1 /*
   2  * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_Instruction.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_LIRGenerator.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArray.hpp"
  36 #include "ci/ciObjArrayKlass.hpp"
  37 #include "ci/ciTypeArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/powerOfTwo.hpp"
  41 #include "vmreg_aarch64.inline.hpp"
  42 
  43 #ifdef ASSERT
  44 #define __ gen()->lir(__FILE__, __LINE__)->
  45 #else
  46 #define __ gen()->lir()->
  47 #endif
  48 
  49 // Item will be loaded into a byte register; Intel only
  50 void LIRItem::load_byte_item() {
  51   load_item();
  52 }
  53 
  54 
  55 void LIRItem::load_nonconstant() {
  56   LIR_Opr r = value()->operand();
  57   if (r->is_constant()) {
  58     _result = r;
  59   } else {
  60     load_item();
  61   }
  62 }
  63 
  64 //--------------------------------------------------------------
  65 //               LIRGenerator
  66 //--------------------------------------------------------------
  67 
  68 
  69 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
  70 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
  71 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
  72 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  73 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  74 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
  75 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  76 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
  77 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  78 
  79 
  80 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  81   LIR_Opr opr;
  82   switch (type->tag()) {
  83     case intTag:     opr = FrameMap::r0_opr;          break;
  84     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
  85     case longTag:    opr = FrameMap::long0_opr;        break;
  86     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
  87     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
  88 
  89     case addressTag:
  90     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  91   }
  92 
  93   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  94   return opr;
  95 }
  96 
  97 
  98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  99   LIR_Opr reg = new_register(T_INT);
 100   set_vreg_flag(reg, LIRGenerator::byte_reg);
 101   return reg;
 102 }
 103 
 104 
 105 //--------- loading items into registers --------------------------------
 106 
 107 
 108 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 109   if (v->type()->as_IntConstant() != NULL) {
 110     return v->type()->as_IntConstant()->value() == 0L;
 111   } else if (v->type()->as_LongConstant() != NULL) {
 112     return v->type()->as_LongConstant()->value() == 0L;
 113   } else if (v->type()->as_ObjectConstant() != NULL) {
 114     return v->type()->as_ObjectConstant()->value()->is_null_object();
 115   } else {
 116     return false;
 117   }
 118 }
 119 
 120 bool LIRGenerator::can_inline_as_constant(Value v) const {
 121   // FIXME: Just a guess
 122   if (v->type()->as_IntConstant() != NULL) {
 123     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
 124   } else if (v->type()->as_LongConstant() != NULL) {
 125     return v->type()->as_LongConstant()->value() == 0L;
 126   } else if (v->type()->as_ObjectConstant() != NULL) {
 127     return v->type()->as_ObjectConstant()->value()->is_null_object();
 128   } else {
 129     return false;
 130   }
 131 }
 132 
 133 
 134 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
 135 
 136 
 137 LIR_Opr LIRGenerator::safepoint_poll_register() {
 138   return LIR_OprFact::illegalOpr;
 139 }
 140 
 141 
 142 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 143                                             int shift, int disp, BasicType type) {
 144   assert(base->is_register(), "must be");
 145   intx large_disp = disp;
 146 
 147   // accumulate fixed displacements
 148   if (index->is_constant()) {
 149     LIR_Const *constant = index->as_constant_ptr();
 150     if (constant->type() == T_INT) {
 151       large_disp += ((intx)index->as_jint()) << shift;
 152     } else {
 153       assert(constant->type() == T_LONG, "should be");
 154       jlong c = index->as_jlong() << shift;
 155       if ((jlong)((jint)c) == c) {
 156         large_disp += c;
 157         index = LIR_OprFact::illegalOpr;
 158       } else {
 159         LIR_Opr tmp = new_register(T_LONG);
 160         __ move(index, tmp);
 161         index = tmp;
 162         // apply shift and displacement below
 163       }
 164     }
 165   }
 166 
 167   if (index->is_register()) {
 168     // apply the shift and accumulate the displacement
 169     if (shift > 0) {
 170       LIR_Opr tmp = new_pointer_register();
 171       __ shift_left(index, shift, tmp);
 172       index = tmp;
 173     }
 174     if (large_disp != 0) {
 175       LIR_Opr tmp = new_pointer_register();
 176       if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) {
 177         __ add(index, LIR_OprFact::intptrConst(large_disp), tmp);
 178         index = tmp;
 179       } else {
 180         __ move(LIR_OprFact::intptrConst(large_disp), tmp);
 181         __ add(tmp, index, tmp);
 182         index = tmp;
 183       }
 184       large_disp = 0;
 185     }
 186   } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) {
 187     // index is illegal so replace it with the displacement loaded into a register
 188     index = new_pointer_register();
 189     __ move(LIR_OprFact::intptrConst(large_disp), index);
 190     large_disp = 0;
 191   }
 192 
 193   // at this point we either have base + index or base + displacement
 194   if (large_disp == 0 && index->is_register()) {
 195     return new LIR_Address(base, index, type);
 196   } else {
 197     assert(Address::offset_ok_for_immed(large_disp, shift), "failed for large_disp: " INTPTR_FORMAT " and shift %d", large_disp, shift);
 198     return new LIR_Address(base, large_disp, type);
 199   }
 200 }
 201 
 202 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 203                                               BasicType type) {
 204   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 205   int elem_size = type2aelembytes(type);
 206   int shift = exact_log2(elem_size);
 207   return generate_address(array_opr, index_opr, shift, offset_in_bytes, type);
 208 }
 209 
 210 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 211   LIR_Opr r;
 212   if (type == T_LONG) {
 213     r = LIR_OprFact::longConst(x);
 214     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
 215       LIR_Opr tmp = new_register(type);
 216       __ move(r, tmp);
 217       return tmp;
 218     }
 219   } else if (type == T_INT) {
 220     r = LIR_OprFact::intConst(x);
 221     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
 222       // This is all rather nasty.  We don't know whether our constant
 223       // is required for a logical or an arithmetic operation, wo we
 224       // don't know what the range of valid values is!!
 225       LIR_Opr tmp = new_register(type);
 226       __ move(r, tmp);
 227       return tmp;
 228     }
 229   } else {
 230     ShouldNotReachHere();
 231     r = NULL;  // unreachable
 232   }
 233   return r;
 234 }
 235 
 236 
 237 
 238 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 239   LIR_Opr pointer = new_pointer_register();
 240   __ move(LIR_OprFact::intptrConst(counter), pointer);
 241   LIR_Address* addr = new LIR_Address(pointer, type);
 242   increment_counter(addr, step);
 243 }
 244 
 245 
 246 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 247   LIR_Opr imm = NULL;
 248   switch(addr->type()) {
 249   case T_INT:
 250     imm = LIR_OprFact::intConst(step);
 251     break;
 252   case T_LONG:
 253     imm = LIR_OprFact::longConst(step);
 254     break;
 255   default:
 256     ShouldNotReachHere();
 257   }
 258   LIR_Opr reg = new_register(addr->type());
 259   __ load(addr, reg);
 260   __ add(reg, imm, reg);
 261   __ store(reg, addr);
 262 }
 263 
 264 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 265   LIR_Opr reg = new_register(T_INT);
 266   __ load(generate_address(base, disp, T_INT), reg, info);
 267   __ cmp(condition, reg, LIR_OprFact::intConst(c));
 268 }
 269 
 270 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 271   LIR_Opr reg1 = new_register(T_INT);
 272   __ load(generate_address(base, disp, type), reg1, info);
 273   __ cmp(condition, reg, reg1);
 274 }
 275 
 276 
 277 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
 278 
 279   if (is_power_of_2(c - 1)) {
 280     __ shift_left(left, exact_log2(c - 1), tmp);
 281     __ add(tmp, left, result);
 282     return true;
 283   } else if (is_power_of_2(c + 1)) {
 284     __ shift_left(left, exact_log2(c + 1), tmp);
 285     __ sub(tmp, left, result);
 286     return true;
 287   } else {
 288     return false;
 289   }
 290 }
 291 
 292 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 293   BasicType type = item->type();
 294   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
 295 }
 296 
 297 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 298     LIR_Opr tmp1 = new_register(objectType);
 299     LIR_Opr tmp2 = new_register(objectType);
 300     LIR_Opr tmp3 = new_register(objectType);
 301     __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 302 }
 303 
 304 //----------------------------------------------------------------------
 305 //             visitor functions
 306 //----------------------------------------------------------------------
 307 
 308 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 309   assert(x->is_pinned(),"");
 310   LIRItem obj(x->obj(), this);
 311   obj.load_item();
 312 
 313   set_no_result(x);
 314 
 315   // "lock" stores the address of the monitor stack slot, so this is not an oop
 316   LIR_Opr lock = new_register(T_INT);
 317   LIR_Opr scratch = new_register(T_INT);




 318 
 319   CodeEmitInfo* info_for_exception = NULL;
 320   if (x->needs_null_check()) {
 321     info_for_exception = state_for(x);
 322   }
 323   // this CodeEmitInfo must not have the xhandlers because here the
 324   // object is already locked (xhandlers expect object to be unlocked)
 325   CodeEmitInfo* info = state_for(x, x->state(), true);
 326   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 327                         x->monitor_no(), info_for_exception, info);
 328 }
 329 
 330 
 331 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 332   assert(x->is_pinned(),"");
 333 
 334   LIRItem obj(x->obj(), this);
 335   obj.dont_load_item();
 336 
 337   LIR_Opr lock = new_register(T_INT);
 338   LIR_Opr obj_temp = new_register(T_INT);
 339   LIR_Opr scratch = new_register(T_INT);
 340   set_no_result(x);
 341   monitor_exit(obj_temp, lock, syncTempOpr(), scratch, x->monitor_no());
 342 }
 343 
 344 
 345 void LIRGenerator::do_NegateOp(NegateOp* x) {
 346 
 347   LIRItem from(x->x(), this);
 348   from.load_item();
 349   LIR_Opr result = rlock_result(x);
 350   __ negate (from.result(), result);
 351 
 352 }
 353 
 354 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 355 //      _dadd, _dmul, _dsub, _ddiv, _drem
 356 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 357 
 358   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 359     // float remainder is implemented as a direct call into the runtime
 360     LIRItem right(x->x(), this);
 361     LIRItem left(x->y(), this);
 362 
 363     BasicTypeList signature(2);
 364     if (x->op() == Bytecodes::_frem) {
 365       signature.append(T_FLOAT);
 366       signature.append(T_FLOAT);
 367     } else {
 368       signature.append(T_DOUBLE);
 369       signature.append(T_DOUBLE);
 370     }
 371     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 372 
 373     const LIR_Opr result_reg = result_register_for(x->type());
 374     left.load_item_force(cc->at(1));
 375     right.load_item();
 376 
 377     __ move(right.result(), cc->at(0));
 378 
 379     address entry;
 380     if (x->op() == Bytecodes::_frem) {
 381       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 382     } else {
 383       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 384     }
 385 
 386     LIR_Opr result = rlock_result(x);
 387     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 388     __ move(result_reg, result);
 389 
 390     return;
 391   }
 392 
 393   LIRItem left(x->x(),  this);
 394   LIRItem right(x->y(), this);
 395   LIRItem* left_arg  = &left;
 396   LIRItem* right_arg = &right;
 397 
 398   // Always load right hand side.
 399   right.load_item();
 400 
 401   if (!left.is_register())
 402     left.load_item();
 403 
 404   LIR_Opr reg = rlock(x);
 405 
 406   arithmetic_op_fpu(x->op(), reg, left.result(), right.result());
 407 
 408   set_result(x, round_item(reg));
 409 }
 410 
 411 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 412 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 413 
 414   // missing test if instr is commutative and if we should swap
 415   LIRItem left(x->x(), this);
 416   LIRItem right(x->y(), this);
 417 
 418   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 419 
 420     left.load_item();
 421     bool need_zero_check = true;
 422     if (right.is_constant()) {
 423       jlong c = right.get_jlong_constant();
 424       // no need to do div-by-zero check if the divisor is a non-zero constant
 425       if (c != 0) need_zero_check = false;
 426       // do not load right if the divisor is a power-of-2 constant
 427       if (c > 0 && is_power_of_2(c)) {
 428         right.dont_load_item();
 429       } else {
 430         right.load_item();
 431       }
 432     } else {
 433       right.load_item();
 434     }
 435     if (need_zero_check) {
 436       CodeEmitInfo* info = state_for(x);
 437       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 438       __ branch(lir_cond_equal, new DivByZeroStub(info));
 439     }
 440 
 441     rlock_result(x);
 442     switch (x->op()) {
 443     case Bytecodes::_lrem:
 444       __ rem (left.result(), right.result(), x->operand());
 445       break;
 446     case Bytecodes::_ldiv:
 447       __ div (left.result(), right.result(), x->operand());
 448       break;
 449     default:
 450       ShouldNotReachHere();
 451       break;
 452     }
 453 
 454 
 455   } else {
 456     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
 457             "expect lmul, ladd or lsub");
 458     // add, sub, mul
 459     left.load_item();
 460     if (! right.is_register()) {
 461       if (x->op() == Bytecodes::_lmul
 462           || ! right.is_constant()
 463           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
 464         right.load_item();
 465       } else { // add, sub
 466         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
 467         // don't load constants to save register
 468         right.load_nonconstant();
 469       }
 470     }
 471     rlock_result(x);
 472     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 473   }
 474 }
 475 
 476 // for: _iadd, _imul, _isub, _idiv, _irem
 477 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 478 
 479   // Test if instr is commutative and if we should swap
 480   LIRItem left(x->x(),  this);
 481   LIRItem right(x->y(), this);
 482   LIRItem* left_arg = &left;
 483   LIRItem* right_arg = &right;
 484   if (x->is_commutative() && left.is_stack() && right.is_register()) {
 485     // swap them if left is real stack (or cached) and right is real register(not cached)
 486     left_arg = &right;
 487     right_arg = &left;
 488   }
 489 
 490   left_arg->load_item();
 491 
 492   // do not need to load right, as we can handle stack and constants
 493   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 494 
 495     rlock_result(x);
 496     bool need_zero_check = true;
 497     if (right.is_constant()) {
 498       jint c = right.get_jint_constant();
 499       // no need to do div-by-zero check if the divisor is a non-zero constant
 500       if (c != 0) need_zero_check = false;
 501       // do not load right if the divisor is a power-of-2 constant
 502       if (c > 0 && is_power_of_2(c)) {
 503         right_arg->dont_load_item();
 504       } else {
 505         right_arg->load_item();
 506       }
 507     } else {
 508       right_arg->load_item();
 509     }
 510     if (need_zero_check) {
 511       CodeEmitInfo* info = state_for(x);
 512       __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
 513       __ branch(lir_cond_equal, new DivByZeroStub(info));
 514     }
 515 
 516     LIR_Opr ill = LIR_OprFact::illegalOpr;
 517     if (x->op() == Bytecodes::_irem) {
 518       __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 519     } else if (x->op() == Bytecodes::_idiv) {
 520       __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 521     }
 522 
 523   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
 524     if (right.is_constant()
 525         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
 526       right.load_nonconstant();
 527     } else {
 528       right.load_item();
 529     }
 530     rlock_result(x);
 531     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
 532   } else {
 533     assert (x->op() == Bytecodes::_imul, "expect imul");
 534     if (right.is_constant()) {
 535       jint c = right.get_jint_constant();
 536       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
 537         right_arg->dont_load_item();
 538       } else {
 539         // Cannot use constant op.
 540         right_arg->load_item();
 541       }
 542     } else {
 543       right.load_item();
 544     }
 545     rlock_result(x);
 546     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
 547   }
 548 }
 549 
 550 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 551   // when an operand with use count 1 is the left operand, then it is
 552   // likely that no move for 2-operand-LIR-form is necessary
 553   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 554     x->swap_operands();
 555   }
 556 
 557   ValueTag tag = x->type()->tag();
 558   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 559   switch (tag) {
 560     case floatTag:
 561     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 562     case longTag:    do_ArithmeticOp_Long(x); return;
 563     case intTag:     do_ArithmeticOp_Int(x);  return;
 564     default:         ShouldNotReachHere();    return;
 565   }
 566 }
 567 
 568 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 569 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 570 
 571   LIRItem left(x->x(),  this);
 572   LIRItem right(x->y(), this);
 573 
 574   left.load_item();
 575 
 576   rlock_result(x);
 577   if (right.is_constant()) {
 578     right.dont_load_item();
 579 
 580     switch (x->op()) {
 581     case Bytecodes::_ishl: {
 582       int c = right.get_jint_constant() & 0x1f;
 583       __ shift_left(left.result(), c, x->operand());
 584       break;
 585     }
 586     case Bytecodes::_ishr: {
 587       int c = right.get_jint_constant() & 0x1f;
 588       __ shift_right(left.result(), c, x->operand());
 589       break;
 590     }
 591     case Bytecodes::_iushr: {
 592       int c = right.get_jint_constant() & 0x1f;
 593       __ unsigned_shift_right(left.result(), c, x->operand());
 594       break;
 595     }
 596     case Bytecodes::_lshl: {
 597       int c = right.get_jint_constant() & 0x3f;
 598       __ shift_left(left.result(), c, x->operand());
 599       break;
 600     }
 601     case Bytecodes::_lshr: {
 602       int c = right.get_jint_constant() & 0x3f;
 603       __ shift_right(left.result(), c, x->operand());
 604       break;
 605     }
 606     case Bytecodes::_lushr: {
 607       int c = right.get_jint_constant() & 0x3f;
 608       __ unsigned_shift_right(left.result(), c, x->operand());
 609       break;
 610     }
 611     default:
 612       ShouldNotReachHere();
 613     }
 614   } else {
 615     right.load_item();
 616     LIR_Opr tmp = new_register(T_INT);
 617     switch (x->op()) {
 618     case Bytecodes::_ishl: {
 619       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 620       __ shift_left(left.result(), tmp, x->operand(), tmp);
 621       break;
 622     }
 623     case Bytecodes::_ishr: {
 624       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 625       __ shift_right(left.result(), tmp, x->operand(), tmp);
 626       break;
 627     }
 628     case Bytecodes::_iushr: {
 629       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 630       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 631       break;
 632     }
 633     case Bytecodes::_lshl: {
 634       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 635       __ shift_left(left.result(), tmp, x->operand(), tmp);
 636       break;
 637     }
 638     case Bytecodes::_lshr: {
 639       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 640       __ shift_right(left.result(), tmp, x->operand(), tmp);
 641       break;
 642     }
 643     case Bytecodes::_lushr: {
 644       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 645       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 646       break;
 647     }
 648     default:
 649       ShouldNotReachHere();
 650     }
 651   }
 652 }
 653 
 654 // _iand, _land, _ior, _lor, _ixor, _lxor
 655 void LIRGenerator::do_LogicOp(LogicOp* x) {
 656 
 657   LIRItem left(x->x(),  this);
 658   LIRItem right(x->y(), this);
 659 
 660   left.load_item();
 661 
 662   rlock_result(x);
 663   if (right.is_constant()
 664       && ((right.type()->tag() == intTag
 665            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
 666           || (right.type()->tag() == longTag
 667               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
 668     right.dont_load_item();
 669   } else {
 670     right.load_item();
 671   }
 672   switch (x->op()) {
 673   case Bytecodes::_iand:
 674   case Bytecodes::_land:
 675     __ logical_and(left.result(), right.result(), x->operand()); break;
 676   case Bytecodes::_ior:
 677   case Bytecodes::_lor:
 678     __ logical_or (left.result(), right.result(), x->operand()); break;
 679   case Bytecodes::_ixor:
 680   case Bytecodes::_lxor:
 681     __ logical_xor(left.result(), right.result(), x->operand()); break;
 682   default: Unimplemented();
 683   }
 684 }
 685 
 686 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 687 void LIRGenerator::do_CompareOp(CompareOp* x) {
 688   LIRItem left(x->x(), this);
 689   LIRItem right(x->y(), this);
 690   ValueTag tag = x->x()->type()->tag();
 691   if (tag == longTag) {
 692     left.set_destroys_register();
 693   }
 694   left.load_item();
 695   right.load_item();
 696   LIR_Opr reg = rlock_result(x);
 697 
 698   if (x->x()->type()->is_float_kind()) {
 699     Bytecodes::Code code = x->op();
 700     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 701   } else if (x->x()->type()->tag() == longTag) {
 702     __ lcmp2int(left.result(), right.result(), reg);
 703   } else {
 704     Unimplemented();
 705   }
 706 }
 707 
 708 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 709   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 710   new_value.load_item();
 711   cmp_value.load_item();
 712   LIR_Opr result = new_register(T_INT);
 713   if (is_reference_type(type)) {
 714     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
 715   } else if (type == T_INT) {
 716     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 717   } else if (type == T_LONG) {
 718     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 719   } else {
 720     ShouldNotReachHere();
 721     Unimplemented();
 722   }
 723   __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
 724   return result;
 725 }
 726 
 727 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 728   bool is_oop = is_reference_type(type);
 729   LIR_Opr result = new_register(type);
 730   value.load_item();
 731   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
 732   LIR_Opr tmp = new_register(T_INT);
 733   __ xchg(addr, value.result(), result, tmp);
 734   return result;
 735 }
 736 
 737 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 738   LIR_Opr result = new_register(type);
 739   value.load_item();
 740   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
 741   LIR_Opr tmp = new_register(T_INT);
 742   __ xadd(addr, value.result(), result, tmp);
 743   return result;
 744 }
 745 
 746 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 747   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 748   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
 749       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
 750       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
 751       x->id() == vmIntrinsics::_dlog10) {
 752     do_LibmIntrinsic(x);
 753     return;
 754   }
 755   switch (x->id()) {
 756     case vmIntrinsics::_dabs:
 757     case vmIntrinsics::_dsqrt: {
 758       assert(x->number_of_arguments() == 1, "wrong type");
 759       LIRItem value(x->argument_at(0), this);
 760       value.load_item();
 761       LIR_Opr dst = rlock_result(x);
 762 
 763       switch (x->id()) {
 764         case vmIntrinsics::_dsqrt: {
 765           __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 766           break;
 767         }
 768         case vmIntrinsics::_dabs: {
 769           __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 770           break;
 771         }
 772         default:
 773           ShouldNotReachHere();
 774       }
 775       break;
 776     }
 777     default:
 778       ShouldNotReachHere();
 779   }
 780 }
 781 
 782 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
 783   LIRItem value(x->argument_at(0), this);
 784   value.set_destroys_register();
 785 
 786   LIR_Opr calc_result = rlock_result(x);
 787   LIR_Opr result_reg = result_register_for(x->type());
 788 
 789   CallingConvention* cc = NULL;
 790 
 791   if (x->id() == vmIntrinsics::_dpow) {
 792     LIRItem value1(x->argument_at(1), this);
 793 
 794     value1.set_destroys_register();
 795 
 796     BasicTypeList signature(2);
 797     signature.append(T_DOUBLE);
 798     signature.append(T_DOUBLE);
 799     cc = frame_map()->c_calling_convention(&signature);
 800     value.load_item_force(cc->at(0));
 801     value1.load_item_force(cc->at(1));
 802   } else {
 803     BasicTypeList signature(1);
 804     signature.append(T_DOUBLE);
 805     cc = frame_map()->c_calling_convention(&signature);
 806     value.load_item_force(cc->at(0));
 807   }
 808 
 809   switch (x->id()) {
 810     case vmIntrinsics::_dexp:
 811       if (StubRoutines::dexp() != NULL) {
 812         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 813       } else {
 814         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 815       }
 816       break;
 817     case vmIntrinsics::_dlog:
 818       if (StubRoutines::dlog() != NULL) {
 819         __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
 820       } else {
 821         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 822       }
 823       break;
 824     case vmIntrinsics::_dlog10:
 825       if (StubRoutines::dlog10() != NULL) {
 826         __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
 827       } else {
 828         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 829       }
 830       break;
 831     case vmIntrinsics::_dpow:
 832       if (StubRoutines::dpow() != NULL) {
 833         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 834       } else {
 835         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 836       }
 837       break;
 838     case vmIntrinsics::_dsin:
 839       if (StubRoutines::dsin() != NULL) {
 840         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 841       } else {
 842         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 843       }
 844       break;
 845     case vmIntrinsics::_dcos:
 846       if (StubRoutines::dcos() != NULL) {
 847         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 848       } else {
 849         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 850       }
 851       break;
 852     case vmIntrinsics::_dtan:
 853       if (StubRoutines::dtan() != NULL) {
 854         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 855       } else {
 856         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
 857       }
 858       break;
 859     default:  ShouldNotReachHere();
 860   }
 861   __ move(result_reg, calc_result);
 862 }
 863 
 864 
 865 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 866   assert(x->number_of_arguments() == 5, "wrong type");
 867 
 868   // Make all state_for calls early since they can emit code
 869   CodeEmitInfo* info = state_for(x, x->state());
 870 
 871   LIRItem src(x->argument_at(0), this);
 872   LIRItem src_pos(x->argument_at(1), this);
 873   LIRItem dst(x->argument_at(2), this);
 874   LIRItem dst_pos(x->argument_at(3), this);
 875   LIRItem length(x->argument_at(4), this);
 876 
 877   // operands for arraycopy must use fixed registers, otherwise
 878   // LinearScan will fail allocation (because arraycopy always needs a
 879   // call)
 880 
 881   // The java calling convention will give us enough registers
 882   // so that on the stub side the args will be perfect already.
 883   // On the other slow/special case side we call C and the arg
 884   // positions are not similar enough to pick one as the best.
 885   // Also because the java calling convention is a "shifted" version
 886   // of the C convention we can process the java args trivially into C
 887   // args without worry of overwriting during the xfer
 888 
 889   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 890   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 891   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 892   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 893   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 894 
 895   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 896 
 897   set_no_result(x);
 898 
 899   int flags;
 900   ciArrayKlass* expected_type;
 901   arraycopy_helper(x, &flags, &expected_type);
 902 
 903   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 904 }
 905 
 906 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 907   assert(UseCRC32Intrinsics, "why are we here?");
 908   // Make all state_for calls early since they can emit code
 909   LIR_Opr result = rlock_result(x);
 910   int flags = 0;
 911   switch (x->id()) {
 912     case vmIntrinsics::_updateCRC32: {
 913       LIRItem crc(x->argument_at(0), this);
 914       LIRItem val(x->argument_at(1), this);
 915       // val is destroyed by update_crc32
 916       val.set_destroys_register();
 917       crc.load_item();
 918       val.load_item();
 919       __ update_crc32(crc.result(), val.result(), result);
 920       break;
 921     }
 922     case vmIntrinsics::_updateBytesCRC32:
 923     case vmIntrinsics::_updateByteBufferCRC32: {
 924       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 925 
 926       LIRItem crc(x->argument_at(0), this);
 927       LIRItem buf(x->argument_at(1), this);
 928       LIRItem off(x->argument_at(2), this);
 929       LIRItem len(x->argument_at(3), this);
 930       buf.load_item();
 931       off.load_nonconstant();
 932 
 933       LIR_Opr index = off.result();
 934       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 935       if(off.result()->is_constant()) {
 936         index = LIR_OprFact::illegalOpr;
 937        offset += off.result()->as_jint();
 938       }
 939       LIR_Opr base_op = buf.result();
 940 
 941       if (index->is_valid()) {
 942         LIR_Opr tmp = new_register(T_LONG);
 943         __ convert(Bytecodes::_i2l, index, tmp);
 944         index = tmp;
 945       }
 946 
 947       if (offset) {
 948         LIR_Opr tmp = new_pointer_register();
 949         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 950         base_op = tmp;
 951         offset = 0;
 952       }
 953 
 954       LIR_Address* a = new LIR_Address(base_op,
 955                                        index,
 956                                        offset,
 957                                        T_BYTE);
 958       BasicTypeList signature(3);
 959       signature.append(T_INT);
 960       signature.append(T_ADDRESS);
 961       signature.append(T_INT);
 962       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 963       const LIR_Opr result_reg = result_register_for(x->type());
 964 
 965       LIR_Opr addr = new_pointer_register();
 966       __ leal(LIR_OprFact::address(a), addr);
 967 
 968       crc.load_item_force(cc->at(0));
 969       __ move(addr, cc->at(1));
 970       len.load_item_force(cc->at(2));
 971 
 972       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
 973       __ move(result_reg, result);
 974 
 975       break;
 976     }
 977     default: {
 978       ShouldNotReachHere();
 979     }
 980   }
 981 }
 982 
 983 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
 984   assert(UseCRC32CIntrinsics, "why are we here?");
 985   // Make all state_for calls early since they can emit code
 986   LIR_Opr result = rlock_result(x);
 987   int flags = 0;
 988   switch (x->id()) {
 989     case vmIntrinsics::_updateBytesCRC32C:
 990     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
 991       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
 992       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 993 
 994       LIRItem crc(x->argument_at(0), this);
 995       LIRItem buf(x->argument_at(1), this);
 996       LIRItem off(x->argument_at(2), this);
 997       LIRItem end(x->argument_at(3), this);
 998 
 999       buf.load_item();
1000       off.load_nonconstant();
1001       end.load_nonconstant();
1002 
1003       // len = end - off
1004       LIR_Opr len  = end.result();
1005       LIR_Opr tmpA = new_register(T_INT);
1006       LIR_Opr tmpB = new_register(T_INT);
1007       __ move(end.result(), tmpA);
1008       __ move(off.result(), tmpB);
1009       __ sub(tmpA, tmpB, tmpA);
1010       len = tmpA;
1011 
1012       LIR_Opr index = off.result();
1013       if(off.result()->is_constant()) {
1014         index = LIR_OprFact::illegalOpr;
1015         offset += off.result()->as_jint();
1016       }
1017       LIR_Opr base_op = buf.result();
1018 
1019       if (index->is_valid()) {
1020         LIR_Opr tmp = new_register(T_LONG);
1021         __ convert(Bytecodes::_i2l, index, tmp);
1022         index = tmp;
1023       }
1024 
1025       if (offset) {
1026         LIR_Opr tmp = new_pointer_register();
1027         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
1028         base_op = tmp;
1029         offset = 0;
1030       }
1031 
1032       LIR_Address* a = new LIR_Address(base_op,
1033                                        index,
1034                                        offset,
1035                                        T_BYTE);
1036       BasicTypeList signature(3);
1037       signature.append(T_INT);
1038       signature.append(T_ADDRESS);
1039       signature.append(T_INT);
1040       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1041       const LIR_Opr result_reg = result_register_for(x->type());
1042 
1043       LIR_Opr addr = new_pointer_register();
1044       __ leal(LIR_OprFact::address(a), addr);
1045 
1046       crc.load_item_force(cc->at(0));
1047       __ move(addr, cc->at(1));
1048       __ move(len, cc->at(2));
1049 
1050       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
1051       __ move(result_reg, result);
1052 
1053       break;
1054     }
1055     default: {
1056       ShouldNotReachHere();
1057     }
1058   }
1059 }
1060 
1061 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1062   assert(x->number_of_arguments() == 3, "wrong type");
1063   assert(UseFMA, "Needs FMA instructions support.");
1064   LIRItem value(x->argument_at(0), this);
1065   LIRItem value1(x->argument_at(1), this);
1066   LIRItem value2(x->argument_at(2), this);
1067 
1068   value.load_item();
1069   value1.load_item();
1070   value2.load_item();
1071 
1072   LIR_Opr calc_input = value.result();
1073   LIR_Opr calc_input1 = value1.result();
1074   LIR_Opr calc_input2 = value2.result();
1075   LIR_Opr calc_result = rlock_result(x);
1076 
1077   switch (x->id()) {
1078   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
1079   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
1080   default:                    ShouldNotReachHere();
1081   }
1082 }
1083 
1084 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1085   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1086 }
1087 
1088 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1089 // _i2b, _i2c, _i2s
1090 void LIRGenerator::do_Convert(Convert* x) {
1091   LIRItem value(x->value(), this);
1092   value.load_item();
1093   LIR_Opr input = value.result();
1094   LIR_Opr result = rlock(x);
1095 
1096   // arguments of lir_convert
1097   LIR_Opr conv_input = input;
1098   LIR_Opr conv_result = result;
1099 
1100   __ convert(x->op(), conv_input, conv_result);
1101 
1102   assert(result->is_virtual(), "result must be virtual register");
1103   set_result(x, result);
1104 }
1105 
1106 void LIRGenerator::do_NewInstance(NewInstance* x) {
1107 #ifndef PRODUCT
1108   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1109     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1110   }
1111 #endif
1112   CodeEmitInfo* info = state_for(x, x->state());
1113   LIR_Opr reg = result_register_for(x->type());
1114   new_instance(reg, x->klass(), x->is_unresolved(),
1115                        FrameMap::r10_oop_opr,
1116                        FrameMap::r11_oop_opr,
1117                        FrameMap::r4_oop_opr,
1118                        LIR_OprFact::illegalOpr,
1119                        FrameMap::r3_metadata_opr, info);
1120   LIR_Opr result = rlock_result(x);
1121   __ move(reg, result);
1122 }
1123 
1124 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1125   CodeEmitInfo* info = state_for(x, x->state());
1126 
1127   LIRItem length(x->length(), this);
1128   length.load_item_force(FrameMap::r19_opr);
1129 
1130   LIR_Opr reg = result_register_for(x->type());
1131   LIR_Opr tmp1 = FrameMap::r10_oop_opr;
1132   LIR_Opr tmp2 = FrameMap::r11_oop_opr;
1133   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1134   LIR_Opr tmp4 = reg;
1135   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1136   LIR_Opr len = length.result();
1137   BasicType elem_type = x->elt_type();
1138 
1139   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1140 
1141   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1142   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1143 
1144   LIR_Opr result = rlock_result(x);
1145   __ move(reg, result);
1146 }
1147 
1148 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1149   LIRItem length(x->length(), this);
1150   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1151   // and therefore provide the state before the parameters have been consumed
1152   CodeEmitInfo* patching_info = NULL;
1153   if (!x->klass()->is_loaded() || PatchALot) {
1154     patching_info =  state_for(x, x->state_before());
1155   }
1156 
1157   CodeEmitInfo* info = state_for(x, x->state());
1158 
1159   LIR_Opr reg = result_register_for(x->type());
1160   LIR_Opr tmp1 = FrameMap::r10_oop_opr;
1161   LIR_Opr tmp2 = FrameMap::r11_oop_opr;
1162   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1163   LIR_Opr tmp4 = reg;
1164   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1165 
1166   length.load_item_force(FrameMap::r19_opr);
1167   LIR_Opr len = length.result();
1168 
1169   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1170   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1171   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1172     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1173   }
1174   klass2reg_with_patching(klass_reg, obj, patching_info);
1175   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1176 
1177   LIR_Opr result = rlock_result(x);
1178   __ move(reg, result);
1179 }
1180 
1181 
1182 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1183   Values* dims = x->dims();
1184   int i = dims->length();
1185   LIRItemList* items = new LIRItemList(i, i, NULL);
1186   while (i-- > 0) {
1187     LIRItem* size = new LIRItem(dims->at(i), this);
1188     items->at_put(i, size);
1189   }
1190 
1191   // Evaluate state_for early since it may emit code.
1192   CodeEmitInfo* patching_info = NULL;
1193   if (!x->klass()->is_loaded() || PatchALot) {
1194     patching_info = state_for(x, x->state_before());
1195 
1196     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1197     // clone all handlers (NOTE: Usually this is handled transparently
1198     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1199     // is done explicitly here because a stub isn't being used).
1200     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1201   }
1202   CodeEmitInfo* info = state_for(x, x->state());
1203 
1204   i = dims->length();
1205   while (i-- > 0) {
1206     LIRItem* size = items->at(i);
1207     size->load_item();
1208 
1209     store_stack_parameter(size->result(), in_ByteSize(i*4));
1210   }
1211 
1212   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1213   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1214 
1215   LIR_Opr rank = FrameMap::r19_opr;
1216   __ move(LIR_OprFact::intConst(x->rank()), rank);
1217   LIR_Opr varargs = FrameMap::r2_opr;
1218   __ move(FrameMap::sp_opr, varargs);
1219   LIR_OprList* args = new LIR_OprList(3);
1220   args->append(klass_reg);
1221   args->append(rank);
1222   args->append(varargs);
1223   LIR_Opr reg = result_register_for(x->type());
1224   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1225                   LIR_OprFact::illegalOpr,
1226                   reg, args, info);
1227 
1228   LIR_Opr result = rlock_result(x);
1229   __ move(reg, result);
1230 }
1231 
1232 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1233   // nothing to do for now
1234 }
1235 
1236 void LIRGenerator::do_CheckCast(CheckCast* x) {
1237   LIRItem obj(x->obj(), this);
1238 
1239   CodeEmitInfo* patching_info = NULL;
1240   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1241     // must do this before locking the destination register as an oop register,
1242     // and before the obj is loaded (the latter is for deoptimization)
1243     patching_info = state_for(x, x->state_before());
1244   }
1245   obj.load_item();
1246 
1247   // info for exceptions
1248   CodeEmitInfo* info_for_exception =
1249       (x->needs_exception_state() ? state_for(x) :
1250                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1251 
1252   CodeStub* stub;
1253   if (x->is_incompatible_class_change_check()) {
1254     assert(patching_info == NULL, "can't patch this");
1255     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1256   } else if (x->is_invokespecial_receiver_check()) {
1257     assert(patching_info == NULL, "can't patch this");
1258     stub = new DeoptimizeStub(info_for_exception,
1259                               Deoptimization::Reason_class_check,
1260                               Deoptimization::Action_none);
1261   } else {
1262     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1263   }
1264   LIR_Opr reg = rlock_result(x);
1265   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1266   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1267     tmp3 = new_register(objectType);
1268   }
1269   __ checkcast(reg, obj.result(), x->klass(),
1270                new_register(objectType), new_register(objectType), tmp3,
1271                x->direct_compare(), info_for_exception, patching_info, stub,
1272                x->profiled_method(), x->profiled_bci());
1273 }
1274 
1275 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1276   LIRItem obj(x->obj(), this);
1277 
1278   // result and test object may not be in same register
1279   LIR_Opr reg = rlock_result(x);
1280   CodeEmitInfo* patching_info = NULL;
1281   if ((!x->klass()->is_loaded() || PatchALot)) {
1282     // must do this before locking the destination register as an oop register
1283     patching_info = state_for(x, x->state_before());
1284   }
1285   obj.load_item();
1286   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1287   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1288     tmp3 = new_register(objectType);
1289   }
1290   __ instanceof(reg, obj.result(), x->klass(),
1291                 new_register(objectType), new_register(objectType), tmp3,
1292                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1293 }
1294 
1295 void LIRGenerator::do_If(If* x) {
1296   assert(x->number_of_sux() == 2, "inconsistency");
1297   ValueTag tag = x->x()->type()->tag();
1298   bool is_safepoint = x->is_safepoint();
1299 
1300   If::Condition cond = x->cond();
1301 
1302   LIRItem xitem(x->x(), this);
1303   LIRItem yitem(x->y(), this);
1304   LIRItem* xin = &xitem;
1305   LIRItem* yin = &yitem;
1306 
1307   if (tag == longTag) {
1308     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1309     // mirror for other conditions
1310     if (cond == If::gtr || cond == If::leq) {
1311       cond = Instruction::mirror(cond);
1312       xin = &yitem;
1313       yin = &xitem;
1314     }
1315     xin->set_destroys_register();
1316   }
1317   xin->load_item();
1318 
1319   if (tag == longTag) {
1320     if (yin->is_constant()
1321         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1322       yin->dont_load_item();
1323     } else {
1324       yin->load_item();
1325     }
1326   } else if (tag == intTag) {
1327     if (yin->is_constant()
1328         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1329       yin->dont_load_item();
1330     } else {
1331       yin->load_item();
1332     }
1333   } else {
1334     yin->load_item();
1335   }
1336 
1337   set_no_result(x);
1338 
1339   LIR_Opr left = xin->result();
1340   LIR_Opr right = yin->result();
1341 
1342   // add safepoint before generating condition code so it can be recomputed
1343   if (x->is_safepoint()) {
1344     // increment backedge counter if needed
1345     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1346         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1347     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1348   }
1349 
1350   __ cmp(lir_cond(cond), left, right);
1351   // Generate branch profiling. Profiling code doesn't kill flags.
1352   profile_branch(x, cond);
1353   move_to_phi(x->state());
1354   if (x->x()->type()->is_float_kind()) {
1355     __ branch(lir_cond(cond), x->tsux(), x->usux());
1356   } else {
1357     __ branch(lir_cond(cond), x->tsux());
1358   }
1359   assert(x->default_sux() == x->fsux(), "wrong destination above");
1360   __ jump(x->default_sux());
1361 }
1362 
1363 LIR_Opr LIRGenerator::getThreadPointer() {
1364    return FrameMap::as_pointer_opr(rthread);
1365 }
1366 
1367 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1368 
1369 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1370                                         CodeEmitInfo* info) {
1371   __ volatile_store_mem_reg(value, address, info);
1372 }
1373 
1374 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1375                                        CodeEmitInfo* info) {
1376   // 8179954: We need to make sure that the code generated for
1377   // volatile accesses forms a sequentially-consistent set of
1378   // operations when combined with STLR and LDAR.  Without a leading
1379   // membar it's possible for a simple Dekker test to fail if loads
1380   // use LD;DMB but stores use STLR.  This can happen if C2 compiles
1381   // the stores in one method and C1 compiles the loads in another.
1382   if (!CompilerConfig::is_c1_only_no_jvmci()) {
1383     __ membar();
1384   }
1385   __ volatile_load_mem_reg(address, result, info);
1386 }
--- EOF ---