class int_r4_reg(R4); 672 673 // Singleton class for R31 int register 674 reg_class int_r31_reg(R31); 675 676 // Class for all 64 bit general purpose registers 677 reg_class all_reg( 678 R0, R0_H, 679 R1, R1_H, 680 R2, R2_H, 681 R3, R3_H, 682 R4, R4_H, 683 R5, R5_H, 684 R6, R6_H, 685 R7, R7_H, 686 R10, R10_H, 687 R11, R11_H, 688 R12, R12_H, 689 R13, R13_H, 690 R14, R14_H, 691 R15, R15_H, 692 R16, R16_H, 693 R17, R17_H, 694 R18, R18_H, 695 R19, R19_H, 696 R20, R20_H, 697 R21, R21_H, 698 R22, R22_H, 699 R23, R23_H, 700 R24, R24_H, 701 R25, R25_H, 702 R26, R26_H, 703 R27, R27_H, 704 R28, R28_H, 705 R29, R29_H, 706 R30, R30_H, 707 R31, R31_H 708 ); 709 710 // Class for all long integer registers (including SP) 711 reg_class any_reg %{ 712 return _ANY_REG_mask; 713 %} 714 715 // Class for non-allocatable 32 bit registers 716 reg_class non_allocatable_reg32( 717 #ifdef R18_RESERVED 718 // See comment in register_aarch64.hpp 719 R18, // tls on Windows 720 #endif 721 R28, // thread 722 R30, // lr 723 R31 // sp 724 ); 725 726 // Class for non-allocatable 64 bit registers 727 reg_class non_allocatable_reg( 728 #ifdef R18_RESERVED 729 // See comment in register_aarch64.hpp 730 R18, R18_H, // tls on Windows, platform register on macOS 731 #endif 732 R28, R28_H, // thread 733 R30, R30_H, // lr 734 R31, R31_H // sp 735 ); 736 737 // Class for all non-special integer registers 738 reg_class no_special_reg32 %{ 739 return _NO_SPECIAL_REG32_mask; 740 %} 741 742 // Class for all non-special long integer registers 743 reg_class no_special_reg %{ 744 return _NO_SPECIAL_REG_mask; 745 %} 746 747 // Class for 64 bit register r0 748 reg_class r0_reg( 749 R0, R0_H 750 ); 751 752 // Class for 64 bit register r1 753 reg_class r1_reg( 754 R1, R1_H 755 ); 756 757 // Class for 64 bit register r2 758 reg_class r2_reg( 759 R2, R2_H 760 ); 761 762 // Class for 64 bit register r3 763 reg_class r3_reg( 764 R3, R3_H 765 ); 766 767 // Class for 64 bit register r4 768 reg_class r4_reg( 769 R4, R4_H 770 ); 771 772 // Class for 64 bit register r5 773 reg_class r5_reg( 774 R5, R5_H 775 ); 776 777 // Class for 64 bit register r10 778 reg_class r10_reg( 779 R10, R10_H 780 ); 781 782 // Class for 64 bit register r11 783 reg_class r11_reg( 784 R11, R11_H 785 ); 786 787 // Class for method register 788 reg_class method_reg( 789 R12, R12_H 790 ); 791 792 // Class for heapbase register 793 reg_class heapbase_reg( 794 R27, R27_H 795 ); 796 797 // Class for thread register 798 reg_class thread_reg( 799 R28, R28_H 800 ); 801 802 // Class for frame pointer register 803 reg_class fp_reg( 804 R29, R29_H 805 ); 806 807 // Class for link register 808 reg_class lr_reg( 809 R30, R30_H 810 ); 811 812 // Class for long sp register 813 reg_class sp_reg( 814 R31, R31_H 815 ); 816 817 // Class for all pointer registers 818 reg_class ptr_reg %{ 819 return _PTR_REG_mask; 820 %} 821 822 // Class for all non_special pointer registers 823 reg_class no_special_ptr_reg %{ 824 return _NO_SPECIAL_PTR_REG_mask; 825 %} 826 827 // Class for all float registers 828 reg_class float_reg( 829 V0, 830 V1, 831 V2, 832 V3, 833 V4, 834 V5, 835 V6, 836 V7, 837 V8, 838 V9, 839 V10, 840 V11, 841 V12, 842 V13, 843 V14, 844 V15, 845 V16, 846 V17, 847 V18, 848 V19, 849 V20, 850 V21, 851 V22, 852 V23, 853 V24, 854 V25, 855 V26, 856 V27, 857 V28, 858 V29, 859 V30, 860 V31 861 ); 862 863 // Double precision float registers have virtual `high halves' that 864 // are needed by the allocator. 865 // Class for all double registers 866 reg_class double_reg( 867 V0, V0_H, 868 V1, V1_H, 869 V2, V2_H, 870 V3, V3_H, 871 V4, V4_H, 872 V5, V5_H, 873 V6, V6_H, 874 V7, V7_H, 875 V8, V8_H, 876 V9, V9_H, 877 V10, V10_H, 878 V11, V11_H, 879 V12, V12_H, 880 V13, V13_H, 881 V14, V14_H, 882 V15, V15_H, 883 V16, V16_H, 884 V17, V17_H, 885 V18, V18_H, 886 V19, V19_H, 887 V20, V20_H, 888 V21, V21_H, 889 V22, V22_H, 890 V23, V23_H, 891 V24, V24_H, 892 V25, V25_H, 893 V26, V26_H, 894 V27, V27_H, 895 V28, V28_H, 896 V29, V29_H, 897 V30, V30_H, 898 V31, V31_H 899 ); 900 901 // Class for all SVE vector registers. 902 reg_class vectora_reg ( 903 V0, V0_H, V0_J, V0_K, V0_L, V0_M, V0_N, V0_O, 904 V1, V1_H, V1_J, V1_K, V1_L, V1_M, V1_N, V1_O, 905 V2, V2_H, V2_J, V2_K, V2_L, V2_M, V2_N, V2_O, 906 V3, V3_H, V3_J, V3_K, V3_L, V3_M, V3_N, V3_O, 907 V4, V4_H, V4_J, V4_K, V4_L, V4_M, V4_N, V4_O, 908 V5, V5_H, V5_J, V5_K, V5_L, V5_M, V5_N, V5_O, 909 V6, V6_H, V6_J, V6_K, V6_L, V6_M, V6_N, V6_O, 910 V7, V7_H, V7_J, V7_K, V7_L, V7_M, V7_N, V7_O, 911 V8, V8_H, V8_J, V8_K, V8_L, V8_M, V8_N, V8_O, 912 V9, V9_H, V9_J, V9_K, V9_L, V9_M, V9_N, V9_O, 913 V10, V10_H, V10_J, V10_K, V10_L, V10_M, V10_N, V10_O, 914 V11, V11_H, V11_J, V11_K, V11_L, V11_M, V11_N, V11_O, 915 V12, V12_H, V12_J, V12_K, V12_L, V12_M, V12_N, V12_O, 916 V13, V13_H, V13_J, V13_K, V13_L, V13_M, V13_N, V13_O, 917 V14, V14_H, V14_J, V14_K, V14_L, V14_M, V14_N, V14_O, 918 V15, V15_H, V15_J, V15_K, V15_L, V15_M, V15_N, V15_O, 919 V16, V16_H, V16_J, V16_K, V16_L, V16_M, V16_N, V16_O, 920 V17, V17_H, V17_J, V17_K, V17_L, V17_M, V17_N, V17_O, 921 V18, V18_H, V18_J, V18_K, V18_L, V18_M, V18_N, V18_O, 922 V19, V19_H, V19_J, V19_K, V19_L, V19_M, V19_N, V19_O, 923 V20, V20_H, V20_J, V20_K, V20_L, V20_M, V20_N, V20_O, 924 V21, V21_H, V21_J, V21_K, V21_L, V21_M, V21_N, V21_O, 925 V22, V22_H, V22_J, V22_K, V22_L, V22_M, V22_N, V22_O, 926 V23, V23_H, V23_J, V23_K, V23_L, V23_M, V23_N, V23_O, 927 V24, V24_H, V24_J, V24_K, V24_L, V24_M, V24_N, V24_O, 928 V25, V25_H, V25_J, V25_K, V25_L, V25_M, V25_N, V25_O, 929 V26, V26_H, V26_J, V26_K, V26_L, V26_M, V26_N, V26_O, 930 V27, V27_H, V27_J, V27_K, V27_L, V27_M, V27_N, V27_O, 931 V28, V28_H, V28_J, V28_K, V28_L, V28_M, V28_N, V28_O, 932 V29, V29_H, V29_J, V29_K, V29_L, V29_M, V29_N, V29_O, 933 V30, V30_H, V30_J, V30_K, V30_L, V30_M, V30_N, V30_O, 934 V31, V31_H, V31_J, V31_K, V31_L, V31_M, V31_N, V31_O, 935 ); 936 937 // Class for all 64bit vector registers 938 reg_class vectord_reg( 939 V0, V0_H, 940 V1, V1_H, 941 V2, V2_H, 942 V3, V3_H, 943 V4, V4_H, 944 V5, V5_H, 945 V6, V6_H, 946 V7, V7_H, 947 V8, V8_H, 948 V9, V9_H, 949 V10, V10_H, 950 V11, V11_H, 951 V12, V12_H, 952 V13, V13_H, 953 V14, V14_H, 954 V15, V15_H, 955 V16, V16_H, 956 V17, V17_H, 957 V18, V18_H, 958 V19, V19_H, 959 V20, V20_H, 960 V21, V21_H, 961 V22, V22_H, 962 V23, V23_H, 963 V24, V24_H, 964 V25, V25_H, 965 V26, V26_H, 966 V27, V27_H, 967 V28, V28_H, 968 V29, V29_H, 969 V30, V30_H, 970 V31, V31_H 971 ); 972 973 // Class for all 128bit vector registers 974 reg_class vectorx_reg( 975 V0, V0_H, V0_J, V0_K, 976 V1, V1_H, V1_J, V1_K, 977 V2, V2_H, V2_J, V2_K, 978 V3, V3_H, V3_J, V3_K, 979 V4, V4_H, V4_J, V4_K, 980 V5, V5_H, V5_J, V5_K, 981 V6, V6_H, V6_J, V6_K, 982 V7, V7_H, V7_J, V7_K, 983 V8, V8_H, V8_J, V8_K, 984 V9, V9_H, V9_J, V9_K, 985 V10, V10_H, V10_J, V10_K, 986 V11, V11_H, V11_J, V11_K, 987 V12, V12_H, V12_J, V12_K, 988 V13, V13_H, V13_J, V13_K, 989 V14, V14_H, V14_J, V14_K, 990 V15, V15_H, V15_J, V15_K, 991 V16, V16_H, V16_J, V16_K, 992 V17, V17_H, V17_J, V17_K, 993 V18, V18_H, V18_J, V18_K, 994 V19, V19_H, V19_J, V19_K, 995 V20, V20_H, V20_J, V20_K, 996 V21, V21_H, V21_J, V21_K, 997 V22, V22_H, V22_J, V22_K, 998 V23, V23_H, V23_J, V23_K, 999 V24, V24_H, V24_J, V24_K, 1000 V25, V25_H, V25_J, V25_K, 1001 V26, V26_H, V26_J, V26_K, 1002 V27, V27_H, V27_J, V27_K, 1003 V28, V28_H, V28_J, V28_K, 1004 V29, V29_H, V29_J, V29_K, 1005 V30, V30_H, V30_J, V30_K, 1006 V31, V31_H, V31_J, V31_K 1007 ); 1008 1009 // Class for 128 bit register v0 1010 reg_class v0_reg( 1011 V0, V0_H 1012 ); 1013 1014 // Class for 128 bit register v1 1015 reg_class v1_reg( 1016 V1, V1_H 1017 ); 1018 1019 // Class for 128 bit register v2 1020 reg_class v2_reg( 1021 V2, V2_H 1022 ); 1023 1024 // Class for 128 bit register v3 1025 reg_class v3_reg( 1026 V3, V3_H 1027 ); 1028 1029 // Class for 128 bit register v4 1030 reg_class v4_reg( 1031 V4, V4_H 1032 ); 1033 1034 // Class for 128 bit register v5 1035 reg_class v5_reg( 1036 V5, V5_H 1037 ); 1038 1039 // Class for 128 bit register v6 1040 reg_class v6_reg( 1041 V6, V6_H 1042 ); 1043 1044 // Class for 128 bit register v7 1045 reg_class v7_reg( 1046 V7, V7_H 1047 ); 1048 1049 // Class for 128 bit register v8 1050 reg_class v8_reg( 1051 V8, V8_H 1052 ); 1053 1054 // Class for 128 bit register v9 1055 reg_class v9_reg( 1056 V9, V9_H 1057 ); 1058 1059 // Class for 128 bit register v10 1060 reg_class v10_reg( 1061 V10, V10_H 1062 ); 1063 1064 // Class for 128 bit register v11 1065 reg_class v11_reg( 1066 V11, V11_H 1067 ); 1068 1069 // Class for 128 bit register v12 1070 reg_class v12_reg( 1071 V12, V12_H 1072 ); 1073 1074 // Class for 128 bit register v13 1075 reg_class v13_reg( 1076 V13, V13_H 1077 ); 1078 1079 // Class for 128 bit register v14 1080 reg_class v14_reg( 1081 V14, V14_H 1082 ); 1083 1084 // Class for 128 bit register v15 1085 reg_class v15_reg( 1086 V15, V15_H 1087 ); 1088 1089 // Class for 128 bit register v16 1090 reg_class v16_reg( 1091 V16, V16_H 1092 ); 1093 1094 // Class for 128 bit register v17 1095 reg_class v17_reg( 1096 V17, V17_H 1097 ); 1098 1099 // Class for 128 bit register v18 1100 reg_class v18_reg( 1101 V18, V18_H 1102 ); 1103 1104 // Class for 128 bit register v19 1105 reg_class v19_reg( 1106 V19, V19_H 1107 ); 1108 1109 // Class for 128 bit register v20 1110 reg_class v20_reg( 1111 V20, V20_H 1112 ); 1113 1114 // Class for 128 bit register v21 1115 reg_class v21_reg( 1116 V21, V21_H 1117 ); 1118 1119 // Class for 128 bit register v22 1120 reg_class v22_reg( 1121 V22, V22_H 1122 ); 1123 1124 // Class for 128 bit register v23 1125 reg_class v23_reg( 1126 V23, V23_H 1127 ); 1128 1129 // Class for 128 bit register v24 1130 reg_class v24_reg( 1131 V24, V24_H 1132 ); 1133 1134 // Class for 128 bit register v25 1135 reg_class v25_reg( 1136 V25, V25_H 1137 ); 1138 1139 // Class for 128 bit register v26 1140 reg_class v26_reg( 1141 V26, V26_H 1142 ); 1143 1144 // Class for 128 bit register v27 1145 reg_class v27_reg( 1146 V27, V27_H 1147 ); 1148 1149 // Class for 128 bit register v28 1150 reg_class v28_reg( 1151 V28, V28_H 1152 ); 1153 1154 // Class for 128 bit register v29 1155 reg_class v29_reg( 1156 V29, V29_H 1157 ); 1158 1159 // Class for 128 bit register v30 1160 reg_class v30_reg( 1161 V30, V30_H 1162 ); 1163 1164 // Class for 128 bit register v31 1165 reg_class v31_reg( 1166 V31, V31_H 1167 ); 1168 1169 // Class for all SVE predicate registers. 1170 reg_class pr_reg ( 1171 P0, 1172 P1, 1173 P2, 1174 P3, 1175 P4, 1176 P5, 1177 P6, 1178 // P7, non-allocatable, preserved with all elements preset to TRUE. 1179 P8, 1180 P9, 1181 P10, 1182 P11, 1183 P12, 1184 P13, 1185 P14, 1186 P15 1187 ); 1188 1189 // Class for SVE governing predicate registers, which are used 1190 // to determine the active elements of a predicated instruction. 1191 reg_class gov_pr ( 1192 P0, 1193 P1, 1194 P2, 1195 P3, 1196 P4, 1197 P5, 1198 P6, 1199 // P7, non-allocatable, preserved with all elements preset to TRUE. 1200 ); 1201 1202 // Singleton class for condition codes 1203 reg_class int_flags(RFLAGS); 1204 1205 %} 1206 1207 //----------DEFINITION BLOCK--------------------------------------------------- 1208 // Define name --> value mappings to inform the ADLC of an integer valued name 1209 // Current support includes integer values in the range [0, 0x7FFFFFFF] 1210 // Format: 1211 // int_def <name> ( <int_value>, <expression>); 1212 // Generated Code in ad_<arch>.hpp 1213 // #define <name> (<expression>) 1214 // // value == <int_value> 1215 // Generated code in ad_<arch>.cpp adlc_verification() 1216 // assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>"); 1217 // 1218 1219 // we follow the ppc-aix port in using a simple cost model which ranks 1220 // register operations as cheap, memory ops as more expensive and 1221 // branches as most expensive. the first two have a low as well as a 1222 // normal cost. huge cost appears to be a way of saying don't do 1223 // something 1224 1225 definitions %{ 1226 // The default cost (of a register move instruction). 1227 int_def INSN_COST ( 100, 100); 1228 int_def BRANCH_COST ( 200, 2 * INSN_COST); 1229 int_def CALL_COST ( 200, 2 * INSN_COST); 1230 int_def VOLATILE_REF_COST ( 1000, 10 * INSN_COST); 1231 %} 1232 1233 1234 //----------SOURCE BLOCK------------------------------------------------------- 1235 // This is a block of C++ code which provides values, functions, and 1236 // definitions necessary in the rest of the architecture description 1237 1238 source_hpp %{ 1239 1240 #include "asm/macroAssembler.hpp" 1241 #include "gc/shared/barrierSetAssembler.hpp" 1242 #include "gc/shared/cardTable.hpp" 1243 #include "gc/shared/cardTableBarrierSet.hpp" 1244 #include "gc/shared/collectedHeap.hpp" 1245 #include "opto/addnode.hpp" 1246 #include "opto/convertnode.hpp" 1247 #include "runtime/objectMonitor.hpp" 1248 1249 extern RegMask _ANY_REG32_mask; 1250 extern RegMask _ANY_REG_mask; 1251 extern RegMask _PTR_REG_mask; 1252 extern RegMask _NO_SPECIAL_REG32_mask; 1253 extern RegMask _NO_SPECIAL_REG_mask; 1254 extern RegMask _NO_SPECIAL_PTR_REG_mask; 1255 1256 class CallStubImpl { 1257 1258 //-------------------------------------------------------------- 1259 //---< Used for optimization in Compile::shorten_branches >--- 1260 //-------------------------------------------------------------- 1261 1262 public: 1263 // Size of call trampoline stub. 1264 static uint size_call_trampoline() { 1265 return 0; // no call trampolines on this platform 1266 } 1267 1268 // number of relocations needed by a call trampoline stub 1269 static uint reloc_call_trampoline() { 1270 return 0; // no call trampolines on this platform 1271 } 1272 }; 1273 1274 class HandlerImpl { 1275 1276 public: 1277 1278 static int emit_exception_handler(CodeBuffer &cbuf); 1279 static int emit_deopt_handler(CodeBuffer& cbuf); 1280 1281 static uint size_exception_handler() { 1282 return MacroAssembler::far_codestub_branch_size(); 1283 } 1284 1285 static uint size_deopt_handler() { 1286 // count one adr and one far branch instruction 1287 return NativeInstruction::instruction_size + MacroAssembler::far_codestub_branch_size(); 1288 } 1289 }; 1290 1291 class Node::PD { 1292 public: 1293 enum NodeFlags { 1294 _last_flag = Node::_last_flag 1295 }; 1296 }; 1297 1298 bool is_CAS(int opcode, bool maybe_volatile); 1299 1300 // predicates controlling emit of ldr<x>/ldar<x> and associated dmb 1301 1302 bool unnecessary_acquire(const Node *barrier); 1303 bool needs_acquiring_load(const Node *load); 1304 1305 // predicates controlling emit of str<x>/stlr<x> and associated dmbs 1306 1307 bool unnecessary_release(const Node *barrier); 1308 bool unnecessary_volatile(const Node *barrier); 1309 bool needs_releasing_store(const Node *store); 1310 1311 // predicate controlling translation of CompareAndSwapX 1312 bool needs_acquiring_load_exclusive(const Node *load); 1313 1314 // predicate controlling addressing modes 1315 bool size_fits_all_mem_uses(AddPNode* addp, int shift); 1316 %} 1317 1318 source %{ 1319 1320 // Derived RegMask with conditionally allocatable registers 1321 1322 void PhaseOutput::pd_perform_mach_node_analysis() { 1323 } 1324 1325 int MachNode::pd_alignment_required() const { 1326 return 1; 1327 } 1328 1329 int MachNode::compute_padding(int current_offset) const { 1330 return 0; 1331 } 1332 1333 RegMask _ANY_REG32_mask; 1334 RegMask _ANY_REG_mask; 1335 RegMask _PTR_REG_mask; 1336 RegMask _NO_SPECIAL_REG32_mask; 1337 RegMask _NO_SPECIAL_REG_mask; 1338 RegMask _NO_SPECIAL_PTR_REG_mask; 1339 1340 void reg_mask_init() { 1341 // We derive below RegMask(s) from the ones which are auto-generated from 1342 // adlc register classes to make AArch64 rheapbase (r27) and rfp (r29) 1343 // registers conditionally reserved. 1344 1345 _ANY_REG32_mask = _ALL_REG32_mask; 1346 _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(r31_sp->as_VMReg())); 1347 1348 _ANY_REG_mask = _ALL_REG_mask; 1349 1350 _PTR_REG_mask = _ALL_REG_mask; 1351 1352 _NO_SPECIAL_REG32_mask = _ALL_REG32_mask; 1353 _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask); 1354 1355 _NO_SPECIAL_REG_mask = _ALL_REG_mask; 1356 _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1357 1358 _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask; 1359 _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask); 1360 1361 // r27 is not allocatable when compressed oops is on and heapbase is not 1362 // zero, compressed klass pointers doesn't use r27 after JDK-8234794 1363 if (UseCompressedOops && (CompressedOops::ptrs_base() != NULL)) { 1364 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(r27->as_VMReg())); 1365 _NO_SPECIAL_REG_mask.SUBTRACT(_HEAPBASE_REG_mask); 1366 _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_HEAPBASE_REG_mask); 1367 } 1368 1369 // r29 is not allocatable when PreserveFramePointer is on 1370 if (PreserveFramePointer) { 1371 _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(r29->as_VMReg())); 1372 _NO_SPECIAL_REG_mask.SUBTRACT(_FP_REG_mask); 1373 _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_FP_REG_mask); 1374 } 1375 } 1376 1377 // Optimizaton of volatile gets and puts 1378 // ------------------------------------- 1379 // 1380 // AArch64 has ldar<x> and stlr<x> instructions which we can safely 1381 // use to implement volatile reads and writes. For a volatile read 1382 // we simply need 1383 // 1384 // ldar<x> 1385 // 1386 // and for a volatile write we need 1387 // 1388 // stlr<x> 1389 // 1390 // Alternatively, we can implement them by pairing a normal 1391 // load/store with a memory barrier. For a volatile read we need 1392 // 1393 // ldr<x> 1394 // dmb ishld 1395 // 1396 // for a volatile write 1397 // 1398 // dmb ish 1399 // str<x> 1400 // dmb ish 1401 // 1402 // We can also use ldaxr and stlxr to implement compare and swap CAS 1403 // sequences. These are normally translated to an instruction 1404 // sequence like the following 1405 // 1406 // dmb ish 1407 // retry: 1408 // ldxr<x> rval raddr 1409 // cmp rval rold 1410 // b.ne done 1411 // stlxr<x> rval, rnew, rold 1412 // cbnz rval retry 1413 // done: 1414 // cset r0, eq 1415 // dmb ishld 1416 // 1417 // Note that the exclusive store is already using an stlxr 1418 // instruction. That is required to ensure visibility to other 1419 // threads of the exclusive write (assuming it succeeds) before that 1420 // of any subsequent writes. 1421 // 1422 // The following instruction sequence is an improvement on the above 1423 // 1424 // retry: 1425 // ldaxr<x> rval raddr 1426 // cmp rval rold 1427 // b.ne done 1428 // stlxr<x> rval, rnew, rold 1429 // cbnz rval retry 1430 // done: 1431 // cset r0, eq 1432 // 1433 // We don't need the leading dmb ish since the stlxr guarantees 1434 // visibility of prior writes in the case that the swap is 1435 // successful. Crucially we don't have to worry about the case where 1436 // the swap is not successful since no valid program should be 1437 // relying on visibility of prior changes by the attempting thread 1438 // in the case where the CAS fails. 1439 // 1440 // Similarly, we don't need the trailing dmb ishld if we substitute 1441 // an ldaxr instruction since that will provide all the guarantees we 1442 // require regarding observation of changes made by other threads 1443 // before any change to the CAS address observed by the load. 1444 // 1445 // In order to generate the desired instruction sequence we need to 1446 // be able to identify specific 'signature' ideal graph node 1447 // sequences which i) occur as a translation of a volatile reads or 1448 // writes or CAS operations and ii) do not occur through any other 1449 // translation or graph transformation. We can then provide 1450 // alternative aldc matching rules which translate these node 1451 // sequences to the desired machine code sequences. Selection of the 1452 // alternative rules can be implemented by predicates which identify 1453 // the relevant node sequences. 1454 // 1455 // The ideal graph generator translates a volatile read to the node 1456 // sequence 1457 // 1458 // LoadX[mo_acquire] 1459 // MemBarAcquire 1460 // 1461 // As a special case when using the compressed oops optimization we 1462 // may also see this variant 1463 // 1464 // LoadN[mo_acquire] 1465 // DecodeN 1466 // MemBarAcquire 1467 // 1468 // A volatile write is translated to the node sequence 1469 // 1470 // MemBarRelease 1471 // StoreX[mo_release] {CardMark}-optional 1472 // MemBarVolatile 1473 // 1474 // n.b. the above node patterns are generated with a strict 1475 // 'signature' configuration of input and output dependencies (see 1476 // the predicates below for exact details). The card mark may be as 1477 // simple as a few extra nodes or, in a few GC configurations, may 1478 // include more complex control flow between the leading and 1479 // trailing memory barriers. However, whatever the card mark 1480 // configuration these signatures are unique to translated volatile 1481 // reads/stores -- they will not appear as a result of any other 1482 // bytecode translation or inlining nor as a consequence of 1483 // optimizing transforms. 1484 // 1485 // We also want to catch inlined unsafe volatile gets and puts and 1486 // be able to implement them using either ldar<x>/stlr<x> or some 1487 // combination of ldr<x>/stlr<x> and dmb instructions. 1488 // 1489 // Inlined unsafe volatiles puts manifest as a minor variant of the 1490 // normal volatile put node sequence containing an extra cpuorder 1491 // membar 1492 // 1493 // MemBarRelease 1494 // MemBarCPUOrder 1495 // StoreX[mo_release] {CardMark}-optional 1496 // MemBarCPUOrder 1497 // MemBarVolatile 1498 // 1499 // n.b. as an aside, a cpuorder membar is not itself subject to 1500 // matching and translation by adlc rules. However, the rule 1501 // predicates need to detect its presence in order to correctly 1502 // select the desired adlc rules. 1503 // 1504 // Inlined unsafe volatile gets manifest as a slightly different 1505 // node sequence to a normal volatile get because of the 1506 // introduction of some CPUOrder memory barriers to bracket the 1507 // Load. However, but the same basic skeleton of a LoadX feeding a 1508 // MemBarAcquire, possibly thorugh an optional DecodeN, is still 1509 // present 1510 // 1511 // MemBarCPUOrder 1512 // || \\ 1513 // MemBarCPUOrder LoadX[mo_acquire] 1514 // || | 1515 // || {DecodeN} optional 1516 // || / 1517 // MemBarAcquire 1518 // 1519 // In this case the acquire membar does not directly depend on the 1520 // load. However, we can be sure that the load is generated from an 1521 // inlined unsafe volatile get if we see it dependent on this unique 1522 // sequence of membar nodes. Similarly, given an acquire membar we 1523 // can know that it was added because of an inlined unsafe volatile 1524 // get if it is fed and feeds a cpuorder membar and if its feed 1525 // membar also feeds an acquiring load. 1526 // 1527 // Finally an inlined (Unsafe) CAS operation is translated to the 1528 // following ideal graph 1529 // 1530 // MemBarRelease 1531 // MemBarCPUOrder 1532 // CompareAndSwapX {CardMark}-optional 1533 // MemBarCPUOrder 1534 // MemBarAcquire 1535 // 1536 // So, where we can identify these volatile read and write 1537 // signatures we can choose to plant either of the above two code 1538 // sequences. For a volatile read we can simply plant a normal 1539 // ldr<x> and translate the MemBarAcquire to a dmb. However, we can 1540 // also choose to inhibit translation of the MemBarAcquire and 1541 // inhibit planting of the ldr<x>, instead planting an ldar<x>. 1542 // 1543 // When we recognise a volatile store signature we can choose to 1544 // plant at a dmb ish as a translation for the MemBarRelease, a 1545 // normal str<x> and then a dmb ish for the MemBarVolatile. 1546 // Alternatively, we can inhibit translation of the MemBarRelease 1547 // and MemBarVolatile and instead plant a simple stlr<x> 1548 // instruction. 1549 // 1550 // when we recognise a CAS signature we can choose to plant a dmb 1551 // ish as a translation for the MemBarRelease, the conventional 1552 // macro-instruction sequence for the CompareAndSwap node (which 1553 // uses ldxr<x>) and then a dmb ishld for the MemBarAcquire. 1554 // Alternatively, we can elide generation of the dmb instructions 1555 // and plant the alternative CompareAndSwap macro-instruction 1556 // sequence (which uses ldaxr<x>). 1557 // 1558 // Of course, the above only applies when we see these signature 1559 // configurations. We still want to plant dmb instructions in any 1560 // other cases where we may see a MemBarAcquire, MemBarRelease or 1561 // MemBarVolatile. For example, at the end of a constructor which 1562 // writes final/volatile fields we will see a MemBarRelease 1563 // instruction and this needs a 'dmb ish' lest we risk the 1564 // constructed object being visible without making the 1565 // final/volatile field writes visible. 1566 // 1567 // n.b. the translation rules below which rely on detection of the 1568 // volatile signatures and insert ldar<x> or stlr<x> are failsafe. 1569 // If we see anything other than the signature configurations we 1570 // always just translate the loads and stores to ldr<x> and str<x> 1571 // and translate acquire, release and volatile membars to the 1572 // relevant dmb instructions. 1573 // 1574 1575 // is_CAS(int opcode, bool maybe_volatile) 1576 // 1577 // return true if opcode is one of the possible CompareAndSwapX 1578 // values otherwise false. 1579 1580 bool is_CAS(int opcode, bool maybe_volatile) 1581 { 1582 switch(opcode) { 1583 // We handle these 1584 case Op_CompareAndSwapI: 1585 case Op_CompareAndSwapL: 1586 case Op_CompareAndSwapP: 1587 case Op_CompareAndSwapN: 1588 case Op_ShenandoahCompareAndSwapP: 1589 case Op_ShenandoahCompareAndSwapN: 1590 case Op_CompareAndSwapB: 1591 case Op_CompareAndSwapS: 1592 case Op_GetAndSetI: 1593 case Op_GetAndSetL: 1594 case Op_GetAndSetP: 1595 case Op_GetAndSetN: 1596 case Op_GetAndAddI: 1597 case Op_GetAndAddL: 1598 return true; 1599 case Op_CompareAndExchangeI: 1600 case Op_CompareAndExchangeN: 1601 case Op_CompareAndExchangeB: 1602 case Op_CompareAndExchangeS: 1603 case Op_CompareAndExchangeL: 1604 case Op_CompareAndExchangeP: 1605 case Op_WeakCompareAndSwapB: 1606 case Op_WeakCompareAndSwapS: 1607 case Op_WeakCompareAndSwapI: 1608 case Op_WeakCompareAndSwapL: 1609 case Op_WeakCompareAndSwapP: 1610 case Op_WeakCompareAndSwapN: 1611 case Op_ShenandoahWeakCompareAndSwapP: 1612 case Op_ShenandoahWeakCompareAndSwapN: 1613 case Op_ShenandoahCompareAndExchangeP: 1614 case Op_ShenandoahCompareAndExchangeN: 1615 return maybe_volatile; 1616 default: 1617 return false; 1618 } 1619 } 1620 1621 // helper to determine the maximum number of Phi nodes we may need to 1622 // traverse when searching from a card mark membar for the merge mem 1623 // feeding a trailing membar or vice versa 1624 1625 // predicates controlling emit of ldr<x>/ldar<x> 1626 1627 bool unnecessary_acquire(const Node *barrier) 1628 { 1629 assert(barrier->is_MemBar(), "expecting a membar"); 1630 1631 MemBarNode* mb = barrier->as_MemBar(); 1632 1633 if (mb->trailing_load()) { 1634 return true; 1635 } 1636 1637 if (mb->trailing_load_store()) { 1638 Node* load_store = mb->in(MemBarNode::Precedent); 1639 assert(load_store->is_LoadStore(), "unexpected graph shape"); 1640 return is_CAS(load_store->Opcode(), true); 1641 } 1642 1643 return false; 1644 } 1645 1646 bool needs_acquiring_load(const Node *n) 1647 { 1648 assert(n->is_Load(), "expecting a load"); 1649 LoadNode *ld = n->as_Load(); 1650 return ld->is_acquire(); 1651 } 1652 1653 bool unnecessary_release(const Node *n) 1654 { 1655 assert((n->is_MemBar() && 1656 n->Opcode() == Op_MemBarRelease), 1657 "expecting a release membar"); 1658 1659 MemBarNode *barrier = n->as_MemBar(); 1660 if (!barrier->leading()) { 1661 return false; 1662 } else { 1663 Node* trailing = barrier->trailing_membar(); 1664 MemBarNode* trailing_mb = trailing->as_MemBar(); 1665 assert(trailing_mb->trailing(), "Not a trailing membar?"); 1666 assert(trailing_mb->leading_membar() == n, "inconsistent leading/trailing membars"); 1667 1668 Node* mem = trailing_mb->in(MemBarNode::Precedent); 1669 if (mem->is_Store()) { 1670 assert(mem->as_Store()->is_release(), ""); 1671 assert(trailing_mb->Opcode() == Op_MemBarVolatile, ""); 1672 return true; 1673 } else { 1674 assert(mem->is_LoadStore(), ""); 1675 assert(trailing_mb->Opcode() == Op_MemBarAcquire, ""); 1676 return is_CAS(mem->Opcode(), true); 1677 } 1678 } 1679 return false; 1680 } 1681 1682 bool unnecessary_volatile(const Node *n) 1683 { 1684 // assert n->is_MemBar(); 1685 MemBarNode *mbvol = n->as_MemBar(); 1686 1687 bool release = mbvol->trailing_store(); 1688 assert(!release || (mbvol->in(MemBarNode::Precedent)->is_Store() && mbvol->in(MemBarNode::Precedent)->as_Store()->is_release()), ""); 1689 #ifdef ASSERT 1690 if (release) { 1691 Node* leading = mbvol->leading_membar(); 1692 assert(leading->Opcode() == Op_MemBarRelease, ""); 1693 assert(leading->as_MemBar()->leading_store(), ""); 1694 assert(leading->as_MemBar()->trailing_membar() == mbvol, ""); 1695 } 1696 #endif 1697 1698 return release; 1699 } 1700 1701 // predicates controlling emit of str<x>/stlr<x> 1702 1703 bool needs_releasing_store(const Node *n) 1704 { 1705 // assert n->is_Store(); 1706 StoreNode *st = n->as_Store(); 1707 return st->trailing_membar() != NULL; 1708 } 1709 1710 // predicate controlling translation of CAS 1711 // 1712 // returns true if CAS needs to use an acquiring load otherwise false 1713 1714 bool needs_acquiring_load_exclusive(const Node *n) 1715 { 1716 assert(is_CAS(n->Opcode(), true), "expecting a compare and swap"); 1717 LoadStoreNode* ldst = n->as_LoadStore(); 1718 if (is_CAS(n->Opcode(), false)) { 1719 assert(ldst->trailing_membar() != NULL, "expected trailing membar"); 1720 } else { 1721 return ldst->trailing_membar() != NULL; 1722 } 1723 1724 // so we can just return true here 1725 return true; 1726 } 1727 1728 #define __ _masm. 1729 1730 // advance declarations for helper functions to convert register 1731 // indices to register objects 1732 1733 // the ad file has to provide implementations of certain methods 1734 // expected by the generic code 1735 // 1736 // REQUIRED FUNCTIONALITY 1737 1738 //============================================================================= 1739 1740 // !!!!! Special hack to get all types of calls to specify the byte offset 1741 // from the start of the call to the point where the return address 1742 // will point. 1743 1744 int MachCallStaticJavaNode::ret_addr_offset() 1745 { 1746 // call should be a simple bl 1747 int off = 4; 1748 return off; 1749 } 1750 1751 int MachCallDynamicJavaNode::ret_addr_offset() 1752 { 1753 return 16; // movz, movk, movk, bl 1754 } 1755 1756 int MachCallRuntimeNode::ret_addr_offset() { 1757 // for generated stubs the call will be 1758 // bl(addr) 1759 // or with far branches 1760 // bl(trampoline_stub) 1761 // for real runtime callouts it will be six instructions 1762 // see aarch64_enc_java_to_runtime 1763 // adr(rscratch2, retaddr) 1764 // lea(rscratch1, RuntimeAddress(addr) 1765 // stp(zr, rscratch2, Address(__ pre(sp, -2 * wordSize))) 1766 // blr(rscratch1) 1767 CodeBlob *cb = CodeCache::find_blob(_entry_point); 1768 if (cb) { 1769 return 1 * NativeInstruction::instruction_size; 1770 } else { 1771 return 6 * NativeInstruction::instruction_size; 1772 } 1773 } 1774 1775 int MachCallNativeNode::ret_addr_offset() { 1776 // This is implemented using aarch64_enc_java_to_runtime as above. 1777 CodeBlob *cb = CodeCache::find_blob(_entry_point); 1778 if (cb) { 1779 return 1 * NativeInstruction::instruction_size; 1780 } else { 1781 return 6 * NativeInstruction::instruction_size; 1782 } 1783 } 1784 1785 //============================================================================= 1786 1787 #ifndef PRODUCT 1788 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1789 st->print("BREAKPOINT"); 1790 } 1791 #endif 1792 1793 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { 1794 C2_MacroAssembler _masm(&cbuf); 1795 __ brk(0); 1796 } 1797 1798 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const { 1799 return MachNode::size(ra_); 1800 } 1801 1802 //============================================================================= 1803 1804 #ifndef PRODUCT 1805 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const { 1806 st->print("nop \t# %d bytes pad for loops and calls", _count); 1807 } 1808 #endif 1809 1810 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const { 1811 C2_MacroAssembler _masm(&cbuf); 1812 for (int i = 0; i < _count; i++) { 1813 __ nop(); 1814 } 1815 } 1816 1817 uint MachNopNode::size(PhaseRegAlloc*) const { 1818 return _count * NativeInstruction::instruction_size; 1819 } 1820 1821 //============================================================================= 1822 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty; 1823 1824 int ConstantTable::calculate_table_base_offset() const { 1825 return 0; // absolute addressing, no offset 1826 } 1827 1828 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; } 1829 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) { 1830 ShouldNotReachHere(); 1831 } 1832 1833 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const { 1834 // Empty encoding 1835 } 1836 1837 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const { 1838 return 0; 1839 } 1840 1841 #ifndef PRODUCT 1842 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const { 1843 st->print("-- \t// MachConstantBaseNode (empty encoding)"); 1844 } 1845 #endif 1846 1847 #ifndef PRODUCT 1848 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1849 Compile* C = ra_->C; 1850 1851 int framesize = C->output()->frame_slots() << LogBytesPerInt; 1852 1853 if (C->output()->need_stack_bang(framesize)) 1854 st->print("# stack bang size=%d\n\t", framesize); 1855 1856 if (framesize < ((1 << 9) + 2 * wordSize)) { 1857 st->print("sub sp, sp, #%d\n\t", framesize); 1858 st->print("stp rfp, lr, [sp, #%d]", framesize - 2 * wordSize); 1859 if (PreserveFramePointer) st->print("\n\tadd rfp, sp, #%d", framesize - 2 * wordSize); 1860 } else { 1861 st->print("stp lr, rfp, [sp, #%d]!\n\t", -(2 * wordSize)); 1862 if (PreserveFramePointer) st->print("mov rfp, sp\n\t"); 1863 st->print("mov rscratch1, #%d\n\t", framesize - 2 * wordSize); 1864 st->print("sub sp, sp, rscratch1"); 1865 } 1866 if (C->stub_function() == NULL && BarrierSet::barrier_set()->barrier_set_nmethod() != NULL) { 1867 st->print("\n\t"); 1868 st->print("ldr rscratch1, [guard]\n\t"); 1869 st->print("dmb ishld\n\t"); 1870 st->print("ldr rscratch2, [rthread, #thread_disarmed_offset]\n\t"); 1871 st->print("cmp rscratch1, rscratch2\n\t"); 1872 st->print("b.eq skip"); 1873 st->print("\n\t"); 1874 st->print("blr #nmethod_entry_barrier_stub\n\t"); 1875 st->print("b skip\n\t"); 1876 st->print("guard: int\n\t"); 1877 st->print("\n\t"); 1878 st->print("skip:\n\t"); 1879 } 1880 } 1881 #endif 1882 1883 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { 1884 Compile* C = ra_->C; 1885 C2_MacroAssembler _masm(&cbuf); 1886 1887 // n.b. frame size includes space for return pc and rfp 1888 const int framesize = C->output()->frame_size_in_bytes(); 1889 1890 // insert a nop at the start of the prolog so we can patch in a 1891 // branch if we need to invalidate the method later 1892 __ nop(); 1893 1894 if (C->clinit_barrier_on_entry()) { 1895 assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started"); 1896 1897 Label L_skip_barrier; 1898 1899 __ mov_metadata(rscratch2, C->method()->holder()->constant_encoding()); 1900 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1901 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1902 __ bind(L_skip_barrier); 1903 } 1904 1905 if (C->max_vector_size() >= 16) { 1906 __ reinitialize_ptrue(); 1907 } 1908 1909 int bangsize = C->output()->bang_size_in_bytes(); 1910 if (C->output()->need_stack_bang(bangsize)) 1911 __ generate_stack_overflow_check(bangsize); 1912 1913 __ build_frame(framesize); 1914 1915 if (C->stub_function() == NULL) { 1916 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1917 bs->nmethod_entry_barrier(&_masm); 1918 } 1919 1920 if (VerifyStackAtCalls) { 1921 Unimplemented(); 1922 } 1923 1924 C->output()->set_frame_complete(cbuf.insts_size()); 1925 1926 if (C->has_mach_constant_base_node()) { 1927 // NOTE: We set the table base offset here because users might be 1928 // emitted before MachConstantBaseNode. 1929 ConstantTable& constant_table = C->output()->constant_table(); 1930 constant_table.set_table_base_offset(constant_table.calculate_table_base_offset()); 1931 } 1932 } 1933 1934 uint MachPrologNode::size(PhaseRegAlloc* ra_) const 1935 { 1936 return MachNode::size(ra_); // too many variables; just compute it 1937 // the hard way 1938 } 1939 1940 int MachPrologNode::reloc() const 1941 { 1942 return 0; 1943 } 1944 1945 //============================================================================= 1946 1947 #ifndef PRODUCT 1948 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 1949 Compile* C = ra_->C; 1950 int framesize = C->output()->frame_slots() << LogBytesPerInt; 1951 1952 st->print("# pop frame %d\n\t",framesize); 1953 1954 if (framesize == 0) { 1955 st->print("ldp lr, rfp, [sp],#%d\n\t", (2 * wordSize)); 1956 } else if (framesize < ((1 << 9) + 2 * wordSize)) { 1957 st->print("ldp lr, rfp, [sp,#%d]\n\t", framesize - 2 * wordSize); 1958 st->print("add sp, sp, #%d\n\t", framesize); 1959 } else { 1960 st->print("mov rscratch1, #%d\n\t", framesize - 2 * wordSize); 1961 st->print("add sp, sp, rscratch1\n\t"); 1962 st->print("ldp lr, rfp, [sp],#%d\n\t", (2 * wordSize)); 1963 } 1964 1965 if (do_polling() && C->is_method_compilation()) { 1966 st->print("# test polling word\n\t"); 1967 st->print("ldr rscratch1, [rthread],#%d\n\t", in_bytes(JavaThread::polling_word_offset())); 1968 st->print("cmp sp, rscratch1\n\t"); 1969 st->print("bhi #slow_path"); 1970 } 1971 } 1972 #endif 1973 1974 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { 1975 Compile* C = ra_->C; 1976 C2_MacroAssembler _masm(&cbuf); 1977 int framesize = C->output()->frame_slots() << LogBytesPerInt; 1978 1979 __ remove_frame(framesize); 1980 1981 if (StackReservedPages > 0 && C->has_reserved_stack_access()) { 1982 __ reserved_stack_check(); 1983 } 1984 1985 if (do_polling() && C->is_method_compilation()) { 1986 Label dummy_label; 1987 Label* code_stub = &dummy_label; 1988 if (!C->output()->in_scratch_emit_size()) { 1989 code_stub = &C->output()->safepoint_poll_table()->add_safepoint(__ offset()); 1990 } 1991 __ relocate(relocInfo::poll_return_type); 1992 __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */); 1993 } 1994 } 1995 1996 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const { 1997 // Variable size. Determine dynamically. 1998 return MachNode::size(ra_); 1999 } 2000 2001 int MachEpilogNode::reloc() const { 2002 // Return number of relocatable values contained in this instruction. 2003 return 1; // 1 for polling page. 2004 } 2005 2006 const Pipeline * MachEpilogNode::pipeline() const { 2007 return MachNode::pipeline_class(); 2008 } 2009 2010 //============================================================================= 2011 2012 // Figure out which register class each belongs in: rc_int, rc_float or 2013 // rc_stack. 2014 enum RC { rc_bad, rc_int, rc_float, rc_predicate, rc_stack }; 2015 2016 static enum RC rc_class(OptoReg::Name reg) { 2017 2018 if (reg == OptoReg::Bad) { 2019 return rc_bad; 2020 } 2021 2022 // we have 32 int registers * 2 halves 2023 int slots_of_int_registers = RegisterImpl::max_slots_per_register * RegisterImpl::number_of_registers; 2024 2025 if (reg < slots_of_int_registers) { 2026 return rc_int; 2027 } 2028 2029 // we have 32 float register * 8 halves 2030 int slots_of_float_registers = FloatRegisterImpl::max_slots_per_register * FloatRegisterImpl::number_of_registers; 2031 if (reg < slots_of_int_registers + slots_of_float_registers) { 2032 return rc_float; 2033 } 2034 2035 int slots_of_predicate_registers = PRegisterImpl::max_slots_per_register * PRegisterImpl::number_of_registers; 2036 if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_predicate_registers) { 2037 return rc_predicate; 2038 } 2039 2040 // Between predicate regs & stack is the flags. 2041 assert(OptoReg::is_stack(reg), "blow up if spilling flags"); 2042 2043 return rc_stack; 2044 } 2045 2046 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const { 2047 Compile* C = ra_->C; 2048 2049 // Get registers to move. 2050 OptoReg::Name src_hi = ra_->get_reg_second(in(1)); 2051 OptoReg::Name src_lo = ra_->get_reg_first(in(1)); 2052 OptoReg::Name dst_hi = ra_->get_reg_second(this); 2053 OptoReg::Name dst_lo = ra_->get_reg_first(this); 2054 2055 enum RC src_hi_rc = rc_class(src_hi); 2056 enum RC src_lo_rc = rc_class(src_lo); 2057 enum RC dst_hi_rc = rc_class(dst_hi); 2058 enum RC dst_lo_rc = rc_class(dst_lo); 2059 2060 assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register"); 2061 2062 if (src_hi != OptoReg::Bad) { 2063 assert((src_lo&1)==0 && src_lo+1==src_hi && 2064 (dst_lo&1)==0 && dst_lo+1==dst_hi, 2065 "expected aligned-adjacent pairs"); 2066 } 2067 2068 if (src_lo == dst_lo && src_hi == dst_hi) { 2069 return 0; // Self copy, no move. 2070 } 2071 2072 bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi && 2073 (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi; 2074 int src_offset = ra_->reg2offset(src_lo); 2075 int dst_offset = ra_->reg2offset(dst_lo); 2076 2077 if (bottom_type()->isa_vect() != NULL) { 2078 uint ireg = ideal_reg(); 2079 if (ireg == Op_VecA && cbuf) { 2080 C2_MacroAssembler _masm(cbuf); 2081 int sve_vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2082 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 2083 // stack->stack 2084 __ spill_copy_sve_vector_stack_to_stack(src_offset, dst_offset, 2085 sve_vector_reg_size_in_bytes); 2086 } else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) { 2087 __ spill_sve_vector(as_FloatRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo), 2088 sve_vector_reg_size_in_bytes); 2089 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) { 2090 __ unspill_sve_vector(as_FloatRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo), 2091 sve_vector_reg_size_in_bytes); 2092 } else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) { 2093 __ sve_orr(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2094 as_FloatRegister(Matcher::_regEncode[src_lo]), 2095 as_FloatRegister(Matcher::_regEncode[src_lo])); 2096 } else { 2097 ShouldNotReachHere(); 2098 } 2099 } else if (cbuf) { 2100 assert(ireg == Op_VecD || ireg == Op_VecX, "must be 64 bit or 128 bit vector"); 2101 C2_MacroAssembler _masm(cbuf); 2102 assert((src_lo_rc != rc_int && dst_lo_rc != rc_int), "sanity"); 2103 if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) { 2104 // stack->stack 2105 assert((src_offset & 7) == 0 && (dst_offset & 7) == 0, "unaligned stack offset"); 2106 if (ireg == Op_VecD) { 2107 __ unspill(rscratch1, true, src_offset); 2108 __ spill(rscratch1, true, dst_offset); 2109 } else { 2110 __ spill_copy128(src_offset, dst_offset); 2111 } 2112 } else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) { 2113 __ mov(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2114 ireg == Op_VecD ? __ T8B : __ T16B, 2115 as_FloatRegister(Matcher::_regEncode[src_lo])); 2116 } else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) { 2117 __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]), 2118 ireg == Op_VecD ? __ D : __ Q, 2119 ra_->reg2offset(dst_lo)); 2120 } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) { 2121 __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2122 ireg == Op_VecD ? __ D : __ Q, 2123 ra_->reg2offset(src_lo)); 2124 } else { 2125 ShouldNotReachHere(); 2126 } 2127 } 2128 } else if (cbuf) { 2129 C2_MacroAssembler _masm(cbuf); 2130 switch (src_lo_rc) { 2131 case rc_int: 2132 if (dst_lo_rc == rc_int) { // gpr --> gpr copy 2133 if (is64) { 2134 __ mov(as_Register(Matcher::_regEncode[dst_lo]), 2135 as_Register(Matcher::_regEncode[src_lo])); 2136 } else { 2137 C2_MacroAssembler _masm(cbuf); 2138 __ movw(as_Register(Matcher::_regEncode[dst_lo]), 2139 as_Register(Matcher::_regEncode[src_lo])); 2140 } 2141 } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy 2142 if (is64) { 2143 __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2144 as_Register(Matcher::_regEncode[src_lo])); 2145 } else { 2146 __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2147 as_Register(Matcher::_regEncode[src_lo])); 2148 } 2149 } else { // gpr --> stack spill 2150 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 2151 __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset); 2152 } 2153 break; 2154 case rc_float: 2155 if (dst_lo_rc == rc_int) { // fpr --> gpr copy 2156 if (is64) { 2157 __ fmovd(as_Register(Matcher::_regEncode[dst_lo]), 2158 as_FloatRegister(Matcher::_regEncode[src_lo])); 2159 } else { 2160 __ fmovs(as_Register(Matcher::_regEncode[dst_lo]), 2161 as_FloatRegister(Matcher::_regEncode[src_lo])); 2162 } 2163 } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy 2164 if (cbuf) { 2165 __ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2166 as_FloatRegister(Matcher::_regEncode[src_lo])); 2167 } else { 2168 __ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2169 as_FloatRegister(Matcher::_regEncode[src_lo])); 2170 } 2171 } else { // fpr --> stack spill 2172 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 2173 __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]), 2174 is64 ? __ D : __ S, dst_offset); 2175 } 2176 break; 2177 case rc_stack: 2178 if (dst_lo_rc == rc_int) { // stack --> gpr load 2179 __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset); 2180 } else if (dst_lo_rc == rc_float) { // stack --> fpr load 2181 __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]), 2182 is64 ? __ D : __ S, src_offset); 2183 } else { // stack --> stack copy 2184 assert(dst_lo_rc == rc_stack, "spill to bad register class"); 2185 __ unspill(rscratch1, is64, src_offset); 2186 __ spill(rscratch1, is64, dst_offset); 2187 } 2188 break; 2189 default: 2190 assert(false, "bad rc_class for spill"); 2191 ShouldNotReachHere(); 2192 } 2193 } 2194 2195 if (st) { 2196 st->print("spill "); 2197 if (src_lo_rc == rc_stack) { 2198 st->print("[sp, #%d] -> ", ra_->reg2offset(src_lo)); 2199 } else { 2200 st->print("%s -> ", Matcher::regName[src_lo]); 2201 } 2202 if (dst_lo_rc == rc_stack) { 2203 st->print("[sp, #%d]", ra_->reg2offset(dst_lo)); 2204 } else { 2205 st->print("%s", Matcher::regName[dst_lo]); 2206 } 2207 if (bottom_type()->isa_vect() != NULL) { 2208 int vsize = 0; 2209 switch (ideal_reg()) { 2210 case Op_VecD: 2211 vsize = 64; 2212 break; 2213 case Op_VecX: 2214 vsize = 128; 2215 break; 2216 case Op_VecA: 2217 vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8; 2218 break; 2219 default: 2220 assert(false, "bad register type for spill"); 2221 ShouldNotReachHere(); 2222 } 2223 st->print("\t# vector spill size = %d", vsize); 2224 } else { 2225 st->print("\t# spill size = %d", is64 ? 64 : 32); 2226 } 2227 } 2228 2229 return 0; 2230 2231 } 2232 2233 #ifndef PRODUCT 2234 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 2235 if (!ra_) 2236 st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx); 2237 else 2238 implementation(NULL, ra_, false, st); 2239 } 2240 #endif 2241 2242 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { 2243 implementation(&cbuf, ra_, false, NULL); 2244 } 2245 2246 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const { 2247 return MachNode::size(ra_); 2248 } 2249 2250 //============================================================================= 2251 2252 #ifndef PRODUCT 2253 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const { 2254 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 2255 int reg = ra_->get_reg_first(this); 2256 st->print("add %s, rsp, #%d]\t# box lock", 2257 Matcher::regName[reg], offset); 2258 } 2259 #endif 2260 2261 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { 2262 C2_MacroAssembler _masm(&cbuf); 2263 2264 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 2265 int reg = ra_->get_encode(this); 2266 2267 // This add will handle any 24-bit signed offset. 24 bits allows an 2268 // 8 megabyte stack frame. 2269 __ add(as_Register(reg), sp, offset); 2270 } 2271 2272 uint BoxLockNode::size(PhaseRegAlloc *ra_) const { 2273 // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_). 2274 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); 2275 2276 if (Assembler::operand_valid_for_add_sub_immediate(offset)) { 2277 return NativeInstruction::instruction_size; 2278 } else { 2279 return 2 * NativeInstruction::instruction_size; 2280 } 2281 } 2282 2283 //============================================================================= 2284 2285 #ifndef PRODUCT 2286 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const 2287 { 2288 st->print_cr("# MachUEPNode"); 2289 if (UseCompressedClassPointers) { 2290 st->print_cr("\tldrw rscratch1, j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 2291 if (CompressedKlassPointers::shift() != 0) { 2292 st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1"); 2293 } 2294 } else { 2295 st->print_cr("\tldr rscratch1, j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass"); 2296 } 2297 st->print_cr("\tcmp r0, rscratch1\t # Inline cache check"); 2298 st->print_cr("\tbne, SharedRuntime::_ic_miss_stub"); 2299 } 2300 #endif 2301 2302 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const 2303 { 2304 // This is the unverified entry point. 2305 C2_MacroAssembler _masm(&cbuf); 2306 2307 __ cmp_klass(j_rarg0, rscratch2, rscratch1); 2308 Label skip; 2309 // TODO 2310 // can we avoid this skip and still use a reloc? 2311 __ br(Assembler::EQ, skip); 2312 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 2313 __ bind(skip); 2314 } 2315 2316 uint MachUEPNode::size(PhaseRegAlloc* ra_) const 2317 { 2318 return MachNode::size(ra_); 2319 } 2320 2321 // REQUIRED EMIT CODE 2322 2323 //============================================================================= 2324 2325 // Emit exception handler code. 2326 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) 2327 { 2328 // mov rscratch1 #exception_blob_entry_point 2329 // br rscratch1 2330 // Note that the code buffer's insts_mark is always relative to insts. 2331 // That's why we must use the macroassembler to generate a handler. 2332 C2_MacroAssembler _masm(&cbuf); 2333 address base = __ start_a_stub(size_exception_handler()); 2334 if (base == NULL) { 2335 ciEnv::current()->record_failure("CodeCache is full"); 2336 return 0; // CodeBuffer::expand failed 2337 } 2338 int offset = __ offset(); 2339 __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point())); 2340 assert(__ offset() - offset <= (int) size_exception_handler(), "overflow"); 2341 __ end_a_stub(); 2342 return offset; 2343 } 2344 2345 // Emit deopt handler code. 2346 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) 2347 { 2348 // Note that the code buffer's insts_mark is always relative to insts. 2349 // That's why we must use the macroassembler to generate a handler. 2350 C2_MacroAssembler _masm(&cbuf); 2351 address base = __ start_a_stub(size_deopt_handler()); 2352 if (base == NULL) { 2353 ciEnv::current()->record_failure("CodeCache is full"); 2354 return 0; // CodeBuffer::expand failed 2355 } 2356 int offset = __ offset(); 2357 2358 __ adr(lr, __ pc()); 2359 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 2360 2361 assert(__ offset() - offset == (int) size_deopt_handler(), "overflow"); 2362 __ end_a_stub(); 2363 return offset; 2364 } 2365 2366 // REQUIRED MATCHER CODE 2367 2368 //============================================================================= 2369 2370 const bool Matcher::match_rule_supported(int opcode) { 2371 if (!has_match_rule(opcode)) 2372 return false; 2373 2374 bool ret_value = true; 2375 switch (opcode) { 2376 case Op_OnSpinWait: 2377 return VM_Version::supports_on_spin_wait(); 2378 case Op_CacheWB: 2379 case Op_CacheWBPreSync: 2380 case Op_CacheWBPostSync: 2381 if (!VM_Version::supports_data_cache_line_flush()) { 2382 ret_value = false; 2383 } 2384 break; 2385 } 2386 2387 return ret_value; // Per default match rules are supported. 2388 } 2389 2390 // Identify extra cases that we might want to provide match rules for vector nodes and 2391 // other intrinsics guarded with vector length (vlen) and element type (bt). 2392 const bool Matcher::match_rule_supported_vector(int opcode, int vlen, BasicType bt) { 2393 if (!match_rule_supported(opcode) || !vector_size_supported(bt, vlen)) { 2394 return false; 2395 } 2396 int bit_size = vlen * type2aelembytes(bt) * 8; 2397 if (UseSVE == 0 && bit_size > 128) { 2398 return false; 2399 } 2400 if (UseSVE > 0) { 2401 return op_sve_supported(opcode); 2402 } else { // NEON 2403 // Special cases 2404 switch (opcode) { 2405 case Op_VectorMaskCmp: 2406 // We don't have VectorReinterpret with bit_size less than 64 support for 2407 // now, even for byte type. To be refined with fully VectorCast support. 2408 case Op_VectorReinterpret: 2409 if (vlen < 2 || bit_size < 64) { 2410 return false; 2411 } 2412 break; 2413 case Op_MulAddVS2VI: 2414 if (bit_size < 128) { 2415 return false; 2416 } 2417 break; 2418 case Op_MulVL: 2419 return false; 2420 case Op_VectorLoadShuffle: 2421 case Op_VectorRearrange: 2422 if (vlen < 4) { 2423 return false; 2424 } 2425 break; 2426 // Some types of VectorCast are not implemented for now. 2427 case Op_VectorCastI2X: 2428 if (bt == T_BYTE) { 2429 return false; 2430 } 2431 break; 2432 case Op_VectorCastS2X: 2433 if (vlen < 4 || bit_size < 64) { 2434 return false; 2435 } 2436 break; 2437 case Op_VectorCastF2X: 2438 case Op_VectorCastD2X: 2439 if (bt == T_INT || bt == T_SHORT || bt == T_BYTE || bt == T_LONG) { 2440 return false; 2441 } 2442 break; 2443 default: 2444 break; 2445 } 2446 } 2447 return true; // Per default match rules are supported. 2448 } 2449 2450 const RegMask* Matcher::predicate_reg_mask(void) { 2451 return &_PR_REG_mask; 2452 } 2453 2454 const TypeVect* Matcher::predicate_reg_type(const Type* elemTy, int length) { 2455 return new TypeVectMask(elemTy, length); 2456 } 2457 2458 // Vector calling convention not yet implemented. 2459 const bool Matcher::supports_vector_calling_convention(void) { 2460 return false; 2461 } 2462 2463 OptoRegPair Matcher::vector_return_value(uint ideal_reg) { 2464 Unimplemented(); 2465 return OptoRegPair(0, 0); 2466 } 2467 2468 const int Matcher::float_pressure(int default_pressure_threshold) { 2469 return default_pressure_threshold; 2470 } 2471 2472 // Is this branch offset short enough that a short branch can be used? 2473 // 2474 // NOTE: If the platform does not provide any short branch variants, then 2475 // this method should return false for offset 0. 2476 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) { 2477 // The passed offset is relative to address of the branch. 2478 2479 return (-32768 <= offset && offset < 32768); 2480 } 2481 2482 // Vector width in bytes. 2483 const int Matcher::vector_width_in_bytes(BasicType bt) { 2484 // The MaxVectorSize should have been set by detecting SVE max vector register size. 2485 int size = MIN2((UseSVE > 0) ? 256 : 16, (int)MaxVectorSize); 2486 // Minimum 2 values in vector 2487 if (size < 2*type2aelembytes(bt)) size = 0; 2488 // But never < 4 2489 if (size < 4) size = 0; 2490 return size; 2491 } 2492 2493 // Limits on vector size (number of elements) loaded into vector. 2494 const int Matcher::max_vector_size(const BasicType bt) { 2495 return vector_width_in_bytes(bt)/type2aelembytes(bt); 2496 } 2497 const int Matcher::min_vector_size(const BasicType bt) { 2498 int max_size = max_vector_size(bt); 2499 if ((UseSVE > 0) && (MaxVectorSize >= 16)) { 2500 // Currently vector length less than SVE vector register size is not supported. 2501 return max_size; 2502 } else { // NEON 2503 // Limit the vector size to 8 bytes 2504 int size = 8 / type2aelembytes(bt); 2505 if (bt == T_BYTE) { 2506 // To support vector api shuffle/rearrange. 2507 size = 4; 2508 } else if (bt == T_BOOLEAN) { 2509 // To support vector api load/store mask. 2510 size = 2; 2511 } 2512 if (size < 2) size = 2; 2513 return MIN2(size,max_size); 2514 } 2515 } 2516 2517 // Actual max scalable vector register length. 2518 const int Matcher::scalable_vector_reg_size(const BasicType bt) { 2519 return Matcher::max_vector_size(bt); 2520 } 2521 2522 // Vector ideal reg. 2523 const uint Matcher::vector_ideal_reg(int len) { 2524 if (UseSVE > 0 && 16 <= len && len <= 256) { 2525 return Op_VecA; 2526 } 2527 switch(len) { 2528 // For 16-bit/32-bit mask vector, reuse VecD. 2529 case 2: 2530 case 4: 2531 case 8: return Op_VecD; 2532 case 16: return Op_VecX; 2533 } 2534 ShouldNotReachHere(); 2535 return 0; 2536 } 2537 2538 MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* original_opnd, uint ideal_reg, bool is_temp) { 2539 ShouldNotReachHere(); // generic vector operands not supported 2540 return NULL; 2541 } 2542 2543 bool Matcher::is_generic_reg2reg_move(MachNode* m) { 2544 ShouldNotReachHere(); // generic vector operands not supported 2545 return false; 2546 } 2547 2548 bool Matcher::is_generic_vector(MachOper* opnd) { 2549 ShouldNotReachHere(); // generic vector operands not supported 2550 return false; 2551 } 2552 2553 // Return whether or not this register is ever used as an argument. 2554 // This function is used on startup to build the trampoline stubs in 2555 // generateOptoStub. Registers not mentioned will be killed by the VM 2556 // call in the trampoline, and arguments in those registers not be 2557 // available to the callee. 2558 bool Matcher::can_be_java_arg(int reg) 2559 { 2560 return 2561 reg == R0_num || reg == R0_H_num || 2562 reg == R1_num || reg == R1_H_num || 2563 reg == R2_num || reg == R2_H_num || 2564 reg == R3_num || reg == R3_H_num || 2565 reg == R4_num || reg == R4_H_num || 2566 reg == R5_num || reg == R5_H_num || 2567 reg == R6_num || reg == R6_H_num || 2568 reg == R7_num || reg == R7_H_num || 2569 reg == V0_num || reg == V0_H_num || 2570 reg == V1_num || reg == V1_H_num || 2571 reg == V2_num || reg == V2_H_num || 2572 reg == V3_num || reg == V3_H_num || 2573 reg == V4_num || reg == V4_H_num || 2574 reg == V5_num || reg == V5_H_num || 2575 reg == V6_num || reg == V6_H_num || 2576 reg == V7_num || reg == V7_H_num; 2577 } 2578 2579 bool Matcher::is_spillable_arg(int reg) 2580 { 2581 return can_be_java_arg(reg); 2582 } 2583 2584 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) { 2585 return false; 2586 } 2587 2588 RegMask Matcher::divI_proj_mask() { 2589 ShouldNotReachHere(); 2590 return RegMask(); 2591 } 2592 2593 // Register for MODI projection of divmodI. 2594 RegMask Matcher::modI_proj_mask() { 2595 ShouldNotReachHere(); 2596 return RegMask(); 2597 } 2598 2599 // Register for DIVL projection of divmodL. 2600 RegMask Matcher::divL_proj_mask() { 2601 ShouldNotReachHere(); 2602 return RegMask(); 2603 } 2604 2605 // Register for MODL projection of divmodL. 2606 RegMask Matcher::modL_proj_mask() { 2607 ShouldNotReachHere(); 2608 return RegMask(); 2609 } 2610 2611 const RegMask Matcher::method_handle_invoke_SP_save_mask() { 2612 return FP_REG_mask(); 2613 } 2614 2615 bool size_fits_all_mem_uses(AddPNode* addp, int shift) { 2616 for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { 2617 Node* u = addp->fast_out(i); 2618 if (u->is_LoadStore()) { 2619 // On AArch64, LoadStoreNodes (i.e. compare and swap 2620 // instructions) only take register indirect as an operand, so 2621 // any attempt to use an AddPNode as an input to a LoadStoreNode 2622 // must fail. 2623 return false; 2624 } 2625 if (u->is_Mem()) { 2626 int opsize = u->as_Mem()->memory_size(); 2627 assert(opsize > 0, "unexpected memory operand size"); 2628 if (u->as_Mem()->memory_size() != (1<<shift)) { 2629 return false; 2630 } 2631 } 2632 } 2633 return true; 2634 } 2635 2636 // Should the matcher clone input 'm' of node 'n'? 2637 bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) { 2638 if (is_vshift_con_pattern(n, m)) { // ShiftV src (ShiftCntV con) 2639 mstack.push(m, Visit); // m = ShiftCntV 2640 return true; 2641 } 2642 return false; 2643 } 2644 2645 // Should the Matcher clone shifts on addressing modes, expecting them 2646 // to be subsumed into complex addressing expressions or compute them 2647 // into registers? 2648 bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) { 2649 if (clone_base_plus_offset_address(m, mstack, address_visited)) { 2650 return true; 2651 } 2652 2653 Node *off = m->in(AddPNode::Offset); 2654 if (off->Opcode() == Op_LShiftL && off->in(2)->is_Con() && 2655 size_fits_all_mem_uses(m, off->in(2)->get_int()) && 2656 // Are there other uses besides address expressions? 2657 !is_visited(off)) { 2658 address_visited.set(off->_idx); // Flag as address_visited 2659 mstack.push(off->in(2), Visit); 2660 Node *conv = off->in(1); 2661 if (conv->Opcode() == Op_ConvI2L && 2662 // Are there other uses besides address expressions? 2663 !is_visited(conv)) { 2664 address_visited.set(conv->_idx); // Flag as address_visited 2665 mstack.push(conv->in(1), Pre_Visit); 2666 } else { 2667 mstack.push(conv, Pre_Visit); 2668 } 2669 address_visited.test_set(m->_idx); // Flag as address_visited 2670 mstack.push(m->in(AddPNode::Address), Pre_Visit); 2671 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2672 return true; 2673 } else if (off->Opcode() == Op_ConvI2L && 2674 // Are there other uses besides address expressions? 2675 !is_visited(off)) { 2676 address_visited.test_set(m->_idx); // Flag as address_visited 2677 address_visited.set(off->_idx); // Flag as address_visited 2678 mstack.push(off->in(1), Pre_Visit); 2679 mstack.push(m->in(AddPNode::Address), Pre_Visit); 2680 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2681 return true; 2682 } 2683 return false; 2684 } 2685 2686 #define MOV_VOLATILE(REG, BASE, INDEX, SCALE, DISP, SCRATCH, INSN) \ 2687 C2_MacroAssembler _masm(&cbuf); \ 2688 { \ 2689 guarantee(INDEX == -1, "mode not permitted for volatile"); \ 2690 guarantee(DISP == 0, "mode not permitted for volatile"); \ 2691 guarantee(SCALE == 0, "mode not permitted for volatile"); \ 2692 __ INSN(REG, as_Register(BASE)); \ 2693 } 2694 2695 2696 static Address mem2address(int opcode, Register base, int index, int size, int disp) 2697 { 2698 Address::extend scale; 2699 2700 // Hooboy, this is fugly. We need a way to communicate to the 2701 // encoder that the index needs to be sign extended, so we have to 2702 // enumerate all the cases. 2703 switch (opcode) { 2704 case INDINDEXSCALEDI2L: 2705 case INDINDEXSCALEDI2LN: 2706 case INDINDEXI2L: 2707 case INDINDEXI2LN: 2708 scale = Address::sxtw(size); 2709 break; 2710 default: 2711 scale = Address::lsl(size); 2712 } 2713 2714 if (index == -1) { 2715 return Address(base, disp); 2716 } else { 2717 assert(disp == 0, "unsupported address mode: disp = %d", disp); 2718 return Address(base, as_Register(index), scale); 2719 } 2720 } 2721 2722 2723 typedef void (MacroAssembler::* mem_insn)(Register Rt, const Address &adr); 2724 typedef void (MacroAssembler::* mem_insn2)(Register Rt, Register adr); 2725 typedef void (MacroAssembler::* mem_float_insn)(FloatRegister Rt, const Address &adr); 2726 typedef void (MacroAssembler::* mem_vector_insn)(FloatRegister Rt, 2727 MacroAssembler::SIMD_RegVariant T, const Address &adr); 2728 2729 // Used for all non-volatile memory accesses. The use of 2730 // $mem->opcode() to discover whether this pattern uses sign-extended 2731 // offsets is something of a kludge. 2732 static void loadStore(C2_MacroAssembler masm, mem_insn insn, 2733 Register reg, int opcode, 2734 Register base, int index, int scale, int disp, 2735 int size_in_memory) 2736 { 2737 Address addr = mem2address(opcode, base, index, scale, disp); 2738 if (addr.getMode() == Address::base_plus_offset) { 2739 /* If we get an out-of-range offset it is a bug in the compiler, 2740 so we assert here. */ 2741 assert(Address::offset_ok_for_immed(addr.offset(), exact_log2(size_in_memory)), 2742 "c2 compiler bug"); 2743 /* Fix up any out-of-range offsets. */ 2744 assert_different_registers(rscratch1, base); 2745 assert_different_registers(rscratch1, reg); 2746 addr = masm.legitimize_address(addr, size_in_memory, rscratch1); 2747 } 2748 (masm.*insn)(reg, addr); 2749 } 2750 2751 static void loadStore(C2_MacroAssembler masm, mem_float_insn insn, 2752 FloatRegister reg, int opcode, 2753 Register base, int index, int size, int disp, 2754 int size_in_memory) 2755 { 2756 Address::extend scale; 2757 2758 switch (opcode) { 2759 case INDINDEXSCALEDI2L: 2760 case INDINDEXSCALEDI2LN: 2761 scale = Address::sxtw(size); 2762 break; 2763 default: 2764 scale = Address::lsl(size); 2765 } 2766 2767 if (index == -1) { 2768 /* If we get an out-of-range offset it is a bug in the compiler, 2769 so we assert here. */ 2770 assert(Address::offset_ok_for_immed(disp, exact_log2(size_in_memory)), "c2 compiler bug"); 2771 /* Fix up any out-of-range offsets. */ 2772 assert_different_registers(rscratch1, base); 2773 Address addr = Address(base, disp); 2774 addr = masm.legitimize_address(addr, size_in_memory, rscratch1); 2775 (masm.*insn)(reg, addr); 2776 } else { 2777 assert(disp == 0, "unsupported address mode: disp = %d", disp); 2778 (masm.*insn)(reg, Address(base, as_Register(index), scale)); 2779 } 2780 } 2781 2782 static void loadStore(C2_MacroAssembler masm, mem_vector_insn insn, 2783 FloatRegister reg, MacroAssembler::SIMD_RegVariant T, 2784 int opcode, Register base, int index, int size, int disp) 2785 { 2786 if (index == -1) { 2787 (masm.*insn)(reg, T, Address(base, disp)); 2788 } else { 2789 assert(disp == 0, "unsupported address mode"); 2790 (masm.*insn)(reg, T, Address(base, as_Register(index), Address::lsl(size))); 2791 } 2792 } 2793 2794 %} 2795 2796 2797 2798 //----------ENCODING BLOCK----------------------------------------------------- 2799 // This block specifies the encoding classes used by the compiler to 2800 // output byte streams. Encoding classes are parameterized macros 2801 // used by Machine Instruction Nodes in order to generate the bit 2802 // encoding of the instruction. Operands specify their base encoding 2803 // interface with the interface keyword. There are currently 2804 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, & 2805 // COND_INTER. REG_INTER causes an operand to generate a function 2806 // which returns its register number when queried. CONST_INTER causes 2807 // an operand to generate a function which returns the value of the 2808 // constant when queried. MEMORY_INTER causes an operand to generate 2809 // four functions which return the Base Register, the Index Register, 2810 // the Scale Value, and the Offset Value of the operand when queried. 2811 // COND_INTER causes an operand to generate six functions which return 2812 // the encoding code (ie - encoding bits for the instruction) 2813 // associated with each basic boolean condition for a conditional 2814 // instruction. 2815 // 2816 // Instructions specify two basic values for encoding. Again, a 2817 // function is available to check if the constant displacement is an 2818 // oop. They use the ins_encode keyword to specify their encoding 2819 // classes (which must be a sequence of enc_class names, and their 2820 // parameters, specified in the encoding block), and they use the 2821 // opcode keyword to specify, in order, their primary, secondary, and 2822 // tertiary opcode. Only the opcode sections which a particular 2823 // instruction needs for encoding need to be specified. 2824 encode %{ 2825 // Build emit functions for each basic byte or larger field in the 2826 // intel encoding scheme (opcode, rm, sib, immediate), and call them 2827 // from C++ code in the enc_class source block. Emit functions will 2828 // live in the main source block for now. In future, we can 2829 // generalize this by adding a syntax that specifies the sizes of 2830 // fields in an order, so that the adlc can build the emit functions 2831 // automagically 2832 2833 // catch all for unimplemented encodings 2834 enc_class enc_unimplemented %{ 2835 C2_MacroAssembler _masm(&cbuf); 2836 __ unimplemented("C2 catch all"); 2837 %} 2838 2839 // BEGIN Non-volatile memory access 2840 2841 // This encoding class is generated automatically from ad_encode.m4. 2842 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2843 enc_class aarch64_enc_ldrsbw(iRegI dst, memory1 mem) %{ 2844 Register dst_reg = as_Register($dst$$reg); 2845 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrsbw, dst_reg, $mem->opcode(), 2846 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2847 %} 2848 2849 // This encoding class is generated automatically from ad_encode.m4. 2850 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2851 enc_class aarch64_enc_ldrsb(iRegI dst, memory1 mem) %{ 2852 Register dst_reg = as_Register($dst$$reg); 2853 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrsb, dst_reg, $mem->opcode(), 2854 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2855 %} 2856 2857 // This encoding class is generated automatically from ad_encode.m4. 2858 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2859 enc_class aarch64_enc_ldrb(iRegI dst, memory1 mem) %{ 2860 Register dst_reg = as_Register($dst$$reg); 2861 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrb, dst_reg, $mem->opcode(), 2862 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2863 %} 2864 2865 // This encoding class is generated automatically from ad_encode.m4. 2866 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2867 enc_class aarch64_enc_ldrb(iRegL dst, memory1 mem) %{ 2868 Register dst_reg = as_Register($dst$$reg); 2869 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrb, dst_reg, $mem->opcode(), 2870 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2871 %} 2872 2873 // This encoding class is generated automatically from ad_encode.m4. 2874 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2875 enc_class aarch64_enc_ldrshw(iRegI dst, memory2 mem) %{ 2876 Register dst_reg = as_Register($dst$$reg); 2877 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrshw, dst_reg, $mem->opcode(), 2878 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2879 %} 2880 2881 // This encoding class is generated automatically from ad_encode.m4. 2882 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2883 enc_class aarch64_enc_ldrsh(iRegI dst, memory2 mem) %{ 2884 Register dst_reg = as_Register($dst$$reg); 2885 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrsh, dst_reg, $mem->opcode(), 2886 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2887 %} 2888 2889 // This encoding class is generated automatically from ad_encode.m4. 2890 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2891 enc_class aarch64_enc_ldrh(iRegI dst, memory2 mem) %{ 2892 Register dst_reg = as_Register($dst$$reg); 2893 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrh, dst_reg, $mem->opcode(), 2894 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2895 %} 2896 2897 // This encoding class is generated automatically from ad_encode.m4. 2898 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2899 enc_class aarch64_enc_ldrh(iRegL dst, memory2 mem) %{ 2900 Register dst_reg = as_Register($dst$$reg); 2901 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrh, dst_reg, $mem->opcode(), 2902 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2903 %} 2904 2905 // This encoding class is generated automatically from ad_encode.m4. 2906 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2907 enc_class aarch64_enc_ldrw(iRegI dst, memory4 mem) %{ 2908 Register dst_reg = as_Register($dst$$reg); 2909 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrw, dst_reg, $mem->opcode(), 2910 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2911 %} 2912 2913 // This encoding class is generated automatically from ad_encode.m4. 2914 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2915 enc_class aarch64_enc_ldrw(iRegL dst, memory4 mem) %{ 2916 Register dst_reg = as_Register($dst$$reg); 2917 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrw, dst_reg, $mem->opcode(), 2918 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2919 %} 2920 2921 // This encoding class is generated automatically from ad_encode.m4. 2922 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2923 enc_class aarch64_enc_ldrsw(iRegL dst, memory4 mem) %{ 2924 Register dst_reg = as_Register($dst$$reg); 2925 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrsw, dst_reg, $mem->opcode(), 2926 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2927 %} 2928 2929 // This encoding class is generated automatically from ad_encode.m4. 2930 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2931 enc_class aarch64_enc_ldr(iRegL dst, memory8 mem) %{ 2932 Register dst_reg = as_Register($dst$$reg); 2933 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, $mem->opcode(), 2934 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 2935 %} 2936 2937 // This encoding class is generated automatically from ad_encode.m4. 2938 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2939 enc_class aarch64_enc_ldrs(vRegF dst, memory4 mem) %{ 2940 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 2941 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrs, dst_reg, $mem->opcode(), 2942 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2943 %} 2944 2945 // This encoding class is generated automatically from ad_encode.m4. 2946 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2947 enc_class aarch64_enc_ldrd(vRegD dst, memory8 mem) %{ 2948 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 2949 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrd, dst_reg, $mem->opcode(), 2950 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 2951 %} 2952 2953 // This encoding class is generated automatically from ad_encode.m4. 2954 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2955 enc_class aarch64_enc_strb(iRegI src, memory1 mem) %{ 2956 Register src_reg = as_Register($src$$reg); 2957 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::strb, src_reg, $mem->opcode(), 2958 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2959 %} 2960 2961 // This encoding class is generated automatically from ad_encode.m4. 2962 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2963 enc_class aarch64_enc_strb0(memory1 mem) %{ 2964 C2_MacroAssembler _masm(&cbuf); 2965 loadStore(_masm, &MacroAssembler::strb, zr, $mem->opcode(), 2966 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 2967 %} 2968 2969 // This encoding class is generated automatically from ad_encode.m4. 2970 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2971 enc_class aarch64_enc_strh(iRegI src, memory2 mem) %{ 2972 Register src_reg = as_Register($src$$reg); 2973 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::strh, src_reg, $mem->opcode(), 2974 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2975 %} 2976 2977 // This encoding class is generated automatically from ad_encode.m4. 2978 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2979 enc_class aarch64_enc_strh0(memory2 mem) %{ 2980 C2_MacroAssembler _masm(&cbuf); 2981 loadStore(_masm, &MacroAssembler::strh, zr, $mem->opcode(), 2982 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 2); 2983 %} 2984 2985 // This encoding class is generated automatically from ad_encode.m4. 2986 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2987 enc_class aarch64_enc_strw(iRegI src, memory4 mem) %{ 2988 Register src_reg = as_Register($src$$reg); 2989 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::strw, src_reg, $mem->opcode(), 2990 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2991 %} 2992 2993 // This encoding class is generated automatically from ad_encode.m4. 2994 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 2995 enc_class aarch64_enc_strw0(memory4 mem) %{ 2996 C2_MacroAssembler _masm(&cbuf); 2997 loadStore(_masm, &MacroAssembler::strw, zr, $mem->opcode(), 2998 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 2999 %} 3000 3001 // This encoding class is generated automatically from ad_encode.m4. 3002 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 3003 enc_class aarch64_enc_str(iRegL src, memory8 mem) %{ 3004 Register src_reg = as_Register($src$$reg); 3005 // we sometimes get asked to store the stack pointer into the 3006 // current thread -- we cannot do that directly on AArch64 3007 if (src_reg == r31_sp) { 3008 C2_MacroAssembler _masm(&cbuf); 3009 assert(as_Register($mem$$base) == rthread, "unexpected store for sp"); 3010 __ mov(rscratch2, sp); 3011 src_reg = rscratch2; 3012 } 3013 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, $mem->opcode(), 3014 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 3015 %} 3016 3017 // This encoding class is generated automatically from ad_encode.m4. 3018 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 3019 enc_class aarch64_enc_str0(memory8 mem) %{ 3020 C2_MacroAssembler _masm(&cbuf); 3021 loadStore(_masm, &MacroAssembler::str, zr, $mem->opcode(), 3022 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 3023 %} 3024 3025 // This encoding class is generated automatically from ad_encode.m4. 3026 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 3027 enc_class aarch64_enc_strs(vRegF src, memory4 mem) %{ 3028 FloatRegister src_reg = as_FloatRegister($src$$reg); 3029 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::strs, src_reg, $mem->opcode(), 3030 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 3031 %} 3032 3033 // This encoding class is generated automatically from ad_encode.m4. 3034 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 3035 enc_class aarch64_enc_strd(vRegD src, memory8 mem) %{ 3036 FloatRegister src_reg = as_FloatRegister($src$$reg); 3037 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::strd, src_reg, $mem->opcode(), 3038 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 3039 %} 3040 3041 // This encoding class is generated automatically from ad_encode.m4. 3042 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 3043 enc_class aarch64_enc_strb0_ordered(memory4 mem) %{ 3044 C2_MacroAssembler _masm(&cbuf); 3045 __ membar(Assembler::StoreStore); 3046 loadStore(_masm, &MacroAssembler::strb, zr, $mem->opcode(), 3047 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 1); 3048 %} 3049 3050 // END Non-volatile memory access 3051 3052 // Vector loads and stores 3053 enc_class aarch64_enc_ldrvH(vecD dst, memory mem) %{ 3054 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 3055 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::H, 3056 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3057 %} 3058 3059 enc_class aarch64_enc_ldrvS(vecD dst, memory mem) %{ 3060 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 3061 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::S, 3062 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3063 %} 3064 3065 enc_class aarch64_enc_ldrvD(vecD dst, memory mem) %{ 3066 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 3067 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::D, 3068 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3069 %} 3070 3071 enc_class aarch64_enc_ldrvQ(vecX dst, memory mem) %{ 3072 FloatRegister dst_reg = as_FloatRegister($dst$$reg); 3073 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldr, dst_reg, MacroAssembler::Q, 3074 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3075 %} 3076 3077 enc_class aarch64_enc_strvH(vecD src, memory mem) %{ 3078 FloatRegister src_reg = as_FloatRegister($src$$reg); 3079 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::H, 3080 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3081 %} 3082 3083 enc_class aarch64_enc_strvS(vecD src, memory mem) %{ 3084 FloatRegister src_reg = as_FloatRegister($src$$reg); 3085 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::S, 3086 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3087 %} 3088 3089 enc_class aarch64_enc_strvD(vecD src, memory mem) %{ 3090 FloatRegister src_reg = as_FloatRegister($src$$reg); 3091 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::D, 3092 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3093 %} 3094 3095 enc_class aarch64_enc_strvQ(vecX src, memory mem) %{ 3096 FloatRegister src_reg = as_FloatRegister($src$$reg); 3097 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::str, src_reg, MacroAssembler::Q, 3098 $mem->opcode(), as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp); 3099 %} 3100 3101 // volatile loads and stores 3102 3103 enc_class aarch64_enc_stlrb(iRegI src, memory mem) %{ 3104 MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3105 rscratch1, stlrb); 3106 %} 3107 3108 enc_class aarch64_enc_stlrb0(memory mem) %{ 3109 MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3110 rscratch1, stlrb); 3111 %} 3112 3113 enc_class aarch64_enc_stlrh(iRegI src, memory mem) %{ 3114 MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3115 rscratch1, stlrh); 3116 %} 3117 3118 enc_class aarch64_enc_stlrh0(memory mem) %{ 3119 MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3120 rscratch1, stlrh); 3121 %} 3122 3123 enc_class aarch64_enc_stlrw(iRegI src, memory mem) %{ 3124 MOV_VOLATILE(as_Register($src$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3125 rscratch1, stlrw); 3126 %} 3127 3128 enc_class aarch64_enc_stlrw0(memory mem) %{ 3129 MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3130 rscratch1, stlrw); 3131 %} 3132 3133 enc_class aarch64_enc_ldarsbw(iRegI dst, memory mem) %{ 3134 Register dst_reg = as_Register($dst$$reg); 3135 MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3136 rscratch1, ldarb); 3137 __ sxtbw(dst_reg, dst_reg); 3138 %} 3139 3140 enc_class aarch64_enc_ldarsb(iRegL dst, memory mem) %{ 3141 Register dst_reg = as_Register($dst$$reg); 3142 MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3143 rscratch1, ldarb); 3144 __ sxtb(dst_reg, dst_reg); 3145 %} 3146 3147 enc_class aarch64_enc_ldarbw(iRegI dst, memory mem) %{ 3148 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3149 rscratch1, ldarb); 3150 %} 3151 3152 enc_class aarch64_enc_ldarb(iRegL dst, memory mem) %{ 3153 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3154 rscratch1, ldarb); 3155 %} 3156 3157 enc_class aarch64_enc_ldarshw(iRegI dst, memory mem) %{ 3158 Register dst_reg = as_Register($dst$$reg); 3159 MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3160 rscratch1, ldarh); 3161 __ sxthw(dst_reg, dst_reg); 3162 %} 3163 3164 enc_class aarch64_enc_ldarsh(iRegL dst, memory mem) %{ 3165 Register dst_reg = as_Register($dst$$reg); 3166 MOV_VOLATILE(dst_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3167 rscratch1, ldarh); 3168 __ sxth(dst_reg, dst_reg); 3169 %} 3170 3171 enc_class aarch64_enc_ldarhw(iRegI dst, memory mem) %{ 3172 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3173 rscratch1, ldarh); 3174 %} 3175 3176 enc_class aarch64_enc_ldarh(iRegL dst, memory mem) %{ 3177 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3178 rscratch1, ldarh); 3179 %} 3180 3181 enc_class aarch64_enc_ldarw(iRegI dst, memory mem) %{ 3182 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3183 rscratch1, ldarw); 3184 %} 3185 3186 enc_class aarch64_enc_ldarw(iRegL dst, memory mem) %{ 3187 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3188 rscratch1, ldarw); 3189 %} 3190 3191 enc_class aarch64_enc_ldar(iRegL dst, memory mem) %{ 3192 MOV_VOLATILE(as_Register($dst$$reg), $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3193 rscratch1, ldar); 3194 %} 3195 3196 enc_class aarch64_enc_fldars(vRegF dst, memory mem) %{ 3197 MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3198 rscratch1, ldarw); 3199 __ fmovs(as_FloatRegister($dst$$reg), rscratch1); 3200 %} 3201 3202 enc_class aarch64_enc_fldard(vRegD dst, memory mem) %{ 3203 MOV_VOLATILE(rscratch1, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3204 rscratch1, ldar); 3205 __ fmovd(as_FloatRegister($dst$$reg), rscratch1); 3206 %} 3207 3208 enc_class aarch64_enc_stlr(iRegL src, memory mem) %{ 3209 Register src_reg = as_Register($src$$reg); 3210 // we sometimes get asked to store the stack pointer into the 3211 // current thread -- we cannot do that directly on AArch64 3212 if (src_reg == r31_sp) { 3213 C2_MacroAssembler _masm(&cbuf); 3214 assert(as_Register($mem$$base) == rthread, "unexpected store for sp"); 3215 __ mov(rscratch2, sp); 3216 src_reg = rscratch2; 3217 } 3218 MOV_VOLATILE(src_reg, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3219 rscratch1, stlr); 3220 %} 3221 3222 enc_class aarch64_enc_stlr0(memory mem) %{ 3223 MOV_VOLATILE(zr, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3224 rscratch1, stlr); 3225 %} 3226 3227 enc_class aarch64_enc_fstlrs(vRegF src, memory mem) %{ 3228 { 3229 C2_MacroAssembler _masm(&cbuf); 3230 FloatRegister src_reg = as_FloatRegister($src$$reg); 3231 __ fmovs(rscratch2, src_reg); 3232 } 3233 MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3234 rscratch1, stlrw); 3235 %} 3236 3237 enc_class aarch64_enc_fstlrd(vRegD src, memory mem) %{ 3238 { 3239 C2_MacroAssembler _masm(&cbuf); 3240 FloatRegister src_reg = as_FloatRegister($src$$reg); 3241 __ fmovd(rscratch2, src_reg); 3242 } 3243 MOV_VOLATILE(rscratch2, $mem$$base, $mem$$index, $mem$$scale, $mem$$disp, 3244 rscratch1, stlr); 3245 %} 3246 3247 // synchronized read/update encodings 3248 3249 enc_class aarch64_enc_ldaxr(iRegL dst, memory8 mem) %{ 3250 C2_MacroAssembler _masm(&cbuf); 3251 Register dst_reg = as_Register($dst$$reg); 3252 Register base = as_Register($mem$$base); 3253 int index = $mem$$index; 3254 int scale = $mem$$scale; 3255 int disp = $mem$$disp; 3256 if (index == -1) { 3257 if (disp != 0) { 3258 __ lea(rscratch1, Address(base, disp)); 3259 __ ldaxr(dst_reg, rscratch1); 3260 } else { 3261 // TODO 3262 // should we ever get anything other than this case? 3263 __ ldaxr(dst_reg, base); 3264 } 3265 } else { 3266 Register index_reg = as_Register(index); 3267 if (disp == 0) { 3268 __ lea(rscratch1, Address(base, index_reg, Address::lsl(scale))); 3269 __ ldaxr(dst_reg, rscratch1); 3270 } else { 3271 __ lea(rscratch1, Address(base, disp)); 3272 __ lea(rscratch1, Address(rscratch1, index_reg, Address::lsl(scale))); 3273 __ ldaxr(dst_reg, rscratch1); 3274 } 3275 } 3276 %} 3277 3278 enc_class aarch64_enc_stlxr(iRegLNoSp src, memory8 mem) %{ 3279 C2_MacroAssembler _masm(&cbuf); 3280 Register src_reg = as_Register($src$$reg); 3281 Register base = as_Register($mem$$base); 3282 int index = $mem$$index; 3283 int scale = $mem$$scale; 3284 int disp = $mem$$disp; 3285 if (index == -1) { 3286 if (disp != 0) { 3287 __ lea(rscratch2, Address(base, disp)); 3288 __ stlxr(rscratch1, src_reg, rscratch2); 3289 } else { 3290 // TODO 3291 // should we ever get anything other than this case? 3292 __ stlxr(rscratch1, src_reg, base); 3293 } 3294 } else { 3295 Register index_reg = as_Register(index); 3296 if (disp == 0) { 3297 __ lea(rscratch2, Address(base, index_reg, Address::lsl(scale))); 3298 __ stlxr(rscratch1, src_reg, rscratch2); 3299 } else { 3300 __ lea(rscratch2, Address(base, disp)); 3301 __ lea(rscratch2, Address(rscratch2, index_reg, Address::lsl(scale))); 3302 __ stlxr(rscratch1, src_reg, rscratch2); 3303 } 3304 } 3305 __ cmpw(rscratch1, zr); 3306 %} 3307 3308 enc_class aarch64_enc_cmpxchg(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{ 3309 C2_MacroAssembler _masm(&cbuf); 3310 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3311 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3312 Assembler::xword, /*acquire*/ false, /*release*/ true, 3313 /*weak*/ false, noreg); 3314 %} 3315 3316 enc_class aarch64_enc_cmpxchgw(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3317 C2_MacroAssembler _masm(&cbuf); 3318 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3319 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3320 Assembler::word, /*acquire*/ false, /*release*/ true, 3321 /*weak*/ false, noreg); 3322 %} 3323 3324 enc_class aarch64_enc_cmpxchgs(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3325 C2_MacroAssembler _masm(&cbuf); 3326 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3327 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3328 Assembler::halfword, /*acquire*/ false, /*release*/ true, 3329 /*weak*/ false, noreg); 3330 %} 3331 3332 enc_class aarch64_enc_cmpxchgb(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3333 C2_MacroAssembler _masm(&cbuf); 3334 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3335 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3336 Assembler::byte, /*acquire*/ false, /*release*/ true, 3337 /*weak*/ false, noreg); 3338 %} 3339 3340 3341 // The only difference between aarch64_enc_cmpxchg and 3342 // aarch64_enc_cmpxchg_acq is that we use load-acquire in the 3343 // CompareAndSwap sequence to serve as a barrier on acquiring a 3344 // lock. 3345 enc_class aarch64_enc_cmpxchg_acq(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{ 3346 C2_MacroAssembler _masm(&cbuf); 3347 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3348 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3349 Assembler::xword, /*acquire*/ true, /*release*/ true, 3350 /*weak*/ false, noreg); 3351 %} 3352 3353 enc_class aarch64_enc_cmpxchgw_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3354 C2_MacroAssembler _masm(&cbuf); 3355 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3356 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3357 Assembler::word, /*acquire*/ true, /*release*/ true, 3358 /*weak*/ false, noreg); 3359 %} 3360 3361 enc_class aarch64_enc_cmpxchgs_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3362 C2_MacroAssembler _masm(&cbuf); 3363 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3364 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3365 Assembler::halfword, /*acquire*/ true, /*release*/ true, 3366 /*weak*/ false, noreg); 3367 %} 3368 3369 enc_class aarch64_enc_cmpxchgb_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{ 3370 C2_MacroAssembler _masm(&cbuf); 3371 guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding"); 3372 __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register, 3373 Assembler::byte, /*acquire*/ true, /*release*/ true, 3374 /*weak*/ false, noreg); 3375 %} 3376 3377 // auxiliary used for CompareAndSwapX to set result register 3378 enc_class aarch64_enc_cset_eq(iRegINoSp res) %{ 3379 C2_MacroAssembler _masm(&cbuf); 3380 Register res_reg = as_Register($res$$reg); 3381 __ cset(res_reg, Assembler::EQ); 3382 %} 3383 3384 // prefetch encodings 3385 3386 enc_class aarch64_enc_prefetchw(memory mem) %{ 3387 C2_MacroAssembler _masm(&cbuf); 3388 Register base = as_Register($mem$$base); 3389 int index = $mem$$index; 3390 int scale = $mem$$scale; 3391 int disp = $mem$$disp; 3392 if (index == -1) { 3393 __ prfm(Address(base, disp), PSTL1KEEP); 3394 } else { 3395 Register index_reg = as_Register(index); 3396 if (disp == 0) { 3397 __ prfm(Address(base, index_reg, Address::lsl(scale)), PSTL1KEEP); 3398 } else { 3399 __ lea(rscratch1, Address(base, disp)); 3400 __ prfm(Address(rscratch1, index_reg, Address::lsl(scale)), PSTL1KEEP); 3401 } 3402 } 3403 %} 3404 3405 /// mov envcodings 3406 3407 enc_class aarch64_enc_movw_imm(iRegI dst, immI src) %{ 3408 C2_MacroAssembler _masm(&cbuf); 3409 uint32_t con = (uint32_t)$src$$constant; 3410 Register dst_reg = as_Register($dst$$reg); 3411 if (con == 0) { 3412 __ movw(dst_reg, zr); 3413 } else { 3414 __ movw(dst_reg, con); 3415 } 3416 %} 3417 3418 enc_class aarch64_enc_mov_imm(iRegL dst, immL src) %{ 3419 C2_MacroAssembler _masm(&cbuf); 3420 Register dst_reg = as_Register($dst$$reg); 3421 uint64_t con = (uint64_t)$src$$constant; 3422 if (con == 0) { 3423 __ mov(dst_reg, zr); 3424 } else { 3425 __ mov(dst_reg, con); 3426 } 3427 %} 3428 3429 enc_class aarch64_enc_mov_p(iRegP dst, immP src) %{ 3430 C2_MacroAssembler _masm(&cbuf); 3431 Register dst_reg = as_Register($dst$$reg); 3432 address con = (address)$src$$constant; 3433 if (con == NULL || con == (address)1) { 3434 ShouldNotReachHere(); 3435 } else { 3436 relocInfo::relocType rtype = $src->constant_reloc(); 3437 if (rtype == relocInfo::oop_type) { 3438 __ movoop(dst_reg, (jobject)con, /*immediate*/true); 3439 } else if (rtype == relocInfo::metadata_type) { 3440 __ mov_metadata(dst_reg, (Metadata*)con); 3441 } else { 3442 assert(rtype == relocInfo::none, "unexpected reloc type"); 3443 if (! __ is_valid_AArch64_address(con) || 3444 con < (address)(uintptr_t)os::vm_page_size()) { 3445 __ mov(dst_reg, con); 3446 } else { 3447 uint64_t offset; 3448 __ adrp(dst_reg, con, offset); 3449 __ add(dst_reg, dst_reg, offset); 3450 } 3451 } 3452 } 3453 %} 3454 3455 enc_class aarch64_enc_mov_p0(iRegP dst, immP0 src) %{ 3456 C2_MacroAssembler _masm(&cbuf); 3457 Register dst_reg = as_Register($dst$$reg); 3458 __ mov(dst_reg, zr); 3459 %} 3460 3461 enc_class aarch64_enc_mov_p1(iRegP dst, immP_1 src) %{ 3462 C2_MacroAssembler _masm(&cbuf); 3463 Register dst_reg = as_Register($dst$$reg); 3464 __ mov(dst_reg, (uint64_t)1); 3465 %} 3466 3467 enc_class aarch64_enc_mov_byte_map_base(iRegP dst, immByteMapBase src) %{ 3468 C2_MacroAssembler _masm(&cbuf); 3469 __ load_byte_map_base($dst$$Register); 3470 %} 3471 3472 enc_class aarch64_enc_mov_n(iRegN dst, immN src) %{ 3473 C2_MacroAssembler _masm(&cbuf); 3474 Register dst_reg = as_Register($dst$$reg); 3475 address con = (address)$src$$constant; 3476 if (con == NULL) { 3477 ShouldNotReachHere(); 3478 } else { 3479 relocInfo::relocType rtype = $src->constant_reloc(); 3480 assert(rtype == relocInfo::oop_type, "unexpected reloc type"); 3481 __ set_narrow_oop(dst_reg, (jobject)con); 3482 } 3483 %} 3484 3485 enc_class aarch64_enc_mov_n0(iRegN dst, immN0 src) %{ 3486 C2_MacroAssembler _masm(&cbuf); 3487 Register dst_reg = as_Register($dst$$reg); 3488 __ mov(dst_reg, zr); 3489 %} 3490 3491 enc_class aarch64_enc_mov_nk(iRegN dst, immNKlass src) %{ 3492 C2_MacroAssembler _masm(&cbuf); 3493 Register dst_reg = as_Register($dst$$reg); 3494 address con = (address)$src$$constant; 3495 if (con == NULL) { 3496 ShouldNotReachHere(); 3497 } else { 3498 relocInfo::relocType rtype = $src->constant_reloc(); 3499 assert(rtype == relocInfo::metadata_type, "unexpected reloc type"); 3500 __ set_narrow_klass(dst_reg, (Klass *)con); 3501 } 3502 %} 3503 3504 // arithmetic encodings 3505 3506 enc_class aarch64_enc_addsubw_imm(iRegI dst, iRegI src1, immIAddSub src2) %{ 3507 C2_MacroAssembler _masm(&cbuf); 3508 Register dst_reg = as_Register($dst$$reg); 3509 Register src_reg = as_Register($src1$$reg); 3510 int32_t con = (int32_t)$src2$$constant; 3511 // add has primary == 0, subtract has primary == 1 3512 if ($primary) { con = -con; } 3513 if (con < 0) { 3514 __ subw(dst_reg, src_reg, -con); 3515 } else { 3516 __ addw(dst_reg, src_reg, con); 3517 } 3518 %} 3519 3520 enc_class aarch64_enc_addsub_imm(iRegL dst, iRegL src1, immLAddSub src2) %{ 3521 C2_MacroAssembler _masm(&cbuf); 3522 Register dst_reg = as_Register($dst$$reg); 3523 Register src_reg = as_Register($src1$$reg); 3524 int32_t con = (int32_t)$src2$$constant; 3525 // add has primary == 0, subtract has primary == 1 3526 if ($primary) { con = -con; } 3527 if (con < 0) { 3528 __ sub(dst_reg, src_reg, -con); 3529 } else { 3530 __ add(dst_reg, src_reg, con); 3531 } 3532 %} 3533 3534 enc_class aarch64_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{ 3535 C2_MacroAssembler _masm(&cbuf); 3536 Register dst_reg = as_Register($dst$$reg); 3537 Register src1_reg = as_Register($src1$$reg); 3538 Register src2_reg = as_Register($src2$$reg); 3539 __ corrected_idivl(dst_reg, src1_reg, src2_reg, false, rscratch1); 3540 %} 3541 3542 enc_class aarch64_enc_div(iRegI dst, iRegI src1, iRegI src2) %{ 3543 C2_MacroAssembler _masm(&cbuf); 3544 Register dst_reg = as_Register($dst$$reg); 3545 Register src1_reg = as_Register($src1$$reg); 3546 Register src2_reg = as_Register($src2$$reg); 3547 __ corrected_idivq(dst_reg, src1_reg, src2_reg, false, rscratch1); 3548 %} 3549 3550 enc_class aarch64_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{ 3551 C2_MacroAssembler _masm(&cbuf); 3552 Register dst_reg = as_Register($dst$$reg); 3553 Register src1_reg = as_Register($src1$$reg); 3554 Register src2_reg = as_Register($src2$$reg); 3555 __ corrected_idivl(dst_reg, src1_reg, src2_reg, true, rscratch1); 3556 %} 3557 3558 enc_class aarch64_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{ 3559 C2_MacroAssembler _masm(&cbuf); 3560 Register dst_reg = as_Register($dst$$reg); 3561 Register src1_reg = as_Register($src1$$reg); 3562 Register src2_reg = as_Register($src2$$reg); 3563 __ corrected_idivq(dst_reg, src1_reg, src2_reg, true, rscratch1); 3564 %} 3565 3566 // compare instruction encodings 3567 3568 enc_class aarch64_enc_cmpw(iRegI src1, iRegI src2) %{ 3569 C2_MacroAssembler _masm(&cbuf); 3570 Register reg1 = as_Register($src1$$reg); 3571 Register reg2 = as_Register($src2$$reg); 3572 __ cmpw(reg1, reg2); 3573 %} 3574 3575 enc_class aarch64_enc_cmpw_imm_addsub(iRegI src1, immIAddSub src2) %{ 3576 C2_MacroAssembler _masm(&cbuf); 3577 Register reg = as_Register($src1$$reg); 3578 int32_t val = $src2$$constant; 3579 if (val >= 0) { 3580 __ subsw(zr, reg, val); 3581 } else { 3582 __ addsw(zr, reg, -val); 3583 } 3584 %} 3585 3586 enc_class aarch64_enc_cmpw_imm(iRegI src1, immI src2) %{ 3587 C2_MacroAssembler _masm(&cbuf); 3588 Register reg1 = as_Register($src1$$reg); 3589 uint32_t val = (uint32_t)$src2$$constant; 3590 __ movw(rscratch1, val); 3591 __ cmpw(reg1, rscratch1); 3592 %} 3593 3594 enc_class aarch64_enc_cmp(iRegL src1, iRegL src2) %{ 3595 C2_MacroAssembler _masm(&cbuf); 3596 Register reg1 = as_Register($src1$$reg); 3597 Register reg2 = as_Register($src2$$reg); 3598 __ cmp(reg1, reg2); 3599 %} 3600 3601 enc_class aarch64_enc_cmp_imm_addsub(iRegL src1, immL12 src2) %{ 3602 C2_MacroAssembler _masm(&cbuf); 3603 Register reg = as_Register($src1$$reg); 3604 int64_t val = $src2$$constant; 3605 if (val >= 0) { 3606 __ subs(zr, reg, val); 3607 } else if (val != -val) { 3608 __ adds(zr, reg, -val); 3609 } else { 3610 // aargh, Long.MIN_VALUE is a special case 3611 __ orr(rscratch1, zr, (uint64_t)val); 3612 __ subs(zr, reg, rscratch1); 3613 } 3614 %} 3615 3616 enc_class aarch64_enc_cmp_imm(iRegL src1, immL src2) %{ 3617 C2_MacroAssembler _masm(&cbuf); 3618 Register reg1 = as_Register($src1$$reg); 3619 uint64_t val = (uint64_t)$src2$$constant; 3620 __ mov(rscratch1, val); 3621 __ cmp(reg1, rscratch1); 3622 %} 3623 3624 enc_class aarch64_enc_cmpp(iRegP src1, iRegP src2) %{ 3625 C2_MacroAssembler _masm(&cbuf); 3626 Register reg1 = as_Register($src1$$reg); 3627 Register reg2 = as_Register($src2$$reg); 3628 __ cmp(reg1, reg2); 3629 %} 3630 3631 enc_class aarch64_enc_cmpn(iRegN src1, iRegN src2) %{ 3632 C2_MacroAssembler _masm(&cbuf); 3633 Register reg1 = as_Register($src1$$reg); 3634 Register reg2 = as_Register($src2$$reg); 3635 __ cmpw(reg1, reg2); 3636 %} 3637 3638 enc_class aarch64_enc_testp(iRegP src) %{ 3639 C2_MacroAssembler _masm(&cbuf); 3640 Register reg = as_Register($src$$reg); 3641 __ cmp(reg, zr); 3642 %} 3643 3644 enc_class aarch64_enc_testn(iRegN src) %{ 3645 C2_MacroAssembler _masm(&cbuf); 3646 Register reg = as_Register($src$$reg); 3647 __ cmpw(reg, zr); 3648 %} 3649 3650 enc_class aarch64_enc_b(label lbl) %{ 3651 C2_MacroAssembler _masm(&cbuf); 3652 Label *L = $lbl$$label; 3653 __ b(*L); 3654 %} 3655 3656 enc_class aarch64_enc_br_con(cmpOp cmp, label lbl) %{ 3657 C2_MacroAssembler _masm(&cbuf); 3658 Label *L = $lbl$$label; 3659 __ br ((Assembler::Condition)$cmp$$cmpcode, *L); 3660 %} 3661 3662 enc_class aarch64_enc_br_conU(cmpOpU cmp, label lbl) %{ 3663 C2_MacroAssembler _masm(&cbuf); 3664 Label *L = $lbl$$label; 3665 __ br ((Assembler::Condition)$cmp$$cmpcode, *L); 3666 %} 3667 3668 enc_class aarch64_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result) 3669 %{ 3670 Register sub_reg = as_Register($sub$$reg); 3671 Register super_reg = as_Register($super$$reg); 3672 Register temp_reg = as_Register($temp$$reg); 3673 Register result_reg = as_Register($result$$reg); 3674 3675 Label miss; 3676 C2_MacroAssembler _masm(&cbuf); 3677 __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg, 3678 NULL, &miss, 3679 /*set_cond_codes:*/ true); 3680 if ($primary) { 3681 __ mov(result_reg, zr); 3682 } 3683 __ bind(miss); 3684 %} 3685 3686 enc_class aarch64_enc_java_static_call(method meth) %{ 3687 C2_MacroAssembler _masm(&cbuf); 3688 3689 address addr = (address)$meth$$method; 3690 address call; 3691 if (!_method) { 3692 // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap. 3693 call = __ trampoline_call(Address(addr, relocInfo::runtime_call_type), &cbuf); 3694 if (call == NULL) { 3695 ciEnv::current()->record_failure("CodeCache is full"); 3696 return; 3697 } 3698 } else { 3699 int method_index = resolved_method_index(cbuf); 3700 RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index) 3701 : static_call_Relocation::spec(method_index); 3702 call = __ trampoline_call(Address(addr, rspec), &cbuf); 3703 if (call == NULL) { 3704 ciEnv::current()->record_failure("CodeCache is full"); 3705 return; 3706 } 3707 // Emit stub for static call 3708 address stub = CompiledStaticCall::emit_to_interp_stub(cbuf); 3709 if (stub == NULL) { 3710 ciEnv::current()->record_failure("CodeCache is full"); 3711 return; 3712 } 3713 } 3714 3715 // Only non uncommon_trap calls need to reinitialize ptrue. 3716 if (Compile::current()->max_vector_size() >= 16 && uncommon_trap_request() == 0) { 3717 __ reinitialize_ptrue(); 3718 } 3719 %} 3720 3721 enc_class aarch64_enc_java_dynamic_call(method meth) %{ 3722 C2_MacroAssembler _masm(&cbuf); 3723 int method_index = resolved_method_index(cbuf); 3724 address call = __ ic_call((address)$meth$$method, method_index); 3725 if (call == NULL) { 3726 ciEnv::current()->record_failure("CodeCache is full"); 3727 return; 3728 } else if (Compile::current()->max_vector_size() >= 16) { 3729 __ reinitialize_ptrue(); 3730 } 3731 %} 3732 3733 enc_class aarch64_enc_call_epilog() %{ 3734 C2_MacroAssembler _masm(&cbuf); 3735 if (VerifyStackAtCalls) { 3736 // Check that stack depth is unchanged: find majik cookie on stack 3737 __ call_Unimplemented(); 3738 } 3739 %} 3740 3741 enc_class aarch64_enc_java_to_runtime(method meth) %{ 3742 C2_MacroAssembler _masm(&cbuf); 3743 3744 // some calls to generated routines (arraycopy code) are scheduled 3745 // by C2 as runtime calls. if so we can call them using a br (they 3746 // will be in a reachable segment) otherwise we have to use a blr 3747 // which loads the absolute address into a register. 3748 address entry = (address)$meth$$method; 3749 CodeBlob *cb = CodeCache::find_blob(entry); 3750 if (cb) { 3751 address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type)); 3752 if (call == NULL) { 3753 ciEnv::current()->record_failure("CodeCache is full"); 3754 return; 3755 } 3756 } else { 3757 Label retaddr; 3758 __ adr(rscratch2, retaddr); 3759 __ lea(rscratch1, RuntimeAddress(entry)); 3760 // Leave a breadcrumb for JavaFrameAnchor::capture_last_Java_pc() 3761 __ stp(zr, rscratch2, Address(__ pre(sp, -2 * wordSize))); 3762 __ blr(rscratch1); 3763 __ bind(retaddr); 3764 __ add(sp, sp, 2 * wordSize); 3765 } 3766 if (Compile::current()->max_vector_size() >= 16) { 3767 __ reinitialize_ptrue(); 3768 } 3769 %} 3770 3771 enc_class aarch64_enc_rethrow() %{ 3772 C2_MacroAssembler _masm(&cbuf); 3773 __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub())); 3774 %} 3775 3776 enc_class aarch64_enc_ret() %{ 3777 C2_MacroAssembler _masm(&cbuf); 3778 #ifdef ASSERT 3779 if (Compile::current()->max_vector_size() >= 16) { 3780 __ verify_ptrue(); 3781 } 3782 #endif 3783 __ ret(lr); 3784 %} 3785 3786 enc_class aarch64_enc_tail_call(iRegP jump_target) %{ 3787 C2_MacroAssembler _masm(&cbuf); 3788 Register target_reg = as_Register($jump_target$$reg); 3789 __ br(target_reg); 3790 %} 3791 3792 enc_class aarch64_enc_tail_jmp(iRegP jump_target) %{ 3793 C2_MacroAssembler _masm(&cbuf); 3794 Register target_reg = as_Register($jump_target$$reg); 3795 // exception oop should be in r0 3796 // ret addr has been popped into lr 3797 // callee expects it in r3 3798 __ mov(r3, lr); 3799 __ br(target_reg); 3800 %} 3801 3802 enc_class aarch64_enc_fast_lock(iRegP object, iRegP box, iRegP tmp, iRegP tmp2) %{ 3803 C2_MacroAssembler _masm(&cbuf); 3804 Register oop = as_Register($object$$reg); 3805 Register box = as_Register($box$$reg); 3806 Register disp_hdr = as_Register($tmp$$reg); 3807 Register tmp = as_Register($tmp2$$reg); 3808 Label cont; 3809 Label object_has_monitor; 3810 Label cas_failed; 3811 3812 assert_different_registers(oop, box, tmp, disp_hdr); 3813 3814 // Load markWord from object into displaced_header. 3815 __ ldr(disp_hdr, Address(oop, oopDesc::mark_offset_in_bytes())); 3816 3817 if (DiagnoseSyncOnValueBasedClasses != 0) { 3818 __ load_klass(tmp, oop); 3819 __ ldrw(tmp, Address(tmp, Klass::access_flags_offset())); 3820 __ tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 3821 __ br(Assembler::NE, cont); 3822 } 3823 3824 if (UseBiasedLocking && !UseOptoBiasInlining) { 3825 __ biased_locking_enter(box, oop, disp_hdr, tmp, true, cont); 3826 } 3827 3828 // Check for existing monitor 3829 __ tbnz(disp_hdr, exact_log2(markWord::monitor_value), object_has_monitor); 3830 3831 // Set tmp to be (markWord of object | UNLOCK_VALUE). 3832 __ orr(tmp, disp_hdr, markWord::unlocked_value); 3833 3834 // Initialize the box. (Must happen before we update the object mark!) 3835 __ str(tmp, Address(box, BasicLock::displaced_header_offset_in_bytes())); 3836 3837 // Compare object markWord with an unlocked value (tmp) and if 3838 // equal exchange the stack address of our box with object markWord. 3839 // On failure disp_hdr contains the possibly locked markWord. 3840 __ cmpxchg(oop, tmp, box, Assembler::xword, /*acquire*/ true, 3841 /*release*/ true, /*weak*/ false, disp_hdr); 3842 __ br(Assembler::EQ, cont); 3843 3844 assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); 3845 3846 // If the compare-and-exchange succeeded, then we found an unlocked 3847 // object, will have now locked it will continue at label cont 3848 3849 __ bind(cas_failed); 3850 // We did not see an unlocked object so try the fast recursive case. 3851 3852 // Check if the owner is self by comparing the value in the 3853 // markWord of object (disp_hdr) with the stack pointer. 3854 __ mov(rscratch1, sp); 3855 __ sub(disp_hdr, disp_hdr, rscratch1); 3856 __ mov(tmp, (address) (~(os::vm_page_size()-1) | markWord::lock_mask_in_place)); 3857 // If condition is true we are cont and hence we can store 0 as the 3858 // displaced header in the box, which indicates that it is a recursive lock. 3859 __ ands(tmp/*==0?*/, disp_hdr, tmp); // Sets flags for result 3860 __ str(tmp/*==0, perhaps*/, Address(box, BasicLock::displaced_header_offset_in_bytes())); 3861 3862 __ b(cont); 3863 3864 // Handle existing monitor. 3865 __ bind(object_has_monitor); 3866 3867 // The object's monitor m is unlocked iff m->owner == NULL, 3868 // otherwise m->owner may contain a thread or a stack address. 3869 // 3870 // Try to CAS m->owner from NULL to current thread. 3871 __ add(tmp, disp_hdr, (ObjectMonitor::owner_offset_in_bytes()-markWord::monitor_value)); 3872 __ cmpxchg(tmp, zr, rthread, Assembler::xword, /*acquire*/ true, 3873 /*release*/ true, /*weak*/ false, rscratch1); // Sets flags for result 3874 3875 // Store a non-null value into the box to avoid looking like a re-entrant 3876 // lock. The fast-path monitor unlock code checks for 3877 // markWord::monitor_value so use markWord::unused_mark which has the 3878 // relevant bit set, and also matches ObjectSynchronizer::enter. 3879 __ mov(tmp, (address)markWord::unused_mark().value()); 3880 __ str(tmp, Address(box, BasicLock::displaced_header_offset_in_bytes())); 3881 3882 __ br(Assembler::EQ, cont); // CAS success means locking succeeded 3883 3884 __ cmp(rscratch1, rthread); 3885 __ br(Assembler::NE, cont); // Check for recursive locking 3886 3887 // Recursive lock case 3888 __ increment(Address(disp_hdr, ObjectMonitor::recursions_offset_in_bytes() - markWord::monitor_value), 1); 3889 // flag == EQ still from the cmp above, checking if this is a reentrant lock 3890 3891 __ bind(cont); 3892 // flag == EQ indicates success 3893 // flag == NE indicates failure 3894 %} 3895 3896 enc_class aarch64_enc_fast_unlock(iRegP object, iRegP box, iRegP tmp, iRegP tmp2) %{ 3897 C2_MacroAssembler _masm(&cbuf); 3898 Register oop = as_Register($object$$reg); 3899 Register box = as_Register($box$$reg); 3900 Register disp_hdr = as_Register($tmp$$reg); 3901 Register tmp = as_Register($tmp2$$reg); 3902 Label cont; 3903 Label object_has_monitor; 3904 3905 assert_different_registers(oop, box, tmp, disp_hdr); 3906 3907 if (UseBiasedLocking && !UseOptoBiasInlining) { 3908 __ biased_locking_exit(oop, tmp, cont); 3909 } 3910 3911 // Find the lock address and load the displaced header from the stack. 3912 __ ldr(disp_hdr, Address(box, BasicLock::displaced_header_offset_in_bytes())); 3913 3914 // If the displaced header is 0, we have a recursive unlock. 3915 __ cmp(disp_hdr, zr); 3916 __ br(Assembler::EQ, cont); 3917 3918 // Handle existing monitor. 3919 __ ldr(tmp, Address(oop, oopDesc::mark_offset_in_bytes())); 3920 __ tbnz(tmp, exact_log2(markWord::monitor_value), object_has_monitor); 3921 3922 // Check if it is still a light weight lock, this is is true if we 3923 // see the stack address of the basicLock in the markWord of the 3924 // object. 3925 3926 __ cmpxchg(oop, box, disp_hdr, Assembler::xword, /*acquire*/ false, 3927 /*release*/ true, /*weak*/ false, tmp); 3928 __ b(cont); 3929 3930 assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); 3931 3932 // Handle existing monitor. 3933 __ bind(object_has_monitor); 3934 STATIC_ASSERT(markWord::monitor_value <= INT_MAX); 3935 __ add(tmp, tmp, -(int)markWord::monitor_value); // monitor 3936 __ ldr(disp_hdr, Address(tmp, ObjectMonitor::recursions_offset_in_bytes())); 3937 3938 Label notRecursive; 3939 __ cbz(disp_hdr, notRecursive); 3940 3941 // Recursive lock 3942 __ sub(disp_hdr, disp_hdr, 1u); 3943 __ str(disp_hdr, Address(tmp, ObjectMonitor::recursions_offset_in_bytes())); 3944 __ cmp(disp_hdr, disp_hdr); // Sets flags for result 3945 __ b(cont); 3946 3947 __ bind(notRecursive); 3948 __ ldr(rscratch1, Address(tmp, ObjectMonitor::EntryList_offset_in_bytes())); 3949 __ ldr(disp_hdr, Address(tmp, ObjectMonitor::cxq_offset_in_bytes())); 3950 __ orr(rscratch1, rscratch1, disp_hdr); // Will be 0 if both are 0. 3951 __ cmp(rscratch1, zr); // Sets flags for result 3952 __ cbnz(rscratch1, cont); 3953 // need a release store here 3954 __ lea(tmp, Address(tmp, ObjectMonitor::owner_offset_in_bytes())); 3955 __ stlr(zr, tmp); // set unowned 3956 3957 __ bind(cont); 3958 // flag == EQ indicates success 3959 // flag == NE indicates failure 3960 %} 3961 3962 %} 3963 3964 //----------FRAME-------------------------------------------------------------- 3965 // Definition of frame structure and management information. 3966 // 3967 // S T A C K L A Y O U T Allocators stack-slot number 3968 // | (to get allocators register number 3969 // G Owned by | | v add OptoReg::stack0()) 3970 // r CALLER | | 3971 // o | +--------+ pad to even-align allocators stack-slot 3972 // w V | pad0 | numbers; owned by CALLER 3973 // t -----------+--------+----> Matcher::_in_arg_limit, unaligned 3974 // h ^ | in | 5 3975 // | | args | 4 Holes in incoming args owned by SELF 3976 // | | | | 3 3977 // | | +--------+ 3978 // V | | old out| Empty on Intel, window on Sparc 3979 // | old |preserve| Must be even aligned. 3980 // | SP-+--------+----> Matcher::_old_SP, even aligned 3981 // | | in | 3 area for Intel ret address 3982 // Owned by |preserve| Empty on Sparc. 3983 // SELF +--------+ 3984 // | | pad2 | 2 pad to align old SP 3985 // | +--------+ 1 3986 // | | locks | 0 3987 // | +--------+----> OptoReg::stack0(), even aligned 3988 // | | pad1 | 11 pad to align new SP 3989 // | +--------+ 3990 // | | | 10 3991 // | | spills | 9 spills 3992 // V | | 8 (pad0 slot for callee) 3993 // -----------+--------+----> Matcher::_out_arg_limit, unaligned 3994 // ^ | out | 7 3995 // | | args | 6 Holes in outgoing args owned by CALLEE 3996 // Owned by +--------+ 3997 // CALLEE | new out| 6 Empty on Intel, window on Sparc 3998 // | new |preserve| Must be even-aligned. 3999 // | SP-+--------+----> Matcher::_new_SP, even aligned 4000 // | | | 4001 // 4002 // Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is 4003 // known from SELF's arguments and the Java calling convention. 4004 // Region 6-7 is determined per call site. 4005 // Note 2: If the calling convention leaves holes in the incoming argument 4006 // area, those holes are owned by SELF. Holes in the outgoing area 4007 // are owned by the CALLEE. Holes should not be nessecary in the 4008 // incoming area, as the Java calling convention is completely under 4009 // the control of the AD file. Doubles can be sorted and packed to 4010 // avoid holes. Holes in the outgoing arguments may be nessecary for 4011 // varargs C calling conventions. 4012 // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is 4013 // even aligned with pad0 as needed. 4014 // Region 6 is even aligned. Region 6-7 is NOT even aligned; 4015 // (the latter is true on Intel but is it false on AArch64?) 4016 // region 6-11 is even aligned; it may be padded out more so that 4017 // the region from SP to FP meets the minimum stack alignment. 4018 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack 4019 // alignment. Region 11, pad1, may be dynamically extended so that 4020 // SP meets the minimum alignment. 4021 4022 frame %{ 4023 // These three registers define part of the calling convention 4024 // between compiled code and the interpreter. 4025 4026 // Inline Cache Register or Method for I2C. 4027 inline_cache_reg(R12); 4028 4029 // Number of stack slots consumed by locking an object 4030 sync_stack_slots(2); 4031 4032 // Compiled code's Frame Pointer 4033 frame_pointer(R31); 4034 4035 // Interpreter stores its frame pointer in a register which is 4036 // stored to the stack by I2CAdaptors. 4037 // I2CAdaptors convert from interpreted java to compiled java. 4038 interpreter_frame_pointer(R29); 4039 4040 // Stack alignment requirement 4041 stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes) 4042 4043 // Number of outgoing stack slots killed above the out_preserve_stack_slots 4044 // for calls to C. Supports the var-args backing area for register parms. 4045 varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt); 4046 4047 // The after-PROLOG location of the return address. Location of 4048 // return address specifies a type (REG or STACK) and a number 4049 // representing the register number (i.e. - use a register name) or 4050 // stack slot. 4051 // Ret Addr is on stack in slot 0 if no locks or verification or alignment. 4052 // Otherwise, it is above the locks and verification slot and alignment word 4053 // TODO this may well be correct but need to check why that - 2 is there 4054 // ppc port uses 0 but we definitely need to allow for fixed_slots 4055 // which folds in the space used for monitors 4056 return_addr(STACK - 2 + 4057 align_up((Compile::current()->in_preserve_stack_slots() + 4058 Compile::current()->fixed_slots()), 4059 stack_alignment_in_slots())); 4060 4061 // Location of compiled Java return values. Same as C for now. 4062 return_value 4063 %{ 4064 // TODO do we allow ideal_reg == Op_RegN??? 4065 assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, 4066 "only return normal values"); 4067 4068 static const int lo[Op_RegL + 1] = { // enum name 4069 0, // Op_Node 4070 0, // Op_Set 4071 R0_num, // Op_RegN 4072 R0_num, // Op_RegI 4073 R0_num, // Op_RegP 4074 V0_num, // Op_RegF 4075 V0_num, // Op_RegD 4076 R0_num // Op_RegL 4077 }; 4078 4079 static const int hi[Op_RegL + 1] = { // enum name 4080 0, // Op_Node 4081 0, // Op_Set 4082 OptoReg::Bad, // Op_RegN 4083 OptoReg::Bad, // Op_RegI 4084 R0_H_num, // Op_RegP 4085 OptoReg::Bad, // Op_RegF 4086 V0_H_num, // Op_RegD 4087 R0_H_num // Op_RegL 4088 }; 4089 4090 return OptoRegPair(hi[ideal_reg], lo[ideal_reg]); 4091 %} 4092 %} 4093 4094 //----------ATTRIBUTES--------------------------------------------------------- 4095 //----------Operand Attributes------------------------------------------------- 4096 op_attrib op_cost(1); // Required cost attribute 4097 4098 //----------Instruction Attributes--------------------------------------------- 4099 ins_attrib ins_cost(INSN_COST); // Required cost attribute 4100 ins_attrib ins_size(32); // Required size attribute (in bits) 4101 ins_attrib ins_short_branch(0); // Required flag: is this instruction 4102 // a non-matching short branch variant 4103 // of some long branch? 4104 ins_attrib ins_alignment(4); // Required alignment attribute (must 4105 // be a power of 2) specifies the 4106 // alignment that some part of the 4107 // instruction (not necessarily the 4108 // start) requires. If > 1, a 4109 // compute_padding() function must be 4110 // provided for the instruction 4111 4112 //----------OPERANDS----------------------------------------------------------- 4113 // Operand definitions must precede instruction definitions for correct parsing 4114 // in the ADLC because operands constitute user defined types which are used in 4115 // instruction definitions. 4116 4117 //----------Simple Operands---------------------------------------------------- 4118 4119 // Integer operands 32 bit 4120 // 32 bit immediate 4121 operand immI() 4122 %{ 4123 match(ConI); 4124 4125 op_cost(0); 4126 format %{ %} 4127 interface(CONST_INTER); 4128 %} 4129 4130 // 32 bit zero 4131 operand immI0() 4132 %{ 4133 predicate(n->get_int() == 0); 4134 match(ConI); 4135 4136 op_cost(0); 4137 format %{ %} 4138 interface(CONST_INTER); 4139 %} 4140 4141 // 32 bit unit increment 4142 operand immI_1() 4143 %{ 4144 predicate(n->get_int() == 1); 4145 match(ConI); 4146 4147 op_cost(0); 4148 format %{ %} 4149 interface(CONST_INTER); 4150 %} 4151 4152 // 32 bit unit decrement 4153 operand immI_M1() 4154 %{ 4155 predicate(n->get_int() == -1); 4156 match(ConI); 4157 4158 op_cost(0); 4159 format %{ %} 4160 interface(CONST_INTER); 4161 %} 4162 4163 // Shift values for add/sub extension shift 4164 operand immIExt() 4165 %{ 4166 predicate(0 <= n->get_int() && (n->get_int() <= 4)); 4167 match(ConI); 4168 4169 op_cost(0); 4170 format %{ %} 4171 interface(CONST_INTER); 4172 %} 4173 4174 operand immI_le_4() 4175 %{ 4176 predicate(n->get_int() <= 4); 4177 match(ConI); 4178 4179 op_cost(0); 4180 format %{ %} 4181 interface(CONST_INTER); 4182 %} 4183 4184 operand immI_31() 4185 %{ 4186 predicate(n->get_int() == 31); 4187 match(ConI); 4188 4189 op_cost(0); 4190 format %{ %} 4191 interface(CONST_INTER); 4192 %} 4193 4194 operand immI_2() 4195 %{ 4196 predicate(n->get_int() == 2); 4197 match(ConI); 4198 4199 op_cost(0); 4200 format %{ %} 4201 interface(CONST_INTER); 4202 %} 4203 4204 operand immI_4() 4205 %{ 4206 predicate(n->get_int() == 4); 4207 match(ConI); 4208 4209 op_cost(0); 4210 format %{ %} 4211 interface(CONST_INTER); 4212 %} 4213 4214 operand immI_8() 4215 %{ 4216 predicate(n->get_int() == 8); 4217 match(ConI); 4218 4219 op_cost(0); 4220 format %{ %} 4221 interface(CONST_INTER); 4222 %} 4223 4224 operand immI_16() 4225 %{ 4226 predicate(n->get_int() == 16); 4227 match(ConI); 4228 4229 op_cost(0); 4230 format %{ %} 4231 interface(CONST_INTER); 4232 %} 4233 4234 operand immI_24() 4235 %{ 4236 predicate(n->get_int() == 24); 4237 match(ConI); 4238 4239 op_cost(0); 4240 format %{ %} 4241 interface(CONST_INTER); 4242 %} 4243 4244 operand immI_32() 4245 %{ 4246 predicate(n->get_int() == 32); 4247 match(ConI); 4248 4249 op_cost(0); 4250 format %{ %} 4251 interface(CONST_INTER); 4252 %} 4253 4254 operand immI_48() 4255 %{ 4256 predicate(n->get_int() == 48); 4257 match(ConI); 4258 4259 op_cost(0); 4260 format %{ %} 4261 interface(CONST_INTER); 4262 %} 4263 4264 operand immI_56() 4265 %{ 4266 predicate(n->get_int() == 56); 4267 match(ConI); 4268 4269 op_cost(0); 4270 format %{ %} 4271 interface(CONST_INTER); 4272 %} 4273 4274 operand immI_63() 4275 %{ 4276 predicate(n->get_int() == 63); 4277 match(ConI); 4278 4279 op_cost(0); 4280 format %{ %} 4281 interface(CONST_INTER); 4282 %} 4283 4284 operand immI_64() 4285 %{ 4286 predicate(n->get_int() == 64); 4287 match(ConI); 4288 4289 op_cost(0); 4290 format %{ %} 4291 interface(CONST_INTER); 4292 %} 4293 4294 operand immI_255() 4295 %{ 4296 predicate(n->get_int() == 255); 4297 match(ConI); 4298 4299 op_cost(0); 4300 format %{ %} 4301 interface(CONST_INTER); 4302 %} 4303 4304 operand immI_65535() 4305 %{ 4306 predicate(n->get_int() == 65535); 4307 match(ConI); 4308 4309 op_cost(0); 4310 format %{ %} 4311 interface(CONST_INTER); 4312 %} 4313 4314 operand immI_positive() 4315 %{ 4316 predicate(n->get_int() > 0); 4317 match(ConI); 4318 4319 op_cost(0); 4320 format %{ %} 4321 interface(CONST_INTER); 4322 %} 4323 4324 operand immL_255() 4325 %{ 4326 predicate(n->get_long() == 255L); 4327 match(ConL); 4328 4329 op_cost(0); 4330 format %{ %} 4331 interface(CONST_INTER); 4332 %} 4333 4334 operand immL_65535() 4335 %{ 4336 predicate(n->get_long() == 65535L); 4337 match(ConL); 4338 4339 op_cost(0); 4340 format %{ %} 4341 interface(CONST_INTER); 4342 %} 4343 4344 operand immL_4294967295() 4345 %{ 4346 predicate(n->get_long() == 4294967295L); 4347 match(ConL); 4348 4349 op_cost(0); 4350 format %{ %} 4351 interface(CONST_INTER); 4352 %} 4353 4354 operand immL_bitmask() 4355 %{ 4356 predicate((n->get_long() != 0) 4357 && ((n->get_long() & 0xc000000000000000l) == 0) 4358 && is_power_of_2(n->get_long() + 1)); 4359 match(ConL); 4360 4361 op_cost(0); 4362 format %{ %} 4363 interface(CONST_INTER); 4364 %} 4365 4366 operand immI_bitmask() 4367 %{ 4368 predicate((n->get_int() != 0) 4369 && ((n->get_int() & 0xc0000000) == 0) 4370 && is_power_of_2(n->get_int() + 1)); 4371 match(ConI); 4372 4373 op_cost(0); 4374 format %{ %} 4375 interface(CONST_INTER); 4376 %} 4377 4378 operand immL_positive_bitmaskI() 4379 %{ 4380 predicate((n->get_long() != 0) 4381 && ((julong)n->get_long() < 0x80000000ULL) 4382 && is_power_of_2(n->get_long() + 1)); 4383 match(ConL); 4384 4385 op_cost(0); 4386 format %{ %} 4387 interface(CONST_INTER); 4388 %} 4389 4390 // Scale values for scaled offset addressing modes (up to long but not quad) 4391 operand immIScale() 4392 %{ 4393 predicate(0 <= n->get_int() && (n->get_int() <= 3)); 4394 match(ConI); 4395 4396 op_cost(0); 4397 format %{ %} 4398 interface(CONST_INTER); 4399 %} 4400 4401 // 26 bit signed offset -- for pc-relative branches 4402 operand immI26() 4403 %{ 4404 predicate(((-(1 << 25)) <= n->get_int()) && (n->get_int() < (1 << 25))); 4405 match(ConI); 4406 4407 op_cost(0); 4408 format %{ %} 4409 interface(CONST_INTER); 4410 %} 4411 4412 // 19 bit signed offset -- for pc-relative loads 4413 operand immI19() 4414 %{ 4415 predicate(((-(1 << 18)) <= n->get_int()) && (n->get_int() < (1 << 18))); 4416 match(ConI); 4417 4418 op_cost(0); 4419 format %{ %} 4420 interface(CONST_INTER); 4421 %} 4422 4423 // 12 bit unsigned offset -- for base plus immediate loads 4424 operand immIU12() 4425 %{ 4426 predicate((0 <= n->get_int()) && (n->get_int() < (1 << 12))); 4427 match(ConI); 4428 4429 op_cost(0); 4430 format %{ %} 4431 interface(CONST_INTER); 4432 %} 4433 4434 operand immLU12() 4435 %{ 4436 predicate((0 <= n->get_long()) && (n->get_long() < (1 << 12))); 4437 match(ConL); 4438 4439 op_cost(0); 4440 format %{ %} 4441 interface(CONST_INTER); 4442 %} 4443 4444 // Offset for scaled or unscaled immediate loads and stores 4445 operand immIOffset() 4446 %{ 4447 predicate(Address::offset_ok_for_immed(n->get_int(), 0)); 4448 match(ConI); 4449 4450 op_cost(0); 4451 format %{ %} 4452 interface(CONST_INTER); 4453 %} 4454 4455 operand immIOffset1() 4456 %{ 4457 predicate(Address::offset_ok_for_immed(n->get_int(), 0)); 4458 match(ConI); 4459 4460 op_cost(0); 4461 format %{ %} 4462 interface(CONST_INTER); 4463 %} 4464 4465 operand immIOffset2() 4466 %{ 4467 predicate(Address::offset_ok_for_immed(n->get_int(), 1)); 4468 match(ConI); 4469 4470 op_cost(0); 4471 format %{ %} 4472 interface(CONST_INTER); 4473 %} 4474 4475 operand immIOffset4() 4476 %{ 4477 predicate(Address::offset_ok_for_immed(n->get_int(), 2)); 4478 match(ConI); 4479 4480 op_cost(0); 4481 format %{ %} 4482 interface(CONST_INTER); 4483 %} 4484 4485 operand immIOffset8() 4486 %{ 4487 predicate(Address::offset_ok_for_immed(n->get_int(), 3)); 4488 match(ConI); 4489 4490 op_cost(0); 4491 format %{ %} 4492 interface(CONST_INTER); 4493 %} 4494 4495 operand immIOffset16() 4496 %{ 4497 predicate(Address::offset_ok_for_immed(n->get_int(), 4)); 4498 match(ConI); 4499 4500 op_cost(0); 4501 format %{ %} 4502 interface(CONST_INTER); 4503 %} 4504 4505 operand immLoffset() 4506 %{ 4507 predicate(Address::offset_ok_for_immed(n->get_long(), 0)); 4508 match(ConL); 4509 4510 op_cost(0); 4511 format %{ %} 4512 interface(CONST_INTER); 4513 %} 4514 4515 operand immLoffset1() 4516 %{ 4517 predicate(Address::offset_ok_for_immed(n->get_long(), 0)); 4518 match(ConL); 4519 4520 op_cost(0); 4521 format %{ %} 4522 interface(CONST_INTER); 4523 %} 4524 4525 operand immLoffset2() 4526 %{ 4527 predicate(Address::offset_ok_for_immed(n->get_long(), 1)); 4528 match(ConL); 4529 4530 op_cost(0); 4531 format %{ %} 4532 interface(CONST_INTER); 4533 %} 4534 4535 operand immLoffset4() 4536 %{ 4537 predicate(Address::offset_ok_for_immed(n->get_long(), 2)); 4538 match(ConL); 4539 4540 op_cost(0); 4541 format %{ %} 4542 interface(CONST_INTER); 4543 %} 4544 4545 operand immLoffset8() 4546 %{ 4547 predicate(Address::offset_ok_for_immed(n->get_long(), 3)); 4548 match(ConL); 4549 4550 op_cost(0); 4551 format %{ %} 4552 interface(CONST_INTER); 4553 %} 4554 4555 operand immLoffset16() 4556 %{ 4557 predicate(Address::offset_ok_for_immed(n->get_long(), 4)); 4558 match(ConL); 4559 4560 op_cost(0); 4561 format %{ %} 4562 interface(CONST_INTER); 4563 %} 4564 4565 // 8 bit signed value. 4566 operand immI8() 4567 %{ 4568 predicate(n->get_int() <= 127 && n->get_int() >= -128); 4569 match(ConI); 4570 4571 op_cost(0); 4572 format %{ %} 4573 interface(CONST_INTER); 4574 %} 4575 4576 // 8 bit signed value (simm8), or #simm8 LSL 8. 4577 operand immI8_shift8() 4578 %{ 4579 predicate((n->get_int() <= 127 && n->get_int() >= -128) || 4580 (n->get_int() <= 32512 && n->get_int() >= -32768 && (n->get_int() & 0xff) == 0)); 4581 match(ConI); 4582 4583 op_cost(0); 4584 format %{ %} 4585 interface(CONST_INTER); 4586 %} 4587 4588 // 8 bit signed value (simm8), or #simm8 LSL 8. 4589 operand immL8_shift8() 4590 %{ 4591 predicate((n->get_long() <= 127 && n->get_long() >= -128) || 4592 (n->get_long() <= 32512 && n->get_long() >= -32768 && (n->get_long() & 0xff) == 0)); 4593 match(ConL); 4594 4595 op_cost(0); 4596 format %{ %} 4597 interface(CONST_INTER); 4598 %} 4599 4600 // 32 bit integer valid for add sub immediate 4601 operand immIAddSub() 4602 %{ 4603 predicate(Assembler::operand_valid_for_add_sub_immediate((int64_t)n->get_int())); 4604 match(ConI); 4605 op_cost(0); 4606 format %{ %} 4607 interface(CONST_INTER); 4608 %} 4609 4610 // 32 bit unsigned integer valid for logical immediate 4611 // TODO -- check this is right when e.g the mask is 0x80000000 4612 operand immILog() 4613 %{ 4614 predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/true, (uint64_t)n->get_int())); 4615 match(ConI); 4616 4617 op_cost(0); 4618 format %{ %} 4619 interface(CONST_INTER); 4620 %} 4621 4622 // Integer operands 64 bit 4623 // 64 bit immediate 4624 operand immL() 4625 %{ 4626 match(ConL); 4627 4628 op_cost(0); 4629 format %{ %} 4630 interface(CONST_INTER); 4631 %} 4632 4633 // 64 bit zero 4634 operand immL0() 4635 %{ 4636 predicate(n->get_long() == 0); 4637 match(ConL); 4638 4639 op_cost(0); 4640 format %{ %} 4641 interface(CONST_INTER); 4642 %} 4643 4644 // 64 bit unit increment 4645 operand immL_1() 4646 %{ 4647 predicate(n->get_long() == 1); 4648 match(ConL); 4649 4650 op_cost(0); 4651 format %{ %} 4652 interface(CONST_INTER); 4653 %} 4654 4655 // 64 bit unit decrement 4656 operand immL_M1() 4657 %{ 4658 predicate(n->get_long() == -1); 4659 match(ConL); 4660 4661 op_cost(0); 4662 format %{ %} 4663 interface(CONST_INTER); 4664 %} 4665 4666 // 32 bit offset of pc in thread anchor 4667 4668 operand immL_pc_off() 4669 %{ 4670 predicate(n->get_long() == in_bytes(JavaThread::frame_anchor_offset()) + 4671 in_bytes(JavaFrameAnchor::last_Java_pc_offset())); 4672 match(ConL); 4673 4674 op_cost(0); 4675 format %{ %} 4676 interface(CONST_INTER); 4677 %} 4678 4679 // 64 bit integer valid for add sub immediate 4680 operand immLAddSub() 4681 %{ 4682 predicate(Assembler::operand_valid_for_add_sub_immediate(n->get_long())); 4683 match(ConL); 4684 op_cost(0); 4685 format %{ %} 4686 interface(CONST_INTER); 4687 %} 4688 4689 // 64 bit integer valid for logical immediate 4690 operand immLLog() 4691 %{ 4692 predicate(Assembler::operand_valid_for_logical_immediate(/*is32*/false, (uint64_t)n->get_long())); 4693 match(ConL); 4694 op_cost(0); 4695 format %{ %} 4696 interface(CONST_INTER); 4697 %} 4698 4699 // Long Immediate: low 32-bit mask 4700 operand immL_32bits() 4701 %{ 4702 predicate(n->get_long() == 0xFFFFFFFFL); 4703 match(ConL); 4704 op_cost(0); 4705 format %{ %} 4706 interface(CONST_INTER); 4707 %} 4708 4709 // Pointer operands 4710 // Pointer Immediate 4711 operand immP() 4712 %{ 4713 match(ConP); 4714 4715 op_cost(0); 4716 format %{ %} 4717 interface(CONST_INTER); 4718 %} 4719 4720 // NULL Pointer Immediate 4721 operand immP0() 4722 %{ 4723 predicate(n->get_ptr() == 0); 4724 match(ConP); 4725 4726 op_cost(0); 4727 format %{ %} 4728 interface(CONST_INTER); 4729 %} 4730 4731 // Pointer Immediate One 4732 // this is used in object initialization (initial object header) 4733 operand immP_1() 4734 %{ 4735 predicate(n->get_ptr() == 1); 4736 match(ConP); 4737 4738 op_cost(0); 4739 format %{ %} 4740 interface(CONST_INTER); 4741 %} 4742 4743 // Card Table Byte Map Base 4744 operand immByteMapBase() 4745 %{ 4746 // Get base of card map 4747 predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) && 4748 (CardTable::CardValue*)n->get_ptr() == ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base()); 4749 match(ConP); 4750 4751 op_cost(0); 4752 format %{ %} 4753 interface(CONST_INTER); 4754 %} 4755 4756 // Pointer Immediate Minus One 4757 // this is used when we want to write the current PC to the thread anchor 4758 operand immP_M1() 4759 %{ 4760 predicate(n->get_ptr() == -1); 4761 match(ConP); 4762 4763 op_cost(0); 4764 format %{ %} 4765 interface(CONST_INTER); 4766 %} 4767 4768 // Pointer Immediate Minus Two 4769 // this is used when we want to write the current PC to the thread anchor 4770 operand immP_M2() 4771 %{ 4772 predicate(n->get_ptr() == -2); 4773 match(ConP); 4774 4775 op_cost(0); 4776 format %{ %} 4777 interface(CONST_INTER); 4778 %} 4779 4780 // Float and Double operands 4781 // Double Immediate 4782 operand immD() 4783 %{ 4784 match(ConD); 4785 op_cost(0); 4786 format %{ %} 4787 interface(CONST_INTER); 4788 %} 4789 4790 // Double Immediate: +0.0d 4791 operand immD0() 4792 %{ 4793 predicate(jlong_cast(n->getd()) == 0); 4794 match(ConD); 4795 4796 op_cost(0); 4797 format %{ %} 4798 interface(CONST_INTER); 4799 %} 4800 4801 // constant 'double +0.0'. 4802 operand immDPacked() 4803 %{ 4804 predicate(Assembler::operand_valid_for_float_immediate(n->getd())); 4805 match(ConD); 4806 op_cost(0); 4807 format %{ %} 4808 interface(CONST_INTER); 4809 %} 4810 4811 // Float Immediate 4812 operand immF() 4813 %{ 4814 match(ConF); 4815 op_cost(0); 4816 format %{ %} 4817 interface(CONST_INTER); 4818 %} 4819 4820 // Float Immediate: +0.0f. 4821 operand immF0() 4822 %{ 4823 predicate(jint_cast(n->getf()) == 0); 4824 match(ConF); 4825 4826 op_cost(0); 4827 format %{ %} 4828 interface(CONST_INTER); 4829 %} 4830 4831 // 4832 operand immFPacked() 4833 %{ 4834 predicate(Assembler::operand_valid_for_float_immediate((double)n->getf())); 4835 match(ConF); 4836 op_cost(0); 4837 format %{ %} 4838 interface(CONST_INTER); 4839 %} 4840 4841 // Narrow pointer operands 4842 // Narrow Pointer Immediate 4843 operand immN() 4844 %{ 4845 match(ConN); 4846 4847 op_cost(0); 4848 format %{ %} 4849 interface(CONST_INTER); 4850 %} 4851 4852 // Narrow NULL Pointer Immediate 4853 operand immN0() 4854 %{ 4855 predicate(n->get_narrowcon() == 0); 4856 match(ConN); 4857 4858 op_cost(0); 4859 format %{ %} 4860 interface(CONST_INTER); 4861 %} 4862 4863 operand immNKlass() 4864 %{ 4865 match(ConNKlass); 4866 4867 op_cost(0); 4868 format %{ %} 4869 interface(CONST_INTER); 4870 %} 4871 4872 // Integer 32 bit Register Operands 4873 // Integer 32 bitRegister (excludes SP) 4874 operand iRegI() 4875 %{ 4876 constraint(ALLOC_IN_RC(any_reg32)); 4877 match(RegI); 4878 match(iRegINoSp); 4879 op_cost(0); 4880 format %{ %} 4881 interface(REG_INTER); 4882 %} 4883 4884 // Integer 32 bit Register not Special 4885 operand iRegINoSp() 4886 %{ 4887 constraint(ALLOC_IN_RC(no_special_reg32)); 4888 match(RegI); 4889 op_cost(0); 4890 format %{ %} 4891 interface(REG_INTER); 4892 %} 4893 4894 // Integer 64 bit Register Operands 4895 // Integer 64 bit Register (includes SP) 4896 operand iRegL() 4897 %{ 4898 constraint(ALLOC_IN_RC(any_reg)); 4899 match(RegL); 4900 match(iRegLNoSp); 4901 op_cost(0); 4902 format %{ %} 4903 interface(REG_INTER); 4904 %} 4905 4906 // Integer 64 bit Register not Special 4907 operand iRegLNoSp() 4908 %{ 4909 constraint(ALLOC_IN_RC(no_special_reg)); 4910 match(RegL); 4911 match(iRegL_R0); 4912 format %{ %} 4913 interface(REG_INTER); 4914 %} 4915 4916 // Pointer Register Operands 4917 // Pointer Register 4918 operand iRegP() 4919 %{ 4920 constraint(ALLOC_IN_RC(ptr_reg)); 4921 match(RegP); 4922 match(iRegPNoSp); 4923 match(iRegP_R0); 4924 //match(iRegP_R2); 4925 //match(iRegP_R4); 4926 match(iRegP_R5); 4927 match(thread_RegP); 4928 op_cost(0); 4929 format %{ %} 4930 interface(REG_INTER); 4931 %} 4932 4933 // Pointer 64 bit Register not Special 4934 operand iRegPNoSp() 4935 %{ 4936 constraint(ALLOC_IN_RC(no_special_ptr_reg)); 4937 match(RegP); 4938 // match(iRegP); 4939 // match(iRegP_R0); 4940 // match(iRegP_R2); 4941 // match(iRegP_R4); 4942 // match(iRegP_R5); 4943 // match(thread_RegP); 4944 op_cost(0); 4945 format %{ %} 4946 interface(REG_INTER); 4947 %} 4948 4949 // Pointer 64 bit Register R0 only 4950 operand iRegP_R0() 4951 %{ 4952 constraint(ALLOC_IN_RC(r0_reg)); 4953 match(RegP); 4954 // match(iRegP); 4955 match(iRegPNoSp); 4956 op_cost(0); 4957 format %{ %} 4958 interface(REG_INTER); 4959 %} 4960 4961 // Pointer 64 bit Register R1 only 4962 operand iRegP_R1() 4963 %{ 4964 constraint(ALLOC_IN_RC(r1_reg)); 4965 match(RegP); 4966 // match(iRegP); 4967 match(iRegPNoSp); 4968 op_cost(0); 4969 format %{ %} 4970 interface(REG_INTER); 4971 %} 4972 4973 // Pointer 64 bit Register R2 only 4974 operand iRegP_R2() 4975 %{ 4976 constraint(ALLOC_IN_RC(r2_reg)); 4977 match(RegP); 4978 // match(iRegP); 4979 match(iRegPNoSp); 4980 op_cost(0); 4981 format %{ %} 4982 interface(REG_INTER); 4983 %} 4984 4985 // Pointer 64 bit Register R3 only 4986 operand iRegP_R3() 4987 %{ 4988 constraint(ALLOC_IN_RC(r3_reg)); 4989 match(RegP); 4990 // match(iRegP); 4991 match(iRegPNoSp); 4992 op_cost(0); 4993 format %{ %} 4994 interface(REG_INTER); 4995 %} 4996 4997 // Pointer 64 bit Register R4 only 4998 operand iRegP_R4() 4999 %{ 5000 constraint(ALLOC_IN_RC(r4_reg)); 5001 match(RegP); 5002 // match(iRegP); 5003 match(iRegPNoSp); 5004 op_cost(0); 5005 format %{ %} 5006 interface(REG_INTER); 5007 %} 5008 5009 // Pointer 64 bit Register R5 only 5010 operand iRegP_R5() 5011 %{ 5012 constraint(ALLOC_IN_RC(r5_reg)); 5013 match(RegP); 5014 // match(iRegP); 5015 match(iRegPNoSp); 5016 op_cost(0); 5017 format %{ %} 5018 interface(REG_INTER); 5019 %} 5020 5021 // Pointer 64 bit Register R10 only 5022 operand iRegP_R10() 5023 %{ 5024 constraint(ALLOC_IN_RC(r10_reg)); 5025 match(RegP); 5026 // match(iRegP); 5027 match(iRegPNoSp); 5028 op_cost(0); 5029 format %{ %} 5030 interface(REG_INTER); 5031 %} 5032 5033 // Long 64 bit Register R0 only 5034 operand iRegL_R0() 5035 %{ 5036 constraint(ALLOC_IN_RC(r0_reg)); 5037 match(RegL); 5038 match(iRegLNoSp); 5039 op_cost(0); 5040 format %{ %} 5041 interface(REG_INTER); 5042 %} 5043 5044 // Long 64 bit Register R2 only 5045 operand iRegL_R2() 5046 %{ 5047 constraint(ALLOC_IN_RC(r2_reg)); 5048 match(RegL); 5049 match(iRegLNoSp); 5050 op_cost(0); 5051 format %{ %} 5052 interface(REG_INTER); 5053 %} 5054 5055 // Long 64 bit Register R3 only 5056 operand iRegL_R3() 5057 %{ 5058 constraint(ALLOC_IN_RC(r3_reg)); 5059 match(RegL); 5060 match(iRegLNoSp); 5061 op_cost(0); 5062 format %{ %} 5063 interface(REG_INTER); 5064 %} 5065 5066 // Long 64 bit Register R11 only 5067 operand iRegL_R11() 5068 %{ 5069 constraint(ALLOC_IN_RC(r11_reg)); 5070 match(RegL); 5071 match(iRegLNoSp); 5072 op_cost(0); 5073 format %{ %} 5074 interface(REG_INTER); 5075 %} 5076 5077 // Pointer 64 bit Register FP only 5078 operand iRegP_FP() 5079 %{ 5080 constraint(ALLOC_IN_RC(fp_reg)); 5081 match(RegP); 5082 // match(iRegP); 5083 op_cost(0); 5084 format %{ %} 5085 interface(REG_INTER); 5086 %} 5087 5088 // Register R0 only 5089 operand iRegI_R0() 5090 %{ 5091 constraint(ALLOC_IN_RC(int_r0_reg)); 5092 match(RegI); 5093 match(iRegINoSp); 5094 op_cost(0); 5095 format %{ %} 5096 interface(REG_INTER); 5097 %} 5098 5099 // Register R2 only 5100 operand iRegI_R2() 5101 %{ 5102 constraint(ALLOC_IN_RC(int_r2_reg)); 5103 match(RegI); 5104 match(iRegINoSp); 5105 op_cost(0); 5106 format %{ %} 5107 interface(REG_INTER); 5108 %} 5109 5110 // Register R3 only 5111 operand iRegI_R3() 5112 %{ 5113 constraint(ALLOC_IN_RC(int_r3_reg)); 5114 match(RegI); 5115 match(iRegINoSp); 5116 op_cost(0); 5117 format %{ %} 5118 interface(REG_INTER); 5119 %} 5120 5121 5122 // Register R4 only 5123 operand iRegI_R4() 5124 %{ 5125 constraint(ALLOC_IN_RC(int_r4_reg)); 5126 match(RegI); 5127 match(iRegINoSp); 5128 op_cost(0); 5129 format %{ %} 5130 interface(REG_INTER); 5131 %} 5132 5133 5134 // Pointer Register Operands 5135 // Narrow Pointer Register 5136 operand iRegN() 5137 %{ 5138 constraint(ALLOC_IN_RC(any_reg32)); 5139 match(RegN); 5140 match(iRegNNoSp); 5141 op_cost(0); 5142 format %{ %} 5143 interface(REG_INTER); 5144 %} 5145 5146 operand iRegN_R0() 5147 %{ 5148 constraint(ALLOC_IN_RC(r0_reg)); 5149 match(iRegN); 5150 op_cost(0); 5151 format %{ %} 5152 interface(REG_INTER); 5153 %} 5154 5155 operand iRegN_R2() 5156 %{ 5157 constraint(ALLOC_IN_RC(r2_reg)); 5158 match(iRegN); 5159 op_cost(0); 5160 format %{ %} 5161 interface(REG_INTER); 5162 %} 5163 5164 operand iRegN_R3() 5165 %{ 5166 constraint(ALLOC_IN_RC(r3_reg)); 5167 match(iRegN); 5168 op_cost(0); 5169 format %{ %} 5170 interface(REG_INTER); 5171 %} 5172 5173 // Integer 64 bit Register not Special 5174 operand iRegNNoSp() 5175 %{ 5176 constraint(ALLOC_IN_RC(no_special_reg32)); 5177 match(RegN); 5178 op_cost(0); 5179 format %{ %} 5180 interface(REG_INTER); 5181 %} 5182 5183 // heap base register -- used for encoding immN0 5184 5185 operand iRegIHeapbase() 5186 %{ 5187 constraint(ALLOC_IN_RC(heapbase_reg)); 5188 match(RegI); 5189 op_cost(0); 5190 format %{ %} 5191 interface(REG_INTER); 5192 %} 5193 5194 // Float Register 5195 // Float register operands 5196 operand vRegF() 5197 %{ 5198 constraint(ALLOC_IN_RC(float_reg)); 5199 match(RegF); 5200 5201 op_cost(0); 5202 format %{ %} 5203 interface(REG_INTER); 5204 %} 5205 5206 // Double Register 5207 // Double register operands 5208 operand vRegD() 5209 %{ 5210 constraint(ALLOC_IN_RC(double_reg)); 5211 match(RegD); 5212 5213 op_cost(0); 5214 format %{ %} 5215 interface(REG_INTER); 5216 %} 5217 5218 // Generic vector class. This will be used for 5219 // all vector operands, including NEON and SVE, 5220 // but currently only used for SVE VecA. 5221 operand vReg() 5222 %{ 5223 constraint(ALLOC_IN_RC(vectora_reg)); 5224 match(VecA); 5225 op_cost(0); 5226 format %{ %} 5227 interface(REG_INTER); 5228 %} 5229 5230 operand vecD() 5231 %{ 5232 constraint(ALLOC_IN_RC(vectord_reg)); 5233 match(VecD); 5234 5235 op_cost(0); 5236 format %{ %} 5237 interface(REG_INTER); 5238 %} 5239 5240 operand vecX() 5241 %{ 5242 constraint(ALLOC_IN_RC(vectorx_reg)); 5243 match(VecX); 5244 5245 op_cost(0); 5246 format %{ %} 5247 interface(REG_INTER); 5248 %} 5249 5250 operand vRegD_V0() 5251 %{ 5252 constraint(ALLOC_IN_RC(v0_reg)); 5253 match(RegD); 5254 op_cost(0); 5255 format %{ %} 5256 interface(REG_INTER); 5257 %} 5258 5259 operand vRegD_V1() 5260 %{ 5261 constraint(ALLOC_IN_RC(v1_reg)); 5262 match(RegD); 5263 op_cost(0); 5264 format %{ %} 5265 interface(REG_INTER); 5266 %} 5267 5268 operand vRegD_V2() 5269 %{ 5270 constraint(ALLOC_IN_RC(v2_reg)); 5271 match(RegD); 5272 op_cost(0); 5273 format %{ %} 5274 interface(REG_INTER); 5275 %} 5276 5277 operand vRegD_V3() 5278 %{ 5279 constraint(ALLOC_IN_RC(v3_reg)); 5280 match(RegD); 5281 op_cost(0); 5282 format %{ %} 5283 interface(REG_INTER); 5284 %} 5285 5286 operand vRegD_V4() 5287 %{ 5288 constraint(ALLOC_IN_RC(v4_reg)); 5289 match(RegD); 5290 op_cost(0); 5291 format %{ %} 5292 interface(REG_INTER); 5293 %} 5294 5295 operand vRegD_V5() 5296 %{ 5297 constraint(ALLOC_IN_RC(v5_reg)); 5298 match(RegD); 5299 op_cost(0); 5300 format %{ %} 5301 interface(REG_INTER); 5302 %} 5303 5304 operand vRegD_V6() 5305 %{ 5306 constraint(ALLOC_IN_RC(v6_reg)); 5307 match(RegD); 5308 op_cost(0); 5309 format %{ %} 5310 interface(REG_INTER); 5311 %} 5312 5313 operand vRegD_V7() 5314 %{ 5315 constraint(ALLOC_IN_RC(v7_reg)); 5316 match(RegD); 5317 op_cost(0); 5318 format %{ %} 5319 interface(REG_INTER); 5320 %} 5321 5322 operand vRegD_V8() 5323 %{ 5324 constraint(ALLOC_IN_RC(v8_reg)); 5325 match(RegD); 5326 op_cost(0); 5327 format %{ %} 5328 interface(REG_INTER); 5329 %} 5330 5331 operand vRegD_V9() 5332 %{ 5333 constraint(ALLOC_IN_RC(v9_reg)); 5334 match(RegD); 5335 op_cost(0); 5336 format %{ %} 5337 interface(REG_INTER); 5338 %} 5339 5340 operand vRegD_V10() 5341 %{ 5342 constraint(ALLOC_IN_RC(v10_reg)); 5343 match(RegD); 5344 op_cost(0); 5345 format %{ %} 5346 interface(REG_INTER); 5347 %} 5348 5349 operand vRegD_V11() 5350 %{ 5351 constraint(ALLOC_IN_RC(v11_reg)); 5352 match(RegD); 5353 op_cost(0); 5354 format %{ %} 5355 interface(REG_INTER); 5356 %} 5357 5358 operand vRegD_V12() 5359 %{ 5360 constraint(ALLOC_IN_RC(v12_reg)); 5361 match(RegD); 5362 op_cost(0); 5363 format %{ %} 5364 interface(REG_INTER); 5365 %} 5366 5367 operand vRegD_V13() 5368 %{ 5369 constraint(ALLOC_IN_RC(v13_reg)); 5370 match(RegD); 5371 op_cost(0); 5372 format %{ %} 5373 interface(REG_INTER); 5374 %} 5375 5376 operand vRegD_V14() 5377 %{ 5378 constraint(ALLOC_IN_RC(v14_reg)); 5379 match(RegD); 5380 op_cost(0); 5381 format %{ %} 5382 interface(REG_INTER); 5383 %} 5384 5385 operand vRegD_V15() 5386 %{ 5387 constraint(ALLOC_IN_RC(v15_reg)); 5388 match(RegD); 5389 op_cost(0); 5390 format %{ %} 5391 interface(REG_INTER); 5392 %} 5393 5394 operand vRegD_V16() 5395 %{ 5396 constraint(ALLOC_IN_RC(v16_reg)); 5397 match(RegD); 5398 op_cost(0); 5399 format %{ %} 5400 interface(REG_INTER); 5401 %} 5402 5403 operand vRegD_V17() 5404 %{ 5405 constraint(ALLOC_IN_RC(v17_reg)); 5406 match(RegD); 5407 op_cost(0); 5408 format %{ %} 5409 interface(REG_INTER); 5410 %} 5411 5412 operand vRegD_V18() 5413 %{ 5414 constraint(ALLOC_IN_RC(v18_reg)); 5415 match(RegD); 5416 op_cost(0); 5417 format %{ %} 5418 interface(REG_INTER); 5419 %} 5420 5421 operand vRegD_V19() 5422 %{ 5423 constraint(ALLOC_IN_RC(v19_reg)); 5424 match(RegD); 5425 op_cost(0); 5426 format %{ %} 5427 interface(REG_INTER); 5428 %} 5429 5430 operand vRegD_V20() 5431 %{ 5432 constraint(ALLOC_IN_RC(v20_reg)); 5433 match(RegD); 5434 op_cost(0); 5435 format %{ %} 5436 interface(REG_INTER); 5437 %} 5438 5439 operand vRegD_V21() 5440 %{ 5441 constraint(ALLOC_IN_RC(v21_reg)); 5442 match(RegD); 5443 op_cost(0); 5444 format %{ %} 5445 interface(REG_INTER); 5446 %} 5447 5448 operand vRegD_V22() 5449 %{ 5450 constraint(ALLOC_IN_RC(v22_reg)); 5451 match(RegD); 5452 op_cost(0); 5453 format %{ %} 5454 interface(REG_INTER); 5455 %} 5456 5457 operand vRegD_V23() 5458 %{ 5459 constraint(ALLOC_IN_RC(v23_reg)); 5460 match(RegD); 5461 op_cost(0); 5462 format %{ %} 5463 interface(REG_INTER); 5464 %} 5465 5466 operand vRegD_V24() 5467 %{ 5468 constraint(ALLOC_IN_RC(v24_reg)); 5469 match(RegD); 5470 op_cost(0); 5471 format %{ %} 5472 interface(REG_INTER); 5473 %} 5474 5475 operand vRegD_V25() 5476 %{ 5477 constraint(ALLOC_IN_RC(v25_reg)); 5478 match(RegD); 5479 op_cost(0); 5480 format %{ %} 5481 interface(REG_INTER); 5482 %} 5483 5484 operand vRegD_V26() 5485 %{ 5486 constraint(ALLOC_IN_RC(v26_reg)); 5487 match(RegD); 5488 op_cost(0); 5489 format %{ %} 5490 interface(REG_INTER); 5491 %} 5492 5493 operand vRegD_V27() 5494 %{ 5495 constraint(ALLOC_IN_RC(v27_reg)); 5496 match(RegD); 5497 op_cost(0); 5498 format %{ %} 5499 interface(REG_INTER); 5500 %} 5501 5502 operand vRegD_V28() 5503 %{ 5504 constraint(ALLOC_IN_RC(v28_reg)); 5505 match(RegD); 5506 op_cost(0); 5507 format %{ %} 5508 interface(REG_INTER); 5509 %} 5510 5511 operand vRegD_V29() 5512 %{ 5513 constraint(ALLOC_IN_RC(v29_reg)); 5514 match(RegD); 5515 op_cost(0); 5516 format %{ %} 5517 interface(REG_INTER); 5518 %} 5519 5520 operand vRegD_V30() 5521 %{ 5522 constraint(ALLOC_IN_RC(v30_reg)); 5523 match(RegD); 5524 op_cost(0); 5525 format %{ %} 5526 interface(REG_INTER); 5527 %} 5528 5529 operand vRegD_V31() 5530 %{ 5531 constraint(ALLOC_IN_RC(v31_reg)); 5532 match(RegD); 5533 op_cost(0); 5534 format %{ %} 5535 interface(REG_INTER); 5536 %} 5537 5538 operand pRegGov() 5539 %{ 5540 constraint(ALLOC_IN_RC(gov_pr)); 5541 match(RegVectMask); 5542 op_cost(0); 5543 format %{ %} 5544 interface(REG_INTER); 5545 %} 5546 5547 // Flags register, used as output of signed compare instructions 5548 5549 // note that on AArch64 we also use this register as the output for 5550 // for floating point compare instructions (CmpF CmpD). this ensures 5551 // that ordered inequality tests use GT, GE, LT or LE none of which 5552 // pass through cases where the result is unordered i.e. one or both 5553 // inputs to the compare is a NaN. this means that the ideal code can 5554 // replace e.g. a GT with an LE and not end up capturing the NaN case 5555 // (where the comparison should always fail). EQ and NE tests are 5556 // always generated in ideal code so that unordered folds into the NE 5557 // case, matching the behaviour of AArch64 NE. 5558 // 5559 // This differs from x86 where the outputs of FP compares use a 5560 // special FP flags registers and where compares based on this 5561 // register are distinguished into ordered inequalities (cmpOpUCF) and 5562 // EQ/NEQ tests (cmpOpUCF2). x86 has to special case the latter tests 5563 // to explicitly handle the unordered case in branches. x86 also has 5564 // to include extra CMoveX rules to accept a cmpOpUCF input. 5565 5566 operand rFlagsReg() 5567 %{ 5568 constraint(ALLOC_IN_RC(int_flags)); 5569 match(RegFlags); 5570 5571 op_cost(0); 5572 format %{ "RFLAGS" %} 5573 interface(REG_INTER); 5574 %} 5575 5576 // Flags register, used as output of unsigned compare instructions 5577 operand rFlagsRegU() 5578 %{ 5579 constraint(ALLOC_IN_RC(int_flags)); 5580 match(RegFlags); 5581 5582 op_cost(0); 5583 format %{ "RFLAGSU" %} 5584 interface(REG_INTER); 5585 %} 5586 5587 // Special Registers 5588 5589 // Method Register 5590 operand inline_cache_RegP(iRegP reg) 5591 %{ 5592 constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg 5593 match(reg); 5594 match(iRegPNoSp); 5595 op_cost(0); 5596 format %{ %} 5597 interface(REG_INTER); 5598 %} 5599 5600 // Thread Register 5601 operand thread_RegP(iRegP reg) 5602 %{ 5603 constraint(ALLOC_IN_RC(thread_reg)); // link_reg 5604 match(reg); 5605 op_cost(0); 5606 format %{ %} 5607 interface(REG_INTER); 5608 %} 5609 5610 operand lr_RegP(iRegP reg) 5611 %{ 5612 constraint(ALLOC_IN_RC(lr_reg)); // link_reg 5613 match(reg); 5614 op_cost(0); 5615 format %{ %} 5616 interface(REG_INTER); 5617 %} 5618 5619 //----------Memory Operands---------------------------------------------------- 5620 5621 operand indirect(iRegP reg) 5622 %{ 5623 constraint(ALLOC_IN_RC(ptr_reg)); 5624 match(reg); 5625 op_cost(0); 5626 format %{ "[$reg]" %} 5627 interface(MEMORY_INTER) %{ 5628 base($reg); 5629 index(0xffffffff); 5630 scale(0x0); 5631 disp(0x0); 5632 %} 5633 %} 5634 5635 operand indIndexScaledI2L(iRegP reg, iRegI ireg, immIScale scale) 5636 %{ 5637 constraint(ALLOC_IN_RC(ptr_reg)); 5638 predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int())); 5639 match(AddP reg (LShiftL (ConvI2L ireg) scale)); 5640 op_cost(0); 5641 format %{ "$reg, $ireg sxtw($scale), 0, I2L" %} 5642 interface(MEMORY_INTER) %{ 5643 base($reg); 5644 index($ireg); 5645 scale($scale); 5646 disp(0x0); 5647 %} 5648 %} 5649 5650 operand indIndexScaled(iRegP reg, iRegL lreg, immIScale scale) 5651 %{ 5652 constraint(ALLOC_IN_RC(ptr_reg)); 5653 predicate(size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int())); 5654 match(AddP reg (LShiftL lreg scale)); 5655 op_cost(0); 5656 format %{ "$reg, $lreg lsl($scale)" %} 5657 interface(MEMORY_INTER) %{ 5658 base($reg); 5659 index($lreg); 5660 scale($scale); 5661 disp(0x0); 5662 %} 5663 %} 5664 5665 operand indIndexI2L(iRegP reg, iRegI ireg) 5666 %{ 5667 constraint(ALLOC_IN_RC(ptr_reg)); 5668 match(AddP reg (ConvI2L ireg)); 5669 op_cost(0); 5670 format %{ "$reg, $ireg, 0, I2L" %} 5671 interface(MEMORY_INTER) %{ 5672 base($reg); 5673 index($ireg); 5674 scale(0x0); 5675 disp(0x0); 5676 %} 5677 %} 5678 5679 operand indIndex(iRegP reg, iRegL lreg) 5680 %{ 5681 constraint(ALLOC_IN_RC(ptr_reg)); 5682 match(AddP reg lreg); 5683 op_cost(0); 5684 format %{ "$reg, $lreg" %} 5685 interface(MEMORY_INTER) %{ 5686 base($reg); 5687 index($lreg); 5688 scale(0x0); 5689 disp(0x0); 5690 %} 5691 %} 5692 5693 operand indOffI(iRegP reg, immIOffset off) 5694 %{ 5695 constraint(ALLOC_IN_RC(ptr_reg)); 5696 match(AddP reg off); 5697 op_cost(0); 5698 format %{ "[$reg, $off]" %} 5699 interface(MEMORY_INTER) %{ 5700 base($reg); 5701 index(0xffffffff); 5702 scale(0x0); 5703 disp($off); 5704 %} 5705 %} 5706 5707 operand indOffI1(iRegP reg, immIOffset1 off) 5708 %{ 5709 constraint(ALLOC_IN_RC(ptr_reg)); 5710 match(AddP reg off); 5711 op_cost(0); 5712 format %{ "[$reg, $off]" %} 5713 interface(MEMORY_INTER) %{ 5714 base($reg); 5715 index(0xffffffff); 5716 scale(0x0); 5717 disp($off); 5718 %} 5719 %} 5720 5721 operand indOffI2(iRegP reg, immIOffset2 off) 5722 %{ 5723 constraint(ALLOC_IN_RC(ptr_reg)); 5724 match(AddP reg off); 5725 op_cost(0); 5726 format %{ "[$reg, $off]" %} 5727 interface(MEMORY_INTER) %{ 5728 base($reg); 5729 index(0xffffffff); 5730 scale(0x0); 5731 disp($off); 5732 %} 5733 %} 5734 5735 operand indOffI4(iRegP reg, immIOffset4 off) 5736 %{ 5737 constraint(ALLOC_IN_RC(ptr_reg)); 5738 match(AddP reg off); 5739 op_cost(0); 5740 format %{ "[$reg, $off]" %} 5741 interface(MEMORY_INTER) %{ 5742 base($reg); 5743 index(0xffffffff); 5744 scale(0x0); 5745 disp($off); 5746 %} 5747 %} 5748 5749 operand indOffI8(iRegP reg, immIOffset8 off) 5750 %{ 5751 constraint(ALLOC_IN_RC(ptr_reg)); 5752 match(AddP reg off); 5753 op_cost(0); 5754 format %{ "[$reg, $off]" %} 5755 interface(MEMORY_INTER) %{ 5756 base($reg); 5757 index(0xffffffff); 5758 scale(0x0); 5759 disp($off); 5760 %} 5761 %} 5762 5763 operand indOffI16(iRegP reg, immIOffset16 off) 5764 %{ 5765 constraint(ALLOC_IN_RC(ptr_reg)); 5766 match(AddP reg off); 5767 op_cost(0); 5768 format %{ "[$reg, $off]" %} 5769 interface(MEMORY_INTER) %{ 5770 base($reg); 5771 index(0xffffffff); 5772 scale(0x0); 5773 disp($off); 5774 %} 5775 %} 5776 5777 operand indOffL(iRegP reg, immLoffset off) 5778 %{ 5779 constraint(ALLOC_IN_RC(ptr_reg)); 5780 match(AddP reg off); 5781 op_cost(0); 5782 format %{ "[$reg, $off]" %} 5783 interface(MEMORY_INTER) %{ 5784 base($reg); 5785 index(0xffffffff); 5786 scale(0x0); 5787 disp($off); 5788 %} 5789 %} 5790 5791 operand indOffL1(iRegP reg, immLoffset1 off) 5792 %{ 5793 constraint(ALLOC_IN_RC(ptr_reg)); 5794 match(AddP reg off); 5795 op_cost(0); 5796 format %{ "[$reg, $off]" %} 5797 interface(MEMORY_INTER) %{ 5798 base($reg); 5799 index(0xffffffff); 5800 scale(0x0); 5801 disp($off); 5802 %} 5803 %} 5804 5805 operand indOffL2(iRegP reg, immLoffset2 off) 5806 %{ 5807 constraint(ALLOC_IN_RC(ptr_reg)); 5808 match(AddP reg off); 5809 op_cost(0); 5810 format %{ "[$reg, $off]" %} 5811 interface(MEMORY_INTER) %{ 5812 base($reg); 5813 index(0xffffffff); 5814 scale(0x0); 5815 disp($off); 5816 %} 5817 %} 5818 5819 operand indOffL4(iRegP reg, immLoffset4 off) 5820 %{ 5821 constraint(ALLOC_IN_RC(ptr_reg)); 5822 match(AddP reg off); 5823 op_cost(0); 5824 format %{ "[$reg, $off]" %} 5825 interface(MEMORY_INTER) %{ 5826 base($reg); 5827 index(0xffffffff); 5828 scale(0x0); 5829 disp($off); 5830 %} 5831 %} 5832 5833 operand indOffL8(iRegP reg, immLoffset8 off) 5834 %{ 5835 constraint(ALLOC_IN_RC(ptr_reg)); 5836 match(AddP reg off); 5837 op_cost(0); 5838 format %{ "[$reg, $off]" %} 5839 interface(MEMORY_INTER) %{ 5840 base($reg); 5841 index(0xffffffff); 5842 scale(0x0); 5843 disp($off); 5844 %} 5845 %} 5846 5847 operand indOffL16(iRegP reg, immLoffset16 off) 5848 %{ 5849 constraint(ALLOC_IN_RC(ptr_reg)); 5850 match(AddP reg off); 5851 op_cost(0); 5852 format %{ "[$reg, $off]" %} 5853 interface(MEMORY_INTER) %{ 5854 base($reg); 5855 index(0xffffffff); 5856 scale(0x0); 5857 disp($off); 5858 %} 5859 %} 5860 5861 operand indirectN(iRegN reg) 5862 %{ 5863 predicate(CompressedOops::shift() == 0); 5864 constraint(ALLOC_IN_RC(ptr_reg)); 5865 match(DecodeN reg); 5866 op_cost(0); 5867 format %{ "[$reg]\t# narrow" %} 5868 interface(MEMORY_INTER) %{ 5869 base($reg); 5870 index(0xffffffff); 5871 scale(0x0); 5872 disp(0x0); 5873 %} 5874 %} 5875 5876 operand indIndexScaledI2LN(iRegN reg, iRegI ireg, immIScale scale) 5877 %{ 5878 predicate(CompressedOops::shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int())); 5879 constraint(ALLOC_IN_RC(ptr_reg)); 5880 match(AddP (DecodeN reg) (LShiftL (ConvI2L ireg) scale)); 5881 op_cost(0); 5882 format %{ "$reg, $ireg sxtw($scale), 0, I2L\t# narrow" %} 5883 interface(MEMORY_INTER) %{ 5884 base($reg); 5885 index($ireg); 5886 scale($scale); 5887 disp(0x0); 5888 %} 5889 %} 5890 5891 operand indIndexScaledN(iRegN reg, iRegL lreg, immIScale scale) 5892 %{ 5893 predicate(CompressedOops::shift() == 0 && size_fits_all_mem_uses(n->as_AddP(), n->in(AddPNode::Offset)->in(2)->get_int())); 5894 constraint(ALLOC_IN_RC(ptr_reg)); 5895 match(AddP (DecodeN reg) (LShiftL lreg scale)); 5896 op_cost(0); 5897 format %{ "$reg, $lreg lsl($scale)\t# narrow" %} 5898 interface(MEMORY_INTER) %{ 5899 base($reg); 5900 index($lreg); 5901 scale($scale); 5902 disp(0x0); 5903 %} 5904 %} 5905 5906 operand indIndexI2LN(iRegN reg, iRegI ireg) 5907 %{ 5908 predicate(CompressedOops::shift() == 0); 5909 constraint(ALLOC_IN_RC(ptr_reg)); 5910 match(AddP (DecodeN reg) (ConvI2L ireg)); 5911 op_cost(0); 5912 format %{ "$reg, $ireg, 0, I2L\t# narrow" %} 5913 interface(MEMORY_INTER) %{ 5914 base($reg); 5915 index($ireg); 5916 scale(0x0); 5917 disp(0x0); 5918 %} 5919 %} 5920 5921 operand indIndexN(iRegN reg, iRegL lreg) 5922 %{ 5923 predicate(CompressedOops::shift() == 0); 5924 constraint(ALLOC_IN_RC(ptr_reg)); 5925 match(AddP (DecodeN reg) lreg); 5926 op_cost(0); 5927 format %{ "$reg, $lreg\t# narrow" %} 5928 interface(MEMORY_INTER) %{ 5929 base($reg); 5930 index($lreg); 5931 scale(0x0); 5932 disp(0x0); 5933 %} 5934 %} 5935 5936 operand indOffIN(iRegN reg, immIOffset off) 5937 %{ 5938 predicate(CompressedOops::shift() == 0); 5939 constraint(ALLOC_IN_RC(ptr_reg)); 5940 match(AddP (DecodeN reg) off); 5941 op_cost(0); 5942 format %{ "[$reg, $off]\t# narrow" %} 5943 interface(MEMORY_INTER) %{ 5944 base($reg); 5945 index(0xffffffff); 5946 scale(0x0); 5947 disp($off); 5948 %} 5949 %} 5950 5951 operand indOffLN(iRegN reg, immLoffset off) 5952 %{ 5953 predicate(CompressedOops::shift() == 0); 5954 constraint(ALLOC_IN_RC(ptr_reg)); 5955 match(AddP (DecodeN reg) off); 5956 op_cost(0); 5957 format %{ "[$reg, $off]\t# narrow" %} 5958 interface(MEMORY_INTER) %{ 5959 base($reg); 5960 index(0xffffffff); 5961 scale(0x0); 5962 disp($off); 5963 %} 5964 %} 5965 5966 5967 5968 // AArch64 opto stubs need to write to the pc slot in the thread anchor 5969 operand thread_anchor_pc(thread_RegP reg, immL_pc_off off) 5970 %{ 5971 constraint(ALLOC_IN_RC(ptr_reg)); 5972 match(AddP reg off); 5973 op_cost(0); 5974 format %{ "[$reg, $off]" %} 5975 interface(MEMORY_INTER) %{ 5976 base($reg); 5977 index(0xffffffff); 5978 scale(0x0); 5979 disp($off); 5980 %} 5981 %} 5982 5983 //----------Special Memory Operands-------------------------------------------- 5984 // Stack Slot Operand - This operand is used for loading and storing temporary 5985 // values on the stack where a match requires a value to 5986 // flow through memory. 5987 operand stackSlotP(sRegP reg) 5988 %{ 5989 constraint(ALLOC_IN_RC(stack_slots)); 5990 op_cost(100); 5991 // No match rule because this operand is only generated in matching 5992 // match(RegP); 5993 format %{ "[$reg]" %} 5994 interface(MEMORY_INTER) %{ 5995 base(0x1e); // RSP 5996 index(0x0); // No Index 5997 scale(0x0); // No Scale 5998 disp($reg); // Stack Offset 5999 %} 6000 %} 6001 6002 operand stackSlotI(sRegI reg) 6003 %{ 6004 constraint(ALLOC_IN_RC(stack_slots)); 6005 // No match rule because this operand is only generated in matching 6006 // match(RegI); 6007 format %{ "[$reg]" %} 6008 interface(MEMORY_INTER) %{ 6009 base(0x1e); // RSP 6010 index(0x0); // No Index 6011 scale(0x0); // No Scale 6012 disp($reg); // Stack Offset 6013 %} 6014 %} 6015 6016 operand stackSlotF(sRegF reg) 6017 %{ 6018 constraint(ALLOC_IN_RC(stack_slots)); 6019 // No match rule because this operand is only generated in matching 6020 // match(RegF); 6021 format %{ "[$reg]" %} 6022 interface(MEMORY_INTER) %{ 6023 base(0x1e); // RSP 6024 index(0x0); // No Index 6025 scale(0x0); // No Scale 6026 disp($reg); // Stack Offset 6027 %} 6028 %} 6029 6030 operand stackSlotD(sRegD reg) 6031 %{ 6032 constraint(ALLOC_IN_RC(stack_slots)); 6033 // No match rule because this operand is only generated in matching 6034 // match(RegD); 6035 format %{ "[$reg]" %} 6036 interface(MEMORY_INTER) %{ 6037 base(0x1e); // RSP 6038 index(0x0); // No Index 6039 scale(0x0); // No Scale 6040 disp($reg); // Stack Offset 6041 %} 6042 %} 6043 6044 operand stackSlotL(sRegL reg) 6045 %{ 6046 constraint(ALLOC_IN_RC(stack_slots)); 6047 // No match rule because this operand is only generated in matching 6048 // match(RegL); 6049 format %{ "[$reg]" %} 6050 interface(MEMORY_INTER) %{ 6051 base(0x1e); // RSP 6052 index(0x0); // No Index 6053 scale(0x0); // No Scale 6054 disp($reg); // Stack Offset 6055 %} 6056 %} 6057 6058 // Operands for expressing Control Flow 6059 // NOTE: Label is a predefined operand which should not be redefined in 6060 // the AD file. It is generically handled within the ADLC. 6061 6062 //----------Conditional Branch Operands---------------------------------------- 6063 // Comparison Op - This is the operation of the comparison, and is limited to 6064 // the following set of codes: 6065 // L (<), LE (<=), G (>), GE (>=), E (==), NE (!=) 6066 // 6067 // Other attributes of the comparison, such as unsignedness, are specified 6068 // by the comparison instruction that sets a condition code flags register. 6069 // That result is represented by a flags operand whose subtype is appropriate 6070 // to the unsignedness (etc.) of the comparison. 6071 // 6072 // Later, the instruction which matches both the Comparison Op (a Bool) and 6073 // the flags (produced by the Cmp) specifies the coding of the comparison op 6074 // by matching a specific subtype of Bool operand below, such as cmpOpU. 6075 6076 // used for signed integral comparisons and fp comparisons 6077 6078 operand cmpOp() 6079 %{ 6080 match(Bool); 6081 6082 format %{ "" %} 6083 interface(COND_INTER) %{ 6084 equal(0x0, "eq"); 6085 not_equal(0x1, "ne"); 6086 less(0xb, "lt"); 6087 greater_equal(0xa, "ge"); 6088 less_equal(0xd, "le"); 6089 greater(0xc, "gt"); 6090 overflow(0x6, "vs"); 6091 no_overflow(0x7, "vc"); 6092 %} 6093 %} 6094 6095 // used for unsigned integral comparisons 6096 6097 operand cmpOpU() 6098 %{ 6099 match(Bool); 6100 6101 format %{ "" %} 6102 interface(COND_INTER) %{ 6103 equal(0x0, "eq"); 6104 not_equal(0x1, "ne"); 6105 less(0x3, "lo"); 6106 greater_equal(0x2, "hs"); 6107 less_equal(0x9, "ls"); 6108 greater(0x8, "hi"); 6109 overflow(0x6, "vs"); 6110 no_overflow(0x7, "vc"); 6111 %} 6112 %} 6113 6114 // used for certain integral comparisons which can be 6115 // converted to cbxx or tbxx instructions 6116 6117 operand cmpOpEqNe() 6118 %{ 6119 match(Bool); 6120 op_cost(0); 6121 predicate(n->as_Bool()->_test._test == BoolTest::ne 6122 || n->as_Bool()->_test._test == BoolTest::eq); 6123 6124 format %{ "" %} 6125 interface(COND_INTER) %{ 6126 equal(0x0, "eq"); 6127 not_equal(0x1, "ne"); 6128 less(0xb, "lt"); 6129 greater_equal(0xa, "ge"); 6130 less_equal(0xd, "le"); 6131 greater(0xc, "gt"); 6132 overflow(0x6, "vs"); 6133 no_overflow(0x7, "vc"); 6134 %} 6135 %} 6136 6137 // used for certain integral comparisons which can be 6138 // converted to cbxx or tbxx instructions 6139 6140 operand cmpOpLtGe() 6141 %{ 6142 match(Bool); 6143 op_cost(0); 6144 6145 predicate(n->as_Bool()->_test._test == BoolTest::lt 6146 || n->as_Bool()->_test._test == BoolTest::ge); 6147 6148 format %{ "" %} 6149 interface(COND_INTER) %{ 6150 equal(0x0, "eq"); 6151 not_equal(0x1, "ne"); 6152 less(0xb, "lt"); 6153 greater_equal(0xa, "ge"); 6154 less_equal(0xd, "le"); 6155 greater(0xc, "gt"); 6156 overflow(0x6, "vs"); 6157 no_overflow(0x7, "vc"); 6158 %} 6159 %} 6160 6161 // used for certain unsigned integral comparisons which can be 6162 // converted to cbxx or tbxx instructions 6163 6164 operand cmpOpUEqNeLtGe() 6165 %{ 6166 match(Bool); 6167 op_cost(0); 6168 6169 predicate(n->as_Bool()->_test._test == BoolTest::eq 6170 || n->as_Bool()->_test._test == BoolTest::ne 6171 || n->as_Bool()->_test._test == BoolTest::lt 6172 || n->as_Bool()->_test._test == BoolTest::ge); 6173 6174 format %{ "" %} 6175 interface(COND_INTER) %{ 6176 equal(0x0, "eq"); 6177 not_equal(0x1, "ne"); 6178 less(0xb, "lt"); 6179 greater_equal(0xa, "ge"); 6180 less_equal(0xd, "le"); 6181 greater(0xc, "gt"); 6182 overflow(0x6, "vs"); 6183 no_overflow(0x7, "vc"); 6184 %} 6185 %} 6186 6187 // Special operand allowing long args to int ops to be truncated for free 6188 6189 operand iRegL2I(iRegL reg) %{ 6190 6191 op_cost(0); 6192 6193 match(ConvL2I reg); 6194 6195 format %{ "l2i($reg)" %} 6196 6197 interface(REG_INTER) 6198 %} 6199 6200 opclass vmem2(indirect, indIndex, indOffI2, indOffL2); 6201 opclass vmem4(indirect, indIndex, indOffI4, indOffL4); 6202 opclass vmem8(indirect, indIndex, indOffI8, indOffL8); 6203 opclass vmem16(indirect, indIndex, indOffI16, indOffL16); 6204 6205 //----------OPERAND CLASSES---------------------------------------------------- 6206 // Operand Classes are groups of operands that are used as to simplify 6207 // instruction definitions by not requiring the AD writer to specify 6208 // separate instructions for every form of operand when the 6209 // instruction accepts multiple operand types with the same basic 6210 // encoding and format. The classic case of this is memory operands. 6211 6212 // memory is used to define read/write location for load/store 6213 // instruction defs. we can turn a memory op into an Address 6214 6215 opclass memory1(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI1, indOffL1, 6216 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN); 6217 6218 opclass memory2(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI2, indOffL2, 6219 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN); 6220 6221 opclass memory4(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI4, indOffL4, 6222 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN); 6223 6224 opclass memory8(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, indOffI8, indOffL8, 6225 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN); 6226 6227 // All of the memory operands. For the pipeline description. 6228 opclass memory(indirect, indIndexScaled, indIndexScaledI2L, indIndexI2L, indIndex, 6229 indOffI1, indOffL1, indOffI2, indOffL2, indOffI4, indOffL4, indOffI8, indOffL8, 6230 indirectN, indIndexScaledN, indIndexScaledI2LN, indIndexI2LN, indIndexN, indOffIN, indOffLN); 6231 6232 6233 // iRegIorL2I is used for src inputs in rules for 32 bit int (I) 6234 // operations. it allows the src to be either an iRegI or a (ConvL2I 6235 // iRegL). in the latter case the l2i normally planted for a ConvL2I 6236 // can be elided because the 32-bit instruction will just employ the 6237 // lower 32 bits anyway. 6238 // 6239 // n.b. this does not elide all L2I conversions. if the truncated 6240 // value is consumed by more than one operation then the ConvL2I 6241 // cannot be bundled into the consuming nodes so an l2i gets planted 6242 // (actually a movw $dst $src) and the downstream instructions consume 6243 // the result of the l2i as an iRegI input. That's a shame since the 6244 // movw is actually redundant but its not too costly. 6245 6246 opclass iRegIorL2I(iRegI, iRegL2I); 6247 6248 //----------PIPELINE----------------------------------------------------------- 6249 // Rules which define the behavior of the target architectures pipeline. 6250 6251 // For specific pipelines, eg A53, define the stages of that pipeline 6252 //pipe_desc(ISS, EX1, EX2, WR); 6253 #define ISS S0 6254 #define EX1 S1 6255 #define EX2 S2 6256 #define WR S3 6257 6258 // Integer ALU reg operation 6259 pipeline %{ 6260 6261 attributes %{ 6262 // ARM instructions are of fixed length 6263 fixed_size_instructions; // Fixed size instructions TODO does 6264 max_instructions_per_bundle = 4; // A53 = 2, A57 = 4 6265 // ARM instructions come in 32-bit word units 6266 instruction_unit_size = 4; // An instruction is 4 bytes long 6267 instruction_fetch_unit_size = 64; // The processor fetches one line 6268 instruction_fetch_units = 1; // of 64 bytes 6269 6270 // List of nop instructions 6271 nops( MachNop ); 6272 %} 6273 6274 // We don't use an actual pipeline model so don't care about resources 6275 // or description. we do use pipeline classes to introduce fixed 6276 // latencies 6277 6278 //----------RESOURCES---------------------------------------------------------- 6279 // Resources are the functional units available to the machine 6280 6281 resources( INS0, INS1, INS01 = INS0 | INS1, 6282 ALU0, ALU1, ALU = ALU0 | ALU1, 6283 MAC, 6284 DIV, 6285 BRANCH, 6286 LDST, 6287 NEON_FP); 6288 6289 //----------PIPELINE DESCRIPTION----------------------------------------------- 6290 // Pipeline Description specifies the stages in the machine's pipeline 6291 6292 // Define the pipeline as a generic 6 stage pipeline 6293 pipe_desc(S0, S1, S2, S3, S4, S5); 6294 6295 //----------PIPELINE CLASSES--------------------------------------------------- 6296 // Pipeline Classes describe the stages in which input and output are 6297 // referenced by the hardware pipeline. 6298 6299 pipe_class fp_dop_reg_reg_s(vRegF dst, vRegF src1, vRegF src2) 6300 %{ 6301 single_instruction; 6302 src1 : S1(read); 6303 src2 : S2(read); 6304 dst : S5(write); 6305 INS01 : ISS; 6306 NEON_FP : S5; 6307 %} 6308 6309 pipe_class fp_dop_reg_reg_d(vRegD dst, vRegD src1, vRegD src2) 6310 %{ 6311 single_instruction; 6312 src1 : S1(read); 6313 src2 : S2(read); 6314 dst : S5(write); 6315 INS01 : ISS; 6316 NEON_FP : S5; 6317 %} 6318 6319 pipe_class fp_uop_s(vRegF dst, vRegF src) 6320 %{ 6321 single_instruction; 6322 src : S1(read); 6323 dst : S5(write); 6324 INS01 : ISS; 6325 NEON_FP : S5; 6326 %} 6327 6328 pipe_class fp_uop_d(vRegD dst, vRegD src) 6329 %{ 6330 single_instruction; 6331 src : S1(read); 6332 dst : S5(write); 6333 INS01 : ISS; 6334 NEON_FP : S5; 6335 %} 6336 6337 pipe_class fp_d2f(vRegF dst, vRegD src) 6338 %{ 6339 single_instruction; 6340 src : S1(read); 6341 dst : S5(write); 6342 INS01 : ISS; 6343 NEON_FP : S5; 6344 %} 6345 6346 pipe_class fp_f2d(vRegD dst, vRegF src) 6347 %{ 6348 single_instruction; 6349 src : S1(read); 6350 dst : S5(write); 6351 INS01 : ISS; 6352 NEON_FP : S5; 6353 %} 6354 6355 pipe_class fp_f2i(iRegINoSp dst, vRegF src) 6356 %{ 6357 single_instruction; 6358 src : S1(read); 6359 dst : S5(write); 6360 INS01 : ISS; 6361 NEON_FP : S5; 6362 %} 6363 6364 pipe_class fp_f2l(iRegLNoSp dst, vRegF src) 6365 %{ 6366 single_instruction; 6367 src : S1(read); 6368 dst : S5(write); 6369 INS01 : ISS; 6370 NEON_FP : S5; 6371 %} 6372 6373 pipe_class fp_i2f(vRegF dst, iRegIorL2I src) 6374 %{ 6375 single_instruction; 6376 src : S1(read); 6377 dst : S5(write); 6378 INS01 : ISS; 6379 NEON_FP : S5; 6380 %} 6381 6382 pipe_class fp_l2f(vRegF dst, iRegL src) 6383 %{ 6384 single_instruction; 6385 src : S1(read); 6386 dst : S5(write); 6387 INS01 : ISS; 6388 NEON_FP : S5; 6389 %} 6390 6391 pipe_class fp_d2i(iRegINoSp dst, vRegD src) 6392 %{ 6393 single_instruction; 6394 src : S1(read); 6395 dst : S5(write); 6396 INS01 : ISS; 6397 NEON_FP : S5; 6398 %} 6399 6400 pipe_class fp_d2l(iRegLNoSp dst, vRegD src) 6401 %{ 6402 single_instruction; 6403 src : S1(read); 6404 dst : S5(write); 6405 INS01 : ISS; 6406 NEON_FP : S5; 6407 %} 6408 6409 pipe_class fp_i2d(vRegD dst, iRegIorL2I src) 6410 %{ 6411 single_instruction; 6412 src : S1(read); 6413 dst : S5(write); 6414 INS01 : ISS; 6415 NEON_FP : S5; 6416 %} 6417 6418 pipe_class fp_l2d(vRegD dst, iRegIorL2I src) 6419 %{ 6420 single_instruction; 6421 src : S1(read); 6422 dst : S5(write); 6423 INS01 : ISS; 6424 NEON_FP : S5; 6425 %} 6426 6427 pipe_class fp_div_s(vRegF dst, vRegF src1, vRegF src2) 6428 %{ 6429 single_instruction; 6430 src1 : S1(read); 6431 src2 : S2(read); 6432 dst : S5(write); 6433 INS0 : ISS; 6434 NEON_FP : S5; 6435 %} 6436 6437 pipe_class fp_div_d(vRegD dst, vRegD src1, vRegD src2) 6438 %{ 6439 single_instruction; 6440 src1 : S1(read); 6441 src2 : S2(read); 6442 dst : S5(write); 6443 INS0 : ISS; 6444 NEON_FP : S5; 6445 %} 6446 6447 pipe_class fp_cond_reg_reg_s(vRegF dst, vRegF src1, vRegF src2, rFlagsReg cr) 6448 %{ 6449 single_instruction; 6450 cr : S1(read); 6451 src1 : S1(read); 6452 src2 : S1(read); 6453 dst : S3(write); 6454 INS01 : ISS; 6455 NEON_FP : S3; 6456 %} 6457 6458 pipe_class fp_cond_reg_reg_d(vRegD dst, vRegD src1, vRegD src2, rFlagsReg cr) 6459 %{ 6460 single_instruction; 6461 cr : S1(read); 6462 src1 : S1(read); 6463 src2 : S1(read); 6464 dst : S3(write); 6465 INS01 : ISS; 6466 NEON_FP : S3; 6467 %} 6468 6469 pipe_class fp_imm_s(vRegF dst) 6470 %{ 6471 single_instruction; 6472 dst : S3(write); 6473 INS01 : ISS; 6474 NEON_FP : S3; 6475 %} 6476 6477 pipe_class fp_imm_d(vRegD dst) 6478 %{ 6479 single_instruction; 6480 dst : S3(write); 6481 INS01 : ISS; 6482 NEON_FP : S3; 6483 %} 6484 6485 pipe_class fp_load_constant_s(vRegF dst) 6486 %{ 6487 single_instruction; 6488 dst : S4(write); 6489 INS01 : ISS; 6490 NEON_FP : S4; 6491 %} 6492 6493 pipe_class fp_load_constant_d(vRegD dst) 6494 %{ 6495 single_instruction; 6496 dst : S4(write); 6497 INS01 : ISS; 6498 NEON_FP : S4; 6499 %} 6500 6501 pipe_class vmul64(vecD dst, vecD src1, vecD src2) 6502 %{ 6503 single_instruction; 6504 dst : S5(write); 6505 src1 : S1(read); 6506 src2 : S1(read); 6507 INS01 : ISS; 6508 NEON_FP : S5; 6509 %} 6510 6511 pipe_class vmul128(vecX dst, vecX src1, vecX src2) 6512 %{ 6513 single_instruction; 6514 dst : S5(write); 6515 src1 : S1(read); 6516 src2 : S1(read); 6517 INS0 : ISS; 6518 NEON_FP : S5; 6519 %} 6520 6521 pipe_class vmla64(vecD dst, vecD src1, vecD src2) 6522 %{ 6523 single_instruction; 6524 dst : S5(write); 6525 src1 : S1(read); 6526 src2 : S1(read); 6527 dst : S1(read); 6528 INS01 : ISS; 6529 NEON_FP : S5; 6530 %} 6531 6532 pipe_class vmla128(vecX dst, vecX src1, vecX src2) 6533 %{ 6534 single_instruction; 6535 dst : S5(write); 6536 src1 : S1(read); 6537 src2 : S1(read); 6538 dst : S1(read); 6539 INS0 : ISS; 6540 NEON_FP : S5; 6541 %} 6542 6543 pipe_class vdop64(vecD dst, vecD src1, vecD src2) 6544 %{ 6545 single_instruction; 6546 dst : S4(write); 6547 src1 : S2(read); 6548 src2 : S2(read); 6549 INS01 : ISS; 6550 NEON_FP : S4; 6551 %} 6552 6553 pipe_class vdop128(vecX dst, vecX src1, vecX src2) 6554 %{ 6555 single_instruction; 6556 dst : S4(write); 6557 src1 : S2(read); 6558 src2 : S2(read); 6559 INS0 : ISS; 6560 NEON_FP : S4; 6561 %} 6562 6563 pipe_class vlogical64(vecD dst, vecD src1, vecD src2) 6564 %{ 6565 single_instruction; 6566 dst : S3(write); 6567 src1 : S2(read); 6568 src2 : S2(read); 6569 INS01 : ISS; 6570 NEON_FP : S3; 6571 %} 6572 6573 pipe_class vlogical128(vecX dst, vecX src1, vecX src2) 6574 %{ 6575 single_instruction; 6576 dst : S3(write); 6577 src1 : S2(read); 6578 src2 : S2(read); 6579 INS0 : ISS; 6580 NEON_FP : S3; 6581 %} 6582 6583 pipe_class vshift64(vecD dst, vecD src, vecX shift) 6584 %{ 6585 single_instruction; 6586 dst : S3(write); 6587 src : S1(read); 6588 shift : S1(read); 6589 INS01 : ISS; 6590 NEON_FP : S3; 6591 %} 6592 6593 pipe_class vshift128(vecX dst, vecX src, vecX shift) 6594 %{ 6595 single_instruction; 6596 dst : S3(write); 6597 src : S1(read); 6598 shift : S1(read); 6599 INS0 : ISS; 6600 NEON_FP : S3; 6601 %} 6602 6603 pipe_class vshift64_imm(vecD dst, vecD src, immI shift) 6604 %{ 6605 single_instruction; 6606 dst : S3(write); 6607 src : S1(read); 6608 INS01 : ISS; 6609 NEON_FP : S3; 6610 %} 6611 6612 pipe_class vshift128_imm(vecX dst, vecX src, immI shift) 6613 %{ 6614 single_instruction; 6615 dst : S3(write); 6616 src : S1(read); 6617 INS0 : ISS; 6618 NEON_FP : S3; 6619 %} 6620 6621 pipe_class vdop_fp64(vecD dst, vecD src1, vecD src2) 6622 %{ 6623 single_instruction; 6624 dst : S5(write); 6625 src1 : S1(read); 6626 src2 : S1(read); 6627 INS01 : ISS; 6628 NEON_FP : S5; 6629 %} 6630 6631 pipe_class vdop_fp128(vecX dst, vecX src1, vecX src2) 6632 %{ 6633 single_instruction; 6634 dst : S5(write); 6635 src1 : S1(read); 6636 src2 : S1(read); 6637 INS0 : ISS; 6638 NEON_FP : S5; 6639 %} 6640 6641 pipe_class vmuldiv_fp64(vecD dst, vecD src1, vecD src2) 6642 %{ 6643 single_instruction; 6644 dst : S5(write); 6645 src1 : S1(read); 6646 src2 : S1(read); 6647 INS0 : ISS; 6648 NEON_FP : S5; 6649 %} 6650 6651 pipe_class vmuldiv_fp128(vecX dst, vecX src1, vecX src2) 6652 %{ 6653 single_instruction; 6654 dst : S5(write); 6655 src1 : S1(read); 6656 src2 : S1(read); 6657 INS0 : ISS; 6658 NEON_FP : S5; 6659 %} 6660 6661 pipe_class vsqrt_fp128(vecX dst, vecX src) 6662 %{ 6663 single_instruction; 6664 dst : S5(write); 6665 src : S1(read); 6666 INS0 : ISS; 6667 NEON_FP : S5; 6668 %} 6669 6670 pipe_class vunop_fp64(vecD dst, vecD src) 6671 %{ 6672 single_instruction; 6673 dst : S5(write); 6674 src : S1(read); 6675 INS01 : ISS; 6676 NEON_FP : S5; 6677 %} 6678 6679 pipe_class vunop_fp128(vecX dst, vecX src) 6680 %{ 6681 single_instruction; 6682 dst : S5(write); 6683 src : S1(read); 6684 INS0 : ISS; 6685 NEON_FP : S5; 6686 %} 6687 6688 pipe_class vdup_reg_reg64(vecD dst, iRegI src) 6689 %{ 6690 single_instruction; 6691 dst : S3(write); 6692 src : S1(read); 6693 INS01 : ISS; 6694 NEON_FP : S3; 6695 %} 6696 6697 pipe_class vdup_reg_reg128(vecX dst, iRegI src) 6698 %{ 6699 single_instruction; 6700 dst : S3(write); 6701 src : S1(read); 6702 INS01 : ISS; 6703 NEON_FP : S3; 6704 %} 6705 6706 pipe_class vdup_reg_freg64(vecD dst, vRegF src) 6707 %{ 6708 single_instruction; 6709 dst : S3(write); 6710 src : S1(read); 6711 INS01 : ISS; 6712 NEON_FP : S3; 6713 %} 6714 6715 pipe_class vdup_reg_freg128(vecX dst, vRegF src) 6716 %{ 6717 single_instruction; 6718 dst : S3(write); 6719 src : S1(read); 6720 INS01 : ISS; 6721 NEON_FP : S3; 6722 %} 6723 6724 pipe_class vdup_reg_dreg128(vecX dst, vRegD src) 6725 %{ 6726 single_instruction; 6727 dst : S3(write); 6728 src : S1(read); 6729 INS01 : ISS; 6730 NEON_FP : S3; 6731 %} 6732 6733 pipe_class vmovi_reg_imm64(vecD dst) 6734 %{ 6735 single_instruction; 6736 dst : S3(write); 6737 INS01 : ISS; 6738 NEON_FP : S3; 6739 %} 6740 6741 pipe_class vmovi_reg_imm128(vecX dst) 6742 %{ 6743 single_instruction; 6744 dst : S3(write); 6745 INS0 : ISS; 6746 NEON_FP : S3; 6747 %} 6748 6749 pipe_class vload_reg_mem64(vecD dst, vmem8 mem) 6750 %{ 6751 single_instruction; 6752 dst : S5(write); 6753 mem : ISS(read); 6754 INS01 : ISS; 6755 NEON_FP : S3; 6756 %} 6757 6758 pipe_class vload_reg_mem128(vecX dst, vmem16 mem) 6759 %{ 6760 single_instruction; 6761 dst : S5(write); 6762 mem : ISS(read); 6763 INS01 : ISS; 6764 NEON_FP : S3; 6765 %} 6766 6767 pipe_class vstore_reg_mem64(vecD src, vmem8 mem) 6768 %{ 6769 single_instruction; 6770 mem : ISS(read); 6771 src : S2(read); 6772 INS01 : ISS; 6773 NEON_FP : S3; 6774 %} 6775 6776 pipe_class vstore_reg_mem128(vecD src, vmem16 mem) 6777 %{ 6778 single_instruction; 6779 mem : ISS(read); 6780 src : S2(read); 6781 INS01 : ISS; 6782 NEON_FP : S3; 6783 %} 6784 6785 //------- Integer ALU operations -------------------------- 6786 6787 // Integer ALU reg-reg operation 6788 // Operands needed in EX1, result generated in EX2 6789 // Eg. ADD x0, x1, x2 6790 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) 6791 %{ 6792 single_instruction; 6793 dst : EX2(write); 6794 src1 : EX1(read); 6795 src2 : EX1(read); 6796 INS01 : ISS; // Dual issue as instruction 0 or 1 6797 ALU : EX2; 6798 %} 6799 6800 // Integer ALU reg-reg operation with constant shift 6801 // Shifted register must be available in LATE_ISS instead of EX1 6802 // Eg. ADD x0, x1, x2, LSL #2 6803 pipe_class ialu_reg_reg_shift(iRegI dst, iRegI src1, iRegI src2, immI shift) 6804 %{ 6805 single_instruction; 6806 dst : EX2(write); 6807 src1 : EX1(read); 6808 src2 : ISS(read); 6809 INS01 : ISS; 6810 ALU : EX2; 6811 %} 6812 6813 // Integer ALU reg operation with constant shift 6814 // Eg. LSL x0, x1, #shift 6815 pipe_class ialu_reg_shift(iRegI dst, iRegI src1) 6816 %{ 6817 single_instruction; 6818 dst : EX2(write); 6819 src1 : ISS(read); 6820 INS01 : ISS; 6821 ALU : EX2; 6822 %} 6823 6824 // Integer ALU reg-reg operation with variable shift 6825 // Both operands must be available in LATE_ISS instead of EX1 6826 // Result is available in EX1 instead of EX2 6827 // Eg. LSLV x0, x1, x2 6828 pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2) 6829 %{ 6830 single_instruction; 6831 dst : EX1(write); 6832 src1 : ISS(read); 6833 src2 : ISS(read); 6834 INS01 : ISS; 6835 ALU : EX1; 6836 %} 6837 6838 // Integer ALU reg-reg operation with extract 6839 // As for _vshift above, but result generated in EX2 6840 // Eg. EXTR x0, x1, x2, #N 6841 pipe_class ialu_reg_reg_extr(iRegI dst, iRegI src1, iRegI src2) 6842 %{ 6843 single_instruction; 6844 dst : EX2(write); 6845 src1 : ISS(read); 6846 src2 : ISS(read); 6847 INS1 : ISS; // Can only dual issue as Instruction 1 6848 ALU : EX1; 6849 %} 6850 6851 // Integer ALU reg operation 6852 // Eg. NEG x0, x1 6853 pipe_class ialu_reg(iRegI dst, iRegI src) 6854 %{ 6855 single_instruction; 6856 dst : EX2(write); 6857 src : EX1(read); 6858 INS01 : ISS; 6859 ALU : EX2; 6860 %} 6861 6862 // Integer ALU reg mmediate operation 6863 // Eg. ADD x0, x1, #N 6864 pipe_class ialu_reg_imm(iRegI dst, iRegI src1) 6865 %{ 6866 single_instruction; 6867 dst : EX2(write); 6868 src1 : EX1(read); 6869 INS01 : ISS; 6870 ALU : EX2; 6871 %} 6872 6873 // Integer ALU immediate operation (no source operands) 6874 // Eg. MOV x0, #N 6875 pipe_class ialu_imm(iRegI dst) 6876 %{ 6877 single_instruction; 6878 dst : EX1(write); 6879 INS01 : ISS; 6880 ALU : EX1; 6881 %} 6882 6883 //------- Compare operation ------------------------------- 6884 6885 // Compare reg-reg 6886 // Eg. CMP x0, x1 6887 pipe_class icmp_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2) 6888 %{ 6889 single_instruction; 6890 // fixed_latency(16); 6891 cr : EX2(write); 6892 op1 : EX1(read); 6893 op2 : EX1(read); 6894 INS01 : ISS; 6895 ALU : EX2; 6896 %} 6897 6898 // Compare reg-reg 6899 // Eg. CMP x0, #N 6900 pipe_class icmp_reg_imm(rFlagsReg cr, iRegI op1) 6901 %{ 6902 single_instruction; 6903 // fixed_latency(16); 6904 cr : EX2(write); 6905 op1 : EX1(read); 6906 INS01 : ISS; 6907 ALU : EX2; 6908 %} 6909 6910 //------- Conditional instructions ------------------------ 6911 6912 // Conditional no operands 6913 // Eg. CSINC x0, zr, zr, <cond> 6914 pipe_class icond_none(iRegI dst, rFlagsReg cr) 6915 %{ 6916 single_instruction; 6917 cr : EX1(read); 6918 dst : EX2(write); 6919 INS01 : ISS; 6920 ALU : EX2; 6921 %} 6922 6923 // Conditional 2 operand 6924 // EG. CSEL X0, X1, X2, <cond> 6925 pipe_class icond_reg_reg(iRegI dst, iRegI src1, iRegI src2, rFlagsReg cr) 6926 %{ 6927 single_instruction; 6928 cr : EX1(read); 6929 src1 : EX1(read); 6930 src2 : EX1(read); 6931 dst : EX2(write); 6932 INS01 : ISS; 6933 ALU : EX2; 6934 %} 6935 6936 // Conditional 2 operand 6937 // EG. CSEL X0, X1, X2, <cond> 6938 pipe_class icond_reg(iRegI dst, iRegI src, rFlagsReg cr) 6939 %{ 6940 single_instruction; 6941 cr : EX1(read); 6942 src : EX1(read); 6943 dst : EX2(write); 6944 INS01 : ISS; 6945 ALU : EX2; 6946 %} 6947 6948 //------- Multiply pipeline operations -------------------- 6949 6950 // Multiply reg-reg 6951 // Eg. MUL w0, w1, w2 6952 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) 6953 %{ 6954 single_instruction; 6955 dst : WR(write); 6956 src1 : ISS(read); 6957 src2 : ISS(read); 6958 INS01 : ISS; 6959 MAC : WR; 6960 %} 6961 6962 // Multiply accumulate 6963 // Eg. MADD w0, w1, w2, w3 6964 pipe_class imac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3) 6965 %{ 6966 single_instruction; 6967 dst : WR(write); 6968 src1 : ISS(read); 6969 src2 : ISS(read); 6970 src3 : ISS(read); 6971 INS01 : ISS; 6972 MAC : WR; 6973 %} 6974 6975 // Eg. MUL w0, w1, w2 6976 pipe_class lmul_reg_reg(iRegI dst, iRegI src1, iRegI src2) 6977 %{ 6978 single_instruction; 6979 fixed_latency(3); // Maximum latency for 64 bit mul 6980 dst : WR(write); 6981 src1 : ISS(read); 6982 src2 : ISS(read); 6983 INS01 : ISS; 6984 MAC : WR; 6985 %} 6986 6987 // Multiply accumulate 6988 // Eg. MADD w0, w1, w2, w3 6989 pipe_class lmac_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI src3) 6990 %{ 6991 single_instruction; 6992 fixed_latency(3); // Maximum latency for 64 bit mul 6993 dst : WR(write); 6994 src1 : ISS(read); 6995 src2 : ISS(read); 6996 src3 : ISS(read); 6997 INS01 : ISS; 6998 MAC : WR; 6999 %} 7000 7001 //------- Divide pipeline operations -------------------- 7002 7003 // Eg. SDIV w0, w1, w2 7004 pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2) 7005 %{ 7006 single_instruction; 7007 fixed_latency(8); // Maximum latency for 32 bit divide 7008 dst : WR(write); 7009 src1 : ISS(read); 7010 src2 : ISS(read); 7011 INS0 : ISS; // Can only dual issue as instruction 0 7012 DIV : WR; 7013 %} 7014 7015 // Eg. SDIV x0, x1, x2 7016 pipe_class ldiv_reg_reg(iRegI dst, iRegI src1, iRegI src2) 7017 %{ 7018 single_instruction; 7019 fixed_latency(16); // Maximum latency for 64 bit divide 7020 dst : WR(write); 7021 src1 : ISS(read); 7022 src2 : ISS(read); 7023 INS0 : ISS; // Can only dual issue as instruction 0 7024 DIV : WR; 7025 %} 7026 7027 //------- Load pipeline operations ------------------------ 7028 7029 // Load - prefetch 7030 // Eg. PFRM <mem> 7031 pipe_class iload_prefetch(memory mem) 7032 %{ 7033 single_instruction; 7034 mem : ISS(read); 7035 INS01 : ISS; 7036 LDST : WR; 7037 %} 7038 7039 // Load - reg, mem 7040 // Eg. LDR x0, <mem> 7041 pipe_class iload_reg_mem(iRegI dst, memory mem) 7042 %{ 7043 single_instruction; 7044 dst : WR(write); 7045 mem : ISS(read); 7046 INS01 : ISS; 7047 LDST : WR; 7048 %} 7049 7050 // Load - reg, reg 7051 // Eg. LDR x0, [sp, x1] 7052 pipe_class iload_reg_reg(iRegI dst, iRegI src) 7053 %{ 7054 single_instruction; 7055 dst : WR(write); 7056 src : ISS(read); 7057 INS01 : ISS; 7058 LDST : WR; 7059 %} 7060 7061 //------- Store pipeline operations ----------------------- 7062 7063 // Store - zr, mem 7064 // Eg. STR zr, <mem> 7065 pipe_class istore_mem(memory mem) 7066 %{ 7067 single_instruction; 7068 mem : ISS(read); 7069 INS01 : ISS; 7070 LDST : WR; 7071 %} 7072 7073 // Store - reg, mem 7074 // Eg. STR x0, <mem> 7075 pipe_class istore_reg_mem(iRegI src, memory mem) 7076 %{ 7077 single_instruction; 7078 mem : ISS(read); 7079 src : EX2(read); 7080 INS01 : ISS; 7081 LDST : WR; 7082 %} 7083 7084 // Store - reg, reg 7085 // Eg. STR x0, [sp, x1] 7086 pipe_class istore_reg_reg(iRegI dst, iRegI src) 7087 %{ 7088 single_instruction; 7089 dst : ISS(read); 7090 src : EX2(read); 7091 INS01 : ISS; 7092 LDST : WR; 7093 %} 7094 7095 //------- Store pipeline operations ----------------------- 7096 7097 // Branch 7098 pipe_class pipe_branch() 7099 %{ 7100 single_instruction; 7101 INS01 : ISS; 7102 BRANCH : EX1; 7103 %} 7104 7105 // Conditional branch 7106 pipe_class pipe_branch_cond(rFlagsReg cr) 7107 %{ 7108 single_instruction; 7109 cr : EX1(read); 7110 INS01 : ISS; 7111 BRANCH : EX1; 7112 %} 7113 7114 // Compare & Branch 7115 // EG. CBZ/CBNZ 7116 pipe_class pipe_cmp_branch(iRegI op1) 7117 %{ 7118 single_instruction; 7119 op1 : EX1(read); 7120 INS01 : ISS; 7121 BRANCH : EX1; 7122 %} 7123 7124 //------- Synchronisation operations ---------------------- 7125 7126 // Any operation requiring serialization. 7127 // EG. DMB/Atomic Ops/Load Acquire/Str Release 7128 pipe_class pipe_serial() 7129 %{ 7130 single_instruction; 7131 force_serialization; 7132 fixed_latency(16); 7133 INS01 : ISS(2); // Cannot dual issue with any other instruction 7134 LDST : WR; 7135 %} 7136 7137 // Generic big/slow expanded idiom - also serialized 7138 pipe_class pipe_slow() 7139 %{ 7140 instruction_count(10); 7141 multiple_bundles; 7142 force_serialization; 7143 fixed_latency(16); 7144 INS01 : ISS(2); // Cannot dual issue with any other instruction 7145 LDST : WR; 7146 %} 7147 7148 // Empty pipeline class 7149 pipe_class pipe_class_empty() 7150 %{ 7151 single_instruction; 7152 fixed_latency(0); 7153 %} 7154 7155 // Default pipeline class. 7156 pipe_class pipe_class_default() 7157 %{ 7158 single_instruction; 7159 fixed_latency(2); 7160 %} 7161 7162 // Pipeline class for compares. 7163 pipe_class pipe_class_compare() 7164 %{ 7165 single_instruction; 7166 fixed_latency(16); 7167 %} 7168 7169 // Pipeline class for memory operations. 7170 pipe_class pipe_class_memory() 7171 %{ 7172 single_instruction; 7173 fixed_latency(16); 7174 %} 7175 7176 // Pipeline class for call. 7177 pipe_class pipe_class_call() 7178 %{ 7179 single_instruction; 7180 fixed_latency(100); 7181 %} 7182 7183 // Define the class for the Nop node. 7184 define %{ 7185 MachNop = pipe_class_empty; 7186 %} 7187 7188 %} 7189 //----------INSTRUCTIONS------------------------------------------------------- 7190 // 7191 // match -- States which machine-independent subtree may be replaced 7192 // by this instruction. 7193 // ins_cost -- The estimated cost of this instruction is used by instruction 7194 // selection to identify a minimum cost tree of machine 7195 // instructions that matches a tree of machine-independent 7196 // instructions. 7197 // format -- A string providing the disassembly for this instruction. 7198 // The value of an instruction's operand may be inserted 7199 // by referring to it with a '$' prefix. 7200 // opcode -- Three instruction opcodes may be provided. These are referred 7201 // to within an encode class as $primary, $secondary, and $tertiary 7202 // rrspectively. The primary opcode is commonly used to 7203 // indicate the type of machine instruction, while secondary 7204 // and tertiary are often used for prefix options or addressing 7205 // modes. 7206 // ins_encode -- A list of encode classes with parameters. The encode class 7207 // name must have been defined in an 'enc_class' specification 7208 // in the encode section of the architecture description. 7209 7210 // ============================================================================ 7211 // Memory (Load/Store) Instructions 7212 7213 // Load Instructions 7214 7215 // Load Byte (8 bit signed) 7216 instruct loadB(iRegINoSp dst, memory1 mem) 7217 %{ 7218 match(Set dst (LoadB mem)); 7219 predicate(!needs_acquiring_load(n)); 7220 7221 ins_cost(4 * INSN_COST); 7222 format %{ "ldrsbw $dst, $mem\t# byte" %} 7223 7224 ins_encode(aarch64_enc_ldrsbw(dst, mem)); 7225 7226 ins_pipe(iload_reg_mem); 7227 %} 7228 7229 // Load Byte (8 bit signed) into long 7230 instruct loadB2L(iRegLNoSp dst, memory1 mem) 7231 %{ 7232 match(Set dst (ConvI2L (LoadB mem))); 7233 predicate(!needs_acquiring_load(n->in(1))); 7234 7235 ins_cost(4 * INSN_COST); 7236 format %{ "ldrsb $dst, $mem\t# byte" %} 7237 7238 ins_encode(aarch64_enc_ldrsb(dst, mem)); 7239 7240 ins_pipe(iload_reg_mem); 7241 %} 7242 7243 // Load Byte (8 bit unsigned) 7244 instruct loadUB(iRegINoSp dst, memory1 mem) 7245 %{ 7246 match(Set dst (LoadUB mem)); 7247 predicate(!needs_acquiring_load(n)); 7248 7249 ins_cost(4 * INSN_COST); 7250 format %{ "ldrbw $dst, $mem\t# byte" %} 7251 7252 ins_encode(aarch64_enc_ldrb(dst, mem)); 7253 7254 ins_pipe(iload_reg_mem); 7255 %} 7256 7257 // Load Byte (8 bit unsigned) into long 7258 instruct loadUB2L(iRegLNoSp dst, memory1 mem) 7259 %{ 7260 match(Set dst (ConvI2L (LoadUB mem))); 7261 predicate(!needs_acquiring_load(n->in(1))); 7262 7263 ins_cost(4 * INSN_COST); 7264 format %{ "ldrb $dst, $mem\t# byte" %} 7265 7266 ins_encode(aarch64_enc_ldrb(dst, mem)); 7267 7268 ins_pipe(iload_reg_mem); 7269 %} 7270 7271 // Load Short (16 bit signed) 7272 instruct loadS(iRegINoSp dst, memory2 mem) 7273 %{ 7274 match(Set dst (LoadS mem)); 7275 predicate(!needs_acquiring_load(n)); 7276 7277 ins_cost(4 * INSN_COST); 7278 format %{ "ldrshw $dst, $mem\t# short" %} 7279 7280 ins_encode(aarch64_enc_ldrshw(dst, mem)); 7281 7282 ins_pipe(iload_reg_mem); 7283 %} 7284 7285 // Load Short (16 bit signed) into long 7286 instruct loadS2L(iRegLNoSp dst, memory2 mem) 7287 %{ 7288 match(Set dst (ConvI2L (LoadS mem))); 7289 predicate(!needs_acquiring_load(n->in(1))); 7290 7291 ins_cost(4 * INSN_COST); 7292 format %{ "ldrsh $dst, $mem\t# short" %} 7293 7294 ins_encode(aarch64_enc_ldrsh(dst, mem)); 7295 7296 ins_pipe(iload_reg_mem); 7297 %} 7298 7299 // Load Char (16 bit unsigned) 7300 instruct loadUS(iRegINoSp dst, memory2 mem) 7301 %{ 7302 match(Set dst (LoadUS mem)); 7303 predicate(!needs_acquiring_load(n)); 7304 7305 ins_cost(4 * INSN_COST); 7306 format %{ "ldrh $dst, $mem\t# short" %} 7307 7308 ins_encode(aarch64_enc_ldrh(dst, mem)); 7309 7310 ins_pipe(iload_reg_mem); 7311 %} 7312 7313 // Load Short/Char (16 bit unsigned) into long 7314 instruct loadUS2L(iRegLNoSp dst, memory2 mem) 7315 %{ 7316 match(Set dst (ConvI2L (LoadUS mem))); 7317 predicate(!needs_acquiring_load(n->in(1))); 7318 7319 ins_cost(4 * INSN_COST); 7320 format %{ "ldrh $dst, $mem\t# short" %} 7321 7322 ins_encode(aarch64_enc_ldrh(dst, mem)); 7323 7324 ins_pipe(iload_reg_mem); 7325 %} 7326 7327 // Load Integer (32 bit signed) 7328 instruct loadI(iRegINoSp dst, memory4 mem) 7329 %{ 7330 match(Set dst (LoadI mem)); 7331 predicate(!needs_acquiring_load(n)); 7332 7333 ins_cost(4 * INSN_COST); 7334 format %{ "ldrw $dst, $mem\t# int" %} 7335 7336 ins_encode(aarch64_enc_ldrw(dst, mem)); 7337 7338 ins_pipe(iload_reg_mem); 7339 %} 7340 7341 // Load Integer (32 bit signed) into long 7342 instruct loadI2L(iRegLNoSp dst, memory4 mem) 7343 %{ 7344 match(Set dst (ConvI2L (LoadI mem))); 7345 predicate(!needs_acquiring_load(n->in(1))); 7346 7347 ins_cost(4 * INSN_COST); 7348 format %{ "ldrsw $dst, $mem\t# int" %} 7349 7350 ins_encode(aarch64_enc_ldrsw(dst, mem)); 7351 7352 ins_pipe(iload_reg_mem); 7353 %} 7354 7355 // Load Integer (32 bit unsigned) into long 7356 instruct loadUI2L(iRegLNoSp dst, memory4 mem, immL_32bits mask) 7357 %{ 7358 match(Set dst (AndL (ConvI2L (LoadI mem)) mask)); 7359 predicate(!needs_acquiring_load(n->in(1)->in(1)->as_Load())); 7360 7361 ins_cost(4 * INSN_COST); 7362 format %{ "ldrw $dst, $mem\t# int" %} 7363 7364 ins_encode(aarch64_enc_ldrw(dst, mem)); 7365 7366 ins_pipe(iload_reg_mem); 7367 %} 7368 7369 // Load Long (64 bit signed) 7370 instruct loadL(iRegLNoSp dst, memory8 mem) 7371 %{ 7372 match(Set dst (LoadL mem)); 7373 predicate(!needs_acquiring_load(n)); 7374 7375 ins_cost(4 * INSN_COST); 7376 format %{ "ldr $dst, $mem\t# int" %} 7377 7378 ins_encode(aarch64_enc_ldr(dst, mem)); 7379 7380 ins_pipe(iload_reg_mem); 7381 %} 7382 7383 // Load Range 7384 instruct loadRange(iRegINoSp dst, memory4 mem) 7385 %{ 7386 match(Set dst (LoadRange mem)); 7387 7388 ins_cost(4 * INSN_COST); 7389 format %{ "ldrw $dst, $mem\t# range" %} 7390 7391 ins_encode(aarch64_enc_ldrw(dst, mem)); 7392 7393 ins_pipe(iload_reg_mem); 7394 %} 7395 7396 // Load Pointer 7397 instruct loadP(iRegPNoSp dst, memory8 mem) 7398 %{ 7399 match(Set dst (LoadP mem)); 7400 predicate(!needs_acquiring_load(n) && (n->as_Load()->barrier_data() == 0)); 7401 7402 ins_cost(4 * INSN_COST); 7403 format %{ "ldr $dst, $mem\t# ptr" %} 7404 7405 ins_encode(aarch64_enc_ldr(dst, mem)); 7406 7407 ins_pipe(iload_reg_mem); 7408 %} 7409 7410 // Load Compressed Pointer 7411 instruct loadN(iRegNNoSp dst, memory4 mem) 7412 %{ 7413 match(Set dst (LoadN mem)); 7414 predicate(!needs_acquiring_load(n)); 7415 7416 ins_cost(4 * INSN_COST); 7417 format %{ "ldrw $dst, $mem\t# compressed ptr" %} 7418 7419 ins_encode(aarch64_enc_ldrw(dst, mem)); 7420 7421 ins_pipe(iload_reg_mem); 7422 %} 7423 7424 // Load Klass Pointer 7425 instruct loadKlass(iRegPNoSp dst, memory8 mem) 7426 %{ 7427 match(Set dst (LoadKlass mem)); 7428 predicate(!needs_acquiring_load(n)); 7429 7430 ins_cost(4 * INSN_COST); 7431 format %{ "ldr $dst, $mem\t# class" %} 7432 7433 ins_encode(aarch64_enc_ldr(dst, mem)); 7434 7435 ins_pipe(iload_reg_mem); 7436 %} 7437 7438 // Load Narrow Klass Pointer 7439 instruct loadNKlass(iRegNNoSp dst, memory4 mem) 7440 %{ 7441 match(Set dst (LoadNKlass mem)); 7442 predicate(!needs_acquiring_load(n)); 7443 7444 ins_cost(4 * INSN_COST); 7445 format %{ "ldrw $dst, $mem\t# compressed class ptr" %} 7446 7447 ins_encode(aarch64_enc_ldrw(dst, mem)); 7448 7449 ins_pipe(iload_reg_mem); 7450 %} 7451 7452 // Load Float 7453 instruct loadF(vRegF dst, memory4 mem) 7454 %{ 7455 match(Set dst (LoadF mem)); 7456 predicate(!needs_acquiring_load(n)); 7457 7458 ins_cost(4 * INSN_COST); 7459 format %{ "ldrs $dst, $mem\t# float" %} 7460 7461 ins_encode( aarch64_enc_ldrs(dst, mem) ); 7462 7463 ins_pipe(pipe_class_memory); 7464 %} 7465 7466 // Load Double 7467 instruct loadD(vRegD dst, memory8 mem) 7468 %{ 7469 match(Set dst (LoadD mem)); 7470 predicate(!needs_acquiring_load(n)); 7471 7472 ins_cost(4 * INSN_COST); 7473 format %{ "ldrd $dst, $mem\t# double" %} 7474 7475 ins_encode( aarch64_enc_ldrd(dst, mem) ); 7476 7477 ins_pipe(pipe_class_memory); 7478 %} 7479 7480 7481 // Load Int Constant 7482 instruct loadConI(iRegINoSp dst, immI src) 7483 %{ 7484 match(Set dst src); 7485 7486 ins_cost(INSN_COST); 7487 format %{ "mov $dst, $src\t# int" %} 7488 7489 ins_encode( aarch64_enc_movw_imm(dst, src) ); 7490 7491 ins_pipe(ialu_imm); 7492 %} 7493 7494 // Load Long Constant 7495 instruct loadConL(iRegLNoSp dst, immL src) 7496 %{ 7497 match(Set dst src); 7498 7499 ins_cost(INSN_COST); 7500 format %{ "mov $dst, $src\t# long" %} 7501 7502 ins_encode( aarch64_enc_mov_imm(dst, src) ); 7503 7504 ins_pipe(ialu_imm); 7505 %} 7506 7507 // Load Pointer Constant 7508 7509 instruct loadConP(iRegPNoSp dst, immP con) 7510 %{ 7511 match(Set dst con); 7512 7513 ins_cost(INSN_COST * 4); 7514 format %{ 7515 "mov $dst, $con\t# ptr\n\t" 7516 %} 7517 7518 ins_encode(aarch64_enc_mov_p(dst, con)); 7519 7520 ins_pipe(ialu_imm); 7521 %} 7522 7523 // Load Null Pointer Constant 7524 7525 instruct loadConP0(iRegPNoSp dst, immP0 con) 7526 %{ 7527 match(Set dst con); 7528 7529 ins_cost(INSN_COST); 7530 format %{ "mov $dst, $con\t# NULL ptr" %} 7531 7532 ins_encode(aarch64_enc_mov_p0(dst, con)); 7533 7534 ins_pipe(ialu_imm); 7535 %} 7536 7537 // Load Pointer Constant One 7538 7539 instruct loadConP1(iRegPNoSp dst, immP_1 con) 7540 %{ 7541 match(Set dst con); 7542 7543 ins_cost(INSN_COST); 7544 format %{ "mov $dst, $con\t# NULL ptr" %} 7545 7546 ins_encode(aarch64_enc_mov_p1(dst, con)); 7547 7548 ins_pipe(ialu_imm); 7549 %} 7550 7551 // Load Byte Map Base Constant 7552 7553 instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con) 7554 %{ 7555 match(Set dst con); 7556 7557 ins_cost(INSN_COST); 7558 format %{ "adr $dst, $con\t# Byte Map Base" %} 7559 7560 ins_encode(aarch64_enc_mov_byte_map_base(dst, con)); 7561 7562 ins_pipe(ialu_imm); 7563 %} 7564 7565 // Load Narrow Pointer Constant 7566 7567 instruct loadConN(iRegNNoSp dst, immN con) 7568 %{ 7569 match(Set dst con); 7570 7571 ins_cost(INSN_COST * 4); 7572 format %{ "mov $dst, $con\t# compressed ptr" %} 7573 7574 ins_encode(aarch64_enc_mov_n(dst, con)); 7575 7576 ins_pipe(ialu_imm); 7577 %} 7578 7579 // Load Narrow Null Pointer Constant 7580 7581 instruct loadConN0(iRegNNoSp dst, immN0 con) 7582 %{ 7583 match(Set dst con); 7584 7585 ins_cost(INSN_COST); 7586 format %{ "mov $dst, $con\t# compressed NULL ptr" %} 7587 7588 ins_encode(aarch64_enc_mov_n0(dst, con)); 7589 7590 ins_pipe(ialu_imm); 7591 %} 7592 7593 // Load Narrow Klass Constant 7594 7595 instruct loadConNKlass(iRegNNoSp dst, immNKlass con) 7596 %{ 7597 match(Set dst con); 7598 7599 ins_cost(INSN_COST); 7600 format %{ "mov $dst, $con\t# compressed klass ptr" %} 7601 7602 ins_encode(aarch64_enc_mov_nk(dst, con)); 7603 7604 ins_pipe(ialu_imm); 7605 %} 7606 7607 // Load Packed Float Constant 7608 7609 instruct loadConF_packed(vRegF dst, immFPacked con) %{ 7610 match(Set dst con); 7611 ins_cost(INSN_COST * 4); 7612 format %{ "fmovs $dst, $con"%} 7613 ins_encode %{ 7614 __ fmovs(as_FloatRegister($dst$$reg), (double)$con$$constant); 7615 %} 7616 7617 ins_pipe(fp_imm_s); 7618 %} 7619 7620 // Load Float Constant 7621 7622 instruct loadConF(vRegF dst, immF con) %{ 7623 match(Set dst con); 7624 7625 ins_cost(INSN_COST * 4); 7626 7627 format %{ 7628 "ldrs $dst, [$constantaddress]\t# load from constant table: float=$con\n\t" 7629 %} 7630 7631 ins_encode %{ 7632 __ ldrs(as_FloatRegister($dst$$reg), $constantaddress($con)); 7633 %} 7634 7635 ins_pipe(fp_load_constant_s); 7636 %} 7637 7638 // Load Packed Double Constant 7639 7640 instruct loadConD_packed(vRegD dst, immDPacked con) %{ 7641 match(Set dst con); 7642 ins_cost(INSN_COST); 7643 format %{ "fmovd $dst, $con"%} 7644 ins_encode %{ 7645 __ fmovd(as_FloatRegister($dst$$reg), $con$$constant); 7646 %} 7647 7648 ins_pipe(fp_imm_d); 7649 %} 7650 7651 // Load Double Constant 7652 7653 instruct loadConD(vRegD dst, immD con) %{ 7654 match(Set dst con); 7655 7656 ins_cost(INSN_COST * 5); 7657 format %{ 7658 "ldrd $dst, [$constantaddress]\t# load from constant table: float=$con\n\t" 7659 %} 7660 7661 ins_encode %{ 7662 __ ldrd(as_FloatRegister($dst$$reg), $constantaddress($con)); 7663 %} 7664 7665 ins_pipe(fp_load_constant_d); 7666 %} 7667 7668 // Store Instructions 7669 7670 // Store CMS card-mark Immediate 7671 instruct storeimmCM0(immI0 zero, memory1 mem) 7672 %{ 7673 match(Set mem (StoreCM mem zero)); 7674 7675 ins_cost(INSN_COST); 7676 format %{ "storestore (elided)\n\t" 7677 "strb zr, $mem\t# byte" %} 7678 7679 ins_encode(aarch64_enc_strb0(mem)); 7680 7681 ins_pipe(istore_mem); 7682 %} 7683 7684 // Store CMS card-mark Immediate with intervening StoreStore 7685 // needed when using CMS with no conditional card marking 7686 instruct storeimmCM0_ordered(immI0 zero, memory1 mem) 7687 %{ 7688 match(Set mem (StoreCM mem zero)); 7689 7690 ins_cost(INSN_COST * 2); 7691 format %{ "storestore\n\t" 7692 "dmb ishst" 7693 "\n\tstrb zr, $mem\t# byte" %} 7694 7695 ins_encode(aarch64_enc_strb0_ordered(mem)); 7696 7697 ins_pipe(istore_mem); 7698 %} 7699 7700 // Store Byte 7701 instruct storeB(iRegIorL2I src, memory1 mem) 7702 %{ 7703 match(Set mem (StoreB mem src)); 7704 predicate(!needs_releasing_store(n)); 7705 7706 ins_cost(INSN_COST); 7707 format %{ "strb $src, $mem\t# byte" %} 7708 7709 ins_encode(aarch64_enc_strb(src, mem)); 7710 7711 ins_pipe(istore_reg_mem); 7712 %} 7713 7714 7715 instruct storeimmB0(immI0 zero, memory1 mem) 7716 %{ 7717 match(Set mem (StoreB mem zero)); 7718 predicate(!needs_releasing_store(n)); 7719 7720 ins_cost(INSN_COST); 7721 format %{ "strb rscractch2, $mem\t# byte" %} 7722 7723 ins_encode(aarch64_enc_strb0(mem)); 7724 7725 ins_pipe(istore_mem); 7726 %} 7727 7728 // Store Char/Short 7729 instruct storeC(iRegIorL2I src, memory2 mem) 7730 %{ 7731 match(Set mem (StoreC mem src)); 7732 predicate(!needs_releasing_store(n)); 7733 7734 ins_cost(INSN_COST); 7735 format %{ "strh $src, $mem\t# short" %} 7736 7737 ins_encode(aarch64_enc_strh(src, mem)); 7738 7739 ins_pipe(istore_reg_mem); 7740 %} 7741 7742 instruct storeimmC0(immI0 zero, memory2 mem) 7743 %{ 7744 match(Set mem (StoreC mem zero)); 7745 predicate(!needs_releasing_store(n)); 7746 7747 ins_cost(INSN_COST); 7748 format %{ "strh zr, $mem\t# short" %} 7749 7750 ins_encode(aarch64_enc_strh0(mem)); 7751 7752 ins_pipe(istore_mem); 7753 %} 7754 7755 // Store Integer 7756 7757 instruct storeI(iRegIorL2I src, memory4 mem) 7758 %{ 7759 match(Set mem(StoreI mem src)); 7760 predicate(!needs_releasing_store(n)); 7761 7762 ins_cost(INSN_COST); 7763 format %{ "strw $src, $mem\t# int" %} 7764 7765 ins_encode(aarch64_enc_strw(src, mem)); 7766 7767 ins_pipe(istore_reg_mem); 7768 %} 7769 7770 instruct storeimmI0(immI0 zero, memory4 mem) 7771 %{ 7772 match(Set mem(StoreI mem zero)); 7773 predicate(!needs_releasing_store(n)); 7774 7775 ins_cost(INSN_COST); 7776 format %{ "strw zr, $mem\t# int" %} 7777 7778 ins_encode(aarch64_enc_strw0(mem)); 7779 7780 ins_pipe(istore_mem); 7781 %} 7782 7783 // Store Long (64 bit signed) 7784 instruct storeL(iRegL src, memory8 mem) 7785 %{ 7786 match(Set mem (StoreL mem src)); 7787 predicate(!needs_releasing_store(n)); 7788 7789 ins_cost(INSN_COST); 7790 format %{ "str $src, $mem\t# int" %} 7791 7792 ins_encode(aarch64_enc_str(src, mem)); 7793 7794 ins_pipe(istore_reg_mem); 7795 %} 7796 7797 // Store Long (64 bit signed) 7798 instruct storeimmL0(immL0 zero, memory8 mem) 7799 %{ 7800 match(Set mem (StoreL mem zero)); 7801 predicate(!needs_releasing_store(n)); 7802 7803 ins_cost(INSN_COST); 7804 format %{ "str zr, $mem\t# int" %} 7805 7806 ins_encode(aarch64_enc_str0(mem)); 7807 7808 ins_pipe(istore_mem); 7809 %} 7810 7811 // Store Pointer 7812 instruct storeP(iRegP src, memory8 mem) 7813 %{ 7814 match(Set mem (StoreP mem src)); 7815 predicate(!needs_releasing_store(n)); 7816 7817 ins_cost(INSN_COST); 7818 format %{ "str $src, $mem\t# ptr" %} 7819 7820 ins_encode(aarch64_enc_str(src, mem)); 7821 7822 ins_pipe(istore_reg_mem); 7823 %} 7824 7825 // Store Pointer 7826 instruct storeimmP0(immP0 zero, memory8 mem) 7827 %{ 7828 match(Set mem (StoreP mem zero)); 7829 predicate(!needs_releasing_store(n)); 7830 7831 ins_cost(INSN_COST); 7832 format %{ "str zr, $mem\t# ptr" %} 7833 7834 ins_encode(aarch64_enc_str0(mem)); 7835 7836 ins_pipe(istore_mem); 7837 %} 7838 7839 // Store Compressed Pointer 7840 instruct storeN(iRegN src, memory4 mem) 7841 %{ 7842 match(Set mem (StoreN mem src)); 7843 predicate(!needs_releasing_store(n)); 7844 7845 ins_cost(INSN_COST); 7846 format %{ "strw $src, $mem\t# compressed ptr" %} 7847 7848 ins_encode(aarch64_enc_strw(src, mem)); 7849 7850 ins_pipe(istore_reg_mem); 7851 %} 7852 7853 instruct storeImmN0(immN0 zero, memory4 mem) 7854 %{ 7855 match(Set mem (StoreN mem zero)); 7856 predicate(!needs_releasing_store(n)); 7857 7858 ins_cost(INSN_COST); 7859 format %{ "strw zr, $mem\t# compressed ptr" %} 7860 7861 ins_encode(aarch64_enc_strw0(mem)); 7862 7863 ins_pipe(istore_mem); 7864 %} 7865 7866 // Store Float 7867 instruct storeF(vRegF src, memory4 mem) 7868 %{ 7869 match(Set mem (StoreF mem src)); 7870 predicate(!needs_releasing_store(n)); 7871 7872 ins_cost(INSN_COST); 7873 format %{ "strs $src, $mem\t# float" %} 7874 7875 ins_encode( aarch64_enc_strs(src, mem) ); 7876 7877 ins_pipe(pipe_class_memory); 7878 %} 7879 7880 // TODO 7881 // implement storeImmF0 and storeFImmPacked 7882 7883 // Store Double 7884 instruct storeD(vRegD src, memory8 mem) 7885 %{ 7886 match(Set mem (StoreD mem src)); 7887 predicate(!needs_releasing_store(n)); 7888 7889 ins_cost(INSN_COST); 7890 format %{ "strd $src, $mem\t# double" %} 7891 7892 ins_encode( aarch64_enc_strd(src, mem) ); 7893 7894 ins_pipe(pipe_class_memory); 7895 %} 7896 7897 // Store Compressed Klass Pointer 7898 instruct storeNKlass(iRegN src, memory4 mem) 7899 %{ 7900 predicate(!needs_releasing_store(n)); 7901 match(Set mem (StoreNKlass mem src)); 7902 7903 ins_cost(INSN_COST); 7904 format %{ "strw $src, $mem\t# compressed klass ptr" %} 7905 7906 ins_encode(aarch64_enc_strw(src, mem)); 7907 7908 ins_pipe(istore_reg_mem); 7909 %} 7910 7911 // TODO 7912 // implement storeImmD0 and storeDImmPacked 7913 7914 // prefetch instructions 7915 // Must be safe to execute with invalid address (cannot fault). 7916 7917 instruct prefetchalloc( memory8 mem ) %{ 7918 match(PrefetchAllocation mem); 7919 7920 ins_cost(INSN_COST); 7921 format %{ "prfm $mem, PSTL1KEEP\t# Prefetch into level 1 cache write keep" %} 7922 7923 ins_encode( aarch64_enc_prefetchw(mem) ); 7924 7925 ins_pipe(iload_prefetch); 7926 %} 7927 7928 // ---------------- volatile loads and stores ---------------- 7929 7930 // Load Byte (8 bit signed) 7931 instruct loadB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 7932 %{ 7933 match(Set dst (LoadB mem)); 7934 7935 ins_cost(VOLATILE_REF_COST); 7936 format %{ "ldarsb $dst, $mem\t# byte" %} 7937 7938 ins_encode(aarch64_enc_ldarsb(dst, mem)); 7939 7940 ins_pipe(pipe_serial); 7941 %} 7942 7943 // Load Byte (8 bit signed) into long 7944 instruct loadB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 7945 %{ 7946 match(Set dst (ConvI2L (LoadB mem))); 7947 7948 ins_cost(VOLATILE_REF_COST); 7949 format %{ "ldarsb $dst, $mem\t# byte" %} 7950 7951 ins_encode(aarch64_enc_ldarsb(dst, mem)); 7952 7953 ins_pipe(pipe_serial); 7954 %} 7955 7956 // Load Byte (8 bit unsigned) 7957 instruct loadUB_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 7958 %{ 7959 match(Set dst (LoadUB mem)); 7960 7961 ins_cost(VOLATILE_REF_COST); 7962 format %{ "ldarb $dst, $mem\t# byte" %} 7963 7964 ins_encode(aarch64_enc_ldarb(dst, mem)); 7965 7966 ins_pipe(pipe_serial); 7967 %} 7968 7969 // Load Byte (8 bit unsigned) into long 7970 instruct loadUB2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 7971 %{ 7972 match(Set dst (ConvI2L (LoadUB mem))); 7973 7974 ins_cost(VOLATILE_REF_COST); 7975 format %{ "ldarb $dst, $mem\t# byte" %} 7976 7977 ins_encode(aarch64_enc_ldarb(dst, mem)); 7978 7979 ins_pipe(pipe_serial); 7980 %} 7981 7982 // Load Short (16 bit signed) 7983 instruct loadS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 7984 %{ 7985 match(Set dst (LoadS mem)); 7986 7987 ins_cost(VOLATILE_REF_COST); 7988 format %{ "ldarshw $dst, $mem\t# short" %} 7989 7990 ins_encode(aarch64_enc_ldarshw(dst, mem)); 7991 7992 ins_pipe(pipe_serial); 7993 %} 7994 7995 instruct loadUS_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 7996 %{ 7997 match(Set dst (LoadUS mem)); 7998 7999 ins_cost(VOLATILE_REF_COST); 8000 format %{ "ldarhw $dst, $mem\t# short" %} 8001 8002 ins_encode(aarch64_enc_ldarhw(dst, mem)); 8003 8004 ins_pipe(pipe_serial); 8005 %} 8006 8007 // Load Short/Char (16 bit unsigned) into long 8008 instruct loadUS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 8009 %{ 8010 match(Set dst (ConvI2L (LoadUS mem))); 8011 8012 ins_cost(VOLATILE_REF_COST); 8013 format %{ "ldarh $dst, $mem\t# short" %} 8014 8015 ins_encode(aarch64_enc_ldarh(dst, mem)); 8016 8017 ins_pipe(pipe_serial); 8018 %} 8019 8020 // Load Short/Char (16 bit signed) into long 8021 instruct loadS2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 8022 %{ 8023 match(Set dst (ConvI2L (LoadS mem))); 8024 8025 ins_cost(VOLATILE_REF_COST); 8026 format %{ "ldarh $dst, $mem\t# short" %} 8027 8028 ins_encode(aarch64_enc_ldarsh(dst, mem)); 8029 8030 ins_pipe(pipe_serial); 8031 %} 8032 8033 // Load Integer (32 bit signed) 8034 instruct loadI_volatile(iRegINoSp dst, /* sync_memory*/indirect mem) 8035 %{ 8036 match(Set dst (LoadI mem)); 8037 8038 ins_cost(VOLATILE_REF_COST); 8039 format %{ "ldarw $dst, $mem\t# int" %} 8040 8041 ins_encode(aarch64_enc_ldarw(dst, mem)); 8042 8043 ins_pipe(pipe_serial); 8044 %} 8045 8046 // Load Integer (32 bit unsigned) into long 8047 instruct loadUI2L_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem, immL_32bits mask) 8048 %{ 8049 match(Set dst (AndL (ConvI2L (LoadI mem)) mask)); 8050 8051 ins_cost(VOLATILE_REF_COST); 8052 format %{ "ldarw $dst, $mem\t# int" %} 8053 8054 ins_encode(aarch64_enc_ldarw(dst, mem)); 8055 8056 ins_pipe(pipe_serial); 8057 %} 8058 8059 // Load Long (64 bit signed) 8060 instruct loadL_volatile(iRegLNoSp dst, /* sync_memory*/indirect mem) 8061 %{ 8062 match(Set dst (LoadL mem)); 8063 8064 ins_cost(VOLATILE_REF_COST); 8065 format %{ "ldar $dst, $mem\t# int" %} 8066 8067 ins_encode(aarch64_enc_ldar(dst, mem)); 8068 8069 ins_pipe(pipe_serial); 8070 %} 8071 8072 // Load Pointer 8073 instruct loadP_volatile(iRegPNoSp dst, /* sync_memory*/indirect mem) 8074 %{ 8075 match(Set dst (LoadP mem)); 8076 predicate(n->as_Load()->barrier_data() == 0); 8077 8078 ins_cost(VOLATILE_REF_COST); 8079 format %{ "ldar $dst, $mem\t# ptr" %} 8080 8081 ins_encode(aarch64_enc_ldar(dst, mem)); 8082 8083 ins_pipe(pipe_serial); 8084 %} 8085 8086 // Load Compressed Pointer 8087 instruct loadN_volatile(iRegNNoSp dst, /* sync_memory*/indirect mem) 8088 %{ 8089 match(Set dst (LoadN mem)); 8090 8091 ins_cost(VOLATILE_REF_COST); 8092 format %{ "ldarw $dst, $mem\t# compressed ptr" %} 8093 8094 ins_encode(aarch64_enc_ldarw(dst, mem)); 8095 8096 ins_pipe(pipe_serial); 8097 %} 8098 8099 // Load Float 8100 instruct loadF_volatile(vRegF dst, /* sync_memory*/indirect mem) 8101 %{ 8102 match(Set dst (LoadF mem)); 8103 8104 ins_cost(VOLATILE_REF_COST); 8105 format %{ "ldars $dst, $mem\t# float" %} 8106 8107 ins_encode( aarch64_enc_fldars(dst, mem) ); 8108 8109 ins_pipe(pipe_serial); 8110 %} 8111 8112 // Load Double 8113 instruct loadD_volatile(vRegD dst, /* sync_memory*/indirect mem) 8114 %{ 8115 match(Set dst (LoadD mem)); 8116 8117 ins_cost(VOLATILE_REF_COST); 8118 format %{ "ldard $dst, $mem\t# double" %} 8119 8120 ins_encode( aarch64_enc_fldard(dst, mem) ); 8121 8122 ins_pipe(pipe_serial); 8123 %} 8124 8125 // Store Byte 8126 instruct storeB_volatile(iRegIorL2I src, /* sync_memory*/indirect mem) 8127 %{ 8128 match(Set mem (StoreB mem src)); 8129 8130 ins_cost(VOLATILE_REF_COST); 8131 format %{ "stlrb $src, $mem\t# byte" %} 8132 8133 ins_encode(aarch64_enc_stlrb(src, mem)); 8134 8135 ins_pipe(pipe_class_memory); 8136 %} 8137 8138 instruct storeimmB0_volatile(immI0 zero, /* sync_memory*/indirect mem) 8139 %{ 8140 match(Set mem (StoreB mem zero)); 8141 8142 ins_cost(VOLATILE_REF_COST); 8143 format %{ "stlrb zr, $mem\t# byte" %} 8144 8145 ins_encode(aarch64_enc_stlrb0(mem)); 8146 8147 ins_pipe(pipe_class_memory); 8148 %} 8149 8150 // Store Char/Short 8151 instruct storeC_volatile(iRegIorL2I src, /* sync_memory*/indirect mem) 8152 %{ 8153 match(Set mem (StoreC mem src)); 8154 8155 ins_cost(VOLATILE_REF_COST); 8156 format %{ "stlrh $src, $mem\t# short" %} 8157 8158 ins_encode(aarch64_enc_stlrh(src, mem)); 8159 8160 ins_pipe(pipe_class_memory); 8161 %} 8162 8163 instruct storeimmC0_volatile(immI0 zero, /* sync_memory*/indirect mem) 8164 %{ 8165 match(Set mem (StoreC mem zero)); 8166 8167 ins_cost(VOLATILE_REF_COST); 8168 format %{ "stlrh zr, $mem\t# short" %} 8169 8170 ins_encode(aarch64_enc_stlrh0(mem)); 8171 8172 ins_pipe(pipe_class_memory); 8173 %} 8174 8175 // Store Integer 8176 8177 instruct storeI_volatile(iRegIorL2I src, /* sync_memory*/indirect mem) 8178 %{ 8179 match(Set mem(StoreI mem src)); 8180 8181 ins_cost(VOLATILE_REF_COST); 8182 format %{ "stlrw $src, $mem\t# int" %} 8183 8184 ins_encode(aarch64_enc_stlrw(src, mem)); 8185 8186 ins_pipe(pipe_class_memory); 8187 %} 8188 8189 instruct storeimmI0_volatile(immI0 zero, /* sync_memory*/indirect mem) 8190 %{ 8191 match(Set mem(StoreI mem zero)); 8192 8193 ins_cost(VOLATILE_REF_COST); 8194 format %{ "stlrw zr, $mem\t# int" %} 8195 8196 ins_encode(aarch64_enc_stlrw0(mem)); 8197 8198 ins_pipe(pipe_class_memory); 8199 %} 8200 8201 // Store Long (64 bit signed) 8202 instruct storeL_volatile(iRegL src, /* sync_memory*/indirect mem) 8203 %{ 8204 match(Set mem (StoreL mem src)); 8205 8206 ins_cost(VOLATILE_REF_COST); 8207 format %{ "stlr $src, $mem\t# int" %} 8208 8209 ins_encode(aarch64_enc_stlr(src, mem)); 8210 8211 ins_pipe(pipe_class_memory); 8212 %} 8213 8214 instruct storeimmL0_volatile(immL0 zero, /* sync_memory*/indirect mem) 8215 %{ 8216 match(Set mem (StoreL mem zero)); 8217 8218 ins_cost(VOLATILE_REF_COST); 8219 format %{ "stlr zr, $mem\t# int" %} 8220 8221 ins_encode(aarch64_enc_stlr0(mem)); 8222 8223 ins_pipe(pipe_class_memory); 8224 %} 8225 8226 // Store Pointer 8227 instruct storeP_volatile(iRegP src, /* sync_memory*/indirect mem) 8228 %{ 8229 match(Set mem (StoreP mem src)); 8230 8231 ins_cost(VOLATILE_REF_COST); 8232 format %{ "stlr $src, $mem\t# ptr" %} 8233 8234 ins_encode(aarch64_enc_stlr(src, mem)); 8235 8236 ins_pipe(pipe_class_memory); 8237 %} 8238 8239 instruct storeimmP0_volatile(immP0 zero, /* sync_memory*/indirect mem) 8240 %{ 8241 match(Set mem (StoreP mem zero)); 8242 8243 ins_cost(VOLATILE_REF_COST); 8244 format %{ "stlr zr, $mem\t# ptr" %} 8245 8246 ins_encode(aarch64_enc_stlr0(mem)); 8247 8248 ins_pipe(pipe_class_memory); 8249 %} 8250 8251 // Store Compressed Pointer 8252 instruct storeN_volatile(iRegN src, /* sync_memory*/indirect mem) 8253 %{ 8254 match(Set mem (StoreN mem src)); 8255 8256 ins_cost(VOLATILE_REF_COST); 8257 format %{ "stlrw $src, $mem\t# compressed ptr" %} 8258 8259 ins_encode(aarch64_enc_stlrw(src, mem)); 8260 8261 ins_pipe(pipe_class_memory); 8262 %} 8263 8264 instruct storeimmN0_volatile(immN0 zero, /* sync_memory*/indirect mem) 8265 %{ 8266 match(Set mem (StoreN mem zero)); 8267 8268 ins_cost(VOLATILE_REF_COST); 8269 format %{ "stlrw zr, $mem\t# compressed ptr" %} 8270 8271 ins_encode(aarch64_enc_stlrw0(mem)); 8272 8273 ins_pipe(pipe_class_memory); 8274 %} 8275 8276 // Store Float 8277 instruct storeF_volatile(vRegF src, /* sync_memory*/indirect mem) 8278 %{ 8279 match(Set mem (StoreF mem src)); 8280 8281 ins_cost(VOLATILE_REF_COST); 8282 format %{ "stlrs $src, $mem\t# float" %} 8283 8284 ins_encode( aarch64_enc_fstlrs(src, mem) ); 8285 8286 ins_pipe(pipe_class_memory); 8287 %} 8288 8289 // TODO 8290 // implement storeImmF0 and storeFImmPacked 8291 8292 // Store Double 8293 instruct storeD_volatile(vRegD src, /* sync_memory*/indirect mem) 8294 %{ 8295 match(Set mem (StoreD mem src)); 8296 8297 ins_cost(VOLATILE_REF_COST); 8298 format %{ "stlrd $src, $mem\t# double" %} 8299 8300 ins_encode( aarch64_enc_fstlrd(src, mem) ); 8301 8302 ins_pipe(pipe_class_memory); 8303 %} 8304 8305 // ---------------- end of volatile loads and stores ---------------- 8306 8307 instruct cacheWB(indirect addr) 8308 %{ 8309 predicate(VM_Version::supports_data_cache_line_flush()); 8310 match(CacheWB addr); 8311 8312 ins_cost(100); 8313 format %{"cache wb $addr" %} 8314 ins_encode %{ 8315 assert($addr->index_position() < 0, "should be"); 8316 assert($addr$$disp == 0, "should be"); 8317 __ cache_wb(Address($addr$$base$$Register, 0)); 8318 %} 8319 ins_pipe(pipe_slow); // XXX 8320 %} 8321 8322 instruct cacheWBPreSync() 8323 %{ 8324 predicate(VM_Version::supports_data_cache_line_flush()); 8325 match(CacheWBPreSync); 8326 8327 ins_cost(100); 8328 format %{"cache wb presync" %} 8329 ins_encode %{ 8330 __ cache_wbsync(true); 8331 %} 8332 ins_pipe(pipe_slow); // XXX 8333 %} 8334 8335 instruct cacheWBPostSync() 8336 %{ 8337 predicate(VM_Version::supports_data_cache_line_flush()); 8338 match(CacheWBPostSync); 8339 8340 ins_cost(100); 8341 format %{"cache wb postsync" %} 8342 ins_encode %{ 8343 __ cache_wbsync(false); 8344 %} 8345 ins_pipe(pipe_slow); // XXX 8346 %} 8347 8348 // ============================================================================ 8349 // BSWAP Instructions 8350 8351 instruct bytes_reverse_int(iRegINoSp dst, iRegIorL2I src) %{ 8352 match(Set dst (ReverseBytesI src)); 8353 8354 ins_cost(INSN_COST); 8355 format %{ "revw $dst, $src" %} 8356 8357 ins_encode %{ 8358 __ revw(as_Register($dst$$reg), as_Register($src$$reg)); 8359 %} 8360 8361 ins_pipe(ialu_reg); 8362 %} 8363 8364 instruct bytes_reverse_long(iRegLNoSp dst, iRegL src) %{ 8365 match(Set dst (ReverseBytesL src)); 8366 8367 ins_cost(INSN_COST); 8368 format %{ "rev $dst, $src" %} 8369 8370 ins_encode %{ 8371 __ rev(as_Register($dst$$reg), as_Register($src$$reg)); 8372 %} 8373 8374 ins_pipe(ialu_reg); 8375 %} 8376 8377 instruct bytes_reverse_unsigned_short(iRegINoSp dst, iRegIorL2I src) %{ 8378 match(Set dst (ReverseBytesUS src)); 8379 8380 ins_cost(INSN_COST); 8381 format %{ "rev16w $dst, $src" %} 8382 8383 ins_encode %{ 8384 __ rev16w(as_Register($dst$$reg), as_Register($src$$reg)); 8385 %} 8386 8387 ins_pipe(ialu_reg); 8388 %} 8389 8390 instruct bytes_reverse_short(iRegINoSp dst, iRegIorL2I src) %{ 8391 match(Set dst (ReverseBytesS src)); 8392 8393 ins_cost(INSN_COST); 8394 format %{ "rev16w $dst, $src\n\t" 8395 "sbfmw $dst, $dst, #0, #15" %} 8396 8397 ins_encode %{ 8398 __ rev16w(as_Register($dst$$reg), as_Register($src$$reg)); 8399 __ sbfmw(as_Register($dst$$reg), as_Register($dst$$reg), 0U, 15U); 8400 %} 8401 8402 ins_pipe(ialu_reg); 8403 %} 8404 8405 // ============================================================================ 8406 // Zero Count Instructions 8407 8408 instruct countLeadingZerosI(iRegINoSp dst, iRegIorL2I src) %{ 8409 match(Set dst (CountLeadingZerosI src)); 8410 8411 ins_cost(INSN_COST); 8412 format %{ "clzw $dst, $src" %} 8413 ins_encode %{ 8414 __ clzw(as_Register($dst$$reg), as_Register($src$$reg)); 8415 %} 8416 8417 ins_pipe(ialu_reg); 8418 %} 8419 8420 instruct countLeadingZerosL(iRegINoSp dst, iRegL src) %{ 8421 match(Set dst (CountLeadingZerosL src)); 8422 8423 ins_cost(INSN_COST); 8424 format %{ "clz $dst, $src" %} 8425 ins_encode %{ 8426 __ clz(as_Register($dst$$reg), as_Register($src$$reg)); 8427 %} 8428 8429 ins_pipe(ialu_reg); 8430 %} 8431 8432 instruct countTrailingZerosI(iRegINoSp dst, iRegIorL2I src) %{ 8433 match(Set dst (CountTrailingZerosI src)); 8434 8435 ins_cost(INSN_COST * 2); 8436 format %{ "rbitw $dst, $src\n\t" 8437 "clzw $dst, $dst" %} 8438 ins_encode %{ 8439 __ rbitw(as_Register($dst$$reg), as_Register($src$$reg)); 8440 __ clzw(as_Register($dst$$reg), as_Register($dst$$reg)); 8441 %} 8442 8443 ins_pipe(ialu_reg); 8444 %} 8445 8446 instruct countTrailingZerosL(iRegINoSp dst, iRegL src) %{ 8447 match(Set dst (CountTrailingZerosL src)); 8448 8449 ins_cost(INSN_COST * 2); 8450 format %{ "rbit $dst, $src\n\t" 8451 "clz $dst, $dst" %} 8452 ins_encode %{ 8453 __ rbit(as_Register($dst$$reg), as_Register($src$$reg)); 8454 __ clz(as_Register($dst$$reg), as_Register($dst$$reg)); 8455 %} 8456 8457 ins_pipe(ialu_reg); 8458 %} 8459 8460 //---------- Population Count Instructions ------------------------------------- 8461 // 8462 8463 instruct popCountI(iRegINoSp dst, iRegIorL2I src, vRegF tmp) %{ 8464 predicate(UsePopCountInstruction); 8465 match(Set dst (PopCountI src)); 8466 effect(TEMP tmp); 8467 ins_cost(INSN_COST * 13); 8468 8469 format %{ "movw $src, $src\n\t" 8470 "mov $tmp, $src\t# vector (1D)\n\t" 8471 "cnt $tmp, $tmp\t# vector (8B)\n\t" 8472 "addv $tmp, $tmp\t# vector (8B)\n\t" 8473 "mov $dst, $tmp\t# vector (1D)" %} 8474 ins_encode %{ 8475 __ movw($src$$Register, $src$$Register); // ensure top 32 bits 0 8476 __ mov($tmp$$FloatRegister, __ T1D, 0, $src$$Register); 8477 __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 8478 __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 8479 __ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0); 8480 %} 8481 8482 ins_pipe(pipe_class_default); 8483 %} 8484 8485 instruct popCountI_mem(iRegINoSp dst, memory4 mem, vRegF tmp) %{ 8486 predicate(UsePopCountInstruction); 8487 match(Set dst (PopCountI (LoadI mem))); 8488 effect(TEMP tmp); 8489 ins_cost(INSN_COST * 13); 8490 8491 format %{ "ldrs $tmp, $mem\n\t" 8492 "cnt $tmp, $tmp\t# vector (8B)\n\t" 8493 "addv $tmp, $tmp\t# vector (8B)\n\t" 8494 "mov $dst, $tmp\t# vector (1D)" %} 8495 ins_encode %{ 8496 FloatRegister tmp_reg = as_FloatRegister($tmp$$reg); 8497 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrs, tmp_reg, $mem->opcode(), 8498 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 4); 8499 __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 8500 __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 8501 __ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0); 8502 %} 8503 8504 ins_pipe(pipe_class_default); 8505 %} 8506 8507 // Note: Long.bitCount(long) returns an int. 8508 instruct popCountL(iRegINoSp dst, iRegL src, vRegD tmp) %{ 8509 predicate(UsePopCountInstruction); 8510 match(Set dst (PopCountL src)); 8511 effect(TEMP tmp); 8512 ins_cost(INSN_COST * 13); 8513 8514 format %{ "mov $tmp, $src\t# vector (1D)\n\t" 8515 "cnt $tmp, $tmp\t# vector (8B)\n\t" 8516 "addv $tmp, $tmp\t# vector (8B)\n\t" 8517 "mov $dst, $tmp\t# vector (1D)" %} 8518 ins_encode %{ 8519 __ mov($tmp$$FloatRegister, __ T1D, 0, $src$$Register); 8520 __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 8521 __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 8522 __ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0); 8523 %} 8524 8525 ins_pipe(pipe_class_default); 8526 %} 8527 8528 instruct popCountL_mem(iRegINoSp dst, memory8 mem, vRegD tmp) %{ 8529 predicate(UsePopCountInstruction); 8530 match(Set dst (PopCountL (LoadL mem))); 8531 effect(TEMP tmp); 8532 ins_cost(INSN_COST * 13); 8533 8534 format %{ "ldrd $tmp, $mem\n\t" 8535 "cnt $tmp, $tmp\t# vector (8B)\n\t" 8536 "addv $tmp, $tmp\t# vector (8B)\n\t" 8537 "mov $dst, $tmp\t# vector (1D)" %} 8538 ins_encode %{ 8539 FloatRegister tmp_reg = as_FloatRegister($tmp$$reg); 8540 loadStore(C2_MacroAssembler(&cbuf), &MacroAssembler::ldrd, tmp_reg, $mem->opcode(), 8541 as_Register($mem$$base), $mem$$index, $mem$$scale, $mem$$disp, 8); 8542 __ cnt($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 8543 __ addv($tmp$$FloatRegister, __ T8B, $tmp$$FloatRegister); 8544 __ mov($dst$$Register, $tmp$$FloatRegister, __ T1D, 0); 8545 %} 8546 8547 ins_pipe(pipe_class_default); 8548 %} 8549 8550 // ============================================================================ 8551 // MemBar Instruction 8552 8553 instruct load_fence() %{ 8554 match(LoadFence); 8555 ins_cost(VOLATILE_REF_COST); 8556 8557 format %{ "load_fence" %} 8558 8559 ins_encode %{ 8560 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 8561 %} 8562 ins_pipe(pipe_serial); 8563 %} 8564 8565 instruct unnecessary_membar_acquire() %{ 8566 predicate(unnecessary_acquire(n)); 8567 match(MemBarAcquire); 8568 ins_cost(0); 8569 8570 format %{ "membar_acquire (elided)" %} 8571 8572 ins_encode %{ 8573 __ block_comment("membar_acquire (elided)"); 8574 %} 8575 8576 ins_pipe(pipe_class_empty); 8577 %} 8578 8579 instruct membar_acquire() %{ 8580 match(MemBarAcquire); 8581 ins_cost(VOLATILE_REF_COST); 8582 8583 format %{ "membar_acquire\n\t" 8584 "dmb ish" %} 8585 8586 ins_encode %{ 8587 __ block_comment("membar_acquire"); 8588 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 8589 %} 8590 8591 ins_pipe(pipe_serial); 8592 %} 8593 8594 8595 instruct membar_acquire_lock() %{ 8596 match(MemBarAcquireLock); 8597 ins_cost(VOLATILE_REF_COST); 8598 8599 format %{ "membar_acquire_lock (elided)" %} 8600 8601 ins_encode %{ 8602 __ block_comment("membar_acquire_lock (elided)"); 8603 %} 8604 8605 ins_pipe(pipe_serial); 8606 %} 8607 8608 instruct store_fence() %{ 8609 match(StoreFence); 8610 ins_cost(VOLATILE_REF_COST); 8611 8612 format %{ "store_fence" %} 8613 8614 ins_encode %{ 8615 __ membar(Assembler::LoadStore|Assembler::StoreStore); 8616 %} 8617 ins_pipe(pipe_serial); 8618 %} 8619 8620 instruct unnecessary_membar_release() %{ 8621 predicate(unnecessary_release(n)); 8622 match(MemBarRelease); 8623 ins_cost(0); 8624 8625 format %{ "membar_release (elided)" %} 8626 8627 ins_encode %{ 8628 __ block_comment("membar_release (elided)"); 8629 %} 8630 ins_pipe(pipe_serial); 8631 %} 8632 8633 instruct membar_release() %{ 8634 match(MemBarRelease); 8635 ins_cost(VOLATILE_REF_COST); 8636 8637 format %{ "membar_release\n\t" 8638 "dmb ish" %} 8639 8640 ins_encode %{ 8641 __ block_comment("membar_release"); 8642 __ membar(Assembler::LoadStore|Assembler::StoreStore); 8643 %} 8644 ins_pipe(pipe_serial); 8645 %} 8646 8647 instruct membar_storestore() %{ 8648 match(MemBarStoreStore); 8649 ins_cost(VOLATILE_REF_COST); 8650 8651 format %{ "MEMBAR-store-store" %} 8652 8653 ins_encode %{ 8654 __ membar(Assembler::StoreStore); 8655 %} 8656 ins_pipe(pipe_serial); 8657 %} 8658 8659 instruct membar_release_lock() %{ 8660 match(MemBarReleaseLock); 8661 ins_cost(VOLATILE_REF_COST); 8662 8663 format %{ "membar_release_lock (elided)" %} 8664 8665 ins_encode %{ 8666 __ block_comment("membar_release_lock (elided)"); 8667 %} 8668 8669 ins_pipe(pipe_serial); 8670 %} 8671 8672 instruct unnecessary_membar_volatile() %{ 8673 predicate(unnecessary_volatile(n)); 8674 match(MemBarVolatile); 8675 ins_cost(0); 8676 8677 format %{ "membar_volatile (elided)" %} 8678 8679 ins_encode %{ 8680 __ block_comment("membar_volatile (elided)"); 8681 %} 8682 8683 ins_pipe(pipe_serial); 8684 %} 8685 8686 instruct membar_volatile() %{ 8687 match(MemBarVolatile); 8688 ins_cost(VOLATILE_REF_COST*100); 8689 8690 format %{ "membar_volatile\n\t" 8691 "dmb ish"%} 8692 8693 ins_encode %{ 8694 __ block_comment("membar_volatile"); 8695 __ membar(Assembler::StoreLoad); 8696 %} 8697 8698 ins_pipe(pipe_serial); 8699 %} 8700 8701 // ============================================================================ 8702 // Cast/Convert Instructions 8703 8704 instruct castX2P(iRegPNoSp dst, iRegL src) %{ 8705 match(Set dst (CastX2P src)); 8706 8707 ins_cost(INSN_COST); 8708 format %{ "mov $dst, $src\t# long -> ptr" %} 8709 8710 ins_encode %{ 8711 if ($dst$$reg != $src$$reg) { 8712 __ mov(as_Register($dst$$reg), as_Register($src$$reg)); 8713 } 8714 %} 8715 8716 ins_pipe(ialu_reg); 8717 %} 8718 8719 instruct castP2X(iRegLNoSp dst, iRegP src) %{ 8720 match(Set dst (CastP2X src)); 8721 8722 ins_cost(INSN_COST); 8723 format %{ "mov $dst, $src\t# ptr -> long" %} 8724 8725 ins_encode %{ 8726 if ($dst$$reg != $src$$reg) { 8727 __ mov(as_Register($dst$$reg), as_Register($src$$reg)); 8728 } 8729 %} 8730 8731 ins_pipe(ialu_reg); 8732 %} 8733 8734 // Convert oop into int for vectors alignment masking 8735 instruct convP2I(iRegINoSp dst, iRegP src) %{ 8736 match(Set dst (ConvL2I (CastP2X src))); 8737 8738 ins_cost(INSN_COST); 8739 format %{ "movw $dst, $src\t# ptr -> int" %} 8740 ins_encode %{ 8741 __ movw($dst$$Register, $src$$Register); 8742 %} 8743 8744 ins_pipe(ialu_reg); 8745 %} 8746 8747 // Convert compressed oop into int for vectors alignment masking 8748 // in case of 32bit oops (heap < 4Gb). 8749 instruct convN2I(iRegINoSp dst, iRegN src) 8750 %{ 8751 predicate(CompressedOops::shift() == 0); 8752 match(Set dst (ConvL2I (CastP2X (DecodeN src)))); 8753 8754 ins_cost(INSN_COST); 8755 format %{ "mov dst, $src\t# compressed ptr -> int" %} 8756 ins_encode %{ 8757 __ movw($dst$$Register, $src$$Register); 8758 %} 8759 8760 ins_pipe(ialu_reg); 8761 %} 8762 8763 8764 // Convert oop pointer into compressed form 8765 instruct encodeHeapOop(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{ 8766 predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull); 8767 match(Set dst (EncodeP src)); 8768 effect(KILL cr); 8769 ins_cost(INSN_COST * 3); 8770 format %{ "encode_heap_oop $dst, $src" %} 8771 ins_encode %{ 8772 Register s = $src$$Register; 8773 Register d = $dst$$Register; 8774 __ encode_heap_oop(d, s); 8775 %} 8776 ins_pipe(ialu_reg); 8777 %} 8778 8779 instruct encodeHeapOop_not_null(iRegNNoSp dst, iRegP src, rFlagsReg cr) %{ 8780 predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull); 8781 match(Set dst (EncodeP src)); 8782 ins_cost(INSN_COST * 3); 8783 format %{ "encode_heap_oop_not_null $dst, $src" %} 8784 ins_encode %{ 8785 __ encode_heap_oop_not_null($dst$$Register, $src$$Register); 8786 %} 8787 ins_pipe(ialu_reg); 8788 %} 8789 8790 instruct decodeHeapOop(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{ 8791 predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull && 8792 n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant); 8793 match(Set dst (DecodeN src)); 8794 ins_cost(INSN_COST * 3); 8795 format %{ "decode_heap_oop $dst, $src" %} 8796 ins_encode %{ 8797 Register s = $src$$Register; 8798 Register d = $dst$$Register; 8799 __ decode_heap_oop(d, s); 8800 %} 8801 ins_pipe(ialu_reg); 8802 %} 8803 8804 instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src, rFlagsReg cr) %{ 8805 predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull || 8806 n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant); 8807 match(Set dst (DecodeN src)); 8808 ins_cost(INSN_COST * 3); 8809 format %{ "decode_heap_oop_not_null $dst, $src" %} 8810 ins_encode %{ 8811 Register s = $src$$Register; 8812 Register d = $dst$$Register; 8813 __ decode_heap_oop_not_null(d, s); 8814 %} 8815 ins_pipe(ialu_reg); 8816 %} 8817 8818 // n.b. AArch64 implementations of encode_klass_not_null and 8819 // decode_klass_not_null do not modify the flags register so, unlike 8820 // Intel, we don't kill CR as a side effect here 8821 8822 instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{ 8823 match(Set dst (EncodePKlass src)); 8824 8825 ins_cost(INSN_COST * 3); 8826 format %{ "encode_klass_not_null $dst,$src" %} 8827 8828 ins_encode %{ 8829 Register src_reg = as_Register($src$$reg); 8830 Register dst_reg = as_Register($dst$$reg); 8831 __ encode_klass_not_null(dst_reg, src_reg); 8832 %} 8833 8834 ins_pipe(ialu_reg); 8835 %} 8836 8837 instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src) %{ 8838 match(Set dst (DecodeNKlass src)); 8839 8840 ins_cost(INSN_COST * 3); 8841 format %{ "decode_klass_not_null $dst,$src" %} 8842 8843 ins_encode %{ 8844 Register src_reg = as_Register($src$$reg); 8845 Register dst_reg = as_Register($dst$$reg); 8846 if (dst_reg != src_reg) { 8847 __ decode_klass_not_null(dst_reg, src_reg); 8848 } else { 8849 __ decode_klass_not_null(dst_reg); 8850 } 8851 %} 8852 8853 ins_pipe(ialu_reg); 8854 %} 8855 8856 instruct checkCastPP(iRegPNoSp dst) 8857 %{ 8858 match(Set dst (CheckCastPP dst)); 8859 8860 size(0); 8861 format %{ "# checkcastPP of $dst" %} 8862 ins_encode(/* empty encoding */); 8863 ins_pipe(pipe_class_empty); 8864 %} 8865 8866 instruct castPP(iRegPNoSp dst) 8867 %{ 8868 match(Set dst (CastPP dst)); 8869 8870 size(0); 8871 format %{ "# castPP of $dst" %} 8872 ins_encode(/* empty encoding */); 8873 ins_pipe(pipe_class_empty); 8874 %} 8875 8876 instruct castII(iRegI dst) 8877 %{ 8878 match(Set dst (CastII dst)); 8879 8880 size(0); 8881 format %{ "# castII of $dst" %} 8882 ins_encode(/* empty encoding */); 8883 ins_cost(0); 8884 ins_pipe(pipe_class_empty); 8885 %} 8886 8887 instruct castLL(iRegL dst) 8888 %{ 8889 match(Set dst (CastLL dst)); 8890 8891 size(0); 8892 format %{ "# castLL of $dst" %} 8893 ins_encode(/* empty encoding */); 8894 ins_cost(0); 8895 ins_pipe(pipe_class_empty); 8896 %} 8897 8898 instruct castFF(vRegF dst) 8899 %{ 8900 match(Set dst (CastFF dst)); 8901 8902 size(0); 8903 format %{ "# castFF of $dst" %} 8904 ins_encode(/* empty encoding */); 8905 ins_cost(0); 8906 ins_pipe(pipe_class_empty); 8907 %} 8908 8909 instruct castDD(vRegD dst) 8910 %{ 8911 match(Set dst (CastDD dst)); 8912 8913 size(0); 8914 format %{ "# castDD of $dst" %} 8915 ins_encode(/* empty encoding */); 8916 ins_cost(0); 8917 ins_pipe(pipe_class_empty); 8918 %} 8919 8920 instruct castVVD(vecD dst) 8921 %{ 8922 match(Set dst (CastVV dst)); 8923 8924 size(0); 8925 format %{ "# castVV of $dst" %} 8926 ins_encode(/* empty encoding */); 8927 ins_cost(0); 8928 ins_pipe(pipe_class_empty); 8929 %} 8930 8931 instruct castVVX(vecX dst) 8932 %{ 8933 match(Set dst (CastVV dst)); 8934 8935 size(0); 8936 format %{ "# castVV of $dst" %} 8937 ins_encode(/* empty encoding */); 8938 ins_cost(0); 8939 ins_pipe(pipe_class_empty); 8940 %} 8941 8942 instruct castVV(vReg dst) 8943 %{ 8944 match(Set dst (CastVV dst)); 8945 8946 size(0); 8947 format %{ "# castVV of $dst" %} 8948 ins_encode(/* empty encoding */); 8949 ins_cost(0); 8950 ins_pipe(pipe_class_empty); 8951 %} 8952 8953 // ============================================================================ 8954 // Atomic operation instructions 8955 // 8956 // Intel and SPARC both implement Ideal Node LoadPLocked and 8957 // Store{PIL}Conditional instructions using a normal load for the 8958 // LoadPLocked and a CAS for the Store{PIL}Conditional. 8959 // 8960 // The ideal code appears only to use LoadPLocked/StorePLocked as a 8961 // pair to lock object allocations from Eden space when not using 8962 // TLABs. 8963 // 8964 // There does not appear to be a Load{IL}Locked Ideal Node and the 8965 // Ideal code appears to use Store{IL}Conditional as an alias for CAS 8966 // and to use StoreIConditional only for 32-bit and StoreLConditional 8967 // only for 64-bit. 8968 // 8969 // We implement LoadPLocked and StorePLocked instructions using, 8970 // respectively the AArch64 hw load-exclusive and store-conditional 8971 // instructions. Whereas we must implement each of 8972 // Store{IL}Conditional using a CAS which employs a pair of 8973 // instructions comprising a load-exclusive followed by a 8974 // store-conditional. 8975 8976 8977 // Locked-load (linked load) of the current heap-top 8978 // used when updating the eden heap top 8979 // implemented using ldaxr on AArch64 8980 8981 instruct loadPLocked(iRegPNoSp dst, indirect mem) 8982 %{ 8983 match(Set dst (LoadPLocked mem)); 8984 8985 ins_cost(VOLATILE_REF_COST); 8986 8987 format %{ "ldaxr $dst, $mem\t# ptr linked acquire" %} 8988 8989 ins_encode(aarch64_enc_ldaxr(dst, mem)); 8990 8991 ins_pipe(pipe_serial); 8992 %} 8993 8994 // Conditional-store of the updated heap-top. 8995 // Used during allocation of the shared heap. 8996 // Sets flag (EQ) on success. 8997 // implemented using stlxr on AArch64. 8998 8999 instruct storePConditional(memory8 heap_top_ptr, iRegP oldval, iRegP newval, rFlagsReg cr) 9000 %{ 9001 match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval))); 9002 9003 ins_cost(VOLATILE_REF_COST); 9004 9005 // TODO 9006 // do we need to do a store-conditional release or can we just use a 9007 // plain store-conditional? 9008 9009 format %{ 9010 "stlxr rscratch1, $newval, $heap_top_ptr\t# ptr cond release" 9011 "cmpw rscratch1, zr\t# EQ on successful write" 9012 %} 9013 9014 ins_encode(aarch64_enc_stlxr(newval, heap_top_ptr)); 9015 9016 ins_pipe(pipe_serial); 9017 %} 9018 9019 9020 // storeLConditional is used by PhaseMacroExpand::expand_lock_node 9021 // when attempting to rebias a lock towards the current thread. We 9022 // must use the acquire form of cmpxchg in order to guarantee acquire 9023 // semantics in this case. 9024 instruct storeLConditional(indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) 9025 %{ 9026 match(Set cr (StoreLConditional mem (Binary oldval newval))); 9027 9028 ins_cost(VOLATILE_REF_COST); 9029 9030 format %{ 9031 "cmpxchg rscratch1, $mem, $oldval, $newval, $mem\t# if $mem == $oldval then $mem <-- $newval" 9032 "cmpw rscratch1, zr\t# EQ on successful write" 9033 %} 9034 9035 ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval)); 9036 9037 ins_pipe(pipe_slow); 9038 %} 9039 9040 // storeIConditional also has acquire semantics, for no better reason 9041 // than matching storeLConditional. At the time of writing this 9042 // comment storeIConditional was not used anywhere by AArch64. 9043 instruct storeIConditional(indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) 9044 %{ 9045 match(Set cr (StoreIConditional mem (Binary oldval newval))); 9046 9047 ins_cost(VOLATILE_REF_COST); 9048 9049 format %{ 9050 "cmpxchgw rscratch1, $mem, $oldval, $newval, $mem\t# if $mem == $oldval then $mem <-- $newval" 9051 "cmpw rscratch1, zr\t# EQ on successful write" 9052 %} 9053 9054 ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval)); 9055 9056 ins_pipe(pipe_slow); 9057 %} 9058 9059 // standard CompareAndSwapX when we are using barriers 9060 // these have higher priority than the rules selected by a predicate 9061 9062 // XXX No flag versions for CompareAndSwap{I,L,P,N} because matcher 9063 // can't match them 9064 9065 instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 9066 9067 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 9068 ins_cost(2 * VOLATILE_REF_COST); 9069 9070 effect(KILL cr); 9071 9072 format %{ 9073 "cmpxchgb $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 9074 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9075 %} 9076 9077 ins_encode(aarch64_enc_cmpxchgb(mem, oldval, newval), 9078 aarch64_enc_cset_eq(res)); 9079 9080 ins_pipe(pipe_slow); 9081 %} 9082 9083 instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 9084 9085 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 9086 ins_cost(2 * VOLATILE_REF_COST); 9087 9088 effect(KILL cr); 9089 9090 format %{ 9091 "cmpxchgs $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 9092 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9093 %} 9094 9095 ins_encode(aarch64_enc_cmpxchgs(mem, oldval, newval), 9096 aarch64_enc_cset_eq(res)); 9097 9098 ins_pipe(pipe_slow); 9099 %} 9100 9101 instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 9102 9103 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 9104 ins_cost(2 * VOLATILE_REF_COST); 9105 9106 effect(KILL cr); 9107 9108 format %{ 9109 "cmpxchgw $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 9110 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9111 %} 9112 9113 ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval), 9114 aarch64_enc_cset_eq(res)); 9115 9116 ins_pipe(pipe_slow); 9117 %} 9118 9119 instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{ 9120 9121 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 9122 ins_cost(2 * VOLATILE_REF_COST); 9123 9124 effect(KILL cr); 9125 9126 format %{ 9127 "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval" 9128 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9129 %} 9130 9131 ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval), 9132 aarch64_enc_cset_eq(res)); 9133 9134 ins_pipe(pipe_slow); 9135 %} 9136 9137 instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 9138 9139 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 9140 predicate(n->as_LoadStore()->barrier_data() == 0); 9141 ins_cost(2 * VOLATILE_REF_COST); 9142 9143 effect(KILL cr); 9144 9145 format %{ 9146 "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval" 9147 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9148 %} 9149 9150 ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval), 9151 aarch64_enc_cset_eq(res)); 9152 9153 ins_pipe(pipe_slow); 9154 %} 9155 9156 instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{ 9157 9158 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 9159 ins_cost(2 * VOLATILE_REF_COST); 9160 9161 effect(KILL cr); 9162 9163 format %{ 9164 "cmpxchgw $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval" 9165 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9166 %} 9167 9168 ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval), 9169 aarch64_enc_cset_eq(res)); 9170 9171 ins_pipe(pipe_slow); 9172 %} 9173 9174 // alternative CompareAndSwapX when we are eliding barriers 9175 9176 instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 9177 9178 predicate(needs_acquiring_load_exclusive(n)); 9179 match(Set res (CompareAndSwapB mem (Binary oldval newval))); 9180 ins_cost(VOLATILE_REF_COST); 9181 9182 effect(KILL cr); 9183 9184 format %{ 9185 "cmpxchgb_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 9186 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9187 %} 9188 9189 ins_encode(aarch64_enc_cmpxchgb_acq(mem, oldval, newval), 9190 aarch64_enc_cset_eq(res)); 9191 9192 ins_pipe(pipe_slow); 9193 %} 9194 9195 instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 9196 9197 predicate(needs_acquiring_load_exclusive(n)); 9198 match(Set res (CompareAndSwapS mem (Binary oldval newval))); 9199 ins_cost(VOLATILE_REF_COST); 9200 9201 effect(KILL cr); 9202 9203 format %{ 9204 "cmpxchgs_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 9205 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9206 %} 9207 9208 ins_encode(aarch64_enc_cmpxchgs_acq(mem, oldval, newval), 9209 aarch64_enc_cset_eq(res)); 9210 9211 ins_pipe(pipe_slow); 9212 %} 9213 9214 instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr) %{ 9215 9216 predicate(needs_acquiring_load_exclusive(n)); 9217 match(Set res (CompareAndSwapI mem (Binary oldval newval))); 9218 ins_cost(VOLATILE_REF_COST); 9219 9220 effect(KILL cr); 9221 9222 format %{ 9223 "cmpxchgw_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval" 9224 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9225 %} 9226 9227 ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval), 9228 aarch64_enc_cset_eq(res)); 9229 9230 ins_pipe(pipe_slow); 9231 %} 9232 9233 instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr) %{ 9234 9235 predicate(needs_acquiring_load_exclusive(n)); 9236 match(Set res (CompareAndSwapL mem (Binary oldval newval))); 9237 ins_cost(VOLATILE_REF_COST); 9238 9239 effect(KILL cr); 9240 9241 format %{ 9242 "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval" 9243 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9244 %} 9245 9246 ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval), 9247 aarch64_enc_cset_eq(res)); 9248 9249 ins_pipe(pipe_slow); 9250 %} 9251 9252 instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 9253 9254 predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0)); 9255 match(Set res (CompareAndSwapP mem (Binary oldval newval))); 9256 ins_cost(VOLATILE_REF_COST); 9257 9258 effect(KILL cr); 9259 9260 format %{ 9261 "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval" 9262 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9263 %} 9264 9265 ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval), 9266 aarch64_enc_cset_eq(res)); 9267 9268 ins_pipe(pipe_slow); 9269 %} 9270 9271 instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegNNoSp oldval, iRegNNoSp newval, rFlagsReg cr) %{ 9272 9273 predicate(needs_acquiring_load_exclusive(n)); 9274 match(Set res (CompareAndSwapN mem (Binary oldval newval))); 9275 ins_cost(VOLATILE_REF_COST); 9276 9277 effect(KILL cr); 9278 9279 format %{ 9280 "cmpxchgw_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval" 9281 "cset $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9282 %} 9283 9284 ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval), 9285 aarch64_enc_cset_eq(res)); 9286 9287 ins_pipe(pipe_slow); 9288 %} 9289 9290 9291 // --------------------------------------------------------------------- 9292 9293 // BEGIN This section of the file is automatically generated. Do not edit -------------- 9294 9295 // Sundry CAS operations. Note that release is always true, 9296 // regardless of the memory ordering of the CAS. This is because we 9297 // need the volatile case to be sequentially consistent but there is 9298 // no trailing StoreLoad barrier emitted by C2. Unfortunately we 9299 // can't check the type of memory ordering here, so we always emit a 9300 // STLXR. 9301 9302 // This section is generated from aarch64_ad_cas.m4 9303 9304 9305 9306 // This pattern is generated automatically from cas.m4. 9307 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9308 instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9309 9310 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 9311 ins_cost(2 * VOLATILE_REF_COST); 9312 effect(TEMP_DEF res, KILL cr); 9313 format %{ 9314 "cmpxchgb $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval" 9315 %} 9316 ins_encode %{ 9317 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9318 Assembler::byte, /*acquire*/ false, /*release*/ true, 9319 /*weak*/ false, $res$$Register); 9320 __ sxtbw($res$$Register, $res$$Register); 9321 %} 9322 ins_pipe(pipe_slow); 9323 %} 9324 9325 // This pattern is generated automatically from cas.m4. 9326 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9327 instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9328 9329 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 9330 ins_cost(2 * VOLATILE_REF_COST); 9331 effect(TEMP_DEF res, KILL cr); 9332 format %{ 9333 "cmpxchgs $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval" 9334 %} 9335 ins_encode %{ 9336 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9337 Assembler::halfword, /*acquire*/ false, /*release*/ true, 9338 /*weak*/ false, $res$$Register); 9339 __ sxthw($res$$Register, $res$$Register); 9340 %} 9341 ins_pipe(pipe_slow); 9342 %} 9343 9344 // This pattern is generated automatically from cas.m4. 9345 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9346 instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9347 9348 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 9349 ins_cost(2 * VOLATILE_REF_COST); 9350 effect(TEMP_DEF res, KILL cr); 9351 format %{ 9352 "cmpxchgw $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval" 9353 %} 9354 ins_encode %{ 9355 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9356 Assembler::word, /*acquire*/ false, /*release*/ true, 9357 /*weak*/ false, $res$$Register); 9358 %} 9359 ins_pipe(pipe_slow); 9360 %} 9361 9362 // This pattern is generated automatically from cas.m4. 9363 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9364 instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{ 9365 9366 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 9367 ins_cost(2 * VOLATILE_REF_COST); 9368 effect(TEMP_DEF res, KILL cr); 9369 format %{ 9370 "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval" 9371 %} 9372 ins_encode %{ 9373 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9374 Assembler::xword, /*acquire*/ false, /*release*/ true, 9375 /*weak*/ false, $res$$Register); 9376 %} 9377 ins_pipe(pipe_slow); 9378 %} 9379 9380 // This pattern is generated automatically from cas.m4. 9381 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9382 instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{ 9383 9384 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 9385 ins_cost(2 * VOLATILE_REF_COST); 9386 effect(TEMP_DEF res, KILL cr); 9387 format %{ 9388 "cmpxchgw $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval" 9389 %} 9390 ins_encode %{ 9391 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9392 Assembler::word, /*acquire*/ false, /*release*/ true, 9393 /*weak*/ false, $res$$Register); 9394 %} 9395 ins_pipe(pipe_slow); 9396 %} 9397 9398 // This pattern is generated automatically from cas.m4. 9399 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9400 instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 9401 predicate(n->as_LoadStore()->barrier_data() == 0); 9402 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 9403 ins_cost(2 * VOLATILE_REF_COST); 9404 effect(TEMP_DEF res, KILL cr); 9405 format %{ 9406 "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval" 9407 %} 9408 ins_encode %{ 9409 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9410 Assembler::xword, /*acquire*/ false, /*release*/ true, 9411 /*weak*/ false, $res$$Register); 9412 %} 9413 ins_pipe(pipe_slow); 9414 %} 9415 9416 // This pattern is generated automatically from cas.m4. 9417 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9418 instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9419 predicate(needs_acquiring_load_exclusive(n)); 9420 match(Set res (CompareAndExchangeB mem (Binary oldval newval))); 9421 ins_cost(VOLATILE_REF_COST); 9422 effect(TEMP_DEF res, KILL cr); 9423 format %{ 9424 "cmpxchgb_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval" 9425 %} 9426 ins_encode %{ 9427 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9428 Assembler::byte, /*acquire*/ true, /*release*/ true, 9429 /*weak*/ false, $res$$Register); 9430 __ sxtbw($res$$Register, $res$$Register); 9431 %} 9432 ins_pipe(pipe_slow); 9433 %} 9434 9435 // This pattern is generated automatically from cas.m4. 9436 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9437 instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9438 predicate(needs_acquiring_load_exclusive(n)); 9439 match(Set res (CompareAndExchangeS mem (Binary oldval newval))); 9440 ins_cost(VOLATILE_REF_COST); 9441 effect(TEMP_DEF res, KILL cr); 9442 format %{ 9443 "cmpxchgs_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval" 9444 %} 9445 ins_encode %{ 9446 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9447 Assembler::halfword, /*acquire*/ true, /*release*/ true, 9448 /*weak*/ false, $res$$Register); 9449 __ sxthw($res$$Register, $res$$Register); 9450 %} 9451 ins_pipe(pipe_slow); 9452 %} 9453 9454 // This pattern is generated automatically from cas.m4. 9455 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9456 instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9457 predicate(needs_acquiring_load_exclusive(n)); 9458 match(Set res (CompareAndExchangeI mem (Binary oldval newval))); 9459 ins_cost(VOLATILE_REF_COST); 9460 effect(TEMP_DEF res, KILL cr); 9461 format %{ 9462 "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval" 9463 %} 9464 ins_encode %{ 9465 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9466 Assembler::word, /*acquire*/ true, /*release*/ true, 9467 /*weak*/ false, $res$$Register); 9468 %} 9469 ins_pipe(pipe_slow); 9470 %} 9471 9472 // This pattern is generated automatically from cas.m4. 9473 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9474 instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{ 9475 predicate(needs_acquiring_load_exclusive(n)); 9476 match(Set res (CompareAndExchangeL mem (Binary oldval newval))); 9477 ins_cost(VOLATILE_REF_COST); 9478 effect(TEMP_DEF res, KILL cr); 9479 format %{ 9480 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval" 9481 %} 9482 ins_encode %{ 9483 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9484 Assembler::xword, /*acquire*/ true, /*release*/ true, 9485 /*weak*/ false, $res$$Register); 9486 %} 9487 ins_pipe(pipe_slow); 9488 %} 9489 9490 // This pattern is generated automatically from cas.m4. 9491 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9492 instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{ 9493 predicate(needs_acquiring_load_exclusive(n)); 9494 match(Set res (CompareAndExchangeN mem (Binary oldval newval))); 9495 ins_cost(VOLATILE_REF_COST); 9496 effect(TEMP_DEF res, KILL cr); 9497 format %{ 9498 "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval" 9499 %} 9500 ins_encode %{ 9501 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9502 Assembler::word, /*acquire*/ true, /*release*/ true, 9503 /*weak*/ false, $res$$Register); 9504 %} 9505 ins_pipe(pipe_slow); 9506 %} 9507 9508 // This pattern is generated automatically from cas.m4. 9509 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9510 instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 9511 predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0)); 9512 match(Set res (CompareAndExchangeP mem (Binary oldval newval))); 9513 ins_cost(VOLATILE_REF_COST); 9514 effect(TEMP_DEF res, KILL cr); 9515 format %{ 9516 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval" 9517 %} 9518 ins_encode %{ 9519 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9520 Assembler::xword, /*acquire*/ true, /*release*/ true, 9521 /*weak*/ false, $res$$Register); 9522 %} 9523 ins_pipe(pipe_slow); 9524 %} 9525 9526 // This pattern is generated automatically from cas.m4. 9527 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9528 instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9529 9530 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 9531 ins_cost(2 * VOLATILE_REF_COST); 9532 effect(KILL cr); 9533 format %{ 9534 "cmpxchgb $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval" 9535 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9536 %} 9537 ins_encode %{ 9538 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9539 Assembler::byte, /*acquire*/ false, /*release*/ true, 9540 /*weak*/ true, noreg); 9541 __ csetw($res$$Register, Assembler::EQ); 9542 %} 9543 ins_pipe(pipe_slow); 9544 %} 9545 9546 // This pattern is generated automatically from cas.m4. 9547 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9548 instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9549 9550 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 9551 ins_cost(2 * VOLATILE_REF_COST); 9552 effect(KILL cr); 9553 format %{ 9554 "cmpxchgs $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval" 9555 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9556 %} 9557 ins_encode %{ 9558 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9559 Assembler::halfword, /*acquire*/ false, /*release*/ true, 9560 /*weak*/ true, noreg); 9561 __ csetw($res$$Register, Assembler::EQ); 9562 %} 9563 ins_pipe(pipe_slow); 9564 %} 9565 9566 // This pattern is generated automatically from cas.m4. 9567 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9568 instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9569 9570 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 9571 ins_cost(2 * VOLATILE_REF_COST); 9572 effect(KILL cr); 9573 format %{ 9574 "cmpxchgw $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval" 9575 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9576 %} 9577 ins_encode %{ 9578 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9579 Assembler::word, /*acquire*/ false, /*release*/ true, 9580 /*weak*/ true, noreg); 9581 __ csetw($res$$Register, Assembler::EQ); 9582 %} 9583 ins_pipe(pipe_slow); 9584 %} 9585 9586 // This pattern is generated automatically from cas.m4. 9587 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9588 instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{ 9589 9590 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 9591 ins_cost(2 * VOLATILE_REF_COST); 9592 effect(KILL cr); 9593 format %{ 9594 "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval" 9595 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9596 %} 9597 ins_encode %{ 9598 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9599 Assembler::xword, /*acquire*/ false, /*release*/ true, 9600 /*weak*/ true, noreg); 9601 __ csetw($res$$Register, Assembler::EQ); 9602 %} 9603 ins_pipe(pipe_slow); 9604 %} 9605 9606 // This pattern is generated automatically from cas.m4. 9607 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9608 instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{ 9609 9610 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 9611 ins_cost(2 * VOLATILE_REF_COST); 9612 effect(KILL cr); 9613 format %{ 9614 "cmpxchgw $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval" 9615 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9616 %} 9617 ins_encode %{ 9618 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9619 Assembler::word, /*acquire*/ false, /*release*/ true, 9620 /*weak*/ true, noreg); 9621 __ csetw($res$$Register, Assembler::EQ); 9622 %} 9623 ins_pipe(pipe_slow); 9624 %} 9625 9626 // This pattern is generated automatically from cas.m4. 9627 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9628 instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 9629 predicate(n->as_LoadStore()->barrier_data() == 0); 9630 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 9631 ins_cost(2 * VOLATILE_REF_COST); 9632 effect(KILL cr); 9633 format %{ 9634 "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval" 9635 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9636 %} 9637 ins_encode %{ 9638 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9639 Assembler::xword, /*acquire*/ false, /*release*/ true, 9640 /*weak*/ true, noreg); 9641 __ csetw($res$$Register, Assembler::EQ); 9642 %} 9643 ins_pipe(pipe_slow); 9644 %} 9645 9646 // This pattern is generated automatically from cas.m4. 9647 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9648 instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9649 predicate(needs_acquiring_load_exclusive(n)); 9650 match(Set res (WeakCompareAndSwapB mem (Binary oldval newval))); 9651 ins_cost(VOLATILE_REF_COST); 9652 effect(KILL cr); 9653 format %{ 9654 "cmpxchgb_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval" 9655 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9656 %} 9657 ins_encode %{ 9658 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9659 Assembler::byte, /*acquire*/ true, /*release*/ true, 9660 /*weak*/ true, noreg); 9661 __ csetw($res$$Register, Assembler::EQ); 9662 %} 9663 ins_pipe(pipe_slow); 9664 %} 9665 9666 // This pattern is generated automatically from cas.m4. 9667 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9668 instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9669 predicate(needs_acquiring_load_exclusive(n)); 9670 match(Set res (WeakCompareAndSwapS mem (Binary oldval newval))); 9671 ins_cost(VOLATILE_REF_COST); 9672 effect(KILL cr); 9673 format %{ 9674 "cmpxchgs_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval" 9675 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9676 %} 9677 ins_encode %{ 9678 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9679 Assembler::halfword, /*acquire*/ true, /*release*/ true, 9680 /*weak*/ true, noreg); 9681 __ csetw($res$$Register, Assembler::EQ); 9682 %} 9683 ins_pipe(pipe_slow); 9684 %} 9685 9686 // This pattern is generated automatically from cas.m4. 9687 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9688 instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr) %{ 9689 predicate(needs_acquiring_load_exclusive(n)); 9690 match(Set res (WeakCompareAndSwapI mem (Binary oldval newval))); 9691 ins_cost(VOLATILE_REF_COST); 9692 effect(KILL cr); 9693 format %{ 9694 "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval" 9695 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9696 %} 9697 ins_encode %{ 9698 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9699 Assembler::word, /*acquire*/ true, /*release*/ true, 9700 /*weak*/ true, noreg); 9701 __ csetw($res$$Register, Assembler::EQ); 9702 %} 9703 ins_pipe(pipe_slow); 9704 %} 9705 9706 // This pattern is generated automatically from cas.m4. 9707 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9708 instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr) %{ 9709 predicate(needs_acquiring_load_exclusive(n)); 9710 match(Set res (WeakCompareAndSwapL mem (Binary oldval newval))); 9711 ins_cost(VOLATILE_REF_COST); 9712 effect(KILL cr); 9713 format %{ 9714 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval" 9715 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9716 %} 9717 ins_encode %{ 9718 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9719 Assembler::xword, /*acquire*/ true, /*release*/ true, 9720 /*weak*/ true, noreg); 9721 __ csetw($res$$Register, Assembler::EQ); 9722 %} 9723 ins_pipe(pipe_slow); 9724 %} 9725 9726 // This pattern is generated automatically from cas.m4. 9727 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9728 instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, rFlagsReg cr) %{ 9729 predicate(needs_acquiring_load_exclusive(n)); 9730 match(Set res (WeakCompareAndSwapN mem (Binary oldval newval))); 9731 ins_cost(VOLATILE_REF_COST); 9732 effect(KILL cr); 9733 format %{ 9734 "cmpxchgw_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval" 9735 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9736 %} 9737 ins_encode %{ 9738 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9739 Assembler::word, /*acquire*/ true, /*release*/ true, 9740 /*weak*/ true, noreg); 9741 __ csetw($res$$Register, Assembler::EQ); 9742 %} 9743 ins_pipe(pipe_slow); 9744 %} 9745 9746 // This pattern is generated automatically from cas.m4. 9747 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 9748 instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{ 9749 predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0)); 9750 match(Set res (WeakCompareAndSwapP mem (Binary oldval newval))); 9751 ins_cost(VOLATILE_REF_COST); 9752 effect(KILL cr); 9753 format %{ 9754 "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval" 9755 "csetw $res, EQ\t# $res <-- (EQ ? 1 : 0)" 9756 %} 9757 ins_encode %{ 9758 __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, 9759 Assembler::xword, /*acquire*/ true, /*release*/ true, 9760 /*weak*/ true, noreg); 9761 __ csetw($res$$Register, Assembler::EQ); 9762 %} 9763 ins_pipe(pipe_slow); 9764 %} 9765 9766 // END This section of the file is automatically generated. Do not edit -------------- 9767 // --------------------------------------------------------------------- 9768 9769 instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev) %{ 9770 match(Set prev (GetAndSetI mem newv)); 9771 ins_cost(2 * VOLATILE_REF_COST); 9772 format %{ "atomic_xchgw $prev, $newv, [$mem]" %} 9773 ins_encode %{ 9774 __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 9775 %} 9776 ins_pipe(pipe_serial); 9777 %} 9778 9779 instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev) %{ 9780 match(Set prev (GetAndSetL mem newv)); 9781 ins_cost(2 * VOLATILE_REF_COST); 9782 format %{ "atomic_xchg $prev, $newv, [$mem]" %} 9783 ins_encode %{ 9784 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 9785 %} 9786 ins_pipe(pipe_serial); 9787 %} 9788 9789 instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev) %{ 9790 match(Set prev (GetAndSetN mem newv)); 9791 ins_cost(2 * VOLATILE_REF_COST); 9792 format %{ "atomic_xchgw $prev, $newv, [$mem]" %} 9793 ins_encode %{ 9794 __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 9795 %} 9796 ins_pipe(pipe_serial); 9797 %} 9798 9799 instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev) %{ 9800 predicate(n->as_LoadStore()->barrier_data() == 0); 9801 match(Set prev (GetAndSetP mem newv)); 9802 ins_cost(2 * VOLATILE_REF_COST); 9803 format %{ "atomic_xchg $prev, $newv, [$mem]" %} 9804 ins_encode %{ 9805 __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base)); 9806 %} 9807 ins_pipe(pipe_serial); 9808 %} 9809 9810 instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev) %{ 9811 predicate(needs_acquiring_load_exclusive(n)); 9812 match(Set prev (GetAndSetI mem newv)); 9813 ins_cost(VOLATILE_REF_COST); 9814 format %{ "atomic_xchgw_acq $prev, $newv, [$mem]" %} 9815 ins_encode %{ 9816 __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 9817 %} 9818 ins_pipe(pipe_serial); 9819 %} 9820 9821 instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev) %{ 9822 predicate(needs_acquiring_load_exclusive(n)); 9823 match(Set prev (GetAndSetL mem newv)); 9824 ins_cost(VOLATILE_REF_COST); 9825 format %{ "atomic_xchg_acq $prev, $newv, [$mem]" %} 9826 ins_encode %{ 9827 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 9828 %} 9829 ins_pipe(pipe_serial); 9830 %} 9831 9832 instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev) %{ 9833 predicate(needs_acquiring_load_exclusive(n)); 9834 match(Set prev (GetAndSetN mem newv)); 9835 ins_cost(VOLATILE_REF_COST); 9836 format %{ "atomic_xchgw_acq $prev, $newv, [$mem]" %} 9837 ins_encode %{ 9838 __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base)); 9839 %} 9840 ins_pipe(pipe_serial); 9841 %} 9842 9843 instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev) %{ 9844 predicate(needs_acquiring_load_exclusive(n) && (n->as_LoadStore()->barrier_data() == 0)); 9845 match(Set prev (GetAndSetP mem newv)); 9846 ins_cost(VOLATILE_REF_COST); 9847 format %{ "atomic_xchg_acq $prev, $newv, [$mem]" %} 9848 ins_encode %{ 9849 __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base)); 9850 %} 9851 ins_pipe(pipe_serial); 9852 %} 9853 9854 9855 instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr) %{ 9856 match(Set newval (GetAndAddL mem incr)); 9857 ins_cost(2 * VOLATILE_REF_COST + 1); 9858 format %{ "get_and_addL $newval, [$mem], $incr" %} 9859 ins_encode %{ 9860 __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base)); 9861 %} 9862 ins_pipe(pipe_serial); 9863 %} 9864 9865 instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr) %{ 9866 predicate(n->as_LoadStore()->result_not_used()); 9867 match(Set dummy (GetAndAddL mem incr)); 9868 ins_cost(2 * VOLATILE_REF_COST); 9869 format %{ "get_and_addL [$mem], $incr" %} 9870 ins_encode %{ 9871 __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base)); 9872 %} 9873 ins_pipe(pipe_serial); 9874 %} 9875 9876 instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAddSub incr) %{ 9877 match(Set newval (GetAndAddL mem incr)); 9878 ins_cost(2 * VOLATILE_REF_COST + 1); 9879 format %{ "get_and_addL $newval, [$mem], $incr" %} 9880 ins_encode %{ 9881 __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base)); 9882 %} 9883 ins_pipe(pipe_serial); 9884 %} 9885 9886 instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAddSub incr) %{ 9887 predicate(n->as_LoadStore()->result_not_used()); 9888 match(Set dummy (GetAndAddL mem incr)); 9889 ins_cost(2 * VOLATILE_REF_COST); 9890 format %{ "get_and_addL [$mem], $incr" %} 9891 ins_encode %{ 9892 __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base)); 9893 %} 9894 ins_pipe(pipe_serial); 9895 %} 9896 9897 instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{ 9898 match(Set newval (GetAndAddI mem incr)); 9899 ins_cost(2 * VOLATILE_REF_COST + 1); 9900 format %{ "get_and_addI $newval, [$mem], $incr" %} 9901 ins_encode %{ 9902 __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 9903 %} 9904 ins_pipe(pipe_serial); 9905 %} 9906 9907 instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr) %{ 9908 predicate(n->as_LoadStore()->result_not_used()); 9909 match(Set dummy (GetAndAddI mem incr)); 9910 ins_cost(2 * VOLATILE_REF_COST); 9911 format %{ "get_and_addI [$mem], $incr" %} 9912 ins_encode %{ 9913 __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base)); 9914 %} 9915 ins_pipe(pipe_serial); 9916 %} 9917 9918 instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAddSub incr) %{ 9919 match(Set newval (GetAndAddI mem incr)); 9920 ins_cost(2 * VOLATILE_REF_COST + 1); 9921 format %{ "get_and_addI $newval, [$mem], $incr" %} 9922 ins_encode %{ 9923 __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 9924 %} 9925 ins_pipe(pipe_serial); 9926 %} 9927 9928 instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAddSub incr) %{ 9929 predicate(n->as_LoadStore()->result_not_used()); 9930 match(Set dummy (GetAndAddI mem incr)); 9931 ins_cost(2 * VOLATILE_REF_COST); 9932 format %{ "get_and_addI [$mem], $incr" %} 9933 ins_encode %{ 9934 __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base)); 9935 %} 9936 ins_pipe(pipe_serial); 9937 %} 9938 9939 instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr) %{ 9940 predicate(needs_acquiring_load_exclusive(n)); 9941 match(Set newval (GetAndAddL mem incr)); 9942 ins_cost(VOLATILE_REF_COST + 1); 9943 format %{ "get_and_addL_acq $newval, [$mem], $incr" %} 9944 ins_encode %{ 9945 __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base)); 9946 %} 9947 ins_pipe(pipe_serial); 9948 %} 9949 9950 instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{ 9951 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n)); 9952 match(Set dummy (GetAndAddL mem incr)); 9953 ins_cost(VOLATILE_REF_COST); 9954 format %{ "get_and_addL_acq [$mem], $incr" %} 9955 ins_encode %{ 9956 __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base)); 9957 %} 9958 ins_pipe(pipe_serial); 9959 %} 9960 9961 instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAddSub incr) %{ 9962 predicate(needs_acquiring_load_exclusive(n)); 9963 match(Set newval (GetAndAddL mem incr)); 9964 ins_cost(VOLATILE_REF_COST + 1); 9965 format %{ "get_and_addL_acq $newval, [$mem], $incr" %} 9966 ins_encode %{ 9967 __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base)); 9968 %} 9969 ins_pipe(pipe_serial); 9970 %} 9971 9972 instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAddSub incr) %{ 9973 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n)); 9974 match(Set dummy (GetAndAddL mem incr)); 9975 ins_cost(VOLATILE_REF_COST); 9976 format %{ "get_and_addL_acq [$mem], $incr" %} 9977 ins_encode %{ 9978 __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base)); 9979 %} 9980 ins_pipe(pipe_serial); 9981 %} 9982 9983 instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr) %{ 9984 predicate(needs_acquiring_load_exclusive(n)); 9985 match(Set newval (GetAndAddI mem incr)); 9986 ins_cost(VOLATILE_REF_COST + 1); 9987 format %{ "get_and_addI_acq $newval, [$mem], $incr" %} 9988 ins_encode %{ 9989 __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base)); 9990 %} 9991 ins_pipe(pipe_serial); 9992 %} 9993 9994 instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr) %{ 9995 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n)); 9996 match(Set dummy (GetAndAddI mem incr)); 9997 ins_cost(VOLATILE_REF_COST); 9998 format %{ "get_and_addI_acq [$mem], $incr" %} 9999 ins_encode %{ 10000 __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base)); 10001 %} 10002 ins_pipe(pipe_serial); 10003 %} 10004 10005 instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAddSub incr) %{ 10006 predicate(needs_acquiring_load_exclusive(n)); 10007 match(Set newval (GetAndAddI mem incr)); 10008 ins_cost(VOLATILE_REF_COST + 1); 10009 format %{ "get_and_addI_acq $newval, [$mem], $incr" %} 10010 ins_encode %{ 10011 __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base)); 10012 %} 10013 ins_pipe(pipe_serial); 10014 %} 10015 10016 instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAddSub incr) %{ 10017 predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_exclusive(n)); 10018 match(Set dummy (GetAndAddI mem incr)); 10019 ins_cost(VOLATILE_REF_COST); 10020 format %{ "get_and_addI_acq [$mem], $incr" %} 10021 ins_encode %{ 10022 __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base)); 10023 %} 10024 ins_pipe(pipe_serial); 10025 %} 10026 10027 // Manifest a CmpL result in an integer register. 10028 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0) 10029 instruct cmpL3_reg_reg(iRegINoSp dst, iRegL src1, iRegL src2, rFlagsReg flags) 10030 %{ 10031 match(Set dst (CmpL3 src1 src2)); 10032 effect(KILL flags); 10033 10034 ins_cost(INSN_COST * 6); 10035 format %{ 10036 "cmp $src1, $src2" 10037 "csetw $dst, ne" 10038 "cnegw $dst, lt" 10039 %} 10040 // format %{ "CmpL3 $dst, $src1, $src2" %} 10041 ins_encode %{ 10042 __ cmp($src1$$Register, $src2$$Register); 10043 __ csetw($dst$$Register, Assembler::NE); 10044 __ cnegw($dst$$Register, $dst$$Register, Assembler::LT); 10045 %} 10046 10047 ins_pipe(pipe_class_default); 10048 %} 10049 10050 instruct cmpL3_reg_imm(iRegINoSp dst, iRegL src1, immLAddSub src2, rFlagsReg flags) 10051 %{ 10052 match(Set dst (CmpL3 src1 src2)); 10053 effect(KILL flags); 10054 10055 ins_cost(INSN_COST * 6); 10056 format %{ 10057 "cmp $src1, $src2" 10058 "csetw $dst, ne" 10059 "cnegw $dst, lt" 10060 %} 10061 ins_encode %{ 10062 int32_t con = (int32_t)$src2$$constant; 10063 if (con < 0) { 10064 __ adds(zr, $src1$$Register, -con); 10065 } else { 10066 __ subs(zr, $src1$$Register, con); 10067 } 10068 __ csetw($dst$$Register, Assembler::NE); 10069 __ cnegw($dst$$Register, $dst$$Register, Assembler::LT); 10070 %} 10071 10072 ins_pipe(pipe_class_default); 10073 %} 10074 10075 // ============================================================================ 10076 // Conditional Move Instructions 10077 10078 // n.b. we have identical rules for both a signed compare op (cmpOp) 10079 // and an unsigned compare op (cmpOpU). it would be nice if we could 10080 // define an op class which merged both inputs and use it to type the 10081 // argument to a single rule. unfortunatelyt his fails because the 10082 // opclass does not live up to the COND_INTER interface of its 10083 // component operands. When the generic code tries to negate the 10084 // operand it ends up running the generci Machoper::negate method 10085 // which throws a ShouldNotHappen. So, we have to provide two flavours 10086 // of each rule, one for a cmpOp and a second for a cmpOpU (sigh). 10087 10088 instruct cmovI_reg_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10089 match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2))); 10090 10091 ins_cost(INSN_COST * 2); 10092 format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, int" %} 10093 10094 ins_encode %{ 10095 __ cselw(as_Register($dst$$reg), 10096 as_Register($src2$$reg), 10097 as_Register($src1$$reg), 10098 (Assembler::Condition)$cmp$$cmpcode); 10099 %} 10100 10101 ins_pipe(icond_reg_reg); 10102 %} 10103 10104 instruct cmovUI_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10105 match(Set dst (CMoveI (Binary cmp cr) (Binary src1 src2))); 10106 10107 ins_cost(INSN_COST * 2); 10108 format %{ "cselw $dst, $src2, $src1 $cmp\t# unsigned, int" %} 10109 10110 ins_encode %{ 10111 __ cselw(as_Register($dst$$reg), 10112 as_Register($src2$$reg), 10113 as_Register($src1$$reg), 10114 (Assembler::Condition)$cmp$$cmpcode); 10115 %} 10116 10117 ins_pipe(icond_reg_reg); 10118 %} 10119 10120 // special cases where one arg is zero 10121 10122 // n.b. this is selected in preference to the rule above because it 10123 // avoids loading constant 0 into a source register 10124 10125 // TODO 10126 // we ought only to be able to cull one of these variants as the ideal 10127 // transforms ought always to order the zero consistently (to left/right?) 10128 10129 instruct cmovI_zero_reg(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{ 10130 match(Set dst (CMoveI (Binary cmp cr) (Binary zero src))); 10131 10132 ins_cost(INSN_COST * 2); 10133 format %{ "cselw $dst, $src, zr $cmp\t# signed, int" %} 10134 10135 ins_encode %{ 10136 __ cselw(as_Register($dst$$reg), 10137 as_Register($src$$reg), 10138 zr, 10139 (Assembler::Condition)$cmp$$cmpcode); 10140 %} 10141 10142 ins_pipe(icond_reg); 10143 %} 10144 10145 instruct cmovUI_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, iRegIorL2I src) %{ 10146 match(Set dst (CMoveI (Binary cmp cr) (Binary zero src))); 10147 10148 ins_cost(INSN_COST * 2); 10149 format %{ "cselw $dst, $src, zr $cmp\t# unsigned, int" %} 10150 10151 ins_encode %{ 10152 __ cselw(as_Register($dst$$reg), 10153 as_Register($src$$reg), 10154 zr, 10155 (Assembler::Condition)$cmp$$cmpcode); 10156 %} 10157 10158 ins_pipe(icond_reg); 10159 %} 10160 10161 instruct cmovI_reg_zero(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{ 10162 match(Set dst (CMoveI (Binary cmp cr) (Binary src zero))); 10163 10164 ins_cost(INSN_COST * 2); 10165 format %{ "cselw $dst, zr, $src $cmp\t# signed, int" %} 10166 10167 ins_encode %{ 10168 __ cselw(as_Register($dst$$reg), 10169 zr, 10170 as_Register($src$$reg), 10171 (Assembler::Condition)$cmp$$cmpcode); 10172 %} 10173 10174 ins_pipe(icond_reg); 10175 %} 10176 10177 instruct cmovUI_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, iRegIorL2I src, immI0 zero) %{ 10178 match(Set dst (CMoveI (Binary cmp cr) (Binary src zero))); 10179 10180 ins_cost(INSN_COST * 2); 10181 format %{ "cselw $dst, zr, $src $cmp\t# unsigned, int" %} 10182 10183 ins_encode %{ 10184 __ cselw(as_Register($dst$$reg), 10185 zr, 10186 as_Register($src$$reg), 10187 (Assembler::Condition)$cmp$$cmpcode); 10188 %} 10189 10190 ins_pipe(icond_reg); 10191 %} 10192 10193 // special case for creating a boolean 0 or 1 10194 10195 // n.b. this is selected in preference to the rule above because it 10196 // avoids loading constants 0 and 1 into a source register 10197 10198 instruct cmovI_reg_zero_one(cmpOp cmp, rFlagsReg cr, iRegINoSp dst, immI0 zero, immI_1 one) %{ 10199 match(Set dst (CMoveI (Binary cmp cr) (Binary one zero))); 10200 10201 ins_cost(INSN_COST * 2); 10202 format %{ "csincw $dst, zr, zr $cmp\t# signed, int" %} 10203 10204 ins_encode %{ 10205 // equivalently 10206 // cset(as_Register($dst$$reg), 10207 // negate_condition((Assembler::Condition)$cmp$$cmpcode)); 10208 __ csincw(as_Register($dst$$reg), 10209 zr, 10210 zr, 10211 (Assembler::Condition)$cmp$$cmpcode); 10212 %} 10213 10214 ins_pipe(icond_none); 10215 %} 10216 10217 instruct cmovUI_reg_zero_one(cmpOpU cmp, rFlagsRegU cr, iRegINoSp dst, immI0 zero, immI_1 one) %{ 10218 match(Set dst (CMoveI (Binary cmp cr) (Binary one zero))); 10219 10220 ins_cost(INSN_COST * 2); 10221 format %{ "csincw $dst, zr, zr $cmp\t# unsigned, int" %} 10222 10223 ins_encode %{ 10224 // equivalently 10225 // cset(as_Register($dst$$reg), 10226 // negate_condition((Assembler::Condition)$cmp$$cmpcode)); 10227 __ csincw(as_Register($dst$$reg), 10228 zr, 10229 zr, 10230 (Assembler::Condition)$cmp$$cmpcode); 10231 %} 10232 10233 ins_pipe(icond_none); 10234 %} 10235 10236 instruct cmovL_reg_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10237 match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2))); 10238 10239 ins_cost(INSN_COST * 2); 10240 format %{ "csel $dst, $src2, $src1 $cmp\t# signed, long" %} 10241 10242 ins_encode %{ 10243 __ csel(as_Register($dst$$reg), 10244 as_Register($src2$$reg), 10245 as_Register($src1$$reg), 10246 (Assembler::Condition)$cmp$$cmpcode); 10247 %} 10248 10249 ins_pipe(icond_reg_reg); 10250 %} 10251 10252 instruct cmovUL_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10253 match(Set dst (CMoveL (Binary cmp cr) (Binary src1 src2))); 10254 10255 ins_cost(INSN_COST * 2); 10256 format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, long" %} 10257 10258 ins_encode %{ 10259 __ csel(as_Register($dst$$reg), 10260 as_Register($src2$$reg), 10261 as_Register($src1$$reg), 10262 (Assembler::Condition)$cmp$$cmpcode); 10263 %} 10264 10265 ins_pipe(icond_reg_reg); 10266 %} 10267 10268 // special cases where one arg is zero 10269 10270 instruct cmovL_reg_zero(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, iRegL src, immL0 zero) %{ 10271 match(Set dst (CMoveL (Binary cmp cr) (Binary src zero))); 10272 10273 ins_cost(INSN_COST * 2); 10274 format %{ "csel $dst, zr, $src $cmp\t# signed, long" %} 10275 10276 ins_encode %{ 10277 __ csel(as_Register($dst$$reg), 10278 zr, 10279 as_Register($src$$reg), 10280 (Assembler::Condition)$cmp$$cmpcode); 10281 %} 10282 10283 ins_pipe(icond_reg); 10284 %} 10285 10286 instruct cmovUL_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, iRegL src, immL0 zero) %{ 10287 match(Set dst (CMoveL (Binary cmp cr) (Binary src zero))); 10288 10289 ins_cost(INSN_COST * 2); 10290 format %{ "csel $dst, zr, $src $cmp\t# unsigned, long" %} 10291 10292 ins_encode %{ 10293 __ csel(as_Register($dst$$reg), 10294 zr, 10295 as_Register($src$$reg), 10296 (Assembler::Condition)$cmp$$cmpcode); 10297 %} 10298 10299 ins_pipe(icond_reg); 10300 %} 10301 10302 instruct cmovL_zero_reg(cmpOp cmp, rFlagsReg cr, iRegLNoSp dst, immL0 zero, iRegL src) %{ 10303 match(Set dst (CMoveL (Binary cmp cr) (Binary zero src))); 10304 10305 ins_cost(INSN_COST * 2); 10306 format %{ "csel $dst, $src, zr $cmp\t# signed, long" %} 10307 10308 ins_encode %{ 10309 __ csel(as_Register($dst$$reg), 10310 as_Register($src$$reg), 10311 zr, 10312 (Assembler::Condition)$cmp$$cmpcode); 10313 %} 10314 10315 ins_pipe(icond_reg); 10316 %} 10317 10318 instruct cmovUL_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegLNoSp dst, immL0 zero, iRegL src) %{ 10319 match(Set dst (CMoveL (Binary cmp cr) (Binary zero src))); 10320 10321 ins_cost(INSN_COST * 2); 10322 format %{ "csel $dst, $src, zr $cmp\t# unsigned, long" %} 10323 10324 ins_encode %{ 10325 __ csel(as_Register($dst$$reg), 10326 as_Register($src$$reg), 10327 zr, 10328 (Assembler::Condition)$cmp$$cmpcode); 10329 %} 10330 10331 ins_pipe(icond_reg); 10332 %} 10333 10334 instruct cmovP_reg_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{ 10335 match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2))); 10336 10337 ins_cost(INSN_COST * 2); 10338 format %{ "csel $dst, $src2, $src1 $cmp\t# signed, ptr" %} 10339 10340 ins_encode %{ 10341 __ csel(as_Register($dst$$reg), 10342 as_Register($src2$$reg), 10343 as_Register($src1$$reg), 10344 (Assembler::Condition)$cmp$$cmpcode); 10345 %} 10346 10347 ins_pipe(icond_reg_reg); 10348 %} 10349 10350 instruct cmovUP_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src1, iRegP src2) %{ 10351 match(Set dst (CMoveP (Binary cmp cr) (Binary src1 src2))); 10352 10353 ins_cost(INSN_COST * 2); 10354 format %{ "csel $dst, $src2, $src1 $cmp\t# unsigned, ptr" %} 10355 10356 ins_encode %{ 10357 __ csel(as_Register($dst$$reg), 10358 as_Register($src2$$reg), 10359 as_Register($src1$$reg), 10360 (Assembler::Condition)$cmp$$cmpcode); 10361 %} 10362 10363 ins_pipe(icond_reg_reg); 10364 %} 10365 10366 // special cases where one arg is zero 10367 10368 instruct cmovP_reg_zero(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, iRegP src, immP0 zero) %{ 10369 match(Set dst (CMoveP (Binary cmp cr) (Binary src zero))); 10370 10371 ins_cost(INSN_COST * 2); 10372 format %{ "csel $dst, zr, $src $cmp\t# signed, ptr" %} 10373 10374 ins_encode %{ 10375 __ csel(as_Register($dst$$reg), 10376 zr, 10377 as_Register($src$$reg), 10378 (Assembler::Condition)$cmp$$cmpcode); 10379 %} 10380 10381 ins_pipe(icond_reg); 10382 %} 10383 10384 instruct cmovUP_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, iRegP src, immP0 zero) %{ 10385 match(Set dst (CMoveP (Binary cmp cr) (Binary src zero))); 10386 10387 ins_cost(INSN_COST * 2); 10388 format %{ "csel $dst, zr, $src $cmp\t# unsigned, ptr" %} 10389 10390 ins_encode %{ 10391 __ csel(as_Register($dst$$reg), 10392 zr, 10393 as_Register($src$$reg), 10394 (Assembler::Condition)$cmp$$cmpcode); 10395 %} 10396 10397 ins_pipe(icond_reg); 10398 %} 10399 10400 instruct cmovP_zero_reg(cmpOp cmp, rFlagsReg cr, iRegPNoSp dst, immP0 zero, iRegP src) %{ 10401 match(Set dst (CMoveP (Binary cmp cr) (Binary zero src))); 10402 10403 ins_cost(INSN_COST * 2); 10404 format %{ "csel $dst, $src, zr $cmp\t# signed, ptr" %} 10405 10406 ins_encode %{ 10407 __ csel(as_Register($dst$$reg), 10408 as_Register($src$$reg), 10409 zr, 10410 (Assembler::Condition)$cmp$$cmpcode); 10411 %} 10412 10413 ins_pipe(icond_reg); 10414 %} 10415 10416 instruct cmovUP_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegPNoSp dst, immP0 zero, iRegP src) %{ 10417 match(Set dst (CMoveP (Binary cmp cr) (Binary zero src))); 10418 10419 ins_cost(INSN_COST * 2); 10420 format %{ "csel $dst, $src, zr $cmp\t# unsigned, ptr" %} 10421 10422 ins_encode %{ 10423 __ csel(as_Register($dst$$reg), 10424 as_Register($src$$reg), 10425 zr, 10426 (Assembler::Condition)$cmp$$cmpcode); 10427 %} 10428 10429 ins_pipe(icond_reg); 10430 %} 10431 10432 instruct cmovN_reg_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{ 10433 match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2))); 10434 10435 ins_cost(INSN_COST * 2); 10436 format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr" %} 10437 10438 ins_encode %{ 10439 __ cselw(as_Register($dst$$reg), 10440 as_Register($src2$$reg), 10441 as_Register($src1$$reg), 10442 (Assembler::Condition)$cmp$$cmpcode); 10443 %} 10444 10445 ins_pipe(icond_reg_reg); 10446 %} 10447 10448 instruct cmovUN_reg_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src1, iRegN src2) %{ 10449 match(Set dst (CMoveN (Binary cmp cr) (Binary src1 src2))); 10450 10451 ins_cost(INSN_COST * 2); 10452 format %{ "cselw $dst, $src2, $src1 $cmp\t# signed, compressed ptr" %} 10453 10454 ins_encode %{ 10455 __ cselw(as_Register($dst$$reg), 10456 as_Register($src2$$reg), 10457 as_Register($src1$$reg), 10458 (Assembler::Condition)$cmp$$cmpcode); 10459 %} 10460 10461 ins_pipe(icond_reg_reg); 10462 %} 10463 10464 // special cases where one arg is zero 10465 10466 instruct cmovN_reg_zero(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, iRegN src, immN0 zero) %{ 10467 match(Set dst (CMoveN (Binary cmp cr) (Binary src zero))); 10468 10469 ins_cost(INSN_COST * 2); 10470 format %{ "cselw $dst, zr, $src $cmp\t# signed, compressed ptr" %} 10471 10472 ins_encode %{ 10473 __ cselw(as_Register($dst$$reg), 10474 zr, 10475 as_Register($src$$reg), 10476 (Assembler::Condition)$cmp$$cmpcode); 10477 %} 10478 10479 ins_pipe(icond_reg); 10480 %} 10481 10482 instruct cmovUN_reg_zero(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, iRegN src, immN0 zero) %{ 10483 match(Set dst (CMoveN (Binary cmp cr) (Binary src zero))); 10484 10485 ins_cost(INSN_COST * 2); 10486 format %{ "cselw $dst, zr, $src $cmp\t# unsigned, compressed ptr" %} 10487 10488 ins_encode %{ 10489 __ cselw(as_Register($dst$$reg), 10490 zr, 10491 as_Register($src$$reg), 10492 (Assembler::Condition)$cmp$$cmpcode); 10493 %} 10494 10495 ins_pipe(icond_reg); 10496 %} 10497 10498 instruct cmovN_zero_reg(cmpOp cmp, rFlagsReg cr, iRegNNoSp dst, immN0 zero, iRegN src) %{ 10499 match(Set dst (CMoveN (Binary cmp cr) (Binary zero src))); 10500 10501 ins_cost(INSN_COST * 2); 10502 format %{ "cselw $dst, $src, zr $cmp\t# signed, compressed ptr" %} 10503 10504 ins_encode %{ 10505 __ cselw(as_Register($dst$$reg), 10506 as_Register($src$$reg), 10507 zr, 10508 (Assembler::Condition)$cmp$$cmpcode); 10509 %} 10510 10511 ins_pipe(icond_reg); 10512 %} 10513 10514 instruct cmovUN_zero_reg(cmpOpU cmp, rFlagsRegU cr, iRegNNoSp dst, immN0 zero, iRegN src) %{ 10515 match(Set dst (CMoveN (Binary cmp cr) (Binary zero src))); 10516 10517 ins_cost(INSN_COST * 2); 10518 format %{ "cselw $dst, $src, zr $cmp\t# unsigned, compressed ptr" %} 10519 10520 ins_encode %{ 10521 __ cselw(as_Register($dst$$reg), 10522 as_Register($src$$reg), 10523 zr, 10524 (Assembler::Condition)$cmp$$cmpcode); 10525 %} 10526 10527 ins_pipe(icond_reg); 10528 %} 10529 10530 instruct cmovF_reg(cmpOp cmp, rFlagsReg cr, vRegF dst, vRegF src1, vRegF src2) 10531 %{ 10532 match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2))); 10533 10534 ins_cost(INSN_COST * 3); 10535 10536 format %{ "fcsels $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %} 10537 ins_encode %{ 10538 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 10539 __ fcsels(as_FloatRegister($dst$$reg), 10540 as_FloatRegister($src2$$reg), 10541 as_FloatRegister($src1$$reg), 10542 cond); 10543 %} 10544 10545 ins_pipe(fp_cond_reg_reg_s); 10546 %} 10547 10548 instruct cmovUF_reg(cmpOpU cmp, rFlagsRegU cr, vRegF dst, vRegF src1, vRegF src2) 10549 %{ 10550 match(Set dst (CMoveF (Binary cmp cr) (Binary src1 src2))); 10551 10552 ins_cost(INSN_COST * 3); 10553 10554 format %{ "fcsels $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %} 10555 ins_encode %{ 10556 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 10557 __ fcsels(as_FloatRegister($dst$$reg), 10558 as_FloatRegister($src2$$reg), 10559 as_FloatRegister($src1$$reg), 10560 cond); 10561 %} 10562 10563 ins_pipe(fp_cond_reg_reg_s); 10564 %} 10565 10566 instruct cmovD_reg(cmpOp cmp, rFlagsReg cr, vRegD dst, vRegD src1, vRegD src2) 10567 %{ 10568 match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2))); 10569 10570 ins_cost(INSN_COST * 3); 10571 10572 format %{ "fcseld $dst, $src1, $src2, $cmp\t# signed cmove float\n\t" %} 10573 ins_encode %{ 10574 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 10575 __ fcseld(as_FloatRegister($dst$$reg), 10576 as_FloatRegister($src2$$reg), 10577 as_FloatRegister($src1$$reg), 10578 cond); 10579 %} 10580 10581 ins_pipe(fp_cond_reg_reg_d); 10582 %} 10583 10584 instruct cmovUD_reg(cmpOpU cmp, rFlagsRegU cr, vRegD dst, vRegD src1, vRegD src2) 10585 %{ 10586 match(Set dst (CMoveD (Binary cmp cr) (Binary src1 src2))); 10587 10588 ins_cost(INSN_COST * 3); 10589 10590 format %{ "fcseld $dst, $src1, $src2, $cmp\t# unsigned cmove float\n\t" %} 10591 ins_encode %{ 10592 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 10593 __ fcseld(as_FloatRegister($dst$$reg), 10594 as_FloatRegister($src2$$reg), 10595 as_FloatRegister($src1$$reg), 10596 cond); 10597 %} 10598 10599 ins_pipe(fp_cond_reg_reg_d); 10600 %} 10601 10602 // ============================================================================ 10603 // Arithmetic Instructions 10604 // 10605 10606 // Integer Addition 10607 10608 // TODO 10609 // these currently employ operations which do not set CR and hence are 10610 // not flagged as killing CR but we would like to isolate the cases 10611 // where we want to set flags from those where we don't. need to work 10612 // out how to do that. 10613 10614 instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10615 match(Set dst (AddI src1 src2)); 10616 10617 ins_cost(INSN_COST); 10618 format %{ "addw $dst, $src1, $src2" %} 10619 10620 ins_encode %{ 10621 __ addw(as_Register($dst$$reg), 10622 as_Register($src1$$reg), 10623 as_Register($src2$$reg)); 10624 %} 10625 10626 ins_pipe(ialu_reg_reg); 10627 %} 10628 10629 instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{ 10630 match(Set dst (AddI src1 src2)); 10631 10632 ins_cost(INSN_COST); 10633 format %{ "addw $dst, $src1, $src2" %} 10634 10635 // use opcode to indicate that this is an add not a sub 10636 opcode(0x0); 10637 10638 ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2)); 10639 10640 ins_pipe(ialu_reg_imm); 10641 %} 10642 10643 instruct addI_reg_imm_i2l(iRegINoSp dst, iRegL src1, immIAddSub src2) %{ 10644 match(Set dst (AddI (ConvL2I src1) src2)); 10645 10646 ins_cost(INSN_COST); 10647 format %{ "addw $dst, $src1, $src2" %} 10648 10649 // use opcode to indicate that this is an add not a sub 10650 opcode(0x0); 10651 10652 ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2)); 10653 10654 ins_pipe(ialu_reg_imm); 10655 %} 10656 10657 // Pointer Addition 10658 instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{ 10659 match(Set dst (AddP src1 src2)); 10660 10661 ins_cost(INSN_COST); 10662 format %{ "add $dst, $src1, $src2\t# ptr" %} 10663 10664 ins_encode %{ 10665 __ add(as_Register($dst$$reg), 10666 as_Register($src1$$reg), 10667 as_Register($src2$$reg)); 10668 %} 10669 10670 ins_pipe(ialu_reg_reg); 10671 %} 10672 10673 instruct addP_reg_reg_ext(iRegPNoSp dst, iRegP src1, iRegIorL2I src2) %{ 10674 match(Set dst (AddP src1 (ConvI2L src2))); 10675 10676 ins_cost(1.9 * INSN_COST); 10677 format %{ "add $dst, $src1, $src2, sxtw\t# ptr" %} 10678 10679 ins_encode %{ 10680 __ add(as_Register($dst$$reg), 10681 as_Register($src1$$reg), 10682 as_Register($src2$$reg), ext::sxtw); 10683 %} 10684 10685 ins_pipe(ialu_reg_reg); 10686 %} 10687 10688 instruct addP_reg_reg_lsl(iRegPNoSp dst, iRegP src1, iRegL src2, immIScale scale) %{ 10689 match(Set dst (AddP src1 (LShiftL src2 scale))); 10690 10691 ins_cost(1.9 * INSN_COST); 10692 format %{ "add $dst, $src1, $src2, LShiftL $scale\t# ptr" %} 10693 10694 ins_encode %{ 10695 __ lea(as_Register($dst$$reg), 10696 Address(as_Register($src1$$reg), as_Register($src2$$reg), 10697 Address::lsl($scale$$constant))); 10698 %} 10699 10700 ins_pipe(ialu_reg_reg_shift); 10701 %} 10702 10703 instruct addP_reg_reg_ext_shift(iRegPNoSp dst, iRegP src1, iRegIorL2I src2, immIScale scale) %{ 10704 match(Set dst (AddP src1 (LShiftL (ConvI2L src2) scale))); 10705 10706 ins_cost(1.9 * INSN_COST); 10707 format %{ "add $dst, $src1, $src2, I2L $scale\t# ptr" %} 10708 10709 ins_encode %{ 10710 __ lea(as_Register($dst$$reg), 10711 Address(as_Register($src1$$reg), as_Register($src2$$reg), 10712 Address::sxtw($scale$$constant))); 10713 %} 10714 10715 ins_pipe(ialu_reg_reg_shift); 10716 %} 10717 10718 instruct lshift_ext(iRegLNoSp dst, iRegIorL2I src, immI scale, rFlagsReg cr) %{ 10719 match(Set dst (LShiftL (ConvI2L src) scale)); 10720 10721 ins_cost(INSN_COST); 10722 format %{ "sbfiz $dst, $src, $scale & 63, -$scale & 63\t" %} 10723 10724 ins_encode %{ 10725 __ sbfiz(as_Register($dst$$reg), 10726 as_Register($src$$reg), 10727 $scale$$constant & 63, MIN2(32, (int)((-$scale$$constant) & 63))); 10728 %} 10729 10730 ins_pipe(ialu_reg_shift); 10731 %} 10732 10733 // Pointer Immediate Addition 10734 // n.b. this needs to be more expensive than using an indirect memory 10735 // operand 10736 instruct addP_reg_imm(iRegPNoSp dst, iRegP src1, immLAddSub src2) %{ 10737 match(Set dst (AddP src1 src2)); 10738 10739 ins_cost(INSN_COST); 10740 format %{ "add $dst, $src1, $src2\t# ptr" %} 10741 10742 // use opcode to indicate that this is an add not a sub 10743 opcode(0x0); 10744 10745 ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) ); 10746 10747 ins_pipe(ialu_reg_imm); 10748 %} 10749 10750 // Long Addition 10751 instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10752 10753 match(Set dst (AddL src1 src2)); 10754 10755 ins_cost(INSN_COST); 10756 format %{ "add $dst, $src1, $src2" %} 10757 10758 ins_encode %{ 10759 __ add(as_Register($dst$$reg), 10760 as_Register($src1$$reg), 10761 as_Register($src2$$reg)); 10762 %} 10763 10764 ins_pipe(ialu_reg_reg); 10765 %} 10766 10767 // No constant pool entries requiredLong Immediate Addition. 10768 instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{ 10769 match(Set dst (AddL src1 src2)); 10770 10771 ins_cost(INSN_COST); 10772 format %{ "add $dst, $src1, $src2" %} 10773 10774 // use opcode to indicate that this is an add not a sub 10775 opcode(0x0); 10776 10777 ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) ); 10778 10779 ins_pipe(ialu_reg_imm); 10780 %} 10781 10782 // Integer Subtraction 10783 instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10784 match(Set dst (SubI src1 src2)); 10785 10786 ins_cost(INSN_COST); 10787 format %{ "subw $dst, $src1, $src2" %} 10788 10789 ins_encode %{ 10790 __ subw(as_Register($dst$$reg), 10791 as_Register($src1$$reg), 10792 as_Register($src2$$reg)); 10793 %} 10794 10795 ins_pipe(ialu_reg_reg); 10796 %} 10797 10798 // Immediate Subtraction 10799 instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAddSub src2) %{ 10800 match(Set dst (SubI src1 src2)); 10801 10802 ins_cost(INSN_COST); 10803 format %{ "subw $dst, $src1, $src2" %} 10804 10805 // use opcode to indicate that this is a sub not an add 10806 opcode(0x1); 10807 10808 ins_encode(aarch64_enc_addsubw_imm(dst, src1, src2)); 10809 10810 ins_pipe(ialu_reg_imm); 10811 %} 10812 10813 // Long Subtraction 10814 instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10815 10816 match(Set dst (SubL src1 src2)); 10817 10818 ins_cost(INSN_COST); 10819 format %{ "sub $dst, $src1, $src2" %} 10820 10821 ins_encode %{ 10822 __ sub(as_Register($dst$$reg), 10823 as_Register($src1$$reg), 10824 as_Register($src2$$reg)); 10825 %} 10826 10827 ins_pipe(ialu_reg_reg); 10828 %} 10829 10830 // No constant pool entries requiredLong Immediate Subtraction. 10831 instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLAddSub src2) %{ 10832 match(Set dst (SubL src1 src2)); 10833 10834 ins_cost(INSN_COST); 10835 format %{ "sub$dst, $src1, $src2" %} 10836 10837 // use opcode to indicate that this is a sub not an add 10838 opcode(0x1); 10839 10840 ins_encode( aarch64_enc_addsub_imm(dst, src1, src2) ); 10841 10842 ins_pipe(ialu_reg_imm); 10843 %} 10844 10845 // Integer Negation (special case for sub) 10846 10847 instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr) %{ 10848 match(Set dst (SubI zero src)); 10849 10850 ins_cost(INSN_COST); 10851 format %{ "negw $dst, $src\t# int" %} 10852 10853 ins_encode %{ 10854 __ negw(as_Register($dst$$reg), 10855 as_Register($src$$reg)); 10856 %} 10857 10858 ins_pipe(ialu_reg); 10859 %} 10860 10861 // Long Negation 10862 10863 instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero, rFlagsReg cr) %{ 10864 match(Set dst (SubL zero src)); 10865 10866 ins_cost(INSN_COST); 10867 format %{ "neg $dst, $src\t# long" %} 10868 10869 ins_encode %{ 10870 __ neg(as_Register($dst$$reg), 10871 as_Register($src$$reg)); 10872 %} 10873 10874 ins_pipe(ialu_reg); 10875 %} 10876 10877 // Integer Multiply 10878 10879 instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10880 match(Set dst (MulI src1 src2)); 10881 10882 ins_cost(INSN_COST * 3); 10883 format %{ "mulw $dst, $src1, $src2" %} 10884 10885 ins_encode %{ 10886 __ mulw(as_Register($dst$$reg), 10887 as_Register($src1$$reg), 10888 as_Register($src2$$reg)); 10889 %} 10890 10891 ins_pipe(imul_reg_reg); 10892 %} 10893 10894 instruct smulI(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 10895 match(Set dst (MulL (ConvI2L src1) (ConvI2L src2))); 10896 10897 ins_cost(INSN_COST * 3); 10898 format %{ "smull $dst, $src1, $src2" %} 10899 10900 ins_encode %{ 10901 __ smull(as_Register($dst$$reg), 10902 as_Register($src1$$reg), 10903 as_Register($src2$$reg)); 10904 %} 10905 10906 ins_pipe(imul_reg_reg); 10907 %} 10908 10909 // Long Multiply 10910 10911 instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 10912 match(Set dst (MulL src1 src2)); 10913 10914 ins_cost(INSN_COST * 5); 10915 format %{ "mul $dst, $src1, $src2" %} 10916 10917 ins_encode %{ 10918 __ mul(as_Register($dst$$reg), 10919 as_Register($src1$$reg), 10920 as_Register($src2$$reg)); 10921 %} 10922 10923 ins_pipe(lmul_reg_reg); 10924 %} 10925 10926 instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr) 10927 %{ 10928 match(Set dst (MulHiL src1 src2)); 10929 10930 ins_cost(INSN_COST * 7); 10931 format %{ "smulh $dst, $src1, $src2, \t# mulhi" %} 10932 10933 ins_encode %{ 10934 __ smulh(as_Register($dst$$reg), 10935 as_Register($src1$$reg), 10936 as_Register($src2$$reg)); 10937 %} 10938 10939 ins_pipe(lmul_reg_reg); 10940 %} 10941 10942 // Combined Integer Multiply & Add/Sub 10943 10944 instruct maddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{ 10945 match(Set dst (AddI src3 (MulI src1 src2))); 10946 10947 ins_cost(INSN_COST * 3); 10948 format %{ "madd $dst, $src1, $src2, $src3" %} 10949 10950 ins_encode %{ 10951 __ maddw(as_Register($dst$$reg), 10952 as_Register($src1$$reg), 10953 as_Register($src2$$reg), 10954 as_Register($src3$$reg)); 10955 %} 10956 10957 ins_pipe(imac_reg_reg); 10958 %} 10959 10960 instruct msubI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3) %{ 10961 match(Set dst (SubI src3 (MulI src1 src2))); 10962 10963 ins_cost(INSN_COST * 3); 10964 format %{ "msub $dst, $src1, $src2, $src3" %} 10965 10966 ins_encode %{ 10967 __ msubw(as_Register($dst$$reg), 10968 as_Register($src1$$reg), 10969 as_Register($src2$$reg), 10970 as_Register($src3$$reg)); 10971 %} 10972 10973 ins_pipe(imac_reg_reg); 10974 %} 10975 10976 // Combined Integer Multiply & Neg 10977 10978 instruct mnegI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI0 zero) %{ 10979 match(Set dst (MulI (SubI zero src1) src2)); 10980 match(Set dst (MulI src1 (SubI zero src2))); 10981 10982 ins_cost(INSN_COST * 3); 10983 format %{ "mneg $dst, $src1, $src2" %} 10984 10985 ins_encode %{ 10986 __ mnegw(as_Register($dst$$reg), 10987 as_Register($src1$$reg), 10988 as_Register($src2$$reg)); 10989 %} 10990 10991 ins_pipe(imac_reg_reg); 10992 %} 10993 10994 // Combined Long Multiply & Add/Sub 10995 10996 instruct maddL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{ 10997 match(Set dst (AddL src3 (MulL src1 src2))); 10998 10999 ins_cost(INSN_COST * 5); 11000 format %{ "madd $dst, $src1, $src2, $src3" %} 11001 11002 ins_encode %{ 11003 __ madd(as_Register($dst$$reg), 11004 as_Register($src1$$reg), 11005 as_Register($src2$$reg), 11006 as_Register($src3$$reg)); 11007 %} 11008 11009 ins_pipe(lmac_reg_reg); 11010 %} 11011 11012 instruct msubL(iRegLNoSp dst, iRegL src1, iRegL src2, iRegL src3) %{ 11013 match(Set dst (SubL src3 (MulL src1 src2))); 11014 11015 ins_cost(INSN_COST * 5); 11016 format %{ "msub $dst, $src1, $src2, $src3" %} 11017 11018 ins_encode %{ 11019 __ msub(as_Register($dst$$reg), 11020 as_Register($src1$$reg), 11021 as_Register($src2$$reg), 11022 as_Register($src3$$reg)); 11023 %} 11024 11025 ins_pipe(lmac_reg_reg); 11026 %} 11027 11028 // Combined Long Multiply & Neg 11029 11030 instruct mnegL(iRegLNoSp dst, iRegL src1, iRegL src2, immL0 zero) %{ 11031 match(Set dst (MulL (SubL zero src1) src2)); 11032 match(Set dst (MulL src1 (SubL zero src2))); 11033 11034 ins_cost(INSN_COST * 5); 11035 format %{ "mneg $dst, $src1, $src2" %} 11036 11037 ins_encode %{ 11038 __ mneg(as_Register($dst$$reg), 11039 as_Register($src1$$reg), 11040 as_Register($src2$$reg)); 11041 %} 11042 11043 ins_pipe(lmac_reg_reg); 11044 %} 11045 11046 // Combine Integer Signed Multiply & Add/Sub/Neg Long 11047 11048 instruct smaddL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegLNoSp src3) %{ 11049 match(Set dst (AddL src3 (MulL (ConvI2L src1) (ConvI2L src2)))); 11050 11051 ins_cost(INSN_COST * 3); 11052 format %{ "smaddl $dst, $src1, $src2, $src3" %} 11053 11054 ins_encode %{ 11055 __ smaddl(as_Register($dst$$reg), 11056 as_Register($src1$$reg), 11057 as_Register($src2$$reg), 11058 as_Register($src3$$reg)); 11059 %} 11060 11061 ins_pipe(imac_reg_reg); 11062 %} 11063 11064 instruct smsubL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegLNoSp src3) %{ 11065 match(Set dst (SubL src3 (MulL (ConvI2L src1) (ConvI2L src2)))); 11066 11067 ins_cost(INSN_COST * 3); 11068 format %{ "smsubl $dst, $src1, $src2, $src3" %} 11069 11070 ins_encode %{ 11071 __ smsubl(as_Register($dst$$reg), 11072 as_Register($src1$$reg), 11073 as_Register($src2$$reg), 11074 as_Register($src3$$reg)); 11075 %} 11076 11077 ins_pipe(imac_reg_reg); 11078 %} 11079 11080 instruct smnegL(iRegLNoSp dst, iRegIorL2I src1, iRegIorL2I src2, immL0 zero) %{ 11081 match(Set dst (MulL (SubL zero (ConvI2L src1)) (ConvI2L src2))); 11082 match(Set dst (MulL (ConvI2L src1) (SubL zero (ConvI2L src2)))); 11083 11084 ins_cost(INSN_COST * 3); 11085 format %{ "smnegl $dst, $src1, $src2" %} 11086 11087 ins_encode %{ 11088 __ smnegl(as_Register($dst$$reg), 11089 as_Register($src1$$reg), 11090 as_Register($src2$$reg)); 11091 %} 11092 11093 ins_pipe(imac_reg_reg); 11094 %} 11095 11096 // Combined Multiply-Add Shorts into Integer (dst = src1 * src2 + src3 * src4) 11097 11098 instruct muladdS2I(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, iRegIorL2I src3, iRegIorL2I src4) %{ 11099 match(Set dst (MulAddS2I (Binary src1 src2) (Binary src3 src4))); 11100 11101 ins_cost(INSN_COST * 5); 11102 format %{ "mulw rscratch1, $src1, $src2\n\t" 11103 "maddw $dst, $src3, $src4, rscratch1" %} 11104 11105 ins_encode %{ 11106 __ mulw(rscratch1, as_Register($src1$$reg), as_Register($src2$$reg)); 11107 __ maddw(as_Register($dst$$reg), as_Register($src3$$reg), as_Register($src4$$reg), rscratch1); %} 11108 11109 ins_pipe(imac_reg_reg); 11110 %} 11111 11112 // Integer Divide 11113 11114 instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 11115 match(Set dst (DivI src1 src2)); 11116 11117 ins_cost(INSN_COST * 19); 11118 format %{ "sdivw $dst, $src1, $src2" %} 11119 11120 ins_encode(aarch64_enc_divw(dst, src1, src2)); 11121 ins_pipe(idiv_reg_reg); 11122 %} 11123 11124 // Long Divide 11125 11126 instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 11127 match(Set dst (DivL src1 src2)); 11128 11129 ins_cost(INSN_COST * 35); 11130 format %{ "sdiv $dst, $src1, $src2" %} 11131 11132 ins_encode(aarch64_enc_div(dst, src1, src2)); 11133 ins_pipe(ldiv_reg_reg); 11134 %} 11135 11136 // Integer Remainder 11137 11138 instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 11139 match(Set dst (ModI src1 src2)); 11140 11141 ins_cost(INSN_COST * 22); 11142 format %{ "sdivw rscratch1, $src1, $src2\n\t" 11143 "msubw($dst, rscratch1, $src2, $src1" %} 11144 11145 ins_encode(aarch64_enc_modw(dst, src1, src2)); 11146 ins_pipe(idiv_reg_reg); 11147 %} 11148 11149 // Long Remainder 11150 11151 instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 11152 match(Set dst (ModL src1 src2)); 11153 11154 ins_cost(INSN_COST * 38); 11155 format %{ "sdiv rscratch1, $src1, $src2\n" 11156 "msub($dst, rscratch1, $src2, $src1" %} 11157 11158 ins_encode(aarch64_enc_mod(dst, src1, src2)); 11159 ins_pipe(ldiv_reg_reg); 11160 %} 11161 11162 // Integer Shifts 11163 11164 // Shift Left Register 11165 instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 11166 match(Set dst (LShiftI src1 src2)); 11167 11168 ins_cost(INSN_COST * 2); 11169 format %{ "lslvw $dst, $src1, $src2" %} 11170 11171 ins_encode %{ 11172 __ lslvw(as_Register($dst$$reg), 11173 as_Register($src1$$reg), 11174 as_Register($src2$$reg)); 11175 %} 11176 11177 ins_pipe(ialu_reg_reg_vshift); 11178 %} 11179 11180 // Shift Left Immediate 11181 instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 11182 match(Set dst (LShiftI src1 src2)); 11183 11184 ins_cost(INSN_COST); 11185 format %{ "lslw $dst, $src1, ($src2 & 0x1f)" %} 11186 11187 ins_encode %{ 11188 __ lslw(as_Register($dst$$reg), 11189 as_Register($src1$$reg), 11190 $src2$$constant & 0x1f); 11191 %} 11192 11193 ins_pipe(ialu_reg_shift); 11194 %} 11195 11196 // Shift Right Logical Register 11197 instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 11198 match(Set dst (URShiftI src1 src2)); 11199 11200 ins_cost(INSN_COST * 2); 11201 format %{ "lsrvw $dst, $src1, $src2" %} 11202 11203 ins_encode %{ 11204 __ lsrvw(as_Register($dst$$reg), 11205 as_Register($src1$$reg), 11206 as_Register($src2$$reg)); 11207 %} 11208 11209 ins_pipe(ialu_reg_reg_vshift); 11210 %} 11211 11212 // Shift Right Logical Immediate 11213 instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 11214 match(Set dst (URShiftI src1 src2)); 11215 11216 ins_cost(INSN_COST); 11217 format %{ "lsrw $dst, $src1, ($src2 & 0x1f)" %} 11218 11219 ins_encode %{ 11220 __ lsrw(as_Register($dst$$reg), 11221 as_Register($src1$$reg), 11222 $src2$$constant & 0x1f); 11223 %} 11224 11225 ins_pipe(ialu_reg_shift); 11226 %} 11227 11228 // Shift Right Arithmetic Register 11229 instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 11230 match(Set dst (RShiftI src1 src2)); 11231 11232 ins_cost(INSN_COST * 2); 11233 format %{ "asrvw $dst, $src1, $src2" %} 11234 11235 ins_encode %{ 11236 __ asrvw(as_Register($dst$$reg), 11237 as_Register($src1$$reg), 11238 as_Register($src2$$reg)); 11239 %} 11240 11241 ins_pipe(ialu_reg_reg_vshift); 11242 %} 11243 11244 // Shift Right Arithmetic Immediate 11245 instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{ 11246 match(Set dst (RShiftI src1 src2)); 11247 11248 ins_cost(INSN_COST); 11249 format %{ "asrw $dst, $src1, ($src2 & 0x1f)" %} 11250 11251 ins_encode %{ 11252 __ asrw(as_Register($dst$$reg), 11253 as_Register($src1$$reg), 11254 $src2$$constant & 0x1f); 11255 %} 11256 11257 ins_pipe(ialu_reg_shift); 11258 %} 11259 11260 // Combined Int Mask and Right Shift (using UBFM) 11261 // TODO 11262 11263 // Long Shifts 11264 11265 // Shift Left Register 11266 instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 11267 match(Set dst (LShiftL src1 src2)); 11268 11269 ins_cost(INSN_COST * 2); 11270 format %{ "lslv $dst, $src1, $src2" %} 11271 11272 ins_encode %{ 11273 __ lslv(as_Register($dst$$reg), 11274 as_Register($src1$$reg), 11275 as_Register($src2$$reg)); 11276 %} 11277 11278 ins_pipe(ialu_reg_reg_vshift); 11279 %} 11280 11281 // Shift Left Immediate 11282 instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 11283 match(Set dst (LShiftL src1 src2)); 11284 11285 ins_cost(INSN_COST); 11286 format %{ "lsl $dst, $src1, ($src2 & 0x3f)" %} 11287 11288 ins_encode %{ 11289 __ lsl(as_Register($dst$$reg), 11290 as_Register($src1$$reg), 11291 $src2$$constant & 0x3f); 11292 %} 11293 11294 ins_pipe(ialu_reg_shift); 11295 %} 11296 11297 // Shift Right Logical Register 11298 instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 11299 match(Set dst (URShiftL src1 src2)); 11300 11301 ins_cost(INSN_COST * 2); 11302 format %{ "lsrv $dst, $src1, $src2" %} 11303 11304 ins_encode %{ 11305 __ lsrv(as_Register($dst$$reg), 11306 as_Register($src1$$reg), 11307 as_Register($src2$$reg)); 11308 %} 11309 11310 ins_pipe(ialu_reg_reg_vshift); 11311 %} 11312 11313 // Shift Right Logical Immediate 11314 instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 11315 match(Set dst (URShiftL src1 src2)); 11316 11317 ins_cost(INSN_COST); 11318 format %{ "lsr $dst, $src1, ($src2 & 0x3f)" %} 11319 11320 ins_encode %{ 11321 __ lsr(as_Register($dst$$reg), 11322 as_Register($src1$$reg), 11323 $src2$$constant & 0x3f); 11324 %} 11325 11326 ins_pipe(ialu_reg_shift); 11327 %} 11328 11329 // A special-case pattern for card table stores. 11330 instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{ 11331 match(Set dst (URShiftL (CastP2X src1) src2)); 11332 11333 ins_cost(INSN_COST); 11334 format %{ "lsr $dst, p2x($src1), ($src2 & 0x3f)" %} 11335 11336 ins_encode %{ 11337 __ lsr(as_Register($dst$$reg), 11338 as_Register($src1$$reg), 11339 $src2$$constant & 0x3f); 11340 %} 11341 11342 ins_pipe(ialu_reg_shift); 11343 %} 11344 11345 // Shift Right Arithmetic Register 11346 instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{ 11347 match(Set dst (RShiftL src1 src2)); 11348 11349 ins_cost(INSN_COST * 2); 11350 format %{ "asrv $dst, $src1, $src2" %} 11351 11352 ins_encode %{ 11353 __ asrv(as_Register($dst$$reg), 11354 as_Register($src1$$reg), 11355 as_Register($src2$$reg)); 11356 %} 11357 11358 ins_pipe(ialu_reg_reg_vshift); 11359 %} 11360 11361 // Shift Right Arithmetic Immediate 11362 instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{ 11363 match(Set dst (RShiftL src1 src2)); 11364 11365 ins_cost(INSN_COST); 11366 format %{ "asr $dst, $src1, ($src2 & 0x3f)" %} 11367 11368 ins_encode %{ 11369 __ asr(as_Register($dst$$reg), 11370 as_Register($src1$$reg), 11371 $src2$$constant & 0x3f); 11372 %} 11373 11374 ins_pipe(ialu_reg_shift); 11375 %} 11376 11377 // BEGIN This section of the file is automatically generated. Do not edit -------------- 11378 // This section is generated from aarch64_ad.m4 11379 11380 11381 // This pattern is automatically generated from aarch64_ad.m4 11382 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11383 instruct regL_not_reg(iRegLNoSp dst, 11384 iRegL src1, immL_M1 m1, 11385 rFlagsReg cr) %{ 11386 match(Set dst (XorL src1 m1)); 11387 ins_cost(INSN_COST); 11388 format %{ "eon $dst, $src1, zr" %} 11389 11390 ins_encode %{ 11391 __ eon(as_Register($dst$$reg), 11392 as_Register($src1$$reg), 11393 zr, 11394 Assembler::LSL, 0); 11395 %} 11396 11397 ins_pipe(ialu_reg); 11398 %} 11399 11400 // This pattern is automatically generated from aarch64_ad.m4 11401 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11402 instruct regI_not_reg(iRegINoSp dst, 11403 iRegIorL2I src1, immI_M1 m1, 11404 rFlagsReg cr) %{ 11405 match(Set dst (XorI src1 m1)); 11406 ins_cost(INSN_COST); 11407 format %{ "eonw $dst, $src1, zr" %} 11408 11409 ins_encode %{ 11410 __ eonw(as_Register($dst$$reg), 11411 as_Register($src1$$reg), 11412 zr, 11413 Assembler::LSL, 0); 11414 %} 11415 11416 ins_pipe(ialu_reg); 11417 %} 11418 11419 // This pattern is automatically generated from aarch64_ad.m4 11420 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11421 instruct NegI_reg_URShift_reg(iRegINoSp dst, 11422 immI0 zero, iRegIorL2I src1, immI src2) %{ 11423 match(Set dst (SubI zero (URShiftI src1 src2))); 11424 11425 ins_cost(1.9 * INSN_COST); 11426 format %{ "negw $dst, $src1, LSR $src2" %} 11427 11428 ins_encode %{ 11429 __ negw(as_Register($dst$$reg), as_Register($src1$$reg), 11430 Assembler::LSR, $src2$$constant & 0x1f); 11431 %} 11432 11433 ins_pipe(ialu_reg_shift); 11434 %} 11435 11436 // This pattern is automatically generated from aarch64_ad.m4 11437 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11438 instruct NegI_reg_RShift_reg(iRegINoSp dst, 11439 immI0 zero, iRegIorL2I src1, immI src2) %{ 11440 match(Set dst (SubI zero (RShiftI src1 src2))); 11441 11442 ins_cost(1.9 * INSN_COST); 11443 format %{ "negw $dst, $src1, ASR $src2" %} 11444 11445 ins_encode %{ 11446 __ negw(as_Register($dst$$reg), as_Register($src1$$reg), 11447 Assembler::ASR, $src2$$constant & 0x1f); 11448 %} 11449 11450 ins_pipe(ialu_reg_shift); 11451 %} 11452 11453 // This pattern is automatically generated from aarch64_ad.m4 11454 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11455 instruct NegI_reg_LShift_reg(iRegINoSp dst, 11456 immI0 zero, iRegIorL2I src1, immI src2) %{ 11457 match(Set dst (SubI zero (LShiftI src1 src2))); 11458 11459 ins_cost(1.9 * INSN_COST); 11460 format %{ "negw $dst, $src1, LSL $src2" %} 11461 11462 ins_encode %{ 11463 __ negw(as_Register($dst$$reg), as_Register($src1$$reg), 11464 Assembler::LSL, $src2$$constant & 0x1f); 11465 %} 11466 11467 ins_pipe(ialu_reg_shift); 11468 %} 11469 11470 // This pattern is automatically generated from aarch64_ad.m4 11471 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11472 instruct NegL_reg_URShift_reg(iRegLNoSp dst, 11473 immL0 zero, iRegL src1, immI src2) %{ 11474 match(Set dst (SubL zero (URShiftL src1 src2))); 11475 11476 ins_cost(1.9 * INSN_COST); 11477 format %{ "neg $dst, $src1, LSR $src2" %} 11478 11479 ins_encode %{ 11480 __ neg(as_Register($dst$$reg), as_Register($src1$$reg), 11481 Assembler::LSR, $src2$$constant & 0x3f); 11482 %} 11483 11484 ins_pipe(ialu_reg_shift); 11485 %} 11486 11487 // This pattern is automatically generated from aarch64_ad.m4 11488 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11489 instruct NegL_reg_RShift_reg(iRegLNoSp dst, 11490 immL0 zero, iRegL src1, immI src2) %{ 11491 match(Set dst (SubL zero (RShiftL src1 src2))); 11492 11493 ins_cost(1.9 * INSN_COST); 11494 format %{ "neg $dst, $src1, ASR $src2" %} 11495 11496 ins_encode %{ 11497 __ neg(as_Register($dst$$reg), as_Register($src1$$reg), 11498 Assembler::ASR, $src2$$constant & 0x3f); 11499 %} 11500 11501 ins_pipe(ialu_reg_shift); 11502 %} 11503 11504 // This pattern is automatically generated from aarch64_ad.m4 11505 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11506 instruct NegL_reg_LShift_reg(iRegLNoSp dst, 11507 immL0 zero, iRegL src1, immI src2) %{ 11508 match(Set dst (SubL zero (LShiftL src1 src2))); 11509 11510 ins_cost(1.9 * INSN_COST); 11511 format %{ "neg $dst, $src1, LSL $src2" %} 11512 11513 ins_encode %{ 11514 __ neg(as_Register($dst$$reg), as_Register($src1$$reg), 11515 Assembler::LSL, $src2$$constant & 0x3f); 11516 %} 11517 11518 ins_pipe(ialu_reg_shift); 11519 %} 11520 11521 // This pattern is automatically generated from aarch64_ad.m4 11522 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11523 instruct AndI_reg_not_reg(iRegINoSp dst, 11524 iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{ 11525 match(Set dst (AndI src1 (XorI src2 m1))); 11526 ins_cost(INSN_COST); 11527 format %{ "bicw $dst, $src1, $src2" %} 11528 11529 ins_encode %{ 11530 __ bicw(as_Register($dst$$reg), 11531 as_Register($src1$$reg), 11532 as_Register($src2$$reg), 11533 Assembler::LSL, 0); 11534 %} 11535 11536 ins_pipe(ialu_reg_reg); 11537 %} 11538 11539 // This pattern is automatically generated from aarch64_ad.m4 11540 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11541 instruct AndL_reg_not_reg(iRegLNoSp dst, 11542 iRegL src1, iRegL src2, immL_M1 m1) %{ 11543 match(Set dst (AndL src1 (XorL src2 m1))); 11544 ins_cost(INSN_COST); 11545 format %{ "bic $dst, $src1, $src2" %} 11546 11547 ins_encode %{ 11548 __ bic(as_Register($dst$$reg), 11549 as_Register($src1$$reg), 11550 as_Register($src2$$reg), 11551 Assembler::LSL, 0); 11552 %} 11553 11554 ins_pipe(ialu_reg_reg); 11555 %} 11556 11557 // This pattern is automatically generated from aarch64_ad.m4 11558 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11559 instruct OrI_reg_not_reg(iRegINoSp dst, 11560 iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{ 11561 match(Set dst (OrI src1 (XorI src2 m1))); 11562 ins_cost(INSN_COST); 11563 format %{ "ornw $dst, $src1, $src2" %} 11564 11565 ins_encode %{ 11566 __ ornw(as_Register($dst$$reg), 11567 as_Register($src1$$reg), 11568 as_Register($src2$$reg), 11569 Assembler::LSL, 0); 11570 %} 11571 11572 ins_pipe(ialu_reg_reg); 11573 %} 11574 11575 // This pattern is automatically generated from aarch64_ad.m4 11576 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11577 instruct OrL_reg_not_reg(iRegLNoSp dst, 11578 iRegL src1, iRegL src2, immL_M1 m1) %{ 11579 match(Set dst (OrL src1 (XorL src2 m1))); 11580 ins_cost(INSN_COST); 11581 format %{ "orn $dst, $src1, $src2" %} 11582 11583 ins_encode %{ 11584 __ orn(as_Register($dst$$reg), 11585 as_Register($src1$$reg), 11586 as_Register($src2$$reg), 11587 Assembler::LSL, 0); 11588 %} 11589 11590 ins_pipe(ialu_reg_reg); 11591 %} 11592 11593 // This pattern is automatically generated from aarch64_ad.m4 11594 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11595 instruct XorI_reg_not_reg(iRegINoSp dst, 11596 iRegIorL2I src1, iRegIorL2I src2, immI_M1 m1) %{ 11597 match(Set dst (XorI m1 (XorI src2 src1))); 11598 ins_cost(INSN_COST); 11599 format %{ "eonw $dst, $src1, $src2" %} 11600 11601 ins_encode %{ 11602 __ eonw(as_Register($dst$$reg), 11603 as_Register($src1$$reg), 11604 as_Register($src2$$reg), 11605 Assembler::LSL, 0); 11606 %} 11607 11608 ins_pipe(ialu_reg_reg); 11609 %} 11610 11611 // This pattern is automatically generated from aarch64_ad.m4 11612 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11613 instruct XorL_reg_not_reg(iRegLNoSp dst, 11614 iRegL src1, iRegL src2, immL_M1 m1) %{ 11615 match(Set dst (XorL m1 (XorL src2 src1))); 11616 ins_cost(INSN_COST); 11617 format %{ "eon $dst, $src1, $src2" %} 11618 11619 ins_encode %{ 11620 __ eon(as_Register($dst$$reg), 11621 as_Register($src1$$reg), 11622 as_Register($src2$$reg), 11623 Assembler::LSL, 0); 11624 %} 11625 11626 ins_pipe(ialu_reg_reg); 11627 %} 11628 11629 // This pattern is automatically generated from aarch64_ad.m4 11630 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11631 // val & (-1 ^ (val >>> shift)) ==> bicw 11632 instruct AndI_reg_URShift_not_reg(iRegINoSp dst, 11633 iRegIorL2I src1, iRegIorL2I src2, 11634 immI src3, immI_M1 src4) %{ 11635 match(Set dst (AndI src1 (XorI(URShiftI src2 src3) src4))); 11636 ins_cost(1.9 * INSN_COST); 11637 format %{ "bicw $dst, $src1, $src2, LSR $src3" %} 11638 11639 ins_encode %{ 11640 __ bicw(as_Register($dst$$reg), 11641 as_Register($src1$$reg), 11642 as_Register($src2$$reg), 11643 Assembler::LSR, 11644 $src3$$constant & 0x1f); 11645 %} 11646 11647 ins_pipe(ialu_reg_reg_shift); 11648 %} 11649 11650 // This pattern is automatically generated from aarch64_ad.m4 11651 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11652 // val & (-1 ^ (val >>> shift)) ==> bic 11653 instruct AndL_reg_URShift_not_reg(iRegLNoSp dst, 11654 iRegL src1, iRegL src2, 11655 immI src3, immL_M1 src4) %{ 11656 match(Set dst (AndL src1 (XorL(URShiftL src2 src3) src4))); 11657 ins_cost(1.9 * INSN_COST); 11658 format %{ "bic $dst, $src1, $src2, LSR $src3" %} 11659 11660 ins_encode %{ 11661 __ bic(as_Register($dst$$reg), 11662 as_Register($src1$$reg), 11663 as_Register($src2$$reg), 11664 Assembler::LSR, 11665 $src3$$constant & 0x3f); 11666 %} 11667 11668 ins_pipe(ialu_reg_reg_shift); 11669 %} 11670 11671 // This pattern is automatically generated from aarch64_ad.m4 11672 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11673 // val & (-1 ^ (val >> shift)) ==> bicw 11674 instruct AndI_reg_RShift_not_reg(iRegINoSp dst, 11675 iRegIorL2I src1, iRegIorL2I src2, 11676 immI src3, immI_M1 src4) %{ 11677 match(Set dst (AndI src1 (XorI(RShiftI src2 src3) src4))); 11678 ins_cost(1.9 * INSN_COST); 11679 format %{ "bicw $dst, $src1, $src2, ASR $src3" %} 11680 11681 ins_encode %{ 11682 __ bicw(as_Register($dst$$reg), 11683 as_Register($src1$$reg), 11684 as_Register($src2$$reg), 11685 Assembler::ASR, 11686 $src3$$constant & 0x1f); 11687 %} 11688 11689 ins_pipe(ialu_reg_reg_shift); 11690 %} 11691 11692 // This pattern is automatically generated from aarch64_ad.m4 11693 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11694 // val & (-1 ^ (val >> shift)) ==> bic 11695 instruct AndL_reg_RShift_not_reg(iRegLNoSp dst, 11696 iRegL src1, iRegL src2, 11697 immI src3, immL_M1 src4) %{ 11698 match(Set dst (AndL src1 (XorL(RShiftL src2 src3) src4))); 11699 ins_cost(1.9 * INSN_COST); 11700 format %{ "bic $dst, $src1, $src2, ASR $src3" %} 11701 11702 ins_encode %{ 11703 __ bic(as_Register($dst$$reg), 11704 as_Register($src1$$reg), 11705 as_Register($src2$$reg), 11706 Assembler::ASR, 11707 $src3$$constant & 0x3f); 11708 %} 11709 11710 ins_pipe(ialu_reg_reg_shift); 11711 %} 11712 11713 // This pattern is automatically generated from aarch64_ad.m4 11714 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11715 // val & (-1 ^ (val ror shift)) ==> bicw 11716 instruct AndI_reg_RotateRight_not_reg(iRegINoSp dst, 11717 iRegIorL2I src1, iRegIorL2I src2, 11718 immI src3, immI_M1 src4) %{ 11719 match(Set dst (AndI src1 (XorI(RotateRight src2 src3) src4))); 11720 ins_cost(1.9 * INSN_COST); 11721 format %{ "bicw $dst, $src1, $src2, ROR $src3" %} 11722 11723 ins_encode %{ 11724 __ bicw(as_Register($dst$$reg), 11725 as_Register($src1$$reg), 11726 as_Register($src2$$reg), 11727 Assembler::ROR, 11728 $src3$$constant & 0x1f); 11729 %} 11730 11731 ins_pipe(ialu_reg_reg_shift); 11732 %} 11733 11734 // This pattern is automatically generated from aarch64_ad.m4 11735 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11736 // val & (-1 ^ (val ror shift)) ==> bic 11737 instruct AndL_reg_RotateRight_not_reg(iRegLNoSp dst, 11738 iRegL src1, iRegL src2, 11739 immI src3, immL_M1 src4) %{ 11740 match(Set dst (AndL src1 (XorL(RotateRight src2 src3) src4))); 11741 ins_cost(1.9 * INSN_COST); 11742 format %{ "bic $dst, $src1, $src2, ROR $src3" %} 11743 11744 ins_encode %{ 11745 __ bic(as_Register($dst$$reg), 11746 as_Register($src1$$reg), 11747 as_Register($src2$$reg), 11748 Assembler::ROR, 11749 $src3$$constant & 0x3f); 11750 %} 11751 11752 ins_pipe(ialu_reg_reg_shift); 11753 %} 11754 11755 // This pattern is automatically generated from aarch64_ad.m4 11756 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11757 // val & (-1 ^ (val << shift)) ==> bicw 11758 instruct AndI_reg_LShift_not_reg(iRegINoSp dst, 11759 iRegIorL2I src1, iRegIorL2I src2, 11760 immI src3, immI_M1 src4) %{ 11761 match(Set dst (AndI src1 (XorI(LShiftI src2 src3) src4))); 11762 ins_cost(1.9 * INSN_COST); 11763 format %{ "bicw $dst, $src1, $src2, LSL $src3" %} 11764 11765 ins_encode %{ 11766 __ bicw(as_Register($dst$$reg), 11767 as_Register($src1$$reg), 11768 as_Register($src2$$reg), 11769 Assembler::LSL, 11770 $src3$$constant & 0x1f); 11771 %} 11772 11773 ins_pipe(ialu_reg_reg_shift); 11774 %} 11775 11776 // This pattern is automatically generated from aarch64_ad.m4 11777 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11778 // val & (-1 ^ (val << shift)) ==> bic 11779 instruct AndL_reg_LShift_not_reg(iRegLNoSp dst, 11780 iRegL src1, iRegL src2, 11781 immI src3, immL_M1 src4) %{ 11782 match(Set dst (AndL src1 (XorL(LShiftL src2 src3) src4))); 11783 ins_cost(1.9 * INSN_COST); 11784 format %{ "bic $dst, $src1, $src2, LSL $src3" %} 11785 11786 ins_encode %{ 11787 __ bic(as_Register($dst$$reg), 11788 as_Register($src1$$reg), 11789 as_Register($src2$$reg), 11790 Assembler::LSL, 11791 $src3$$constant & 0x3f); 11792 %} 11793 11794 ins_pipe(ialu_reg_reg_shift); 11795 %} 11796 11797 // This pattern is automatically generated from aarch64_ad.m4 11798 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11799 // val ^ (-1 ^ (val >>> shift)) ==> eonw 11800 instruct XorI_reg_URShift_not_reg(iRegINoSp dst, 11801 iRegIorL2I src1, iRegIorL2I src2, 11802 immI src3, immI_M1 src4) %{ 11803 match(Set dst (XorI src4 (XorI(URShiftI src2 src3) src1))); 11804 ins_cost(1.9 * INSN_COST); 11805 format %{ "eonw $dst, $src1, $src2, LSR $src3" %} 11806 11807 ins_encode %{ 11808 __ eonw(as_Register($dst$$reg), 11809 as_Register($src1$$reg), 11810 as_Register($src2$$reg), 11811 Assembler::LSR, 11812 $src3$$constant & 0x1f); 11813 %} 11814 11815 ins_pipe(ialu_reg_reg_shift); 11816 %} 11817 11818 // This pattern is automatically generated from aarch64_ad.m4 11819 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11820 // val ^ (-1 ^ (val >>> shift)) ==> eon 11821 instruct XorL_reg_URShift_not_reg(iRegLNoSp dst, 11822 iRegL src1, iRegL src2, 11823 immI src3, immL_M1 src4) %{ 11824 match(Set dst (XorL src4 (XorL(URShiftL src2 src3) src1))); 11825 ins_cost(1.9 * INSN_COST); 11826 format %{ "eon $dst, $src1, $src2, LSR $src3" %} 11827 11828 ins_encode %{ 11829 __ eon(as_Register($dst$$reg), 11830 as_Register($src1$$reg), 11831 as_Register($src2$$reg), 11832 Assembler::LSR, 11833 $src3$$constant & 0x3f); 11834 %} 11835 11836 ins_pipe(ialu_reg_reg_shift); 11837 %} 11838 11839 // This pattern is automatically generated from aarch64_ad.m4 11840 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11841 // val ^ (-1 ^ (val >> shift)) ==> eonw 11842 instruct XorI_reg_RShift_not_reg(iRegINoSp dst, 11843 iRegIorL2I src1, iRegIorL2I src2, 11844 immI src3, immI_M1 src4) %{ 11845 match(Set dst (XorI src4 (XorI(RShiftI src2 src3) src1))); 11846 ins_cost(1.9 * INSN_COST); 11847 format %{ "eonw $dst, $src1, $src2, ASR $src3" %} 11848 11849 ins_encode %{ 11850 __ eonw(as_Register($dst$$reg), 11851 as_Register($src1$$reg), 11852 as_Register($src2$$reg), 11853 Assembler::ASR, 11854 $src3$$constant & 0x1f); 11855 %} 11856 11857 ins_pipe(ialu_reg_reg_shift); 11858 %} 11859 11860 // This pattern is automatically generated from aarch64_ad.m4 11861 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11862 // val ^ (-1 ^ (val >> shift)) ==> eon 11863 instruct XorL_reg_RShift_not_reg(iRegLNoSp dst, 11864 iRegL src1, iRegL src2, 11865 immI src3, immL_M1 src4) %{ 11866 match(Set dst (XorL src4 (XorL(RShiftL src2 src3) src1))); 11867 ins_cost(1.9 * INSN_COST); 11868 format %{ "eon $dst, $src1, $src2, ASR $src3" %} 11869 11870 ins_encode %{ 11871 __ eon(as_Register($dst$$reg), 11872 as_Register($src1$$reg), 11873 as_Register($src2$$reg), 11874 Assembler::ASR, 11875 $src3$$constant & 0x3f); 11876 %} 11877 11878 ins_pipe(ialu_reg_reg_shift); 11879 %} 11880 11881 // This pattern is automatically generated from aarch64_ad.m4 11882 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11883 // val ^ (-1 ^ (val ror shift)) ==> eonw 11884 instruct XorI_reg_RotateRight_not_reg(iRegINoSp dst, 11885 iRegIorL2I src1, iRegIorL2I src2, 11886 immI src3, immI_M1 src4) %{ 11887 match(Set dst (XorI src4 (XorI(RotateRight src2 src3) src1))); 11888 ins_cost(1.9 * INSN_COST); 11889 format %{ "eonw $dst, $src1, $src2, ROR $src3" %} 11890 11891 ins_encode %{ 11892 __ eonw(as_Register($dst$$reg), 11893 as_Register($src1$$reg), 11894 as_Register($src2$$reg), 11895 Assembler::ROR, 11896 $src3$$constant & 0x1f); 11897 %} 11898 11899 ins_pipe(ialu_reg_reg_shift); 11900 %} 11901 11902 // This pattern is automatically generated from aarch64_ad.m4 11903 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11904 // val ^ (-1 ^ (val ror shift)) ==> eon 11905 instruct XorL_reg_RotateRight_not_reg(iRegLNoSp dst, 11906 iRegL src1, iRegL src2, 11907 immI src3, immL_M1 src4) %{ 11908 match(Set dst (XorL src4 (XorL(RotateRight src2 src3) src1))); 11909 ins_cost(1.9 * INSN_COST); 11910 format %{ "eon $dst, $src1, $src2, ROR $src3" %} 11911 11912 ins_encode %{ 11913 __ eon(as_Register($dst$$reg), 11914 as_Register($src1$$reg), 11915 as_Register($src2$$reg), 11916 Assembler::ROR, 11917 $src3$$constant & 0x3f); 11918 %} 11919 11920 ins_pipe(ialu_reg_reg_shift); 11921 %} 11922 11923 // This pattern is automatically generated from aarch64_ad.m4 11924 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11925 // val ^ (-1 ^ (val << shift)) ==> eonw 11926 instruct XorI_reg_LShift_not_reg(iRegINoSp dst, 11927 iRegIorL2I src1, iRegIorL2I src2, 11928 immI src3, immI_M1 src4) %{ 11929 match(Set dst (XorI src4 (XorI(LShiftI src2 src3) src1))); 11930 ins_cost(1.9 * INSN_COST); 11931 format %{ "eonw $dst, $src1, $src2, LSL $src3" %} 11932 11933 ins_encode %{ 11934 __ eonw(as_Register($dst$$reg), 11935 as_Register($src1$$reg), 11936 as_Register($src2$$reg), 11937 Assembler::LSL, 11938 $src3$$constant & 0x1f); 11939 %} 11940 11941 ins_pipe(ialu_reg_reg_shift); 11942 %} 11943 11944 // This pattern is automatically generated from aarch64_ad.m4 11945 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11946 // val ^ (-1 ^ (val << shift)) ==> eon 11947 instruct XorL_reg_LShift_not_reg(iRegLNoSp dst, 11948 iRegL src1, iRegL src2, 11949 immI src3, immL_M1 src4) %{ 11950 match(Set dst (XorL src4 (XorL(LShiftL src2 src3) src1))); 11951 ins_cost(1.9 * INSN_COST); 11952 format %{ "eon $dst, $src1, $src2, LSL $src3" %} 11953 11954 ins_encode %{ 11955 __ eon(as_Register($dst$$reg), 11956 as_Register($src1$$reg), 11957 as_Register($src2$$reg), 11958 Assembler::LSL, 11959 $src3$$constant & 0x3f); 11960 %} 11961 11962 ins_pipe(ialu_reg_reg_shift); 11963 %} 11964 11965 // This pattern is automatically generated from aarch64_ad.m4 11966 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11967 // val | (-1 ^ (val >>> shift)) ==> ornw 11968 instruct OrI_reg_URShift_not_reg(iRegINoSp dst, 11969 iRegIorL2I src1, iRegIorL2I src2, 11970 immI src3, immI_M1 src4) %{ 11971 match(Set dst (OrI src1 (XorI(URShiftI src2 src3) src4))); 11972 ins_cost(1.9 * INSN_COST); 11973 format %{ "ornw $dst, $src1, $src2, LSR $src3" %} 11974 11975 ins_encode %{ 11976 __ ornw(as_Register($dst$$reg), 11977 as_Register($src1$$reg), 11978 as_Register($src2$$reg), 11979 Assembler::LSR, 11980 $src3$$constant & 0x1f); 11981 %} 11982 11983 ins_pipe(ialu_reg_reg_shift); 11984 %} 11985 11986 // This pattern is automatically generated from aarch64_ad.m4 11987 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 11988 // val | (-1 ^ (val >>> shift)) ==> orn 11989 instruct OrL_reg_URShift_not_reg(iRegLNoSp dst, 11990 iRegL src1, iRegL src2, 11991 immI src3, immL_M1 src4) %{ 11992 match(Set dst (OrL src1 (XorL(URShiftL src2 src3) src4))); 11993 ins_cost(1.9 * INSN_COST); 11994 format %{ "orn $dst, $src1, $src2, LSR $src3" %} 11995 11996 ins_encode %{ 11997 __ orn(as_Register($dst$$reg), 11998 as_Register($src1$$reg), 11999 as_Register($src2$$reg), 12000 Assembler::LSR, 12001 $src3$$constant & 0x3f); 12002 %} 12003 12004 ins_pipe(ialu_reg_reg_shift); 12005 %} 12006 12007 // This pattern is automatically generated from aarch64_ad.m4 12008 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12009 // val | (-1 ^ (val >> shift)) ==> ornw 12010 instruct OrI_reg_RShift_not_reg(iRegINoSp dst, 12011 iRegIorL2I src1, iRegIorL2I src2, 12012 immI src3, immI_M1 src4) %{ 12013 match(Set dst (OrI src1 (XorI(RShiftI src2 src3) src4))); 12014 ins_cost(1.9 * INSN_COST); 12015 format %{ "ornw $dst, $src1, $src2, ASR $src3" %} 12016 12017 ins_encode %{ 12018 __ ornw(as_Register($dst$$reg), 12019 as_Register($src1$$reg), 12020 as_Register($src2$$reg), 12021 Assembler::ASR, 12022 $src3$$constant & 0x1f); 12023 %} 12024 12025 ins_pipe(ialu_reg_reg_shift); 12026 %} 12027 12028 // This pattern is automatically generated from aarch64_ad.m4 12029 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12030 // val | (-1 ^ (val >> shift)) ==> orn 12031 instruct OrL_reg_RShift_not_reg(iRegLNoSp dst, 12032 iRegL src1, iRegL src2, 12033 immI src3, immL_M1 src4) %{ 12034 match(Set dst (OrL src1 (XorL(RShiftL src2 src3) src4))); 12035 ins_cost(1.9 * INSN_COST); 12036 format %{ "orn $dst, $src1, $src2, ASR $src3" %} 12037 12038 ins_encode %{ 12039 __ orn(as_Register($dst$$reg), 12040 as_Register($src1$$reg), 12041 as_Register($src2$$reg), 12042 Assembler::ASR, 12043 $src3$$constant & 0x3f); 12044 %} 12045 12046 ins_pipe(ialu_reg_reg_shift); 12047 %} 12048 12049 // This pattern is automatically generated from aarch64_ad.m4 12050 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12051 // val | (-1 ^ (val ror shift)) ==> ornw 12052 instruct OrI_reg_RotateRight_not_reg(iRegINoSp dst, 12053 iRegIorL2I src1, iRegIorL2I src2, 12054 immI src3, immI_M1 src4) %{ 12055 match(Set dst (OrI src1 (XorI(RotateRight src2 src3) src4))); 12056 ins_cost(1.9 * INSN_COST); 12057 format %{ "ornw $dst, $src1, $src2, ROR $src3" %} 12058 12059 ins_encode %{ 12060 __ ornw(as_Register($dst$$reg), 12061 as_Register($src1$$reg), 12062 as_Register($src2$$reg), 12063 Assembler::ROR, 12064 $src3$$constant & 0x1f); 12065 %} 12066 12067 ins_pipe(ialu_reg_reg_shift); 12068 %} 12069 12070 // This pattern is automatically generated from aarch64_ad.m4 12071 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12072 // val | (-1 ^ (val ror shift)) ==> orn 12073 instruct OrL_reg_RotateRight_not_reg(iRegLNoSp dst, 12074 iRegL src1, iRegL src2, 12075 immI src3, immL_M1 src4) %{ 12076 match(Set dst (OrL src1 (XorL(RotateRight src2 src3) src4))); 12077 ins_cost(1.9 * INSN_COST); 12078 format %{ "orn $dst, $src1, $src2, ROR $src3" %} 12079 12080 ins_encode %{ 12081 __ orn(as_Register($dst$$reg), 12082 as_Register($src1$$reg), 12083 as_Register($src2$$reg), 12084 Assembler::ROR, 12085 $src3$$constant & 0x3f); 12086 %} 12087 12088 ins_pipe(ialu_reg_reg_shift); 12089 %} 12090 12091 // This pattern is automatically generated from aarch64_ad.m4 12092 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12093 // val | (-1 ^ (val << shift)) ==> ornw 12094 instruct OrI_reg_LShift_not_reg(iRegINoSp dst, 12095 iRegIorL2I src1, iRegIorL2I src2, 12096 immI src3, immI_M1 src4) %{ 12097 match(Set dst (OrI src1 (XorI(LShiftI src2 src3) src4))); 12098 ins_cost(1.9 * INSN_COST); 12099 format %{ "ornw $dst, $src1, $src2, LSL $src3" %} 12100 12101 ins_encode %{ 12102 __ ornw(as_Register($dst$$reg), 12103 as_Register($src1$$reg), 12104 as_Register($src2$$reg), 12105 Assembler::LSL, 12106 $src3$$constant & 0x1f); 12107 %} 12108 12109 ins_pipe(ialu_reg_reg_shift); 12110 %} 12111 12112 // This pattern is automatically generated from aarch64_ad.m4 12113 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12114 // val | (-1 ^ (val << shift)) ==> orn 12115 instruct OrL_reg_LShift_not_reg(iRegLNoSp dst, 12116 iRegL src1, iRegL src2, 12117 immI src3, immL_M1 src4) %{ 12118 match(Set dst (OrL src1 (XorL(LShiftL src2 src3) src4))); 12119 ins_cost(1.9 * INSN_COST); 12120 format %{ "orn $dst, $src1, $src2, LSL $src3" %} 12121 12122 ins_encode %{ 12123 __ orn(as_Register($dst$$reg), 12124 as_Register($src1$$reg), 12125 as_Register($src2$$reg), 12126 Assembler::LSL, 12127 $src3$$constant & 0x3f); 12128 %} 12129 12130 ins_pipe(ialu_reg_reg_shift); 12131 %} 12132 12133 // This pattern is automatically generated from aarch64_ad.m4 12134 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12135 instruct AndI_reg_URShift_reg(iRegINoSp dst, 12136 iRegIorL2I src1, iRegIorL2I src2, 12137 immI src3) %{ 12138 match(Set dst (AndI src1 (URShiftI src2 src3))); 12139 12140 ins_cost(1.9 * INSN_COST); 12141 format %{ "andw $dst, $src1, $src2, LSR $src3" %} 12142 12143 ins_encode %{ 12144 __ andw(as_Register($dst$$reg), 12145 as_Register($src1$$reg), 12146 as_Register($src2$$reg), 12147 Assembler::LSR, 12148 $src3$$constant & 0x1f); 12149 %} 12150 12151 ins_pipe(ialu_reg_reg_shift); 12152 %} 12153 12154 // This pattern is automatically generated from aarch64_ad.m4 12155 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12156 instruct AndL_reg_URShift_reg(iRegLNoSp dst, 12157 iRegL src1, iRegL src2, 12158 immI src3) %{ 12159 match(Set dst (AndL src1 (URShiftL src2 src3))); 12160 12161 ins_cost(1.9 * INSN_COST); 12162 format %{ "andr $dst, $src1, $src2, LSR $src3" %} 12163 12164 ins_encode %{ 12165 __ andr(as_Register($dst$$reg), 12166 as_Register($src1$$reg), 12167 as_Register($src2$$reg), 12168 Assembler::LSR, 12169 $src3$$constant & 0x3f); 12170 %} 12171 12172 ins_pipe(ialu_reg_reg_shift); 12173 %} 12174 12175 // This pattern is automatically generated from aarch64_ad.m4 12176 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12177 instruct AndI_reg_RShift_reg(iRegINoSp dst, 12178 iRegIorL2I src1, iRegIorL2I src2, 12179 immI src3) %{ 12180 match(Set dst (AndI src1 (RShiftI src2 src3))); 12181 12182 ins_cost(1.9 * INSN_COST); 12183 format %{ "andw $dst, $src1, $src2, ASR $src3" %} 12184 12185 ins_encode %{ 12186 __ andw(as_Register($dst$$reg), 12187 as_Register($src1$$reg), 12188 as_Register($src2$$reg), 12189 Assembler::ASR, 12190 $src3$$constant & 0x1f); 12191 %} 12192 12193 ins_pipe(ialu_reg_reg_shift); 12194 %} 12195 12196 // This pattern is automatically generated from aarch64_ad.m4 12197 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12198 instruct AndL_reg_RShift_reg(iRegLNoSp dst, 12199 iRegL src1, iRegL src2, 12200 immI src3) %{ 12201 match(Set dst (AndL src1 (RShiftL src2 src3))); 12202 12203 ins_cost(1.9 * INSN_COST); 12204 format %{ "andr $dst, $src1, $src2, ASR $src3" %} 12205 12206 ins_encode %{ 12207 __ andr(as_Register($dst$$reg), 12208 as_Register($src1$$reg), 12209 as_Register($src2$$reg), 12210 Assembler::ASR, 12211 $src3$$constant & 0x3f); 12212 %} 12213 12214 ins_pipe(ialu_reg_reg_shift); 12215 %} 12216 12217 // This pattern is automatically generated from aarch64_ad.m4 12218 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12219 instruct AndI_reg_LShift_reg(iRegINoSp dst, 12220 iRegIorL2I src1, iRegIorL2I src2, 12221 immI src3) %{ 12222 match(Set dst (AndI src1 (LShiftI src2 src3))); 12223 12224 ins_cost(1.9 * INSN_COST); 12225 format %{ "andw $dst, $src1, $src2, LSL $src3" %} 12226 12227 ins_encode %{ 12228 __ andw(as_Register($dst$$reg), 12229 as_Register($src1$$reg), 12230 as_Register($src2$$reg), 12231 Assembler::LSL, 12232 $src3$$constant & 0x1f); 12233 %} 12234 12235 ins_pipe(ialu_reg_reg_shift); 12236 %} 12237 12238 // This pattern is automatically generated from aarch64_ad.m4 12239 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12240 instruct AndL_reg_LShift_reg(iRegLNoSp dst, 12241 iRegL src1, iRegL src2, 12242 immI src3) %{ 12243 match(Set dst (AndL src1 (LShiftL src2 src3))); 12244 12245 ins_cost(1.9 * INSN_COST); 12246 format %{ "andr $dst, $src1, $src2, LSL $src3" %} 12247 12248 ins_encode %{ 12249 __ andr(as_Register($dst$$reg), 12250 as_Register($src1$$reg), 12251 as_Register($src2$$reg), 12252 Assembler::LSL, 12253 $src3$$constant & 0x3f); 12254 %} 12255 12256 ins_pipe(ialu_reg_reg_shift); 12257 %} 12258 12259 // This pattern is automatically generated from aarch64_ad.m4 12260 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12261 instruct AndI_reg_RotateRight_reg(iRegINoSp dst, 12262 iRegIorL2I src1, iRegIorL2I src2, 12263 immI src3) %{ 12264 match(Set dst (AndI src1 (RotateRight src2 src3))); 12265 12266 ins_cost(1.9 * INSN_COST); 12267 format %{ "andw $dst, $src1, $src2, ROR $src3" %} 12268 12269 ins_encode %{ 12270 __ andw(as_Register($dst$$reg), 12271 as_Register($src1$$reg), 12272 as_Register($src2$$reg), 12273 Assembler::ROR, 12274 $src3$$constant & 0x1f); 12275 %} 12276 12277 ins_pipe(ialu_reg_reg_shift); 12278 %} 12279 12280 // This pattern is automatically generated from aarch64_ad.m4 12281 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12282 instruct AndL_reg_RotateRight_reg(iRegLNoSp dst, 12283 iRegL src1, iRegL src2, 12284 immI src3) %{ 12285 match(Set dst (AndL src1 (RotateRight src2 src3))); 12286 12287 ins_cost(1.9 * INSN_COST); 12288 format %{ "andr $dst, $src1, $src2, ROR $src3" %} 12289 12290 ins_encode %{ 12291 __ andr(as_Register($dst$$reg), 12292 as_Register($src1$$reg), 12293 as_Register($src2$$reg), 12294 Assembler::ROR, 12295 $src3$$constant & 0x3f); 12296 %} 12297 12298 ins_pipe(ialu_reg_reg_shift); 12299 %} 12300 12301 // This pattern is automatically generated from aarch64_ad.m4 12302 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12303 instruct XorI_reg_URShift_reg(iRegINoSp dst, 12304 iRegIorL2I src1, iRegIorL2I src2, 12305 immI src3) %{ 12306 match(Set dst (XorI src1 (URShiftI src2 src3))); 12307 12308 ins_cost(1.9 * INSN_COST); 12309 format %{ "eorw $dst, $src1, $src2, LSR $src3" %} 12310 12311 ins_encode %{ 12312 __ eorw(as_Register($dst$$reg), 12313 as_Register($src1$$reg), 12314 as_Register($src2$$reg), 12315 Assembler::LSR, 12316 $src3$$constant & 0x1f); 12317 %} 12318 12319 ins_pipe(ialu_reg_reg_shift); 12320 %} 12321 12322 // This pattern is automatically generated from aarch64_ad.m4 12323 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12324 instruct XorL_reg_URShift_reg(iRegLNoSp dst, 12325 iRegL src1, iRegL src2, 12326 immI src3) %{ 12327 match(Set dst (XorL src1 (URShiftL src2 src3))); 12328 12329 ins_cost(1.9 * INSN_COST); 12330 format %{ "eor $dst, $src1, $src2, LSR $src3" %} 12331 12332 ins_encode %{ 12333 __ eor(as_Register($dst$$reg), 12334 as_Register($src1$$reg), 12335 as_Register($src2$$reg), 12336 Assembler::LSR, 12337 $src3$$constant & 0x3f); 12338 %} 12339 12340 ins_pipe(ialu_reg_reg_shift); 12341 %} 12342 12343 // This pattern is automatically generated from aarch64_ad.m4 12344 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12345 instruct XorI_reg_RShift_reg(iRegINoSp dst, 12346 iRegIorL2I src1, iRegIorL2I src2, 12347 immI src3) %{ 12348 match(Set dst (XorI src1 (RShiftI src2 src3))); 12349 12350 ins_cost(1.9 * INSN_COST); 12351 format %{ "eorw $dst, $src1, $src2, ASR $src3" %} 12352 12353 ins_encode %{ 12354 __ eorw(as_Register($dst$$reg), 12355 as_Register($src1$$reg), 12356 as_Register($src2$$reg), 12357 Assembler::ASR, 12358 $src3$$constant & 0x1f); 12359 %} 12360 12361 ins_pipe(ialu_reg_reg_shift); 12362 %} 12363 12364 // This pattern is automatically generated from aarch64_ad.m4 12365 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12366 instruct XorL_reg_RShift_reg(iRegLNoSp dst, 12367 iRegL src1, iRegL src2, 12368 immI src3) %{ 12369 match(Set dst (XorL src1 (RShiftL src2 src3))); 12370 12371 ins_cost(1.9 * INSN_COST); 12372 format %{ "eor $dst, $src1, $src2, ASR $src3" %} 12373 12374 ins_encode %{ 12375 __ eor(as_Register($dst$$reg), 12376 as_Register($src1$$reg), 12377 as_Register($src2$$reg), 12378 Assembler::ASR, 12379 $src3$$constant & 0x3f); 12380 %} 12381 12382 ins_pipe(ialu_reg_reg_shift); 12383 %} 12384 12385 // This pattern is automatically generated from aarch64_ad.m4 12386 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12387 instruct XorI_reg_LShift_reg(iRegINoSp dst, 12388 iRegIorL2I src1, iRegIorL2I src2, 12389 immI src3) %{ 12390 match(Set dst (XorI src1 (LShiftI src2 src3))); 12391 12392 ins_cost(1.9 * INSN_COST); 12393 format %{ "eorw $dst, $src1, $src2, LSL $src3" %} 12394 12395 ins_encode %{ 12396 __ eorw(as_Register($dst$$reg), 12397 as_Register($src1$$reg), 12398 as_Register($src2$$reg), 12399 Assembler::LSL, 12400 $src3$$constant & 0x1f); 12401 %} 12402 12403 ins_pipe(ialu_reg_reg_shift); 12404 %} 12405 12406 // This pattern is automatically generated from aarch64_ad.m4 12407 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12408 instruct XorL_reg_LShift_reg(iRegLNoSp dst, 12409 iRegL src1, iRegL src2, 12410 immI src3) %{ 12411 match(Set dst (XorL src1 (LShiftL src2 src3))); 12412 12413 ins_cost(1.9 * INSN_COST); 12414 format %{ "eor $dst, $src1, $src2, LSL $src3" %} 12415 12416 ins_encode %{ 12417 __ eor(as_Register($dst$$reg), 12418 as_Register($src1$$reg), 12419 as_Register($src2$$reg), 12420 Assembler::LSL, 12421 $src3$$constant & 0x3f); 12422 %} 12423 12424 ins_pipe(ialu_reg_reg_shift); 12425 %} 12426 12427 // This pattern is automatically generated from aarch64_ad.m4 12428 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12429 instruct XorI_reg_RotateRight_reg(iRegINoSp dst, 12430 iRegIorL2I src1, iRegIorL2I src2, 12431 immI src3) %{ 12432 match(Set dst (XorI src1 (RotateRight src2 src3))); 12433 12434 ins_cost(1.9 * INSN_COST); 12435 format %{ "eorw $dst, $src1, $src2, ROR $src3" %} 12436 12437 ins_encode %{ 12438 __ eorw(as_Register($dst$$reg), 12439 as_Register($src1$$reg), 12440 as_Register($src2$$reg), 12441 Assembler::ROR, 12442 $src3$$constant & 0x1f); 12443 %} 12444 12445 ins_pipe(ialu_reg_reg_shift); 12446 %} 12447 12448 // This pattern is automatically generated from aarch64_ad.m4 12449 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12450 instruct XorL_reg_RotateRight_reg(iRegLNoSp dst, 12451 iRegL src1, iRegL src2, 12452 immI src3) %{ 12453 match(Set dst (XorL src1 (RotateRight src2 src3))); 12454 12455 ins_cost(1.9 * INSN_COST); 12456 format %{ "eor $dst, $src1, $src2, ROR $src3" %} 12457 12458 ins_encode %{ 12459 __ eor(as_Register($dst$$reg), 12460 as_Register($src1$$reg), 12461 as_Register($src2$$reg), 12462 Assembler::ROR, 12463 $src3$$constant & 0x3f); 12464 %} 12465 12466 ins_pipe(ialu_reg_reg_shift); 12467 %} 12468 12469 // This pattern is automatically generated from aarch64_ad.m4 12470 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12471 instruct OrI_reg_URShift_reg(iRegINoSp dst, 12472 iRegIorL2I src1, iRegIorL2I src2, 12473 immI src3) %{ 12474 match(Set dst (OrI src1 (URShiftI src2 src3))); 12475 12476 ins_cost(1.9 * INSN_COST); 12477 format %{ "orrw $dst, $src1, $src2, LSR $src3" %} 12478 12479 ins_encode %{ 12480 __ orrw(as_Register($dst$$reg), 12481 as_Register($src1$$reg), 12482 as_Register($src2$$reg), 12483 Assembler::LSR, 12484 $src3$$constant & 0x1f); 12485 %} 12486 12487 ins_pipe(ialu_reg_reg_shift); 12488 %} 12489 12490 // This pattern is automatically generated from aarch64_ad.m4 12491 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12492 instruct OrL_reg_URShift_reg(iRegLNoSp dst, 12493 iRegL src1, iRegL src2, 12494 immI src3) %{ 12495 match(Set dst (OrL src1 (URShiftL src2 src3))); 12496 12497 ins_cost(1.9 * INSN_COST); 12498 format %{ "orr $dst, $src1, $src2, LSR $src3" %} 12499 12500 ins_encode %{ 12501 __ orr(as_Register($dst$$reg), 12502 as_Register($src1$$reg), 12503 as_Register($src2$$reg), 12504 Assembler::LSR, 12505 $src3$$constant & 0x3f); 12506 %} 12507 12508 ins_pipe(ialu_reg_reg_shift); 12509 %} 12510 12511 // This pattern is automatically generated from aarch64_ad.m4 12512 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12513 instruct OrI_reg_RShift_reg(iRegINoSp dst, 12514 iRegIorL2I src1, iRegIorL2I src2, 12515 immI src3) %{ 12516 match(Set dst (OrI src1 (RShiftI src2 src3))); 12517 12518 ins_cost(1.9 * INSN_COST); 12519 format %{ "orrw $dst, $src1, $src2, ASR $src3" %} 12520 12521 ins_encode %{ 12522 __ orrw(as_Register($dst$$reg), 12523 as_Register($src1$$reg), 12524 as_Register($src2$$reg), 12525 Assembler::ASR, 12526 $src3$$constant & 0x1f); 12527 %} 12528 12529 ins_pipe(ialu_reg_reg_shift); 12530 %} 12531 12532 // This pattern is automatically generated from aarch64_ad.m4 12533 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12534 instruct OrL_reg_RShift_reg(iRegLNoSp dst, 12535 iRegL src1, iRegL src2, 12536 immI src3) %{ 12537 match(Set dst (OrL src1 (RShiftL src2 src3))); 12538 12539 ins_cost(1.9 * INSN_COST); 12540 format %{ "orr $dst, $src1, $src2, ASR $src3" %} 12541 12542 ins_encode %{ 12543 __ orr(as_Register($dst$$reg), 12544 as_Register($src1$$reg), 12545 as_Register($src2$$reg), 12546 Assembler::ASR, 12547 $src3$$constant & 0x3f); 12548 %} 12549 12550 ins_pipe(ialu_reg_reg_shift); 12551 %} 12552 12553 // This pattern is automatically generated from aarch64_ad.m4 12554 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12555 instruct OrI_reg_LShift_reg(iRegINoSp dst, 12556 iRegIorL2I src1, iRegIorL2I src2, 12557 immI src3) %{ 12558 match(Set dst (OrI src1 (LShiftI src2 src3))); 12559 12560 ins_cost(1.9 * INSN_COST); 12561 format %{ "orrw $dst, $src1, $src2, LSL $src3" %} 12562 12563 ins_encode %{ 12564 __ orrw(as_Register($dst$$reg), 12565 as_Register($src1$$reg), 12566 as_Register($src2$$reg), 12567 Assembler::LSL, 12568 $src3$$constant & 0x1f); 12569 %} 12570 12571 ins_pipe(ialu_reg_reg_shift); 12572 %} 12573 12574 // This pattern is automatically generated from aarch64_ad.m4 12575 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12576 instruct OrL_reg_LShift_reg(iRegLNoSp dst, 12577 iRegL src1, iRegL src2, 12578 immI src3) %{ 12579 match(Set dst (OrL src1 (LShiftL src2 src3))); 12580 12581 ins_cost(1.9 * INSN_COST); 12582 format %{ "orr $dst, $src1, $src2, LSL $src3" %} 12583 12584 ins_encode %{ 12585 __ orr(as_Register($dst$$reg), 12586 as_Register($src1$$reg), 12587 as_Register($src2$$reg), 12588 Assembler::LSL, 12589 $src3$$constant & 0x3f); 12590 %} 12591 12592 ins_pipe(ialu_reg_reg_shift); 12593 %} 12594 12595 // This pattern is automatically generated from aarch64_ad.m4 12596 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12597 instruct OrI_reg_RotateRight_reg(iRegINoSp dst, 12598 iRegIorL2I src1, iRegIorL2I src2, 12599 immI src3) %{ 12600 match(Set dst (OrI src1 (RotateRight src2 src3))); 12601 12602 ins_cost(1.9 * INSN_COST); 12603 format %{ "orrw $dst, $src1, $src2, ROR $src3" %} 12604 12605 ins_encode %{ 12606 __ orrw(as_Register($dst$$reg), 12607 as_Register($src1$$reg), 12608 as_Register($src2$$reg), 12609 Assembler::ROR, 12610 $src3$$constant & 0x1f); 12611 %} 12612 12613 ins_pipe(ialu_reg_reg_shift); 12614 %} 12615 12616 // This pattern is automatically generated from aarch64_ad.m4 12617 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12618 instruct OrL_reg_RotateRight_reg(iRegLNoSp dst, 12619 iRegL src1, iRegL src2, 12620 immI src3) %{ 12621 match(Set dst (OrL src1 (RotateRight src2 src3))); 12622 12623 ins_cost(1.9 * INSN_COST); 12624 format %{ "orr $dst, $src1, $src2, ROR $src3" %} 12625 12626 ins_encode %{ 12627 __ orr(as_Register($dst$$reg), 12628 as_Register($src1$$reg), 12629 as_Register($src2$$reg), 12630 Assembler::ROR, 12631 $src3$$constant & 0x3f); 12632 %} 12633 12634 ins_pipe(ialu_reg_reg_shift); 12635 %} 12636 12637 // This pattern is automatically generated from aarch64_ad.m4 12638 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12639 instruct AddI_reg_URShift_reg(iRegINoSp dst, 12640 iRegIorL2I src1, iRegIorL2I src2, 12641 immI src3) %{ 12642 match(Set dst (AddI src1 (URShiftI src2 src3))); 12643 12644 ins_cost(1.9 * INSN_COST); 12645 format %{ "addw $dst, $src1, $src2, LSR $src3" %} 12646 12647 ins_encode %{ 12648 __ addw(as_Register($dst$$reg), 12649 as_Register($src1$$reg), 12650 as_Register($src2$$reg), 12651 Assembler::LSR, 12652 $src3$$constant & 0x1f); 12653 %} 12654 12655 ins_pipe(ialu_reg_reg_shift); 12656 %} 12657 12658 // This pattern is automatically generated from aarch64_ad.m4 12659 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12660 instruct AddL_reg_URShift_reg(iRegLNoSp dst, 12661 iRegL src1, iRegL src2, 12662 immI src3) %{ 12663 match(Set dst (AddL src1 (URShiftL src2 src3))); 12664 12665 ins_cost(1.9 * INSN_COST); 12666 format %{ "add $dst, $src1, $src2, LSR $src3" %} 12667 12668 ins_encode %{ 12669 __ add(as_Register($dst$$reg), 12670 as_Register($src1$$reg), 12671 as_Register($src2$$reg), 12672 Assembler::LSR, 12673 $src3$$constant & 0x3f); 12674 %} 12675 12676 ins_pipe(ialu_reg_reg_shift); 12677 %} 12678 12679 // This pattern is automatically generated from aarch64_ad.m4 12680 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12681 instruct AddI_reg_RShift_reg(iRegINoSp dst, 12682 iRegIorL2I src1, iRegIorL2I src2, 12683 immI src3) %{ 12684 match(Set dst (AddI src1 (RShiftI src2 src3))); 12685 12686 ins_cost(1.9 * INSN_COST); 12687 format %{ "addw $dst, $src1, $src2, ASR $src3" %} 12688 12689 ins_encode %{ 12690 __ addw(as_Register($dst$$reg), 12691 as_Register($src1$$reg), 12692 as_Register($src2$$reg), 12693 Assembler::ASR, 12694 $src3$$constant & 0x1f); 12695 %} 12696 12697 ins_pipe(ialu_reg_reg_shift); 12698 %} 12699 12700 // This pattern is automatically generated from aarch64_ad.m4 12701 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12702 instruct AddL_reg_RShift_reg(iRegLNoSp dst, 12703 iRegL src1, iRegL src2, 12704 immI src3) %{ 12705 match(Set dst (AddL src1 (RShiftL src2 src3))); 12706 12707 ins_cost(1.9 * INSN_COST); 12708 format %{ "add $dst, $src1, $src2, ASR $src3" %} 12709 12710 ins_encode %{ 12711 __ add(as_Register($dst$$reg), 12712 as_Register($src1$$reg), 12713 as_Register($src2$$reg), 12714 Assembler::ASR, 12715 $src3$$constant & 0x3f); 12716 %} 12717 12718 ins_pipe(ialu_reg_reg_shift); 12719 %} 12720 12721 // This pattern is automatically generated from aarch64_ad.m4 12722 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12723 instruct AddI_reg_LShift_reg(iRegINoSp dst, 12724 iRegIorL2I src1, iRegIorL2I src2, 12725 immI src3) %{ 12726 match(Set dst (AddI src1 (LShiftI src2 src3))); 12727 12728 ins_cost(1.9 * INSN_COST); 12729 format %{ "addw $dst, $src1, $src2, LSL $src3" %} 12730 12731 ins_encode %{ 12732 __ addw(as_Register($dst$$reg), 12733 as_Register($src1$$reg), 12734 as_Register($src2$$reg), 12735 Assembler::LSL, 12736 $src3$$constant & 0x1f); 12737 %} 12738 12739 ins_pipe(ialu_reg_reg_shift); 12740 %} 12741 12742 // This pattern is automatically generated from aarch64_ad.m4 12743 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12744 instruct AddL_reg_LShift_reg(iRegLNoSp dst, 12745 iRegL src1, iRegL src2, 12746 immI src3) %{ 12747 match(Set dst (AddL src1 (LShiftL src2 src3))); 12748 12749 ins_cost(1.9 * INSN_COST); 12750 format %{ "add $dst, $src1, $src2, LSL $src3" %} 12751 12752 ins_encode %{ 12753 __ add(as_Register($dst$$reg), 12754 as_Register($src1$$reg), 12755 as_Register($src2$$reg), 12756 Assembler::LSL, 12757 $src3$$constant & 0x3f); 12758 %} 12759 12760 ins_pipe(ialu_reg_reg_shift); 12761 %} 12762 12763 // This pattern is automatically generated from aarch64_ad.m4 12764 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12765 instruct SubI_reg_URShift_reg(iRegINoSp dst, 12766 iRegIorL2I src1, iRegIorL2I src2, 12767 immI src3) %{ 12768 match(Set dst (SubI src1 (URShiftI src2 src3))); 12769 12770 ins_cost(1.9 * INSN_COST); 12771 format %{ "subw $dst, $src1, $src2, LSR $src3" %} 12772 12773 ins_encode %{ 12774 __ subw(as_Register($dst$$reg), 12775 as_Register($src1$$reg), 12776 as_Register($src2$$reg), 12777 Assembler::LSR, 12778 $src3$$constant & 0x1f); 12779 %} 12780 12781 ins_pipe(ialu_reg_reg_shift); 12782 %} 12783 12784 // This pattern is automatically generated from aarch64_ad.m4 12785 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12786 instruct SubL_reg_URShift_reg(iRegLNoSp dst, 12787 iRegL src1, iRegL src2, 12788 immI src3) %{ 12789 match(Set dst (SubL src1 (URShiftL src2 src3))); 12790 12791 ins_cost(1.9 * INSN_COST); 12792 format %{ "sub $dst, $src1, $src2, LSR $src3" %} 12793 12794 ins_encode %{ 12795 __ sub(as_Register($dst$$reg), 12796 as_Register($src1$$reg), 12797 as_Register($src2$$reg), 12798 Assembler::LSR, 12799 $src3$$constant & 0x3f); 12800 %} 12801 12802 ins_pipe(ialu_reg_reg_shift); 12803 %} 12804 12805 // This pattern is automatically generated from aarch64_ad.m4 12806 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12807 instruct SubI_reg_RShift_reg(iRegINoSp dst, 12808 iRegIorL2I src1, iRegIorL2I src2, 12809 immI src3) %{ 12810 match(Set dst (SubI src1 (RShiftI src2 src3))); 12811 12812 ins_cost(1.9 * INSN_COST); 12813 format %{ "subw $dst, $src1, $src2, ASR $src3" %} 12814 12815 ins_encode %{ 12816 __ subw(as_Register($dst$$reg), 12817 as_Register($src1$$reg), 12818 as_Register($src2$$reg), 12819 Assembler::ASR, 12820 $src3$$constant & 0x1f); 12821 %} 12822 12823 ins_pipe(ialu_reg_reg_shift); 12824 %} 12825 12826 // This pattern is automatically generated from aarch64_ad.m4 12827 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12828 instruct SubL_reg_RShift_reg(iRegLNoSp dst, 12829 iRegL src1, iRegL src2, 12830 immI src3) %{ 12831 match(Set dst (SubL src1 (RShiftL src2 src3))); 12832 12833 ins_cost(1.9 * INSN_COST); 12834 format %{ "sub $dst, $src1, $src2, ASR $src3" %} 12835 12836 ins_encode %{ 12837 __ sub(as_Register($dst$$reg), 12838 as_Register($src1$$reg), 12839 as_Register($src2$$reg), 12840 Assembler::ASR, 12841 $src3$$constant & 0x3f); 12842 %} 12843 12844 ins_pipe(ialu_reg_reg_shift); 12845 %} 12846 12847 // This pattern is automatically generated from aarch64_ad.m4 12848 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12849 instruct SubI_reg_LShift_reg(iRegINoSp dst, 12850 iRegIorL2I src1, iRegIorL2I src2, 12851 immI src3) %{ 12852 match(Set dst (SubI src1 (LShiftI src2 src3))); 12853 12854 ins_cost(1.9 * INSN_COST); 12855 format %{ "subw $dst, $src1, $src2, LSL $src3" %} 12856 12857 ins_encode %{ 12858 __ subw(as_Register($dst$$reg), 12859 as_Register($src1$$reg), 12860 as_Register($src2$$reg), 12861 Assembler::LSL, 12862 $src3$$constant & 0x1f); 12863 %} 12864 12865 ins_pipe(ialu_reg_reg_shift); 12866 %} 12867 12868 // This pattern is automatically generated from aarch64_ad.m4 12869 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12870 instruct SubL_reg_LShift_reg(iRegLNoSp dst, 12871 iRegL src1, iRegL src2, 12872 immI src3) %{ 12873 match(Set dst (SubL src1 (LShiftL src2 src3))); 12874 12875 ins_cost(1.9 * INSN_COST); 12876 format %{ "sub $dst, $src1, $src2, LSL $src3" %} 12877 12878 ins_encode %{ 12879 __ sub(as_Register($dst$$reg), 12880 as_Register($src1$$reg), 12881 as_Register($src2$$reg), 12882 Assembler::LSL, 12883 $src3$$constant & 0x3f); 12884 %} 12885 12886 ins_pipe(ialu_reg_reg_shift); 12887 %} 12888 12889 // This pattern is automatically generated from aarch64_ad.m4 12890 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12891 12892 // Shift Left followed by Shift Right. 12893 // This idiom is used by the compiler for the i2b bytecode etc. 12894 instruct sbfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count) 12895 %{ 12896 match(Set dst (RShiftL (LShiftL src lshift_count) rshift_count)); 12897 ins_cost(INSN_COST * 2); 12898 format %{ "sbfm $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %} 12899 ins_encode %{ 12900 int lshift = $lshift_count$$constant & 63; 12901 int rshift = $rshift_count$$constant & 63; 12902 int s = 63 - lshift; 12903 int r = (rshift - lshift) & 63; 12904 __ sbfm(as_Register($dst$$reg), 12905 as_Register($src$$reg), 12906 r, s); 12907 %} 12908 12909 ins_pipe(ialu_reg_shift); 12910 %} 12911 12912 // This pattern is automatically generated from aarch64_ad.m4 12913 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12914 12915 // Shift Left followed by Shift Right. 12916 // This idiom is used by the compiler for the i2b bytecode etc. 12917 instruct sbfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count) 12918 %{ 12919 match(Set dst (RShiftI (LShiftI src lshift_count) rshift_count)); 12920 ins_cost(INSN_COST * 2); 12921 format %{ "sbfmw $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %} 12922 ins_encode %{ 12923 int lshift = $lshift_count$$constant & 31; 12924 int rshift = $rshift_count$$constant & 31; 12925 int s = 31 - lshift; 12926 int r = (rshift - lshift) & 31; 12927 __ sbfmw(as_Register($dst$$reg), 12928 as_Register($src$$reg), 12929 r, s); 12930 %} 12931 12932 ins_pipe(ialu_reg_shift); 12933 %} 12934 12935 // This pattern is automatically generated from aarch64_ad.m4 12936 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12937 12938 // Shift Left followed by Shift Right. 12939 // This idiom is used by the compiler for the i2b bytecode etc. 12940 instruct ubfmL(iRegLNoSp dst, iRegL src, immI lshift_count, immI rshift_count) 12941 %{ 12942 match(Set dst (URShiftL (LShiftL src lshift_count) rshift_count)); 12943 ins_cost(INSN_COST * 2); 12944 format %{ "ubfm $dst, $src, $rshift_count - $lshift_count, #63 - $lshift_count" %} 12945 ins_encode %{ 12946 int lshift = $lshift_count$$constant & 63; 12947 int rshift = $rshift_count$$constant & 63; 12948 int s = 63 - lshift; 12949 int r = (rshift - lshift) & 63; 12950 __ ubfm(as_Register($dst$$reg), 12951 as_Register($src$$reg), 12952 r, s); 12953 %} 12954 12955 ins_pipe(ialu_reg_shift); 12956 %} 12957 12958 // This pattern is automatically generated from aarch64_ad.m4 12959 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12960 12961 // Shift Left followed by Shift Right. 12962 // This idiom is used by the compiler for the i2b bytecode etc. 12963 instruct ubfmwI(iRegINoSp dst, iRegIorL2I src, immI lshift_count, immI rshift_count) 12964 %{ 12965 match(Set dst (URShiftI (LShiftI src lshift_count) rshift_count)); 12966 ins_cost(INSN_COST * 2); 12967 format %{ "ubfmw $dst, $src, $rshift_count - $lshift_count, #31 - $lshift_count" %} 12968 ins_encode %{ 12969 int lshift = $lshift_count$$constant & 31; 12970 int rshift = $rshift_count$$constant & 31; 12971 int s = 31 - lshift; 12972 int r = (rshift - lshift) & 31; 12973 __ ubfmw(as_Register($dst$$reg), 12974 as_Register($src$$reg), 12975 r, s); 12976 %} 12977 12978 ins_pipe(ialu_reg_shift); 12979 %} 12980 12981 // Bitfield extract with shift & mask 12982 12983 // This pattern is automatically generated from aarch64_ad.m4 12984 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 12985 instruct ubfxwI(iRegINoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask) 12986 %{ 12987 match(Set dst (AndI (URShiftI src rshift) mask)); 12988 // Make sure we are not going to exceed what ubfxw can do. 12989 predicate((exact_log2(n->in(2)->get_int() + 1) + (n->in(1)->in(2)->get_int() & 31)) <= (31 + 1)); 12990 12991 ins_cost(INSN_COST); 12992 format %{ "ubfxw $dst, $src, $rshift, $mask" %} 12993 ins_encode %{ 12994 int rshift = $rshift$$constant & 31; 12995 intptr_t mask = $mask$$constant; 12996 int width = exact_log2(mask+1); 12997 __ ubfxw(as_Register($dst$$reg), 12998 as_Register($src$$reg), rshift, width); 12999 %} 13000 ins_pipe(ialu_reg_shift); 13001 %} 13002 13003 // This pattern is automatically generated from aarch64_ad.m4 13004 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13005 instruct ubfxL(iRegLNoSp dst, iRegL src, immI rshift, immL_bitmask mask) 13006 %{ 13007 match(Set dst (AndL (URShiftL src rshift) mask)); 13008 // Make sure we are not going to exceed what ubfx can do. 13009 predicate((exact_log2_long(n->in(2)->get_long() + 1) + (n->in(1)->in(2)->get_int() & 63)) <= (63 + 1)); 13010 13011 ins_cost(INSN_COST); 13012 format %{ "ubfx $dst, $src, $rshift, $mask" %} 13013 ins_encode %{ 13014 int rshift = $rshift$$constant & 63; 13015 intptr_t mask = $mask$$constant; 13016 int width = exact_log2_long(mask+1); 13017 __ ubfx(as_Register($dst$$reg), 13018 as_Register($src$$reg), rshift, width); 13019 %} 13020 ins_pipe(ialu_reg_shift); 13021 %} 13022 13023 13024 // This pattern is automatically generated from aarch64_ad.m4 13025 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13026 13027 // We can use ubfx when extending an And with a mask when we know mask 13028 // is positive. We know that because immI_bitmask guarantees it. 13029 instruct ubfxIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI rshift, immI_bitmask mask) 13030 %{ 13031 match(Set dst (ConvI2L (AndI (URShiftI src rshift) mask))); 13032 // Make sure we are not going to exceed what ubfxw can do. 13033 predicate((exact_log2(n->in(1)->in(2)->get_int() + 1) + (n->in(1)->in(1)->in(2)->get_int() & 31)) <= (31 + 1)); 13034 13035 ins_cost(INSN_COST * 2); 13036 format %{ "ubfx $dst, $src, $rshift, $mask" %} 13037 ins_encode %{ 13038 int rshift = $rshift$$constant & 31; 13039 intptr_t mask = $mask$$constant; 13040 int width = exact_log2(mask+1); 13041 __ ubfx(as_Register($dst$$reg), 13042 as_Register($src$$reg), rshift, width); 13043 %} 13044 ins_pipe(ialu_reg_shift); 13045 %} 13046 13047 13048 // This pattern is automatically generated from aarch64_ad.m4 13049 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13050 13051 // We can use ubfiz when masking by a positive number and then left shifting the result. 13052 // We know that the mask is positive because immI_bitmask guarantees it. 13053 instruct ubfizwI(iRegINoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask) 13054 %{ 13055 match(Set dst (LShiftI (AndI src mask) lshift)); 13056 predicate((exact_log2(n->in(1)->in(2)->get_int() + 1) + (n->in(2)->get_int() & 31)) <= (31 + 1)); 13057 13058 ins_cost(INSN_COST); 13059 format %{ "ubfizw $dst, $src, $lshift, $mask" %} 13060 ins_encode %{ 13061 int lshift = $lshift$$constant & 31; 13062 intptr_t mask = $mask$$constant; 13063 int width = exact_log2(mask+1); 13064 __ ubfizw(as_Register($dst$$reg), 13065 as_Register($src$$reg), lshift, width); 13066 %} 13067 ins_pipe(ialu_reg_shift); 13068 %} 13069 13070 // This pattern is automatically generated from aarch64_ad.m4 13071 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13072 13073 // We can use ubfiz when masking by a positive number and then left shifting the result. 13074 // We know that the mask is positive because immL_bitmask guarantees it. 13075 instruct ubfizL(iRegLNoSp dst, iRegL src, immI lshift, immL_bitmask mask) 13076 %{ 13077 match(Set dst (LShiftL (AndL src mask) lshift)); 13078 predicate((exact_log2_long(n->in(1)->in(2)->get_long() + 1) + (n->in(2)->get_int() & 63)) <= (63 + 1)); 13079 13080 ins_cost(INSN_COST); 13081 format %{ "ubfiz $dst, $src, $lshift, $mask" %} 13082 ins_encode %{ 13083 int lshift = $lshift$$constant & 63; 13084 intptr_t mask = $mask$$constant; 13085 int width = exact_log2_long(mask+1); 13086 __ ubfiz(as_Register($dst$$reg), 13087 as_Register($src$$reg), lshift, width); 13088 %} 13089 ins_pipe(ialu_reg_shift); 13090 %} 13091 13092 // This pattern is automatically generated from aarch64_ad.m4 13093 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13094 13095 // We can use ubfiz when masking by a positive number and then left shifting the result. 13096 // We know that the mask is positive because immI_bitmask guarantees it. 13097 instruct ubfizwIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask) 13098 %{ 13099 match(Set dst (ConvI2L (LShiftI (AndI src mask) lshift))); 13100 predicate((exact_log2(n->in(1)->in(1)->in(2)->get_int() + 1) + (n->in(1)->in(2)->get_int() & 31)) <= 31); 13101 13102 ins_cost(INSN_COST); 13103 format %{ "ubfizw $dst, $src, $lshift, $mask" %} 13104 ins_encode %{ 13105 int lshift = $lshift$$constant & 31; 13106 intptr_t mask = $mask$$constant; 13107 int width = exact_log2(mask+1); 13108 __ ubfizw(as_Register($dst$$reg), 13109 as_Register($src$$reg), lshift, width); 13110 %} 13111 ins_pipe(ialu_reg_shift); 13112 %} 13113 13114 // This pattern is automatically generated from aarch64_ad.m4 13115 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13116 13117 // We can use ubfiz when masking by a positive number and then left shifting the result. 13118 // We know that the mask is positive because immL_bitmask guarantees it. 13119 instruct ubfizLConvL2I(iRegINoSp dst, iRegL src, immI lshift, immL_positive_bitmaskI mask) 13120 %{ 13121 match(Set dst (ConvL2I (LShiftL (AndL src mask) lshift))); 13122 predicate((exact_log2_long(n->in(1)->in(1)->in(2)->get_long() + 1) + (n->in(1)->in(2)->get_int() & 63)) <= 31); 13123 13124 ins_cost(INSN_COST); 13125 format %{ "ubfiz $dst, $src, $lshift, $mask" %} 13126 ins_encode %{ 13127 int lshift = $lshift$$constant & 63; 13128 intptr_t mask = $mask$$constant; 13129 int width = exact_log2_long(mask+1); 13130 __ ubfiz(as_Register($dst$$reg), 13131 as_Register($src$$reg), lshift, width); 13132 %} 13133 ins_pipe(ialu_reg_shift); 13134 %} 13135 13136 13137 // This pattern is automatically generated from aarch64_ad.m4 13138 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13139 13140 // If there is a convert I to L block between and AndI and a LShiftL, we can also match ubfiz 13141 instruct ubfizIConvI2L(iRegLNoSp dst, iRegIorL2I src, immI lshift, immI_bitmask mask) 13142 %{ 13143 match(Set dst (LShiftL (ConvI2L (AndI src mask)) lshift)); 13144 predicate((exact_log2(n->in(1)->in(1)->in(2)->get_int() + 1) + (n->in(2)->get_int() & 63)) <= (63 + 1)); 13145 13146 ins_cost(INSN_COST); 13147 format %{ "ubfiz $dst, $src, $lshift, $mask" %} 13148 ins_encode %{ 13149 int lshift = $lshift$$constant & 63; 13150 intptr_t mask = $mask$$constant; 13151 int width = exact_log2(mask+1); 13152 __ ubfiz(as_Register($dst$$reg), 13153 as_Register($src$$reg), lshift, width); 13154 %} 13155 ins_pipe(ialu_reg_shift); 13156 %} 13157 13158 // This pattern is automatically generated from aarch64_ad.m4 13159 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13160 13161 // If there is a convert L to I block between and AndL and a LShiftI, we can also match ubfiz 13162 instruct ubfizLConvL2Ix(iRegINoSp dst, iRegL src, immI lshift, immL_positive_bitmaskI mask) 13163 %{ 13164 match(Set dst (LShiftI (ConvL2I (AndL src mask)) lshift)); 13165 predicate((exact_log2_long(n->in(1)->in(1)->in(2)->get_long() + 1) + (n->in(2)->get_int() & 31)) <= 31); 13166 13167 ins_cost(INSN_COST); 13168 format %{ "ubfiz $dst, $src, $lshift, $mask" %} 13169 ins_encode %{ 13170 int lshift = $lshift$$constant & 31; 13171 intptr_t mask = $mask$$constant; 13172 int width = exact_log2(mask+1); 13173 __ ubfiz(as_Register($dst$$reg), 13174 as_Register($src$$reg), lshift, width); 13175 %} 13176 ins_pipe(ialu_reg_shift); 13177 %} 13178 13179 // This pattern is automatically generated from aarch64_ad.m4 13180 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13181 13182 // Can skip int2long conversions after AND with small bitmask 13183 instruct ubfizIConvI2LAndI(iRegLNoSp dst, iRegI src, immI_bitmask msk) 13184 %{ 13185 match(Set dst (ConvI2L (AndI src msk))); 13186 ins_cost(INSN_COST); 13187 format %{ "ubfiz $dst, $src, 0, exact_log2($msk + 1) " %} 13188 ins_encode %{ 13189 __ ubfiz(as_Register($dst$$reg), as_Register($src$$reg), 0, exact_log2($msk$$constant + 1)); 13190 %} 13191 ins_pipe(ialu_reg_shift); 13192 %} 13193 13194 13195 // Rotations 13196 // This pattern is automatically generated from aarch64_ad.m4 13197 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13198 instruct extrOrL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr) 13199 %{ 13200 match(Set dst (OrL (LShiftL src1 lshift) (URShiftL src2 rshift))); 13201 predicate(0 == (((n->in(1)->in(2)->get_int() & 63) + (n->in(2)->in(2)->get_int() & 63)) & 63)); 13202 13203 ins_cost(INSN_COST); 13204 format %{ "extr $dst, $src1, $src2, #$rshift" %} 13205 13206 ins_encode %{ 13207 __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg), 13208 $rshift$$constant & 63); 13209 %} 13210 ins_pipe(ialu_reg_reg_extr); 13211 %} 13212 13213 13214 // This pattern is automatically generated from aarch64_ad.m4 13215 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13216 instruct extrOrI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr) 13217 %{ 13218 match(Set dst (OrI (LShiftI src1 lshift) (URShiftI src2 rshift))); 13219 predicate(0 == (((n->in(1)->in(2)->get_int() & 31) + (n->in(2)->in(2)->get_int() & 31)) & 31)); 13220 13221 ins_cost(INSN_COST); 13222 format %{ "extr $dst, $src1, $src2, #$rshift" %} 13223 13224 ins_encode %{ 13225 __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg), 13226 $rshift$$constant & 31); 13227 %} 13228 ins_pipe(ialu_reg_reg_extr); 13229 %} 13230 13231 13232 // This pattern is automatically generated from aarch64_ad.m4 13233 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13234 instruct extrAddL(iRegLNoSp dst, iRegL src1, iRegL src2, immI lshift, immI rshift, rFlagsReg cr) 13235 %{ 13236 match(Set dst (AddL (LShiftL src1 lshift) (URShiftL src2 rshift))); 13237 predicate(0 == (((n->in(1)->in(2)->get_int() & 63) + (n->in(2)->in(2)->get_int() & 63)) & 63)); 13238 13239 ins_cost(INSN_COST); 13240 format %{ "extr $dst, $src1, $src2, #$rshift" %} 13241 13242 ins_encode %{ 13243 __ extr(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg), 13244 $rshift$$constant & 63); 13245 %} 13246 ins_pipe(ialu_reg_reg_extr); 13247 %} 13248 13249 13250 // This pattern is automatically generated from aarch64_ad.m4 13251 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13252 instruct extrAddI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI lshift, immI rshift, rFlagsReg cr) 13253 %{ 13254 match(Set dst (AddI (LShiftI src1 lshift) (URShiftI src2 rshift))); 13255 predicate(0 == (((n->in(1)->in(2)->get_int() & 31) + (n->in(2)->in(2)->get_int() & 31)) & 31)); 13256 13257 ins_cost(INSN_COST); 13258 format %{ "extr $dst, $src1, $src2, #$rshift" %} 13259 13260 ins_encode %{ 13261 __ extrw(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg), 13262 $rshift$$constant & 31); 13263 %} 13264 ins_pipe(ialu_reg_reg_extr); 13265 %} 13266 13267 13268 // This pattern is automatically generated from aarch64_ad.m4 13269 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13270 instruct rorI_imm(iRegINoSp dst, iRegI src, immI shift) 13271 %{ 13272 match(Set dst (RotateRight src shift)); 13273 13274 ins_cost(INSN_COST); 13275 format %{ "ror $dst, $src, $shift" %} 13276 13277 ins_encode %{ 13278 __ extrw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($src$$reg), 13279 $shift$$constant & 0x1f); 13280 %} 13281 ins_pipe(ialu_reg_reg_vshift); 13282 %} 13283 13284 // This pattern is automatically generated from aarch64_ad.m4 13285 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13286 instruct rorL_imm(iRegLNoSp dst, iRegL src, immI shift) 13287 %{ 13288 match(Set dst (RotateRight src shift)); 13289 13290 ins_cost(INSN_COST); 13291 format %{ "ror $dst, $src, $shift" %} 13292 13293 ins_encode %{ 13294 __ extr(as_Register($dst$$reg), as_Register($src$$reg), as_Register($src$$reg), 13295 $shift$$constant & 0x3f); 13296 %} 13297 ins_pipe(ialu_reg_reg_vshift); 13298 %} 13299 13300 // This pattern is automatically generated from aarch64_ad.m4 13301 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13302 instruct rorI_reg(iRegINoSp dst, iRegI src, iRegI shift) 13303 %{ 13304 match(Set dst (RotateRight src shift)); 13305 13306 ins_cost(INSN_COST); 13307 format %{ "ror $dst, $src, $shift" %} 13308 13309 ins_encode %{ 13310 __ rorvw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg)); 13311 %} 13312 ins_pipe(ialu_reg_reg_vshift); 13313 %} 13314 13315 // This pattern is automatically generated from aarch64_ad.m4 13316 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13317 instruct rorL_reg(iRegLNoSp dst, iRegL src, iRegI shift) 13318 %{ 13319 match(Set dst (RotateRight src shift)); 13320 13321 ins_cost(INSN_COST); 13322 format %{ "ror $dst, $src, $shift" %} 13323 13324 ins_encode %{ 13325 __ rorv(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg)); 13326 %} 13327 ins_pipe(ialu_reg_reg_vshift); 13328 %} 13329 13330 // This pattern is automatically generated from aarch64_ad.m4 13331 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13332 instruct rolI_reg(iRegINoSp dst, iRegI src, iRegI shift) 13333 %{ 13334 match(Set dst (RotateLeft src shift)); 13335 13336 ins_cost(INSN_COST); 13337 format %{ "rol $dst, $src, $shift" %} 13338 13339 ins_encode %{ 13340 __ subw(rscratch1, zr, as_Register($shift$$reg)); 13341 __ rorvw(as_Register($dst$$reg), as_Register($src$$reg), rscratch1); 13342 %} 13343 ins_pipe(ialu_reg_reg_vshift); 13344 %} 13345 13346 // This pattern is automatically generated from aarch64_ad.m4 13347 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13348 instruct rolL_reg(iRegLNoSp dst, iRegL src, iRegI shift) 13349 %{ 13350 match(Set dst (RotateLeft src shift)); 13351 13352 ins_cost(INSN_COST); 13353 format %{ "rol $dst, $src, $shift" %} 13354 13355 ins_encode %{ 13356 __ subw(rscratch1, zr, as_Register($shift$$reg)); 13357 __ rorv(as_Register($dst$$reg), as_Register($src$$reg), rscratch1); 13358 %} 13359 ins_pipe(ialu_reg_reg_vshift); 13360 %} 13361 13362 13363 // Add/subtract (extended) 13364 13365 // This pattern is automatically generated from aarch64_ad.m4 13366 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13367 instruct AddExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr) 13368 %{ 13369 match(Set dst (AddL src1 (ConvI2L src2))); 13370 ins_cost(INSN_COST); 13371 format %{ "add $dst, $src1, $src2, sxtw" %} 13372 13373 ins_encode %{ 13374 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13375 as_Register($src2$$reg), ext::sxtw); 13376 %} 13377 ins_pipe(ialu_reg_reg); 13378 %} 13379 13380 // This pattern is automatically generated from aarch64_ad.m4 13381 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13382 instruct SubExtI(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, rFlagsReg cr) 13383 %{ 13384 match(Set dst (SubL src1 (ConvI2L src2))); 13385 ins_cost(INSN_COST); 13386 format %{ "sub $dst, $src1, $src2, sxtw" %} 13387 13388 ins_encode %{ 13389 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13390 as_Register($src2$$reg), ext::sxtw); 13391 %} 13392 ins_pipe(ialu_reg_reg); 13393 %} 13394 13395 // This pattern is automatically generated from aarch64_ad.m4 13396 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13397 instruct AddExtI_sxth(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_16 lshift, immI_16 rshift, rFlagsReg cr) 13398 %{ 13399 match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift))); 13400 ins_cost(INSN_COST); 13401 format %{ "add $dst, $src1, $src2, sxth" %} 13402 13403 ins_encode %{ 13404 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13405 as_Register($src2$$reg), ext::sxth); 13406 %} 13407 ins_pipe(ialu_reg_reg); 13408 %} 13409 13410 // This pattern is automatically generated from aarch64_ad.m4 13411 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13412 instruct AddExtI_sxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr) 13413 %{ 13414 match(Set dst (AddI src1 (RShiftI (LShiftI src2 lshift) rshift))); 13415 ins_cost(INSN_COST); 13416 format %{ "add $dst, $src1, $src2, sxtb" %} 13417 13418 ins_encode %{ 13419 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13420 as_Register($src2$$reg), ext::sxtb); 13421 %} 13422 ins_pipe(ialu_reg_reg); 13423 %} 13424 13425 // This pattern is automatically generated from aarch64_ad.m4 13426 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13427 instruct AddExtI_uxtb(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_24 lshift, immI_24 rshift, rFlagsReg cr) 13428 %{ 13429 match(Set dst (AddI src1 (URShiftI (LShiftI src2 lshift) rshift))); 13430 ins_cost(INSN_COST); 13431 format %{ "add $dst, $src1, $src2, uxtb" %} 13432 13433 ins_encode %{ 13434 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13435 as_Register($src2$$reg), ext::uxtb); 13436 %} 13437 ins_pipe(ialu_reg_reg); 13438 %} 13439 13440 // This pattern is automatically generated from aarch64_ad.m4 13441 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13442 instruct AddExtL_sxth(iRegLNoSp dst, iRegL src1, iRegL src2, immI_48 lshift, immI_48 rshift, rFlagsReg cr) 13443 %{ 13444 match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift))); 13445 ins_cost(INSN_COST); 13446 format %{ "add $dst, $src1, $src2, sxth" %} 13447 13448 ins_encode %{ 13449 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13450 as_Register($src2$$reg), ext::sxth); 13451 %} 13452 ins_pipe(ialu_reg_reg); 13453 %} 13454 13455 // This pattern is automatically generated from aarch64_ad.m4 13456 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13457 instruct AddExtL_sxtw(iRegLNoSp dst, iRegL src1, iRegL src2, immI_32 lshift, immI_32 rshift, rFlagsReg cr) 13458 %{ 13459 match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift))); 13460 ins_cost(INSN_COST); 13461 format %{ "add $dst, $src1, $src2, sxtw" %} 13462 13463 ins_encode %{ 13464 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13465 as_Register($src2$$reg), ext::sxtw); 13466 %} 13467 ins_pipe(ialu_reg_reg); 13468 %} 13469 13470 // This pattern is automatically generated from aarch64_ad.m4 13471 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13472 instruct AddExtL_sxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr) 13473 %{ 13474 match(Set dst (AddL src1 (RShiftL (LShiftL src2 lshift) rshift))); 13475 ins_cost(INSN_COST); 13476 format %{ "add $dst, $src1, $src2, sxtb" %} 13477 13478 ins_encode %{ 13479 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13480 as_Register($src2$$reg), ext::sxtb); 13481 %} 13482 ins_pipe(ialu_reg_reg); 13483 %} 13484 13485 // This pattern is automatically generated from aarch64_ad.m4 13486 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13487 instruct AddExtL_uxtb(iRegLNoSp dst, iRegL src1, iRegL src2, immI_56 lshift, immI_56 rshift, rFlagsReg cr) 13488 %{ 13489 match(Set dst (AddL src1 (URShiftL (LShiftL src2 lshift) rshift))); 13490 ins_cost(INSN_COST); 13491 format %{ "add $dst, $src1, $src2, uxtb" %} 13492 13493 ins_encode %{ 13494 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13495 as_Register($src2$$reg), ext::uxtb); 13496 %} 13497 ins_pipe(ialu_reg_reg); 13498 %} 13499 13500 // This pattern is automatically generated from aarch64_ad.m4 13501 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13502 instruct AddExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr) 13503 %{ 13504 match(Set dst (AddI src1 (AndI src2 mask))); 13505 ins_cost(INSN_COST); 13506 format %{ "addw $dst, $src1, $src2, uxtb" %} 13507 13508 ins_encode %{ 13509 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13510 as_Register($src2$$reg), ext::uxtb); 13511 %} 13512 ins_pipe(ialu_reg_reg); 13513 %} 13514 13515 // This pattern is automatically generated from aarch64_ad.m4 13516 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13517 instruct AddExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr) 13518 %{ 13519 match(Set dst (AddI src1 (AndI src2 mask))); 13520 ins_cost(INSN_COST); 13521 format %{ "addw $dst, $src1, $src2, uxth" %} 13522 13523 ins_encode %{ 13524 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13525 as_Register($src2$$reg), ext::uxth); 13526 %} 13527 ins_pipe(ialu_reg_reg); 13528 %} 13529 13530 // This pattern is automatically generated from aarch64_ad.m4 13531 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13532 instruct AddExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr) 13533 %{ 13534 match(Set dst (AddL src1 (AndL src2 mask))); 13535 ins_cost(INSN_COST); 13536 format %{ "add $dst, $src1, $src2, uxtb" %} 13537 13538 ins_encode %{ 13539 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13540 as_Register($src2$$reg), ext::uxtb); 13541 %} 13542 ins_pipe(ialu_reg_reg); 13543 %} 13544 13545 // This pattern is automatically generated from aarch64_ad.m4 13546 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13547 instruct AddExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr) 13548 %{ 13549 match(Set dst (AddL src1 (AndL src2 mask))); 13550 ins_cost(INSN_COST); 13551 format %{ "add $dst, $src1, $src2, uxth" %} 13552 13553 ins_encode %{ 13554 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13555 as_Register($src2$$reg), ext::uxth); 13556 %} 13557 ins_pipe(ialu_reg_reg); 13558 %} 13559 13560 // This pattern is automatically generated from aarch64_ad.m4 13561 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13562 instruct AddExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr) 13563 %{ 13564 match(Set dst (AddL src1 (AndL src2 mask))); 13565 ins_cost(INSN_COST); 13566 format %{ "add $dst, $src1, $src2, uxtw" %} 13567 13568 ins_encode %{ 13569 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13570 as_Register($src2$$reg), ext::uxtw); 13571 %} 13572 ins_pipe(ialu_reg_reg); 13573 %} 13574 13575 // This pattern is automatically generated from aarch64_ad.m4 13576 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13577 instruct SubExtI_uxtb_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, rFlagsReg cr) 13578 %{ 13579 match(Set dst (SubI src1 (AndI src2 mask))); 13580 ins_cost(INSN_COST); 13581 format %{ "subw $dst, $src1, $src2, uxtb" %} 13582 13583 ins_encode %{ 13584 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13585 as_Register($src2$$reg), ext::uxtb); 13586 %} 13587 ins_pipe(ialu_reg_reg); 13588 %} 13589 13590 // This pattern is automatically generated from aarch64_ad.m4 13591 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13592 instruct SubExtI_uxth_and(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, rFlagsReg cr) 13593 %{ 13594 match(Set dst (SubI src1 (AndI src2 mask))); 13595 ins_cost(INSN_COST); 13596 format %{ "subw $dst, $src1, $src2, uxth" %} 13597 13598 ins_encode %{ 13599 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13600 as_Register($src2$$reg), ext::uxth); 13601 %} 13602 ins_pipe(ialu_reg_reg); 13603 %} 13604 13605 // This pattern is automatically generated from aarch64_ad.m4 13606 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13607 instruct SubExtL_uxtb_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, rFlagsReg cr) 13608 %{ 13609 match(Set dst (SubL src1 (AndL src2 mask))); 13610 ins_cost(INSN_COST); 13611 format %{ "sub $dst, $src1, $src2, uxtb" %} 13612 13613 ins_encode %{ 13614 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13615 as_Register($src2$$reg), ext::uxtb); 13616 %} 13617 ins_pipe(ialu_reg_reg); 13618 %} 13619 13620 // This pattern is automatically generated from aarch64_ad.m4 13621 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13622 instruct SubExtL_uxth_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, rFlagsReg cr) 13623 %{ 13624 match(Set dst (SubL src1 (AndL src2 mask))); 13625 ins_cost(INSN_COST); 13626 format %{ "sub $dst, $src1, $src2, uxth" %} 13627 13628 ins_encode %{ 13629 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13630 as_Register($src2$$reg), ext::uxth); 13631 %} 13632 ins_pipe(ialu_reg_reg); 13633 %} 13634 13635 // This pattern is automatically generated from aarch64_ad.m4 13636 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13637 instruct SubExtL_uxtw_and(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, rFlagsReg cr) 13638 %{ 13639 match(Set dst (SubL src1 (AndL src2 mask))); 13640 ins_cost(INSN_COST); 13641 format %{ "sub $dst, $src1, $src2, uxtw" %} 13642 13643 ins_encode %{ 13644 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13645 as_Register($src2$$reg), ext::uxtw); 13646 %} 13647 ins_pipe(ialu_reg_reg); 13648 %} 13649 13650 13651 // This pattern is automatically generated from aarch64_ad.m4 13652 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13653 instruct AddExtL_sxtb_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_56 lshift1, immI_56 rshift1, rFlagsReg cr) 13654 %{ 13655 match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 13656 ins_cost(1.9 * INSN_COST); 13657 format %{ "add $dst, $src1, $src2, sxtb #lshift2" %} 13658 13659 ins_encode %{ 13660 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13661 as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant)); 13662 %} 13663 ins_pipe(ialu_reg_reg_shift); 13664 %} 13665 13666 // This pattern is automatically generated from aarch64_ad.m4 13667 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13668 instruct AddExtL_sxth_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_48 lshift1, immI_48 rshift1, rFlagsReg cr) 13669 %{ 13670 match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 13671 ins_cost(1.9 * INSN_COST); 13672 format %{ "add $dst, $src1, $src2, sxth #lshift2" %} 13673 13674 ins_encode %{ 13675 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13676 as_Register($src2$$reg), ext::sxth, ($lshift2$$constant)); 13677 %} 13678 ins_pipe(ialu_reg_reg_shift); 13679 %} 13680 13681 // This pattern is automatically generated from aarch64_ad.m4 13682 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13683 instruct AddExtL_sxtw_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_32 lshift1, immI_32 rshift1, rFlagsReg cr) 13684 %{ 13685 match(Set dst (AddL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 13686 ins_cost(1.9 * INSN_COST); 13687 format %{ "add $dst, $src1, $src2, sxtw #lshift2" %} 13688 13689 ins_encode %{ 13690 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13691 as_Register($src2$$reg), ext::sxtw, ($lshift2$$constant)); 13692 %} 13693 ins_pipe(ialu_reg_reg_shift); 13694 %} 13695 13696 // This pattern is automatically generated from aarch64_ad.m4 13697 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13698 instruct SubExtL_sxtb_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_56 lshift1, immI_56 rshift1, rFlagsReg cr) 13699 %{ 13700 match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 13701 ins_cost(1.9 * INSN_COST); 13702 format %{ "sub $dst, $src1, $src2, sxtb #lshift2" %} 13703 13704 ins_encode %{ 13705 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13706 as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant)); 13707 %} 13708 ins_pipe(ialu_reg_reg_shift); 13709 %} 13710 13711 // This pattern is automatically generated from aarch64_ad.m4 13712 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13713 instruct SubExtL_sxth_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_48 lshift1, immI_48 rshift1, rFlagsReg cr) 13714 %{ 13715 match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 13716 ins_cost(1.9 * INSN_COST); 13717 format %{ "sub $dst, $src1, $src2, sxth #lshift2" %} 13718 13719 ins_encode %{ 13720 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13721 as_Register($src2$$reg), ext::sxth, ($lshift2$$constant)); 13722 %} 13723 ins_pipe(ialu_reg_reg_shift); 13724 %} 13725 13726 // This pattern is automatically generated from aarch64_ad.m4 13727 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13728 instruct SubExtL_sxtw_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immIExt lshift2, immI_32 lshift1, immI_32 rshift1, rFlagsReg cr) 13729 %{ 13730 match(Set dst (SubL src1 (LShiftL (RShiftL (LShiftL src2 lshift1) rshift1) lshift2))); 13731 ins_cost(1.9 * INSN_COST); 13732 format %{ "sub $dst, $src1, $src2, sxtw #lshift2" %} 13733 13734 ins_encode %{ 13735 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13736 as_Register($src2$$reg), ext::sxtw, ($lshift2$$constant)); 13737 %} 13738 ins_pipe(ialu_reg_reg_shift); 13739 %} 13740 13741 // This pattern is automatically generated from aarch64_ad.m4 13742 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13743 instruct AddExtI_sxtb_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_24 lshift1, immI_24 rshift1, rFlagsReg cr) 13744 %{ 13745 match(Set dst (AddI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2))); 13746 ins_cost(1.9 * INSN_COST); 13747 format %{ "addw $dst, $src1, $src2, sxtb #lshift2" %} 13748 13749 ins_encode %{ 13750 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13751 as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant)); 13752 %} 13753 ins_pipe(ialu_reg_reg_shift); 13754 %} 13755 13756 // This pattern is automatically generated from aarch64_ad.m4 13757 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13758 instruct AddExtI_sxth_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_16 lshift1, immI_16 rshift1, rFlagsReg cr) 13759 %{ 13760 match(Set dst (AddI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2))); 13761 ins_cost(1.9 * INSN_COST); 13762 format %{ "addw $dst, $src1, $src2, sxth #lshift2" %} 13763 13764 ins_encode %{ 13765 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13766 as_Register($src2$$reg), ext::sxth, ($lshift2$$constant)); 13767 %} 13768 ins_pipe(ialu_reg_reg_shift); 13769 %} 13770 13771 // This pattern is automatically generated from aarch64_ad.m4 13772 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13773 instruct SubExtI_sxtb_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_24 lshift1, immI_24 rshift1, rFlagsReg cr) 13774 %{ 13775 match(Set dst (SubI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2))); 13776 ins_cost(1.9 * INSN_COST); 13777 format %{ "subw $dst, $src1, $src2, sxtb #lshift2" %} 13778 13779 ins_encode %{ 13780 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13781 as_Register($src2$$reg), ext::sxtb, ($lshift2$$constant)); 13782 %} 13783 ins_pipe(ialu_reg_reg_shift); 13784 %} 13785 13786 // This pattern is automatically generated from aarch64_ad.m4 13787 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13788 instruct SubExtI_sxth_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immIExt lshift2, immI_16 lshift1, immI_16 rshift1, rFlagsReg cr) 13789 %{ 13790 match(Set dst (SubI src1 (LShiftI (RShiftI (LShiftI src2 lshift1) rshift1) lshift2))); 13791 ins_cost(1.9 * INSN_COST); 13792 format %{ "subw $dst, $src1, $src2, sxth #lshift2" %} 13793 13794 ins_encode %{ 13795 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13796 as_Register($src2$$reg), ext::sxth, ($lshift2$$constant)); 13797 %} 13798 ins_pipe(ialu_reg_reg_shift); 13799 %} 13800 13801 // This pattern is automatically generated from aarch64_ad.m4 13802 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13803 instruct AddExtI_shift(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, immIExt lshift, rFlagsReg cr) 13804 %{ 13805 match(Set dst (AddL src1 (LShiftL (ConvI2L src2) lshift))); 13806 ins_cost(1.9 * INSN_COST); 13807 format %{ "add $dst, $src1, $src2, sxtw #lshift" %} 13808 13809 ins_encode %{ 13810 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13811 as_Register($src2$$reg), ext::sxtw, ($lshift$$constant)); 13812 %} 13813 ins_pipe(ialu_reg_reg_shift); 13814 %} 13815 13816 // This pattern is automatically generated from aarch64_ad.m4 13817 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13818 instruct SubExtI_shift(iRegLNoSp dst, iRegL src1, iRegIorL2I src2, immIExt lshift, rFlagsReg cr) 13819 %{ 13820 match(Set dst (SubL src1 (LShiftL (ConvI2L src2) lshift))); 13821 ins_cost(1.9 * INSN_COST); 13822 format %{ "sub $dst, $src1, $src2, sxtw #lshift" %} 13823 13824 ins_encode %{ 13825 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13826 as_Register($src2$$reg), ext::sxtw, ($lshift$$constant)); 13827 %} 13828 ins_pipe(ialu_reg_reg_shift); 13829 %} 13830 13831 // This pattern is automatically generated from aarch64_ad.m4 13832 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13833 instruct AddExtL_uxtb_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, immIExt lshift, rFlagsReg cr) 13834 %{ 13835 match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift))); 13836 ins_cost(1.9 * INSN_COST); 13837 format %{ "add $dst, $src1, $src2, uxtb #lshift" %} 13838 13839 ins_encode %{ 13840 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13841 as_Register($src2$$reg), ext::uxtb, ($lshift$$constant)); 13842 %} 13843 ins_pipe(ialu_reg_reg_shift); 13844 %} 13845 13846 // This pattern is automatically generated from aarch64_ad.m4 13847 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13848 instruct AddExtL_uxth_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, immIExt lshift, rFlagsReg cr) 13849 %{ 13850 match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift))); 13851 ins_cost(1.9 * INSN_COST); 13852 format %{ "add $dst, $src1, $src2, uxth #lshift" %} 13853 13854 ins_encode %{ 13855 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13856 as_Register($src2$$reg), ext::uxth, ($lshift$$constant)); 13857 %} 13858 ins_pipe(ialu_reg_reg_shift); 13859 %} 13860 13861 // This pattern is automatically generated from aarch64_ad.m4 13862 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13863 instruct AddExtL_uxtw_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, immIExt lshift, rFlagsReg cr) 13864 %{ 13865 match(Set dst (AddL src1 (LShiftL (AndL src2 mask) lshift))); 13866 ins_cost(1.9 * INSN_COST); 13867 format %{ "add $dst, $src1, $src2, uxtw #lshift" %} 13868 13869 ins_encode %{ 13870 __ add(as_Register($dst$$reg), as_Register($src1$$reg), 13871 as_Register($src2$$reg), ext::uxtw, ($lshift$$constant)); 13872 %} 13873 ins_pipe(ialu_reg_reg_shift); 13874 %} 13875 13876 // This pattern is automatically generated from aarch64_ad.m4 13877 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13878 instruct SubExtL_uxtb_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_255 mask, immIExt lshift, rFlagsReg cr) 13879 %{ 13880 match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift))); 13881 ins_cost(1.9 * INSN_COST); 13882 format %{ "sub $dst, $src1, $src2, uxtb #lshift" %} 13883 13884 ins_encode %{ 13885 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13886 as_Register($src2$$reg), ext::uxtb, ($lshift$$constant)); 13887 %} 13888 ins_pipe(ialu_reg_reg_shift); 13889 %} 13890 13891 // This pattern is automatically generated from aarch64_ad.m4 13892 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13893 instruct SubExtL_uxth_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_65535 mask, immIExt lshift, rFlagsReg cr) 13894 %{ 13895 match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift))); 13896 ins_cost(1.9 * INSN_COST); 13897 format %{ "sub $dst, $src1, $src2, uxth #lshift" %} 13898 13899 ins_encode %{ 13900 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13901 as_Register($src2$$reg), ext::uxth, ($lshift$$constant)); 13902 %} 13903 ins_pipe(ialu_reg_reg_shift); 13904 %} 13905 13906 // This pattern is automatically generated from aarch64_ad.m4 13907 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13908 instruct SubExtL_uxtw_and_shift(iRegLNoSp dst, iRegL src1, iRegL src2, immL_4294967295 mask, immIExt lshift, rFlagsReg cr) 13909 %{ 13910 match(Set dst (SubL src1 (LShiftL (AndL src2 mask) lshift))); 13911 ins_cost(1.9 * INSN_COST); 13912 format %{ "sub $dst, $src1, $src2, uxtw #lshift" %} 13913 13914 ins_encode %{ 13915 __ sub(as_Register($dst$$reg), as_Register($src1$$reg), 13916 as_Register($src2$$reg), ext::uxtw, ($lshift$$constant)); 13917 %} 13918 ins_pipe(ialu_reg_reg_shift); 13919 %} 13920 13921 // This pattern is automatically generated from aarch64_ad.m4 13922 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13923 instruct AddExtI_uxtb_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, immIExt lshift, rFlagsReg cr) 13924 %{ 13925 match(Set dst (AddI src1 (LShiftI (AndI src2 mask) lshift))); 13926 ins_cost(1.9 * INSN_COST); 13927 format %{ "addw $dst, $src1, $src2, uxtb #lshift" %} 13928 13929 ins_encode %{ 13930 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13931 as_Register($src2$$reg), ext::uxtb, ($lshift$$constant)); 13932 %} 13933 ins_pipe(ialu_reg_reg_shift); 13934 %} 13935 13936 // This pattern is automatically generated from aarch64_ad.m4 13937 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13938 instruct AddExtI_uxth_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, immIExt lshift, rFlagsReg cr) 13939 %{ 13940 match(Set dst (AddI src1 (LShiftI (AndI src2 mask) lshift))); 13941 ins_cost(1.9 * INSN_COST); 13942 format %{ "addw $dst, $src1, $src2, uxth #lshift" %} 13943 13944 ins_encode %{ 13945 __ addw(as_Register($dst$$reg), as_Register($src1$$reg), 13946 as_Register($src2$$reg), ext::uxth, ($lshift$$constant)); 13947 %} 13948 ins_pipe(ialu_reg_reg_shift); 13949 %} 13950 13951 // This pattern is automatically generated from aarch64_ad.m4 13952 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13953 instruct SubExtI_uxtb_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_255 mask, immIExt lshift, rFlagsReg cr) 13954 %{ 13955 match(Set dst (SubI src1 (LShiftI (AndI src2 mask) lshift))); 13956 ins_cost(1.9 * INSN_COST); 13957 format %{ "subw $dst, $src1, $src2, uxtb #lshift" %} 13958 13959 ins_encode %{ 13960 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13961 as_Register($src2$$reg), ext::uxtb, ($lshift$$constant)); 13962 %} 13963 ins_pipe(ialu_reg_reg_shift); 13964 %} 13965 13966 // This pattern is automatically generated from aarch64_ad.m4 13967 // DO NOT EDIT ANYTHING IN THIS SECTION OF THE FILE 13968 instruct SubExtI_uxth_and_shift(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, immI_65535 mask, immIExt lshift, rFlagsReg cr) 13969 %{ 13970 match(Set dst (SubI src1 (LShiftI (AndI src2 mask) lshift))); 13971 ins_cost(1.9 * INSN_COST); 13972 format %{ "subw $dst, $src1, $src2, uxth #lshift" %} 13973 13974 ins_encode %{ 13975 __ subw(as_Register($dst$$reg), as_Register($src1$$reg), 13976 as_Register($src2$$reg), ext::uxth, ($lshift$$constant)); 13977 %} 13978 ins_pipe(ialu_reg_reg_shift); 13979 %} 13980 13981 13982 13983 // END This section of the file is automatically generated. Do not edit -------------- 13984 13985 13986 // ============================================================================ 13987 // Floating Point Arithmetic Instructions 13988 13989 instruct addF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 13990 match(Set dst (AddF src1 src2)); 13991 13992 ins_cost(INSN_COST * 5); 13993 format %{ "fadds $dst, $src1, $src2" %} 13994 13995 ins_encode %{ 13996 __ fadds(as_FloatRegister($dst$$reg), 13997 as_FloatRegister($src1$$reg), 13998 as_FloatRegister($src2$$reg)); 13999 %} 14000 14001 ins_pipe(fp_dop_reg_reg_s); 14002 %} 14003 14004 instruct addD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 14005 match(Set dst (AddD src1 src2)); 14006 14007 ins_cost(INSN_COST * 5); 14008 format %{ "faddd $dst, $src1, $src2" %} 14009 14010 ins_encode %{ 14011 __ faddd(as_FloatRegister($dst$$reg), 14012 as_FloatRegister($src1$$reg), 14013 as_FloatRegister($src2$$reg)); 14014 %} 14015 14016 ins_pipe(fp_dop_reg_reg_d); 14017 %} 14018 14019 instruct subF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 14020 match(Set dst (SubF src1 src2)); 14021 14022 ins_cost(INSN_COST * 5); 14023 format %{ "fsubs $dst, $src1, $src2" %} 14024 14025 ins_encode %{ 14026 __ fsubs(as_FloatRegister($dst$$reg), 14027 as_FloatRegister($src1$$reg), 14028 as_FloatRegister($src2$$reg)); 14029 %} 14030 14031 ins_pipe(fp_dop_reg_reg_s); 14032 %} 14033 14034 instruct subD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 14035 match(Set dst (SubD src1 src2)); 14036 14037 ins_cost(INSN_COST * 5); 14038 format %{ "fsubd $dst, $src1, $src2" %} 14039 14040 ins_encode %{ 14041 __ fsubd(as_FloatRegister($dst$$reg), 14042 as_FloatRegister($src1$$reg), 14043 as_FloatRegister($src2$$reg)); 14044 %} 14045 14046 ins_pipe(fp_dop_reg_reg_d); 14047 %} 14048 14049 instruct mulF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 14050 match(Set dst (MulF src1 src2)); 14051 14052 ins_cost(INSN_COST * 6); 14053 format %{ "fmuls $dst, $src1, $src2" %} 14054 14055 ins_encode %{ 14056 __ fmuls(as_FloatRegister($dst$$reg), 14057 as_FloatRegister($src1$$reg), 14058 as_FloatRegister($src2$$reg)); 14059 %} 14060 14061 ins_pipe(fp_dop_reg_reg_s); 14062 %} 14063 14064 instruct mulD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 14065 match(Set dst (MulD src1 src2)); 14066 14067 ins_cost(INSN_COST * 6); 14068 format %{ "fmuld $dst, $src1, $src2" %} 14069 14070 ins_encode %{ 14071 __ fmuld(as_FloatRegister($dst$$reg), 14072 as_FloatRegister($src1$$reg), 14073 as_FloatRegister($src2$$reg)); 14074 %} 14075 14076 ins_pipe(fp_dop_reg_reg_d); 14077 %} 14078 14079 // src1 * src2 + src3 14080 instruct maddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{ 14081 predicate(UseFMA); 14082 match(Set dst (FmaF src3 (Binary src1 src2))); 14083 14084 format %{ "fmadds $dst, $src1, $src2, $src3" %} 14085 14086 ins_encode %{ 14087 __ fmadds(as_FloatRegister($dst$$reg), 14088 as_FloatRegister($src1$$reg), 14089 as_FloatRegister($src2$$reg), 14090 as_FloatRegister($src3$$reg)); 14091 %} 14092 14093 ins_pipe(pipe_class_default); 14094 %} 14095 14096 // src1 * src2 + src3 14097 instruct maddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{ 14098 predicate(UseFMA); 14099 match(Set dst (FmaD src3 (Binary src1 src2))); 14100 14101 format %{ "fmaddd $dst, $src1, $src2, $src3" %} 14102 14103 ins_encode %{ 14104 __ fmaddd(as_FloatRegister($dst$$reg), 14105 as_FloatRegister($src1$$reg), 14106 as_FloatRegister($src2$$reg), 14107 as_FloatRegister($src3$$reg)); 14108 %} 14109 14110 ins_pipe(pipe_class_default); 14111 %} 14112 14113 // -src1 * src2 + src3 14114 instruct msubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{ 14115 predicate(UseFMA); 14116 match(Set dst (FmaF src3 (Binary (NegF src1) src2))); 14117 match(Set dst (FmaF src3 (Binary src1 (NegF src2)))); 14118 14119 format %{ "fmsubs $dst, $src1, $src2, $src3" %} 14120 14121 ins_encode %{ 14122 __ fmsubs(as_FloatRegister($dst$$reg), 14123 as_FloatRegister($src1$$reg), 14124 as_FloatRegister($src2$$reg), 14125 as_FloatRegister($src3$$reg)); 14126 %} 14127 14128 ins_pipe(pipe_class_default); 14129 %} 14130 14131 // -src1 * src2 + src3 14132 instruct msubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{ 14133 predicate(UseFMA); 14134 match(Set dst (FmaD src3 (Binary (NegD src1) src2))); 14135 match(Set dst (FmaD src3 (Binary src1 (NegD src2)))); 14136 14137 format %{ "fmsubd $dst, $src1, $src2, $src3" %} 14138 14139 ins_encode %{ 14140 __ fmsubd(as_FloatRegister($dst$$reg), 14141 as_FloatRegister($src1$$reg), 14142 as_FloatRegister($src2$$reg), 14143 as_FloatRegister($src3$$reg)); 14144 %} 14145 14146 ins_pipe(pipe_class_default); 14147 %} 14148 14149 // -src1 * src2 - src3 14150 instruct mnaddF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3) %{ 14151 predicate(UseFMA); 14152 match(Set dst (FmaF (NegF src3) (Binary (NegF src1) src2))); 14153 match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2)))); 14154 14155 format %{ "fnmadds $dst, $src1, $src2, $src3" %} 14156 14157 ins_encode %{ 14158 __ fnmadds(as_FloatRegister($dst$$reg), 14159 as_FloatRegister($src1$$reg), 14160 as_FloatRegister($src2$$reg), 14161 as_FloatRegister($src3$$reg)); 14162 %} 14163 14164 ins_pipe(pipe_class_default); 14165 %} 14166 14167 // -src1 * src2 - src3 14168 instruct mnaddD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3) %{ 14169 predicate(UseFMA); 14170 match(Set dst (FmaD (NegD src3) (Binary (NegD src1) src2))); 14171 match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2)))); 14172 14173 format %{ "fnmaddd $dst, $src1, $src2, $src3" %} 14174 14175 ins_encode %{ 14176 __ fnmaddd(as_FloatRegister($dst$$reg), 14177 as_FloatRegister($src1$$reg), 14178 as_FloatRegister($src2$$reg), 14179 as_FloatRegister($src3$$reg)); 14180 %} 14181 14182 ins_pipe(pipe_class_default); 14183 %} 14184 14185 // src1 * src2 - src3 14186 instruct mnsubF_reg_reg(vRegF dst, vRegF src1, vRegF src2, vRegF src3, immF0 zero) %{ 14187 predicate(UseFMA); 14188 match(Set dst (FmaF (NegF src3) (Binary src1 src2))); 14189 14190 format %{ "fnmsubs $dst, $src1, $src2, $src3" %} 14191 14192 ins_encode %{ 14193 __ fnmsubs(as_FloatRegister($dst$$reg), 14194 as_FloatRegister($src1$$reg), 14195 as_FloatRegister($src2$$reg), 14196 as_FloatRegister($src3$$reg)); 14197 %} 14198 14199 ins_pipe(pipe_class_default); 14200 %} 14201 14202 // src1 * src2 - src3 14203 instruct mnsubD_reg_reg(vRegD dst, vRegD src1, vRegD src2, vRegD src3, immD0 zero) %{ 14204 predicate(UseFMA); 14205 match(Set dst (FmaD (NegD src3) (Binary src1 src2))); 14206 14207 format %{ "fnmsubd $dst, $src1, $src2, $src3" %} 14208 14209 ins_encode %{ 14210 // n.b. insn name should be fnmsubd 14211 __ fnmsub(as_FloatRegister($dst$$reg), 14212 as_FloatRegister($src1$$reg), 14213 as_FloatRegister($src2$$reg), 14214 as_FloatRegister($src3$$reg)); 14215 %} 14216 14217 ins_pipe(pipe_class_default); 14218 %} 14219 14220 14221 // Math.max(FF)F 14222 instruct maxF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 14223 match(Set dst (MaxF src1 src2)); 14224 14225 format %{ "fmaxs $dst, $src1, $src2" %} 14226 ins_encode %{ 14227 __ fmaxs(as_FloatRegister($dst$$reg), 14228 as_FloatRegister($src1$$reg), 14229 as_FloatRegister($src2$$reg)); 14230 %} 14231 14232 ins_pipe(fp_dop_reg_reg_s); 14233 %} 14234 14235 // Math.min(FF)F 14236 instruct minF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 14237 match(Set dst (MinF src1 src2)); 14238 14239 format %{ "fmins $dst, $src1, $src2" %} 14240 ins_encode %{ 14241 __ fmins(as_FloatRegister($dst$$reg), 14242 as_FloatRegister($src1$$reg), 14243 as_FloatRegister($src2$$reg)); 14244 %} 14245 14246 ins_pipe(fp_dop_reg_reg_s); 14247 %} 14248 14249 // Math.max(DD)D 14250 instruct maxD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 14251 match(Set dst (MaxD src1 src2)); 14252 14253 format %{ "fmaxd $dst, $src1, $src2" %} 14254 ins_encode %{ 14255 __ fmaxd(as_FloatRegister($dst$$reg), 14256 as_FloatRegister($src1$$reg), 14257 as_FloatRegister($src2$$reg)); 14258 %} 14259 14260 ins_pipe(fp_dop_reg_reg_d); 14261 %} 14262 14263 // Math.min(DD)D 14264 instruct minD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 14265 match(Set dst (MinD src1 src2)); 14266 14267 format %{ "fmind $dst, $src1, $src2" %} 14268 ins_encode %{ 14269 __ fmind(as_FloatRegister($dst$$reg), 14270 as_FloatRegister($src1$$reg), 14271 as_FloatRegister($src2$$reg)); 14272 %} 14273 14274 ins_pipe(fp_dop_reg_reg_d); 14275 %} 14276 14277 14278 instruct divF_reg_reg(vRegF dst, vRegF src1, vRegF src2) %{ 14279 match(Set dst (DivF src1 src2)); 14280 14281 ins_cost(INSN_COST * 18); 14282 format %{ "fdivs $dst, $src1, $src2" %} 14283 14284 ins_encode %{ 14285 __ fdivs(as_FloatRegister($dst$$reg), 14286 as_FloatRegister($src1$$reg), 14287 as_FloatRegister($src2$$reg)); 14288 %} 14289 14290 ins_pipe(fp_div_s); 14291 %} 14292 14293 instruct divD_reg_reg(vRegD dst, vRegD src1, vRegD src2) %{ 14294 match(Set dst (DivD src1 src2)); 14295 14296 ins_cost(INSN_COST * 32); 14297 format %{ "fdivd $dst, $src1, $src2" %} 14298 14299 ins_encode %{ 14300 __ fdivd(as_FloatRegister($dst$$reg), 14301 as_FloatRegister($src1$$reg), 14302 as_FloatRegister($src2$$reg)); 14303 %} 14304 14305 ins_pipe(fp_div_d); 14306 %} 14307 14308 instruct negF_reg_reg(vRegF dst, vRegF src) %{ 14309 match(Set dst (NegF src)); 14310 14311 ins_cost(INSN_COST * 3); 14312 format %{ "fneg $dst, $src" %} 14313 14314 ins_encode %{ 14315 __ fnegs(as_FloatRegister($dst$$reg), 14316 as_FloatRegister($src$$reg)); 14317 %} 14318 14319 ins_pipe(fp_uop_s); 14320 %} 14321 14322 instruct negD_reg_reg(vRegD dst, vRegD src) %{ 14323 match(Set dst (NegD src)); 14324 14325 ins_cost(INSN_COST * 3); 14326 format %{ "fnegd $dst, $src" %} 14327 14328 ins_encode %{ 14329 __ fnegd(as_FloatRegister($dst$$reg), 14330 as_FloatRegister($src$$reg)); 14331 %} 14332 14333 ins_pipe(fp_uop_d); 14334 %} 14335 14336 instruct absI_reg(iRegINoSp dst, iRegIorL2I src, rFlagsReg cr) 14337 %{ 14338 match(Set dst (AbsI src)); 14339 14340 effect(KILL cr); 14341 ins_cost(INSN_COST * 2); 14342 format %{ "cmpw $src, zr\n\t" 14343 "cnegw $dst, $src, Assembler::LT\t# int abs" 14344 %} 14345 14346 ins_encode %{ 14347 __ cmpw(as_Register($src$$reg), zr); 14348 __ cnegw(as_Register($dst$$reg), as_Register($src$$reg), Assembler::LT); 14349 %} 14350 ins_pipe(pipe_class_default); 14351 %} 14352 14353 instruct absL_reg(iRegLNoSp dst, iRegL src, rFlagsReg cr) 14354 %{ 14355 match(Set dst (AbsL src)); 14356 14357 effect(KILL cr); 14358 ins_cost(INSN_COST * 2); 14359 format %{ "cmp $src, zr\n\t" 14360 "cneg $dst, $src, Assembler::LT\t# long abs" 14361 %} 14362 14363 ins_encode %{ 14364 __ cmp(as_Register($src$$reg), zr); 14365 __ cneg(as_Register($dst$$reg), as_Register($src$$reg), Assembler::LT); 14366 %} 14367 ins_pipe(pipe_class_default); 14368 %} 14369 14370 instruct absF_reg(vRegF dst, vRegF src) %{ 14371 match(Set dst (AbsF src)); 14372 14373 ins_cost(INSN_COST * 3); 14374 format %{ "fabss $dst, $src" %} 14375 ins_encode %{ 14376 __ fabss(as_FloatRegister($dst$$reg), 14377 as_FloatRegister($src$$reg)); 14378 %} 14379 14380 ins_pipe(fp_uop_s); 14381 %} 14382 14383 instruct absD_reg(vRegD dst, vRegD src) %{ 14384 match(Set dst (AbsD src)); 14385 14386 ins_cost(INSN_COST * 3); 14387 format %{ "fabsd $dst, $src" %} 14388 ins_encode %{ 14389 __ fabsd(as_FloatRegister($dst$$reg), 14390 as_FloatRegister($src$$reg)); 14391 %} 14392 14393 ins_pipe(fp_uop_d); 14394 %} 14395 14396 instruct absdF_reg(vRegF dst, vRegF src1, vRegF src2) %{ 14397 match(Set dst (AbsF (SubF src1 src2))); 14398 14399 ins_cost(INSN_COST * 3); 14400 format %{ "fabds $dst, $src1, $src2" %} 14401 ins_encode %{ 14402 __ fabds(as_FloatRegister($dst$$reg), 14403 as_FloatRegister($src1$$reg), 14404 as_FloatRegister($src2$$reg)); 14405 %} 14406 14407 ins_pipe(fp_uop_s); 14408 %} 14409 14410 instruct absdD_reg(vRegD dst, vRegD src1, vRegD src2) %{ 14411 match(Set dst (AbsD (SubD src1 src2))); 14412 14413 ins_cost(INSN_COST * 3); 14414 format %{ "fabdd $dst, $src1, $src2" %} 14415 ins_encode %{ 14416 __ fabdd(as_FloatRegister($dst$$reg), 14417 as_FloatRegister($src1$$reg), 14418 as_FloatRegister($src2$$reg)); 14419 %} 14420 14421 ins_pipe(fp_uop_d); 14422 %} 14423 14424 instruct sqrtD_reg(vRegD dst, vRegD src) %{ 14425 match(Set dst (SqrtD src)); 14426 14427 ins_cost(INSN_COST * 50); 14428 format %{ "fsqrtd $dst, $src" %} 14429 ins_encode %{ 14430 __ fsqrtd(as_FloatRegister($dst$$reg), 14431 as_FloatRegister($src$$reg)); 14432 %} 14433 14434 ins_pipe(fp_div_s); 14435 %} 14436 14437 instruct sqrtF_reg(vRegF dst, vRegF src) %{ 14438 match(Set dst (SqrtF src)); 14439 14440 ins_cost(INSN_COST * 50); 14441 format %{ "fsqrts $dst, $src" %} 14442 ins_encode %{ 14443 __ fsqrts(as_FloatRegister($dst$$reg), 14444 as_FloatRegister($src$$reg)); 14445 %} 14446 14447 ins_pipe(fp_div_d); 14448 %} 14449 14450 // Math.rint, floor, ceil 14451 instruct roundD_reg(vRegD dst, vRegD src, immI rmode) %{ 14452 match(Set dst (RoundDoubleMode src rmode)); 14453 format %{ "frint $dst, $src, $rmode" %} 14454 ins_encode %{ 14455 switch ($rmode$$constant) { 14456 case RoundDoubleModeNode::rmode_rint: 14457 __ frintnd(as_FloatRegister($dst$$reg), 14458 as_FloatRegister($src$$reg)); 14459 break; 14460 case RoundDoubleModeNode::rmode_floor: 14461 __ frintmd(as_FloatRegister($dst$$reg), 14462 as_FloatRegister($src$$reg)); 14463 break; 14464 case RoundDoubleModeNode::rmode_ceil: 14465 __ frintpd(as_FloatRegister($dst$$reg), 14466 as_FloatRegister($src$$reg)); 14467 break; 14468 } 14469 %} 14470 ins_pipe(fp_uop_d); 14471 %} 14472 14473 instruct copySignD_reg(vRegD dst, vRegD src1, vRegD src2, vRegD zero) %{ 14474 match(Set dst (CopySignD src1 (Binary src2 zero))); 14475 effect(TEMP_DEF dst, USE src1, USE src2, USE zero); 14476 format %{ "CopySignD $dst $src1 $src2" %} 14477 ins_encode %{ 14478 FloatRegister dst = as_FloatRegister($dst$$reg), 14479 src1 = as_FloatRegister($src1$$reg), 14480 src2 = as_FloatRegister($src2$$reg), 14481 zero = as_FloatRegister($zero$$reg); 14482 __ fnegd(dst, zero); 14483 __ bsl(dst, __ T8B, src2, src1); 14484 %} 14485 ins_pipe(fp_uop_d); 14486 %} 14487 14488 instruct copySignF_reg(vRegF dst, vRegF src1, vRegF src2) %{ 14489 match(Set dst (CopySignF src1 src2)); 14490 effect(TEMP_DEF dst, USE src1, USE src2); 14491 format %{ "CopySignF $dst $src1 $src2" %} 14492 ins_encode %{ 14493 FloatRegister dst = as_FloatRegister($dst$$reg), 14494 src1 = as_FloatRegister($src1$$reg), 14495 src2 = as_FloatRegister($src2$$reg); 14496 __ movi(dst, __ T2S, 0x80, 24); 14497 __ bsl(dst, __ T8B, src2, src1); 14498 %} 14499 ins_pipe(fp_uop_d); 14500 %} 14501 14502 instruct signumD_reg(vRegD dst, vRegD src, vRegD zero, vRegD one) %{ 14503 match(Set dst (SignumD src (Binary zero one))); 14504 effect(TEMP_DEF dst, USE src, USE zero, USE one); 14505 format %{ "signumD $dst, $src" %} 14506 ins_encode %{ 14507 FloatRegister src = as_FloatRegister($src$$reg), 14508 dst = as_FloatRegister($dst$$reg), 14509 zero = as_FloatRegister($zero$$reg), 14510 one = as_FloatRegister($one$$reg); 14511 __ facgtd(dst, src, zero); // dst=0 for +-0.0 and NaN. 0xFFF..F otherwise 14512 __ ushrd(dst, dst, 1); // dst=0 for +-0.0 and NaN. 0x7FF..F otherwise 14513 // Bit selection instruction gets bit from "one" for each enabled bit in 14514 // "dst", otherwise gets a bit from "src". For "src" that contains +-0.0 or 14515 // NaN the whole "src" will be copied because "dst" is zero. For all other 14516 // "src" values dst is 0x7FF..F, which means only the sign bit is copied 14517 // from "src", and all other bits are copied from 1.0. 14518 __ bsl(dst, __ T8B, one, src); 14519 %} 14520 ins_pipe(fp_uop_d); 14521 %} 14522 14523 instruct signumF_reg(vRegF dst, vRegF src, vRegF zero, vRegF one) %{ 14524 match(Set dst (SignumF src (Binary zero one))); 14525 effect(TEMP_DEF dst, USE src, USE zero, USE one); 14526 format %{ "signumF $dst, $src" %} 14527 ins_encode %{ 14528 FloatRegister src = as_FloatRegister($src$$reg), 14529 dst = as_FloatRegister($dst$$reg), 14530 zero = as_FloatRegister($zero$$reg), 14531 one = as_FloatRegister($one$$reg); 14532 __ facgts(dst, src, zero); // dst=0 for +-0.0 and NaN. 0xFFF..F otherwise 14533 __ ushr(dst, __ T2S, dst, 1); // dst=0 for +-0.0 and NaN. 0x7FF..F otherwise 14534 // Bit selection instruction gets bit from "one" for each enabled bit in 14535 // "dst", otherwise gets a bit from "src". For "src" that contains +-0.0 or 14536 // NaN the whole "src" will be copied because "dst" is zero. For all other 14537 // "src" values dst is 0x7FF..F, which means only the sign bit is copied 14538 // from "src", and all other bits are copied from 1.0. 14539 __ bsl(dst, __ T8B, one, src); 14540 %} 14541 ins_pipe(fp_uop_d); 14542 %} 14543 14544 instruct onspinwait() %{ 14545 match(OnSpinWait); 14546 ins_cost(INSN_COST); 14547 14548 format %{ "onspinwait" %} 14549 14550 ins_encode %{ 14551 __ spin_wait(); 14552 %} 14553 ins_pipe(pipe_class_empty); 14554 %} 14555 14556 // ============================================================================ 14557 // Logical Instructions 14558 14559 // Integer Logical Instructions 14560 14561 // And Instructions 14562 14563 14564 instruct andI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2, rFlagsReg cr) %{ 14565 match(Set dst (AndI src1 src2)); 14566 14567 format %{ "andw $dst, $src1, $src2\t# int" %} 14568 14569 ins_cost(INSN_COST); 14570 ins_encode %{ 14571 __ andw(as_Register($dst$$reg), 14572 as_Register($src1$$reg), 14573 as_Register($src2$$reg)); 14574 %} 14575 14576 ins_pipe(ialu_reg_reg); 14577 %} 14578 14579 instruct andI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2, rFlagsReg cr) %{ 14580 match(Set dst (AndI src1 src2)); 14581 14582 format %{ "andsw $dst, $src1, $src2\t# int" %} 14583 14584 ins_cost(INSN_COST); 14585 ins_encode %{ 14586 __ andw(as_Register($dst$$reg), 14587 as_Register($src1$$reg), 14588 (uint64_t)($src2$$constant)); 14589 %} 14590 14591 ins_pipe(ialu_reg_imm); 14592 %} 14593 14594 // Or Instructions 14595 14596 instruct orI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 14597 match(Set dst (OrI src1 src2)); 14598 14599 format %{ "orrw $dst, $src1, $src2\t# int" %} 14600 14601 ins_cost(INSN_COST); 14602 ins_encode %{ 14603 __ orrw(as_Register($dst$$reg), 14604 as_Register($src1$$reg), 14605 as_Register($src2$$reg)); 14606 %} 14607 14608 ins_pipe(ialu_reg_reg); 14609 %} 14610 14611 instruct orI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{ 14612 match(Set dst (OrI src1 src2)); 14613 14614 format %{ "orrw $dst, $src1, $src2\t# int" %} 14615 14616 ins_cost(INSN_COST); 14617 ins_encode %{ 14618 __ orrw(as_Register($dst$$reg), 14619 as_Register($src1$$reg), 14620 (uint64_t)($src2$$constant)); 14621 %} 14622 14623 ins_pipe(ialu_reg_imm); 14624 %} 14625 14626 // Xor Instructions 14627 14628 instruct xorI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{ 14629 match(Set dst (XorI src1 src2)); 14630 14631 format %{ "eorw $dst, $src1, $src2\t# int" %} 14632 14633 ins_cost(INSN_COST); 14634 ins_encode %{ 14635 __ eorw(as_Register($dst$$reg), 14636 as_Register($src1$$reg), 14637 as_Register($src2$$reg)); 14638 %} 14639 14640 ins_pipe(ialu_reg_reg); 14641 %} 14642 14643 instruct xorI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immILog src2) %{ 14644 match(Set dst (XorI src1 src2)); 14645 14646 format %{ "eorw $dst, $src1, $src2\t# int" %} 14647 14648 ins_cost(INSN_COST); 14649 ins_encode %{ 14650 __ eorw(as_Register($dst$$reg), 14651 as_Register($src1$$reg), 14652 (uint64_t)($src2$$constant)); 14653 %} 14654 14655 ins_pipe(ialu_reg_imm); 14656 %} 14657 14658 // Long Logical Instructions 14659 // TODO 14660 14661 instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2, rFlagsReg cr) %{ 14662 match(Set dst (AndL src1 src2)); 14663 14664 format %{ "and $dst, $src1, $src2\t# int" %} 14665 14666 ins_cost(INSN_COST); 14667 ins_encode %{ 14668 __ andr(as_Register($dst$$reg), 14669 as_Register($src1$$reg), 14670 as_Register($src2$$reg)); 14671 %} 14672 14673 ins_pipe(ialu_reg_reg); 14674 %} 14675 14676 instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2, rFlagsReg cr) %{ 14677 match(Set dst (AndL src1 src2)); 14678 14679 format %{ "and $dst, $src1, $src2\t# int" %} 14680 14681 ins_cost(INSN_COST); 14682 ins_encode %{ 14683 __ andr(as_Register($dst$$reg), 14684 as_Register($src1$$reg), 14685 (uint64_t)($src2$$constant)); 14686 %} 14687 14688 ins_pipe(ialu_reg_imm); 14689 %} 14690 14691 // Or Instructions 14692 14693 instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 14694 match(Set dst (OrL src1 src2)); 14695 14696 format %{ "orr $dst, $src1, $src2\t# int" %} 14697 14698 ins_cost(INSN_COST); 14699 ins_encode %{ 14700 __ orr(as_Register($dst$$reg), 14701 as_Register($src1$$reg), 14702 as_Register($src2$$reg)); 14703 %} 14704 14705 ins_pipe(ialu_reg_reg); 14706 %} 14707 14708 instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{ 14709 match(Set dst (OrL src1 src2)); 14710 14711 format %{ "orr $dst, $src1, $src2\t# int" %} 14712 14713 ins_cost(INSN_COST); 14714 ins_encode %{ 14715 __ orr(as_Register($dst$$reg), 14716 as_Register($src1$$reg), 14717 (uint64_t)($src2$$constant)); 14718 %} 14719 14720 ins_pipe(ialu_reg_imm); 14721 %} 14722 14723 // Xor Instructions 14724 14725 instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{ 14726 match(Set dst (XorL src1 src2)); 14727 14728 format %{ "eor $dst, $src1, $src2\t# int" %} 14729 14730 ins_cost(INSN_COST); 14731 ins_encode %{ 14732 __ eor(as_Register($dst$$reg), 14733 as_Register($src1$$reg), 14734 as_Register($src2$$reg)); 14735 %} 14736 14737 ins_pipe(ialu_reg_reg); 14738 %} 14739 14740 instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLLog src2) %{ 14741 match(Set dst (XorL src1 src2)); 14742 14743 ins_cost(INSN_COST); 14744 format %{ "eor $dst, $src1, $src2\t# int" %} 14745 14746 ins_encode %{ 14747 __ eor(as_Register($dst$$reg), 14748 as_Register($src1$$reg), 14749 (uint64_t)($src2$$constant)); 14750 %} 14751 14752 ins_pipe(ialu_reg_imm); 14753 %} 14754 14755 instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src) 14756 %{ 14757 match(Set dst (ConvI2L src)); 14758 14759 ins_cost(INSN_COST); 14760 format %{ "sxtw $dst, $src\t# i2l" %} 14761 ins_encode %{ 14762 __ sbfm($dst$$Register, $src$$Register, 0, 31); 14763 %} 14764 ins_pipe(ialu_reg_shift); 14765 %} 14766 14767 // this pattern occurs in bigmath arithmetic 14768 instruct convUI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask) 14769 %{ 14770 match(Set dst (AndL (ConvI2L src) mask)); 14771 14772 ins_cost(INSN_COST); 14773 format %{ "ubfm $dst, $src, 0, 31\t# ui2l" %} 14774 ins_encode %{ 14775 __ ubfm($dst$$Register, $src$$Register, 0, 31); 14776 %} 14777 14778 ins_pipe(ialu_reg_shift); 14779 %} 14780 14781 instruct convL2I_reg(iRegINoSp dst, iRegL src) %{ 14782 match(Set dst (ConvL2I src)); 14783 14784 ins_cost(INSN_COST); 14785 format %{ "movw $dst, $src \t// l2i" %} 14786 14787 ins_encode %{ 14788 __ movw(as_Register($dst$$reg), as_Register($src$$reg)); 14789 %} 14790 14791 ins_pipe(ialu_reg); 14792 %} 14793 14794 instruct convI2B(iRegINoSp dst, iRegIorL2I src, rFlagsReg cr) 14795 %{ 14796 match(Set dst (Conv2B src)); 14797 effect(KILL cr); 14798 14799 format %{ 14800 "cmpw $src, zr\n\t" 14801 "cset $dst, ne" 14802 %} 14803 14804 ins_encode %{ 14805 __ cmpw(as_Register($src$$reg), zr); 14806 __ cset(as_Register($dst$$reg), Assembler::NE); 14807 %} 14808 14809 ins_pipe(ialu_reg); 14810 %} 14811 14812 instruct convP2B(iRegINoSp dst, iRegP src, rFlagsReg cr) 14813 %{ 14814 match(Set dst (Conv2B src)); 14815 effect(KILL cr); 14816 14817 format %{ 14818 "cmp $src, zr\n\t" 14819 "cset $dst, ne" 14820 %} 14821 14822 ins_encode %{ 14823 __ cmp(as_Register($src$$reg), zr); 14824 __ cset(as_Register($dst$$reg), Assembler::NE); 14825 %} 14826 14827 ins_pipe(ialu_reg); 14828 %} 14829 14830 instruct convD2F_reg(vRegF dst, vRegD src) %{ 14831 match(Set dst (ConvD2F src)); 14832 14833 ins_cost(INSN_COST * 5); 14834 format %{ "fcvtd $dst, $src \t// d2f" %} 14835 14836 ins_encode %{ 14837 __ fcvtd(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 14838 %} 14839 14840 ins_pipe(fp_d2f); 14841 %} 14842 14843 instruct convF2D_reg(vRegD dst, vRegF src) %{ 14844 match(Set dst (ConvF2D src)); 14845 14846 ins_cost(INSN_COST * 5); 14847 format %{ "fcvts $dst, $src \t// f2d" %} 14848 14849 ins_encode %{ 14850 __ fcvts(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg)); 14851 %} 14852 14853 ins_pipe(fp_f2d); 14854 %} 14855 14856 instruct convF2I_reg_reg(iRegINoSp dst, vRegF src) %{ 14857 match(Set dst (ConvF2I src)); 14858 14859 ins_cost(INSN_COST * 5); 14860 format %{ "fcvtzsw $dst, $src \t// f2i" %} 14861 14862 ins_encode %{ 14863 __ fcvtzsw(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 14864 %} 14865 14866 ins_pipe(fp_f2i); 14867 %} 14868 14869 instruct convF2L_reg_reg(iRegLNoSp dst, vRegF src) %{ 14870 match(Set dst (ConvF2L src)); 14871 14872 ins_cost(INSN_COST * 5); 14873 format %{ "fcvtzs $dst, $src \t// f2l" %} 14874 14875 ins_encode %{ 14876 __ fcvtzs(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 14877 %} 14878 14879 ins_pipe(fp_f2l); 14880 %} 14881 14882 instruct convI2F_reg_reg(vRegF dst, iRegIorL2I src) %{ 14883 match(Set dst (ConvI2F src)); 14884 14885 ins_cost(INSN_COST * 5); 14886 format %{ "scvtfws $dst, $src \t// i2f" %} 14887 14888 ins_encode %{ 14889 __ scvtfws(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 14890 %} 14891 14892 ins_pipe(fp_i2f); 14893 %} 14894 14895 instruct convL2F_reg_reg(vRegF dst, iRegL src) %{ 14896 match(Set dst (ConvL2F src)); 14897 14898 ins_cost(INSN_COST * 5); 14899 format %{ "scvtfs $dst, $src \t// l2f" %} 14900 14901 ins_encode %{ 14902 __ scvtfs(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 14903 %} 14904 14905 ins_pipe(fp_l2f); 14906 %} 14907 14908 instruct convD2I_reg_reg(iRegINoSp dst, vRegD src) %{ 14909 match(Set dst (ConvD2I src)); 14910 14911 ins_cost(INSN_COST * 5); 14912 format %{ "fcvtzdw $dst, $src \t// d2i" %} 14913 14914 ins_encode %{ 14915 __ fcvtzdw(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 14916 %} 14917 14918 ins_pipe(fp_d2i); 14919 %} 14920 14921 instruct convD2L_reg_reg(iRegLNoSp dst, vRegD src) %{ 14922 match(Set dst (ConvD2L src)); 14923 14924 ins_cost(INSN_COST * 5); 14925 format %{ "fcvtzd $dst, $src \t// d2l" %} 14926 14927 ins_encode %{ 14928 __ fcvtzd(as_Register($dst$$reg), as_FloatRegister($src$$reg)); 14929 %} 14930 14931 ins_pipe(fp_d2l); 14932 %} 14933 14934 instruct convI2D_reg_reg(vRegD dst, iRegIorL2I src) %{ 14935 match(Set dst (ConvI2D src)); 14936 14937 ins_cost(INSN_COST * 5); 14938 format %{ "scvtfwd $dst, $src \t// i2d" %} 14939 14940 ins_encode %{ 14941 __ scvtfwd(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 14942 %} 14943 14944 ins_pipe(fp_i2d); 14945 %} 14946 14947 instruct convL2D_reg_reg(vRegD dst, iRegL src) %{ 14948 match(Set dst (ConvL2D src)); 14949 14950 ins_cost(INSN_COST * 5); 14951 format %{ "scvtfd $dst, $src \t// l2d" %} 14952 14953 ins_encode %{ 14954 __ scvtfd(as_FloatRegister($dst$$reg), as_Register($src$$reg)); 14955 %} 14956 14957 ins_pipe(fp_l2d); 14958 %} 14959 14960 // stack <-> reg and reg <-> reg shuffles with no conversion 14961 14962 instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{ 14963 14964 match(Set dst (MoveF2I src)); 14965 14966 effect(DEF dst, USE src); 14967 14968 ins_cost(4 * INSN_COST); 14969 14970 format %{ "ldrw $dst, $src\t# MoveF2I_stack_reg" %} 14971 14972 ins_encode %{ 14973 __ ldrw($dst$$Register, Address(sp, $src$$disp)); 14974 %} 14975 14976 ins_pipe(iload_reg_reg); 14977 14978 %} 14979 14980 instruct MoveI2F_stack_reg(vRegF dst, stackSlotI src) %{ 14981 14982 match(Set dst (MoveI2F src)); 14983 14984 effect(DEF dst, USE src); 14985 14986 ins_cost(4 * INSN_COST); 14987 14988 format %{ "ldrs $dst, $src\t# MoveI2F_stack_reg" %} 14989 14990 ins_encode %{ 14991 __ ldrs(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 14992 %} 14993 14994 ins_pipe(pipe_class_memory); 14995 14996 %} 14997 14998 instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{ 14999 15000 match(Set dst (MoveD2L src)); 15001 15002 effect(DEF dst, USE src); 15003 15004 ins_cost(4 * INSN_COST); 15005 15006 format %{ "ldr $dst, $src\t# MoveD2L_stack_reg" %} 15007 15008 ins_encode %{ 15009 __ ldr($dst$$Register, Address(sp, $src$$disp)); 15010 %} 15011 15012 ins_pipe(iload_reg_reg); 15013 15014 %} 15015 15016 instruct MoveL2D_stack_reg(vRegD dst, stackSlotL src) %{ 15017 15018 match(Set dst (MoveL2D src)); 15019 15020 effect(DEF dst, USE src); 15021 15022 ins_cost(4 * INSN_COST); 15023 15024 format %{ "ldrd $dst, $src\t# MoveL2D_stack_reg" %} 15025 15026 ins_encode %{ 15027 __ ldrd(as_FloatRegister($dst$$reg), Address(sp, $src$$disp)); 15028 %} 15029 15030 ins_pipe(pipe_class_memory); 15031 15032 %} 15033 15034 instruct MoveF2I_reg_stack(stackSlotI dst, vRegF src) %{ 15035 15036 match(Set dst (MoveF2I src)); 15037 15038 effect(DEF dst, USE src); 15039 15040 ins_cost(INSN_COST); 15041 15042 format %{ "strs $src, $dst\t# MoveF2I_reg_stack" %} 15043 15044 ins_encode %{ 15045 __ strs(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 15046 %} 15047 15048 ins_pipe(pipe_class_memory); 15049 15050 %} 15051 15052 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{ 15053 15054 match(Set dst (MoveI2F src)); 15055 15056 effect(DEF dst, USE src); 15057 15058 ins_cost(INSN_COST); 15059 15060 format %{ "strw $src, $dst\t# MoveI2F_reg_stack" %} 15061 15062 ins_encode %{ 15063 __ strw($src$$Register, Address(sp, $dst$$disp)); 15064 %} 15065 15066 ins_pipe(istore_reg_reg); 15067 15068 %} 15069 15070 instruct MoveD2L_reg_stack(stackSlotL dst, vRegD src) %{ 15071 15072 match(Set dst (MoveD2L src)); 15073 15074 effect(DEF dst, USE src); 15075 15076 ins_cost(INSN_COST); 15077 15078 format %{ "strd $dst, $src\t# MoveD2L_reg_stack" %} 15079 15080 ins_encode %{ 15081 __ strd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp)); 15082 %} 15083 15084 ins_pipe(pipe_class_memory); 15085 15086 %} 15087 15088 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{ 15089 15090 match(Set dst (MoveL2D src)); 15091 15092 effect(DEF dst, USE src); 15093 15094 ins_cost(INSN_COST); 15095 15096 format %{ "str $src, $dst\t# MoveL2D_reg_stack" %} 15097 15098 ins_encode %{ 15099 __ str($src$$Register, Address(sp, $dst$$disp)); 15100 %} 15101 15102 ins_pipe(istore_reg_reg); 15103 15104 %} 15105 15106 instruct MoveF2I_reg_reg(iRegINoSp dst, vRegF src) %{ 15107 15108 match(Set dst (MoveF2I src)); 15109 15110 effect(DEF dst, USE src); 15111 15112 ins_cost(INSN_COST); 15113 15114 format %{ "fmovs $dst, $src\t# MoveF2I_reg_reg" %} 15115 15116 ins_encode %{ 15117 __ fmovs($dst$$Register, as_FloatRegister($src$$reg)); 15118 %} 15119 15120 ins_pipe(fp_f2i); 15121 15122 %} 15123 15124 instruct MoveI2F_reg_reg(vRegF dst, iRegI src) %{ 15125 15126 match(Set dst (MoveI2F src)); 15127 15128 effect(DEF dst, USE src); 15129 15130 ins_cost(INSN_COST); 15131 15132 format %{ "fmovs $dst, $src\t# MoveI2F_reg_reg" %} 15133 15134 ins_encode %{ 15135 __ fmovs(as_FloatRegister($dst$$reg), $src$$Register); 15136 %} 15137 15138 ins_pipe(fp_i2f); 15139 15140 %} 15141 15142 instruct MoveD2L_reg_reg(iRegLNoSp dst, vRegD src) %{ 15143 15144 match(Set dst (MoveD2L src)); 15145 15146 effect(DEF dst, USE src); 15147 15148 ins_cost(INSN_COST); 15149 15150 format %{ "fmovd $dst, $src\t# MoveD2L_reg_reg" %} 15151 15152 ins_encode %{ 15153 __ fmovd($dst$$Register, as_FloatRegister($src$$reg)); 15154 %} 15155 15156 ins_pipe(fp_d2l); 15157 15158 %} 15159 15160 instruct MoveL2D_reg_reg(vRegD dst, iRegL src) %{ 15161 15162 match(Set dst (MoveL2D src)); 15163 15164 effect(DEF dst, USE src); 15165 15166 ins_cost(INSN_COST); 15167 15168 format %{ "fmovd $dst, $src\t# MoveL2D_reg_reg" %} 15169 15170 ins_encode %{ 15171 __ fmovd(as_FloatRegister($dst$$reg), $src$$Register); 15172 %} 15173 15174 ins_pipe(fp_l2d); 15175 15176 %} 15177 15178 // ============================================================================ 15179 // clearing of an array 15180 15181 instruct clearArray_reg_reg(iRegL_R11 cnt, iRegP_R10 base, Universe dummy, rFlagsReg cr) 15182 %{ 15183 match(Set dummy (ClearArray cnt base)); 15184 effect(USE_KILL cnt, USE_KILL base, KILL cr); 15185 15186 ins_cost(4 * INSN_COST); 15187 format %{ "ClearArray $cnt, $base" %} 15188 15189 ins_encode %{ 15190 address tpc = __ zero_words($base$$Register, $cnt$$Register); 15191 if (tpc == NULL) { 15192 ciEnv::current()->record_failure("CodeCache is full"); 15193 return; 15194 } 15195 %} 15196 15197 ins_pipe(pipe_class_memory); 15198 %} 15199 15200 instruct clearArray_imm_reg(immL cnt, iRegP_R10 base, iRegL_R11 temp, Universe dummy, rFlagsReg cr) 15201 %{ 15202 predicate((uint64_t)n->in(2)->get_long() 15203 < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord)); 15204 match(Set dummy (ClearArray cnt base)); 15205 effect(TEMP temp, USE_KILL base, KILL cr); 15206 15207 ins_cost(4 * INSN_COST); 15208 format %{ "ClearArray $cnt, $base" %} 15209 15210 ins_encode %{ 15211 address tpc = __ zero_words($base$$Register, (uint64_t)$cnt$$constant); 15212 if (tpc == NULL) { 15213 ciEnv::current()->record_failure("CodeCache is full"); 15214 return; 15215 } 15216 %} 15217 15218 ins_pipe(pipe_class_memory); 15219 %} 15220 15221 // ============================================================================ 15222 // Overflow Math Instructions 15223 15224 instruct overflowAddI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2) 15225 %{ 15226 match(Set cr (OverflowAddI op1 op2)); 15227 15228 format %{ "cmnw $op1, $op2\t# overflow check int" %} 15229 ins_cost(INSN_COST); 15230 ins_encode %{ 15231 __ cmnw($op1$$Register, $op2$$Register); 15232 %} 15233 15234 ins_pipe(icmp_reg_reg); 15235 %} 15236 15237 instruct overflowAddI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2) 15238 %{ 15239 match(Set cr (OverflowAddI op1 op2)); 15240 15241 format %{ "cmnw $op1, $op2\t# overflow check int" %} 15242 ins_cost(INSN_COST); 15243 ins_encode %{ 15244 __ cmnw($op1$$Register, $op2$$constant); 15245 %} 15246 15247 ins_pipe(icmp_reg_imm); 15248 %} 15249 15250 instruct overflowAddL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2) 15251 %{ 15252 match(Set cr (OverflowAddL op1 op2)); 15253 15254 format %{ "cmn $op1, $op2\t# overflow check long" %} 15255 ins_cost(INSN_COST); 15256 ins_encode %{ 15257 __ cmn($op1$$Register, $op2$$Register); 15258 %} 15259 15260 ins_pipe(icmp_reg_reg); 15261 %} 15262 15263 instruct overflowAddL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2) 15264 %{ 15265 match(Set cr (OverflowAddL op1 op2)); 15266 15267 format %{ "adds zr, $op1, $op2\t# overflow check long" %} 15268 ins_cost(INSN_COST); 15269 ins_encode %{ 15270 __ adds(zr, $op1$$Register, $op2$$constant); 15271 %} 15272 15273 ins_pipe(icmp_reg_imm); 15274 %} 15275 15276 instruct overflowSubI_reg_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2) 15277 %{ 15278 match(Set cr (OverflowSubI op1 op2)); 15279 15280 format %{ "cmpw $op1, $op2\t# overflow check int" %} 15281 ins_cost(INSN_COST); 15282 ins_encode %{ 15283 __ cmpw($op1$$Register, $op2$$Register); 15284 %} 15285 15286 ins_pipe(icmp_reg_reg); 15287 %} 15288 15289 instruct overflowSubI_reg_imm(rFlagsReg cr, iRegIorL2I op1, immIAddSub op2) 15290 %{ 15291 match(Set cr (OverflowSubI op1 op2)); 15292 15293 format %{ "cmpw $op1, $op2\t# overflow check int" %} 15294 ins_cost(INSN_COST); 15295 ins_encode %{ 15296 __ cmpw($op1$$Register, $op2$$constant); 15297 %} 15298 15299 ins_pipe(icmp_reg_imm); 15300 %} 15301 15302 instruct overflowSubL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2) 15303 %{ 15304 match(Set cr (OverflowSubL op1 op2)); 15305 15306 format %{ "cmp $op1, $op2\t# overflow check long" %} 15307 ins_cost(INSN_COST); 15308 ins_encode %{ 15309 __ cmp($op1$$Register, $op2$$Register); 15310 %} 15311 15312 ins_pipe(icmp_reg_reg); 15313 %} 15314 15315 instruct overflowSubL_reg_imm(rFlagsReg cr, iRegL op1, immLAddSub op2) 15316 %{ 15317 match(Set cr (OverflowSubL op1 op2)); 15318 15319 format %{ "cmp $op1, $op2\t# overflow check long" %} 15320 ins_cost(INSN_COST); 15321 ins_encode %{ 15322 __ subs(zr, $op1$$Register, $op2$$constant); 15323 %} 15324 15325 ins_pipe(icmp_reg_imm); 15326 %} 15327 15328 instruct overflowNegI_reg(rFlagsReg cr, immI0 zero, iRegIorL2I op1) 15329 %{ 15330 match(Set cr (OverflowSubI zero op1)); 15331 15332 format %{ "cmpw zr, $op1\t# overflow check int" %} 15333 ins_cost(INSN_COST); 15334 ins_encode %{ 15335 __ cmpw(zr, $op1$$Register); 15336 %} 15337 15338 ins_pipe(icmp_reg_imm); 15339 %} 15340 15341 instruct overflowNegL_reg(rFlagsReg cr, immI0 zero, iRegL op1) 15342 %{ 15343 match(Set cr (OverflowSubL zero op1)); 15344 15345 format %{ "cmp zr, $op1\t# overflow check long" %} 15346 ins_cost(INSN_COST); 15347 ins_encode %{ 15348 __ cmp(zr, $op1$$Register); 15349 %} 15350 15351 ins_pipe(icmp_reg_imm); 15352 %} 15353 15354 instruct overflowMulI_reg(rFlagsReg cr, iRegIorL2I op1, iRegIorL2I op2) 15355 %{ 15356 match(Set cr (OverflowMulI op1 op2)); 15357 15358 format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t" 15359 "cmp rscratch1, rscratch1, sxtw\n\t" 15360 "movw rscratch1, #0x80000000\n\t" 15361 "cselw rscratch1, rscratch1, zr, NE\n\t" 15362 "cmpw rscratch1, #1" %} 15363 ins_cost(5 * INSN_COST); 15364 ins_encode %{ 15365 __ smull(rscratch1, $op1$$Register, $op2$$Register); 15366 __ subs(zr, rscratch1, rscratch1, ext::sxtw); // NE => overflow 15367 __ movw(rscratch1, 0x80000000); // Develop 0 (EQ), 15368 __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE) 15369 __ cmpw(rscratch1, 1); // 0x80000000 - 1 => VS 15370 %} 15371 15372 ins_pipe(pipe_slow); 15373 %} 15374 15375 instruct overflowMulI_reg_branch(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, label labl, rFlagsReg cr) 15376 %{ 15377 match(If cmp (OverflowMulI op1 op2)); 15378 predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow 15379 || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow); 15380 effect(USE labl, KILL cr); 15381 15382 format %{ "smull rscratch1, $op1, $op2\t# overflow check int\n\t" 15383 "cmp rscratch1, rscratch1, sxtw\n\t" 15384 "b$cmp $labl" %} 15385 ins_cost(3 * INSN_COST); // Branch is rare so treat as INSN_COST 15386 ins_encode %{ 15387 Label* L = $labl$$label; 15388 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15389 __ smull(rscratch1, $op1$$Register, $op2$$Register); 15390 __ subs(zr, rscratch1, rscratch1, ext::sxtw); // NE => overflow 15391 __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L); 15392 %} 15393 15394 ins_pipe(pipe_serial); 15395 %} 15396 15397 instruct overflowMulL_reg(rFlagsReg cr, iRegL op1, iRegL op2) 15398 %{ 15399 match(Set cr (OverflowMulL op1 op2)); 15400 15401 format %{ "mul rscratch1, $op1, $op2\t#overflow check long\n\t" 15402 "smulh rscratch2, $op1, $op2\n\t" 15403 "cmp rscratch2, rscratch1, ASR #63\n\t" 15404 "movw rscratch1, #0x80000000\n\t" 15405 "cselw rscratch1, rscratch1, zr, NE\n\t" 15406 "cmpw rscratch1, #1" %} 15407 ins_cost(6 * INSN_COST); 15408 ins_encode %{ 15409 __ mul(rscratch1, $op1$$Register, $op2$$Register); // Result bits 0..63 15410 __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127 15411 __ cmp(rscratch2, rscratch1, Assembler::ASR, 63); // Top is pure sign ext 15412 __ movw(rscratch1, 0x80000000); // Develop 0 (EQ), 15413 __ cselw(rscratch1, rscratch1, zr, Assembler::NE); // or 0x80000000 (NE) 15414 __ cmpw(rscratch1, 1); // 0x80000000 - 1 => VS 15415 %} 15416 15417 ins_pipe(pipe_slow); 15418 %} 15419 15420 instruct overflowMulL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, rFlagsReg cr) 15421 %{ 15422 match(If cmp (OverflowMulL op1 op2)); 15423 predicate(n->in(1)->as_Bool()->_test._test == BoolTest::overflow 15424 || n->in(1)->as_Bool()->_test._test == BoolTest::no_overflow); 15425 effect(USE labl, KILL cr); 15426 15427 format %{ "mul rscratch1, $op1, $op2\t#overflow check long\n\t" 15428 "smulh rscratch2, $op1, $op2\n\t" 15429 "cmp rscratch2, rscratch1, ASR #63\n\t" 15430 "b$cmp $labl" %} 15431 ins_cost(4 * INSN_COST); // Branch is rare so treat as INSN_COST 15432 ins_encode %{ 15433 Label* L = $labl$$label; 15434 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 15435 __ mul(rscratch1, $op1$$Register, $op2$$Register); // Result bits 0..63 15436 __ smulh(rscratch2, $op1$$Register, $op2$$Register); // Result bits 64..127 15437 __ cmp(rscratch2, rscratch1, Assembler::ASR, 63); // Top is pure sign ext 15438 __ br(cond == Assembler::VS ? Assembler::NE : Assembler::EQ, *L); 15439 %} 15440 15441 ins_pipe(pipe_serial); 15442 %} 15443 15444 // ============================================================================ 15445 // Compare Instructions 15446 15447 instruct compI_reg_reg(rFlagsReg cr, iRegI op1, iRegI op2) 15448 %{ 15449 match(Set cr (CmpI op1 op2)); 15450 15451 effect(DEF cr, USE op1, USE op2); 15452 15453 ins_cost(INSN_COST); 15454 format %{ "cmpw $op1, $op2" %} 15455 15456 ins_encode(aarch64_enc_cmpw(op1, op2)); 15457 15458 ins_pipe(icmp_reg_reg); 15459 %} 15460 15461 instruct compI_reg_immI0(rFlagsReg cr, iRegI op1, immI0 zero) 15462 %{ 15463 match(Set cr (CmpI op1 zero)); 15464 15465 effect(DEF cr, USE op1); 15466 15467 ins_cost(INSN_COST); 15468 format %{ "cmpw $op1, 0" %} 15469 15470 ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero)); 15471 15472 ins_pipe(icmp_reg_imm); 15473 %} 15474 15475 instruct compI_reg_immIAddSub(rFlagsReg cr, iRegI op1, immIAddSub op2) 15476 %{ 15477 match(Set cr (CmpI op1 op2)); 15478 15479 effect(DEF cr, USE op1); 15480 15481 ins_cost(INSN_COST); 15482 format %{ "cmpw $op1, $op2" %} 15483 15484 ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2)); 15485 15486 ins_pipe(icmp_reg_imm); 15487 %} 15488 15489 instruct compI_reg_immI(rFlagsReg cr, iRegI op1, immI op2) 15490 %{ 15491 match(Set cr (CmpI op1 op2)); 15492 15493 effect(DEF cr, USE op1); 15494 15495 ins_cost(INSN_COST * 2); 15496 format %{ "cmpw $op1, $op2" %} 15497 15498 ins_encode(aarch64_enc_cmpw_imm(op1, op2)); 15499 15500 ins_pipe(icmp_reg_imm); 15501 %} 15502 15503 // Unsigned compare Instructions; really, same as signed compare 15504 // except it should only be used to feed an If or a CMovI which takes a 15505 // cmpOpU. 15506 15507 instruct compU_reg_reg(rFlagsRegU cr, iRegI op1, iRegI op2) 15508 %{ 15509 match(Set cr (CmpU op1 op2)); 15510 15511 effect(DEF cr, USE op1, USE op2); 15512 15513 ins_cost(INSN_COST); 15514 format %{ "cmpw $op1, $op2\t# unsigned" %} 15515 15516 ins_encode(aarch64_enc_cmpw(op1, op2)); 15517 15518 ins_pipe(icmp_reg_reg); 15519 %} 15520 15521 instruct compU_reg_immI0(rFlagsRegU cr, iRegI op1, immI0 zero) 15522 %{ 15523 match(Set cr (CmpU op1 zero)); 15524 15525 effect(DEF cr, USE op1); 15526 15527 ins_cost(INSN_COST); 15528 format %{ "cmpw $op1, #0\t# unsigned" %} 15529 15530 ins_encode(aarch64_enc_cmpw_imm_addsub(op1, zero)); 15531 15532 ins_pipe(icmp_reg_imm); 15533 %} 15534 15535 instruct compU_reg_immIAddSub(rFlagsRegU cr, iRegI op1, immIAddSub op2) 15536 %{ 15537 match(Set cr (CmpU op1 op2)); 15538 15539 effect(DEF cr, USE op1); 15540 15541 ins_cost(INSN_COST); 15542 format %{ "cmpw $op1, $op2\t# unsigned" %} 15543 15544 ins_encode(aarch64_enc_cmpw_imm_addsub(op1, op2)); 15545 15546 ins_pipe(icmp_reg_imm); 15547 %} 15548 15549 instruct compU_reg_immI(rFlagsRegU cr, iRegI op1, immI op2) 15550 %{ 15551 match(Set cr (CmpU op1 op2)); 15552 15553 effect(DEF cr, USE op1); 15554 15555 ins_cost(INSN_COST * 2); 15556 format %{ "cmpw $op1, $op2\t# unsigned" %} 15557 15558 ins_encode(aarch64_enc_cmpw_imm(op1, op2)); 15559 15560 ins_pipe(icmp_reg_imm); 15561 %} 15562 15563 instruct compL_reg_reg(rFlagsReg cr, iRegL op1, iRegL op2) 15564 %{ 15565 match(Set cr (CmpL op1 op2)); 15566 15567 effect(DEF cr, USE op1, USE op2); 15568 15569 ins_cost(INSN_COST); 15570 format %{ "cmp $op1, $op2" %} 15571 15572 ins_encode(aarch64_enc_cmp(op1, op2)); 15573 15574 ins_pipe(icmp_reg_reg); 15575 %} 15576 15577 instruct compL_reg_immL0(rFlagsReg cr, iRegL op1, immL0 zero) 15578 %{ 15579 match(Set cr (CmpL op1 zero)); 15580 15581 effect(DEF cr, USE op1); 15582 15583 ins_cost(INSN_COST); 15584 format %{ "tst $op1" %} 15585 15586 ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero)); 15587 15588 ins_pipe(icmp_reg_imm); 15589 %} 15590 15591 instruct compL_reg_immLAddSub(rFlagsReg cr, iRegL op1, immLAddSub op2) 15592 %{ 15593 match(Set cr (CmpL op1 op2)); 15594 15595 effect(DEF cr, USE op1); 15596 15597 ins_cost(INSN_COST); 15598 format %{ "cmp $op1, $op2" %} 15599 15600 ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2)); 15601 15602 ins_pipe(icmp_reg_imm); 15603 %} 15604 15605 instruct compL_reg_immL(rFlagsReg cr, iRegL op1, immL op2) 15606 %{ 15607 match(Set cr (CmpL op1 op2)); 15608 15609 effect(DEF cr, USE op1); 15610 15611 ins_cost(INSN_COST * 2); 15612 format %{ "cmp $op1, $op2" %} 15613 15614 ins_encode(aarch64_enc_cmp_imm(op1, op2)); 15615 15616 ins_pipe(icmp_reg_imm); 15617 %} 15618 15619 instruct compUL_reg_reg(rFlagsRegU cr, iRegL op1, iRegL op2) 15620 %{ 15621 match(Set cr (CmpUL op1 op2)); 15622 15623 effect(DEF cr, USE op1, USE op2); 15624 15625 ins_cost(INSN_COST); 15626 format %{ "cmp $op1, $op2" %} 15627 15628 ins_encode(aarch64_enc_cmp(op1, op2)); 15629 15630 ins_pipe(icmp_reg_reg); 15631 %} 15632 15633 instruct compUL_reg_immL0(rFlagsRegU cr, iRegL op1, immL0 zero) 15634 %{ 15635 match(Set cr (CmpUL op1 zero)); 15636 15637 effect(DEF cr, USE op1); 15638 15639 ins_cost(INSN_COST); 15640 format %{ "tst $op1" %} 15641 15642 ins_encode(aarch64_enc_cmp_imm_addsub(op1, zero)); 15643 15644 ins_pipe(icmp_reg_imm); 15645 %} 15646 15647 instruct compUL_reg_immLAddSub(rFlagsRegU cr, iRegL op1, immLAddSub op2) 15648 %{ 15649 match(Set cr (CmpUL op1 op2)); 15650 15651 effect(DEF cr, USE op1); 15652 15653 ins_cost(INSN_COST); 15654 format %{ "cmp $op1, $op2" %} 15655 15656 ins_encode(aarch64_enc_cmp_imm_addsub(op1, op2)); 15657 15658 ins_pipe(icmp_reg_imm); 15659 %} 15660 15661 instruct compUL_reg_immL(rFlagsRegU cr, iRegL op1, immL op2) 15662 %{ 15663 match(Set cr (CmpUL op1 op2)); 15664 15665 effect(DEF cr, USE op1); 15666 15667 ins_cost(INSN_COST * 2); 15668 format %{ "cmp $op1, $op2" %} 15669 15670 ins_encode(aarch64_enc_cmp_imm(op1, op2)); 15671 15672 ins_pipe(icmp_reg_imm); 15673 %} 15674 15675 instruct compP_reg_reg(rFlagsRegU cr, iRegP op1, iRegP op2) 15676 %{ 15677 match(Set cr (CmpP op1 op2)); 15678 15679 effect(DEF cr, USE op1, USE op2); 15680 15681 ins_cost(INSN_COST); 15682 format %{ "cmp $op1, $op2\t // ptr" %} 15683 15684 ins_encode(aarch64_enc_cmpp(op1, op2)); 15685 15686 ins_pipe(icmp_reg_reg); 15687 %} 15688 15689 instruct compN_reg_reg(rFlagsRegU cr, iRegN op1, iRegN op2) 15690 %{ 15691 match(Set cr (CmpN op1 op2)); 15692 15693 effect(DEF cr, USE op1, USE op2); 15694 15695 ins_cost(INSN_COST); 15696 format %{ "cmp $op1, $op2\t // compressed ptr" %} 15697 15698 ins_encode(aarch64_enc_cmpn(op1, op2)); 15699 15700 ins_pipe(icmp_reg_reg); 15701 %} 15702 15703 instruct testP_reg(rFlagsRegU cr, iRegP op1, immP0 zero) 15704 %{ 15705 match(Set cr (CmpP op1 zero)); 15706 15707 effect(DEF cr, USE op1, USE zero); 15708 15709 ins_cost(INSN_COST); 15710 format %{ "cmp $op1, 0\t // ptr" %} 15711 15712 ins_encode(aarch64_enc_testp(op1)); 15713 15714 ins_pipe(icmp_reg_imm); 15715 %} 15716 15717 instruct testN_reg(rFlagsRegU cr, iRegN op1, immN0 zero) 15718 %{ 15719 match(Set cr (CmpN op1 zero)); 15720 15721 effect(DEF cr, USE op1, USE zero); 15722 15723 ins_cost(INSN_COST); 15724 format %{ "cmp $op1, 0\t // compressed ptr" %} 15725 15726 ins_encode(aarch64_enc_testn(op1)); 15727 15728 ins_pipe(icmp_reg_imm); 15729 %} 15730 15731 // FP comparisons 15732 // 15733 // n.b. CmpF/CmpD set a normal flags reg which then gets compared 15734 // using normal cmpOp. See declaration of rFlagsReg for details. 15735 15736 instruct compF_reg_reg(rFlagsReg cr, vRegF src1, vRegF src2) 15737 %{ 15738 match(Set cr (CmpF src1 src2)); 15739 15740 ins_cost(3 * INSN_COST); 15741 format %{ "fcmps $src1, $src2" %} 15742 15743 ins_encode %{ 15744 __ fcmps(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg)); 15745 %} 15746 15747 ins_pipe(pipe_class_compare); 15748 %} 15749 15750 instruct compF_reg_zero(rFlagsReg cr, vRegF src1, immF0 src2) 15751 %{ 15752 match(Set cr (CmpF src1 src2)); 15753 15754 ins_cost(3 * INSN_COST); 15755 format %{ "fcmps $src1, 0.0" %} 15756 15757 ins_encode %{ 15758 __ fcmps(as_FloatRegister($src1$$reg), 0.0); 15759 %} 15760 15761 ins_pipe(pipe_class_compare); 15762 %} 15763 // FROM HERE 15764 15765 instruct compD_reg_reg(rFlagsReg cr, vRegD src1, vRegD src2) 15766 %{ 15767 match(Set cr (CmpD src1 src2)); 15768 15769 ins_cost(3 * INSN_COST); 15770 format %{ "fcmpd $src1, $src2" %} 15771 15772 ins_encode %{ 15773 __ fcmpd(as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg)); 15774 %} 15775 15776 ins_pipe(pipe_class_compare); 15777 %} 15778 15779 instruct compD_reg_zero(rFlagsReg cr, vRegD src1, immD0 src2) 15780 %{ 15781 match(Set cr (CmpD src1 src2)); 15782 15783 ins_cost(3 * INSN_COST); 15784 format %{ "fcmpd $src1, 0.0" %} 15785 15786 ins_encode %{ 15787 __ fcmpd(as_FloatRegister($src1$$reg), 0.0); 15788 %} 15789 15790 ins_pipe(pipe_class_compare); 15791 %} 15792 15793 instruct compF3_reg_reg(iRegINoSp dst, vRegF src1, vRegF src2, rFlagsReg cr) 15794 %{ 15795 match(Set dst (CmpF3 src1 src2)); 15796 effect(KILL cr); 15797 15798 ins_cost(5 * INSN_COST); 15799 format %{ "fcmps $src1, $src2\n\t" 15800 "csinvw($dst, zr, zr, eq\n\t" 15801 "csnegw($dst, $dst, $dst, lt)" 15802 %} 15803 15804 ins_encode %{ 15805 Label done; 15806 FloatRegister s1 = as_FloatRegister($src1$$reg); 15807 FloatRegister s2 = as_FloatRegister($src2$$reg); 15808 Register d = as_Register($dst$$reg); 15809 __ fcmps(s1, s2); 15810 // installs 0 if EQ else -1 15811 __ csinvw(d, zr, zr, Assembler::EQ); 15812 // keeps -1 if less or unordered else installs 1 15813 __ csnegw(d, d, d, Assembler::LT); 15814 __ bind(done); 15815 %} 15816 15817 ins_pipe(pipe_class_default); 15818 15819 %} 15820 15821 instruct compD3_reg_reg(iRegINoSp dst, vRegD src1, vRegD src2, rFlagsReg cr) 15822 %{ 15823 match(Set dst (CmpD3 src1 src2)); 15824 effect(KILL cr); 15825 15826 ins_cost(5 * INSN_COST); 15827 format %{ "fcmpd $src1, $src2\n\t" 15828 "csinvw($dst, zr, zr, eq\n\t" 15829 "csnegw($dst, $dst, $dst, lt)" 15830 %} 15831 15832 ins_encode %{ 15833 Label done; 15834 FloatRegister s1 = as_FloatRegister($src1$$reg); 15835 FloatRegister s2 = as_FloatRegister($src2$$reg); 15836 Register d = as_Register($dst$$reg); 15837 __ fcmpd(s1, s2); 15838 // installs 0 if EQ else -1 15839 __ csinvw(d, zr, zr, Assembler::EQ); 15840 // keeps -1 if less or unordered else installs 1 15841 __ csnegw(d, d, d, Assembler::LT); 15842 __ bind(done); 15843 %} 15844 ins_pipe(pipe_class_default); 15845 15846 %} 15847 15848 instruct compF3_reg_immF0(iRegINoSp dst, vRegF src1, immF0 zero, rFlagsReg cr) 15849 %{ 15850 match(Set dst (CmpF3 src1 zero)); 15851 effect(KILL cr); 15852 15853 ins_cost(5 * INSN_COST); 15854 format %{ "fcmps $src1, 0.0\n\t" 15855 "csinvw($dst, zr, zr, eq\n\t" 15856 "csnegw($dst, $dst, $dst, lt)" 15857 %} 15858 15859 ins_encode %{ 15860 Label done; 15861 FloatRegister s1 = as_FloatRegister($src1$$reg); 15862 Register d = as_Register($dst$$reg); 15863 __ fcmps(s1, 0.0); 15864 // installs 0 if EQ else -1 15865 __ csinvw(d, zr, zr, Assembler::EQ); 15866 // keeps -1 if less or unordered else installs 1 15867 __ csnegw(d, d, d, Assembler::LT); 15868 __ bind(done); 15869 %} 15870 15871 ins_pipe(pipe_class_default); 15872 15873 %} 15874 15875 instruct compD3_reg_immD0(iRegINoSp dst, vRegD src1, immD0 zero, rFlagsReg cr) 15876 %{ 15877 match(Set dst (CmpD3 src1 zero)); 15878 effect(KILL cr); 15879 15880 ins_cost(5 * INSN_COST); 15881 format %{ "fcmpd $src1, 0.0\n\t" 15882 "csinvw($dst, zr, zr, eq\n\t" 15883 "csnegw($dst, $dst, $dst, lt)" 15884 %} 15885 15886 ins_encode %{ 15887 Label done; 15888 FloatRegister s1 = as_FloatRegister($src1$$reg); 15889 Register d = as_Register($dst$$reg); 15890 __ fcmpd(s1, 0.0); 15891 // installs 0 if EQ else -1 15892 __ csinvw(d, zr, zr, Assembler::EQ); 15893 // keeps -1 if less or unordered else installs 1 15894 __ csnegw(d, d, d, Assembler::LT); 15895 __ bind(done); 15896 %} 15897 ins_pipe(pipe_class_default); 15898 15899 %} 15900 15901 instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegIorL2I p, iRegIorL2I q, rFlagsReg cr) 15902 %{ 15903 match(Set dst (CmpLTMask p q)); 15904 effect(KILL cr); 15905 15906 ins_cost(3 * INSN_COST); 15907 15908 format %{ "cmpw $p, $q\t# cmpLTMask\n\t" 15909 "csetw $dst, lt\n\t" 15910 "subw $dst, zr, $dst" 15911 %} 15912 15913 ins_encode %{ 15914 __ cmpw(as_Register($p$$reg), as_Register($q$$reg)); 15915 __ csetw(as_Register($dst$$reg), Assembler::LT); 15916 __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg)); 15917 %} 15918 15919 ins_pipe(ialu_reg_reg); 15920 %} 15921 15922 instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I src, immI0 zero, rFlagsReg cr) 15923 %{ 15924 match(Set dst (CmpLTMask src zero)); 15925 effect(KILL cr); 15926 15927 ins_cost(INSN_COST); 15928 15929 format %{ "asrw $dst, $src, #31\t# cmpLTMask0" %} 15930 15931 ins_encode %{ 15932 __ asrw(as_Register($dst$$reg), as_Register($src$$reg), 31); 15933 %} 15934 15935 ins_pipe(ialu_reg_shift); 15936 %} 15937 15938 // ============================================================================ 15939 // Max and Min 15940 15941 instruct cmovI_reg_reg_lt(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr) 15942 %{ 15943 effect( DEF dst, USE src1, USE src2, USE cr ); 15944 15945 ins_cost(INSN_COST * 2); 15946 format %{ "cselw $dst, $src1, $src2 lt\t" %} 15947 15948 ins_encode %{ 15949 __ cselw(as_Register($dst$$reg), 15950 as_Register($src1$$reg), 15951 as_Register($src2$$reg), 15952 Assembler::LT); 15953 %} 15954 15955 ins_pipe(icond_reg_reg); 15956 %} 15957 15958 instruct minI_rReg(iRegINoSp dst, iRegI src1, iRegI src2) 15959 %{ 15960 match(Set dst (MinI src1 src2)); 15961 ins_cost(INSN_COST * 3); 15962 15963 expand %{ 15964 rFlagsReg cr; 15965 compI_reg_reg(cr, src1, src2); 15966 cmovI_reg_reg_lt(dst, src1, src2, cr); 15967 %} 15968 15969 %} 15970 // FROM HERE 15971 15972 instruct cmovI_reg_reg_gt(iRegINoSp dst, iRegI src1, iRegI src2, rFlagsReg cr) 15973 %{ 15974 effect( DEF dst, USE src1, USE src2, USE cr ); 15975 15976 ins_cost(INSN_COST * 2); 15977 format %{ "cselw $dst, $src1, $src2 gt\t" %} 15978 15979 ins_encode %{ 15980 __ cselw(as_Register($dst$$reg), 15981 as_Register($src1$$reg), 15982 as_Register($src2$$reg), 15983 Assembler::GT); 15984 %} 15985 15986 ins_pipe(icond_reg_reg); 15987 %} 15988 15989 instruct maxI_rReg(iRegINoSp dst, iRegI src1, iRegI src2) 15990 %{ 15991 match(Set dst (MaxI src1 src2)); 15992 ins_cost(INSN_COST * 3); 15993 expand %{ 15994 rFlagsReg cr; 15995 compI_reg_reg(cr, src1, src2); 15996 cmovI_reg_reg_gt(dst, src1, src2, cr); 15997 %} 15998 %} 15999 16000 // ============================================================================ 16001 // Branch Instructions 16002 16003 // Direct Branch. 16004 instruct branch(label lbl) 16005 %{ 16006 match(Goto); 16007 16008 effect(USE lbl); 16009 16010 ins_cost(BRANCH_COST); 16011 format %{ "b $lbl" %} 16012 16013 ins_encode(aarch64_enc_b(lbl)); 16014 16015 ins_pipe(pipe_branch); 16016 %} 16017 16018 // Conditional Near Branch 16019 instruct branchCon(cmpOp cmp, rFlagsReg cr, label lbl) 16020 %{ 16021 // Same match rule as `branchConFar'. 16022 match(If cmp cr); 16023 16024 effect(USE lbl); 16025 16026 ins_cost(BRANCH_COST); 16027 // If set to 1 this indicates that the current instruction is a 16028 // short variant of a long branch. This avoids using this 16029 // instruction in first-pass matching. It will then only be used in 16030 // the `Shorten_branches' pass. 16031 // ins_short_branch(1); 16032 format %{ "b$cmp $lbl" %} 16033 16034 ins_encode(aarch64_enc_br_con(cmp, lbl)); 16035 16036 ins_pipe(pipe_branch_cond); 16037 %} 16038 16039 // Conditional Near Branch Unsigned 16040 instruct branchConU(cmpOpU cmp, rFlagsRegU cr, label lbl) 16041 %{ 16042 // Same match rule as `branchConFar'. 16043 match(If cmp cr); 16044 16045 effect(USE lbl); 16046 16047 ins_cost(BRANCH_COST); 16048 // If set to 1 this indicates that the current instruction is a 16049 // short variant of a long branch. This avoids using this 16050 // instruction in first-pass matching. It will then only be used in 16051 // the `Shorten_branches' pass. 16052 // ins_short_branch(1); 16053 format %{ "b$cmp $lbl\t# unsigned" %} 16054 16055 ins_encode(aarch64_enc_br_conU(cmp, lbl)); 16056 16057 ins_pipe(pipe_branch_cond); 16058 %} 16059 16060 // Make use of CBZ and CBNZ. These instructions, as well as being 16061 // shorter than (cmp; branch), have the additional benefit of not 16062 // killing the flags. 16063 16064 instruct cmpI_imm0_branch(cmpOpEqNe cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsReg cr) %{ 16065 match(If cmp (CmpI op1 op2)); 16066 effect(USE labl); 16067 16068 ins_cost(BRANCH_COST); 16069 format %{ "cbw$cmp $op1, $labl" %} 16070 ins_encode %{ 16071 Label* L = $labl$$label; 16072 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16073 if (cond == Assembler::EQ) 16074 __ cbzw($op1$$Register, *L); 16075 else 16076 __ cbnzw($op1$$Register, *L); 16077 %} 16078 ins_pipe(pipe_cmp_branch); 16079 %} 16080 16081 instruct cmpL_imm0_branch(cmpOpEqNe cmp, iRegL op1, immL0 op2, label labl, rFlagsReg cr) %{ 16082 match(If cmp (CmpL op1 op2)); 16083 effect(USE labl); 16084 16085 ins_cost(BRANCH_COST); 16086 format %{ "cb$cmp $op1, $labl" %} 16087 ins_encode %{ 16088 Label* L = $labl$$label; 16089 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16090 if (cond == Assembler::EQ) 16091 __ cbz($op1$$Register, *L); 16092 else 16093 __ cbnz($op1$$Register, *L); 16094 %} 16095 ins_pipe(pipe_cmp_branch); 16096 %} 16097 16098 instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 op2, label labl, rFlagsReg cr) %{ 16099 match(If cmp (CmpP op1 op2)); 16100 effect(USE labl); 16101 16102 ins_cost(BRANCH_COST); 16103 format %{ "cb$cmp $op1, $labl" %} 16104 ins_encode %{ 16105 Label* L = $labl$$label; 16106 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16107 if (cond == Assembler::EQ) 16108 __ cbz($op1$$Register, *L); 16109 else 16110 __ cbnz($op1$$Register, *L); 16111 %} 16112 ins_pipe(pipe_cmp_branch); 16113 %} 16114 16115 instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 op2, label labl, rFlagsReg cr) %{ 16116 match(If cmp (CmpN op1 op2)); 16117 effect(USE labl); 16118 16119 ins_cost(BRANCH_COST); 16120 format %{ "cbw$cmp $op1, $labl" %} 16121 ins_encode %{ 16122 Label* L = $labl$$label; 16123 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16124 if (cond == Assembler::EQ) 16125 __ cbzw($op1$$Register, *L); 16126 else 16127 __ cbnzw($op1$$Register, *L); 16128 %} 16129 ins_pipe(pipe_cmp_branch); 16130 %} 16131 16132 instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN oop, immP0 zero, label labl, rFlagsReg cr) %{ 16133 match(If cmp (CmpP (DecodeN oop) zero)); 16134 effect(USE labl); 16135 16136 ins_cost(BRANCH_COST); 16137 format %{ "cb$cmp $oop, $labl" %} 16138 ins_encode %{ 16139 Label* L = $labl$$label; 16140 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16141 if (cond == Assembler::EQ) 16142 __ cbzw($oop$$Register, *L); 16143 else 16144 __ cbnzw($oop$$Register, *L); 16145 %} 16146 ins_pipe(pipe_cmp_branch); 16147 %} 16148 16149 instruct cmpUI_imm0_branch(cmpOpUEqNeLtGe cmp, iRegIorL2I op1, immI0 op2, label labl, rFlagsRegU cr) %{ 16150 match(If cmp (CmpU op1 op2)); 16151 effect(USE labl); 16152 16153 ins_cost(BRANCH_COST); 16154 format %{ "cbw$cmp $op1, $labl" %} 16155 ins_encode %{ 16156 Label* L = $labl$$label; 16157 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16158 if (cond == Assembler::EQ || cond == Assembler::LS) 16159 __ cbzw($op1$$Register, *L); 16160 else 16161 __ cbnzw($op1$$Register, *L); 16162 %} 16163 ins_pipe(pipe_cmp_branch); 16164 %} 16165 16166 instruct cmpUL_imm0_branch(cmpOpUEqNeLtGe cmp, iRegL op1, immL0 op2, label labl, rFlagsRegU cr) %{ 16167 match(If cmp (CmpUL op1 op2)); 16168 effect(USE labl); 16169 16170 ins_cost(BRANCH_COST); 16171 format %{ "cb$cmp $op1, $labl" %} 16172 ins_encode %{ 16173 Label* L = $labl$$label; 16174 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16175 if (cond == Assembler::EQ || cond == Assembler::LS) 16176 __ cbz($op1$$Register, *L); 16177 else 16178 __ cbnz($op1$$Register, *L); 16179 %} 16180 ins_pipe(pipe_cmp_branch); 16181 %} 16182 16183 // Test bit and Branch 16184 16185 // Patterns for short (< 32KiB) variants 16186 instruct cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{ 16187 match(If cmp (CmpL op1 op2)); 16188 effect(USE labl); 16189 16190 ins_cost(BRANCH_COST); 16191 format %{ "cb$cmp $op1, $labl # long" %} 16192 ins_encode %{ 16193 Label* L = $labl$$label; 16194 Assembler::Condition cond = 16195 ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ; 16196 __ tbr(cond, $op1$$Register, 63, *L); 16197 %} 16198 ins_pipe(pipe_cmp_branch); 16199 ins_short_branch(1); 16200 %} 16201 16202 instruct cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{ 16203 match(If cmp (CmpI op1 op2)); 16204 effect(USE labl); 16205 16206 ins_cost(BRANCH_COST); 16207 format %{ "cb$cmp $op1, $labl # int" %} 16208 ins_encode %{ 16209 Label* L = $labl$$label; 16210 Assembler::Condition cond = 16211 ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ; 16212 __ tbr(cond, $op1$$Register, 31, *L); 16213 %} 16214 ins_pipe(pipe_cmp_branch); 16215 ins_short_branch(1); 16216 %} 16217 16218 instruct cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{ 16219 match(If cmp (CmpL (AndL op1 op2) op3)); 16220 predicate(is_power_of_2((julong)n->in(2)->in(1)->in(2)->get_long())); 16221 effect(USE labl); 16222 16223 ins_cost(BRANCH_COST); 16224 format %{ "tb$cmp $op1, $op2, $labl" %} 16225 ins_encode %{ 16226 Label* L = $labl$$label; 16227 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16228 int bit = exact_log2_long($op2$$constant); 16229 __ tbr(cond, $op1$$Register, bit, *L); 16230 %} 16231 ins_pipe(pipe_cmp_branch); 16232 ins_short_branch(1); 16233 %} 16234 16235 instruct cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{ 16236 match(If cmp (CmpI (AndI op1 op2) op3)); 16237 predicate(is_power_of_2((juint)n->in(2)->in(1)->in(2)->get_int())); 16238 effect(USE labl); 16239 16240 ins_cost(BRANCH_COST); 16241 format %{ "tb$cmp $op1, $op2, $labl" %} 16242 ins_encode %{ 16243 Label* L = $labl$$label; 16244 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16245 int bit = exact_log2((juint)$op2$$constant); 16246 __ tbr(cond, $op1$$Register, bit, *L); 16247 %} 16248 ins_pipe(pipe_cmp_branch); 16249 ins_short_branch(1); 16250 %} 16251 16252 // And far variants 16253 instruct far_cmpL_branch_sign(cmpOpLtGe cmp, iRegL op1, immL0 op2, label labl) %{ 16254 match(If cmp (CmpL op1 op2)); 16255 effect(USE labl); 16256 16257 ins_cost(BRANCH_COST); 16258 format %{ "cb$cmp $op1, $labl # long" %} 16259 ins_encode %{ 16260 Label* L = $labl$$label; 16261 Assembler::Condition cond = 16262 ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ; 16263 __ tbr(cond, $op1$$Register, 63, *L, /*far*/true); 16264 %} 16265 ins_pipe(pipe_cmp_branch); 16266 %} 16267 16268 instruct far_cmpI_branch_sign(cmpOpLtGe cmp, iRegIorL2I op1, immI0 op2, label labl) %{ 16269 match(If cmp (CmpI op1 op2)); 16270 effect(USE labl); 16271 16272 ins_cost(BRANCH_COST); 16273 format %{ "cb$cmp $op1, $labl # int" %} 16274 ins_encode %{ 16275 Label* L = $labl$$label; 16276 Assembler::Condition cond = 16277 ((Assembler::Condition)$cmp$$cmpcode == Assembler::LT) ? Assembler::NE : Assembler::EQ; 16278 __ tbr(cond, $op1$$Register, 31, *L, /*far*/true); 16279 %} 16280 ins_pipe(pipe_cmp_branch); 16281 %} 16282 16283 instruct far_cmpL_branch_bit(cmpOpEqNe cmp, iRegL op1, immL op2, immL0 op3, label labl) %{ 16284 match(If cmp (CmpL (AndL op1 op2) op3)); 16285 predicate(is_power_of_2((julong)n->in(2)->in(1)->in(2)->get_long())); 16286 effect(USE labl); 16287 16288 ins_cost(BRANCH_COST); 16289 format %{ "tb$cmp $op1, $op2, $labl" %} 16290 ins_encode %{ 16291 Label* L = $labl$$label; 16292 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16293 int bit = exact_log2_long($op2$$constant); 16294 __ tbr(cond, $op1$$Register, bit, *L, /*far*/true); 16295 %} 16296 ins_pipe(pipe_cmp_branch); 16297 %} 16298 16299 instruct far_cmpI_branch_bit(cmpOpEqNe cmp, iRegIorL2I op1, immI op2, immI0 op3, label labl) %{ 16300 match(If cmp (CmpI (AndI op1 op2) op3)); 16301 predicate(is_power_of_2((juint)n->in(2)->in(1)->in(2)->get_int())); 16302 effect(USE labl); 16303 16304 ins_cost(BRANCH_COST); 16305 format %{ "tb$cmp $op1, $op2, $labl" %} 16306 ins_encode %{ 16307 Label* L = $labl$$label; 16308 Assembler::Condition cond = (Assembler::Condition)$cmp$$cmpcode; 16309 int bit = exact_log2((juint)$op2$$constant); 16310 __ tbr(cond, $op1$$Register, bit, *L, /*far*/true); 16311 %} 16312 ins_pipe(pipe_cmp_branch); 16313 %} 16314 16315 // Test bits 16316 16317 instruct cmpL_and(cmpOp cmp, iRegL op1, immL op2, immL0 op3, rFlagsReg cr) %{ 16318 match(Set cr (CmpL (AndL op1 op2) op3)); 16319 predicate(Assembler::operand_valid_for_logical_immediate 16320 (/*is_32*/false, n->in(1)->in(2)->get_long())); 16321 16322 ins_cost(INSN_COST); 16323 format %{ "tst $op1, $op2 # long" %} 16324 ins_encode %{ 16325 __ tst($op1$$Register, $op2$$constant); 16326 %} 16327 ins_pipe(ialu_reg_reg); 16328 %} 16329 16330 instruct cmpI_and(cmpOp cmp, iRegIorL2I op1, immI op2, immI0 op3, rFlagsReg cr) %{ 16331 match(Set cr (CmpI (AndI op1 op2) op3)); 16332 predicate(Assembler::operand_valid_for_logical_immediate 16333 (/*is_32*/true, n->in(1)->in(2)->get_int())); 16334 16335 ins_cost(INSN_COST); 16336 format %{ "tst $op1, $op2 # int" %} 16337 ins_encode %{ 16338 __ tstw($op1$$Register, $op2$$constant); 16339 %} 16340 ins_pipe(ialu_reg_reg); 16341 %} 16342 16343 instruct cmpL_and_reg(cmpOp cmp, iRegL op1, iRegL op2, immL0 op3, rFlagsReg cr) %{ 16344 match(Set cr (CmpL (AndL op1 op2) op3)); 16345 16346 ins_cost(INSN_COST); 16347 format %{ "tst $op1, $op2 # long" %} 16348 ins_encode %{ 16349 __ tst($op1$$Register, $op2$$Register); 16350 %} 16351 ins_pipe(ialu_reg_reg); 16352 %} 16353 16354 instruct cmpI_and_reg(cmpOp cmp, iRegIorL2I op1, iRegIorL2I op2, immI0 op3, rFlagsReg cr) %{ 16355 match(Set cr (CmpI (AndI op1 op2) op3)); 16356 16357 ins_cost(INSN_COST); 16358 format %{ "tstw $op1, $op2 # int" %} 16359 ins_encode %{ 16360 __ tstw($op1$$Register, $op2$$Register); 16361 %} 16362 ins_pipe(ialu_reg_reg); 16363 %} 16364 16365 16366 // Conditional Far Branch 16367 // Conditional Far Branch Unsigned 16368 // TODO: fixme 16369 16370 // counted loop end branch near 16371 instruct branchLoopEnd(cmpOp cmp, rFlagsReg cr, label lbl) 16372 %{ 16373 match(CountedLoopEnd cmp cr); 16374 16375 effect(USE lbl); 16376 16377 ins_cost(BRANCH_COST); 16378 // short variant. 16379 // ins_short_branch(1); 16380 format %{ "b$cmp $lbl \t// counted loop end" %} 16381 16382 ins_encode(aarch64_enc_br_con(cmp, lbl)); 16383 16384 ins_pipe(pipe_branch); 16385 %} 16386 16387 // counted loop end branch near Unsigned 16388 instruct branchLoopEndU(cmpOpU cmp, rFlagsRegU cr, label lbl) 16389 %{ 16390 match(CountedLoopEnd cmp cr); 16391 16392 effect(USE lbl); 16393 16394 ins_cost(BRANCH_COST); 16395 // short variant. 16396 // ins_short_branch(1); 16397 format %{ "b$cmp $lbl \t// counted loop end unsigned" %} 16398 16399 ins_encode(aarch64_enc_br_conU(cmp, lbl)); 16400 16401 ins_pipe(pipe_branch); 16402 %} 16403 16404 // counted loop end branch far 16405 // counted loop end branch far unsigned 16406 // TODO: fixme 16407 16408 // ============================================================================ 16409 // inlined locking and unlocking 16410 16411 instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2) 16412 %{ 16413 match(Set cr (FastLock object box)); 16414 effect(TEMP tmp, TEMP tmp2); 16415 16416 // TODO 16417 // identify correct cost 16418 ins_cost(5 * INSN_COST); 16419 format %{ "fastlock $object,$box\t! kills $tmp,$tmp2" %} 16420 16421 ins_encode(aarch64_enc_fast_lock(object, box, tmp, tmp2)); 16422 16423 ins_pipe(pipe_serial); 16424 %} 16425 16426 instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp, iRegPNoSp tmp2) 16427 %{ 16428 match(Set cr (FastUnlock object box)); 16429 effect(TEMP tmp, TEMP tmp2); 16430 16431 ins_cost(5 * INSN_COST); 16432 format %{ "fastunlock $object,$box\t! kills $tmp, $tmp2" %} 16433 16434 ins_encode(aarch64_enc_fast_unlock(object, box, tmp, tmp2)); 16435 16436 ins_pipe(pipe_serial); 16437 %} 16438 16439 16440 // ============================================================================ 16441 // Safepoint Instructions 16442 16443 // TODO 16444 // provide a near and far version of this code 16445 16446 instruct safePoint(rFlagsReg cr, iRegP poll) 16447 %{ 16448 match(SafePoint poll); 16449 effect(KILL cr); 16450 16451 format %{ 16452 "ldrw zr, [$poll]\t# Safepoint: poll for GC" 16453 %} 16454 ins_encode %{ 16455 __ read_polling_page(as_Register($poll$$reg), relocInfo::poll_type); 16456 %} 16457 ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem); 16458 %} 16459 16460 16461 // ============================================================================ 16462 // Procedure Call/Return Instructions 16463 16464 // Call Java Static Instruction 16465 16466 instruct CallStaticJavaDirect(method meth) 16467 %{ 16468 match(CallStaticJava); 16469 16470 effect(USE meth); 16471 16472 ins_cost(CALL_COST); 16473 16474 format %{ "call,static $meth \t// ==> " %} 16475 16476 ins_encode(aarch64_enc_java_static_call(meth), 16477 aarch64_enc_call_epilog); 16478 16479 ins_pipe(pipe_class_call); 16480 %} 16481 16482 // TO HERE 16483 16484 // Call Java Dynamic Instruction 16485 instruct CallDynamicJavaDirect(method meth) 16486 %{ 16487 match(CallDynamicJava); 16488 16489 effect(USE meth); 16490 16491 ins_cost(CALL_COST); 16492 16493 format %{ "CALL,dynamic $meth \t// ==> " %} 16494 16495 ins_encode(aarch64_enc_java_dynamic_call(meth), 16496 aarch64_enc_call_epilog); 16497 16498 ins_pipe(pipe_class_call); 16499 %} 16500 16501 // Call Runtime Instruction 16502 16503 instruct CallRuntimeDirect(method meth) 16504 %{ 16505 match(CallRuntime); 16506 16507 effect(USE meth); 16508 16509 ins_cost(CALL_COST); 16510 16511 format %{ "CALL, runtime $meth" %} 16512 16513 ins_encode( aarch64_enc_java_to_runtime(meth) ); 16514 16515 ins_pipe(pipe_class_call); 16516 %} 16517 16518 // Call Runtime Instruction 16519 16520 instruct CallLeafDirect(method meth) 16521 %{ 16522 match(CallLeaf); 16523 16524 effect(USE meth); 16525 16526 ins_cost(CALL_COST); 16527 16528 format %{ "CALL, runtime leaf $meth" %} 16529 16530 ins_encode( aarch64_enc_java_to_runtime(meth) ); 16531 16532 ins_pipe(pipe_class_call); 16533 %} 16534 16535 // Call Runtime Instruction 16536 16537 instruct CallLeafNoFPDirect(method meth) 16538 %{ 16539 match(CallLeafNoFP); 16540 16541 effect(USE meth); 16542 16543 ins_cost(CALL_COST); 16544 16545 format %{ "CALL, runtime leaf nofp $meth" %} 16546 16547 ins_encode( aarch64_enc_java_to_runtime(meth) ); 16548 16549 ins_pipe(pipe_class_call); 16550 %} 16551 16552 instruct CallNativeDirect(method meth) 16553 %{ 16554 match(CallNative); 16555 16556 effect(USE meth); 16557 16558 ins_cost(CALL_COST); 16559 16560 format %{ "CALL, native $meth" %} 16561 16562 ins_encode( aarch64_enc_java_to_runtime(meth) ); 16563 16564 ins_pipe(pipe_class_call); 16565 %} 16566 16567 // Tail Call; Jump from runtime stub to Java code. 16568 // Also known as an 'interprocedural jump'. 16569 // Target of jump will eventually return to caller. 16570 // TailJump below removes the return address. 16571 instruct TailCalljmpInd(iRegPNoSp jump_target, inline_cache_RegP method_ptr) 16572 %{ 16573 match(TailCall jump_target method_ptr); 16574 16575 ins_cost(CALL_COST); 16576 16577 format %{ "br $jump_target\t# $method_ptr holds method" %} 16578 16579 ins_encode(aarch64_enc_tail_call(jump_target)); 16580 16581 ins_pipe(pipe_class_call); 16582 %} 16583 16584 instruct TailjmpInd(iRegPNoSp jump_target, iRegP_R0 ex_oop) 16585 %{ 16586 match(TailJump jump_target ex_oop); 16587 16588 ins_cost(CALL_COST); 16589 16590 format %{ "br $jump_target\t# $ex_oop holds exception oop" %} 16591 16592 ins_encode(aarch64_enc_tail_jmp(jump_target)); 16593 16594 ins_pipe(pipe_class_call); 16595 %} 16596 16597 // Create exception oop: created by stack-crawling runtime code. 16598 // Created exception is now available to this handler, and is setup 16599 // just prior to jumping to this handler. No code emitted. 16600 // TODO check 16601 // should ex_oop be in r0? intel uses rax, ppc cannot use r0 so uses rarg1 16602 instruct CreateException(iRegP_R0 ex_oop) 16603 %{ 16604 match(Set ex_oop (CreateEx)); 16605 16606 format %{ " -- \t// exception oop; no code emitted" %} 16607 16608 size(0); 16609 16610 ins_encode( /*empty*/ ); 16611 16612 ins_pipe(pipe_class_empty); 16613 %} 16614 16615 // Rethrow exception: The exception oop will come in the first 16616 // argument position. Then JUMP (not call) to the rethrow stub code. 16617 instruct RethrowException() %{ 16618 match(Rethrow); 16619 ins_cost(CALL_COST); 16620 16621 format %{ "b rethrow_stub" %} 16622 16623 ins_encode( aarch64_enc_rethrow() ); 16624 16625 ins_pipe(pipe_class_call); 16626 %} 16627 16628 16629 // Return Instruction 16630 // epilog node loads ret address into lr as part of frame pop 16631 instruct Ret() 16632 %{ 16633 match(Return); 16634 16635 format %{ "ret\t// return register" %} 16636 16637 ins_encode( aarch64_enc_ret() ); 16638 16639 ins_pipe(pipe_branch); 16640 %} 16641 16642 // Die now. 16643 instruct ShouldNotReachHere() %{ 16644 match(Halt); 16645 16646 ins_cost(CALL_COST); 16647 format %{ "ShouldNotReachHere" %} 16648 16649 ins_encode %{ 16650 if (is_reachable()) { 16651 __ stop(_halt_reason); 16652 } 16653 %} 16654 16655 ins_pipe(pipe_class_default); 16656 %} 16657 16658 // ============================================================================ 16659 // Partial Subtype Check 16660 // 16661 // superklass array for an instance of the superklass. Set a hidden 16662 // internal cache on a hit (cache is checked with exposed code in 16663 // gen_subtype_check()). Return NZ for a miss or zero for a hit. The 16664 // encoding ALSO sets flags. 16665 16666 instruct partialSubtypeCheck(iRegP_R4 sub, iRegP_R0 super, iRegP_R2 temp, iRegP_R5 result, rFlagsReg cr) 16667 %{ 16668 match(Set result (PartialSubtypeCheck sub super)); 16669 effect(KILL cr, KILL temp); 16670 16671 ins_cost(1100); // slightly larger than the next version 16672 format %{ "partialSubtypeCheck $result, $sub, $super" %} 16673 16674 ins_encode(aarch64_enc_partial_subtype_check(sub, super, temp, result)); 16675 16676 opcode(0x1); // Force zero of result reg on hit 16677 16678 ins_pipe(pipe_class_memory); 16679 %} 16680 16681 instruct partialSubtypeCheckVsZero(iRegP_R4 sub, iRegP_R0 super, iRegP_R2 temp, iRegP_R5 result, immP0 zero, rFlagsReg cr) 16682 %{ 16683 match(Set cr (CmpP (PartialSubtypeCheck sub super) zero)); 16684 effect(KILL temp, KILL result); 16685 16686 ins_cost(1100); // slightly larger than the next version 16687 format %{ "partialSubtypeCheck $result, $sub, $super == 0" %} 16688 16689 ins_encode(aarch64_enc_partial_subtype_check(sub, super, temp, result)); 16690 16691 opcode(0x0); // Don't zero result reg on hit 16692 16693 ins_pipe(pipe_class_memory); 16694 %} 16695 16696 instruct string_compareU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16697 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, rFlagsReg cr) 16698 %{ 16699 predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU); 16700 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16701 effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16702 16703 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1" %} 16704 ins_encode %{ 16705 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 16706 __ string_compare($str1$$Register, $str2$$Register, 16707 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16708 $tmp1$$Register, $tmp2$$Register, 16709 fnoreg, fnoreg, fnoreg, StrIntrinsicNode::UU); 16710 %} 16711 ins_pipe(pipe_class_memory); 16712 %} 16713 16714 instruct string_compareL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16715 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, rFlagsReg cr) 16716 %{ 16717 predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL); 16718 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16719 effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16720 16721 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1" %} 16722 ins_encode %{ 16723 __ string_compare($str1$$Register, $str2$$Register, 16724 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16725 $tmp1$$Register, $tmp2$$Register, 16726 fnoreg, fnoreg, fnoreg, StrIntrinsicNode::LL); 16727 %} 16728 ins_pipe(pipe_class_memory); 16729 %} 16730 16731 instruct string_compareUL(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16732 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, 16733 vRegD_V0 vtmp1, vRegD_V1 vtmp2, vRegD_V2 vtmp3, rFlagsReg cr) 16734 %{ 16735 predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL); 16736 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16737 effect(KILL tmp1, KILL tmp2, KILL vtmp1, KILL vtmp2, KILL vtmp3, 16738 USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16739 16740 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1, $tmp2, $vtmp1, $vtmp2, $vtmp3" %} 16741 ins_encode %{ 16742 __ string_compare($str1$$Register, $str2$$Register, 16743 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16744 $tmp1$$Register, $tmp2$$Register, 16745 $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, 16746 $vtmp3$$FloatRegister, StrIntrinsicNode::UL); 16747 %} 16748 ins_pipe(pipe_class_memory); 16749 %} 16750 16751 instruct string_compareLU(iRegP_R1 str1, iRegI_R2 cnt1, iRegP_R3 str2, iRegI_R4 cnt2, 16752 iRegI_R0 result, iRegP_R10 tmp1, iRegL_R11 tmp2, 16753 vRegD_V0 vtmp1, vRegD_V1 vtmp2, vRegD_V2 vtmp3, rFlagsReg cr) 16754 %{ 16755 predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU); 16756 match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); 16757 effect(KILL tmp1, KILL tmp2, KILL vtmp1, KILL vtmp2, KILL vtmp3, 16758 USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); 16759 16760 format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result # KILL $tmp1, $tmp2, $vtmp1, $vtmp2, $vtmp3" %} 16761 ins_encode %{ 16762 __ string_compare($str1$$Register, $str2$$Register, 16763 $cnt1$$Register, $cnt2$$Register, $result$$Register, 16764 $tmp1$$Register, $tmp2$$Register, 16765 $vtmp1$$FloatRegister, $vtmp2$$FloatRegister, 16766 $vtmp3$$FloatRegister,StrIntrinsicNode::LU); 16767 %} 16768 ins_pipe(pipe_class_memory); 16769 %} 16770 16771 instruct string_indexofUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2, 16772 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 16773 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 16774 %{ 16775 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 16776 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 16777 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, 16778 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 16779 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU)" %} 16780 16781 ins_encode %{ 16782 __ string_indexof($str1$$Register, $str2$$Register, 16783 $cnt1$$Register, $cnt2$$Register, 16784 $tmp1$$Register, $tmp2$$Register, 16785 $tmp3$$Register, $tmp4$$Register, 16786 $tmp5$$Register, $tmp6$$Register, 16787 -1, $result$$Register, StrIntrinsicNode::UU); 16788 %} 16789 ins_pipe(pipe_class_memory); 16790 %} 16791 16792 instruct string_indexofLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2, 16793 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 16794 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 16795 %{ 16796 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 16797 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 16798 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, 16799 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 16800 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL)" %} 16801 16802 ins_encode %{ 16803 __ string_indexof($str1$$Register, $str2$$Register, 16804 $cnt1$$Register, $cnt2$$Register, 16805 $tmp1$$Register, $tmp2$$Register, 16806 $tmp3$$Register, $tmp4$$Register, 16807 $tmp5$$Register, $tmp6$$Register, 16808 -1, $result$$Register, StrIntrinsicNode::LL); 16809 %} 16810 ins_pipe(pipe_class_memory); 16811 %} 16812 16813 instruct string_indexofUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, iRegI_R2 cnt2, 16814 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, 16815 iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr) 16816 %{ 16817 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 16818 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); 16819 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, 16820 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr); 16821 format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL)" %} 16822 16823 ins_encode %{ 16824 __ string_indexof($str1$$Register, $str2$$Register, 16825 $cnt1$$Register, $cnt2$$Register, 16826 $tmp1$$Register, $tmp2$$Register, 16827 $tmp3$$Register, $tmp4$$Register, 16828 $tmp5$$Register, $tmp6$$Register, 16829 -1, $result$$Register, StrIntrinsicNode::UL); 16830 %} 16831 ins_pipe(pipe_class_memory); 16832 %} 16833 16834 instruct string_indexof_conUU(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, 16835 immI_le_4 int_cnt2, iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, 16836 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 16837 %{ 16838 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU); 16839 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 16840 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, 16841 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 16842 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU)" %} 16843 16844 ins_encode %{ 16845 int icnt2 = (int)$int_cnt2$$constant; 16846 __ string_indexof($str1$$Register, $str2$$Register, 16847 $cnt1$$Register, zr, 16848 $tmp1$$Register, $tmp2$$Register, 16849 $tmp3$$Register, $tmp4$$Register, zr, zr, 16850 icnt2, $result$$Register, StrIntrinsicNode::UU); 16851 %} 16852 ins_pipe(pipe_class_memory); 16853 %} 16854 16855 instruct string_indexof_conLL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, 16856 immI_le_4 int_cnt2, iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, 16857 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 16858 %{ 16859 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL); 16860 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 16861 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, 16862 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 16863 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL)" %} 16864 16865 ins_encode %{ 16866 int icnt2 = (int)$int_cnt2$$constant; 16867 __ string_indexof($str1$$Register, $str2$$Register, 16868 $cnt1$$Register, zr, 16869 $tmp1$$Register, $tmp2$$Register, 16870 $tmp3$$Register, $tmp4$$Register, zr, zr, 16871 icnt2, $result$$Register, StrIntrinsicNode::LL); 16872 %} 16873 ins_pipe(pipe_class_memory); 16874 %} 16875 16876 instruct string_indexof_conUL(iRegP_R1 str1, iRegI_R4 cnt1, iRegP_R3 str2, 16877 immI_1 int_cnt2, iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, 16878 iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr) 16879 %{ 16880 predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL); 16881 match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); 16882 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, 16883 TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr); 16884 format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL)" %} 16885 16886 ins_encode %{ 16887 int icnt2 = (int)$int_cnt2$$constant; 16888 __ string_indexof($str1$$Register, $str2$$Register, 16889 $cnt1$$Register, zr, 16890 $tmp1$$Register, $tmp2$$Register, 16891 $tmp3$$Register, $tmp4$$Register, zr, zr, 16892 icnt2, $result$$Register, StrIntrinsicNode::UL); 16893 %} 16894 ins_pipe(pipe_class_memory); 16895 %} 16896 16897 instruct string_indexof_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch, 16898 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, 16899 iRegINoSp tmp3, rFlagsReg cr) 16900 %{ 16901 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 16902 predicate(((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U); 16903 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, 16904 TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 16905 16906 format %{ "StringUTF16 IndexOf char[] $str1,$cnt1,$ch -> $result" %} 16907 16908 ins_encode %{ 16909 __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 16910 $result$$Register, $tmp1$$Register, $tmp2$$Register, 16911 $tmp3$$Register); 16912 %} 16913 ins_pipe(pipe_class_memory); 16914 %} 16915 16916 instruct stringL_indexof_char(iRegP_R1 str1, iRegI_R2 cnt1, iRegI_R3 ch, 16917 iRegI_R0 result, iRegINoSp tmp1, iRegINoSp tmp2, 16918 iRegINoSp tmp3, rFlagsReg cr) 16919 %{ 16920 match(Set result (StrIndexOfChar (Binary str1 cnt1) ch)); 16921 predicate(((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L); 16922 effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, 16923 TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 16924 16925 format %{ "StringLatin1 IndexOf char[] $str1,$cnt1,$ch -> $result" %} 16926 16927 ins_encode %{ 16928 __ stringL_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, 16929 $result$$Register, $tmp1$$Register, $tmp2$$Register, 16930 $tmp3$$Register); 16931 %} 16932 ins_pipe(pipe_class_memory); 16933 %} 16934 16935 instruct string_equalsL(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt, 16936 iRegI_R0 result, rFlagsReg cr) 16937 %{ 16938 predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL); 16939 match(Set result (StrEquals (Binary str1 str2) cnt)); 16940 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr); 16941 16942 format %{ "String Equals $str1,$str2,$cnt -> $result" %} 16943 ins_encode %{ 16944 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 16945 __ string_equals($str1$$Register, $str2$$Register, 16946 $result$$Register, $cnt$$Register, 1); 16947 %} 16948 ins_pipe(pipe_class_memory); 16949 %} 16950 16951 instruct string_equalsU(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt, 16952 iRegI_R0 result, rFlagsReg cr) 16953 %{ 16954 predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU); 16955 match(Set result (StrEquals (Binary str1 str2) cnt)); 16956 effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr); 16957 16958 format %{ "String Equals $str1,$str2,$cnt -> $result" %} 16959 ins_encode %{ 16960 // Count is in 8-bit bytes; non-Compact chars are 16 bits. 16961 __ string_equals($str1$$Register, $str2$$Register, 16962 $result$$Register, $cnt$$Register, 2); 16963 %} 16964 ins_pipe(pipe_class_memory); 16965 %} 16966 16967 instruct array_equalsB(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result, 16968 iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3, 16969 iRegP_R10 tmp, rFlagsReg cr) 16970 %{ 16971 predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL); 16972 match(Set result (AryEq ary1 ary2)); 16973 effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 16974 16975 format %{ "Array Equals $ary1,ary2 -> $result // KILL $tmp" %} 16976 ins_encode %{ 16977 address tpc = __ arrays_equals($ary1$$Register, $ary2$$Register, 16978 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 16979 $result$$Register, $tmp$$Register, 1); 16980 if (tpc == NULL) { 16981 ciEnv::current()->record_failure("CodeCache is full"); 16982 return; 16983 } 16984 %} 16985 ins_pipe(pipe_class_memory); 16986 %} 16987 16988 instruct array_equalsC(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result, 16989 iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3, 16990 iRegP_R10 tmp, rFlagsReg cr) 16991 %{ 16992 predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU); 16993 match(Set result (AryEq ary1 ary2)); 16994 effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr); 16995 16996 format %{ "Array Equals $ary1,ary2 -> $result // KILL $tmp" %} 16997 ins_encode %{ 16998 address tpc = __ arrays_equals($ary1$$Register, $ary2$$Register, 16999 $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, 17000 $result$$Register, $tmp$$Register, 2); 17001 if (tpc == NULL) { 17002 ciEnv::current()->record_failure("CodeCache is full"); 17003 return; 17004 } 17005 %} 17006 ins_pipe(pipe_class_memory); 17007 %} 17008 17009 instruct has_negatives(iRegP_R1 ary1, iRegI_R2 len, iRegI_R0 result, rFlagsReg cr) 17010 %{ 17011 match(Set result (HasNegatives ary1 len)); 17012 effect(USE_KILL ary1, USE_KILL len, KILL cr); 17013 format %{ "has negatives byte[] $ary1,$len -> $result" %} 17014 ins_encode %{ 17015 address tpc = __ has_negatives($ary1$$Register, $len$$Register, $result$$Register); 17016 if (tpc == NULL) { 17017 ciEnv::current()->record_failure("CodeCache is full"); 17018 return; 17019 } 17020 %} 17021 ins_pipe( pipe_slow ); 17022 %} 17023 17024 // fast char[] to byte[] compression 17025 instruct string_compress(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len, 17026 vRegD_V0 tmp1, vRegD_V1 tmp2, 17027 vRegD_V2 tmp3, vRegD_V3 tmp4, 17028 iRegI_R0 result, rFlagsReg cr) 17029 %{ 17030 match(Set result (StrCompressedCopy src (Binary dst len))); 17031 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr); 17032 17033 format %{ "String Compress $src,$dst -> $result // KILL R1, R2, R3, R4" %} 17034 ins_encode %{ 17035 __ char_array_compress($src$$Register, $dst$$Register, $len$$Register, 17036 $tmp1$$FloatRegister, $tmp2$$FloatRegister, 17037 $tmp3$$FloatRegister, $tmp4$$FloatRegister, 17038 $result$$Register); 17039 %} 17040 ins_pipe( pipe_slow ); 17041 %} 17042 17043 // fast byte[] to char[] inflation 17044 instruct string_inflate(Universe dummy, iRegP_R0 src, iRegP_R1 dst, iRegI_R2 len, 17045 vRegD_V0 tmp1, vRegD_V1 tmp2, vRegD_V2 tmp3, iRegP_R3 tmp4, rFlagsReg cr) 17046 %{ 17047 match(Set dummy (StrInflatedCopy src (Binary dst len))); 17048 effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr); 17049 17050 format %{ "String Inflate $src,$dst // KILL $tmp1, $tmp2" %} 17051 ins_encode %{ 17052 address tpc = __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register, 17053 $tmp1$$FloatRegister, $tmp2$$FloatRegister, 17054 $tmp3$$FloatRegister, $tmp4$$Register); 17055 if (tpc == NULL) { 17056 ciEnv::current()->record_failure("CodeCache is full"); 17057 return; 17058 } 17059 %} 17060 ins_pipe(pipe_class_memory); 17061 %} 17062 17063 // encode char[] to byte[] in ISO_8859_1 17064 instruct encode_iso_array(iRegP_R2 src, iRegP_R1 dst, iRegI_R3 len, 17065 vRegD_V0 Vtmp1, vRegD_V1 Vtmp2, 17066 vRegD_V2 Vtmp3, vRegD_V3 Vtmp4, 17067 iRegI_R0 result, rFlagsReg cr) 17068 %{ 17069 predicate(!((EncodeISOArrayNode*)n)->is_ascii()); 17070 match(Set result (EncodeISOArray src (Binary dst len))); 17071 effect(USE_KILL src, USE_KILL dst, USE_KILL len, 17072 KILL Vtmp1, KILL Vtmp2, KILL Vtmp3, KILL Vtmp4, KILL cr); 17073 17074 format %{ "Encode array $src,$dst,$len -> $result" %} 17075 ins_encode %{ 17076 __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register, 17077 $result$$Register, $Vtmp1$$FloatRegister, $Vtmp2$$FloatRegister, 17078 $Vtmp3$$FloatRegister, $Vtmp4$$FloatRegister); 17079 %} 17080 ins_pipe( pipe_class_memory ); 17081 %} 17082 17083 // ============================================================================ 17084 // This name is KNOWN by the ADLC and cannot be changed. 17085 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type 17086 // for this guy. 17087 instruct tlsLoadP(thread_RegP dst) 17088 %{ 17089 match(Set dst (ThreadLocal)); 17090 17091 ins_cost(0); 17092 17093 format %{ " -- \t// $dst=Thread::current(), empty" %} 17094 17095 size(0); 17096 17097 ins_encode( /*empty*/ ); 17098 17099 ins_pipe(pipe_class_empty); 17100 %} 17101 17102 //----------PEEPHOLE RULES----------------------------------------------------- 17103 // These must follow all instruction definitions as they use the names 17104 // defined in the instructions definitions. 17105 // 17106 // peepmatch ( root_instr_name [preceding_instruction]* ); 17107 // 17108 // peepconstraint %{ 17109 // (instruction_number.operand_name relational_op instruction_number.operand_name 17110 // [, ...] ); 17111 // // instruction numbers are zero-based using left to right order in peepmatch 17112 // 17113 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) ); 17114 // // provide an instruction_number.operand_name for each operand that appears 17115 // // in the replacement instruction's match rule 17116 // 17117 // ---------VM FLAGS--------------------------------------------------------- 17118 // 17119 // All peephole optimizations can be turned off using -XX:-OptoPeephole 17120 // 17121 // Each peephole rule is given an identifying number starting with zero and 17122 // increasing by one in the order seen by the parser. An individual peephole 17123 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=# 17124 // on the command-line. 17125 // 17126 // ---------CURRENT LIMITATIONS---------------------------------------------- 17127 // 17128 // Only match adjacent instructions in same basic block 17129 // Only equality constraints 17130 // Only constraints between operands, not (0.dest_reg == RAX_enc) 17131 // Only one replacement instruction 17132 // 17133 // ---------EXAMPLE---------------------------------------------------------- 17134 // 17135 // // pertinent parts of existing instructions in architecture description 17136 // instruct movI(iRegINoSp dst, iRegI src) 17137 // %{ 17138 // match(Set dst (CopyI src)); 17139 // %} 17140 // 17141 // instruct incI_iReg(iRegINoSp dst, immI1 src, rFlagsReg cr) 17142 // %{ 17143 // match(Set dst (AddI dst src)); 17144 // effect(KILL cr); 17145 // %} 17146 // 17147 // // Change (inc mov) to lea 17148 // peephole %{ 17149 // // increment preceeded by register-register move 17150 // peepmatch ( incI_iReg movI ); 17151 // // require that the destination register of the increment 17152 // // match the destination register of the move 17153 // peepconstraint ( 0.dst == 1.dst ); 17154 // // construct a replacement instruction that sets 17155 // // the destination to ( move's source register + one ) 17156 // peepreplace ( leaI_iReg_immI( 0.dst 1.src 0.src ) ); 17157 // %} 17158 // 17159 17160 // Implementation no longer uses movX instructions since 17161 // machine-independent system no longer uses CopyX nodes. 17162 // 17163 // peephole 17164 // %{ 17165 // peepmatch (incI_iReg movI); 17166 // peepconstraint (0.dst == 1.dst); 17167 // peepreplace (leaI_iReg_immI(0.dst 1.src 0.src)); 17168 // %} 17169 17170 // peephole 17171 // %{ 17172 // peepmatch (decI_iReg movI); 17173 // peepconstraint (0.dst == 1.dst); 17174 // peepreplace (leaI_iReg_immI(0.dst 1.src 0.src)); 17175 // %} 17176 17177 // peephole 17178 // %{ 17179 // peepmatch (addI_iReg_imm movI); 17180 // peepconstraint (0.dst == 1.dst); 17181 // peepreplace (leaI_iReg_immI(0.dst 1.src 0.src)); 17182 // %} 17183 17184 // peephole 17185 // %{ 17186 // peepmatch (incL_iReg movL); 17187 // peepconstraint (0.dst == 1.dst); 17188 // peepreplace (leaL_iReg_immL(0.dst 1.src 0.src)); 17189 // %} 17190 17191 // peephole 17192 // %{ 17193 // peepmatch (decL_iReg movL); 17194 // peepconstraint (0.dst == 1.dst); 17195 // peepreplace (leaL_iReg_immL(0.dst 1.src 0.src)); 17196 // %} 17197 17198 // peephole 17199 // %{ 17200 // peepmatch (addL_iReg_imm movL); 17201 // peepconstraint (0.dst == 1.dst); 17202 // peepreplace (leaL_iReg_immL(0.dst 1.src 0.src)); 17203 // %} 17204 17205 // peephole 17206 // %{ 17207 // peepmatch (addP_iReg_imm movP); 17208 // peepconstraint (0.dst == 1.dst); 17209 // peepreplace (leaP_iReg_imm(0.dst 1.src 0.src)); 17210 // %} 17211 17212 // // Change load of spilled value to only a spill 17213 // instruct storeI(memory mem, iRegI src) 17214 // %{ 17215 // match(Set mem (StoreI mem src)); 17216 // %} 17217 // 17218 // instruct loadI(iRegINoSp dst, memory mem) 17219 // %{ 17220 // match(Set dst (LoadI mem)); 17221 // %} 17222 // 17223 17224 //----------SMARTSPILL RULES--------------------------------------------------- 17225 // These must follow all instruction definitions as they use the names 17226 // defined in the instructions definitions. 17227 17228 // Local Variables: 17229 // mode: c++ 17230 // End: