1 /* 2 * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "asm/assembler.hpp" 29 #include "c1/c1_CodeStubs.hpp" 30 #include "c1/c1_Compilation.hpp" 31 #include "c1/c1_LIRAssembler.hpp" 32 #include "c1/c1_MacroAssembler.hpp" 33 #include "c1/c1_Runtime1.hpp" 34 #include "c1/c1_ValueStack.hpp" 35 #include "ci/ciArrayKlass.hpp" 36 #include "ci/ciInstance.hpp" 37 #include "code/compiledIC.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "nativeInst_aarch64.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 #include "vmreg_aarch64.inline.hpp" 47 48 49 #ifndef PRODUCT 50 #define COMMENT(x) do { __ block_comment(x); } while (0) 51 #else 52 #define COMMENT(x) 53 #endif 54 55 NEEDS_CLEANUP // remove this definitions ? 56 const Register IC_Klass = rscratch2; // where the IC klass is cached 57 const Register SYNC_header = r0; // synchronization header 58 const Register SHIFT_count = r0; // where count for shift operations must be 59 60 #define __ _masm-> 61 62 63 static void select_different_registers(Register preserve, 64 Register extra, 65 Register &tmp1, 66 Register &tmp2) { 67 if (tmp1 == preserve) { 68 assert_different_registers(tmp1, tmp2, extra); 69 tmp1 = extra; 70 } else if (tmp2 == preserve) { 71 assert_different_registers(tmp1, tmp2, extra); 72 tmp2 = extra; 73 } 74 assert_different_registers(preserve, tmp1, tmp2); 75 } 76 77 78 79 static void select_different_registers(Register preserve, 80 Register extra, 81 Register &tmp1, 82 Register &tmp2, 83 Register &tmp3) { 84 if (tmp1 == preserve) { 85 assert_different_registers(tmp1, tmp2, tmp3, extra); 86 tmp1 = extra; 87 } else if (tmp2 == preserve) { 88 assert_different_registers(tmp1, tmp2, tmp3, extra); 89 tmp2 = extra; 90 } else if (tmp3 == preserve) { 91 assert_different_registers(tmp1, tmp2, tmp3, extra); 92 tmp3 = extra; 93 } 94 assert_different_registers(preserve, tmp1, tmp2, tmp3); 95 } 96 97 98 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; } 99 100 101 LIR_Opr LIR_Assembler::receiverOpr() { 102 return FrameMap::receiver_opr; 103 } 104 105 LIR_Opr LIR_Assembler::osrBufferPointer() { 106 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 107 } 108 109 //--------------fpu register translations----------------------- 110 111 112 address LIR_Assembler::float_constant(float f) { 113 address const_addr = __ float_constant(f); 114 if (const_addr == NULL) { 115 bailout("const section overflow"); 116 return __ code()->consts()->start(); 117 } else { 118 return const_addr; 119 } 120 } 121 122 123 address LIR_Assembler::double_constant(double d) { 124 address const_addr = __ double_constant(d); 125 if (const_addr == NULL) { 126 bailout("const section overflow"); 127 return __ code()->consts()->start(); 128 } else { 129 return const_addr; 130 } 131 } 132 133 address LIR_Assembler::int_constant(jlong n) { 134 address const_addr = __ long_constant(n); 135 if (const_addr == NULL) { 136 bailout("const section overflow"); 137 return __ code()->consts()->start(); 138 } else { 139 return const_addr; 140 } 141 } 142 143 void LIR_Assembler::breakpoint() { Unimplemented(); } 144 145 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } 146 147 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } 148 149 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; } 150 //------------------------------------------- 151 152 static Register as_reg(LIR_Opr op) { 153 return op->is_double_cpu() ? op->as_register_lo() : op->as_register(); 154 } 155 156 static jlong as_long(LIR_Opr data) { 157 jlong result; 158 switch (data->type()) { 159 case T_INT: 160 result = (data->as_jint()); 161 break; 162 case T_LONG: 163 result = (data->as_jlong()); 164 break; 165 default: 166 ShouldNotReachHere(); 167 result = 0; // unreachable 168 } 169 return result; 170 } 171 172 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 173 Register base = addr->base()->as_pointer_register(); 174 LIR_Opr opr = addr->index(); 175 if (opr->is_cpu_register()) { 176 Register index; 177 if (opr->is_single_cpu()) 178 index = opr->as_register(); 179 else 180 index = opr->as_register_lo(); 181 assert(addr->disp() == 0, "must be"); 182 switch(opr->type()) { 183 case T_INT: 184 return Address(base, index, Address::sxtw(addr->scale())); 185 case T_LONG: 186 return Address(base, index, Address::lsl(addr->scale())); 187 default: 188 ShouldNotReachHere(); 189 } 190 } else { 191 assert(addr->scale() == 0, 192 "expected for immediate operand, was: %d", addr->scale()); 193 ptrdiff_t offset = ptrdiff_t(addr->disp()); 194 // NOTE: Does not handle any 16 byte vector access. 195 const uint type_size = type2aelembytes(addr->type(), true); 196 return __ legitimize_address(Address(base, offset), type_size, tmp); 197 } 198 return Address(); 199 } 200 201 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 202 ShouldNotReachHere(); 203 return Address(); 204 } 205 206 Address LIR_Assembler::as_Address(LIR_Address* addr) { 207 return as_Address(addr, rscratch1); 208 } 209 210 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 211 return as_Address(addr, rscratch1); // Ouch 212 // FIXME: This needs to be much more clever. See x86. 213 } 214 215 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is 216 // not encodable as a base + (immediate) offset, generate an explicit address 217 // calculation to hold the address in a temporary register. 218 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) { 219 precond(size == 4 || size == 8); 220 Address addr = frame_map()->address_for_slot(index, adjust); 221 precond(addr.getMode() == Address::base_plus_offset); 222 precond(addr.base() == sp); 223 precond(addr.offset() > 0); 224 uint mask = size - 1; 225 assert((addr.offset() & mask) == 0, "scaled offsets only"); 226 return __ legitimize_address(addr, size, tmp); 227 } 228 229 void LIR_Assembler::osr_entry() { 230 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 231 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 232 ValueStack* entry_state = osr_entry->state(); 233 int number_of_locks = entry_state->locks_size(); 234 235 // we jump here if osr happens with the interpreter 236 // state set up to continue at the beginning of the 237 // loop that triggered osr - in particular, we have 238 // the following registers setup: 239 // 240 // r2: osr buffer 241 // 242 243 // build frame 244 ciMethod* m = compilation()->method(); 245 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 246 247 // OSR buffer is 248 // 249 // locals[nlocals-1..0] 250 // monitors[0..number_of_locks] 251 // 252 // locals is a direct copy of the interpreter frame so in the osr buffer 253 // so first slot in the local array is the last local from the interpreter 254 // and last slot is local[0] (receiver) from the interpreter 255 // 256 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 257 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 258 // in the interpreter frame (the method lock if a sync method) 259 260 // Initialize monitors in the compiled activation. 261 // r2: pointer to osr buffer 262 // 263 // All other registers are dead at this point and the locals will be 264 // copied into place by code emitted in the IR. 265 266 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 267 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 268 int monitor_offset = BytesPerWord * method()->max_locals() + 269 (2 * BytesPerWord) * (number_of_locks - 1); 270 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 271 // the OSR buffer using 2 word entries: first the lock and then 272 // the oop. 273 for (int i = 0; i < number_of_locks; i++) { 274 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 275 #ifdef ASSERT 276 // verify the interpreter's monitor has a non-null object 277 { 278 Label L; 279 __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 280 __ cbnz(rscratch1, L); 281 __ stop("locked object is NULL"); 282 __ bind(L); 283 } 284 #endif 285 __ ldp(r19, r20, Address(OSR_buf, slot_offset)); 286 __ str(r19, frame_map()->address_for_monitor_lock(i)); 287 __ str(r20, frame_map()->address_for_monitor_object(i)); 288 } 289 } 290 } 291 292 293 // inline cache check; done before the frame is built. 294 int LIR_Assembler::check_icache() { 295 Register receiver = FrameMap::receiver_opr->as_register(); 296 Register ic_klass = IC_Klass; 297 int start_offset = __ offset(); 298 __ inline_cache_check(receiver, ic_klass); 299 300 // if icache check fails, then jump to runtime routine 301 // Note: RECEIVER must still contain the receiver! 302 Label dont; 303 __ br(Assembler::EQ, dont); 304 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 305 306 // We align the verified entry point unless the method body 307 // (including its inline cache check) will fit in a single 64-byte 308 // icache line. 309 if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) { 310 // force alignment after the cache check. 311 __ align(CodeEntryAlignment); 312 } 313 314 __ bind(dont); 315 return start_offset; 316 } 317 318 void LIR_Assembler::clinit_barrier(ciMethod* method) { 319 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 320 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 321 322 Label L_skip_barrier; 323 324 __ mov_metadata(rscratch2, method->holder()->constant_encoding()); 325 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/); 326 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 327 __ bind(L_skip_barrier); 328 } 329 330 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 331 if (o == NULL) { 332 __ mov(reg, zr); 333 } else { 334 __ movoop(reg, o, /*immediate*/true); 335 } 336 } 337 338 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) { 339 address target = NULL; 340 relocInfo::relocType reloc_type = relocInfo::none; 341 342 switch (patching_id(info)) { 343 case PatchingStub::access_field_id: 344 target = Runtime1::entry_for(Runtime1::access_field_patching_id); 345 reloc_type = relocInfo::section_word_type; 346 break; 347 case PatchingStub::load_klass_id: 348 target = Runtime1::entry_for(Runtime1::load_klass_patching_id); 349 reloc_type = relocInfo::metadata_type; 350 break; 351 case PatchingStub::load_mirror_id: 352 target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); 353 reloc_type = relocInfo::oop_type; 354 break; 355 case PatchingStub::load_appendix_id: 356 target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); 357 reloc_type = relocInfo::oop_type; 358 break; 359 default: ShouldNotReachHere(); 360 } 361 362 __ far_call(RuntimeAddress(target)); 363 add_call_info_here(info); 364 } 365 366 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 367 deoptimize_trap(info); 368 } 369 370 371 // This specifies the rsp decrement needed to build the frame 372 int LIR_Assembler::initial_frame_size_in_bytes() const { 373 // if rounding, must let FrameMap know! 374 375 return in_bytes(frame_map()->framesize_in_bytes()); 376 } 377 378 379 int LIR_Assembler::emit_exception_handler() { 380 // if the last instruction is a call (typically to do a throw which 381 // is coming at the end after block reordering) the return address 382 // must still point into the code area in order to avoid assertion 383 // failures when searching for the corresponding bci => add a nop 384 // (was bug 5/14/1999 - gri) 385 __ nop(); 386 387 // generate code for exception handler 388 address handler_base = __ start_a_stub(exception_handler_size()); 389 if (handler_base == NULL) { 390 // not enough space left for the handler 391 bailout("exception handler overflow"); 392 return -1; 393 } 394 395 int offset = code_offset(); 396 397 // the exception oop and pc are in r0, and r3 398 // no other registers need to be preserved, so invalidate them 399 __ invalidate_registers(false, true, true, false, true, true); 400 401 // check that there is really an exception 402 __ verify_not_null_oop(r0); 403 404 // search an exception handler (r0: exception oop, r3: throwing pc) 405 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); __ should_not_reach_here(); 406 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 407 __ end_a_stub(); 408 409 return offset; 410 } 411 412 413 // Emit the code to remove the frame from the stack in the exception 414 // unwind path. 415 int LIR_Assembler::emit_unwind_handler() { 416 #ifndef PRODUCT 417 if (CommentedAssembly) { 418 _masm->block_comment("Unwind handler"); 419 } 420 #endif 421 422 int offset = code_offset(); 423 424 // Fetch the exception from TLS and clear out exception related thread state 425 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 426 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 427 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 428 429 __ bind(_unwind_handler_entry); 430 __ verify_not_null_oop(r0); 431 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 432 __ mov(r19, r0); // Preserve the exception 433 } 434 435 // Preform needed unlocking 436 MonitorExitStub* stub = NULL; 437 if (method()->is_synchronized()) { 438 monitor_address(0, FrameMap::r0_opr); 439 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0); 440 __ unlock_object(r5, r4, r0, *stub->entry()); 441 __ bind(*stub->continuation()); 442 } 443 444 if (compilation()->env()->dtrace_method_probes()) { 445 __ mov(c_rarg0, rthread); 446 __ mov_metadata(c_rarg1, method()->constant_encoding()); 447 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1); 448 } 449 450 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 451 __ mov(r0, r19); // Restore the exception 452 } 453 454 // remove the activation and dispatch to the unwind handler 455 __ block_comment("remove_frame and dispatch to the unwind handler"); 456 __ remove_frame(initial_frame_size_in_bytes()); 457 __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id))); 458 459 // Emit the slow path assembly 460 if (stub != NULL) { 461 stub->emit_code(this); 462 } 463 464 return offset; 465 } 466 467 468 int LIR_Assembler::emit_deopt_handler() { 469 // if the last instruction is a call (typically to do a throw which 470 // is coming at the end after block reordering) the return address 471 // must still point into the code area in order to avoid assertion 472 // failures when searching for the corresponding bci => add a nop 473 // (was bug 5/14/1999 - gri) 474 __ nop(); 475 476 // generate code for exception handler 477 address handler_base = __ start_a_stub(deopt_handler_size()); 478 if (handler_base == NULL) { 479 // not enough space left for the handler 480 bailout("deopt handler overflow"); 481 return -1; 482 } 483 484 int offset = code_offset(); 485 486 __ adr(lr, pc()); 487 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 488 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 489 __ end_a_stub(); 490 491 return offset; 492 } 493 494 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) { 495 _masm->code_section()->relocate(adr, relocInfo::poll_type); 496 int pc_offset = code_offset(); 497 flush_debug_info(pc_offset); 498 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset); 499 if (info->exception_handlers() != NULL) { 500 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers()); 501 } 502 } 503 504 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 505 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,"); 506 507 // Pop the stack before the safepoint code 508 __ remove_frame(initial_frame_size_in_bytes()); 509 510 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 511 __ reserved_stack_check(); 512 } 513 514 code_stub->set_safepoint_offset(__ offset()); 515 __ relocate(relocInfo::poll_return_type); 516 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */); 517 __ ret(lr); 518 } 519 520 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 521 guarantee(info != NULL, "Shouldn't be NULL"); 522 __ get_polling_page(rscratch1, relocInfo::poll_type); 523 add_debug_info_for_branch(info); // This isn't just debug info: 524 // it's the oop map 525 __ read_polling_page(rscratch1, relocInfo::poll_type); 526 return __ offset(); 527 } 528 529 530 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 531 if (from_reg == r31_sp) 532 from_reg = sp; 533 if (to_reg == r31_sp) 534 to_reg = sp; 535 __ mov(to_reg, from_reg); 536 } 537 538 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); } 539 540 541 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 542 assert(src->is_constant(), "should not call otherwise"); 543 assert(dest->is_register(), "should not call otherwise"); 544 LIR_Const* c = src->as_constant_ptr(); 545 546 switch (c->type()) { 547 case T_INT: { 548 assert(patch_code == lir_patch_none, "no patching handled here"); 549 __ movw(dest->as_register(), c->as_jint()); 550 break; 551 } 552 553 case T_ADDRESS: { 554 assert(patch_code == lir_patch_none, "no patching handled here"); 555 __ mov(dest->as_register(), c->as_jint()); 556 break; 557 } 558 559 case T_LONG: { 560 assert(patch_code == lir_patch_none, "no patching handled here"); 561 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong()); 562 break; 563 } 564 565 case T_OBJECT: { 566 if (patch_code == lir_patch_none) { 567 jobject2reg(c->as_jobject(), dest->as_register()); 568 } else { 569 jobject2reg_with_patching(dest->as_register(), info); 570 } 571 break; 572 } 573 574 case T_METADATA: { 575 if (patch_code != lir_patch_none) { 576 klass2reg_with_patching(dest->as_register(), info); 577 } else { 578 __ mov_metadata(dest->as_register(), c->as_metadata()); 579 } 580 break; 581 } 582 583 case T_FLOAT: { 584 if (__ operand_valid_for_float_immediate(c->as_jfloat())) { 585 __ fmovs(dest->as_float_reg(), (c->as_jfloat())); 586 } else { 587 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat()))); 588 __ ldrs(dest->as_float_reg(), Address(rscratch1)); 589 } 590 break; 591 } 592 593 case T_DOUBLE: { 594 if (__ operand_valid_for_float_immediate(c->as_jdouble())) { 595 __ fmovd(dest->as_double_reg(), (c->as_jdouble())); 596 } else { 597 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble()))); 598 __ ldrd(dest->as_double_reg(), Address(rscratch1)); 599 } 600 break; 601 } 602 603 default: 604 ShouldNotReachHere(); 605 } 606 } 607 608 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 609 LIR_Const* c = src->as_constant_ptr(); 610 switch (c->type()) { 611 case T_OBJECT: 612 { 613 if (! c->as_jobject()) 614 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 615 else { 616 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL); 617 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 618 } 619 } 620 break; 621 case T_ADDRESS: 622 { 623 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL); 624 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false); 625 } 626 case T_INT: 627 case T_FLOAT: 628 { 629 Register reg = zr; 630 if (c->as_jint_bits() == 0) 631 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix())); 632 else { 633 __ movw(rscratch1, c->as_jint_bits()); 634 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix())); 635 } 636 } 637 break; 638 case T_LONG: 639 case T_DOUBLE: 640 { 641 Register reg = zr; 642 if (c->as_jlong_bits() == 0) 643 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(), 644 lo_word_offset_in_bytes)); 645 else { 646 __ mov(rscratch1, (intptr_t)c->as_jlong_bits()); 647 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(), 648 lo_word_offset_in_bytes)); 649 } 650 } 651 break; 652 default: 653 ShouldNotReachHere(); 654 } 655 } 656 657 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 658 assert(src->is_constant(), "should not call otherwise"); 659 LIR_Const* c = src->as_constant_ptr(); 660 LIR_Address* to_addr = dest->as_address_ptr(); 661 662 void (Assembler::* insn)(Register Rt, const Address &adr); 663 664 switch (type) { 665 case T_ADDRESS: 666 assert(c->as_jint() == 0, "should be"); 667 insn = &Assembler::str; 668 break; 669 case T_LONG: 670 assert(c->as_jlong() == 0, "should be"); 671 insn = &Assembler::str; 672 break; 673 case T_INT: 674 assert(c->as_jint() == 0, "should be"); 675 insn = &Assembler::strw; 676 break; 677 case T_OBJECT: 678 case T_ARRAY: 679 assert(c->as_jobject() == 0, "should be"); 680 if (UseCompressedOops && !wide) { 681 insn = &Assembler::strw; 682 } else { 683 insn = &Assembler::str; 684 } 685 break; 686 case T_CHAR: 687 case T_SHORT: 688 assert(c->as_jint() == 0, "should be"); 689 insn = &Assembler::strh; 690 break; 691 case T_BOOLEAN: 692 case T_BYTE: 693 assert(c->as_jint() == 0, "should be"); 694 insn = &Assembler::strb; 695 break; 696 default: 697 ShouldNotReachHere(); 698 insn = &Assembler::str; // unreachable 699 } 700 701 if (info) add_debug_info_for_null_check_here(info); 702 (_masm->*insn)(zr, as_Address(to_addr, rscratch1)); 703 } 704 705 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 706 assert(src->is_register(), "should not call otherwise"); 707 assert(dest->is_register(), "should not call otherwise"); 708 709 // move between cpu-registers 710 if (dest->is_single_cpu()) { 711 if (src->type() == T_LONG) { 712 // Can do LONG -> OBJECT 713 move_regs(src->as_register_lo(), dest->as_register()); 714 return; 715 } 716 assert(src->is_single_cpu(), "must match"); 717 if (src->type() == T_OBJECT) { 718 __ verify_oop(src->as_register()); 719 } 720 move_regs(src->as_register(), dest->as_register()); 721 722 } else if (dest->is_double_cpu()) { 723 if (is_reference_type(src->type())) { 724 // Surprising to me but we can see move of a long to t_object 725 __ verify_oop(src->as_register()); 726 move_regs(src->as_register(), dest->as_register_lo()); 727 return; 728 } 729 assert(src->is_double_cpu(), "must match"); 730 Register f_lo = src->as_register_lo(); 731 Register f_hi = src->as_register_hi(); 732 Register t_lo = dest->as_register_lo(); 733 Register t_hi = dest->as_register_hi(); 734 assert(f_hi == f_lo, "must be same"); 735 assert(t_hi == t_lo, "must be same"); 736 move_regs(f_lo, t_lo); 737 738 } else if (dest->is_single_fpu()) { 739 __ fmovs(dest->as_float_reg(), src->as_float_reg()); 740 741 } else if (dest->is_double_fpu()) { 742 __ fmovd(dest->as_double_reg(), src->as_double_reg()); 743 744 } else { 745 ShouldNotReachHere(); 746 } 747 } 748 749 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 750 precond(src->is_register() && dest->is_stack()); 751 752 uint const c_sz32 = sizeof(uint32_t); 753 uint const c_sz64 = sizeof(uint64_t); 754 755 if (src->is_single_cpu()) { 756 int index = dest->single_stack_ix(); 757 if (is_reference_type(type)) { 758 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 759 __ verify_oop(src->as_register()); 760 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) { 761 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 762 } else { 763 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 764 } 765 766 } else if (src->is_double_cpu()) { 767 int index = dest->double_stack_ix(); 768 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 769 __ str(src->as_register_lo(), dest_addr_LO); 770 771 } else if (src->is_single_fpu()) { 772 int index = dest->single_stack_ix(); 773 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 774 775 } else if (src->is_double_fpu()) { 776 int index = dest->double_stack_ix(); 777 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 778 779 } else { 780 ShouldNotReachHere(); 781 } 782 } 783 784 785 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) { 786 LIR_Address* to_addr = dest->as_address_ptr(); 787 PatchingStub* patch = NULL; 788 Register compressed_src = rscratch1; 789 790 if (patch_code != lir_patch_none) { 791 deoptimize_trap(info); 792 return; 793 } 794 795 if (is_reference_type(type)) { 796 __ verify_oop(src->as_register()); 797 798 if (UseCompressedOops && !wide) { 799 __ encode_heap_oop(compressed_src, src->as_register()); 800 } else { 801 compressed_src = src->as_register(); 802 } 803 } 804 805 int null_check_here = code_offset(); 806 switch (type) { 807 case T_FLOAT: { 808 __ strs(src->as_float_reg(), as_Address(to_addr)); 809 break; 810 } 811 812 case T_DOUBLE: { 813 __ strd(src->as_double_reg(), as_Address(to_addr)); 814 break; 815 } 816 817 case T_ARRAY: // fall through 818 case T_OBJECT: // fall through 819 if (UseCompressedOops && !wide) { 820 __ strw(compressed_src, as_Address(to_addr, rscratch2)); 821 } else { 822 __ str(compressed_src, as_Address(to_addr)); 823 } 824 break; 825 case T_METADATA: 826 // We get here to store a method pointer to the stack to pass to 827 // a dtrace runtime call. This can't work on 64 bit with 828 // compressed klass ptrs: T_METADATA can be a compressed klass 829 // ptr or a 64 bit method pointer. 830 ShouldNotReachHere(); 831 __ str(src->as_register(), as_Address(to_addr)); 832 break; 833 case T_ADDRESS: 834 __ str(src->as_register(), as_Address(to_addr)); 835 break; 836 case T_INT: 837 __ strw(src->as_register(), as_Address(to_addr)); 838 break; 839 840 case T_LONG: { 841 __ str(src->as_register_lo(), as_Address_lo(to_addr)); 842 break; 843 } 844 845 case T_BYTE: // fall through 846 case T_BOOLEAN: { 847 __ strb(src->as_register(), as_Address(to_addr)); 848 break; 849 } 850 851 case T_CHAR: // fall through 852 case T_SHORT: 853 __ strh(src->as_register(), as_Address(to_addr)); 854 break; 855 856 default: 857 ShouldNotReachHere(); 858 } 859 if (info != NULL) { 860 add_debug_info_for_null_check(null_check_here, info); 861 } 862 } 863 864 865 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 866 precond(src->is_stack() && dest->is_register()); 867 868 uint const c_sz32 = sizeof(uint32_t); 869 uint const c_sz64 = sizeof(uint64_t); 870 871 if (dest->is_single_cpu()) { 872 int index = src->single_stack_ix(); 873 if (is_reference_type(type)) { 874 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 875 __ verify_oop(dest->as_register()); 876 } else if (type == T_METADATA || type == T_ADDRESS) { 877 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1)); 878 } else { 879 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1)); 880 } 881 882 } else if (dest->is_double_cpu()) { 883 int index = src->double_stack_ix(); 884 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes); 885 __ ldr(dest->as_register_lo(), src_addr_LO); 886 887 } else if (dest->is_single_fpu()) { 888 int index = src->single_stack_ix(); 889 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1)); 890 891 } else if (dest->is_double_fpu()) { 892 int index = src->double_stack_ix(); 893 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1)); 894 895 } else { 896 ShouldNotReachHere(); 897 } 898 } 899 900 901 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 902 address target = NULL; 903 relocInfo::relocType reloc_type = relocInfo::none; 904 905 switch (patching_id(info)) { 906 case PatchingStub::access_field_id: 907 target = Runtime1::entry_for(Runtime1::access_field_patching_id); 908 reloc_type = relocInfo::section_word_type; 909 break; 910 case PatchingStub::load_klass_id: 911 target = Runtime1::entry_for(Runtime1::load_klass_patching_id); 912 reloc_type = relocInfo::metadata_type; 913 break; 914 case PatchingStub::load_mirror_id: 915 target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); 916 reloc_type = relocInfo::oop_type; 917 break; 918 case PatchingStub::load_appendix_id: 919 target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); 920 reloc_type = relocInfo::oop_type; 921 break; 922 default: ShouldNotReachHere(); 923 } 924 925 __ far_call(RuntimeAddress(target)); 926 add_call_info_here(info); 927 } 928 929 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 930 931 LIR_Opr temp; 932 if (type == T_LONG || type == T_DOUBLE) 933 temp = FrameMap::rscratch1_long_opr; 934 else 935 temp = FrameMap::rscratch1_opr; 936 937 stack2reg(src, temp, src->type()); 938 reg2stack(temp, dest, dest->type(), false); 939 } 940 941 942 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) { 943 LIR_Address* addr = src->as_address_ptr(); 944 LIR_Address* from_addr = src->as_address_ptr(); 945 946 if (addr->base()->type() == T_OBJECT) { 947 __ verify_oop(addr->base()->as_pointer_register()); 948 } 949 950 if (patch_code != lir_patch_none) { 951 deoptimize_trap(info); 952 return; 953 } 954 955 if (info != NULL) { 956 add_debug_info_for_null_check_here(info); 957 } 958 int null_check_here = code_offset(); 959 switch (type) { 960 case T_FLOAT: { 961 __ ldrs(dest->as_float_reg(), as_Address(from_addr)); 962 break; 963 } 964 965 case T_DOUBLE: { 966 __ ldrd(dest->as_double_reg(), as_Address(from_addr)); 967 break; 968 } 969 970 case T_ARRAY: // fall through 971 case T_OBJECT: // fall through 972 if (UseCompressedOops && !wide) { 973 __ ldrw(dest->as_register(), as_Address(from_addr)); 974 } else { 975 __ ldr(dest->as_register(), as_Address(from_addr)); 976 } 977 break; 978 case T_METADATA: 979 // We get here to store a method pointer to the stack to pass to 980 // a dtrace runtime call. This can't work on 64 bit with 981 // compressed klass ptrs: T_METADATA can be a compressed klass 982 // ptr or a 64 bit method pointer. 983 ShouldNotReachHere(); 984 __ ldr(dest->as_register(), as_Address(from_addr)); 985 break; 986 case T_ADDRESS: 987 __ ldr(dest->as_register(), as_Address(from_addr)); 988 break; 989 case T_INT: 990 __ ldrw(dest->as_register(), as_Address(from_addr)); 991 break; 992 993 case T_LONG: { 994 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr)); 995 break; 996 } 997 998 case T_BYTE: 999 __ ldrsb(dest->as_register(), as_Address(from_addr)); 1000 break; 1001 case T_BOOLEAN: { 1002 __ ldrb(dest->as_register(), as_Address(from_addr)); 1003 break; 1004 } 1005 1006 case T_CHAR: 1007 __ ldrh(dest->as_register(), as_Address(from_addr)); 1008 break; 1009 case T_SHORT: 1010 __ ldrsh(dest->as_register(), as_Address(from_addr)); 1011 break; 1012 1013 default: 1014 ShouldNotReachHere(); 1015 } 1016 1017 if (is_reference_type(type)) { 1018 if (UseCompressedOops && !wide) { 1019 __ decode_heap_oop(dest->as_register()); 1020 } 1021 1022 if (!UseZGC) { 1023 // Load barrier has not yet been applied, so ZGC can't verify the oop here 1024 __ verify_oop(dest->as_register()); 1025 } 1026 } 1027 } 1028 1029 1030 int LIR_Assembler::array_element_size(BasicType type) const { 1031 int elem_size = type2aelembytes(type); 1032 return exact_log2(elem_size); 1033 } 1034 1035 1036 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1037 switch (op->code()) { 1038 case lir_idiv: 1039 case lir_irem: 1040 arithmetic_idiv(op->code(), 1041 op->in_opr1(), 1042 op->in_opr2(), 1043 op->in_opr3(), 1044 op->result_opr(), 1045 op->info()); 1046 break; 1047 case lir_fmad: 1048 __ fmaddd(op->result_opr()->as_double_reg(), 1049 op->in_opr1()->as_double_reg(), 1050 op->in_opr2()->as_double_reg(), 1051 op->in_opr3()->as_double_reg()); 1052 break; 1053 case lir_fmaf: 1054 __ fmadds(op->result_opr()->as_float_reg(), 1055 op->in_opr1()->as_float_reg(), 1056 op->in_opr2()->as_float_reg(), 1057 op->in_opr3()->as_float_reg()); 1058 break; 1059 default: ShouldNotReachHere(); break; 1060 } 1061 } 1062 1063 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1064 #ifdef ASSERT 1065 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); 1066 if (op->block() != NULL) _branch_target_blocks.append(op->block()); 1067 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); 1068 #endif 1069 1070 if (op->cond() == lir_cond_always) { 1071 if (op->info() != NULL) add_debug_info_for_branch(op->info()); 1072 __ b(*(op->label())); 1073 } else { 1074 Assembler::Condition acond; 1075 if (op->code() == lir_cond_float_branch) { 1076 bool is_unordered = (op->ublock() == op->block()); 1077 // Assembler::EQ does not permit unordered branches, so we add 1078 // another branch here. Likewise, Assembler::NE does not permit 1079 // ordered branches. 1080 if ((is_unordered && op->cond() == lir_cond_equal) 1081 || (!is_unordered && op->cond() == lir_cond_notEqual)) 1082 __ br(Assembler::VS, *(op->ublock()->label())); 1083 switch(op->cond()) { 1084 case lir_cond_equal: acond = Assembler::EQ; break; 1085 case lir_cond_notEqual: acond = Assembler::NE; break; 1086 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break; 1087 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break; 1088 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break; 1089 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break; 1090 default: ShouldNotReachHere(); 1091 acond = Assembler::EQ; // unreachable 1092 } 1093 } else { 1094 switch (op->cond()) { 1095 case lir_cond_equal: acond = Assembler::EQ; break; 1096 case lir_cond_notEqual: acond = Assembler::NE; break; 1097 case lir_cond_less: acond = Assembler::LT; break; 1098 case lir_cond_lessEqual: acond = Assembler::LE; break; 1099 case lir_cond_greaterEqual: acond = Assembler::GE; break; 1100 case lir_cond_greater: acond = Assembler::GT; break; 1101 case lir_cond_belowEqual: acond = Assembler::LS; break; 1102 case lir_cond_aboveEqual: acond = Assembler::HS; break; 1103 default: ShouldNotReachHere(); 1104 acond = Assembler::EQ; // unreachable 1105 } 1106 } 1107 __ br(acond,*(op->label())); 1108 } 1109 } 1110 1111 1112 1113 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1114 LIR_Opr src = op->in_opr(); 1115 LIR_Opr dest = op->result_opr(); 1116 1117 switch (op->bytecode()) { 1118 case Bytecodes::_i2f: 1119 { 1120 __ scvtfws(dest->as_float_reg(), src->as_register()); 1121 break; 1122 } 1123 case Bytecodes::_i2d: 1124 { 1125 __ scvtfwd(dest->as_double_reg(), src->as_register()); 1126 break; 1127 } 1128 case Bytecodes::_l2d: 1129 { 1130 __ scvtfd(dest->as_double_reg(), src->as_register_lo()); 1131 break; 1132 } 1133 case Bytecodes::_l2f: 1134 { 1135 __ scvtfs(dest->as_float_reg(), src->as_register_lo()); 1136 break; 1137 } 1138 case Bytecodes::_f2d: 1139 { 1140 __ fcvts(dest->as_double_reg(), src->as_float_reg()); 1141 break; 1142 } 1143 case Bytecodes::_d2f: 1144 { 1145 __ fcvtd(dest->as_float_reg(), src->as_double_reg()); 1146 break; 1147 } 1148 case Bytecodes::_i2c: 1149 { 1150 __ ubfx(dest->as_register(), src->as_register(), 0, 16); 1151 break; 1152 } 1153 case Bytecodes::_i2l: 1154 { 1155 __ sxtw(dest->as_register_lo(), src->as_register()); 1156 break; 1157 } 1158 case Bytecodes::_i2s: 1159 { 1160 __ sxth(dest->as_register(), src->as_register()); 1161 break; 1162 } 1163 case Bytecodes::_i2b: 1164 { 1165 __ sxtb(dest->as_register(), src->as_register()); 1166 break; 1167 } 1168 case Bytecodes::_l2i: 1169 { 1170 _masm->block_comment("FIXME: This could be a no-op"); 1171 __ uxtw(dest->as_register(), src->as_register_lo()); 1172 break; 1173 } 1174 case Bytecodes::_d2l: 1175 { 1176 __ fcvtzd(dest->as_register_lo(), src->as_double_reg()); 1177 break; 1178 } 1179 case Bytecodes::_f2i: 1180 { 1181 __ fcvtzsw(dest->as_register(), src->as_float_reg()); 1182 break; 1183 } 1184 case Bytecodes::_f2l: 1185 { 1186 __ fcvtzs(dest->as_register_lo(), src->as_float_reg()); 1187 break; 1188 } 1189 case Bytecodes::_d2i: 1190 { 1191 __ fcvtzdw(dest->as_register(), src->as_double_reg()); 1192 break; 1193 } 1194 default: ShouldNotReachHere(); 1195 } 1196 } 1197 1198 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1199 if (op->init_check()) { 1200 __ ldrb(rscratch1, Address(op->klass()->as_register(), 1201 InstanceKlass::init_state_offset())); 1202 __ cmpw(rscratch1, InstanceKlass::fully_initialized); 1203 add_debug_info_for_null_check_here(op->stub()->info()); 1204 __ br(Assembler::NE, *op->stub()->entry()); 1205 } 1206 __ allocate_object(op->obj()->as_register(), 1207 op->tmp1()->as_register(), 1208 op->tmp2()->as_register(), 1209 op->header_size(), 1210 op->object_size(), 1211 op->klass()->as_register(), 1212 *op->stub()->entry()); 1213 __ bind(*op->stub()->continuation()); 1214 } 1215 1216 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1217 Register len = op->len()->as_register(); 1218 __ uxtw(len, len); 1219 1220 if (UseSlowPath || 1221 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1222 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1223 __ b(*op->stub()->entry()); 1224 } else { 1225 Register tmp1 = op->tmp1()->as_register(); 1226 Register tmp2 = op->tmp2()->as_register(); 1227 Register tmp3 = op->tmp3()->as_register(); 1228 if (len == tmp1) { 1229 tmp1 = tmp3; 1230 } else if (len == tmp2) { 1231 tmp2 = tmp3; 1232 } else if (len == tmp3) { 1233 // everything is ok 1234 } else { 1235 __ mov(tmp3, len); 1236 } 1237 __ allocate_array(op->obj()->as_register(), 1238 len, 1239 tmp1, 1240 tmp2, 1241 arrayOopDesc::base_offset_in_bytes(op->type()), 1242 array_element_size(op->type()), 1243 op->klass()->as_register(), 1244 *op->stub()->entry()); 1245 } 1246 __ bind(*op->stub()->continuation()); 1247 } 1248 1249 void LIR_Assembler::type_profile_helper(Register mdo, 1250 ciMethodData *md, ciProfileData *data, 1251 Register recv, Label* update_done) { 1252 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1253 Label next_test; 1254 // See if the receiver is receiver[n]. 1255 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1256 __ ldr(rscratch1, Address(rscratch2)); 1257 __ cmp(recv, rscratch1); 1258 __ br(Assembler::NE, next_test); 1259 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1260 __ addptr(data_addr, DataLayout::counter_increment); 1261 __ b(*update_done); 1262 __ bind(next_test); 1263 } 1264 1265 // Didn't find receiver; find next empty slot and fill it in 1266 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1267 Label next_test; 1268 __ lea(rscratch2, 1269 Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1270 Address recv_addr(rscratch2); 1271 __ ldr(rscratch1, recv_addr); 1272 __ cbnz(rscratch1, next_test); 1273 __ str(recv, recv_addr); 1274 __ mov(rscratch1, DataLayout::counter_increment); 1275 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)))); 1276 __ str(rscratch1, Address(rscratch2)); 1277 __ b(*update_done); 1278 __ bind(next_test); 1279 } 1280 } 1281 1282 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1283 // we always need a stub for the failure case. 1284 CodeStub* stub = op->stub(); 1285 Register obj = op->object()->as_register(); 1286 Register k_RInfo = op->tmp1()->as_register(); 1287 Register klass_RInfo = op->tmp2()->as_register(); 1288 Register dst = op->result_opr()->as_register(); 1289 ciKlass* k = op->klass(); 1290 Register Rtmp1 = noreg; 1291 1292 // check if it needs to be profiled 1293 ciMethodData* md; 1294 ciProfileData* data; 1295 1296 const bool should_profile = op->should_profile(); 1297 1298 if (should_profile) { 1299 ciMethod* method = op->profiled_method(); 1300 assert(method != NULL, "Should have method"); 1301 int bci = op->profiled_bci(); 1302 md = method->method_data_or_null(); 1303 assert(md != NULL, "Sanity"); 1304 data = md->bci_to_data(bci); 1305 assert(data != NULL, "need data for type check"); 1306 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1307 } 1308 Label profile_cast_success, profile_cast_failure; 1309 Label *success_target = should_profile ? &profile_cast_success : success; 1310 Label *failure_target = should_profile ? &profile_cast_failure : failure; 1311 1312 if (obj == k_RInfo) { 1313 k_RInfo = dst; 1314 } else if (obj == klass_RInfo) { 1315 klass_RInfo = dst; 1316 } 1317 if (k->is_loaded() && !UseCompressedClassPointers) { 1318 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1319 } else { 1320 Rtmp1 = op->tmp3()->as_register(); 1321 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1322 } 1323 1324 assert_different_registers(obj, k_RInfo, klass_RInfo); 1325 1326 if (should_profile) { 1327 Label not_null; 1328 __ cbnz(obj, not_null); 1329 // Object is null; update MDO and exit 1330 Register mdo = klass_RInfo; 1331 __ mov_metadata(mdo, md->constant_encoding()); 1332 Address data_addr 1333 = __ form_address(rscratch2, mdo, 1334 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1335 0); 1336 __ ldrb(rscratch1, data_addr); 1337 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1338 __ strb(rscratch1, data_addr); 1339 __ b(*obj_is_null); 1340 __ bind(not_null); 1341 } else { 1342 __ cbz(obj, *obj_is_null); 1343 } 1344 1345 if (!k->is_loaded()) { 1346 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1347 } else { 1348 __ mov_metadata(k_RInfo, k->constant_encoding()); 1349 } 1350 __ verify_oop(obj); 1351 1352 if (op->fast_check()) { 1353 // get object class 1354 // not a safepoint as obj null check happens earlier 1355 __ load_klass(rscratch1, obj); 1356 __ cmp( rscratch1, k_RInfo); 1357 1358 __ br(Assembler::NE, *failure_target); 1359 // successful cast, fall through to profile or jump 1360 } else { 1361 // get object class 1362 // not a safepoint as obj null check happens earlier 1363 __ load_klass(klass_RInfo, obj); 1364 if (k->is_loaded()) { 1365 // See if we get an immediate positive hit 1366 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset()))); 1367 __ cmp(k_RInfo, rscratch1); 1368 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1369 __ br(Assembler::NE, *failure_target); 1370 // successful cast, fall through to profile or jump 1371 } else { 1372 // See if we get an immediate positive hit 1373 __ br(Assembler::EQ, *success_target); 1374 // check for self 1375 __ cmp(klass_RInfo, k_RInfo); 1376 __ br(Assembler::EQ, *success_target); 1377 1378 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1379 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1380 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1381 // result is a boolean 1382 __ cbzw(klass_RInfo, *failure_target); 1383 // successful cast, fall through to profile or jump 1384 } 1385 } else { 1386 // perform the fast part of the checking logic 1387 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1388 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1389 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1390 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1391 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1392 // result is a boolean 1393 __ cbz(k_RInfo, *failure_target); 1394 // successful cast, fall through to profile or jump 1395 } 1396 } 1397 if (should_profile) { 1398 Register mdo = klass_RInfo, recv = k_RInfo; 1399 __ bind(profile_cast_success); 1400 __ mov_metadata(mdo, md->constant_encoding()); 1401 __ load_klass(recv, obj); 1402 Label update_done; 1403 type_profile_helper(mdo, md, data, recv, success); 1404 __ b(*success); 1405 1406 __ bind(profile_cast_failure); 1407 __ mov_metadata(mdo, md->constant_encoding()); 1408 Address counter_addr 1409 = __ form_address(rscratch2, mdo, 1410 md->byte_offset_of_slot(data, CounterData::count_offset()), 1411 0); 1412 __ ldr(rscratch1, counter_addr); 1413 __ sub(rscratch1, rscratch1, DataLayout::counter_increment); 1414 __ str(rscratch1, counter_addr); 1415 __ b(*failure); 1416 } 1417 __ b(*success); 1418 } 1419 1420 1421 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1422 const bool should_profile = op->should_profile(); 1423 1424 LIR_Code code = op->code(); 1425 if (code == lir_store_check) { 1426 Register value = op->object()->as_register(); 1427 Register array = op->array()->as_register(); 1428 Register k_RInfo = op->tmp1()->as_register(); 1429 Register klass_RInfo = op->tmp2()->as_register(); 1430 Register Rtmp1 = op->tmp3()->as_register(); 1431 1432 CodeStub* stub = op->stub(); 1433 1434 // check if it needs to be profiled 1435 ciMethodData* md; 1436 ciProfileData* data; 1437 1438 if (should_profile) { 1439 ciMethod* method = op->profiled_method(); 1440 assert(method != NULL, "Should have method"); 1441 int bci = op->profiled_bci(); 1442 md = method->method_data_or_null(); 1443 assert(md != NULL, "Sanity"); 1444 data = md->bci_to_data(bci); 1445 assert(data != NULL, "need data for type check"); 1446 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1447 } 1448 Label profile_cast_success, profile_cast_failure, done; 1449 Label *success_target = should_profile ? &profile_cast_success : &done; 1450 Label *failure_target = should_profile ? &profile_cast_failure : stub->entry(); 1451 1452 if (should_profile) { 1453 Label not_null; 1454 __ cbnz(value, not_null); 1455 // Object is null; update MDO and exit 1456 Register mdo = klass_RInfo; 1457 __ mov_metadata(mdo, md->constant_encoding()); 1458 Address data_addr 1459 = __ form_address(rscratch2, mdo, 1460 md->byte_offset_of_slot(data, DataLayout::flags_offset()), 1461 0); 1462 __ ldrb(rscratch1, data_addr); 1463 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant()); 1464 __ strb(rscratch1, data_addr); 1465 __ b(done); 1466 __ bind(not_null); 1467 } else { 1468 __ cbz(value, done); 1469 } 1470 1471 add_debug_info_for_null_check_here(op->info_for_exception()); 1472 __ load_klass(k_RInfo, array); 1473 __ load_klass(klass_RInfo, value); 1474 1475 // get instance klass (it's already uncompressed) 1476 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1477 // perform the fast part of the checking logic 1478 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1479 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1480 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize))); 1481 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1482 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize))); 1483 // result is a boolean 1484 __ cbzw(k_RInfo, *failure_target); 1485 // fall through to the success case 1486 1487 if (should_profile) { 1488 Register mdo = klass_RInfo, recv = k_RInfo; 1489 __ bind(profile_cast_success); 1490 __ mov_metadata(mdo, md->constant_encoding()); 1491 __ load_klass(recv, value); 1492 Label update_done; 1493 type_profile_helper(mdo, md, data, recv, &done); 1494 __ b(done); 1495 1496 __ bind(profile_cast_failure); 1497 __ mov_metadata(mdo, md->constant_encoding()); 1498 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1499 __ lea(rscratch2, counter_addr); 1500 __ ldr(rscratch1, Address(rscratch2)); 1501 __ sub(rscratch1, rscratch1, DataLayout::counter_increment); 1502 __ str(rscratch1, Address(rscratch2)); 1503 __ b(*stub->entry()); 1504 } 1505 1506 __ bind(done); 1507 } else if (code == lir_checkcast) { 1508 Register obj = op->object()->as_register(); 1509 Register dst = op->result_opr()->as_register(); 1510 Label success; 1511 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1512 __ bind(success); 1513 if (dst != obj) { 1514 __ mov(dst, obj); 1515 } 1516 } else if (code == lir_instanceof) { 1517 Register obj = op->object()->as_register(); 1518 Register dst = op->result_opr()->as_register(); 1519 Label success, failure, done; 1520 emit_typecheck_helper(op, &success, &failure, &failure); 1521 __ bind(failure); 1522 __ mov(dst, zr); 1523 __ b(done); 1524 __ bind(success); 1525 __ mov(dst, 1); 1526 __ bind(done); 1527 } else { 1528 ShouldNotReachHere(); 1529 } 1530 } 1531 1532 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) { 1533 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1534 __ cset(rscratch1, Assembler::NE); 1535 __ membar(__ AnyAny); 1536 } 1537 1538 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) { 1539 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1); 1540 __ cset(rscratch1, Assembler::NE); 1541 __ membar(__ AnyAny); 1542 } 1543 1544 1545 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1546 assert(VM_Version::supports_cx8(), "wrong machine"); 1547 Register addr; 1548 if (op->addr()->is_register()) { 1549 addr = as_reg(op->addr()); 1550 } else { 1551 assert(op->addr()->is_address(), "what else?"); 1552 LIR_Address* addr_ptr = op->addr()->as_address_ptr(); 1553 assert(addr_ptr->disp() == 0, "need 0 disp"); 1554 assert(addr_ptr->index() == LIR_OprDesc::illegalOpr(), "need 0 index"); 1555 addr = as_reg(addr_ptr->base()); 1556 } 1557 Register newval = as_reg(op->new_value()); 1558 Register cmpval = as_reg(op->cmp_value()); 1559 1560 if (op->code() == lir_cas_obj) { 1561 if (UseCompressedOops) { 1562 Register t1 = op->tmp1()->as_register(); 1563 assert(op->tmp1()->is_valid(), "must be"); 1564 __ encode_heap_oop(t1, cmpval); 1565 cmpval = t1; 1566 __ encode_heap_oop(rscratch2, newval); 1567 newval = rscratch2; 1568 casw(addr, newval, cmpval); 1569 } else { 1570 casl(addr, newval, cmpval); 1571 } 1572 } else if (op->code() == lir_cas_int) { 1573 casw(addr, newval, cmpval); 1574 } else { 1575 casl(addr, newval, cmpval); 1576 } 1577 } 1578 1579 1580 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { 1581 1582 Assembler::Condition acond, ncond; 1583 switch (condition) { 1584 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break; 1585 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break; 1586 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break; 1587 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break; 1588 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break; 1589 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break; 1590 case lir_cond_belowEqual: 1591 case lir_cond_aboveEqual: 1592 default: ShouldNotReachHere(); 1593 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable 1594 } 1595 1596 assert(result->is_single_cpu() || result->is_double_cpu(), 1597 "expect single register for result"); 1598 if (opr1->is_constant() && opr2->is_constant() 1599 && opr1->type() == T_INT && opr2->type() == T_INT) { 1600 jint val1 = opr1->as_jint(); 1601 jint val2 = opr2->as_jint(); 1602 if (val1 == 0 && val2 == 1) { 1603 __ cset(result->as_register(), ncond); 1604 return; 1605 } else if (val1 == 1 && val2 == 0) { 1606 __ cset(result->as_register(), acond); 1607 return; 1608 } 1609 } 1610 1611 if (opr1->is_constant() && opr2->is_constant() 1612 && opr1->type() == T_LONG && opr2->type() == T_LONG) { 1613 jlong val1 = opr1->as_jlong(); 1614 jlong val2 = opr2->as_jlong(); 1615 if (val1 == 0 && val2 == 1) { 1616 __ cset(result->as_register_lo(), ncond); 1617 return; 1618 } else if (val1 == 1 && val2 == 0) { 1619 __ cset(result->as_register_lo(), acond); 1620 return; 1621 } 1622 } 1623 1624 if (opr1->is_stack()) { 1625 stack2reg(opr1, FrameMap::rscratch1_opr, result->type()); 1626 opr1 = FrameMap::rscratch1_opr; 1627 } else if (opr1->is_constant()) { 1628 LIR_Opr tmp 1629 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr; 1630 const2reg(opr1, tmp, lir_patch_none, NULL); 1631 opr1 = tmp; 1632 } 1633 1634 if (opr2->is_stack()) { 1635 stack2reg(opr2, FrameMap::rscratch2_opr, result->type()); 1636 opr2 = FrameMap::rscratch2_opr; 1637 } else if (opr2->is_constant()) { 1638 LIR_Opr tmp 1639 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr; 1640 const2reg(opr2, tmp, lir_patch_none, NULL); 1641 opr2 = tmp; 1642 } 1643 1644 if (result->type() == T_LONG) 1645 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond); 1646 else 1647 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond); 1648 } 1649 1650 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 1651 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1652 1653 if (left->is_single_cpu()) { 1654 Register lreg = left->as_register(); 1655 Register dreg = as_reg(dest); 1656 1657 if (right->is_single_cpu()) { 1658 // cpu register - cpu register 1659 1660 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, 1661 "should be"); 1662 Register rreg = right->as_register(); 1663 switch (code) { 1664 case lir_add: __ addw (dest->as_register(), lreg, rreg); break; 1665 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break; 1666 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break; 1667 default: ShouldNotReachHere(); 1668 } 1669 1670 } else if (right->is_double_cpu()) { 1671 Register rreg = right->as_register_lo(); 1672 // single_cpu + double_cpu: can happen with obj+long 1673 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1674 switch (code) { 1675 case lir_add: __ add(dreg, lreg, rreg); break; 1676 case lir_sub: __ sub(dreg, lreg, rreg); break; 1677 default: ShouldNotReachHere(); 1678 } 1679 } else if (right->is_constant()) { 1680 // cpu register - constant 1681 jlong c; 1682 1683 // FIXME. This is fugly: we really need to factor all this logic. 1684 switch(right->type()) { 1685 case T_LONG: 1686 c = right->as_constant_ptr()->as_jlong(); 1687 break; 1688 case T_INT: 1689 case T_ADDRESS: 1690 c = right->as_constant_ptr()->as_jint(); 1691 break; 1692 default: 1693 ShouldNotReachHere(); 1694 c = 0; // unreachable 1695 break; 1696 } 1697 1698 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op"); 1699 if (c == 0 && dreg == lreg) { 1700 COMMENT("effective nop elided"); 1701 return; 1702 } 1703 switch(left->type()) { 1704 case T_INT: 1705 switch (code) { 1706 case lir_add: __ addw(dreg, lreg, c); break; 1707 case lir_sub: __ subw(dreg, lreg, c); break; 1708 default: ShouldNotReachHere(); 1709 } 1710 break; 1711 case T_OBJECT: 1712 case T_ADDRESS: 1713 switch (code) { 1714 case lir_add: __ add(dreg, lreg, c); break; 1715 case lir_sub: __ sub(dreg, lreg, c); break; 1716 default: ShouldNotReachHere(); 1717 } 1718 break; 1719 default: 1720 ShouldNotReachHere(); 1721 } 1722 } else { 1723 ShouldNotReachHere(); 1724 } 1725 1726 } else if (left->is_double_cpu()) { 1727 Register lreg_lo = left->as_register_lo(); 1728 1729 if (right->is_double_cpu()) { 1730 // cpu register - cpu register 1731 Register rreg_lo = right->as_register_lo(); 1732 switch (code) { 1733 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1734 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1735 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break; 1736 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break; 1737 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break; 1738 default: 1739 ShouldNotReachHere(); 1740 } 1741 1742 } else if (right->is_constant()) { 1743 jlong c = right->as_constant_ptr()->as_jlong(); 1744 Register dreg = as_reg(dest); 1745 switch (code) { 1746 case lir_add: 1747 case lir_sub: 1748 if (c == 0 && dreg == lreg_lo) { 1749 COMMENT("effective nop elided"); 1750 return; 1751 } 1752 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c); 1753 break; 1754 case lir_div: 1755 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1756 if (c == 1) { 1757 // move lreg_lo to dreg if divisor is 1 1758 __ mov(dreg, lreg_lo); 1759 } else { 1760 unsigned int shift = log2i_exact(c); 1761 // use rscratch1 as intermediate result register 1762 __ asr(rscratch1, lreg_lo, 63); 1763 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift); 1764 __ asr(dreg, rscratch1, shift); 1765 } 1766 break; 1767 case lir_rem: 1768 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1769 if (c == 1) { 1770 // move 0 to dreg if divisor is 1 1771 __ mov(dreg, zr); 1772 } else { 1773 // use rscratch1 as intermediate result register 1774 __ negs(rscratch1, lreg_lo); 1775 __ andr(dreg, lreg_lo, c - 1); 1776 __ andr(rscratch1, rscratch1, c - 1); 1777 __ csneg(dreg, dreg, rscratch1, Assembler::MI); 1778 } 1779 break; 1780 default: 1781 ShouldNotReachHere(); 1782 } 1783 } else { 1784 ShouldNotReachHere(); 1785 } 1786 } else if (left->is_single_fpu()) { 1787 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register"); 1788 switch (code) { 1789 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1790 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1791 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1792 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break; 1793 default: 1794 ShouldNotReachHere(); 1795 } 1796 } else if (left->is_double_fpu()) { 1797 if (right->is_double_fpu()) { 1798 // fpu register - fpu register 1799 switch (code) { 1800 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1801 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1802 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1803 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break; 1804 default: 1805 ShouldNotReachHere(); 1806 } 1807 } else { 1808 if (right->is_constant()) { 1809 ShouldNotReachHere(); 1810 } 1811 ShouldNotReachHere(); 1812 } 1813 } else if (left->is_single_stack() || left->is_address()) { 1814 assert(left == dest, "left and dest must be equal"); 1815 ShouldNotReachHere(); 1816 } else { 1817 ShouldNotReachHere(); 1818 } 1819 } 1820 1821 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); } 1822 1823 1824 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) { 1825 switch(code) { 1826 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break; 1827 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break; 1828 default : ShouldNotReachHere(); 1829 } 1830 } 1831 1832 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1833 1834 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register"); 1835 Register Rleft = left->is_single_cpu() ? left->as_register() : 1836 left->as_register_lo(); 1837 if (dst->is_single_cpu()) { 1838 Register Rdst = dst->as_register(); 1839 if (right->is_constant()) { 1840 switch (code) { 1841 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break; 1842 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break; 1843 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break; 1844 default: ShouldNotReachHere(); break; 1845 } 1846 } else { 1847 Register Rright = right->is_single_cpu() ? right->as_register() : 1848 right->as_register_lo(); 1849 switch (code) { 1850 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break; 1851 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break; 1852 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break; 1853 default: ShouldNotReachHere(); break; 1854 } 1855 } 1856 } else { 1857 Register Rdst = dst->as_register_lo(); 1858 if (right->is_constant()) { 1859 switch (code) { 1860 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break; 1861 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break; 1862 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break; 1863 default: ShouldNotReachHere(); break; 1864 } 1865 } else { 1866 Register Rright = right->is_single_cpu() ? right->as_register() : 1867 right->as_register_lo(); 1868 switch (code) { 1869 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break; 1870 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break; 1871 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break; 1872 default: ShouldNotReachHere(); break; 1873 } 1874 } 1875 } 1876 } 1877 1878 1879 1880 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) { 1881 1882 // opcode check 1883 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem"); 1884 bool is_irem = (code == lir_irem); 1885 1886 // operand check 1887 assert(left->is_single_cpu(), "left must be register"); 1888 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 1889 assert(result->is_single_cpu(), "result must be register"); 1890 Register lreg = left->as_register(); 1891 Register dreg = result->as_register(); 1892 1893 // power-of-2 constant check and codegen 1894 if (right->is_constant()) { 1895 int c = right->as_constant_ptr()->as_jint(); 1896 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant"); 1897 if (is_irem) { 1898 if (c == 1) { 1899 // move 0 to dreg if divisor is 1 1900 __ movw(dreg, zr); 1901 } else { 1902 // use rscratch1 as intermediate result register 1903 __ negsw(rscratch1, lreg); 1904 __ andw(dreg, lreg, c - 1); 1905 __ andw(rscratch1, rscratch1, c - 1); 1906 __ csnegw(dreg, dreg, rscratch1, Assembler::MI); 1907 } 1908 } else { 1909 if (c == 1) { 1910 // move lreg to dreg if divisor is 1 1911 __ movw(dreg, lreg); 1912 } else { 1913 unsigned int shift = exact_log2(c); 1914 // use rscratch1 as intermediate result register 1915 __ asrw(rscratch1, lreg, 31); 1916 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift); 1917 __ asrw(dreg, rscratch1, shift); 1918 } 1919 } 1920 } else { 1921 Register rreg = right->as_register(); 1922 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1); 1923 } 1924 } 1925 1926 1927 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1928 if (opr1->is_constant() && opr2->is_single_cpu()) { 1929 // tableswitch 1930 Register reg = as_reg(opr2); 1931 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()]; 1932 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after); 1933 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) { 1934 Register reg1 = as_reg(opr1); 1935 if (opr2->is_single_cpu()) { 1936 // cpu register - cpu register 1937 Register reg2 = opr2->as_register(); 1938 if (is_reference_type(opr1->type())) { 1939 __ cmpoop(reg1, reg2); 1940 } else { 1941 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1942 __ cmpw(reg1, reg2); 1943 } 1944 return; 1945 } 1946 if (opr2->is_double_cpu()) { 1947 // cpu register - cpu register 1948 Register reg2 = opr2->as_register_lo(); 1949 __ cmp(reg1, reg2); 1950 return; 1951 } 1952 1953 if (opr2->is_constant()) { 1954 bool is_32bit = false; // width of register operand 1955 jlong imm; 1956 1957 switch(opr2->type()) { 1958 case T_INT: 1959 imm = opr2->as_constant_ptr()->as_jint(); 1960 is_32bit = true; 1961 break; 1962 case T_LONG: 1963 imm = opr2->as_constant_ptr()->as_jlong(); 1964 break; 1965 case T_ADDRESS: 1966 imm = opr2->as_constant_ptr()->as_jint(); 1967 break; 1968 case T_METADATA: 1969 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata()); 1970 break; 1971 case T_OBJECT: 1972 case T_ARRAY: 1973 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1); 1974 __ cmpoop(reg1, rscratch1); 1975 return; 1976 default: 1977 ShouldNotReachHere(); 1978 imm = 0; // unreachable 1979 break; 1980 } 1981 1982 if (Assembler::operand_valid_for_add_sub_immediate(imm)) { 1983 if (is_32bit) 1984 __ cmpw(reg1, imm); 1985 else 1986 __ subs(zr, reg1, imm); 1987 return; 1988 } else { 1989 __ mov(rscratch1, imm); 1990 if (is_32bit) 1991 __ cmpw(reg1, rscratch1); 1992 else 1993 __ cmp(reg1, rscratch1); 1994 return; 1995 } 1996 } else 1997 ShouldNotReachHere(); 1998 } else if (opr1->is_single_fpu()) { 1999 FloatRegister reg1 = opr1->as_float_reg(); 2000 assert(opr2->is_single_fpu(), "expect single float register"); 2001 FloatRegister reg2 = opr2->as_float_reg(); 2002 __ fcmps(reg1, reg2); 2003 } else if (opr1->is_double_fpu()) { 2004 FloatRegister reg1 = opr1->as_double_reg(); 2005 assert(opr2->is_double_fpu(), "expect double float register"); 2006 FloatRegister reg2 = opr2->as_double_reg(); 2007 __ fcmpd(reg1, reg2); 2008 } else { 2009 ShouldNotReachHere(); 2010 } 2011 } 2012 2013 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 2014 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2015 bool is_unordered_less = (code == lir_ucmp_fd2i); 2016 if (left->is_single_fpu()) { 2017 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); 2018 } else if (left->is_double_fpu()) { 2019 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); 2020 } else { 2021 ShouldNotReachHere(); 2022 } 2023 } else if (code == lir_cmp_l2i) { 2024 Label done; 2025 __ cmp(left->as_register_lo(), right->as_register_lo()); 2026 __ mov(dst->as_register(), (uint64_t)-1L); 2027 __ br(Assembler::LT, done); 2028 __ csinc(dst->as_register(), zr, zr, Assembler::EQ); 2029 __ bind(done); 2030 } else { 2031 ShouldNotReachHere(); 2032 } 2033 } 2034 2035 2036 void LIR_Assembler::align_call(LIR_Code code) { } 2037 2038 2039 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2040 address call = __ trampoline_call(Address(op->addr(), rtype)); 2041 if (call == NULL) { 2042 bailout("trampoline stub overflow"); 2043 return; 2044 } 2045 add_call_info(code_offset(), op->info()); 2046 } 2047 2048 2049 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2050 address call = __ ic_call(op->addr()); 2051 if (call == NULL) { 2052 bailout("trampoline stub overflow"); 2053 return; 2054 } 2055 add_call_info(code_offset(), op->info()); 2056 } 2057 2058 void LIR_Assembler::emit_static_call_stub() { 2059 address call_pc = __ pc(); 2060 address stub = __ start_a_stub(call_stub_size()); 2061 if (stub == NULL) { 2062 bailout("static call stub overflow"); 2063 return; 2064 } 2065 2066 int start = __ offset(); 2067 2068 __ relocate(static_stub_Relocation::spec(call_pc)); 2069 __ emit_static_call_stub(); 2070 2071 assert(__ offset() - start + CompiledStaticCall::to_trampoline_stub_size() 2072 <= call_stub_size(), "stub too big"); 2073 __ end_a_stub(); 2074 } 2075 2076 2077 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2078 assert(exceptionOop->as_register() == r0, "must match"); 2079 assert(exceptionPC->as_register() == r3, "must match"); 2080 2081 // exception object is not added to oop map by LinearScan 2082 // (LinearScan assumes that no oops are in fixed registers) 2083 info->add_register_oop(exceptionOop); 2084 Runtime1::StubID unwind_id; 2085 2086 // get current pc information 2087 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2088 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) { 2089 // As no instructions have been generated yet for this LIR node it's 2090 // possible that an oop map already exists for the current offset. 2091 // In that case insert an dummy NOP here to ensure all oop map PCs 2092 // are unique. See JDK-8237483. 2093 __ nop(); 2094 } 2095 int pc_for_athrow_offset = __ offset(); 2096 InternalAddress pc_for_athrow(__ pc()); 2097 __ adr(exceptionPC->as_register(), pc_for_athrow); 2098 add_call_info(pc_for_athrow_offset, info); // for exception handler 2099 2100 __ verify_not_null_oop(r0); 2101 // search an exception handler (r0: exception oop, r3: throwing pc) 2102 if (compilation()->has_fpu_code()) { 2103 unwind_id = Runtime1::handle_exception_id; 2104 } else { 2105 unwind_id = Runtime1::handle_exception_nofpu_id; 2106 } 2107 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2108 2109 // FIXME: enough room for two byte trap ???? 2110 __ nop(); 2111 } 2112 2113 2114 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2115 assert(exceptionOop->as_register() == r0, "must match"); 2116 2117 __ b(_unwind_handler_entry); 2118 } 2119 2120 2121 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2122 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2123 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2124 2125 switch (left->type()) { 2126 case T_INT: { 2127 switch (code) { 2128 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break; 2129 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break; 2130 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break; 2131 default: 2132 ShouldNotReachHere(); 2133 break; 2134 } 2135 break; 2136 case T_LONG: 2137 case T_ADDRESS: 2138 case T_OBJECT: 2139 switch (code) { 2140 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break; 2141 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break; 2142 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break; 2143 default: 2144 ShouldNotReachHere(); 2145 break; 2146 } 2147 break; 2148 default: 2149 ShouldNotReachHere(); 2150 break; 2151 } 2152 } 2153 } 2154 2155 2156 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2157 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo(); 2158 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo(); 2159 2160 switch (left->type()) { 2161 case T_INT: { 2162 switch (code) { 2163 case lir_shl: __ lslw (dreg, lreg, count); break; 2164 case lir_shr: __ asrw (dreg, lreg, count); break; 2165 case lir_ushr: __ lsrw (dreg, lreg, count); break; 2166 default: 2167 ShouldNotReachHere(); 2168 break; 2169 } 2170 break; 2171 case T_LONG: 2172 case T_ADDRESS: 2173 case T_OBJECT: 2174 switch (code) { 2175 case lir_shl: __ lsl (dreg, lreg, count); break; 2176 case lir_shr: __ asr (dreg, lreg, count); break; 2177 case lir_ushr: __ lsr (dreg, lreg, count); break; 2178 default: 2179 ShouldNotReachHere(); 2180 break; 2181 } 2182 break; 2183 default: 2184 ShouldNotReachHere(); 2185 break; 2186 } 2187 } 2188 } 2189 2190 2191 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 2192 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2193 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2194 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2195 __ str (r, Address(sp, offset_from_rsp_in_bytes)); 2196 } 2197 2198 2199 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 2200 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2201 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2202 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2203 __ mov (rscratch1, c); 2204 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2205 } 2206 2207 2208 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 2209 ShouldNotReachHere(); 2210 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 2211 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 2212 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 2213 __ lea(rscratch1, __ constant_oop_address(o)); 2214 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes)); 2215 } 2216 2217 2218 // This code replaces a call to arraycopy; no exception may 2219 // be thrown in this code, they must be thrown in the System.arraycopy 2220 // activation frame; we could save some checks if this would not be the case 2221 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2222 ciArrayKlass* default_type = op->expected_type(); 2223 Register src = op->src()->as_register(); 2224 Register dst = op->dst()->as_register(); 2225 Register src_pos = op->src_pos()->as_register(); 2226 Register dst_pos = op->dst_pos()->as_register(); 2227 Register length = op->length()->as_register(); 2228 Register tmp = op->tmp()->as_register(); 2229 2230 CodeStub* stub = op->stub(); 2231 int flags = op->flags(); 2232 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; 2233 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 2234 2235 // if we don't know anything, just go through the generic arraycopy 2236 if (default_type == NULL // || basic_type == T_OBJECT 2237 ) { 2238 Label done; 2239 assert(src == r1 && src_pos == r2, "mismatch in calling convention"); 2240 2241 // Save the arguments in case the generic arraycopy fails and we 2242 // have to fall back to the JNI stub 2243 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2244 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2245 __ str(src, Address(sp, 4*BytesPerWord)); 2246 2247 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2248 assert(copyfunc_addr != NULL, "generic arraycopy stub required"); 2249 2250 // The arguments are in java calling convention so we shift them 2251 // to C convention 2252 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 2253 __ mov(c_rarg0, j_rarg0); 2254 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 2255 __ mov(c_rarg1, j_rarg1); 2256 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 2257 __ mov(c_rarg2, j_rarg2); 2258 assert_different_registers(c_rarg3, j_rarg4); 2259 __ mov(c_rarg3, j_rarg3); 2260 __ mov(c_rarg4, j_rarg4); 2261 #ifndef PRODUCT 2262 if (PrintC1Statistics) { 2263 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 2264 } 2265 #endif 2266 __ far_call(RuntimeAddress(copyfunc_addr)); 2267 2268 __ cbz(r0, *stub->continuation()); 2269 2270 // Reload values from the stack so they are where the stub 2271 // expects them. 2272 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2273 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2274 __ ldr(src, Address(sp, 4*BytesPerWord)); 2275 2276 // r0 is -1^K where K == partial copied count 2277 __ eonw(rscratch1, r0, zr); 2278 // adjust length down and src/end pos up by partial copied count 2279 __ subw(length, length, rscratch1); 2280 __ addw(src_pos, src_pos, rscratch1); 2281 __ addw(dst_pos, dst_pos, rscratch1); 2282 __ b(*stub->entry()); 2283 2284 __ bind(*stub->continuation()); 2285 return; 2286 } 2287 2288 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2289 2290 int elem_size = type2aelembytes(basic_type); 2291 int scale = exact_log2(elem_size); 2292 2293 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2294 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2295 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 2296 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 2297 2298 // test for NULL 2299 if (flags & LIR_OpArrayCopy::src_null_check) { 2300 __ cbz(src, *stub->entry()); 2301 } 2302 if (flags & LIR_OpArrayCopy::dst_null_check) { 2303 __ cbz(dst, *stub->entry()); 2304 } 2305 2306 // If the compiler was not able to prove that exact type of the source or the destination 2307 // of the arraycopy is an array type, check at runtime if the source or the destination is 2308 // an instance type. 2309 if (flags & LIR_OpArrayCopy::type_check) { 2310 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2311 __ load_klass(tmp, dst); 2312 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2313 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2314 __ br(Assembler::GE, *stub->entry()); 2315 } 2316 2317 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2318 __ load_klass(tmp, src); 2319 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2320 __ cmpw(rscratch1, Klass::_lh_neutral_value); 2321 __ br(Assembler::GE, *stub->entry()); 2322 } 2323 } 2324 2325 // check if negative 2326 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2327 __ cmpw(src_pos, 0); 2328 __ br(Assembler::LT, *stub->entry()); 2329 } 2330 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2331 __ cmpw(dst_pos, 0); 2332 __ br(Assembler::LT, *stub->entry()); 2333 } 2334 2335 if (flags & LIR_OpArrayCopy::length_positive_check) { 2336 __ cmpw(length, 0); 2337 __ br(Assembler::LT, *stub->entry()); 2338 } 2339 2340 if (flags & LIR_OpArrayCopy::src_range_check) { 2341 __ addw(tmp, src_pos, length); 2342 __ ldrw(rscratch1, src_length_addr); 2343 __ cmpw(tmp, rscratch1); 2344 __ br(Assembler::HI, *stub->entry()); 2345 } 2346 if (flags & LIR_OpArrayCopy::dst_range_check) { 2347 __ addw(tmp, dst_pos, length); 2348 __ ldrw(rscratch1, dst_length_addr); 2349 __ cmpw(tmp, rscratch1); 2350 __ br(Assembler::HI, *stub->entry()); 2351 } 2352 2353 if (flags & LIR_OpArrayCopy::type_check) { 2354 // We don't know the array types are compatible 2355 if (basic_type != T_OBJECT) { 2356 // Simple test for basic type arrays 2357 if (UseCompressedClassPointers) { 2358 __ load_nklass(tmp, src); 2359 __ load_nklass(rscratch1, dst); 2360 __ cmpw(tmp, rscratch1); 2361 } else { 2362 __ ldr(tmp, Address(src, oopDesc::klass_offset_in_bytes())); 2363 __ ldr(rscratch1, Address(dst, oopDesc::klass_offset_in_bytes())); 2364 __ cmp(tmp, rscratch1); 2365 } 2366 __ br(Assembler::NE, *stub->entry()); 2367 } else { 2368 // For object arrays, if src is a sub class of dst then we can 2369 // safely do the copy. 2370 Label cont, slow; 2371 2372 #define PUSH(r1, r2) \ 2373 stp(r1, r2, __ pre(sp, -2 * wordSize)); 2374 2375 #define POP(r1, r2) \ 2376 ldp(r1, r2, __ post(sp, 2 * wordSize)); 2377 2378 __ PUSH(src, dst); 2379 2380 __ load_klass(src, src); 2381 __ load_klass(dst, dst); 2382 2383 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL); 2384 2385 __ PUSH(src, dst); 2386 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 2387 __ POP(src, dst); 2388 2389 __ cbnz(src, cont); 2390 2391 __ bind(slow); 2392 __ POP(src, dst); 2393 2394 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2395 if (copyfunc_addr != NULL) { // use stub if available 2396 // src is not a sub class of dst so we have to do a 2397 // per-element check. 2398 2399 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2400 if ((flags & mask) != mask) { 2401 // Check that at least both of them object arrays. 2402 assert(flags & mask, "one of the two should be known to be an object array"); 2403 2404 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2405 __ load_klass(tmp, src); 2406 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2407 __ load_klass(tmp, dst); 2408 } 2409 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2410 Address klass_lh_addr(tmp, lh_offset); 2411 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2412 __ ldrw(rscratch1, klass_lh_addr); 2413 __ mov(rscratch2, objArray_lh); 2414 __ eorw(rscratch1, rscratch1, rscratch2); 2415 __ cbnzw(rscratch1, *stub->entry()); 2416 } 2417 2418 // Spill because stubs can use any register they like and it's 2419 // easier to restore just those that we care about. 2420 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2421 __ stp(length, src_pos, Address(sp, 2*BytesPerWord)); 2422 __ str(src, Address(sp, 4*BytesPerWord)); 2423 2424 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2425 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2426 assert_different_registers(c_rarg0, dst, dst_pos, length); 2427 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2428 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2429 assert_different_registers(c_rarg1, dst, length); 2430 __ uxtw(c_rarg2, length); 2431 assert_different_registers(c_rarg2, dst); 2432 2433 __ load_klass(c_rarg4, dst); 2434 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 2435 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 2436 __ far_call(RuntimeAddress(copyfunc_addr)); 2437 2438 #ifndef PRODUCT 2439 if (PrintC1Statistics) { 2440 Label failed; 2441 __ cbnz(r0, failed); 2442 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 2443 __ bind(failed); 2444 } 2445 #endif 2446 2447 __ cbz(r0, *stub->continuation()); 2448 2449 #ifndef PRODUCT 2450 if (PrintC1Statistics) { 2451 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 2452 } 2453 #endif 2454 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1); 2455 2456 // Restore previously spilled arguments 2457 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord)); 2458 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord)); 2459 __ ldr(src, Address(sp, 4*BytesPerWord)); 2460 2461 // return value is -1^K where K is partial copied count 2462 __ eonw(rscratch1, r0, zr); 2463 // adjust length down and src/end pos up by partial copied count 2464 __ subw(length, length, rscratch1); 2465 __ addw(src_pos, src_pos, rscratch1); 2466 __ addw(dst_pos, dst_pos, rscratch1); 2467 } 2468 2469 __ b(*stub->entry()); 2470 2471 __ bind(cont); 2472 __ POP(src, dst); 2473 } 2474 } 2475 2476 #ifdef ASSERT 2477 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2478 // Sanity check the known type with the incoming class. For the 2479 // primitive case the types must match exactly with src.klass and 2480 // dst.klass each exactly matching the default type. For the 2481 // object array case, if no type check is needed then either the 2482 // dst type is exactly the expected type and the src type is a 2483 // subtype which we can't check or src is the same array as dst 2484 // but not necessarily exactly of type default_type. 2485 Label known_ok, halt; 2486 __ mov_metadata(tmp, default_type->constant_encoding()); 2487 2488 if (basic_type != T_OBJECT) { 2489 __ cmp_klass(dst, tmp, rscratch1); 2490 __ br(Assembler::NE, halt); 2491 __ cmp_klass(src, tmp, rscratch1); 2492 __ br(Assembler::EQ, known_ok); 2493 } else { 2494 __ cmp_klass(dst, tmp, rscratch1); 2495 __ br(Assembler::EQ, known_ok); 2496 __ cmp(src, dst); 2497 __ br(Assembler::EQ, known_ok); 2498 } 2499 __ bind(halt); 2500 __ stop("incorrect type information in arraycopy"); 2501 __ bind(known_ok); 2502 } 2503 #endif 2504 2505 #ifndef PRODUCT 2506 if (PrintC1Statistics) { 2507 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 2508 } 2509 #endif 2510 2511 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale))); 2512 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type)); 2513 assert_different_registers(c_rarg0, dst, dst_pos, length); 2514 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale))); 2515 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type)); 2516 assert_different_registers(c_rarg1, dst, length); 2517 __ uxtw(c_rarg2, length); 2518 assert_different_registers(c_rarg2, dst); 2519 2520 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2521 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2522 const char *name; 2523 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2524 2525 CodeBlob *cb = CodeCache::find_blob(entry); 2526 if (cb) { 2527 __ far_call(RuntimeAddress(entry)); 2528 } else { 2529 __ call_VM_leaf(entry, 3); 2530 } 2531 2532 __ bind(*stub->continuation()); 2533 } 2534 2535 2536 2537 2538 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2539 Register obj = op->obj_opr()->as_register(); // may not be an oop 2540 Register hdr = op->hdr_opr()->as_register(); 2541 Register lock = op->lock_opr()->as_register(); 2542 if (LockingMode == LM_MONITOR) { 2543 if (op->info() != NULL) { 2544 add_debug_info_for_null_check_here(op->info()); 2545 __ null_check(obj, -1); 2546 } 2547 __ b(*op->stub()->entry()); 2548 } else if (op->code() == lir_lock) { 2549 Register scratch = noreg; 2550 if (UseBiasedLocking) { 2551 scratch = op->scratch_opr()->as_register(); 2552 } 2553 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2554 // add debug info for NullPointerException only if one is possible 2555 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry()); 2556 if (op->info() != NULL) { 2557 add_debug_info_for_null_check(null_check_offset, op->info()); 2558 } 2559 // done 2560 } else if (op->code() == lir_unlock) { 2561 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2562 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2563 } else { 2564 Unimplemented(); 2565 } 2566 __ bind(*op->stub()->continuation()); 2567 } 2568 2569 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2570 Register obj = op->obj()->as_pointer_register(); 2571 Register result = op->result_opr()->as_pointer_register(); 2572 2573 CodeEmitInfo* info = op->info(); 2574 if (info != NULL) { 2575 add_debug_info_for_null_check_here(info); 2576 } 2577 2578 if (UseCompressedClassPointers) { 2579 if (UseCompactObjectHeaders) { 2580 // Check if we can take the (common) fast path, if obj is unlocked. 2581 __ ldr(result, Address(obj, oopDesc::mark_offset_in_bytes())); 2582 __ tst(result, markWord::monitor_value); 2583 __ br(Assembler::NE, *op->stub()->entry()); 2584 __ bind(*op->stub()->continuation()); 2585 2586 // Shift to get proper narrow Klass*. 2587 __ lsr(result, result, markWord::klass_shift); 2588 } else { 2589 __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2590 } 2591 __ decode_klass_not_null(result); 2592 } else { 2593 __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes())); 2594 } 2595 } 2596 2597 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2598 ciMethod* method = op->profiled_method(); 2599 int bci = op->profiled_bci(); 2600 ciMethod* callee = op->profiled_callee(); 2601 2602 // Update counter for all call types 2603 ciMethodData* md = method->method_data_or_null(); 2604 assert(md != NULL, "Sanity"); 2605 ciProfileData* data = md->bci_to_data(bci); 2606 assert(data != NULL && data->is_CounterData(), "need CounterData for calls"); 2607 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2608 Register mdo = op->mdo()->as_register(); 2609 __ mov_metadata(mdo, md->constant_encoding()); 2610 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2611 // Perform additional virtual call profiling for invokevirtual and 2612 // invokeinterface bytecodes 2613 if (op->should_profile_receiver_type()) { 2614 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2615 Register recv = op->recv()->as_register(); 2616 assert_different_registers(mdo, recv); 2617 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2618 ciKlass* known_klass = op->known_holder(); 2619 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { 2620 // We know the type that will be seen at this call site; we can 2621 // statically update the MethodData* rather than needing to do 2622 // dynamic tests on the receiver type 2623 2624 // NOTE: we should probably put a lock around this search to 2625 // avoid collisions by concurrent compilations 2626 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2627 uint i; 2628 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2629 ciKlass* receiver = vc_data->receiver(i); 2630 if (known_klass->equals(receiver)) { 2631 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2632 __ addptr(data_addr, DataLayout::counter_increment); 2633 return; 2634 } 2635 } 2636 2637 // Receiver type not found in profile data; select an empty slot 2638 2639 // Note that this is less efficient than it should be because it 2640 // always does a write to the receiver part of the 2641 // VirtualCallData rather than just the first time 2642 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2643 ciKlass* receiver = vc_data->receiver(i); 2644 if (receiver == NULL) { 2645 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2646 __ mov_metadata(rscratch1, known_klass->constant_encoding()); 2647 __ lea(rscratch2, recv_addr); 2648 __ str(rscratch1, Address(rscratch2)); 2649 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2650 __ addptr(data_addr, DataLayout::counter_increment); 2651 return; 2652 } 2653 } 2654 } else { 2655 __ load_klass(recv, recv); 2656 Label update_done; 2657 type_profile_helper(mdo, md, data, recv, &update_done); 2658 // Receiver did not match any saved receiver and there is no empty row for it. 2659 // Increment total counter to indicate polymorphic case. 2660 __ addptr(counter_addr, DataLayout::counter_increment); 2661 2662 __ bind(update_done); 2663 } 2664 } else { 2665 // Static call 2666 __ addptr(counter_addr, DataLayout::counter_increment); 2667 } 2668 } 2669 2670 2671 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2672 Unimplemented(); 2673 } 2674 2675 2676 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2677 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 2678 } 2679 2680 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2681 assert(op->crc()->is_single_cpu(), "crc must be register"); 2682 assert(op->val()->is_single_cpu(), "byte value must be register"); 2683 assert(op->result_opr()->is_single_cpu(), "result must be register"); 2684 Register crc = op->crc()->as_register(); 2685 Register val = op->val()->as_register(); 2686 Register res = op->result_opr()->as_register(); 2687 2688 assert_different_registers(val, crc, res); 2689 uint64_t offset; 2690 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2691 if (offset) __ add(res, res, offset); 2692 2693 __ mvnw(crc, crc); // ~crc 2694 __ update_byte_crc32(crc, val, res); 2695 __ mvnw(res, crc); // ~crc 2696 } 2697 2698 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2699 COMMENT("emit_profile_type {"); 2700 Register obj = op->obj()->as_register(); 2701 Register tmp = op->tmp()->as_pointer_register(); 2702 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2703 ciKlass* exact_klass = op->exact_klass(); 2704 intptr_t current_klass = op->current_klass(); 2705 bool not_null = op->not_null(); 2706 bool no_conflict = op->no_conflict(); 2707 2708 Label update, next, none; 2709 2710 bool do_null = !not_null; 2711 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2712 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2713 2714 assert(do_null || do_update, "why are we here?"); 2715 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2716 assert(mdo_addr.base() != rscratch1, "wrong register"); 2717 2718 __ verify_oop(obj); 2719 2720 if (tmp != obj) { 2721 __ mov(tmp, obj); 2722 } 2723 if (do_null) { 2724 __ cbnz(tmp, update); 2725 if (!TypeEntries::was_null_seen(current_klass)) { 2726 __ ldr(rscratch2, mdo_addr); 2727 __ orr(rscratch2, rscratch2, TypeEntries::null_seen); 2728 __ str(rscratch2, mdo_addr); 2729 } 2730 if (do_update) { 2731 #ifndef ASSERT 2732 __ b(next); 2733 } 2734 #else 2735 __ b(next); 2736 } 2737 } else { 2738 __ cbnz(tmp, update); 2739 __ stop("unexpected null obj"); 2740 #endif 2741 } 2742 2743 __ bind(update); 2744 2745 if (do_update) { 2746 #ifdef ASSERT 2747 if (exact_klass != NULL) { 2748 Label ok; 2749 __ load_klass(tmp, tmp); 2750 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2751 __ eor(rscratch1, tmp, rscratch1); 2752 __ cbz(rscratch1, ok); 2753 __ stop("exact klass and actual klass differ"); 2754 __ bind(ok); 2755 } 2756 #endif 2757 if (!no_conflict) { 2758 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { 2759 if (exact_klass != NULL) { 2760 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2761 } else { 2762 __ load_klass(tmp, tmp); 2763 } 2764 2765 __ ldr(rscratch2, mdo_addr); 2766 __ eor(tmp, tmp, rscratch2); 2767 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2768 // klass seen before, nothing to do. The unknown bit may have been 2769 // set already but no need to check. 2770 __ cbz(rscratch1, next); 2771 2772 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2773 2774 if (TypeEntries::is_type_none(current_klass)) { 2775 __ cbz(rscratch2, none); 2776 __ cmp(rscratch2, (u1)TypeEntries::null_seen); 2777 __ br(Assembler::EQ, none); 2778 // There is a chance that the checks above (re-reading profiling 2779 // data from memory) fail if another thread has just set the 2780 // profiling to this obj's klass 2781 __ dmb(Assembler::ISHLD); 2782 __ ldr(rscratch2, mdo_addr); 2783 __ eor(tmp, tmp, rscratch2); 2784 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2785 __ cbz(rscratch1, next); 2786 } 2787 } else { 2788 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 2789 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 2790 2791 __ ldr(tmp, mdo_addr); 2792 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2793 } 2794 2795 // different than before. Cannot keep accurate profile. 2796 __ ldr(rscratch2, mdo_addr); 2797 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown); 2798 __ str(rscratch2, mdo_addr); 2799 2800 if (TypeEntries::is_type_none(current_klass)) { 2801 __ b(next); 2802 2803 __ bind(none); 2804 // first time here. Set profile type. 2805 __ str(tmp, mdo_addr); 2806 } 2807 } else { 2808 // There's a single possible klass at this profile point 2809 assert(exact_klass != NULL, "should be"); 2810 if (TypeEntries::is_type_none(current_klass)) { 2811 __ mov_metadata(tmp, exact_klass->constant_encoding()); 2812 __ ldr(rscratch2, mdo_addr); 2813 __ eor(tmp, tmp, rscratch2); 2814 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask); 2815 __ cbz(rscratch1, next); 2816 #ifdef ASSERT 2817 { 2818 Label ok; 2819 __ ldr(rscratch1, mdo_addr); 2820 __ cbz(rscratch1, ok); 2821 __ cmp(rscratch1, (u1)TypeEntries::null_seen); 2822 __ br(Assembler::EQ, ok); 2823 // may have been set by another thread 2824 __ dmb(Assembler::ISHLD); 2825 __ mov_metadata(rscratch1, exact_klass->constant_encoding()); 2826 __ ldr(rscratch2, mdo_addr); 2827 __ eor(rscratch2, rscratch1, rscratch2); 2828 __ andr(rscratch2, rscratch2, TypeEntries::type_mask); 2829 __ cbz(rscratch2, ok); 2830 2831 __ stop("unexpected profiling mismatch"); 2832 __ bind(ok); 2833 } 2834 #endif 2835 // first time here. Set profile type. 2836 __ str(tmp, mdo_addr); 2837 } else { 2838 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 2839 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 2840 2841 __ ldr(tmp, mdo_addr); 2842 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. 2843 2844 __ orr(tmp, tmp, TypeEntries::type_unknown); 2845 __ str(tmp, mdo_addr); 2846 // FIXME: Write barrier needed here? 2847 } 2848 } 2849 2850 __ bind(next); 2851 } 2852 COMMENT("} emit_profile_type"); 2853 } 2854 2855 2856 void LIR_Assembler::align_backward_branch_target() { 2857 } 2858 2859 2860 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2861 // tmp must be unused 2862 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2863 2864 if (left->is_single_cpu()) { 2865 assert(dest->is_single_cpu(), "expect single result reg"); 2866 __ negw(dest->as_register(), left->as_register()); 2867 } else if (left->is_double_cpu()) { 2868 assert(dest->is_double_cpu(), "expect double result reg"); 2869 __ neg(dest->as_register_lo(), left->as_register_lo()); 2870 } else if (left->is_single_fpu()) { 2871 assert(dest->is_single_fpu(), "expect single float result reg"); 2872 __ fnegs(dest->as_float_reg(), left->as_float_reg()); 2873 } else { 2874 assert(left->is_double_fpu(), "expect double float operand reg"); 2875 assert(dest->is_double_fpu(), "expect double float result reg"); 2876 __ fnegd(dest->as_double_reg(), left->as_double_reg()); 2877 } 2878 } 2879 2880 2881 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2882 if (patch_code != lir_patch_none) { 2883 deoptimize_trap(info); 2884 return; 2885 } 2886 2887 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr())); 2888 } 2889 2890 2891 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2892 assert(!tmp->is_valid(), "don't need temporary"); 2893 2894 CodeBlob *cb = CodeCache::find_blob(dest); 2895 if (cb) { 2896 __ far_call(RuntimeAddress(dest)); 2897 } else { 2898 __ mov(rscratch1, RuntimeAddress(dest)); 2899 __ blr(rscratch1); 2900 } 2901 2902 if (info != NULL) { 2903 add_call_info_here(info); 2904 } 2905 } 2906 2907 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2908 if (dest->is_address() || src->is_address()) { 2909 move_op(src, dest, type, lir_patch_none, info, 2910 /*pop_fpu_stack*/false, /*unaligned*/false, /*wide*/false); 2911 } else { 2912 ShouldNotReachHere(); 2913 } 2914 } 2915 2916 #ifdef ASSERT 2917 // emit run-time assertion 2918 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2919 assert(op->code() == lir_assert, "must be"); 2920 2921 if (op->in_opr1()->is_valid()) { 2922 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2923 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2924 } else { 2925 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2926 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2927 } 2928 2929 Label ok; 2930 if (op->condition() != lir_cond_always) { 2931 Assembler::Condition acond = Assembler::AL; 2932 switch (op->condition()) { 2933 case lir_cond_equal: acond = Assembler::EQ; break; 2934 case lir_cond_notEqual: acond = Assembler::NE; break; 2935 case lir_cond_less: acond = Assembler::LT; break; 2936 case lir_cond_lessEqual: acond = Assembler::LE; break; 2937 case lir_cond_greaterEqual: acond = Assembler::GE; break; 2938 case lir_cond_greater: acond = Assembler::GT; break; 2939 case lir_cond_belowEqual: acond = Assembler::LS; break; 2940 case lir_cond_aboveEqual: acond = Assembler::HS; break; 2941 default: ShouldNotReachHere(); 2942 } 2943 __ br(acond, ok); 2944 } 2945 if (op->halt()) { 2946 const char* str = __ code_string(op->msg()); 2947 __ stop(str); 2948 } else { 2949 breakpoint(); 2950 } 2951 __ bind(ok); 2952 } 2953 #endif 2954 2955 #ifndef PRODUCT 2956 #define COMMENT(x) do { __ block_comment(x); } while (0) 2957 #else 2958 #define COMMENT(x) 2959 #endif 2960 2961 void LIR_Assembler::membar() { 2962 COMMENT("membar"); 2963 __ membar(MacroAssembler::AnyAny); 2964 } 2965 2966 void LIR_Assembler::membar_acquire() { 2967 __ membar(Assembler::LoadLoad|Assembler::LoadStore); 2968 } 2969 2970 void LIR_Assembler::membar_release() { 2971 __ membar(Assembler::LoadStore|Assembler::StoreStore); 2972 } 2973 2974 void LIR_Assembler::membar_loadload() { 2975 __ membar(Assembler::LoadLoad); 2976 } 2977 2978 void LIR_Assembler::membar_storestore() { 2979 __ membar(MacroAssembler::StoreStore); 2980 } 2981 2982 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); } 2983 2984 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); } 2985 2986 void LIR_Assembler::on_spin_wait() { 2987 __ spin_wait(); 2988 } 2989 2990 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2991 __ mov(result_reg->as_register(), rthread); 2992 } 2993 2994 2995 void LIR_Assembler::peephole(LIR_List *lir) { 2996 #if 0 2997 if (tableswitch_count >= max_tableswitches) 2998 return; 2999 3000 /* 3001 This finite-state automaton recognizes sequences of compare-and- 3002 branch instructions. We will turn them into a tableswitch. You 3003 could argue that C1 really shouldn't be doing this sort of 3004 optimization, but without it the code is really horrible. 3005 */ 3006 3007 enum { start_s, cmp1_s, beq_s, cmp_s } state; 3008 int first_key, last_key = -2147483648; 3009 int next_key = 0; 3010 int start_insn = -1; 3011 int last_insn = -1; 3012 Register reg = noreg; 3013 LIR_Opr reg_opr; 3014 state = start_s; 3015 3016 LIR_OpList* inst = lir->instructions_list(); 3017 for (int i = 0; i < inst->length(); i++) { 3018 LIR_Op* op = inst->at(i); 3019 switch (state) { 3020 case start_s: 3021 first_key = -1; 3022 start_insn = i; 3023 switch (op->code()) { 3024 case lir_cmp: 3025 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3026 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3027 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3028 && opr2->is_constant() 3029 && opr2->type() == T_INT) { 3030 reg_opr = opr1; 3031 reg = opr1->as_register(); 3032 first_key = opr2->as_constant_ptr()->as_jint(); 3033 next_key = first_key + 1; 3034 state = cmp_s; 3035 goto next_state; 3036 } 3037 break; 3038 } 3039 break; 3040 case cmp_s: 3041 switch (op->code()) { 3042 case lir_branch: 3043 if (op->as_OpBranch()->cond() == lir_cond_equal) { 3044 state = beq_s; 3045 last_insn = i; 3046 goto next_state; 3047 } 3048 } 3049 state = start_s; 3050 break; 3051 case beq_s: 3052 switch (op->code()) { 3053 case lir_cmp: { 3054 LIR_Opr opr1 = op->as_Op2()->in_opr1(); 3055 LIR_Opr opr2 = op->as_Op2()->in_opr2(); 3056 if (opr1->is_cpu_register() && opr1->is_single_cpu() 3057 && opr1->as_register() == reg 3058 && opr2->is_constant() 3059 && opr2->type() == T_INT 3060 && opr2->as_constant_ptr()->as_jint() == next_key) { 3061 last_key = next_key; 3062 next_key++; 3063 state = cmp_s; 3064 goto next_state; 3065 } 3066 } 3067 } 3068 last_key = next_key; 3069 state = start_s; 3070 break; 3071 default: 3072 assert(false, "impossible state"); 3073 } 3074 if (state == start_s) { 3075 if (first_key < last_key - 5L && reg != noreg) { 3076 { 3077 // printf("found run register %d starting at insn %d low value %d high value %d\n", 3078 // reg->encoding(), 3079 // start_insn, first_key, last_key); 3080 // for (int i = 0; i < inst->length(); i++) { 3081 // inst->at(i)->print(); 3082 // tty->print("\n"); 3083 // } 3084 // tty->print("\n"); 3085 } 3086 3087 struct tableswitch *sw = &switches[tableswitch_count]; 3088 sw->_insn_index = start_insn, sw->_first_key = first_key, 3089 sw->_last_key = last_key, sw->_reg = reg; 3090 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after)); 3091 { 3092 // Insert the new table of branches 3093 int offset = last_insn; 3094 for (int n = first_key; n < last_key; n++) { 3095 inst->insert_before 3096 (last_insn + 1, 3097 new LIR_OpBranch(lir_cond_always, T_ILLEGAL, 3098 inst->at(offset)->as_OpBranch()->label())); 3099 offset -= 2, i++; 3100 } 3101 } 3102 // Delete all the old compare-and-branch instructions 3103 for (int n = first_key; n < last_key; n++) { 3104 inst->remove_at(start_insn); 3105 inst->remove_at(start_insn); 3106 } 3107 // Insert the tableswitch instruction 3108 inst->insert_before(start_insn, 3109 new LIR_Op2(lir_cmp, lir_cond_always, 3110 LIR_OprFact::intConst(tableswitch_count), 3111 reg_opr)); 3112 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches)); 3113 tableswitch_count++; 3114 } 3115 reg = noreg; 3116 last_key = -2147483648; 3117 } 3118 next_state: 3119 ; 3120 } 3121 #endif 3122 } 3123 3124 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) { 3125 Address addr = as_Address(src->as_address_ptr()); 3126 BasicType type = src->type(); 3127 bool is_oop = is_reference_type(type); 3128 3129 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr); 3130 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr); 3131 3132 switch(type) { 3133 case T_INT: 3134 xchg = &MacroAssembler::atomic_xchgalw; 3135 add = &MacroAssembler::atomic_addalw; 3136 break; 3137 case T_LONG: 3138 xchg = &MacroAssembler::atomic_xchgal; 3139 add = &MacroAssembler::atomic_addal; 3140 break; 3141 case T_OBJECT: 3142 case T_ARRAY: 3143 if (UseCompressedOops) { 3144 xchg = &MacroAssembler::atomic_xchgalw; 3145 add = &MacroAssembler::atomic_addalw; 3146 } else { 3147 xchg = &MacroAssembler::atomic_xchgal; 3148 add = &MacroAssembler::atomic_addal; 3149 } 3150 break; 3151 default: 3152 ShouldNotReachHere(); 3153 xchg = &MacroAssembler::atomic_xchgal; 3154 add = &MacroAssembler::atomic_addal; // unreachable 3155 } 3156 3157 switch (code) { 3158 case lir_xadd: 3159 { 3160 RegisterOrConstant inc; 3161 Register tmp = as_reg(tmp_op); 3162 Register dst = as_reg(dest); 3163 if (data->is_constant()) { 3164 inc = RegisterOrConstant(as_long(data)); 3165 assert_different_registers(dst, addr.base(), tmp, 3166 rscratch1, rscratch2); 3167 } else { 3168 inc = RegisterOrConstant(as_reg(data)); 3169 assert_different_registers(inc.as_register(), dst, addr.base(), tmp, 3170 rscratch1, rscratch2); 3171 } 3172 __ lea(tmp, addr); 3173 (_masm->*add)(dst, inc, tmp); 3174 break; 3175 } 3176 case lir_xchg: 3177 { 3178 Register tmp = tmp_op->as_register(); 3179 Register obj = as_reg(data); 3180 Register dst = as_reg(dest); 3181 if (is_oop && UseCompressedOops) { 3182 __ encode_heap_oop(rscratch2, obj); 3183 obj = rscratch2; 3184 } 3185 assert_different_registers(obj, addr.base(), tmp, rscratch1, dst); 3186 __ lea(tmp, addr); 3187 (_masm->*xchg)(dst, obj, tmp); 3188 if (is_oop && UseCompressedOops) { 3189 __ decode_heap_oop(dst); 3190 } 3191 } 3192 break; 3193 default: 3194 ShouldNotReachHere(); 3195 } 3196 __ membar(__ AnyAny); 3197 } 3198 3199 #undef __ --- EOF ---