1 /* 2 * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "asm/assembler.hpp" 29 #include "c1/c1_CodeStubs.hpp" 30 #include "c1/c1_Compilation.hpp" 31 #include "c1/c1_LIRAssembler.hpp" 32 #include "c1/c1_MacroAssembler.hpp" 33 #include "c1/c1_Runtime1.hpp" 34 #include "c1/c1_ValueStack.hpp" 35 #include "ci/ciArrayKlass.hpp" 36 #include "ci/ciInstance.hpp" 37 #include "code/compiledIC.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_aarch64.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 #include "vmreg_aarch64.inline.hpp" 47 48 49 #ifndef PRODUCT 50 #define COMMENT(x) do { __ block_comment(x); } while (0) 51 #else 52 #define COMMENT(x) 53 #endif 54 55 NEEDS_CLEANUP // remove this definitions ? 56 const Register IC_Klass = rscratch2; // where the IC klass is cached 57 const Register SYNC_header = r0; // synchronization header 58 const Register SHIFT_count = r0; // where count for shift operations must be 59 60 #define __ _masm-> 61 62 63 static void select_different_registers(Register preserve, 64 Register extra, 65 Register &tmp1, 66 Register &tmp2) { 67 if (tmp1 == preserve) { 68 assert_different_registers(tmp1, tmp2, extra); 69 tmp1 = extra; 70 } else if (tmp2 == preserve) { 71 assert_different_registers(tmp1, tmp2, extra); 72 tmp2 = extra; 73 } 74 assert_different_registers(preserve, tmp1, tmp2); 75 } 76 77 78 79 static void select_different_registers(Register preserve, 80 Register extra, 81 Register &tmp1, 82 Register &tmp2, 83 Register &tmp3) { 84 if (tmp1 == preserve) { 85 assert_different_registers(tmp1, tmp2, tmp3, extra); 86 tmp1 = extra; 87 } else if (tmp2 == preserve) { 88 assert_different_registers(tmp1, tmp2, tmp3, extra); 89 tmp2 = extra; 90 } else if (tmp3 == preserve) { 91 assert_different_registers(tmp1, tmp2, tmp3, extra); 92 tmp3 = extra; 93 } 94 assert_different_registers(preserve, tmp1, tmp2, tmp3); 95 } 96 97 98 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 99 100 101 LIR_Opr LIR_Assembler::receiverOpr() { 102 return FrameMap::receiver_opr; 103 } 104 105 LIR_Opr LIR_Assembler::osrBufferPointer() { 106 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 107 } 108 109 //--------------fpu register translations----------------------- 110 111 112 address LIR_Assembler::float_constant(float f) { 113 address const_addr = __ float_constant(f); 114 if (const_addr == NULL) { 115 bailout("const section overflow"); 116 return __ code()->consts()->start(); 117 } else { 118 return const_addr; 119 } 120 } 121 122 123 address LIR_Assembler::double_constant(double d) { 124 address const_addr = __ double_constant(d); 125 if (const_addr == NULL) { 126 bailout("const section overflow"); 127 return __ code()->consts()->start(); 128 } else { 129 return const_addr; 130 } 131 } 132 133 address LIR_Assembler::int_constant(jlong n) { 134 address const_addr = __ long_constant(n); 135 if (const_addr == NULL) { 136 bailout("const section overflow"); 137 return __ code()->consts()->start(); 138 } else { 139 return const_addr; 140 } 141 } 142 143 void LIR_Assembler::breakpoint() { Unimplemented(); } 144 145 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 146 147 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 148 149 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 150 //------------------------------------------- 151 152 static Register as_reg(LIR_Opr op) { 153 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 154 } 155 156 static jlong as_long(LIR_Opr data) { 157 jlong result; 158 switch (data->type()) { 159 case T_INT: 160 result = (data->as_jint()); 161 break; 162 case T_LONG: 163 result = (data->as_jlong()); 164 break; 165 default: 166 ShouldNotReachHere(); 167 result = 0; // unreachable 168 } 169 return result; 170 } 171 172 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 173 Register base = addr->base()->as_pointer_register(); 174 LIR_Opr opr = addr->index(); 175 if (opr->is_cpu_register()) { 176 Register index; 177 if (opr->is_single_cpu()) 178 index = opr->as_register(); 179 else 180 index = opr->as_register_lo(); 181 assert(addr->disp() == 0, "must be"); 182 switch(opr->type()) { 183 case T_INT: 184 return Address(base, index, Address::sxtw(addr->scale())); 185 case T_LONG: 186 return Address(base, index, Address::lsl(addr->scale())); 187 default: 188 ShouldNotReachHere(); 189 } 190 } else { 191 assert(addr->scale() == 0, 192 "expected for immediate operand, was: %d", addr->scale()); 193 ptrdiff_t offset = ptrdiff_t(addr->disp()); 194 // NOTE: Does not handle any 16 byte vector access. 195 const uint type_size = type2aelembytes(addr->type(), true); 196 return __ legitimize_address(Address(base, offset), type_size, tmp); 197 } 198 return Address(); 199 } 200 201 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 202 ShouldNotReachHere(); 203 return Address(); 204 } 205 206 Address LIR_Assembler::as_Address(LIR_Address* addr) { 207 return as_Address(addr, rscratch1); 208 } 209 210 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 211 return as_Address(addr, rscratch1); // Ouch 212 // FIXME: This needs to be much more clever. See x86. 213 } 214 215 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 216 // not encodable as a base + (immediate) offset, generate an explicit address 217 // calculation to hold the address in a temporary register. 218 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 219 precond(size == 4 || size == 8); 220 Address addr = frame_map()->address_for_slot(index, adjust); 221 precond(addr.getMode() == Address::base_plus_offset); 222 precond(addr.base() == sp); 223 precond(addr.offset() > 0); 224 uint mask = size - 1; 225 assert((addr.offset() & mask) == 0, "scaled offsets only"); 226 return __ legitimize_address(addr, size, tmp); 227 } 228 229 void LIR_Assembler::osr_entry() { 230 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 231 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 232 ValueStack* entry_state = osr_entry->state(); 233 int number_of_locks = entry_state->locks_size(); 234 235 // we jump here if osr happens with the interpreter 236 // state set up to continue at the beginning of the 237 // loop that triggered osr - in particular, we have 238 // the following registers setup: 239 // 240 // r2: osr buffer 241 // 242 243 // build frame 244 ciMethod* m = compilation()->method(); 245 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 246 247 // OSR buffer is 248 // 249 // locals[nlocals-1..0] 250 // monitors[0..number_of_locks] 251 // 252 // locals is a direct copy of the interpreter frame so in the osr buffer 253 // so first slot in the local array is the last local from the interpreter 254 // and last slot is local[0] (receiver) from the interpreter 255 // 256 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 257 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 258 // in the interpreter frame (the method lock if a sync method) 259 260 // Initialize monitors in the compiled activation. 261 // r2: pointer to osr buffer 262 // 263 // All other registers are dead at this point and the locals will be 264 // copied into place by code emitted in the IR. 265 266 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 267 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 268 int monitor_offset = BytesPerWord * method()->max_locals() + 269 (2 * BytesPerWord) * (number_of_locks - 1); 270 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 271 // the OSR buffer using 2 word entries: first the lock and then 272 // the oop. 273 for (int i = 0; i < number_of_locks; i++) { 274 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 275 #ifdef ASSERT 276 // verify the interpreter's monitor has a non-null object 277 { 278 Label L; 279 __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 280 __ cbnz(rscratch1, L); 281 __ stop("locked object is NULL"); 282 __ bind(L); 283 } 284 #endif 285 __ ldr(r19, Address(OSR_buf, slot_offset)); 286 __ ldr(r20, Address(OSR_buf, slot_offset + BytesPerWord)); 287 __ str(r19, frame_map()->address_for_monitor_lock(i)); 288 __ str(r20, frame_map()->address_for_monitor_object(i)); 289 } 290 } 291 } 292 293 294 // inline cache check; done before the frame is built. 295 int LIR_Assembler::check_icache() { 296 Register receiver = FrameMap::receiver_opr->as_register(); 297 Register ic_klass = IC_Klass; 298 int start_offset = __ offset(); 299 __ inline_cache_check(receiver, ic_klass); 300 301 // if icache check fails, then jump to runtime routine 302 // Note: RECEIVER must still contain the receiver! 303 Label dont; 304 __ br(Assembler::EQ, dont); 305 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 306 307 // We align the verified entry point unless the method body 308 // (including its inline cache check) will fit in a single 64-byte 309 // icache line. 310 if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) { 311 // force alignment after the cache check. 312 __ align(CodeEntryAlignment); 313 } 314 315 __ bind(dont); 316 return start_offset; 317 } 318 319 void LIR_Assembler::clinit_barrier(ciMethod* method) { 320 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 321 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 322 323 Label L_skip_barrier; 324 325 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 326 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 327 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 328 __ bind(L_skip_barrier); 329 } 330 331 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 332 if (o == NULL) { 333 __ mov(reg, zr); 334 } else { 335 __ movoop(reg, o, /*immediate*/true); 336 } 337 } 338 339 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 340 address target = NULL; 341 relocInfo::relocType reloc_type = relocInfo::none; 342 343 switch (patching_id(info)) { 344 case PatchingStub::access_field_id: 345 target = Runtime1::entry_for(Runtime1::access_field_patching_id); 346 reloc_type = relocInfo::section_word_type; 347 break; 348 case PatchingStub::load_klass_id: 349 target = Runtime1::entry_for(Runtime1::load_klass_patching_id); 350 reloc_type = relocInfo::metadata_type; 351 break; 352 case PatchingStub::load_mirror_id: 353 target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); 354 reloc_type = relocInfo::oop_type; 355 break; 356 case PatchingStub::load_appendix_id: 357 target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); 358 reloc_type = relocInfo::oop_type; 359 break; 360 default: ShouldNotReachHere(); 361 } 362 363 __ far_call(RuntimeAddress(target)); 364 add_call_info_here(info); 365 } 366 367 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 368 deoptimize_trap(info); 369 } 370 371 372 // This specifies the rsp decrement needed to build the frame 373 int LIR_Assembler::initial_frame_size_in_bytes() const { 374 // if rounding, must let FrameMap know! 375 376 return in_bytes(frame_map()->framesize_in_bytes()); 377 } 378 379 380 int LIR_Assembler::emit_exception_handler() { 381 // if the last instruction is a call (typically to do a throw which 382 // is coming at the end after block reordering) the return address 383 // must still point into the code area in order to avoid assertion 384 // failures when searching for the corresponding bci => add a nop 385 // (was bug 5/14/1999 - gri) 386 __ nop(); 387 388 // generate code for exception handler 389 address handler_base = __ start_a_stub(exception_handler_size()); 390 if (handler_base == NULL) { 391 // not enough space left for the handler 392 bailout("exception handler overflow"); 393 return -1; 394 } 395 396 int offset = code_offset(); 397 398 // the exception oop and pc are in r0, and r3 399 // no other registers need to be preserved, so invalidate them 400 __ invalidate_registers(false, true, true, false, true, true); 401 402 // check that there is really an exception 403 __ verify_not_null_oop(r0); 404 405 // search an exception handler (r0: exception oop, r3: throwing pc) 406 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); __ should_not_reach_here(); 407 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 408 __ end_a_stub(); 409 410 return offset; 411 } 412 413 414 // Emit the code to remove the frame from the stack in the exception 415 // unwind path. 416 int LIR_Assembler::emit_unwind_handler() { 417 #ifndef PRODUCT 418 if (CommentedAssembly) { 419 _masm->block_comment("Unwind handler"); 420 } 421 #endif 422 423 int offset = code_offset(); 424 425 // Fetch the exception from TLS and clear out exception related thread state 426 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 427 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 428 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 429 430 __ bind(_unwind_handler_entry); 431 __ verify_not_null_oop(r0); 432 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 433 __ mov(r19, r0); // Preserve the exception 434 } 435 436 // Preform needed unlocking 437 MonitorExitStub* stub = NULL; 438 if (method()->is_synchronized()) { 439 monitor_address(0, FrameMap::r0_opr); 440 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 441 __ unlock_object(r5, r4, r0, r6, *stub->entry()); 442 __ bind(*stub->continuation()); 443 } 444 445 if (compilation()->env()->dtrace_method_probes()) { 446 __ mov(c_rarg0, rthread); 447 __ mov_metadata(c_rarg1, method()->constant_encoding()); 448 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 449 } 450 451 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 452 __ mov(r0, r19); // Restore the exception 453 } 454 455 // remove the activation and dispatch to the unwind handler 456 __ block_comment("remove_frame and dispatch to the unwind handler"); 457 __ remove_frame(initial_frame_size_in_bytes()); 458 __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id))); 459 460 // Emit the slow path assembly 461 if (stub != NULL) { 462 stub->emit_code(this); 463 } 464 465 return offset; 466 } 467 468 469 int LIR_Assembler::emit_deopt_handler() { 470 // if the last instruction is a call (typically to do a throw which 471 // is coming at the end after block reordering) the return address 472 // must still point into the code area in order to avoid assertion 473 // failures when searching for the corresponding bci => add a nop 474 // (was bug 5/14/1999 - gri) 475 __ nop(); 476 477 // generate code for exception handler 478 address handler_base = __ start_a_stub(deopt_handler_size()); 479 if (handler_base == NULL) { 480 // not enough space left for the handler 481 bailout("deopt handler overflow"); 482 return -1; 483 } 484 485 int offset = code_offset(); 486 487 __ adr(lr, pc()); 488 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 489 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 490 __ end_a_stub(); 491 492 return offset; 493 } 494 495 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 496 _masm->code_section()->relocate(adr, relocInfo::poll_type); 497 int pc_offset = code_offset(); 498 flush_debug_info(pc_offset); 499 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 500 if (info->exception_handlers() != NULL) { 501 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 502 } 503 } 504 505 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 506 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 507 508 // Pop the stack before the safepoint code 509 __ remove_frame(initial_frame_size_in_bytes()); 510 511 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 512 __ reserved_stack_check(); 513 } 514 515 code_stub->set_safepoint_offset(__ offset()); 516 __ relocate(relocInfo::poll_return_type); 517 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */); 518 __ ret(lr); 519 } 520 521 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 522 guarantee(info != NULL, "Shouldn't be NULL"); 523 __ get_polling_page(rscratch1, relocInfo::poll_type); 524 add_debug_info_for_branch(info); // This isn't just debug info: 525 // it's the oop map 526 __ read_polling_page(rscratch1, relocInfo::poll_type); 527 return __ offset(); 528 } 529 530 531 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 532 if (from_reg == r31_sp) 533 from_reg = sp; 534 if (to_reg == r31_sp) 535 to_reg = sp; 536 __ mov(to_reg, from_reg); 537 } 538 539 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 540 541 542 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 543 assert(src->is_constant(), "should not call otherwise"); 544 assert(dest->is_register(), "should not call otherwise"); 545 LIR_Const* c = src->as_constant_ptr(); 546 547 switch (c->type()) { 548 case T_INT: { 549 assert(patch_code == lir_patch_none, "no patching handled here"); 550 __ movw(dest->as_register(), c->as_jint()); 551 break; 552 } 553 554 case T_ADDRESS: { 555 assert(patch_code == lir_patch_none, "no patching handled here"); 556 __ mov(dest->as_register(), c->as_jint()); 557 break; 558 } 559 560 case T_LONG: { 561 assert(patch_code == lir_patch_none, "no patching handled here"); 562 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 563 break; 564 } 565 566 case T_OBJECT: { 567 if (patch_code == lir_patch_none) { 568 jobject2reg(c->as_jobject(), dest->as_register()); 569 } else { 570 jobject2reg_with_patching(dest->as_register(), info); 571 } 572 break; 573 } 574 575 case T_METADATA: { 576 if (patch_code != lir_patch_none) { 577 klass2reg_with_patching(dest->as_register(), info); 578 } else { 579 __ mov_metadata(dest->as_register(), c->as_metadata()); 580 } 581 break; 582 } 583 584 case T_FLOAT: { 585 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 586 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 587 } else { 588 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 589 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 590 } 591 break; 592 } 593 594 case T_DOUBLE: { 595 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 596 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 597 } else { 598 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 599 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 600 } 601 break; 602 } 603 604 default: 605 ShouldNotReachHere(); 606 } 607 } 608 609 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 610 LIR_Const* c = src->as_constant_ptr(); 611 switch (c->type()) { 612 case T_OBJECT: 613 { 614 if (! c->as_jobject()) 615 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 616 else { 617 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL); 618 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 619 } 620 } 621 break; 622 case T_ADDRESS: 623 { 624 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL); 625 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 626 } 627 case T_INT: 628 case T_FLOAT: 629 { 630 Register reg = zr; 631 if (c->as_jint_bits() == 0) 632 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 633 else { 634 __ movw(rscratch1, c->as_jint_bits()); 635 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 636 } 637 } 638 break; 639 case T_LONG: 640 case T_DOUBLE: 641 { 642 Register reg = zr; 643 if (c->as_jlong_bits() == 0) 644 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 645 lo_word_offset_in_bytes)); 646 else { 647 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 648 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 649 lo_word_offset_in_bytes)); 650 } 651 } 652 break; 653 default: 654 ShouldNotReachHere(); 655 } 656 } 657 658 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 659 assert(src->is_constant(), "should not call otherwise"); 660 LIR_Const* c = src->as_constant_ptr(); 661 LIR_Address* to_addr = dest->as_address_ptr(); 662 663 void (Assembler::* insn)(Register Rt, const Address &adr); 664 665 switch (type) { 666 case T_ADDRESS: 667 assert(c->as_jint() == 0, "should be"); 668 insn = &Assembler::str; 669 break; 670 case T_LONG: 671 assert(c->as_jlong() == 0, "should be"); 672 insn = &Assembler::str; 673 break; 674 case T_INT: 675 assert(c->as_jint() == 0, "should be"); 676 insn = &Assembler::strw; 677 break; 678 case T_OBJECT: 679 case T_ARRAY: 680 assert(c->as_jobject() == 0, "should be"); 681 if (UseCompressedOops && !wide) { 682 insn = &Assembler::strw; 683 } else { 684 insn = &Assembler::str; 685 } 686 break; 687 case T_CHAR: 688 case T_SHORT: 689 assert(c->as_jint() == 0, "should be"); 690 insn = &Assembler::strh; 691 break; 692 case T_BOOLEAN: 693 case T_BYTE: 694 assert(c->as_jint() == 0, "should be"); 695 insn = &Assembler::strb; 696 break; 697 default: 698 ShouldNotReachHere(); 699 insn = &Assembler::str; // unreachable 700 } 701 702 if (info) add_debug_info_for_null_check_here(info); 703 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 704 } 705 706 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 707 assert(src->is_register(), "should not call otherwise"); 708 assert(dest->is_register(), "should not call otherwise"); 709 710 // move between cpu-registers 711 if (dest->is_single_cpu()) { 712 if (src->type() == T_LONG) { 713 // Can do LONG -> OBJECT 714 move_regs(src->as_register_lo(), dest->as_register()); 715 return; 716 } 717 assert(src->is_single_cpu(), "must match"); 718 if (src->type() == T_OBJECT) { 719 __ verify_oop(src->as_register()); 720 } 721 move_regs(src->as_register(), dest->as_register()); 722 723 } else if (dest->is_double_cpu()) { 724 if (is_reference_type(src->type())) { 725 // Surprising to me but we can see move of a long to t_object 726 __ verify_oop(src->as_register()); 727 move_regs(src->as_register(), dest->as_register_lo()); 728 return; 729 } 730 assert(src->is_double_cpu(), "must match"); 731 Register f_lo = src->as_register_lo(); 732 Register f_hi = src->as_register_hi(); 733 Register t_lo = dest->as_register_lo(); 734 Register t_hi = dest->as_register_hi(); 735 assert(f_hi == f_lo, "must be same"); 736 assert(t_hi == t_lo, "must be same"); 737 move_regs(f_lo, t_lo); 738 739 } else if (dest->is_single_fpu()) { 740 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 741 742 } else if (dest->is_double_fpu()) { 743 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 744 745 } else { 746 ShouldNotReachHere(); 747 } 748 } 749 750 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 751 precond(src->is_register() && dest->is_stack()); 752 753 uint const c_sz32 = sizeof(uint32_t); 754 uint const c_sz64 = sizeof(uint64_t); 755 756 if (src->is_single_cpu()) { 757 int index = dest->single_stack_ix(); 758 if (is_reference_type(type)) { 759 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 760 __ verify_oop(src->as_register()); 761 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 762 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 763 } else { 764 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 765 } 766 767 } else if (src->is_double_cpu()) { 768 int index = dest->double_stack_ix(); 769 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 770 __ str(src->as_register_lo(), dest_addr_LO); 771 772 } else if (src->is_single_fpu()) { 773 int index = dest->single_stack_ix(); 774 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 775 776 } else if (src->is_double_fpu()) { 777 int index = dest->double_stack_ix(); 778 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 779 780 } else { 781 ShouldNotReachHere(); 782 } 783 } 784 785 786 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) { 787 LIR_Address* to_addr = dest->as_address_ptr(); 788 PatchingStub* patch = NULL; 789 Register compressed_src = rscratch1; 790 791 if (patch_code != lir_patch_none) { 792 deoptimize_trap(info); 793 return; 794 } 795 796 if (is_reference_type(type)) { 797 __ verify_oop(src->as_register()); 798 799 if (UseCompressedOops && !wide) { 800 __ encode_heap_oop(compressed_src, src->as_register()); 801 } else { 802 compressed_src = src->as_register(); 803 } 804 } 805 806 int null_check_here = code_offset(); 807 switch (type) { 808 case T_FLOAT: { 809 __ strs(src->as_float_reg(), as_Address(to_addr)); 810 break; 811 } 812 813 case T_DOUBLE: { 814 __ strd(src->as_double_reg(), as_Address(to_addr)); 815 break; 816 } 817 818 case T_ARRAY: // fall through 819 case T_OBJECT: // fall through 820 if (UseCompressedOops && !wide) { 821 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 822 } else { 823 __ str(compressed_src, as_Address(to_addr)); 824 } 825 break; 826 case T_METADATA: 827 // We get here to store a method pointer to the stack to pass to 828 // a dtrace runtime call. This can't work on 64 bit with 829 // compressed klass ptrs: T_METADATA can be a compressed klass 830 // ptr or a 64 bit method pointer. 831 ShouldNotReachHere(); 832 __ str(src->as_register(), as_Address(to_addr)); 833 break; 834 case T_ADDRESS: 835 __ str(src->as_register(), as_Address(to_addr)); 836 break; 837 case T_INT: 838 __ strw(src->as_register(), as_Address(to_addr)); 839 break; 840 841 case T_LONG: { 842 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 843 break; 844 } 845 846 case T_BYTE: // fall through 847 case T_BOOLEAN: { 848 __ strb(src->as_register(), as_Address(to_addr)); 849 break; 850 } 851 852 case T_CHAR: // fall through 853 case T_SHORT: 854 __ strh(src->as_register(), as_Address(to_addr)); 855 break; 856 857 default: 858 ShouldNotReachHere(); 859 } 860 if (info != NULL) { 861 add_debug_info_for_null_check(null_check_here, info); 862 } 863 } 864 865 866 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 867 precond(src->is_stack() && dest->is_register()); 868 869 uint const c_sz32 = sizeof(uint32_t); 870 uint const c_sz64 = sizeof(uint64_t); 871 872 if (dest->is_single_cpu()) { 873 int index = src->single_stack_ix(); 874 if (is_reference_type(type)) { 875 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 876 __ verify_oop(dest->as_register()); 877 } else if (type == T_METADATA || type == T_ADDRESS) { 878 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 879 } else { 880 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 881 } 882 883 } else if (dest->is_double_cpu()) { 884 int index = src->double_stack_ix(); 885 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 886 __ ldr(dest->as_register_lo(), src_addr_LO); 887 888 } else if (dest->is_single_fpu()) { 889 int index = src->single_stack_ix(); 890 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 891 892 } else if (dest->is_double_fpu()) { 893 int index = src->double_stack_ix(); 894 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 895 896 } else { 897 ShouldNotReachHere(); 898 } 899 } 900 901 902 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 903 address target = NULL; 904 relocInfo::relocType reloc_type = relocInfo::none; 905 906 switch (patching_id(info)) { 907 case PatchingStub::access_field_id: 908 target = Runtime1::entry_for(Runtime1::access_field_patching_id); 909 reloc_type = relocInfo::section_word_type; 910 break; 911 case PatchingStub::load_klass_id: 912 target = Runtime1::entry_for(Runtime1::load_klass_patching_id); 913 reloc_type = relocInfo::metadata_type; 914 break; 915 case PatchingStub::load_mirror_id: 916 target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); 917 reloc_type = relocInfo::oop_type; 918 break; 919 case PatchingStub::load_appendix_id: 920 target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); 921 reloc_type = relocInfo::oop_type; 922 break; 923 default: ShouldNotReachHere(); 924 } 925 926 __ far_call(RuntimeAddress(target)); 927 add_call_info_here(info); 928 } 929 930 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 931 932 LIR_Opr temp; 933 if (type == T_LONG || type == T_DOUBLE) 934 temp = FrameMap::rscratch1_long_opr; 935 else 936 temp = FrameMap::rscratch1_opr; 937 938 stack2reg(src, temp, src->type()); 939 reg2stack(temp, dest, dest->type(), false); 940 } 941 942 943 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) { 944 LIR_Address* addr = src->as_address_ptr(); 945 LIR_Address* from_addr = src->as_address_ptr(); 946 947 if (addr->base()->type() == T_OBJECT) { 948 __ verify_oop(addr->base()->as_pointer_register()); 949 } 950 951 if (patch_code != lir_patch_none) { 952 deoptimize_trap(info); 953 return; 954 } 955 956 if (info != NULL) { 957 add_debug_info_for_null_check_here(info); 958 } 959 int null_check_here = code_offset(); 960 switch (type) { 961 case T_FLOAT: { 962 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 963 break; 964 } 965 966 case T_DOUBLE: { 967 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 968 break; 969 } 970 971 case T_ARRAY: // fall through 972 case T_OBJECT: // fall through 973 if (UseCompressedOops && !wide) { 974 __ ldrw(dest->as_register(), as_Address(from_addr)); 975 } else { 976 __ ldr(dest->as_register(), as_Address(from_addr)); 977 } 978 break; 979 case T_METADATA: 980 // We get here to store a method pointer to the stack to pass to 981 // a dtrace runtime call. This can't work on 64 bit with 982 // compressed klass ptrs: T_METADATA can be a compressed klass 983 // ptr or a 64 bit method pointer. 984 ShouldNotReachHere(); 985 __ ldr(dest->as_register(), as_Address(from_addr)); 986 break; 987 case T_ADDRESS: 988 __ ldr(dest->as_register(), as_Address(from_addr)); 989 break; 990 case T_INT: 991 __ ldrw(dest->as_register(), as_Address(from_addr)); 992 break; 993 994 case T_LONG: { 995 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 996 break; 997 } 998 999 case T_BYTE: 1000 __ ldrsb(dest->as_register(), as_Address(from_addr)); 1001 break; 1002 case T_BOOLEAN: { 1003 __ ldrb(dest->as_register(), as_Address(from_addr)); 1004 break; 1005 } 1006 1007 case T_CHAR: 1008 __ ldrh(dest->as_register(), as_Address(from_addr)); 1009 break; 1010 case T_SHORT: 1011 __ ldrsh(dest->as_register(), as_Address(from_addr)); 1012 break; 1013 1014 default: 1015 ShouldNotReachHere(); 1016 } 1017 1018 if (is_reference_type(type)) { 1019 if (UseCompressedOops && !wide) { 1020 __ decode_heap_oop(dest->as_register()); 1021 } 1022 1023 if (!UseZGC) { 1024 // Load barrier has not yet been applied, so ZGC can't verify the oop here 1025 __ verify_oop(dest->as_register()); 1026 } 1027 } 1028 } 1029 1030 1031 int LIR_Assembler::array_element_size(BasicType type) const { 1032 int elem_size = type2aelembytes(type); 1033 return exact_log2(elem_size); 1034 } 1035 1036 1037 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1038 switch (op->code()) { 1039 case lir_idiv: 1040 case lir_irem: 1041 arithmetic_idiv(op->code(), 1042 op->in_opr1(), 1043 op->in_opr2(), 1044 op->in_opr3(), 1045 op->result_opr(), 1046 op->info()); 1047 break; 1048 case lir_fmad: 1049 __ fmaddd(op->result_opr()->as_double_reg(), 1050 op->in_opr1()->as_double_reg(), 1051 op->in_opr2()->as_double_reg(), 1052 op->in_opr3()->as_double_reg()); 1053 break; 1054 case lir_fmaf: 1055 __ fmadds(op->result_opr()->as_float_reg(), 1056 op->in_opr1()->as_float_reg(), 1057 op->in_opr2()->as_float_reg(), 1058 op->in_opr3()->as_float_reg()); 1059 break; 1060 default: ShouldNotReachHere(); break; 1061 } 1062 } 1063 1064 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1065 #ifdef ASSERT 1066 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); 1067 if (op->block() != NULL) _branch_target_blocks.append(op->block()); 1068 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); 1069 #endif 1070 1071 if (op->cond() == lir_cond_always) { 1072 if (op->info() != NULL) add_debug_info_for_branch(op->info()); 1073 __ b(*(op->label())); 1074 } else { 1075 Assembler::Condition acond; 1076 if (op->code() == lir_cond_float_branch) { 1077 bool is_unordered = (op->ublock() == op->block()); 1078 // Assembler::EQ does not permit unordered branches, so we add 1079 // another branch here. Likewise, Assembler::NE does not permit 1080 // ordered branches. 1081 if ((is_unordered && op->cond() == lir_cond_equal) 1082 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1083 __ br(Assembler::VS, *(op->ublock()->label())); 1084 switch(op->cond()) { 1085 case lir_cond_equal: acond = Assembler::EQ; break; 1086 case lir_cond_notEqual: acond = Assembler::NE; break; 1087 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1088 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1089 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1090 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1091 default: ShouldNotReachHere(); 1092 acond = Assembler::EQ; // unreachable 1093 } 1094 } else { 1095 switch (op->cond()) { 1096 case lir_cond_equal: acond = Assembler::EQ; break; 1097 case lir_cond_notEqual: acond = Assembler::NE; break; 1098 case lir_cond_less: acond = Assembler::LT; break; 1099 case lir_cond_lessEqual: acond = Assembler::LE; break; 1100 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1101 case lir_cond_greater: acond = Assembler::GT; break; 1102 case lir_cond_belowEqual: acond = Assembler::LS; break; 1103 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1104 default: ShouldNotReachHere(); 1105 acond = Assembler::EQ; // unreachable 1106 } 1107 } 1108 __ br(acond,*(op->label())); 1109 } 1110 } 1111 1112 1113 1114 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1115 LIR_Opr src = op->in_opr(); 1116 LIR_Opr dest = op->result_opr(); 1117 1118 switch (op->bytecode()) { 1119 case Bytecodes::_i2f: 1120 { 1121 __ scvtfws(dest->as_float_reg(), src->as_register()); 1122 break; 1123 } 1124 case Bytecodes::_i2d: 1125 { 1126 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1127 break; 1128 } 1129 case Bytecodes::_l2d: 1130 { 1131 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1132 break; 1133 } 1134 case Bytecodes::_l2f: 1135 { 1136 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1137 break; 1138 } 1139 case Bytecodes::_f2d: 1140 { 1141 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1142 break; 1143 } 1144 case Bytecodes::_d2f: 1145 { 1146 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1147 break; 1148 } 1149 case Bytecodes::_i2c: 1150 { 1151 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1152 break; 1153 } 1154 case Bytecodes::_i2l: 1155 { 1156 __ sxtw(dest->as_register_lo(), src->as_register()); 1157 break; 1158 } 1159 case Bytecodes::_i2s: 1160 { 1161 __ sxth(dest->as_register(), src->as_register()); 1162 break; 1163 } 1164 case Bytecodes::_i2b: 1165 { 1166 __ sxtb(dest->as_register(), src->as_register()); 1167 break; 1168 } 1169 case Bytecodes::_l2i: 1170 { 1171 _masm->block_comment("FIXME: This could be a no-op"); 1172 __ uxtw(dest->as_register(), src->as_register_lo()); 1173 break; 1174 } 1175 case Bytecodes::_d2l: 1176 { 1177 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1178 break; 1179 } 1180 case Bytecodes::_f2i: 1181 { 1182 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1183 break; 1184 } 1185 case Bytecodes::_f2l: 1186 { 1187 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1188 break; 1189 } 1190 case Bytecodes::_d2i: 1191 { 1192 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1193 break; 1194 } 1195 default: ShouldNotReachHere(); 1196 } 1197 } 1198 1199 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1200 if (op->init_check()) { 1201 __ ldrb(rscratch1, Address(op->klass()->as_register(), 1202 InstanceKlass::init_state_offset())); 1203 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1204 add_debug_info_for_null_check_here(op->stub()->info()); 1205 __ br(Assembler::NE, *op->stub()->entry()); 1206 } 1207 __ allocate_object(op->obj()->as_register(), 1208 op->tmp1()->as_register(), 1209 op->tmp2()->as_register(), 1210 op->header_size(), 1211 op->object_size(), 1212 op->klass()->as_register(), 1213 *op->stub()->entry()); 1214 __ bind(*op->stub()->continuation()); 1215 } 1216 1217 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1218 Register len = op->len()->as_register(); 1219 __ uxtw(len, len); 1220 1221 if (UseSlowPath || 1222 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1223 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1224 __ b(*op->stub()->entry()); 1225 } else { 1226 Register tmp1 = op->tmp1()->as_register(); 1227 Register tmp2 = op->tmp2()->as_register(); 1228 Register tmp3 = op->tmp3()->as_register(); 1229 if (len == tmp1) { 1230 tmp1 = tmp3; 1231 } else if (len == tmp2) { 1232 tmp2 = tmp3; 1233 } else if (len == tmp3) { 1234 // everything is ok 1235 } else { 1236 __ mov(tmp3, len); 1237 } 1238 __ allocate_array(op->obj()->as_register(), 1239 len, 1240 tmp1, 1241 tmp2, 1242 arrayOopDesc::base_offset_in_bytes(op->type()), 1243 array_element_size(op->type()), 1244 op->klass()->as_register(), 1245 *op->stub()->entry()); 1246 } 1247 __ bind(*op->stub()->continuation()); 1248 } 1249 1250 void LIR_Assembler::type_profile_helper(Register mdo, 1251 ciMethodData *md, ciProfileData *data, 1252 Register recv, Label* update_done) { 1253 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1254 Label next_test; 1255 // See if the receiver is receiver[n]. 1256 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1257 __ ldr(rscratch1, Address(rscratch2)); 1258 __ cmp(recv, rscratch1); 1259 __ br(Assembler::NE, next_test); 1260 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1261 __ addptr(data_addr, DataLayout::counter_increment); 1262 __ b(*update_done); 1263 __ bind(next_test); 1264 } 1265 1266 // Didn't find receiver; find next empty slot and fill it in 1267 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1268 Label next_test; 1269 __ lea(rscratch2, 1270 Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1271 Address recv_addr(rscratch2); 1272 __ ldr(rscratch1, recv_addr); 1273 __ cbnz(rscratch1, next_test); 1274 __ str(recv, recv_addr); 1275 __ mov(rscratch1, DataLayout::counter_increment); 1276 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)))); 1277 __ str(rscratch1, Address(rscratch2)); 1278 __ b(*update_done); 1279 __ bind(next_test); 1280 } 1281 } 1282 1283 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1284 // we always need a stub for the failure case. 1285 CodeStub* stub = op->stub(); 1286 Register obj = op->object()->as_register(); 1287 Register k_RInfo = op->tmp1()->as_register(); 1288 Register klass_RInfo = op->tmp2()->as_register(); 1289 Register dst = op->result_opr()->as_register(); 1290 ciKlass* k = op->klass(); 1291 Register Rtmp1 = noreg; 1292 1293 // check if it needs to be profiled 1294 ciMethodData* md; 1295 ciProfileData* data; 1296 1297 const bool should_profile = op->should_profile(); 1298 1299 if (should_profile) { 1300 ciMethod* method = op->profiled_method(); 1301 assert(method != NULL, "Should have method"); 1302 int bci = op->profiled_bci(); 1303 md = method->method_data_or_null(); 1304 assert(md != NULL, "Sanity"); 1305 data = md->bci_to_data(bci); 1306 assert(data != NULL, "need data for type check"); 1307 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1308 } 1309 Label profile_cast_success, profile_cast_failure; 1310 Label *success_target = should_profile ? &profile_cast_success : success; 1311 Label *failure_target = should_profile ? &profile_cast_failure : failure; 1312 1313 if (obj == k_RInfo) { 1314 k_RInfo = dst; 1315 } else if (obj == klass_RInfo) { 1316 klass_RInfo = dst; 1317 } 1318 if (k->is_loaded() && !UseCompressedClassPointers) { 1319 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1320 } else { 1321 Rtmp1 = op->tmp3()->as_register(); 1322 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1323 } 1324 1325 assert_different_registers(obj, k_RInfo, klass_RInfo); 1326 1327 if (should_profile) { 1328 Label not_null; 1329 __ cbnz(obj, not_null); 1330 // Object is null; update MDO and exit 1331 Register mdo = klass_RInfo; 1332 __ mov_metadata(mdo, md->constant_encoding()); 1333 Address data_addr 1334 = __ form_address(rscratch2, mdo, 1335 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1336 0); 1337 __ ldrb(rscratch1, data_addr); 1338 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1339 __ strb(rscratch1, data_addr); 1340 __ b(*obj_is_null); 1341 __ bind(not_null); 1342 } else { 1343 __ cbz(obj, *obj_is_null); 1344 } 1345 1346 if (!k->is_loaded()) { 1347 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1348 } else { 1349 __ mov_metadata(k_RInfo, k->constant_encoding()); 1350 } 1351 __ verify_oop(obj); 1352 1353 if (op->fast_check()) { 1354 // get object class 1355 // not a safepoint as obj null check happens earlier 1356 __ load_klass(rscratch1, obj); 1357 __ cmp( rscratch1, k_RInfo); 1358 1359 __ br(Assembler::NE, *failure_target); 1360 // successful cast, fall through to profile or jump 1361 } else { 1362 // get object class 1363 // not a safepoint as obj null check happens earlier 1364 __ load_klass(klass_RInfo, obj); 1365 if (k->is_loaded()) { 1366 // See if we get an immediate positive hit 1367 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1368 __ cmp(k_RInfo, rscratch1); 1369 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1370 __ br(Assembler::NE, *failure_target); 1371 // successful cast, fall through to profile or jump 1372 } else { 1373 // See if we get an immediate positive hit 1374 __ br(Assembler::EQ, *success_target); 1375 // check for self 1376 __ cmp(klass_RInfo, k_RInfo); 1377 __ br(Assembler::EQ, *success_target); 1378 1379 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1380 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1381 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1382 // result is a boolean 1383 __ cbzw(klass_RInfo, *failure_target); 1384 // successful cast, fall through to profile or jump 1385 } 1386 } else { 1387 // perform the fast part of the checking logic 1388 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1389 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1390 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1391 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1392 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1393 // result is a boolean 1394 __ cbz(k_RInfo, *failure_target); 1395 // successful cast, fall through to profile or jump 1396 } 1397 } 1398 if (should_profile) { 1399 Register mdo = klass_RInfo, recv = k_RInfo; 1400 __ bind(profile_cast_success); 1401 __ mov_metadata(mdo, md->constant_encoding()); 1402 __ load_klass(recv, obj); 1403 Label update_done; 1404 type_profile_helper(mdo, md, data, recv, success); 1405 __ b(*success); 1406 1407 __ bind(profile_cast_failure); 1408 __ mov_metadata(mdo, md->constant_encoding()); 1409 Address counter_addr 1410 = __ form_address(rscratch2, mdo, 1411 md->byte_offset_of_slot(data, CounterData::count_offset()), 1412 0); 1413 __ ldr(rscratch1, counter_addr); 1414 __ sub(rscratch1, rscratch1, DataLayout::counter_increment); 1415 __ str(rscratch1, counter_addr); 1416 __ b(*failure); 1417 } 1418 __ b(*success); 1419 } 1420 1421 1422 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1423 const bool should_profile = op->should_profile(); 1424 1425 LIR_Code code = op->code(); 1426 if (code == lir_store_check) { 1427 Register value = op->object()->as_register(); 1428 Register array = op->array()->as_register(); 1429 Register k_RInfo = op->tmp1()->as_register(); 1430 Register klass_RInfo = op->tmp2()->as_register(); 1431 Register Rtmp1 = op->tmp3()->as_register(); 1432 1433 CodeStub* stub = op->stub(); 1434 1435 // check if it needs to be profiled 1436 ciMethodData* md; 1437 ciProfileData* data; 1438 1439 if (should_profile) { 1440 ciMethod* method = op->profiled_method(); 1441 assert(method != NULL, "Should have method"); 1442 int bci = op->profiled_bci(); 1443 md = method->method_data_or_null(); 1444 assert(md != NULL, "Sanity"); 1445 data = md->bci_to_data(bci); 1446 assert(data != NULL, "need data for type check"); 1447 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1448 } 1449 Label profile_cast_success, profile_cast_failure, done; 1450 Label *success_target = should_profile ? &profile_cast_success : &done; 1451 Label *failure_target = should_profile ? &profile_cast_failure : stub->entry(); 1452 1453 if (should_profile) { 1454 Label not_null; 1455 __ cbnz(value, not_null); 1456 // Object is null; update MDO and exit 1457 Register mdo = klass_RInfo; 1458 __ mov_metadata(mdo, md->constant_encoding()); 1459 Address data_addr 1460 = __ form_address(rscratch2, mdo, 1461 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1462 0); 1463 __ ldrb(rscratch1, data_addr); 1464 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1465 __ strb(rscratch1, data_addr); 1466 __ b(done); 1467 __ bind(not_null); 1468 } else { 1469 __ cbz(value, done); 1470 } 1471 1472 add_debug_info_for_null_check_here(op->info_for_exception()); 1473 __ load_klass(k_RInfo, array); 1474 __ load_klass(klass_RInfo, value); 1475 1476 // get instance klass (it's already uncompressed) 1477 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1478 // perform the fast part of the checking logic 1479 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1480 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1481 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1482 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1483 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1484 // result is a boolean 1485 __ cbzw(k_RInfo, *failure_target); 1486 // fall through to the success case 1487 1488 if (should_profile) { 1489 Register mdo = klass_RInfo, recv = k_RInfo; 1490 __ bind(profile_cast_success); 1491 __ mov_metadata(mdo, md->constant_encoding()); 1492 __ load_klass(recv, value); 1493 Label update_done; 1494 type_profile_helper(mdo, md, data, recv, &done); 1495 __ b(done); 1496 1497 __ bind(profile_cast_failure); 1498 __ mov_metadata(mdo, md->constant_encoding()); 1499 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1500 __ lea(rscratch2, counter_addr); 1501 __ ldr(rscratch1, Address(rscratch2)); 1502 __ sub(rscratch1, rscratch1, DataLayout::counter_increment); 1503 __ str(rscratch1, Address(rscratch2)); 1504 __ b(*stub->entry()); 1505 } 1506 1507 __ bind(done); 1508 } else if (code == lir_checkcast) { 1509 Register obj = op->object()->as_register(); 1510 Register dst = op->result_opr()->as_register(); 1511 Label success; 1512 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1513 __ bind(success); 1514 if (dst != obj) { 1515 __ mov(dst, obj); 1516 } 1517 } else if (code == lir_instanceof) { 1518 Register obj = op->object()->as_register(); 1519 Register dst = op->result_opr()->as_register(); 1520 Label success, failure, done; 1521 emit_typecheck_helper(op, &success, &failure, &failure); 1522 __ bind(failure); 1523 __ mov(dst, zr); 1524 __ b(done); 1525 __ bind(success); 1526 __ mov(dst, 1); 1527 __ bind(done); 1528 } else { 1529 ShouldNotReachHere(); 1530 } 1531 } 1532 1533 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1534 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1535 __ cset(rscratch1, Assembler::NE); 1536 __ membar(__ AnyAny); 1537 } 1538 1539 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1540 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1541 __ cset(rscratch1, Assembler::NE); 1542 __ membar(__ AnyAny); 1543 } 1544 1545 1546 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1547 assert(VM_Version::supports_cx8(), "wrong machine"); 1548 Register addr; 1549 if (op->addr()->is_register()) { 1550 addr = as_reg(op->addr()); 1551 } else { 1552 assert(op->addr()->is_address(), "what else?"); 1553 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1554 assert(addr_ptr->disp() == 0, "need 0 disp"); 1555 assert(addr_ptr->index() == LIR_OprDesc::illegalOpr(), "need 0 index"); 1556 addr = as_reg(addr_ptr->base()); 1557 } 1558 Register newval = as_reg(op->new_value()); 1559 Register cmpval = as_reg(op->cmp_value()); 1560 1561 if (op->code() == lir_cas_obj) { 1562 if (UseCompressedOops) { 1563 Register t1 = op->tmp1()->as_register(); 1564 assert(op->tmp1()->is_valid(), "must be"); 1565 __ encode_heap_oop(t1, cmpval); 1566 cmpval = t1; 1567 __ encode_heap_oop(rscratch2, newval); 1568 newval = rscratch2; 1569 casw(addr, newval, cmpval); 1570 } else { 1571 casl(addr, newval, cmpval); 1572 } 1573 } else if (op->code() == lir_cas_int) { 1574 casw(addr, newval, cmpval); 1575 } else { 1576 casl(addr, newval, cmpval); 1577 } 1578 } 1579 1580 1581 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { 1582 1583 Assembler::Condition acond, ncond; 1584 switch (condition) { 1585 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1586 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1587 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1588 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1589 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1590 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1591 case lir_cond_belowEqual: 1592 case lir_cond_aboveEqual: 1593 default: ShouldNotReachHere(); 1594 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1595 } 1596 1597 assert(result->is_single_cpu() || result->is_double_cpu(), 1598 "expect single register for result"); 1599 if (opr1->is_constant() && opr2->is_constant() 1600 && opr1->type() == T_INT && opr2->type() == T_INT) { 1601 jint val1 = opr1->as_jint(); 1602 jint val2 = opr2->as_jint(); 1603 if (val1 == 0 && val2 == 1) { 1604 __ cset(result->as_register(), ncond); 1605 return; 1606 } else if (val1 == 1 && val2 == 0) { 1607 __ cset(result->as_register(), acond); 1608 return; 1609 } 1610 } 1611 1612 if (opr1->is_constant() && opr2->is_constant() 1613 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1614 jlong val1 = opr1->as_jlong(); 1615 jlong val2 = opr2->as_jlong(); 1616 if (val1 == 0 && val2 == 1) { 1617 __ cset(result->as_register_lo(), ncond); 1618 return; 1619 } else if (val1 == 1 && val2 == 0) { 1620 __ cset(result->as_register_lo(), acond); 1621 return; 1622 } 1623 } 1624 1625 if (opr1->is_stack()) { 1626 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1627 opr1 = FrameMap::rscratch1_opr; 1628 } else if (opr1->is_constant()) { 1629 LIR_Opr tmp 1630 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1631 const2reg(opr1, tmp, lir_patch_none, NULL); 1632 opr1 = tmp; 1633 } 1634 1635 if (opr2->is_stack()) { 1636 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1637 opr2 = FrameMap::rscratch2_opr; 1638 } else if (opr2->is_constant()) { 1639 LIR_Opr tmp 1640 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1641 const2reg(opr2, tmp, lir_patch_none, NULL); 1642 opr2 = tmp; 1643 } 1644 1645 if (result->type() == T_LONG) 1646 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1647 else 1648 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1649 } 1650 1651 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 1652 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1653 1654 if (left->is_single_cpu()) { 1655 Register lreg = left->as_register(); 1656 Register dreg = as_reg(dest); 1657 1658 if (right->is_single_cpu()) { 1659 // cpu register - cpu register 1660 1661 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1662 "should be"); 1663 Register rreg = right->as_register(); 1664 switch (code) { 1665 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1666 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1667 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1668 default: ShouldNotReachHere(); 1669 } 1670 1671 } else if (right->is_double_cpu()) { 1672 Register rreg = right->as_register_lo(); 1673 // single_cpu + double_cpu: can happen with obj+long 1674 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1675 switch (code) { 1676 case lir_add: __ add(dreg, lreg, rreg); break; 1677 case lir_sub: __ sub(dreg, lreg, rreg); break; 1678 default: ShouldNotReachHere(); 1679 } 1680 } else if (right->is_constant()) { 1681 // cpu register - constant 1682 jlong c; 1683 1684 // FIXME. This is fugly: we really need to factor all this logic. 1685 switch(right->type()) { 1686 case T_LONG: 1687 c = right->as_constant_ptr()->as_jlong(); 1688 break; 1689 case T_INT: 1690 case T_ADDRESS: 1691 c = right->as_constant_ptr()->as_jint(); 1692 break; 1693 default: 1694 ShouldNotReachHere(); 1695 c = 0; // unreachable 1696 break; 1697 } 1698 1699 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1700 if (c == 0 && dreg == lreg) { 1701 COMMENT("effective nop elided"); 1702 return; 1703 } 1704 switch(left->type()) { 1705 case T_INT: 1706 switch (code) { 1707 case lir_add: __ addw(dreg, lreg, c); break; 1708 case lir_sub: __ subw(dreg, lreg, c); break; 1709 default: ShouldNotReachHere(); 1710 } 1711 break; 1712 case T_OBJECT: 1713 case T_ADDRESS: 1714 switch (code) { 1715 case lir_add: __ add(dreg, lreg, c); break; 1716 case lir_sub: __ sub(dreg, lreg, c); break; 1717 default: ShouldNotReachHere(); 1718 } 1719 break; 1720 default: 1721 ShouldNotReachHere(); 1722 } 1723 } else { 1724 ShouldNotReachHere(); 1725 } 1726 1727 } else if (left->is_double_cpu()) { 1728 Register lreg_lo = left->as_register_lo(); 1729 1730 if (right->is_double_cpu()) { 1731 // cpu register - cpu register 1732 Register rreg_lo = right->as_register_lo(); 1733 switch (code) { 1734 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1735 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1736 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1737 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1738 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1739 default: 1740 ShouldNotReachHere(); 1741 } 1742 1743 } else if (right->is_constant()) { 1744 jlong c = right->as_constant_ptr()->as_jlong(); 1745 Register dreg = as_reg(dest); 1746 switch (code) { 1747 case lir_add: 1748 case lir_sub: 1749 if (c == 0 && dreg == lreg_lo) { 1750 COMMENT("effective nop elided"); 1751 return; 1752 } 1753 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1754 break; 1755 case lir_div: 1756 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1757 if (c == 1) { 1758 // move lreg_lo to dreg if divisor is 1 1759 __ mov(dreg, lreg_lo); 1760 } else { 1761 unsigned int shift = log2i_exact(c); 1762 // use rscratch1 as intermediate result register 1763 __ asr(rscratch1, lreg_lo, 63); 1764 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1765 __ asr(dreg, rscratch1, shift); 1766 } 1767 break; 1768 case lir_rem: 1769 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1770 if (c == 1) { 1771 // move 0 to dreg if divisor is 1 1772 __ mov(dreg, zr); 1773 } else { 1774 // use rscratch1 as intermediate result register 1775 __ negs(rscratch1, lreg_lo); 1776 __ andr(dreg, lreg_lo, c - 1); 1777 __ andr(rscratch1, rscratch1, c - 1); 1778 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1779 } 1780 break; 1781 default: 1782 ShouldNotReachHere(); 1783 } 1784 } else { 1785 ShouldNotReachHere(); 1786 } 1787 } else if (left->is_single_fpu()) { 1788 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1789 switch (code) { 1790 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1791 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1792 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1793 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1794 default: 1795 ShouldNotReachHere(); 1796 } 1797 } else if (left->is_double_fpu()) { 1798 if (right->is_double_fpu()) { 1799 // fpu register - fpu register 1800 switch (code) { 1801 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1802 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1803 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1804 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1805 default: 1806 ShouldNotReachHere(); 1807 } 1808 } else { 1809 if (right->is_constant()) { 1810 ShouldNotReachHere(); 1811 } 1812 ShouldNotReachHere(); 1813 } 1814 } else if (left->is_single_stack() || left->is_address()) { 1815 assert(left == dest, "left and dest must be equal"); 1816 ShouldNotReachHere(); 1817 } else { 1818 ShouldNotReachHere(); 1819 } 1820 } 1821 1822 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); } 1823 1824 1825 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) { 1826 switch(code) { 1827 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1828 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1829 default : ShouldNotReachHere(); 1830 } 1831 } 1832 1833 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1834 1835 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1836 Register Rleft = left->is_single_cpu() ? left->as_register() : 1837 left->as_register_lo(); 1838 if (dst->is_single_cpu()) { 1839 Register Rdst = dst->as_register(); 1840 if (right->is_constant()) { 1841 switch (code) { 1842 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1843 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1844 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1845 default: ShouldNotReachHere(); break; 1846 } 1847 } else { 1848 Register Rright = right->is_single_cpu() ? right->as_register() : 1849 right->as_register_lo(); 1850 switch (code) { 1851 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1852 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1853 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1854 default: ShouldNotReachHere(); break; 1855 } 1856 } 1857 } else { 1858 Register Rdst = dst->as_register_lo(); 1859 if (right->is_constant()) { 1860 switch (code) { 1861 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1862 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1863 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1864 default: ShouldNotReachHere(); break; 1865 } 1866 } else { 1867 Register Rright = right->is_single_cpu() ? right->as_register() : 1868 right->as_register_lo(); 1869 switch (code) { 1870 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1871 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1872 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1873 default: ShouldNotReachHere(); break; 1874 } 1875 } 1876 } 1877 } 1878 1879 1880 1881 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1882 1883 // opcode check 1884 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1885 bool is_irem = (code == lir_irem); 1886 1887 // operand check 1888 assert(left->is_single_cpu(), "left must be register"); 1889 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1890 assert(result->is_single_cpu(), "result must be register"); 1891 Register lreg = left->as_register(); 1892 Register dreg = result->as_register(); 1893 1894 // power-of-2 constant check and codegen 1895 if (right->is_constant()) { 1896 int c = right->as_constant_ptr()->as_jint(); 1897 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1898 if (is_irem) { 1899 if (c == 1) { 1900 // move 0 to dreg if divisor is 1 1901 __ movw(dreg, zr); 1902 } else { 1903 // use rscratch1 as intermediate result register 1904 __ negsw(rscratch1, lreg); 1905 __ andw(dreg, lreg, c - 1); 1906 __ andw(rscratch1, rscratch1, c - 1); 1907 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 1908 } 1909 } else { 1910 if (c == 1) { 1911 // move lreg to dreg if divisor is 1 1912 __ movw(dreg, lreg); 1913 } else { 1914 unsigned int shift = exact_log2(c); 1915 // use rscratch1 as intermediate result register 1916 __ asrw(rscratch1, lreg, 31); 1917 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 1918 __ asrw(dreg, rscratch1, shift); 1919 } 1920 } 1921 } else { 1922 Register rreg = right->as_register(); 1923 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 1924 } 1925 } 1926 1927 1928 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1929 if (opr1->is_constant() && opr2->is_single_cpu()) { 1930 // tableswitch 1931 Register reg = as_reg(opr2); 1932 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 1933 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 1934 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 1935 Register reg1 = as_reg(opr1); 1936 if (opr2->is_single_cpu()) { 1937 // cpu register - cpu register 1938 Register reg2 = opr2->as_register(); 1939 if (is_reference_type(opr1->type())) { 1940 __ cmpoop(reg1, reg2); 1941 } else { 1942 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1943 __ cmpw(reg1, reg2); 1944 } 1945 return; 1946 } 1947 if (opr2->is_double_cpu()) { 1948 // cpu register - cpu register 1949 Register reg2 = opr2->as_register_lo(); 1950 __ cmp(reg1, reg2); 1951 return; 1952 } 1953 1954 if (opr2->is_constant()) { 1955 bool is_32bit = false; // width of register operand 1956 jlong imm; 1957 1958 switch(opr2->type()) { 1959 case T_INT: 1960 imm = opr2->as_constant_ptr()->as_jint(); 1961 is_32bit = true; 1962 break; 1963 case T_LONG: 1964 imm = opr2->as_constant_ptr()->as_jlong(); 1965 break; 1966 case T_ADDRESS: 1967 imm = opr2->as_constant_ptr()->as_jint(); 1968 break; 1969 case T_METADATA: 1970 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 1971 break; 1972 case T_OBJECT: 1973 case T_ARRAY: 1974 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 1975 __ cmpoop(reg1, rscratch1); 1976 return; 1977 default: 1978 ShouldNotReachHere(); 1979 imm = 0; // unreachable 1980 break; 1981 } 1982 1983 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 1984 if (is_32bit) 1985 __ cmpw(reg1, imm); 1986 else 1987 __ subs(zr, reg1, imm); 1988 return; 1989 } else { 1990 __ mov(rscratch1, imm); 1991 if (is_32bit) 1992 __ cmpw(reg1, rscratch1); 1993 else 1994 __ cmp(reg1, rscratch1); 1995 return; 1996 } 1997 } else 1998 ShouldNotReachHere(); 1999 } else if (opr1->is_single_fpu()) { 2000 FloatRegister reg1 = opr1->as_float_reg(); 2001 assert(opr2->is_single_fpu(), "expect single float register"); 2002 FloatRegister reg2 = opr2->as_float_reg(); 2003 __ fcmps(reg1, reg2); 2004 } else if (opr1->is_double_fpu()) { 2005 FloatRegister reg1 = opr1->as_double_reg(); 2006 assert(opr2->is_double_fpu(), "expect double float register"); 2007 FloatRegister reg2 = opr2->as_double_reg(); 2008 __ fcmpd(reg1, reg2); 2009 } else { 2010 ShouldNotReachHere(); 2011 } 2012 } 2013 2014 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 2015 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2016 bool is_unordered_less = (code == lir_ucmp_fd2i); 2017 if (left->is_single_fpu()) { 2018 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 2019 } else if (left->is_double_fpu()) { 2020 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 2021 } else { 2022 ShouldNotReachHere(); 2023 } 2024 } else if (code == lir_cmp_l2i) { 2025 Label done; 2026 __ cmp(left->as_register_lo(), right->as_register_lo()); 2027 __ mov(dst->as_register(), (uint64_t)-1L); 2028 __ br(Assembler::LT, done); 2029 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 2030 __ bind(done); 2031 } else { 2032 ShouldNotReachHere(); 2033 } 2034 } 2035 2036 2037 void LIR_Assembler::align_call(LIR_Code code) { } 2038 2039 2040 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2041 address call = __ trampoline_call(Address(op->addr(), rtype)); 2042 if (call == NULL) { 2043 bailout("trampoline stub overflow"); 2044 return; 2045 } 2046 add_call_info(code_offset(), op->info()); 2047 } 2048 2049 2050 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2051 address call = __ ic_call(op->addr()); 2052 if (call == NULL) { 2053 bailout("trampoline stub overflow"); 2054 return; 2055 } 2056 add_call_info(code_offset(), op->info()); 2057 } 2058 2059 void LIR_Assembler::emit_static_call_stub() { 2060 address call_pc = __ pc(); 2061 address stub = __ start_a_stub(call_stub_size()); 2062 if (stub == NULL) { 2063 bailout("static call stub overflow"); 2064 return; 2065 } 2066 2067 int start = __ offset(); 2068 2069 __ relocate(static_stub_Relocation::spec(call_pc)); 2070 __ emit_static_call_stub(); 2071 2072 assert(__ offset() - start + CompiledStaticCall::to_trampoline_stub_size() 2073 <= call_stub_size(), "stub too big"); 2074 __ end_a_stub(); 2075 } 2076 2077 2078 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2079 assert(exceptionOop->as_register() == r0, "must match"); 2080 assert(exceptionPC->as_register() == r3, "must match"); 2081 2082 // exception object is not added to oop map by LinearScan 2083 // (LinearScan assumes that no oops are in fixed registers) 2084 info->add_register_oop(exceptionOop); 2085 Runtime1::StubID unwind_id; 2086 2087 // get current pc information 2088 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2089 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2090 // As no instructions have been generated yet for this LIR node it's 2091 // possible that an oop map already exists for the current offset. 2092 // In that case insert an dummy NOP here to ensure all oop map PCs 2093 // are unique. See JDK-8237483. 2094 __ nop(); 2095 } 2096 int pc_for_athrow_offset = __ offset(); 2097 InternalAddress pc_for_athrow(__ pc()); 2098 __ adr(exceptionPC->as_register(), pc_for_athrow); 2099 add_call_info(pc_for_athrow_offset, info); // for exception handler 2100 2101 __ verify_not_null_oop(r0); 2102 // search an exception handler (r0: exception oop, r3: throwing pc) 2103 if (compilation()->has_fpu_code()) { 2104 unwind_id = Runtime1::handle_exception_id; 2105 } else { 2106 unwind_id = Runtime1::handle_exception_nofpu_id; 2107 } 2108 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2109 2110 // FIXME: enough room for two byte trap ???? 2111 __ nop(); 2112 } 2113 2114 2115 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2116 assert(exceptionOop->as_register() == r0, "must match"); 2117 2118 __ b(_unwind_handler_entry); 2119 } 2120 2121 2122 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2123 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2124 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2125 2126 switch (left->type()) { 2127 case T_INT: { 2128 switch (code) { 2129 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2130 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2131 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2132 default: 2133 ShouldNotReachHere(); 2134 break; 2135 } 2136 break; 2137 case T_LONG: 2138 case T_ADDRESS: 2139 case T_OBJECT: 2140 switch (code) { 2141 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2142 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2143 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2144 default: 2145 ShouldNotReachHere(); 2146 break; 2147 } 2148 break; 2149 default: 2150 ShouldNotReachHere(); 2151 break; 2152 } 2153 } 2154 } 2155 2156 2157 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2158 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2159 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2160 2161 switch (left->type()) { 2162 case T_INT: { 2163 switch (code) { 2164 case lir_shl: __ lslw (dreg, lreg, count); break; 2165 case lir_shr: __ asrw (dreg, lreg, count); break; 2166 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2167 default: 2168 ShouldNotReachHere(); 2169 break; 2170 } 2171 break; 2172 case T_LONG: 2173 case T_ADDRESS: 2174 case T_OBJECT: 2175 switch (code) { 2176 case lir_shl: __ lsl (dreg, lreg, count); break; 2177 case lir_shr: __ asr (dreg, lreg, count); break; 2178 case lir_ushr: __ lsr (dreg, lreg, count); break; 2179 default: 2180 ShouldNotReachHere(); 2181 break; 2182 } 2183 break; 2184 default: 2185 ShouldNotReachHere(); 2186 break; 2187 } 2188 } 2189 } 2190 2191 2192 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2193 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2194 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2195 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2196 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2197 } 2198 2199 2200 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2201 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2202 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2203 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2204 __ mov (rscratch1, c); 2205 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2206 } 2207 2208 2209 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2210 ShouldNotReachHere(); 2211 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2212 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2213 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2214 __ lea(rscratch1, __ constant_oop_address(o)); 2215 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2216 } 2217 2218 2219 // This code replaces a call to arraycopy; no exception may 2220 // be thrown in this code, they must be thrown in the System.arraycopy 2221 // activation frame; we could save some checks if this would not be the case 2222 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2223 ciArrayKlass* default_type = op->expected_type(); 2224 Register src = op->src()->as_register(); 2225 Register dst = op->dst()->as_register(); 2226 Register src_pos = op->src_pos()->as_register(); 2227 Register dst_pos = op->dst_pos()->as_register(); 2228 Register length = op->length()->as_register(); 2229 Register tmp = op->tmp()->as_register(); 2230 2231 CodeStub* stub = op->stub(); 2232 int flags = op->flags(); 2233 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; 2234 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2235 2236 // if we don't know anything, just go through the generic arraycopy 2237 if (default_type == NULL // || basic_type == T_OBJECT 2238 ) { 2239 Label done; 2240 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2241 2242 // Save the arguments in case the generic arraycopy fails and we 2243 // have to fall back to the JNI stub 2244 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2245 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2246 __ str(src, Address(sp, 4*BytesPerWord)); 2247 2248 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2249 assert(copyfunc_addr != NULL, "generic arraycopy stub required"); 2250 2251 // The arguments are in java calling convention so we shift them 2252 // to C convention 2253 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2254 __ mov(c_rarg0, j_rarg0); 2255 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2256 __ mov(c_rarg1, j_rarg1); 2257 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2258 __ mov(c_rarg2, j_rarg2); 2259 assert_different_registers(c_rarg3, j_rarg4); 2260 __ mov(c_rarg3, j_rarg3); 2261 __ mov(c_rarg4, j_rarg4); 2262 #ifndef PRODUCT 2263 if (PrintC1Statistics) { 2264 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2265 } 2266 #endif 2267 __ far_call(RuntimeAddress(copyfunc_addr)); 2268 2269 __ cbz(r0, *stub->continuation()); 2270 2271 // Reload values from the stack so they are where the stub 2272 // expects them. 2273 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2274 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2275 __ ldr(src, Address(sp, 4*BytesPerWord)); 2276 2277 // r0 is -1^K where K == partial copied count 2278 __ eonw(rscratch1, r0, zr); 2279 // adjust length down and src/end pos up by partial copied count 2280 __ subw(length, length, rscratch1); 2281 __ addw(src_pos, src_pos, rscratch1); 2282 __ addw(dst_pos, dst_pos, rscratch1); 2283 __ b(*stub->entry()); 2284 2285 __ bind(*stub->continuation()); 2286 return; 2287 } 2288 2289 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2290 2291 int elem_size = type2aelembytes(basic_type); 2292 int scale = exact_log2(elem_size); 2293 2294 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2295 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2296 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 2297 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 2298 2299 // test for NULL 2300 if (flags & LIR_OpArrayCopy::src_null_check) { 2301 __ cbz(src, *stub->entry()); 2302 } 2303 if (flags & LIR_OpArrayCopy::dst_null_check) { 2304 __ cbz(dst, *stub->entry()); 2305 } 2306 2307 // If the compiler was not able to prove that exact type of the source or the destination 2308 // of the arraycopy is an array type, check at runtime if the source or the destination is 2309 // an instance type. 2310 if (flags & LIR_OpArrayCopy::type_check) { 2311 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2312 __ load_klass(tmp, dst); 2313 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2314 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2315 __ br(Assembler::GE, *stub->entry()); 2316 } 2317 2318 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2319 __ load_klass(tmp, src); 2320 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2321 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2322 __ br(Assembler::GE, *stub->entry()); 2323 } 2324 } 2325 2326 // check if negative 2327 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2328 __ cmpw(src_pos, 0); 2329 __ br(Assembler::LT, *stub->entry()); 2330 } 2331 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2332 __ cmpw(dst_pos, 0); 2333 __ br(Assembler::LT, *stub->entry()); 2334 } 2335 2336 if (flags & LIR_OpArrayCopy::length_positive_check) { 2337 __ cmpw(length, 0); 2338 __ br(Assembler::LT, *stub->entry()); 2339 } 2340 2341 if (flags & LIR_OpArrayCopy::src_range_check) { 2342 __ addw(tmp, src_pos, length); 2343 __ ldrw(rscratch1, src_length_addr); 2344 __ cmpw(tmp, rscratch1); 2345 __ br(Assembler::HI, *stub->entry()); 2346 } 2347 if (flags & LIR_OpArrayCopy::dst_range_check) { 2348 __ addw(tmp, dst_pos, length); 2349 __ ldrw(rscratch1, dst_length_addr); 2350 __ cmpw(tmp, rscratch1); 2351 __ br(Assembler::HI, *stub->entry()); 2352 } 2353 2354 if (flags & LIR_OpArrayCopy::type_check) { 2355 // We don't know the array types are compatible 2356 if (basic_type != T_OBJECT) { 2357 // Simple test for basic type arrays 2358 if (UseCompressedClassPointers) { 2359 __ load_nklass(tmp, src); 2360 __ load_nklass(rscratch1, dst); 2361 __ cmpw(tmp, rscratch1); 2362 } else { 2363 __ ldr(tmp, Address(src, oopDesc::klass_offset_in_bytes())); 2364 __ ldr(rscratch1, Address(dst, oopDesc::klass_offset_in_bytes())); 2365 __ cmp(tmp, rscratch1); 2366 } 2367 __ br(Assembler::NE, *stub->entry()); 2368 } else { 2369 // For object arrays, if src is a sub class of dst then we can 2370 // safely do the copy. 2371 Label cont, slow; 2372 2373 #define PUSH(r1, r2) \ 2374 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2375 2376 #define POP(r1, r2) \ 2377 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2378 2379 __ PUSH(src, dst); 2380 2381 __ load_klass(src, src); 2382 __ load_klass(dst, dst); 2383 2384 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL); 2385 2386 __ PUSH(src, dst); 2387 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 2388 __ POP(src, dst); 2389 2390 __ cbnz(src, cont); 2391 2392 __ bind(slow); 2393 __ POP(src, dst); 2394 2395 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2396 if (copyfunc_addr != NULL) { // use stub if available 2397 // src is not a sub class of dst so we have to do a 2398 // per-element check. 2399 2400 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2401 if ((flags & mask) != mask) { 2402 // Check that at least both of them object arrays. 2403 assert(flags & mask, "one of the two should be known to be an object array"); 2404 2405 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2406 __ load_klass(tmp, src); 2407 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2408 __ load_klass(tmp, dst); 2409 } 2410 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2411 Address klass_lh_addr(tmp, lh_offset); 2412 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2413 __ ldrw(rscratch1, klass_lh_addr); 2414 __ mov(rscratch2, objArray_lh); 2415 __ eorw(rscratch1, rscratch1, rscratch2); 2416 __ cbnzw(rscratch1, *stub->entry()); 2417 } 2418 2419 // Spill because stubs can use any register they like and it's 2420 // easier to restore just those that we care about. 2421 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2422 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2423 __ str(src, Address(sp, 4*BytesPerWord)); 2424 2425 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2426 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2427 assert_different_registers(c_rarg0, dst, dst_pos, length); 2428 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2429 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2430 assert_different_registers(c_rarg1, dst, length); 2431 __ uxtw(c_rarg2, length); 2432 assert_different_registers(c_rarg2, dst); 2433 2434 __ load_klass(c_rarg4, dst); 2435 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2436 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2437 __ far_call(RuntimeAddress(copyfunc_addr)); 2438 2439 #ifndef PRODUCT 2440 if (PrintC1Statistics) { 2441 Label failed; 2442 __ cbnz(r0, failed); 2443 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2444 __ bind(failed); 2445 } 2446 #endif 2447 2448 __ cbz(r0, *stub->continuation()); 2449 2450 #ifndef PRODUCT 2451 if (PrintC1Statistics) { 2452 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2453 } 2454 #endif 2455 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2456 2457 // Restore previously spilled arguments 2458 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2459 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2460 __ ldr(src, Address(sp, 4*BytesPerWord)); 2461 2462 // return value is -1^K where K is partial copied count 2463 __ eonw(rscratch1, r0, zr); 2464 // adjust length down and src/end pos up by partial copied count 2465 __ subw(length, length, rscratch1); 2466 __ addw(src_pos, src_pos, rscratch1); 2467 __ addw(dst_pos, dst_pos, rscratch1); 2468 } 2469 2470 __ b(*stub->entry()); 2471 2472 __ bind(cont); 2473 __ POP(src, dst); 2474 } 2475 } 2476 2477 #ifdef ASSERT 2478 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2479 // Sanity check the known type with the incoming class. For the 2480 // primitive case the types must match exactly with src.klass and 2481 // dst.klass each exactly matching the default type. For the 2482 // object array case, if no type check is needed then either the 2483 // dst type is exactly the expected type and the src type is a 2484 // subtype which we can't check or src is the same array as dst 2485 // but not necessarily exactly of type default_type. 2486 Label known_ok, halt; 2487 __ mov_metadata(tmp, default_type->constant_encoding()); 2488 2489 if (basic_type != T_OBJECT) { 2490 __ cmp_klass(dst, tmp, rscratch1); 2491 __ br(Assembler::NE, halt); 2492 __ cmp_klass(src, tmp, rscratch1); 2493 __ br(Assembler::EQ, known_ok); 2494 } else { 2495 __ cmp_klass(dst, tmp, rscratch1); 2496 __ br(Assembler::EQ, known_ok); 2497 __ cmp(src, dst); 2498 __ br(Assembler::EQ, known_ok); 2499 } 2500 __ bind(halt); 2501 __ stop("incorrect type information in arraycopy"); 2502 __ bind(known_ok); 2503 } 2504 #endif 2505 2506 #ifndef PRODUCT 2507 if (PrintC1Statistics) { 2508 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2509 } 2510 #endif 2511 2512 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2513 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2514 assert_different_registers(c_rarg0, dst, dst_pos, length); 2515 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2516 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2517 assert_different_registers(c_rarg1, dst, length); 2518 __ uxtw(c_rarg2, length); 2519 assert_different_registers(c_rarg2, dst); 2520 2521 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2522 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2523 const char *name; 2524 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2525 2526 CodeBlob *cb = CodeCache::find_blob(entry); 2527 if (cb) { 2528 __ far_call(RuntimeAddress(entry)); 2529 } else { 2530 __ call_VM_leaf(entry, 3); 2531 } 2532 2533 __ bind(*stub->continuation()); 2534 } 2535 2536 2537 2538 2539 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2540 Register obj = op->obj_opr()->as_register(); // may not be an oop 2541 Register hdr = op->hdr_opr()->as_register(); 2542 Register lock = op->lock_opr()->as_register(); 2543 Register temp = op->scratch_opr()->as_register(); 2544 if (LockingMode == LM_MONITOR) { 2545 if (op->info() != NULL) { 2546 add_debug_info_for_null_check_here(op->info()); 2547 __ null_check(obj, -1); 2548 } 2549 __ b(*op->stub()->entry()); 2550 } else if (op->code() == lir_lock) { 2551 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2552 // add debug info for NullPointerException only if one is possible 2553 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2554 if (op->info() != NULL) { 2555 add_debug_info_for_null_check(null_check_offset, op->info()); 2556 } 2557 // done 2558 } else if (op->code() == lir_unlock) { 2559 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2560 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry()); 2561 } else { 2562 Unimplemented(); 2563 } 2564 __ bind(*op->stub()->continuation()); 2565 } 2566 2567 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2568 Register obj = op->obj()->as_pointer_register(); 2569 Register result = op->result_opr()->as_pointer_register(); 2570 2571 CodeEmitInfo* info = op->info(); 2572 if (info != NULL) { 2573 add_debug_info_for_null_check_here(info); 2574 } 2575 2576 if (UseCompressedClassPointers) { 2577 if (UseCompactObjectHeaders) { 2578 // Check if we can take the (common) fast path, if obj is unlocked. 2579 __ ldr(result, Address(obj, oopDesc::mark_offset_in_bytes())); 2580 __ tst(result, markWord::monitor_value); 2581 __ br(Assembler::NE, *op->stub()->entry()); 2582 __ bind(*op->stub()->continuation()); 2583 2584 // Shift to get proper narrow Klass*. 2585 __ lsr(result, result, markWord::klass_shift); 2586 } else { 2587 __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2588 } 2589 __ decode_klass_not_null(result); 2590 } else { 2591 __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2592 } 2593 } 2594 2595 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2596 ciMethod* method = op->profiled_method(); 2597 int bci = op->profiled_bci(); 2598 ciMethod* callee = op->profiled_callee(); 2599 2600 // Update counter for all call types 2601 ciMethodData* md = method->method_data_or_null(); 2602 assert(md != NULL, "Sanity"); 2603 ciProfileData* data = md->bci_to_data(bci); 2604 assert(data != NULL && data->is_CounterData(), "need CounterData for calls"); 2605 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2606 Register mdo = op->mdo()->as_register(); 2607 __ mov_metadata(mdo, md->constant_encoding()); 2608 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2609 // Perform additional virtual call profiling for invokevirtual and 2610 // invokeinterface bytecodes 2611 if (op->should_profile_receiver_type()) { 2612 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2613 Register recv = op->recv()->as_register(); 2614 assert_different_registers(mdo, recv); 2615 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2616 ciKlass* known_klass = op->known_holder(); 2617 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { 2618 // We know the type that will be seen at this call site; we can 2619 // statically update the MethodData* rather than needing to do 2620 // dynamic tests on the receiver type 2621 2622 // NOTE: we should probably put a lock around this search to 2623 // avoid collisions by concurrent compilations 2624 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2625 uint i; 2626 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2627 ciKlass* receiver = vc_data->receiver(i); 2628 if (known_klass->equals(receiver)) { 2629 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2630 __ addptr(data_addr, DataLayout::counter_increment); 2631 return; 2632 } 2633 } 2634 2635 // Receiver type not found in profile data; select an empty slot 2636 2637 // Note that this is less efficient than it should be because it 2638 // always does a write to the receiver part of the 2639 // VirtualCallData rather than just the first time 2640 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2641 ciKlass* receiver = vc_data->receiver(i); 2642 if (receiver == NULL) { 2643 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2644 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2645 __ lea(rscratch2, recv_addr); 2646 __ str(rscratch1, Address(rscratch2)); 2647 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2648 __ addptr(data_addr, DataLayout::counter_increment); 2649 return; 2650 } 2651 } 2652 } else { 2653 __ load_klass(recv, recv); 2654 Label update_done; 2655 type_profile_helper(mdo, md, data, recv, &update_done); 2656 // Receiver did not match any saved receiver and there is no empty row for it. 2657 // Increment total counter to indicate polymorphic case. 2658 __ addptr(counter_addr, DataLayout::counter_increment); 2659 2660 __ bind(update_done); 2661 } 2662 } else { 2663 // Static call 2664 __ addptr(counter_addr, DataLayout::counter_increment); 2665 } 2666 } 2667 2668 2669 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2670 Unimplemented(); 2671 } 2672 2673 2674 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2675 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2676 } 2677 2678 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2679 assert(op->crc()->is_single_cpu(), "crc must be register"); 2680 assert(op->val()->is_single_cpu(), "byte value must be register"); 2681 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2682 Register crc = op->crc()->as_register(); 2683 Register val = op->val()->as_register(); 2684 Register res = op->result_opr()->as_register(); 2685 2686 assert_different_registers(val, crc, res); 2687 uint64_t offset; 2688 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2689 if (offset) __ add(res, res, offset); 2690 2691 __ mvnw(crc, crc); // ~crc 2692 __ update_byte_crc32(crc, val, res); 2693 __ mvnw(res, crc); // ~crc 2694 } 2695 2696 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2697 COMMENT("emit_profile_type {"); 2698 Register obj = op->obj()->as_register(); 2699 Register tmp = op->tmp()->as_pointer_register(); 2700 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2701 ciKlass* exact_klass = op->exact_klass(); 2702 intptr_t current_klass = op->current_klass(); 2703 bool not_null = op->not_null(); 2704 bool no_conflict = op->no_conflict(); 2705 2706 Label update, next, none; 2707 2708 bool do_null = !not_null; 2709 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2710 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2711 2712 assert(do_null || do_update, "why are we here?"); 2713 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2714 assert(mdo_addr.base() != rscratch1, "wrong register"); 2715 2716 __ verify_oop(obj); 2717 2718 if (tmp != obj) { 2719 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2720 __ mov(tmp, obj); 2721 } else { 2722 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index()); 2723 } 2724 if (do_null) { 2725 __ cbnz(tmp, update); 2726 if (!TypeEntries::was_null_seen(current_klass)) { 2727 __ ldr(rscratch2, mdo_addr); 2728 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2729 __ str(rscratch2, mdo_addr); 2730 } 2731 if (do_update) { 2732 #ifndef ASSERT 2733 __ b(next); 2734 } 2735 #else 2736 __ b(next); 2737 } 2738 } else { 2739 __ cbnz(tmp, update); 2740 __ stop("unexpected null obj"); 2741 #endif 2742 } 2743 2744 __ bind(update); 2745 2746 if (do_update) { 2747 #ifdef ASSERT 2748 if (exact_klass != NULL) { 2749 Label ok; 2750 __ load_klass(tmp, tmp); 2751 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2752 __ eor(rscratch1, tmp, rscratch1); 2753 __ cbz(rscratch1, ok); 2754 __ stop("exact klass and actual klass differ"); 2755 __ bind(ok); 2756 } 2757 #endif 2758 if (!no_conflict) { 2759 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { 2760 if (exact_klass != NULL) { 2761 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2762 } else { 2763 __ load_klass(tmp, tmp); 2764 } 2765 2766 __ ldr(rscratch2, mdo_addr); 2767 __ eor(tmp, tmp, rscratch2); 2768 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2769 // klass seen before, nothing to do. The unknown bit may have been 2770 // set already but no need to check. 2771 __ cbz(rscratch1, next); 2772 2773 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2774 2775 if (TypeEntries::is_type_none(current_klass)) { 2776 __ cbz(rscratch2, none); 2777 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2778 __ br(Assembler::EQ, none); 2779 // There is a chance that the checks above 2780 // fail if another thread has just set the 2781 // profiling to this obj's klass 2782 __ dmb(Assembler::ISHLD); 2783 __ eor(tmp, tmp, rscratch2); // get back original value before XOR 2784 __ ldr(rscratch2, mdo_addr); 2785 __ eor(tmp, tmp, rscratch2); 2786 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2787 __ cbz(rscratch1, next); 2788 } 2789 } else { 2790 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 2791 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2792 2793 __ ldr(tmp, mdo_addr); 2794 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2795 } 2796 2797 // different than before. Cannot keep accurate profile. 2798 __ ldr(rscratch2, mdo_addr); 2799 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2800 __ str(rscratch2, mdo_addr); 2801 2802 if (TypeEntries::is_type_none(current_klass)) { 2803 __ b(next); 2804 2805 __ bind(none); 2806 // first time here. Set profile type. 2807 __ str(tmp, mdo_addr); 2808 #ifdef ASSERT 2809 __ andr(tmp, tmp, TypeEntries::type_mask); 2810 __ verify_klass_ptr(tmp); 2811 #endif 2812 } 2813 } else { 2814 // There's a single possible klass at this profile point 2815 assert(exact_klass != NULL, "should be"); 2816 if (TypeEntries::is_type_none(current_klass)) { 2817 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2818 __ ldr(rscratch2, mdo_addr); 2819 __ eor(tmp, tmp, rscratch2); 2820 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2821 __ cbz(rscratch1, next); 2822 #ifdef ASSERT 2823 { 2824 Label ok; 2825 __ ldr(rscratch1, mdo_addr); 2826 __ cbz(rscratch1, ok); 2827 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2828 __ br(Assembler::EQ, ok); 2829 // may have been set by another thread 2830 __ dmb(Assembler::ISHLD); 2831 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2832 __ ldr(rscratch2, mdo_addr); 2833 __ eor(rscratch2, rscratch1, rscratch2); 2834 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2835 __ cbz(rscratch2, ok); 2836 2837 __ stop("unexpected profiling mismatch"); 2838 __ bind(ok); 2839 } 2840 #endif 2841 // first time here. Set profile type. 2842 __ str(tmp, mdo_addr); 2843 #ifdef ASSERT 2844 __ andr(tmp, tmp, TypeEntries::type_mask); 2845 __ verify_klass_ptr(tmp); 2846 #endif 2847 } else { 2848 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 2849 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2850 2851 __ ldr(tmp, mdo_addr); 2852 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2853 2854 __ orr(tmp, tmp, TypeEntries::type_unknown); 2855 __ str(tmp, mdo_addr); 2856 // FIXME: Write barrier needed here? 2857 } 2858 } 2859 2860 __ bind(next); 2861 } 2862 COMMENT("} emit_profile_type"); 2863 } 2864 2865 2866 void LIR_Assembler::align_backward_branch_target() { 2867 } 2868 2869 2870 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2871 // tmp must be unused 2872 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2873 2874 if (left->is_single_cpu()) { 2875 assert(dest->is_single_cpu(), "expect single result reg"); 2876 __ negw(dest->as_register(), left->as_register()); 2877 } else if (left->is_double_cpu()) { 2878 assert(dest->is_double_cpu(), "expect double result reg"); 2879 __ neg(dest->as_register_lo(), left->as_register_lo()); 2880 } else if (left->is_single_fpu()) { 2881 assert(dest->is_single_fpu(), "expect single float result reg"); 2882 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 2883 } else { 2884 assert(left->is_double_fpu(), "expect double float operand reg"); 2885 assert(dest->is_double_fpu(), "expect double float result reg"); 2886 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 2887 } 2888 } 2889 2890 2891 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2892 if (patch_code != lir_patch_none) { 2893 deoptimize_trap(info); 2894 return; 2895 } 2896 2897 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); 2898 } 2899 2900 2901 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2902 assert(!tmp->is_valid(), "don't need temporary"); 2903 2904 CodeBlob *cb = CodeCache::find_blob(dest); 2905 if (cb) { 2906 __ far_call(RuntimeAddress(dest)); 2907 } else { 2908 __ mov(rscratch1, RuntimeAddress(dest)); 2909 __ blr(rscratch1); 2910 } 2911 2912 if (info != NULL) { 2913 add_call_info_here(info); 2914 } 2915 } 2916 2917 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2918 if (dest->is_address() || src->is_address()) { 2919 move_op(src, dest, type, lir_patch_none, info, 2920 /*pop_fpu_stack*/false, /*unaligned*/false, /*wide*/false); 2921 } else { 2922 ShouldNotReachHere(); 2923 } 2924 } 2925 2926 #ifdef ASSERT 2927 // emit run-time assertion 2928 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2929 assert(op->code() == lir_assert, "must be"); 2930 2931 if (op->in_opr1()->is_valid()) { 2932 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2933 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2934 } else { 2935 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2936 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2937 } 2938 2939 Label ok; 2940 if (op->condition() != lir_cond_always) { 2941 Assembler::Condition acond = Assembler::AL; 2942 switch (op->condition()) { 2943 case lir_cond_equal: acond = Assembler::EQ; break; 2944 case lir_cond_notEqual: acond = Assembler::NE; break; 2945 case lir_cond_less: acond = Assembler::LT; break; 2946 case lir_cond_lessEqual: acond = Assembler::LE; break; 2947 case lir_cond_greaterEqual: acond = Assembler::GE; break; 2948 case lir_cond_greater: acond = Assembler::GT; break; 2949 case lir_cond_belowEqual: acond = Assembler::LS; break; 2950 case lir_cond_aboveEqual: acond = Assembler::HS; break; 2951 default: ShouldNotReachHere(); 2952 } 2953 __ br(acond, ok); 2954 } 2955 if (op->halt()) { 2956 const char* str = __ code_string(op->msg()); 2957 __ stop(str); 2958 } else { 2959 breakpoint(); 2960 } 2961 __ bind(ok); 2962 } 2963 #endif 2964 2965 #ifndef PRODUCT 2966 #define COMMENT(x) do { __ block_comment(x); } while (0) 2967 #else 2968 #define COMMENT(x) 2969 #endif 2970 2971 void LIR_Assembler::membar() { 2972 COMMENT("membar"); 2973 __ membar(MacroAssembler::AnyAny); 2974 } 2975 2976 void LIR_Assembler::membar_acquire() { 2977 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 2978 } 2979 2980 void LIR_Assembler::membar_release() { 2981 __ membar(Assembler::LoadStore|Assembler::StoreStore); 2982 } 2983 2984 void LIR_Assembler::membar_loadload() { 2985 __ membar(Assembler::LoadLoad); 2986 } 2987 2988 void LIR_Assembler::membar_storestore() { 2989 __ membar(MacroAssembler::StoreStore); 2990 } 2991 2992 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 2993 2994 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 2995 2996 void LIR_Assembler::on_spin_wait() { 2997 __ spin_wait(); 2998 } 2999 3000 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 3001 __ mov(result_reg->as_register(), rthread); 3002 } 3003 3004 3005 void LIR_Assembler::peephole(LIR_List *lir) { 3006 #if 0 3007 if (tableswitch_count >= max_tableswitches) 3008 return; 3009 3010 /* 3011 This finite-state automaton recognizes sequences of compare-and- 3012 branch instructions. We will turn them into a tableswitch. You 3013 could argue that C1 really shouldn't be doing this sort of 3014 optimization, but without it the code is really horrible. 3015 */ 3016 3017 enum { start_s, cmp1_s, beq_s, cmp_s } state; 3018 int first_key, last_key = -2147483648; 3019 int next_key = 0; 3020 int start_insn = -1; 3021 int last_insn = -1; 3022 Register reg = noreg; 3023 LIR_Opr reg_opr; 3024 state = start_s; 3025 3026 LIR_OpList* inst = lir->instructions_list(); 3027 for (int i = 0; i < inst->length(); i++) { 3028 LIR_Op* op = inst->at(i); 3029 switch (state) { 3030 case start_s: 3031 first_key = -1; 3032 start_insn = i; 3033 switch (op->code()) { 3034 case lir_cmp: 3035 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3036 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3037 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3038 && opr2->is_constant() 3039 && opr2->type() == T_INT) { 3040 reg_opr = opr1; 3041 reg = opr1->as_register(); 3042 first_key = opr2->as_constant_ptr()->as_jint(); 3043 next_key = first_key + 1; 3044 state = cmp_s; 3045 goto next_state; 3046 } 3047 break; 3048 } 3049 break; 3050 case cmp_s: 3051 switch (op->code()) { 3052 case lir_branch: 3053 if (op->as_OpBranch()->cond() == lir_cond_equal) { 3054 state = beq_s; 3055 last_insn = i; 3056 goto next_state; 3057 } 3058 } 3059 state = start_s; 3060 break; 3061 case beq_s: 3062 switch (op->code()) { 3063 case lir_cmp: { 3064 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3065 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3066 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3067 && opr1->as_register() == reg 3068 && opr2->is_constant() 3069 && opr2->type() == T_INT 3070 && opr2->as_constant_ptr()->as_jint() == next_key) { 3071 last_key = next_key; 3072 next_key++; 3073 state = cmp_s; 3074 goto next_state; 3075 } 3076 } 3077 } 3078 last_key = next_key; 3079 state = start_s; 3080 break; 3081 default: 3082 assert(false, "impossible state"); 3083 } 3084 if (state == start_s) { 3085 if (first_key < last_key - 5L && reg != noreg) { 3086 { 3087 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3088 // reg->encoding(), 3089 // start_insn, first_key, last_key); 3090 // for (int i = 0; i < inst->length(); i++) { 3091 // inst->at(i)->print(); 3092 // tty->print("\n"); 3093 // } 3094 // tty->print("\n"); 3095 } 3096 3097 struct tableswitch *sw = &switches[tableswitch_count]; 3098 sw->_insn_index = start_insn, sw->_first_key = first_key, 3099 sw->_last_key = last_key, sw->_reg = reg; 3100 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3101 { 3102 // Insert the new table of branches 3103 int offset = last_insn; 3104 for (int n = first_key; n < last_key; n++) { 3105 inst->insert_before 3106 (last_insn + 1, 3107 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3108 inst->at(offset)->as_OpBranch()->label())); 3109 offset -= 2, i++; 3110 } 3111 } 3112 // Delete all the old compare-and-branch instructions 3113 for (int n = first_key; n < last_key; n++) { 3114 inst->remove_at(start_insn); 3115 inst->remove_at(start_insn); 3116 } 3117 // Insert the tableswitch instruction 3118 inst->insert_before(start_insn, 3119 new LIR_Op2(lir_cmp, lir_cond_always, 3120 LIR_OprFact::intConst(tableswitch_count), 3121 reg_opr)); 3122 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3123 tableswitch_count++; 3124 } 3125 reg = noreg; 3126 last_key = -2147483648; 3127 } 3128 next_state: 3129 ; 3130 } 3131 #endif 3132 } 3133 3134 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3135 Address addr = as_Address(src->as_address_ptr()); 3136 BasicType type = src->type(); 3137 bool is_oop = is_reference_type(type); 3138 3139 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3140 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3141 3142 switch(type) { 3143 case T_INT: 3144 xchg = &MacroAssembler::atomic_xchgalw; 3145 add = &MacroAssembler::atomic_addalw; 3146 break; 3147 case T_LONG: 3148 xchg = &MacroAssembler::atomic_xchgal; 3149 add = &MacroAssembler::atomic_addal; 3150 break; 3151 case T_OBJECT: 3152 case T_ARRAY: 3153 if (UseCompressedOops) { 3154 xchg = &MacroAssembler::atomic_xchgalw; 3155 add = &MacroAssembler::atomic_addalw; 3156 } else { 3157 xchg = &MacroAssembler::atomic_xchgal; 3158 add = &MacroAssembler::atomic_addal; 3159 } 3160 break; 3161 default: 3162 ShouldNotReachHere(); 3163 xchg = &MacroAssembler::atomic_xchgal; 3164 add = &MacroAssembler::atomic_addal; // unreachable 3165 } 3166 3167 switch (code) { 3168 case lir_xadd: 3169 { 3170 RegisterOrConstant inc; 3171 Register tmp = as_reg(tmp_op); 3172 Register dst = as_reg(dest); 3173 if (data->is_constant()) { 3174 inc = RegisterOrConstant(as_long(data)); 3175 assert_different_registers(dst, addr.base(), tmp, 3176 rscratch1, rscratch2); 3177 } else { 3178 inc = RegisterOrConstant(as_reg(data)); 3179 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3180 rscratch1, rscratch2); 3181 } 3182 __ lea(tmp, addr); 3183 (_masm->*add)(dst, inc, tmp); 3184 break; 3185 } 3186 case lir_xchg: 3187 { 3188 Register tmp = tmp_op->as_register(); 3189 Register obj = as_reg(data); 3190 Register dst = as_reg(dest); 3191 if (is_oop && UseCompressedOops) { 3192 __ encode_heap_oop(rscratch2, obj); 3193 obj = rscratch2; 3194 } 3195 assert_different_registers(obj, addr.base(), tmp, rscratch1, dst); 3196 __ lea(tmp, addr); 3197 (_masm->*xchg)(dst, obj, tmp); 3198 if (is_oop && UseCompressedOops) { 3199 __ decode_heap_oop(dst); 3200 } 3201 } 3202 break; 3203 default: 3204 ShouldNotReachHere(); 3205 } 3206 __ membar(__ AnyAny); 3207 } 3208 3209 #undef __