1 /* 2 * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_Instruction.hpp" 31 #include "c1/c1_LIRAssembler.hpp" 32 #include "c1/c1_LIRGenerator.hpp" 33 #include "c1/c1_Runtime1.hpp" 34 #include "c1/c1_ValueStack.hpp" 35 #include "ci/ciArray.hpp" 36 #include "ci/ciObjArrayKlass.hpp" 37 #include "ci/ciTypeArrayKlass.hpp" 38 #include "runtime/sharedRuntime.hpp" 39 #include "runtime/stubRoutines.hpp" 40 #include "utilities/powerOfTwo.hpp" 41 #include "vmreg_aarch64.inline.hpp" 42 43 #ifdef ASSERT 44 #define __ gen()->lir(__FILE__, __LINE__)-> 45 #else 46 #define __ gen()->lir()-> 47 #endif 48 49 // Item will be loaded into a byte register; Intel only 50 void LIRItem::load_byte_item() { 51 load_item(); 52 } 53 54 55 void LIRItem::load_nonconstant() { 56 LIR_Opr r = value()->operand(); 57 if (r->is_constant()) { 58 _result = r; 59 } else { 60 load_item(); 61 } 62 } 63 64 //-------------------------------------------------------------- 65 // LIRGenerator 66 //-------------------------------------------------------------- 67 68 69 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; } 70 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::r3_opr; } 71 LIR_Opr LIRGenerator::divInOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 72 LIR_Opr LIRGenerator::divOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 73 LIR_Opr LIRGenerator::remOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 74 LIR_Opr LIRGenerator::shiftCountOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; } 75 LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } 76 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::r0_opr; } 77 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } 78 79 80 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { 81 LIR_Opr opr; 82 switch (type->tag()) { 83 case intTag: opr = FrameMap::r0_opr; break; 84 case objectTag: opr = FrameMap::r0_oop_opr; break; 85 case longTag: opr = FrameMap::long0_opr; break; 86 case floatTag: opr = FrameMap::fpu0_float_opr; break; 87 case doubleTag: opr = FrameMap::fpu0_double_opr; break; 88 89 case addressTag: 90 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 91 } 92 93 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); 94 return opr; 95 } 96 97 98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) { 99 LIR_Opr reg = new_register(T_INT); 100 set_vreg_flag(reg, LIRGenerator::byte_reg); 101 return reg; 102 } 103 104 105 //--------- loading items into registers -------------------------------- 106 107 108 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { 109 if (v->type()->as_IntConstant() != NULL) { 110 return v->type()->as_IntConstant()->value() == 0L; 111 } else if (v->type()->as_LongConstant() != NULL) { 112 return v->type()->as_LongConstant()->value() == 0L; 113 } else if (v->type()->as_ObjectConstant() != NULL) { 114 return v->type()->as_ObjectConstant()->value()->is_null_object(); 115 } else { 116 return false; 117 } 118 } 119 120 bool LIRGenerator::can_inline_as_constant(Value v) const { 121 // FIXME: Just a guess 122 if (v->type()->as_IntConstant() != NULL) { 123 return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value()); 124 } else if (v->type()->as_LongConstant() != NULL) { 125 return v->type()->as_LongConstant()->value() == 0L; 126 } else if (v->type()->as_ObjectConstant() != NULL) { 127 return v->type()->as_ObjectConstant()->value()->is_null_object(); 128 } else { 129 return false; 130 } 131 } 132 133 134 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; } 135 136 137 LIR_Opr LIRGenerator::safepoint_poll_register() { 138 return LIR_OprFact::illegalOpr; 139 } 140 141 142 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, 143 int shift, int disp, BasicType type) { 144 assert(base->is_register(), "must be"); 145 intx large_disp = disp; 146 147 // accumulate fixed displacements 148 if (index->is_constant()) { 149 LIR_Const *constant = index->as_constant_ptr(); 150 if (constant->type() == T_INT) { 151 large_disp += ((intx)index->as_jint()) << shift; 152 } else { 153 assert(constant->type() == T_LONG, "should be"); 154 jlong c = index->as_jlong() << shift; 155 if ((jlong)((jint)c) == c) { 156 large_disp += c; 157 index = LIR_OprFact::illegalOpr; 158 } else { 159 LIR_Opr tmp = new_register(T_LONG); 160 __ move(index, tmp); 161 index = tmp; 162 // apply shift and displacement below 163 } 164 } 165 } 166 167 if (index->is_register()) { 168 // apply the shift and accumulate the displacement 169 if (shift > 0) { 170 LIR_Opr tmp = new_pointer_register(); 171 __ shift_left(index, shift, tmp); 172 index = tmp; 173 } 174 if (large_disp != 0) { 175 LIR_Opr tmp = new_pointer_register(); 176 if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) { 177 __ add(index, LIR_OprFact::intptrConst(large_disp), tmp); 178 index = tmp; 179 } else { 180 __ move(LIR_OprFact::intptrConst(large_disp), tmp); 181 __ add(tmp, index, tmp); 182 index = tmp; 183 } 184 large_disp = 0; 185 } 186 } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) { 187 // index is illegal so replace it with the displacement loaded into a register 188 index = new_pointer_register(); 189 __ move(LIR_OprFact::intptrConst(large_disp), index); 190 large_disp = 0; 191 } 192 193 // at this point we either have base + index or base + displacement 194 if (large_disp == 0 && index->is_register()) { 195 return new LIR_Address(base, index, type); 196 } else { 197 assert(Address::offset_ok_for_immed(large_disp, shift), "failed for large_disp: " INTPTR_FORMAT " and shift %d", large_disp, shift); 198 return new LIR_Address(base, large_disp, type); 199 } 200 } 201 202 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, 203 BasicType type) { 204 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); 205 int elem_size = type2aelembytes(type); 206 int shift = exact_log2(elem_size); 207 return generate_address(array_opr, index_opr, shift, offset_in_bytes, type); 208 } 209 210 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { 211 LIR_Opr r; 212 if (type == T_LONG) { 213 r = LIR_OprFact::longConst(x); 214 if (!Assembler::operand_valid_for_logical_immediate(false, x)) { 215 LIR_Opr tmp = new_register(type); 216 __ move(r, tmp); 217 return tmp; 218 } 219 } else if (type == T_INT) { 220 r = LIR_OprFact::intConst(x); 221 if (!Assembler::operand_valid_for_logical_immediate(true, x)) { 222 // This is all rather nasty. We don't know whether our constant 223 // is required for a logical or an arithmetic operation, wo we 224 // don't know what the range of valid values is!! 225 LIR_Opr tmp = new_register(type); 226 __ move(r, tmp); 227 return tmp; 228 } 229 } else { 230 ShouldNotReachHere(); 231 r = NULL; // unreachable 232 } 233 return r; 234 } 235 236 237 238 void LIRGenerator::increment_counter(address counter, BasicType type, int step) { 239 LIR_Opr pointer = new_pointer_register(); 240 __ move(LIR_OprFact::intptrConst(counter), pointer); 241 LIR_Address* addr = new LIR_Address(pointer, type); 242 increment_counter(addr, step); 243 } 244 245 246 void LIRGenerator::increment_counter(LIR_Address* addr, int step) { 247 LIR_Opr imm = NULL; 248 switch(addr->type()) { 249 case T_INT: 250 imm = LIR_OprFact::intConst(step); 251 break; 252 case T_LONG: 253 imm = LIR_OprFact::longConst(step); 254 break; 255 default: 256 ShouldNotReachHere(); 257 } 258 LIR_Opr reg = new_register(addr->type()); 259 __ load(addr, reg); 260 __ add(reg, imm, reg); 261 __ store(reg, addr); 262 } 263 264 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 265 LIR_Opr reg = new_register(T_INT); 266 __ load(generate_address(base, disp, T_INT), reg, info); 267 __ cmp(condition, reg, LIR_OprFact::intConst(c)); 268 } 269 270 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { 271 LIR_Opr reg1 = new_register(T_INT); 272 __ load(generate_address(base, disp, type), reg1, info); 273 __ cmp(condition, reg, reg1); 274 } 275 276 277 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { 278 279 if (is_power_of_2(c - 1)) { 280 __ shift_left(left, exact_log2(c - 1), tmp); 281 __ add(tmp, left, result); 282 return true; 283 } else if (is_power_of_2(c + 1)) { 284 __ shift_left(left, exact_log2(c + 1), tmp); 285 __ sub(tmp, left, result); 286 return true; 287 } else { 288 return false; 289 } 290 } 291 292 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { 293 BasicType type = item->type(); 294 __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type)); 295 } 296 297 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { 298 LIR_Opr tmp1 = new_register(objectType); 299 LIR_Opr tmp2 = new_register(objectType); 300 LIR_Opr tmp3 = new_register(objectType); 301 __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); 302 } 303 304 //---------------------------------------------------------------------- 305 // visitor functions 306 //---------------------------------------------------------------------- 307 308 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { 309 assert(x->is_pinned(),""); 310 LIRItem obj(x->obj(), this); 311 obj.load_item(); 312 313 set_no_result(x); 314 315 // "lock" stores the address of the monitor stack slot, so this is not an oop 316 LIR_Opr lock = new_register(T_INT); 317 // Need a scratch register for biased locking 318 LIR_Opr scratch = LIR_OprFact::illegalOpr; 319 if (UseBiasedLocking) { 320 scratch = new_register(T_INT); 321 } 322 323 CodeEmitInfo* info_for_exception = NULL; 324 if (x->needs_null_check()) { 325 info_for_exception = state_for(x); 326 } 327 // this CodeEmitInfo must not have the xhandlers because here the 328 // object is already locked (xhandlers expect object to be unlocked) 329 CodeEmitInfo* info = state_for(x, x->state(), true); 330 monitor_enter(obj.result(), lock, syncTempOpr(), scratch, 331 x->monitor_no(), info_for_exception, info); 332 } 333 334 335 void LIRGenerator::do_MonitorExit(MonitorExit* x) { 336 assert(x->is_pinned(),""); 337 338 LIRItem obj(x->obj(), this); 339 obj.dont_load_item(); 340 341 LIR_Opr lock = new_register(T_INT); 342 LIR_Opr obj_temp = new_register(T_INT); 343 set_no_result(x); 344 monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no()); 345 } 346 347 348 void LIRGenerator::do_NegateOp(NegateOp* x) { 349 350 LIRItem from(x->x(), this); 351 from.load_item(); 352 LIR_Opr result = rlock_result(x); 353 __ negate (from.result(), result); 354 355 } 356 357 // for _fadd, _fmul, _fsub, _fdiv, _frem 358 // _dadd, _dmul, _dsub, _ddiv, _drem 359 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { 360 361 if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) { 362 // float remainder is implemented as a direct call into the runtime 363 LIRItem right(x->x(), this); 364 LIRItem left(x->y(), this); 365 366 BasicTypeList signature(2); 367 if (x->op() == Bytecodes::_frem) { 368 signature.append(T_FLOAT); 369 signature.append(T_FLOAT); 370 } else { 371 signature.append(T_DOUBLE); 372 signature.append(T_DOUBLE); 373 } 374 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 375 376 const LIR_Opr result_reg = result_register_for(x->type()); 377 left.load_item_force(cc->at(1)); 378 right.load_item(); 379 380 __ move(right.result(), cc->at(0)); 381 382 address entry; 383 if (x->op() == Bytecodes::_frem) { 384 entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem); 385 } else { 386 entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem); 387 } 388 389 LIR_Opr result = rlock_result(x); 390 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); 391 __ move(result_reg, result); 392 393 return; 394 } 395 396 LIRItem left(x->x(), this); 397 LIRItem right(x->y(), this); 398 LIRItem* left_arg = &left; 399 LIRItem* right_arg = &right; 400 401 // Always load right hand side. 402 right.load_item(); 403 404 if (!left.is_register()) 405 left.load_item(); 406 407 LIR_Opr reg = rlock(x); 408 409 arithmetic_op_fpu(x->op(), reg, left.result(), right.result()); 410 411 set_result(x, round_item(reg)); 412 } 413 414 // for _ladd, _lmul, _lsub, _ldiv, _lrem 415 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { 416 417 // missing test if instr is commutative and if we should swap 418 LIRItem left(x->x(), this); 419 LIRItem right(x->y(), this); 420 421 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) { 422 423 left.load_item(); 424 bool need_zero_check = true; 425 if (right.is_constant()) { 426 jlong c = right.get_jlong_constant(); 427 // no need to do div-by-zero check if the divisor is a non-zero constant 428 if (c != 0) need_zero_check = false; 429 // do not load right if the divisor is a power-of-2 constant 430 if (c > 0 && is_power_of_2(c)) { 431 right.dont_load_item(); 432 } else { 433 right.load_item(); 434 } 435 } else { 436 right.load_item(); 437 } 438 if (need_zero_check) { 439 CodeEmitInfo* info = state_for(x); 440 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); 441 __ branch(lir_cond_equal, new DivByZeroStub(info)); 442 } 443 444 rlock_result(x); 445 switch (x->op()) { 446 case Bytecodes::_lrem: 447 __ rem (left.result(), right.result(), x->operand()); 448 break; 449 case Bytecodes::_ldiv: 450 __ div (left.result(), right.result(), x->operand()); 451 break; 452 default: 453 ShouldNotReachHere(); 454 break; 455 } 456 457 458 } else { 459 assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, 460 "expect lmul, ladd or lsub"); 461 // add, sub, mul 462 left.load_item(); 463 if (! right.is_register()) { 464 if (x->op() == Bytecodes::_lmul 465 || ! right.is_constant() 466 || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) { 467 right.load_item(); 468 } else { // add, sub 469 assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub"); 470 // don't load constants to save register 471 right.load_nonconstant(); 472 } 473 } 474 rlock_result(x); 475 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); 476 } 477 } 478 479 // for: _iadd, _imul, _isub, _idiv, _irem 480 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { 481 482 // Test if instr is commutative and if we should swap 483 LIRItem left(x->x(), this); 484 LIRItem right(x->y(), this); 485 LIRItem* left_arg = &left; 486 LIRItem* right_arg = &right; 487 if (x->is_commutative() && left.is_stack() && right.is_register()) { 488 // swap them if left is real stack (or cached) and right is real register(not cached) 489 left_arg = &right; 490 right_arg = &left; 491 } 492 493 left_arg->load_item(); 494 495 // do not need to load right, as we can handle stack and constants 496 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { 497 498 rlock_result(x); 499 bool need_zero_check = true; 500 if (right.is_constant()) { 501 jint c = right.get_jint_constant(); 502 // no need to do div-by-zero check if the divisor is a non-zero constant 503 if (c != 0) need_zero_check = false; 504 // do not load right if the divisor is a power-of-2 constant 505 if (c > 0 && is_power_of_2(c)) { 506 right_arg->dont_load_item(); 507 } else { 508 right_arg->load_item(); 509 } 510 } else { 511 right_arg->load_item(); 512 } 513 if (need_zero_check) { 514 CodeEmitInfo* info = state_for(x); 515 __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0)); 516 __ branch(lir_cond_equal, new DivByZeroStub(info)); 517 } 518 519 LIR_Opr ill = LIR_OprFact::illegalOpr; 520 if (x->op() == Bytecodes::_irem) { 521 __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, NULL); 522 } else if (x->op() == Bytecodes::_idiv) { 523 __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, NULL); 524 } 525 526 } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) { 527 if (right.is_constant() 528 && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) { 529 right.load_nonconstant(); 530 } else { 531 right.load_item(); 532 } 533 rlock_result(x); 534 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr); 535 } else { 536 assert (x->op() == Bytecodes::_imul, "expect imul"); 537 if (right.is_constant()) { 538 jint c = right.get_jint_constant(); 539 if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) { 540 right_arg->dont_load_item(); 541 } else { 542 // Cannot use constant op. 543 right_arg->load_item(); 544 } 545 } else { 546 right.load_item(); 547 } 548 rlock_result(x); 549 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT)); 550 } 551 } 552 553 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { 554 // when an operand with use count 1 is the left operand, then it is 555 // likely that no move for 2-operand-LIR-form is necessary 556 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { 557 x->swap_operands(); 558 } 559 560 ValueTag tag = x->type()->tag(); 561 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); 562 switch (tag) { 563 case floatTag: 564 case doubleTag: do_ArithmeticOp_FPU(x); return; 565 case longTag: do_ArithmeticOp_Long(x); return; 566 case intTag: do_ArithmeticOp_Int(x); return; 567 default: ShouldNotReachHere(); return; 568 } 569 } 570 571 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr 572 void LIRGenerator::do_ShiftOp(ShiftOp* x) { 573 574 LIRItem left(x->x(), this); 575 LIRItem right(x->y(), this); 576 577 left.load_item(); 578 579 rlock_result(x); 580 if (right.is_constant()) { 581 right.dont_load_item(); 582 583 switch (x->op()) { 584 case Bytecodes::_ishl: { 585 int c = right.get_jint_constant() & 0x1f; 586 __ shift_left(left.result(), c, x->operand()); 587 break; 588 } 589 case Bytecodes::_ishr: { 590 int c = right.get_jint_constant() & 0x1f; 591 __ shift_right(left.result(), c, x->operand()); 592 break; 593 } 594 case Bytecodes::_iushr: { 595 int c = right.get_jint_constant() & 0x1f; 596 __ unsigned_shift_right(left.result(), c, x->operand()); 597 break; 598 } 599 case Bytecodes::_lshl: { 600 int c = right.get_jint_constant() & 0x3f; 601 __ shift_left(left.result(), c, x->operand()); 602 break; 603 } 604 case Bytecodes::_lshr: { 605 int c = right.get_jint_constant() & 0x3f; 606 __ shift_right(left.result(), c, x->operand()); 607 break; 608 } 609 case Bytecodes::_lushr: { 610 int c = right.get_jint_constant() & 0x3f; 611 __ unsigned_shift_right(left.result(), c, x->operand()); 612 break; 613 } 614 default: 615 ShouldNotReachHere(); 616 } 617 } else { 618 right.load_item(); 619 LIR_Opr tmp = new_register(T_INT); 620 switch (x->op()) { 621 case Bytecodes::_ishl: { 622 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 623 __ shift_left(left.result(), tmp, x->operand(), tmp); 624 break; 625 } 626 case Bytecodes::_ishr: { 627 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 628 __ shift_right(left.result(), tmp, x->operand(), tmp); 629 break; 630 } 631 case Bytecodes::_iushr: { 632 __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp); 633 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 634 break; 635 } 636 case Bytecodes::_lshl: { 637 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 638 __ shift_left(left.result(), tmp, x->operand(), tmp); 639 break; 640 } 641 case Bytecodes::_lshr: { 642 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 643 __ shift_right(left.result(), tmp, x->operand(), tmp); 644 break; 645 } 646 case Bytecodes::_lushr: { 647 __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp); 648 __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp); 649 break; 650 } 651 default: 652 ShouldNotReachHere(); 653 } 654 } 655 } 656 657 // _iand, _land, _ior, _lor, _ixor, _lxor 658 void LIRGenerator::do_LogicOp(LogicOp* x) { 659 660 LIRItem left(x->x(), this); 661 LIRItem right(x->y(), this); 662 663 left.load_item(); 664 665 rlock_result(x); 666 if (right.is_constant() 667 && ((right.type()->tag() == intTag 668 && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant())) 669 || (right.type()->tag() == longTag 670 && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant())))) { 671 right.dont_load_item(); 672 } else { 673 right.load_item(); 674 } 675 switch (x->op()) { 676 case Bytecodes::_iand: 677 case Bytecodes::_land: 678 __ logical_and(left.result(), right.result(), x->operand()); break; 679 case Bytecodes::_ior: 680 case Bytecodes::_lor: 681 __ logical_or (left.result(), right.result(), x->operand()); break; 682 case Bytecodes::_ixor: 683 case Bytecodes::_lxor: 684 __ logical_xor(left.result(), right.result(), x->operand()); break; 685 default: Unimplemented(); 686 } 687 } 688 689 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg 690 void LIRGenerator::do_CompareOp(CompareOp* x) { 691 LIRItem left(x->x(), this); 692 LIRItem right(x->y(), this); 693 ValueTag tag = x->x()->type()->tag(); 694 if (tag == longTag) { 695 left.set_destroys_register(); 696 } 697 left.load_item(); 698 right.load_item(); 699 LIR_Opr reg = rlock_result(x); 700 701 if (x->x()->type()->is_float_kind()) { 702 Bytecodes::Code code = x->op(); 703 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); 704 } else if (x->x()->type()->tag() == longTag) { 705 __ lcmp2int(left.result(), right.result(), reg); 706 } else { 707 Unimplemented(); 708 } 709 } 710 711 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { 712 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience 713 new_value.load_item(); 714 cmp_value.load_item(); 715 LIR_Opr result = new_register(T_INT); 716 if (is_reference_type(type)) { 717 __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result); 718 } else if (type == T_INT) { 719 __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 720 } else if (type == T_LONG) { 721 __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 722 } else { 723 ShouldNotReachHere(); 724 Unimplemented(); 725 } 726 __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result); 727 return result; 728 } 729 730 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { 731 bool is_oop = is_reference_type(type); 732 LIR_Opr result = new_register(type); 733 value.load_item(); 734 assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type"); 735 LIR_Opr tmp = new_register(T_INT); 736 __ xchg(addr, value.result(), result, tmp); 737 return result; 738 } 739 740 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { 741 LIR_Opr result = new_register(type); 742 value.load_item(); 743 assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type"); 744 LIR_Opr tmp = new_register(T_INT); 745 __ xadd(addr, value.result(), result, tmp); 746 return result; 747 } 748 749 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { 750 assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type"); 751 if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || 752 x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || 753 x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || 754 x->id() == vmIntrinsics::_dlog10) { 755 do_LibmIntrinsic(x); 756 return; 757 } 758 switch (x->id()) { 759 case vmIntrinsics::_dabs: 760 case vmIntrinsics::_dsqrt: { 761 assert(x->number_of_arguments() == 1, "wrong type"); 762 LIRItem value(x->argument_at(0), this); 763 value.load_item(); 764 LIR_Opr dst = rlock_result(x); 765 766 switch (x->id()) { 767 case vmIntrinsics::_dsqrt: { 768 __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr); 769 break; 770 } 771 case vmIntrinsics::_dabs: { 772 __ abs(value.result(), dst, LIR_OprFact::illegalOpr); 773 break; 774 } 775 default: 776 ShouldNotReachHere(); 777 } 778 break; 779 } 780 default: 781 ShouldNotReachHere(); 782 } 783 } 784 785 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { 786 LIRItem value(x->argument_at(0), this); 787 value.set_destroys_register(); 788 789 LIR_Opr calc_result = rlock_result(x); 790 LIR_Opr result_reg = result_register_for(x->type()); 791 792 CallingConvention* cc = NULL; 793 794 if (x->id() == vmIntrinsics::_dpow) { 795 LIRItem value1(x->argument_at(1), this); 796 797 value1.set_destroys_register(); 798 799 BasicTypeList signature(2); 800 signature.append(T_DOUBLE); 801 signature.append(T_DOUBLE); 802 cc = frame_map()->c_calling_convention(&signature); 803 value.load_item_force(cc->at(0)); 804 value1.load_item_force(cc->at(1)); 805 } else { 806 BasicTypeList signature(1); 807 signature.append(T_DOUBLE); 808 cc = frame_map()->c_calling_convention(&signature); 809 value.load_item_force(cc->at(0)); 810 } 811 812 switch (x->id()) { 813 case vmIntrinsics::_dexp: 814 if (StubRoutines::dexp() != NULL) { 815 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); 816 } else { 817 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); 818 } 819 break; 820 case vmIntrinsics::_dlog: 821 if (StubRoutines::dlog() != NULL) { 822 __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); 823 } else { 824 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); 825 } 826 break; 827 case vmIntrinsics::_dlog10: 828 if (StubRoutines::dlog10() != NULL) { 829 __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); 830 } else { 831 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); 832 } 833 break; 834 case vmIntrinsics::_dpow: 835 if (StubRoutines::dpow() != NULL) { 836 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); 837 } else { 838 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); 839 } 840 break; 841 case vmIntrinsics::_dsin: 842 if (StubRoutines::dsin() != NULL) { 843 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); 844 } else { 845 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); 846 } 847 break; 848 case vmIntrinsics::_dcos: 849 if (StubRoutines::dcos() != NULL) { 850 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); 851 } else { 852 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); 853 } 854 break; 855 case vmIntrinsics::_dtan: 856 if (StubRoutines::dtan() != NULL) { 857 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); 858 } else { 859 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); 860 } 861 break; 862 default: ShouldNotReachHere(); 863 } 864 __ move(result_reg, calc_result); 865 } 866 867 868 void LIRGenerator::do_ArrayCopy(Intrinsic* x) { 869 assert(x->number_of_arguments() == 5, "wrong type"); 870 871 // Make all state_for calls early since they can emit code 872 CodeEmitInfo* info = state_for(x, x->state()); 873 874 LIRItem src(x->argument_at(0), this); 875 LIRItem src_pos(x->argument_at(1), this); 876 LIRItem dst(x->argument_at(2), this); 877 LIRItem dst_pos(x->argument_at(3), this); 878 LIRItem length(x->argument_at(4), this); 879 880 // operands for arraycopy must use fixed registers, otherwise 881 // LinearScan will fail allocation (because arraycopy always needs a 882 // call) 883 884 // The java calling convention will give us enough registers 885 // so that on the stub side the args will be perfect already. 886 // On the other slow/special case side we call C and the arg 887 // positions are not similar enough to pick one as the best. 888 // Also because the java calling convention is a "shifted" version 889 // of the C convention we can process the java args trivially into C 890 // args without worry of overwriting during the xfer 891 892 src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); 893 src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); 894 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); 895 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); 896 length.load_item_force (FrameMap::as_opr(j_rarg4)); 897 898 LIR_Opr tmp = FrameMap::as_opr(j_rarg5); 899 900 set_no_result(x); 901 902 int flags; 903 ciArrayKlass* expected_type; 904 arraycopy_helper(x, &flags, &expected_type); 905 906 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint 907 } 908 909 void LIRGenerator::do_update_CRC32(Intrinsic* x) { 910 assert(UseCRC32Intrinsics, "why are we here?"); 911 // Make all state_for calls early since they can emit code 912 LIR_Opr result = rlock_result(x); 913 int flags = 0; 914 switch (x->id()) { 915 case vmIntrinsics::_updateCRC32: { 916 LIRItem crc(x->argument_at(0), this); 917 LIRItem val(x->argument_at(1), this); 918 // val is destroyed by update_crc32 919 val.set_destroys_register(); 920 crc.load_item(); 921 val.load_item(); 922 __ update_crc32(crc.result(), val.result(), result); 923 break; 924 } 925 case vmIntrinsics::_updateBytesCRC32: 926 case vmIntrinsics::_updateByteBufferCRC32: { 927 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); 928 929 LIRItem crc(x->argument_at(0), this); 930 LIRItem buf(x->argument_at(1), this); 931 LIRItem off(x->argument_at(2), this); 932 LIRItem len(x->argument_at(3), this); 933 buf.load_item(); 934 off.load_nonconstant(); 935 936 LIR_Opr index = off.result(); 937 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 938 if(off.result()->is_constant()) { 939 index = LIR_OprFact::illegalOpr; 940 offset += off.result()->as_jint(); 941 } 942 LIR_Opr base_op = buf.result(); 943 944 if (index->is_valid()) { 945 LIR_Opr tmp = new_register(T_LONG); 946 __ convert(Bytecodes::_i2l, index, tmp); 947 index = tmp; 948 } 949 950 if (offset) { 951 LIR_Opr tmp = new_pointer_register(); 952 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 953 base_op = tmp; 954 offset = 0; 955 } 956 957 LIR_Address* a = new LIR_Address(base_op, 958 index, 959 offset, 960 T_BYTE); 961 BasicTypeList signature(3); 962 signature.append(T_INT); 963 signature.append(T_ADDRESS); 964 signature.append(T_INT); 965 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 966 const LIR_Opr result_reg = result_register_for(x->type()); 967 968 LIR_Opr addr = new_pointer_register(); 969 __ leal(LIR_OprFact::address(a), addr); 970 971 crc.load_item_force(cc->at(0)); 972 __ move(addr, cc->at(1)); 973 len.load_item_force(cc->at(2)); 974 975 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); 976 __ move(result_reg, result); 977 978 break; 979 } 980 default: { 981 ShouldNotReachHere(); 982 } 983 } 984 } 985 986 void LIRGenerator::do_update_CRC32C(Intrinsic* x) { 987 assert(UseCRC32CIntrinsics, "why are we here?"); 988 // Make all state_for calls early since they can emit code 989 LIR_Opr result = rlock_result(x); 990 int flags = 0; 991 switch (x->id()) { 992 case vmIntrinsics::_updateBytesCRC32C: 993 case vmIntrinsics::_updateDirectByteBufferCRC32C: { 994 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C); 995 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 996 997 LIRItem crc(x->argument_at(0), this); 998 LIRItem buf(x->argument_at(1), this); 999 LIRItem off(x->argument_at(2), this); 1000 LIRItem end(x->argument_at(3), this); 1001 1002 buf.load_item(); 1003 off.load_nonconstant(); 1004 end.load_nonconstant(); 1005 1006 // len = end - off 1007 LIR_Opr len = end.result(); 1008 LIR_Opr tmpA = new_register(T_INT); 1009 LIR_Opr tmpB = new_register(T_INT); 1010 __ move(end.result(), tmpA); 1011 __ move(off.result(), tmpB); 1012 __ sub(tmpA, tmpB, tmpA); 1013 len = tmpA; 1014 1015 LIR_Opr index = off.result(); 1016 if(off.result()->is_constant()) { 1017 index = LIR_OprFact::illegalOpr; 1018 offset += off.result()->as_jint(); 1019 } 1020 LIR_Opr base_op = buf.result(); 1021 1022 if (index->is_valid()) { 1023 LIR_Opr tmp = new_register(T_LONG); 1024 __ convert(Bytecodes::_i2l, index, tmp); 1025 index = tmp; 1026 } 1027 1028 if (offset) { 1029 LIR_Opr tmp = new_pointer_register(); 1030 __ add(base_op, LIR_OprFact::intConst(offset), tmp); 1031 base_op = tmp; 1032 offset = 0; 1033 } 1034 1035 LIR_Address* a = new LIR_Address(base_op, 1036 index, 1037 offset, 1038 T_BYTE); 1039 BasicTypeList signature(3); 1040 signature.append(T_INT); 1041 signature.append(T_ADDRESS); 1042 signature.append(T_INT); 1043 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1044 const LIR_Opr result_reg = result_register_for(x->type()); 1045 1046 LIR_Opr addr = new_pointer_register(); 1047 __ leal(LIR_OprFact::address(a), addr); 1048 1049 crc.load_item_force(cc->at(0)); 1050 __ move(addr, cc->at(1)); 1051 __ move(len, cc->at(2)); 1052 1053 __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args()); 1054 __ move(result_reg, result); 1055 1056 break; 1057 } 1058 default: { 1059 ShouldNotReachHere(); 1060 } 1061 } 1062 } 1063 1064 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { 1065 assert(x->number_of_arguments() == 3, "wrong type"); 1066 assert(UseFMA, "Needs FMA instructions support."); 1067 LIRItem value(x->argument_at(0), this); 1068 LIRItem value1(x->argument_at(1), this); 1069 LIRItem value2(x->argument_at(2), this); 1070 1071 value.load_item(); 1072 value1.load_item(); 1073 value2.load_item(); 1074 1075 LIR_Opr calc_input = value.result(); 1076 LIR_Opr calc_input1 = value1.result(); 1077 LIR_Opr calc_input2 = value2.result(); 1078 LIR_Opr calc_result = rlock_result(x); 1079 1080 switch (x->id()) { 1081 case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; 1082 case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; 1083 default: ShouldNotReachHere(); 1084 } 1085 } 1086 1087 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { 1088 fatal("vectorizedMismatch intrinsic is not implemented on this platform"); 1089 } 1090 1091 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f 1092 // _i2b, _i2c, _i2s 1093 void LIRGenerator::do_Convert(Convert* x) { 1094 LIRItem value(x->value(), this); 1095 value.load_item(); 1096 LIR_Opr input = value.result(); 1097 LIR_Opr result = rlock(x); 1098 1099 // arguments of lir_convert 1100 LIR_Opr conv_input = input; 1101 LIR_Opr conv_result = result; 1102 1103 __ convert(x->op(), conv_input, conv_result); 1104 1105 assert(result->is_virtual(), "result must be virtual register"); 1106 set_result(x, result); 1107 } 1108 1109 void LIRGenerator::do_NewInstance(NewInstance* x) { 1110 #ifndef PRODUCT 1111 if (PrintNotLoaded && !x->klass()->is_loaded()) { 1112 tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci()); 1113 } 1114 #endif 1115 CodeEmitInfo* info = state_for(x, x->state()); 1116 LIR_Opr reg = result_register_for(x->type()); 1117 new_instance(reg, x->klass(), x->is_unresolved(), 1118 FrameMap::r10_oop_opr, 1119 FrameMap::r11_oop_opr, 1120 FrameMap::r4_oop_opr, 1121 LIR_OprFact::illegalOpr, 1122 FrameMap::r3_metadata_opr, info); 1123 LIR_Opr result = rlock_result(x); 1124 __ move(reg, result); 1125 } 1126 1127 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { 1128 CodeEmitInfo* info = state_for(x, x->state()); 1129 1130 LIRItem length(x->length(), this); 1131 length.load_item_force(FrameMap::r19_opr); 1132 1133 LIR_Opr reg = result_register_for(x->type()); 1134 LIR_Opr tmp1 = FrameMap::r10_oop_opr; 1135 LIR_Opr tmp2 = FrameMap::r11_oop_opr; 1136 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1137 LIR_Opr tmp4 = reg; 1138 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1139 LIR_Opr len = length.result(); 1140 BasicType elem_type = x->elt_type(); 1141 1142 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); 1143 1144 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); 1145 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); 1146 1147 LIR_Opr result = rlock_result(x); 1148 __ move(reg, result); 1149 } 1150 1151 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { 1152 LIRItem length(x->length(), this); 1153 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction 1154 // and therefore provide the state before the parameters have been consumed 1155 CodeEmitInfo* patching_info = NULL; 1156 if (!x->klass()->is_loaded() || PatchALot) { 1157 patching_info = state_for(x, x->state_before()); 1158 } 1159 1160 CodeEmitInfo* info = state_for(x, x->state()); 1161 1162 LIR_Opr reg = result_register_for(x->type()); 1163 LIR_Opr tmp1 = FrameMap::r10_oop_opr; 1164 LIR_Opr tmp2 = FrameMap::r11_oop_opr; 1165 LIR_Opr tmp3 = FrameMap::r5_oop_opr; 1166 LIR_Opr tmp4 = reg; 1167 LIR_Opr klass_reg = FrameMap::r3_metadata_opr; 1168 1169 length.load_item_force(FrameMap::r19_opr); 1170 LIR_Opr len = length.result(); 1171 1172 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); 1173 ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); 1174 if (obj == ciEnv::unloaded_ciobjarrayklass()) { 1175 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); 1176 } 1177 klass2reg_with_patching(klass_reg, obj, patching_info); 1178 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); 1179 1180 LIR_Opr result = rlock_result(x); 1181 __ move(reg, result); 1182 } 1183 1184 1185 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { 1186 Values* dims = x->dims(); 1187 int i = dims->length(); 1188 LIRItemList* items = new LIRItemList(i, i, NULL); 1189 while (i-- > 0) { 1190 LIRItem* size = new LIRItem(dims->at(i), this); 1191 items->at_put(i, size); 1192 } 1193 1194 // Evaluate state_for early since it may emit code. 1195 CodeEmitInfo* patching_info = NULL; 1196 if (!x->klass()->is_loaded() || PatchALot) { 1197 patching_info = state_for(x, x->state_before()); 1198 1199 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so 1200 // clone all handlers (NOTE: Usually this is handled transparently 1201 // by the CodeEmitInfo cloning logic in CodeStub constructors but 1202 // is done explicitly here because a stub isn't being used). 1203 x->set_exception_handlers(new XHandlers(x->exception_handlers())); 1204 } 1205 CodeEmitInfo* info = state_for(x, x->state()); 1206 1207 i = dims->length(); 1208 while (i-- > 0) { 1209 LIRItem* size = items->at(i); 1210 size->load_item(); 1211 1212 store_stack_parameter(size->result(), in_ByteSize(i*4)); 1213 } 1214 1215 LIR_Opr klass_reg = FrameMap::r0_metadata_opr; 1216 klass2reg_with_patching(klass_reg, x->klass(), patching_info); 1217 1218 LIR_Opr rank = FrameMap::r19_opr; 1219 __ move(LIR_OprFact::intConst(x->rank()), rank); 1220 LIR_Opr varargs = FrameMap::r2_opr; 1221 __ move(FrameMap::sp_opr, varargs); 1222 LIR_OprList* args = new LIR_OprList(3); 1223 args->append(klass_reg); 1224 args->append(rank); 1225 args->append(varargs); 1226 LIR_Opr reg = result_register_for(x->type()); 1227 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), 1228 LIR_OprFact::illegalOpr, 1229 reg, args, info); 1230 1231 LIR_Opr result = rlock_result(x); 1232 __ move(reg, result); 1233 } 1234 1235 void LIRGenerator::do_BlockBegin(BlockBegin* x) { 1236 // nothing to do for now 1237 } 1238 1239 void LIRGenerator::do_CheckCast(CheckCast* x) { 1240 LIRItem obj(x->obj(), this); 1241 1242 CodeEmitInfo* patching_info = NULL; 1243 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) { 1244 // must do this before locking the destination register as an oop register, 1245 // and before the obj is loaded (the latter is for deoptimization) 1246 patching_info = state_for(x, x->state_before()); 1247 } 1248 obj.load_item(); 1249 1250 // info for exceptions 1251 CodeEmitInfo* info_for_exception = 1252 (x->needs_exception_state() ? state_for(x) : 1253 state_for(x, x->state_before(), true /*ignore_xhandler*/)); 1254 1255 CodeStub* stub; 1256 if (x->is_incompatible_class_change_check()) { 1257 assert(patching_info == NULL, "can't patch this"); 1258 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); 1259 } else if (x->is_invokespecial_receiver_check()) { 1260 assert(patching_info == NULL, "can't patch this"); 1261 stub = new DeoptimizeStub(info_for_exception, 1262 Deoptimization::Reason_class_check, 1263 Deoptimization::Action_none); 1264 } else { 1265 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); 1266 } 1267 LIR_Opr reg = rlock_result(x); 1268 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1269 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1270 tmp3 = new_register(objectType); 1271 } 1272 __ checkcast(reg, obj.result(), x->klass(), 1273 new_register(objectType), new_register(objectType), tmp3, 1274 x->direct_compare(), info_for_exception, patching_info, stub, 1275 x->profiled_method(), x->profiled_bci()); 1276 } 1277 1278 void LIRGenerator::do_InstanceOf(InstanceOf* x) { 1279 LIRItem obj(x->obj(), this); 1280 1281 // result and test object may not be in same register 1282 LIR_Opr reg = rlock_result(x); 1283 CodeEmitInfo* patching_info = NULL; 1284 if ((!x->klass()->is_loaded() || PatchALot)) { 1285 // must do this before locking the destination register as an oop register 1286 patching_info = state_for(x, x->state_before()); 1287 } 1288 obj.load_item(); 1289 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1290 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1291 tmp3 = new_register(objectType); 1292 } 1293 __ instanceof(reg, obj.result(), x->klass(), 1294 new_register(objectType), new_register(objectType), tmp3, 1295 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); 1296 } 1297 1298 void LIRGenerator::do_If(If* x) { 1299 assert(x->number_of_sux() == 2, "inconsistency"); 1300 ValueTag tag = x->x()->type()->tag(); 1301 bool is_safepoint = x->is_safepoint(); 1302 1303 If::Condition cond = x->cond(); 1304 1305 LIRItem xitem(x->x(), this); 1306 LIRItem yitem(x->y(), this); 1307 LIRItem* xin = &xitem; 1308 LIRItem* yin = &yitem; 1309 1310 if (tag == longTag) { 1311 // for longs, only conditions "eql", "neq", "lss", "geq" are valid; 1312 // mirror for other conditions 1313 if (cond == If::gtr || cond == If::leq) { 1314 cond = Instruction::mirror(cond); 1315 xin = &yitem; 1316 yin = &xitem; 1317 } 1318 xin->set_destroys_register(); 1319 } 1320 xin->load_item(); 1321 1322 if (tag == longTag) { 1323 if (yin->is_constant() 1324 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) { 1325 yin->dont_load_item(); 1326 } else { 1327 yin->load_item(); 1328 } 1329 } else if (tag == intTag) { 1330 if (yin->is_constant() 1331 && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant())) { 1332 yin->dont_load_item(); 1333 } else { 1334 yin->load_item(); 1335 } 1336 } else { 1337 yin->load_item(); 1338 } 1339 1340 set_no_result(x); 1341 1342 LIR_Opr left = xin->result(); 1343 LIR_Opr right = yin->result(); 1344 1345 // add safepoint before generating condition code so it can be recomputed 1346 if (x->is_safepoint()) { 1347 // increment backedge counter if needed 1348 increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()), 1349 x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci()); 1350 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before())); 1351 } 1352 1353 __ cmp(lir_cond(cond), left, right); 1354 // Generate branch profiling. Profiling code doesn't kill flags. 1355 profile_branch(x, cond); 1356 move_to_phi(x->state()); 1357 if (x->x()->type()->is_float_kind()) { 1358 __ branch(lir_cond(cond), x->tsux(), x->usux()); 1359 } else { 1360 __ branch(lir_cond(cond), x->tsux()); 1361 } 1362 assert(x->default_sux() == x->fsux(), "wrong destination above"); 1363 __ jump(x->default_sux()); 1364 } 1365 1366 LIR_Opr LIRGenerator::getThreadPointer() { 1367 return FrameMap::as_pointer_opr(rthread); 1368 } 1369 1370 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); } 1371 1372 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, 1373 CodeEmitInfo* info) { 1374 __ volatile_store_mem_reg(value, address, info); 1375 } 1376 1377 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, 1378 CodeEmitInfo* info) { 1379 // 8179954: We need to make sure that the code generated for 1380 // volatile accesses forms a sequentially-consistent set of 1381 // operations when combined with STLR and LDAR. Without a leading 1382 // membar it's possible for a simple Dekker test to fail if loads 1383 // use LD;DMB but stores use STLR. This can happen if C2 compiles 1384 // the stores in one method and C1 compiles the loads in another. 1385 if (!CompilerConfig::is_c1_only_no_jvmci()) { 1386 __ membar(); 1387 } 1388 __ volatile_load_mem_reg(address, result, info); 1389 }