1 /*
   2  * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/compiler_globals.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/barrierSetAssembler.hpp"
  31 #include "interp_masm_aarch64.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/markWord.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "prims/jvmtiThreadState.hpp"
  41 #include "runtime/basicLock.hpp"
  42 #include "runtime/biasedLocking.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/safepointMechanism.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/thread.inline.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 
  49 void InterpreterMacroAssembler::narrow(Register result) {
  50 
  51   // Get method->_constMethod->_result_type
  52   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  53   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  54   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  55 
  56   Label done, notBool, notByte, notChar;
  57 
  58   // common case first
  59   cmpw(rscratch1, T_INT);
  60   br(Assembler::EQ, done);
  61 
  62   // mask integer result to narrower return type.
  63   cmpw(rscratch1, T_BOOLEAN);
  64   br(Assembler::NE, notBool);
  65   andw(result, result, 0x1);
  66   b(done);
  67 
  68   bind(notBool);
  69   cmpw(rscratch1, T_BYTE);
  70   br(Assembler::NE, notByte);
  71   sbfx(result, result, 0, 8);
  72   b(done);
  73 
  74   bind(notByte);
  75   cmpw(rscratch1, T_CHAR);
  76   br(Assembler::NE, notChar);
  77   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  78   b(done);
  79 
  80   bind(notChar);
  81   sbfx(result, result, 0, 16);     // sign-extend short
  82 
  83   // Nothing to do for T_INT
  84   bind(done);
  85 }
  86 
  87 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  88   assert(entry, "Entry must have been generated by now");
  89   b(entry);
  90 }
  91 
  92 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  93   if (JvmtiExport::can_pop_frame()) {
  94     Label L;
  95     // Initiate popframe handling only if it is not already being
  96     // processed.  If the flag has the popframe_processing bit set, it
  97     // means that this code is called *during* popframe handling - we
  98     // don't want to reenter.
  99     // This method is only called just after the call into the vm in
 100     // call_VM_base, so the arg registers are available.
 101     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
 102     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
 103     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
 104     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 105     // address of the same-named entrypoint in the generated interpreter code.
 106     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 107     br(r0);
 108     bind(L);
 109   }
 110 }
 111 
 112 
 113 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 114   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 115   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 116   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 117   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 118   switch (state) {
 119     case atos: ldr(r0, oop_addr);
 120                str(zr, oop_addr);
 121                verify_oop(r0, state);               break;
 122     case ltos: ldr(r0, val_addr);                   break;
 123     case btos:                                   // fall through
 124     case ztos:                                   // fall through
 125     case ctos:                                   // fall through
 126     case stos:                                   // fall through
 127     case itos: ldrw(r0, val_addr);                  break;
 128     case ftos: ldrs(v0, val_addr);                  break;
 129     case dtos: ldrd(v0, val_addr);                  break;
 130     case vtos: /* nothing to do */                  break;
 131     default  : ShouldNotReachHere();
 132   }
 133   // Clean up tos value in the thread object
 134   movw(rscratch1, (int) ilgl);
 135   strw(rscratch1, tos_addr);
 136   strw(zr, val_addr);
 137 }
 138 
 139 
 140 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 141   if (JvmtiExport::can_force_early_return()) {
 142     Label L;
 143     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 144     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
 145 
 146     // Initiate earlyret handling only if it is not already being processed.
 147     // If the flag has the earlyret_processing bit set, it means that this code
 148     // is called *during* earlyret handling - we don't want to reenter.
 149     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 150     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 151     br(Assembler::NE, L);
 152 
 153     // Call Interpreter::remove_activation_early_entry() to get the address of the
 154     // same-named entrypoint in the generated interpreter code.
 155     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 156     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 157     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 158     br(r0);
 159     bind(L);
 160   }
 161 }
 162 
 163 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 164   Register reg,
 165   int bcp_offset) {
 166   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 167   ldrh(reg, Address(rbcp, bcp_offset));
 168   rev16(reg, reg);
 169 }
 170 
 171 void InterpreterMacroAssembler::get_dispatch() {
 172   uint64_t offset;
 173   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 174   lea(rdispatch, Address(rdispatch, offset));
 175 }
 176 
 177 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 178                                                        int bcp_offset,
 179                                                        size_t index_size) {
 180   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 181   if (index_size == sizeof(u2)) {
 182     load_unsigned_short(index, Address(rbcp, bcp_offset));
 183   } else if (index_size == sizeof(u4)) {
 184     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 185     ldrw(index, Address(rbcp, bcp_offset));
 186     // Check if the secondary index definition is still ~x, otherwise
 187     // we have to change the following assembler code to calculate the
 188     // plain index.
 189     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 190     eonw(index, index, zr);  // convert to plain index
 191   } else if (index_size == sizeof(u1)) {
 192     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 193   } else {
 194     ShouldNotReachHere();
 195   }
 196 }
 197 
 198 // Return
 199 // Rindex: index into constant pool
 200 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
 201 //
 202 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
 203 // the true address of the cache entry.
 204 //
 205 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 206                                                            Register index,
 207                                                            int bcp_offset,
 208                                                            size_t index_size) {
 209   assert_different_registers(cache, index);
 210   assert_different_registers(cache, rcpool);
 211   get_cache_index_at_bcp(index, bcp_offset, index_size);
 212   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 213   // convert from field index to ConstantPoolCacheEntry
 214   // aarch64 already has the cache in rcpool so there is no need to
 215   // install it in cache. instead we pre-add the indexed offset to
 216   // rcpool and return it in cache. All clients of this method need to
 217   // be modified accordingly.
 218   add(cache, rcpool, index, Assembler::LSL, 5);
 219 }
 220 
 221 
 222 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 223                                                                         Register index,
 224                                                                         Register bytecode,
 225                                                                         int byte_no,
 226                                                                         int bcp_offset,
 227                                                                         size_t index_size) {
 228   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 229   // We use a 32-bit load here since the layout of 64-bit words on
 230   // little-endian machines allow us that.
 231   // n.b. unlike x86 cache already includes the index offset
 232   lea(bytecode, Address(cache,
 233                          ConstantPoolCache::base_offset()
 234                          + ConstantPoolCacheEntry::indices_offset()));
 235   ldarw(bytecode, bytecode);
 236   const int shift_count = (1 + byte_no) * BitsPerByte;
 237   ubfx(bytecode, bytecode, shift_count, BitsPerByte);
 238 }
 239 
 240 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 241                                                                Register tmp,
 242                                                                int bcp_offset,
 243                                                                size_t index_size) {
 244   assert(cache != tmp, "must use different register");
 245   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 246   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 247   // convert from field index to ConstantPoolCacheEntry index
 248   // and from word offset to byte offset
 249   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 250   ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 251   // skip past the header
 252   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 253   add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
 254 }
 255 
 256 void InterpreterMacroAssembler::get_method_counters(Register method,
 257                                                     Register mcs, Label& skip) {
 258   Label has_counters;
 259   ldr(mcs, Address(method, Method::method_counters_offset()));
 260   cbnz(mcs, has_counters);
 261   call_VM(noreg, CAST_FROM_FN_PTR(address,
 262           InterpreterRuntime::build_method_counters), method);
 263   ldr(mcs, Address(method, Method::method_counters_offset()));
 264   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 265   bind(has_counters);
 266 }
 267 
 268 // Load object from cpool->resolved_references(index)
 269 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 270                                            Register result, Register index, Register tmp) {
 271   assert_different_registers(result, index);
 272 
 273   get_constant_pool(result);
 274   // load pointer for resolved_references[] objArray
 275   ldr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 276   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 277   resolve_oop_handle(result, tmp);
 278   // Add in the index
 279   add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
 280   load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)));
 281 }
 282 
 283 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 284                              Register cpool, Register index, Register klass, Register temp) {
 285   add(temp, cpool, index, LSL, LogBytesPerWord);
 286   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 287   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses
 288   add(klass, klass, temp, LSL, LogBytesPerWord);
 289   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 290 }
 291 
 292 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
 293                                                               Register method,
 294                                                               Register cache) {
 295   const int method_offset = in_bytes(
 296     ConstantPoolCache::base_offset() +
 297       ((byte_no == TemplateTable::f2_byte)
 298        ? ConstantPoolCacheEntry::f2_offset()
 299        : ConstantPoolCacheEntry::f1_offset()));
 300 
 301   ldr(method, Address(cache, method_offset)); // get f1 Method*
 302 }
 303 
 304 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 305 // subtype of super_klass.
 306 //
 307 // Args:
 308 //      r0: superklass
 309 //      Rsub_klass: subklass
 310 //
 311 // Kills:
 312 //      r2, r5
 313 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 314                                                   Label& ok_is_subtype) {
 315   assert(Rsub_klass != r0, "r0 holds superklass");
 316   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 317   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 318 
 319   // Profile the not-null value's klass.
 320   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 321 
 322   // Do the check.
 323   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 324 
 325   // Profile the failure of the check.
 326   profile_typecheck_failed(r2); // blows r2
 327 }
 328 
 329 // Java Expression Stack
 330 
 331 void InterpreterMacroAssembler::pop_ptr(Register r) {
 332   ldr(r, post(esp, wordSize));
 333 }
 334 
 335 void InterpreterMacroAssembler::pop_i(Register r) {
 336   ldrw(r, post(esp, wordSize));
 337 }
 338 
 339 void InterpreterMacroAssembler::pop_l(Register r) {
 340   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 341 }
 342 
 343 void InterpreterMacroAssembler::push_ptr(Register r) {
 344   str(r, pre(esp, -wordSize));
 345  }
 346 
 347 void InterpreterMacroAssembler::push_i(Register r) {
 348   str(r, pre(esp, -wordSize));
 349 }
 350 
 351 void InterpreterMacroAssembler::push_l(Register r) {
 352   str(zr, pre(esp, -wordSize));
 353   str(r, pre(esp, - wordSize));
 354 }
 355 
 356 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 357   ldrs(r, post(esp, wordSize));
 358 }
 359 
 360 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 361   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 362 }
 363 
 364 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 365   strs(r, pre(esp, -wordSize));
 366 }
 367 
 368 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 369   strd(r, pre(esp, 2* -wordSize));
 370 }
 371 
 372 void InterpreterMacroAssembler::pop(TosState state) {
 373   switch (state) {
 374   case atos: pop_ptr();                 break;
 375   case btos:
 376   case ztos:
 377   case ctos:
 378   case stos:
 379   case itos: pop_i();                   break;
 380   case ltos: pop_l();                   break;
 381   case ftos: pop_f();                   break;
 382   case dtos: pop_d();                   break;
 383   case vtos: /* nothing to do */        break;
 384   default:   ShouldNotReachHere();
 385   }
 386   verify_oop(r0, state);
 387 }
 388 
 389 void InterpreterMacroAssembler::push(TosState state) {
 390   verify_oop(r0, state);
 391   switch (state) {
 392   case atos: push_ptr();                break;
 393   case btos:
 394   case ztos:
 395   case ctos:
 396   case stos:
 397   case itos: push_i();                  break;
 398   case ltos: push_l();                  break;
 399   case ftos: push_f();                  break;
 400   case dtos: push_d();                  break;
 401   case vtos: /* nothing to do */        break;
 402   default  : ShouldNotReachHere();
 403   }
 404 }
 405 
 406 // Helpers for swap and dup
 407 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 408   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 409 }
 410 
 411 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 412   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 413 }
 414 
 415 void InterpreterMacroAssembler::load_float(Address src) {
 416   ldrs(v0, src);
 417 }
 418 
 419 void InterpreterMacroAssembler::load_double(Address src) {
 420   ldrd(v0, src);
 421 }
 422 
 423 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 424   // set sender sp
 425   mov(r13, sp);
 426   // record last_sp
 427   str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 428 }
 429 
 430 // Jump to from_interpreted entry of a call unless single stepping is possible
 431 // in this thread in which case we must call the i2i entry
 432 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 433   prepare_to_jump_from_interpreted();
 434 
 435   if (JvmtiExport::can_post_interpreter_events()) {
 436     Label run_compiled_code;
 437     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 438     // compiled code in threads for which the event is enabled.  Check here for
 439     // interp_only_mode if these events CAN be enabled.
 440     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 441     cbzw(rscratch1, run_compiled_code);
 442     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 443     br(rscratch1);
 444     bind(run_compiled_code);
 445   }
 446 
 447   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 448   br(rscratch1);
 449 }
 450 
 451 // The following two routines provide a hook so that an implementation
 452 // can schedule the dispatch in two parts.  amd64 does not do this.
 453 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 454 }
 455 
 456 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 457     dispatch_next(state, step);
 458 }
 459 
 460 void InterpreterMacroAssembler::dispatch_base(TosState state,
 461                                               address* table,
 462                                               bool verifyoop,
 463                                               bool generate_poll) {
 464   if (VerifyActivationFrameSize) {
 465     Unimplemented();
 466   }
 467   if (verifyoop) {
 468     verify_oop(r0, state);
 469   }
 470 
 471   Label safepoint;
 472   address* const safepoint_table = Interpreter::safept_table(state);
 473   bool needs_thread_local_poll = generate_poll && table != safepoint_table;
 474 
 475   if (needs_thread_local_poll) {
 476     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 477     ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
 478     tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
 479   }
 480 
 481   if (table == Interpreter::dispatch_table(state)) {
 482     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 483     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 484   } else {
 485     mov(rscratch2, (address)table);
 486     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 487   }
 488   br(rscratch2);
 489 
 490   if (needs_thread_local_poll) {
 491     bind(safepoint);
 492     lea(rscratch2, ExternalAddress((address)safepoint_table));
 493     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 494     br(rscratch2);
 495   }
 496 }
 497 
 498 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 499   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 500 }
 501 
 502 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 503   dispatch_base(state, Interpreter::normal_table(state));
 504 }
 505 
 506 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 507   dispatch_base(state, Interpreter::normal_table(state), false);
 508 }
 509 
 510 
 511 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 512   // load next bytecode
 513   ldrb(rscratch1, Address(pre(rbcp, step)));
 514   dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
 515 }
 516 
 517 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 518   // load current bytecode
 519   ldrb(rscratch1, Address(rbcp, 0));
 520   dispatch_base(state, table);
 521 }
 522 
 523 // remove activation
 524 //
 525 // Apply stack watermark barrier.
 526 // Unlock the receiver if this is a synchronized method.
 527 // Unlock any Java monitors from syncronized blocks.
 528 // Remove the activation from the stack.
 529 //
 530 // If there are locked Java monitors
 531 //    If throw_monitor_exception
 532 //       throws IllegalMonitorStateException
 533 //    Else if install_monitor_exception
 534 //       installs IllegalMonitorStateException
 535 //    Else
 536 //       no error processing
 537 void InterpreterMacroAssembler::remove_activation(
 538         TosState state,
 539         bool throw_monitor_exception,
 540         bool install_monitor_exception,
 541         bool notify_jvmdi) {
 542   // Note: Registers r3 xmm0 may be in use for the
 543   // result check if synchronized method
 544   Label unlocked, unlock, no_unlock;
 545 
 546   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
 547   // that would normally not be safe to use. Such bad returns into unsafe territory of
 548   // the stack, will call InterpreterRuntime::at_unwind.
 549   Label slow_path;
 550   Label fast_path;
 551   safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
 552   br(Assembler::AL, fast_path);
 553   bind(slow_path);
 554   push(state);
 555   set_last_Java_frame(esp, rfp, (address)pc(), rscratch1);
 556   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
 557   reset_last_Java_frame(true);
 558   pop(state);
 559   bind(fast_path);
 560 
 561   // get the value of _do_not_unlock_if_synchronized into r3
 562   const Address do_not_unlock_if_synchronized(rthread,
 563     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 564   ldrb(r3, do_not_unlock_if_synchronized);
 565   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 566 
 567  // get method access flags
 568   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 569   ldr(r2, Address(r1, Method::access_flags_offset()));
 570   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 571 
 572   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 573   // is set.
 574   cbnz(r3, no_unlock);
 575 
 576   // unlock monitor
 577   push(state); // save result
 578 
 579   // BasicObjectLock will be first in list, since this is a
 580   // synchronized method. However, need to check that the object has
 581   // not been unlocked by an explicit monitorexit bytecode.
 582   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 583                         wordSize - (int) sizeof(BasicObjectLock));
 584   // We use c_rarg1 so that if we go slow path it will be the correct
 585   // register for unlock_object to pass to VM directly
 586   lea(c_rarg1, monitor); // address of first monitor
 587 
 588   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 589   cbnz(r0, unlock);
 590 
 591   pop(state);
 592   if (throw_monitor_exception) {
 593     // Entry already unlocked, need to throw exception
 594     call_VM(noreg, CAST_FROM_FN_PTR(address,
 595                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 596     should_not_reach_here();
 597   } else {
 598     // Monitor already unlocked during a stack unroll. If requested,
 599     // install an illegal_monitor_state_exception.  Continue with
 600     // stack unrolling.
 601     if (install_monitor_exception) {
 602       call_VM(noreg, CAST_FROM_FN_PTR(address,
 603                      InterpreterRuntime::new_illegal_monitor_state_exception));
 604     }
 605     b(unlocked);
 606   }
 607 
 608   bind(unlock);
 609   unlock_object(c_rarg1);
 610   pop(state);
 611 
 612   // Check that for block-structured locking (i.e., that all locked
 613   // objects has been unlocked)
 614   bind(unlocked);
 615 
 616   // r0: Might contain return value
 617 
 618   // Check that all monitors are unlocked
 619   {
 620     Label loop, exception, entry, restart;
 621     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 622     const Address monitor_block_top(
 623         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 624     const Address monitor_block_bot(
 625         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 626 
 627     bind(restart);
 628     // We use c_rarg1 so that if we go slow path it will be the correct
 629     // register for unlock_object to pass to VM directly
 630     ldr(c_rarg1, monitor_block_top); // points to current entry, starting
 631                                      // with top-most entry
 632     lea(r19, monitor_block_bot);  // points to word before bottom of
 633                                   // monitor block
 634     b(entry);
 635 
 636     // Entry already locked, need to throw exception
 637     bind(exception);
 638 
 639     if (throw_monitor_exception) {
 640       // Throw exception
 641       MacroAssembler::call_VM(noreg,
 642                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 643                                    throw_illegal_monitor_state_exception));
 644       should_not_reach_here();
 645     } else {
 646       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 647       // Unlock does not block, so don't have to worry about the frame.
 648       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 649 
 650       push(state);
 651       unlock_object(c_rarg1);
 652       pop(state);
 653 
 654       if (install_monitor_exception) {
 655         call_VM(noreg, CAST_FROM_FN_PTR(address,
 656                                         InterpreterRuntime::
 657                                         new_illegal_monitor_state_exception));
 658       }
 659 
 660       b(restart);
 661     }
 662 
 663     bind(loop);
 664     // check if current entry is used
 665     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 666     cbnz(rscratch1, exception);
 667 
 668     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 669     bind(entry);
 670     cmp(c_rarg1, r19); // check if bottom reached
 671     br(Assembler::NE, loop); // if not at bottom then check this entry
 672   }
 673 
 674   bind(no_unlock);
 675 
 676   // jvmti support
 677   if (notify_jvmdi) {
 678     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 679   } else {
 680     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 681   }
 682 
 683   // remove activation
 684   // get sender esp
 685   ldr(rscratch2,
 686       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 687   if (StackReservedPages > 0) {
 688     // testing if reserved zone needs to be re-enabled
 689     Label no_reserved_zone_enabling;
 690 
 691     // look for an overflow into the stack reserved zone, i.e.
 692     // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
 693     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 694     cmp(rscratch2, rscratch1);
 695     br(Assembler::LS, no_reserved_zone_enabling);
 696 
 697     call_VM_leaf(
 698       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 699     call_VM(noreg, CAST_FROM_FN_PTR(address,
 700                    InterpreterRuntime::throw_delayed_StackOverflowError));
 701     should_not_reach_here();
 702 
 703     bind(no_reserved_zone_enabling);
 704   }
 705 
 706   // restore sender esp
 707   mov(esp, rscratch2);
 708   // remove frame anchor
 709   leave();
 710   // If we're returning to interpreted code we will shortly be
 711   // adjusting SP to allow some space for ESP.  If we're returning to
 712   // compiled code the saved sender SP was saved in sender_sp, so this
 713   // restores it.
 714   andr(sp, esp, -16);
 715 }
 716 
 717 // Lock object
 718 //
 719 // Args:
 720 //      c_rarg1: BasicObjectLock to be used for locking
 721 //
 722 // Kills:
 723 //      r0
 724 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 725 //      rscratch1, rscratch2 (scratch regs)
 726 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 727 {
 728   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 729   if (UseHeavyMonitors) {
 730     call_VM(noreg,
 731             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 732             lock_reg);
 733   } else {
 734     Label done;
 735 
 736     const Register swap_reg = r0;
 737     const Register tmp = c_rarg2;
 738     const Register obj_reg = c_rarg3; // Will contain the oop
 739 
 740     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 741     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 742     const int mark_offset = lock_offset +
 743                             BasicLock::displaced_header_offset_in_bytes();
 744 
 745     Label slow_case;
 746 
 747     // Load object pointer into obj_reg %c_rarg3
 748     ldr(obj_reg, Address(lock_reg, obj_offset));
 749 
 750     if (DiagnoseSyncOnValueBasedClasses != 0) {
 751       load_klass(tmp, obj_reg);
 752       ldrw(tmp, Address(tmp, Klass::access_flags_offset()));
 753       tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS);
 754       br(Assembler::NE, slow_case);
 755     }
 756 
 757     if (UseBiasedLocking) {
 758       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
 759     }
 760 
 761     // Load (object->mark() | 1) into swap_reg
 762     ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 763     orr(swap_reg, rscratch1, 1);
 764 
 765     // Save (object->mark() | 1) into BasicLock's displaced header
 766     str(swap_reg, Address(lock_reg, mark_offset));
 767 
 768     assert(lock_offset == 0,
 769            "displached header must be first word in BasicObjectLock");
 770 
 771     Label fail;
 772     if (PrintBiasedLockingStatistics) {
 773       Label fast;
 774       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
 775       bind(fast);
 776       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 777                   rscratch2, rscratch1, tmp);
 778       b(done);
 779       bind(fail);
 780     } else {
 781       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 782     }
 783 
 784     // Fast check for recursive lock.
 785     //
 786     // Can apply the optimization only if this is a stack lock
 787     // allocated in this thread. For efficiency, we can focus on
 788     // recently allocated stack locks (instead of reading the stack
 789     // base and checking whether 'mark' points inside the current
 790     // thread stack):
 791     //  1) (mark & 7) == 0, and
 792     //  2) sp <= mark < mark + os::pagesize()
 793     //
 794     // Warning: sp + os::pagesize can overflow the stack base. We must
 795     // neither apply the optimization for an inflated lock allocated
 796     // just above the thread stack (this is why condition 1 matters)
 797     // nor apply the optimization if the stack lock is inside the stack
 798     // of another thread. The latter is avoided even in case of overflow
 799     // because we have guard pages at the end of all stacks. Hence, if
 800     // we go over the stack base and hit the stack of another thread,
 801     // this should not be in a writeable area that could contain a
 802     // stack lock allocated by that thread. As a consequence, a stack
 803     // lock less than page size away from sp is guaranteed to be
 804     // owned by the current thread.
 805     //
 806     // These 3 tests can be done by evaluating the following
 807     // expression: ((mark - sp) & (7 - os::vm_page_size())),
 808     // assuming both stack pointer and pagesize have their
 809     // least significant 3 bits clear.
 810     // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg
 811     // NOTE2: aarch64 does not like to subtract sp from rn so take a
 812     // copy
 813     mov(rscratch1, sp);
 814     sub(swap_reg, swap_reg, rscratch1);
 815     ands(swap_reg, swap_reg, (uint64_t)(7 - os::vm_page_size()));
 816 
 817     // Save the test result, for recursive case, the result is zero
 818     str(swap_reg, Address(lock_reg, mark_offset));
 819 
 820     if (PrintBiasedLockingStatistics) {
 821       br(Assembler::NE, slow_case);
 822       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 823                   rscratch2, rscratch1, tmp);
 824     }
 825     br(Assembler::EQ, done);
 826 
 827     bind(slow_case);
 828 
 829     // Call the runtime routine for slow case
 830     call_VM(noreg,
 831             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 832             lock_reg);
 833 
 834     bind(done);
 835   }
 836 }
 837 
 838 
 839 // Unlocks an object. Used in monitorexit bytecode and
 840 // remove_activation.  Throws an IllegalMonitorException if object is
 841 // not locked by current thread.
 842 //
 843 // Args:
 844 //      c_rarg1: BasicObjectLock for lock
 845 //
 846 // Kills:
 847 //      r0
 848 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 849 //      rscratch1, rscratch2 (scratch regs)
 850 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 851 {
 852   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 853 
 854   if (UseHeavyMonitors) {
 855     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 856   } else {
 857     Label done;
 858 
 859     const Register swap_reg   = r0;
 860     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 861     const Register obj_reg    = c_rarg3;  // Will contain the oop
 862 
 863     save_bcp(); // Save in case of exception
 864 
 865     // Convert from BasicObjectLock structure to object and BasicLock
 866     // structure Store the BasicLock address into %r0
 867     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 868 
 869     // Load oop into obj_reg(%c_rarg3)
 870     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 871 
 872     // Free entry
 873     str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 874 
 875     if (UseBiasedLocking) {
 876       biased_locking_exit(obj_reg, header_reg, done);
 877     }
 878 
 879     // Load the old header from BasicLock structure
 880     ldr(header_reg, Address(swap_reg,
 881                             BasicLock::displaced_header_offset_in_bytes()));
 882 
 883     // Test for recursion
 884     cbz(header_reg, done);
 885 
 886     // Atomic swap back the old header
 887     cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 888 
 889     // Call the runtime routine for slow case.
 890     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
 891     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 892 
 893     bind(done);
 894 
 895     restore_bcp();
 896   }
 897 }
 898 
 899 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 900                                                          Label& zero_continue) {
 901   assert(ProfileInterpreter, "must be profiling interpreter");
 902   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 903   cbz(mdp, zero_continue);
 904 }
 905 
 906 // Set the method data pointer for the current bcp.
 907 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 908   assert(ProfileInterpreter, "must be profiling interpreter");
 909   Label set_mdp;
 910   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 911 
 912   // Test MDO to avoid the call if it is NULL.
 913   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 914   cbz(r0, set_mdp);
 915   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 916   // r0: mdi
 917   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 918   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 919   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 920   add(r0, r1, r0);
 921   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 922   bind(set_mdp);
 923   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 924 }
 925 
 926 void InterpreterMacroAssembler::verify_method_data_pointer() {
 927   assert(ProfileInterpreter, "must be profiling interpreter");
 928 #ifdef ASSERT
 929   Label verify_continue;
 930   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 931   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 932   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 933   get_method(r1);
 934 
 935   // If the mdp is valid, it will point to a DataLayout header which is
 936   // consistent with the bcp.  The converse is highly probable also.
 937   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 938   ldr(rscratch1, Address(r1, Method::const_offset()));
 939   add(r2, r2, rscratch1, Assembler::LSL);
 940   lea(r2, Address(r2, ConstMethod::codes_offset()));
 941   cmp(r2, rbcp);
 942   br(Assembler::EQ, verify_continue);
 943   // r1: method
 944   // rbcp: bcp // rbcp == 22
 945   // r3: mdp
 946   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 947                r1, rbcp, r3);
 948   bind(verify_continue);
 949   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 950   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 951 #endif // ASSERT
 952 }
 953 
 954 
 955 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 956                                                 int constant,
 957                                                 Register value) {
 958   assert(ProfileInterpreter, "must be profiling interpreter");
 959   Address data(mdp_in, constant);
 960   str(value, data);
 961 }
 962 
 963 
 964 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 965                                                       int constant,
 966                                                       bool decrement) {
 967   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 968 }
 969 
 970 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 971                                                       Register reg,
 972                                                       int constant,
 973                                                       bool decrement) {
 974   assert(ProfileInterpreter, "must be profiling interpreter");
 975   // %%% this does 64bit counters at best it is wasting space
 976   // at worst it is a rare bug when counters overflow
 977 
 978   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 979 
 980   Address addr1(mdp_in, constant);
 981   Address addr2(rscratch2, reg, Address::lsl(0));
 982   Address &addr = addr1;
 983   if (reg != noreg) {
 984     lea(rscratch2, addr1);
 985     addr = addr2;
 986   }
 987 
 988   if (decrement) {
 989     // Decrement the register.  Set condition codes.
 990     // Intel does this
 991     // addptr(data, (int32_t) -DataLayout::counter_increment);
 992     // If the decrement causes the counter to overflow, stay negative
 993     // Label L;
 994     // jcc(Assembler::negative, L);
 995     // addptr(data, (int32_t) DataLayout::counter_increment);
 996     // so we do this
 997     ldr(rscratch1, addr);
 998     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 999     Label L;
1000     br(Assembler::LO, L);       // skip store if counter underflow
1001     str(rscratch1, addr);
1002     bind(L);
1003   } else {
1004     assert(DataLayout::counter_increment == 1,
1005            "flow-free idiom only works with 1");
1006     // Intel does this
1007     // Increment the register.  Set carry flag.
1008     // addptr(data, DataLayout::counter_increment);
1009     // If the increment causes the counter to overflow, pull back by 1.
1010     // sbbptr(data, (int32_t)0);
1011     // so we do this
1012     ldr(rscratch1, addr);
1013     adds(rscratch1, rscratch1, DataLayout::counter_increment);
1014     Label L;
1015     br(Assembler::CS, L);       // skip store if counter overflow
1016     str(rscratch1, addr);
1017     bind(L);
1018   }
1019 }
1020 
1021 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1022                                                 int flag_byte_constant) {
1023   assert(ProfileInterpreter, "must be profiling interpreter");
1024   int flags_offset = in_bytes(DataLayout::flags_offset());
1025   // Set the flag
1026   ldrb(rscratch1, Address(mdp_in, flags_offset));
1027   orr(rscratch1, rscratch1, flag_byte_constant);
1028   strb(rscratch1, Address(mdp_in, flags_offset));
1029 }
1030 
1031 
1032 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1033                                                  int offset,
1034                                                  Register value,
1035                                                  Register test_value_out,
1036                                                  Label& not_equal_continue) {
1037   assert(ProfileInterpreter, "must be profiling interpreter");
1038   if (test_value_out == noreg) {
1039     ldr(rscratch1, Address(mdp_in, offset));
1040     cmp(value, rscratch1);
1041   } else {
1042     // Put the test value into a register, so caller can use it:
1043     ldr(test_value_out, Address(mdp_in, offset));
1044     cmp(value, test_value_out);
1045   }
1046   br(Assembler::NE, not_equal_continue);
1047 }
1048 
1049 
1050 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1051                                                      int offset_of_disp) {
1052   assert(ProfileInterpreter, "must be profiling interpreter");
1053   ldr(rscratch1, Address(mdp_in, offset_of_disp));
1054   add(mdp_in, mdp_in, rscratch1, LSL);
1055   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1056 }
1057 
1058 
1059 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1060                                                      Register reg,
1061                                                      int offset_of_disp) {
1062   assert(ProfileInterpreter, "must be profiling interpreter");
1063   lea(rscratch1, Address(mdp_in, offset_of_disp));
1064   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1065   add(mdp_in, mdp_in, rscratch1, LSL);
1066   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1067 }
1068 
1069 
1070 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1071                                                        int constant) {
1072   assert(ProfileInterpreter, "must be profiling interpreter");
1073   add(mdp_in, mdp_in, (unsigned)constant);
1074   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1075 }
1076 
1077 
1078 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1079   assert(ProfileInterpreter, "must be profiling interpreter");
1080   // save/restore across call_VM
1081   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1082   call_VM(noreg,
1083           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1084           return_bci);
1085   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1086 }
1087 
1088 
1089 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1090                                                      Register bumped_count) {
1091   if (ProfileInterpreter) {
1092     Label profile_continue;
1093 
1094     // If no method data exists, go to profile_continue.
1095     // Otherwise, assign to mdp
1096     test_method_data_pointer(mdp, profile_continue);
1097 
1098     // We are taking a branch.  Increment the taken count.
1099     // We inline increment_mdp_data_at to return bumped_count in a register
1100     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1101     Address data(mdp, in_bytes(JumpData::taken_offset()));
1102     ldr(bumped_count, data);
1103     assert(DataLayout::counter_increment == 1,
1104             "flow-free idiom only works with 1");
1105     // Intel does this to catch overflow
1106     // addptr(bumped_count, DataLayout::counter_increment);
1107     // sbbptr(bumped_count, 0);
1108     // so we do this
1109     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1110     Label L;
1111     br(Assembler::CS, L);       // skip store if counter overflow
1112     str(bumped_count, data);
1113     bind(L);
1114     // The method data pointer needs to be updated to reflect the new target.
1115     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1116     bind(profile_continue);
1117   }
1118 }
1119 
1120 
1121 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1122   if (ProfileInterpreter) {
1123     Label profile_continue;
1124 
1125     // If no method data exists, go to profile_continue.
1126     test_method_data_pointer(mdp, profile_continue);
1127 
1128     // We are taking a branch.  Increment the not taken count.
1129     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1130 
1131     // The method data pointer needs to be updated to correspond to
1132     // the next bytecode
1133     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1134     bind(profile_continue);
1135   }
1136 }
1137 
1138 
1139 void InterpreterMacroAssembler::profile_call(Register mdp) {
1140   if (ProfileInterpreter) {
1141     Label profile_continue;
1142 
1143     // If no method data exists, go to profile_continue.
1144     test_method_data_pointer(mdp, profile_continue);
1145 
1146     // We are making a call.  Increment the count.
1147     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1148 
1149     // The method data pointer needs to be updated to reflect the new target.
1150     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1151     bind(profile_continue);
1152   }
1153 }
1154 
1155 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1156   if (ProfileInterpreter) {
1157     Label profile_continue;
1158 
1159     // If no method data exists, go to profile_continue.
1160     test_method_data_pointer(mdp, profile_continue);
1161 
1162     // We are making a call.  Increment the count.
1163     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1164 
1165     // The method data pointer needs to be updated to reflect the new target.
1166     update_mdp_by_constant(mdp,
1167                            in_bytes(VirtualCallData::
1168                                     virtual_call_data_size()));
1169     bind(profile_continue);
1170   }
1171 }
1172 
1173 
1174 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1175                                                      Register mdp,
1176                                                      Register reg2,
1177                                                      bool receiver_can_be_null) {
1178   if (ProfileInterpreter) {
1179     Label profile_continue;
1180 
1181     // If no method data exists, go to profile_continue.
1182     test_method_data_pointer(mdp, profile_continue);
1183 
1184     Label skip_receiver_profile;
1185     if (receiver_can_be_null) {
1186       Label not_null;
1187       // We are making a call.  Increment the count for null receiver.
1188       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1189       b(skip_receiver_profile);
1190       bind(not_null);
1191     }
1192 
1193     // Record the receiver type.
1194     record_klass_in_profile(receiver, mdp, reg2, true);
1195     bind(skip_receiver_profile);
1196 
1197     // The method data pointer needs to be updated to reflect the new target.
1198     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1199     bind(profile_continue);
1200   }
1201 }
1202 
1203 // This routine creates a state machine for updating the multi-row
1204 // type profile at a virtual call site (or other type-sensitive bytecode).
1205 // The machine visits each row (of receiver/count) until the receiver type
1206 // is found, or until it runs out of rows.  At the same time, it remembers
1207 // the location of the first empty row.  (An empty row records null for its
1208 // receiver, and can be allocated for a newly-observed receiver type.)
1209 // Because there are two degrees of freedom in the state, a simple linear
1210 // search will not work; it must be a decision tree.  Hence this helper
1211 // function is recursive, to generate the required tree structured code.
1212 // It's the interpreter, so we are trading off code space for speed.
1213 // See below for example code.
1214 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1215                                         Register receiver, Register mdp,
1216                                         Register reg2, int start_row,
1217                                         Label& done, bool is_virtual_call) {
1218   if (TypeProfileWidth == 0) {
1219     if (is_virtual_call) {
1220       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1221     }
1222 #if INCLUDE_JVMCI
1223     else if (EnableJVMCI) {
1224       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1225     }
1226 #endif // INCLUDE_JVMCI
1227   } else {
1228     int non_profiled_offset = -1;
1229     if (is_virtual_call) {
1230       non_profiled_offset = in_bytes(CounterData::count_offset());
1231     }
1232 #if INCLUDE_JVMCI
1233     else if (EnableJVMCI) {
1234       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1235     }
1236 #endif // INCLUDE_JVMCI
1237 
1238     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1239         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1240   }
1241 }
1242 
1243 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1244                                         Register reg2, int start_row, Label& done, int total_rows,
1245                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1246                                         int non_profiled_offset) {
1247   int last_row = total_rows - 1;
1248   assert(start_row <= last_row, "must be work left to do");
1249   // Test this row for both the item and for null.
1250   // Take any of three different outcomes:
1251   //   1. found item => increment count and goto done
1252   //   2. found null => keep looking for case 1, maybe allocate this cell
1253   //   3. found something else => keep looking for cases 1 and 2
1254   // Case 3 is handled by a recursive call.
1255   for (int row = start_row; row <= last_row; row++) {
1256     Label next_test;
1257     bool test_for_null_also = (row == start_row);
1258 
1259     // See if the item is item[n].
1260     int item_offset = in_bytes(item_offset_fn(row));
1261     test_mdp_data_at(mdp, item_offset, item,
1262                      (test_for_null_also ? reg2 : noreg),
1263                      next_test);
1264     // (Reg2 now contains the item from the CallData.)
1265 
1266     // The item is item[n].  Increment count[n].
1267     int count_offset = in_bytes(item_count_offset_fn(row));
1268     increment_mdp_data_at(mdp, count_offset);
1269     b(done);
1270     bind(next_test);
1271 
1272     if (test_for_null_also) {
1273       Label found_null;
1274       // Failed the equality check on item[n]...  Test for null.
1275       if (start_row == last_row) {
1276         // The only thing left to do is handle the null case.
1277         if (non_profiled_offset >= 0) {
1278           cbz(reg2, found_null);
1279           // Item did not match any saved item and there is no empty row for it.
1280           // Increment total counter to indicate polymorphic case.
1281           increment_mdp_data_at(mdp, non_profiled_offset);
1282           b(done);
1283           bind(found_null);
1284         } else {
1285           cbnz(reg2, done);
1286         }
1287         break;
1288       }
1289       // Since null is rare, make it be the branch-taken case.
1290       cbz(reg2, found_null);
1291 
1292       // Put all the "Case 3" tests here.
1293       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1294         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1295 
1296       // Found a null.  Keep searching for a matching item,
1297       // but remember that this is an empty (unused) slot.
1298       bind(found_null);
1299     }
1300   }
1301 
1302   // In the fall-through case, we found no matching item, but we
1303   // observed the item[start_row] is NULL.
1304 
1305   // Fill in the item field and increment the count.
1306   int item_offset = in_bytes(item_offset_fn(start_row));
1307   set_mdp_data_at(mdp, item_offset, item);
1308   int count_offset = in_bytes(item_count_offset_fn(start_row));
1309   mov(reg2, DataLayout::counter_increment);
1310   set_mdp_data_at(mdp, count_offset, reg2);
1311   if (start_row > 0) {
1312     b(done);
1313   }
1314 }
1315 
1316 // Example state machine code for three profile rows:
1317 //   // main copy of decision tree, rooted at row[1]
1318 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1319 //   if (row[0].rec != NULL) {
1320 //     // inner copy of decision tree, rooted at row[1]
1321 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1322 //     if (row[1].rec != NULL) {
1323 //       // degenerate decision tree, rooted at row[2]
1324 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1325 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1326 //       row[2].init(rec); goto done;
1327 //     } else {
1328 //       // remember row[1] is empty
1329 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1330 //       row[1].init(rec); goto done;
1331 //     }
1332 //   } else {
1333 //     // remember row[0] is empty
1334 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1335 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1336 //     row[0].init(rec); goto done;
1337 //   }
1338 //   done:
1339 
1340 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1341                                                         Register mdp, Register reg2,
1342                                                         bool is_virtual_call) {
1343   assert(ProfileInterpreter, "must be profiling");
1344   Label done;
1345 
1346   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1347 
1348   bind (done);
1349 }
1350 
1351 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1352                                             Register mdp) {
1353   if (ProfileInterpreter) {
1354     Label profile_continue;
1355     uint row;
1356 
1357     // If no method data exists, go to profile_continue.
1358     test_method_data_pointer(mdp, profile_continue);
1359 
1360     // Update the total ret count.
1361     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1362 
1363     for (row = 0; row < RetData::row_limit(); row++) {
1364       Label next_test;
1365 
1366       // See if return_bci is equal to bci[n]:
1367       test_mdp_data_at(mdp,
1368                        in_bytes(RetData::bci_offset(row)),
1369                        return_bci, noreg,
1370                        next_test);
1371 
1372       // return_bci is equal to bci[n].  Increment the count.
1373       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1374 
1375       // The method data pointer needs to be updated to reflect the new target.
1376       update_mdp_by_offset(mdp,
1377                            in_bytes(RetData::bci_displacement_offset(row)));
1378       b(profile_continue);
1379       bind(next_test);
1380     }
1381 
1382     update_mdp_for_ret(return_bci);
1383 
1384     bind(profile_continue);
1385   }
1386 }
1387 
1388 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1389   if (ProfileInterpreter) {
1390     Label profile_continue;
1391 
1392     // If no method data exists, go to profile_continue.
1393     test_method_data_pointer(mdp, profile_continue);
1394 
1395     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1396 
1397     // The method data pointer needs to be updated.
1398     int mdp_delta = in_bytes(BitData::bit_data_size());
1399     if (TypeProfileCasts) {
1400       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1401     }
1402     update_mdp_by_constant(mdp, mdp_delta);
1403 
1404     bind(profile_continue);
1405   }
1406 }
1407 
1408 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1409   if (ProfileInterpreter && TypeProfileCasts) {
1410     Label profile_continue;
1411 
1412     // If no method data exists, go to profile_continue.
1413     test_method_data_pointer(mdp, profile_continue);
1414 
1415     int count_offset = in_bytes(CounterData::count_offset());
1416     // Back up the address, since we have already bumped the mdp.
1417     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1418 
1419     // *Decrement* the counter.  We expect to see zero or small negatives.
1420     increment_mdp_data_at(mdp, count_offset, true);
1421 
1422     bind (profile_continue);
1423   }
1424 }
1425 
1426 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1427   if (ProfileInterpreter) {
1428     Label profile_continue;
1429 
1430     // If no method data exists, go to profile_continue.
1431     test_method_data_pointer(mdp, profile_continue);
1432 
1433     // The method data pointer needs to be updated.
1434     int mdp_delta = in_bytes(BitData::bit_data_size());
1435     if (TypeProfileCasts) {
1436       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1437 
1438       // Record the object type.
1439       record_klass_in_profile(klass, mdp, reg2, false);
1440     }
1441     update_mdp_by_constant(mdp, mdp_delta);
1442 
1443     bind(profile_continue);
1444   }
1445 }
1446 
1447 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1448   if (ProfileInterpreter) {
1449     Label profile_continue;
1450 
1451     // If no method data exists, go to profile_continue.
1452     test_method_data_pointer(mdp, profile_continue);
1453 
1454     // Update the default case count
1455     increment_mdp_data_at(mdp,
1456                           in_bytes(MultiBranchData::default_count_offset()));
1457 
1458     // The method data pointer needs to be updated.
1459     update_mdp_by_offset(mdp,
1460                          in_bytes(MultiBranchData::
1461                                   default_displacement_offset()));
1462 
1463     bind(profile_continue);
1464   }
1465 }
1466 
1467 void InterpreterMacroAssembler::profile_switch_case(Register index,
1468                                                     Register mdp,
1469                                                     Register reg2) {
1470   if (ProfileInterpreter) {
1471     Label profile_continue;
1472 
1473     // If no method data exists, go to profile_continue.
1474     test_method_data_pointer(mdp, profile_continue);
1475 
1476     // Build the base (index * per_case_size_in_bytes()) +
1477     // case_array_offset_in_bytes()
1478     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1479     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1480     Assembler::maddw(index, index, reg2, rscratch1);
1481 
1482     // Update the case count
1483     increment_mdp_data_at(mdp,
1484                           index,
1485                           in_bytes(MultiBranchData::relative_count_offset()));
1486 
1487     // The method data pointer needs to be updated.
1488     update_mdp_by_offset(mdp,
1489                          index,
1490                          in_bytes(MultiBranchData::
1491                                   relative_displacement_offset()));
1492 
1493     bind(profile_continue);
1494   }
1495 }
1496 
1497 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1498   if (state == atos) {
1499     MacroAssembler::verify_oop(reg);
1500   }
1501 }
1502 
1503 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1504 
1505 
1506 void InterpreterMacroAssembler::notify_method_entry() {
1507   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1508   // track stack depth.  If it is possible to enter interp_only_mode we add
1509   // the code to check if the event should be sent.
1510   if (JvmtiExport::can_post_interpreter_events()) {
1511     Label L;
1512     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1513     cbzw(r3, L);
1514     call_VM(noreg, CAST_FROM_FN_PTR(address,
1515                                     InterpreterRuntime::post_method_entry));
1516     bind(L);
1517   }
1518 
1519   {
1520     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1521     get_method(c_rarg1);
1522     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1523                  rthread, c_rarg1);
1524   }
1525 
1526   // RedefineClasses() tracing support for obsolete method entry
1527   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1528     get_method(c_rarg1);
1529     call_VM_leaf(
1530       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1531       rthread, c_rarg1);
1532   }
1533 
1534  }
1535 
1536 
1537 void InterpreterMacroAssembler::notify_method_exit(
1538     TosState state, NotifyMethodExitMode mode) {
1539   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1540   // track stack depth.  If it is possible to enter interp_only_mode we add
1541   // the code to check if the event should be sent.
1542   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1543     Label L;
1544     // Note: frame::interpreter_frame_result has a dependency on how the
1545     // method result is saved across the call to post_method_exit. If this
1546     // is changed then the interpreter_frame_result implementation will
1547     // need to be updated too.
1548 
1549     // template interpreter will leave the result on the top of the stack.
1550     push(state);
1551     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1552     cbz(r3, L);
1553     call_VM(noreg,
1554             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1555     bind(L);
1556     pop(state);
1557   }
1558 
1559   {
1560     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1561     push(state);
1562     get_method(c_rarg1);
1563     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1564                  rthread, c_rarg1);
1565     pop(state);
1566   }
1567 }
1568 
1569 
1570 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1571 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1572                                                         int increment, Address mask,
1573                                                         Register scratch, Register scratch2,
1574                                                         bool preloaded, Condition cond,
1575                                                         Label* where) {
1576   if (!preloaded) {
1577     ldrw(scratch, counter_addr);
1578   }
1579   add(scratch, scratch, increment);
1580   strw(scratch, counter_addr);
1581   ldrw(scratch2, mask);
1582   ands(scratch, scratch, scratch2);
1583   br(cond, *where);
1584 }
1585 
1586 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1587                                                   int number_of_arguments) {
1588   // interpreter specific
1589   //
1590   // Note: No need to save/restore rbcp & rlocals pointer since these
1591   //       are callee saved registers and no blocking/ GC can happen
1592   //       in leaf calls.
1593 #ifdef ASSERT
1594   {
1595     Label L;
1596     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1597     cbz(rscratch1, L);
1598     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1599          " last_sp != NULL");
1600     bind(L);
1601   }
1602 #endif /* ASSERT */
1603   // super call
1604   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1605 }
1606 
1607 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1608                                              Register java_thread,
1609                                              Register last_java_sp,
1610                                              address  entry_point,
1611                                              int      number_of_arguments,
1612                                              bool     check_exceptions) {
1613   // interpreter specific
1614   //
1615   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1616   //       really make a difference for these runtime calls, since they are
1617   //       slow anyway. Btw., bcp must be saved/restored since it may change
1618   //       due to GC.
1619   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1620   save_bcp();
1621 #ifdef ASSERT
1622   {
1623     Label L;
1624     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1625     cbz(rscratch1, L);
1626     stop("InterpreterMacroAssembler::call_VM_base:"
1627          " last_sp != NULL");
1628     bind(L);
1629   }
1630 #endif /* ASSERT */
1631   // super call
1632   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1633                                entry_point, number_of_arguments,
1634                      check_exceptions);
1635 // interpreter specific
1636   restore_bcp();
1637   restore_locals();
1638 }
1639 
1640 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1641   assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1642   Label update, next, none;
1643 
1644   verify_oop(obj);
1645 
1646   cbnz(obj, update);
1647   orptr(mdo_addr, TypeEntries::null_seen);
1648   b(next);
1649 
1650   bind(update);
1651   load_klass(obj, obj);
1652 
1653   ldr(rscratch1, mdo_addr);
1654   eor(obj, obj, rscratch1);
1655   tst(obj, TypeEntries::type_klass_mask);
1656   br(Assembler::EQ, next); // klass seen before, nothing to
1657                            // do. The unknown bit may have been
1658                            // set already but no need to check.
1659 
1660   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1661   // already unknown. Nothing to do anymore.
1662 
1663   cbz(rscratch1, none);
1664   cmp(rscratch1, (u1)TypeEntries::null_seen);
1665   br(Assembler::EQ, none);
1666   // There is a chance that the checks above
1667   // fail if another thread has just set the
1668   // profiling to this obj's klass
1669   eor(obj, obj, rscratch1); // get back original value before XOR
1670   ldr(rscratch1, mdo_addr);
1671   eor(obj, obj, rscratch1);
1672   tst(obj, TypeEntries::type_klass_mask);
1673   br(Assembler::EQ, next);
1674 
1675   // different than before. Cannot keep accurate profile.
1676   orptr(mdo_addr, TypeEntries::type_unknown);
1677   b(next);
1678 
1679   bind(none);
1680   // first time here. Set profile type.
1681   str(obj, mdo_addr);
1682 #ifdef ASSERT
1683   andr(obj, obj, TypeEntries::type_mask);
1684   verify_klass_ptr(obj);
1685 #endif
1686 
1687   bind(next);
1688 }
1689 
1690 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1691   if (!ProfileInterpreter) {
1692     return;
1693   }
1694 
1695   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1696     Label profile_continue;
1697 
1698     test_method_data_pointer(mdp, profile_continue);
1699 
1700     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1701 
1702     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1703     cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1704     br(Assembler::NE, profile_continue);
1705 
1706     if (MethodData::profile_arguments()) {
1707       Label done;
1708       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1709 
1710       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1711         if (i > 0 || MethodData::profile_return()) {
1712           // If return value type is profiled we may have no argument to profile
1713           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1714           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1715           cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1716           add(rscratch1, mdp, off_to_args);
1717           br(Assembler::LT, done);
1718         }
1719         ldr(tmp, Address(callee, Method::const_offset()));
1720         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1721         // stack offset o (zero based) from the start of the argument
1722         // list, for n arguments translates into offset n - o - 1 from
1723         // the end of the argument list
1724         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1725         sub(tmp, tmp, rscratch1);
1726         sub(tmp, tmp, 1);
1727         Address arg_addr = argument_address(tmp);
1728         ldr(tmp, arg_addr);
1729 
1730         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1731         profile_obj_type(tmp, mdo_arg_addr);
1732 
1733         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1734         off_to_args += to_add;
1735       }
1736 
1737       if (MethodData::profile_return()) {
1738         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1739         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1740       }
1741 
1742       add(rscratch1, mdp, off_to_args);
1743       bind(done);
1744       mov(mdp, rscratch1);
1745 
1746       if (MethodData::profile_return()) {
1747         // We're right after the type profile for the last
1748         // argument. tmp is the number of cells left in the
1749         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1750         // if there's a return to profile.
1751         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1752         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1753       }
1754       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1755     } else {
1756       assert(MethodData::profile_return(), "either profile call args or call ret");
1757       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1758     }
1759 
1760     // mdp points right after the end of the
1761     // CallTypeData/VirtualCallTypeData, right after the cells for the
1762     // return value type if there's one
1763 
1764     bind(profile_continue);
1765   }
1766 }
1767 
1768 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1769   assert_different_registers(mdp, ret, tmp, rbcp);
1770   if (ProfileInterpreter && MethodData::profile_return()) {
1771     Label profile_continue, done;
1772 
1773     test_method_data_pointer(mdp, profile_continue);
1774 
1775     if (MethodData::profile_return_jsr292_only()) {
1776       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1777 
1778       // If we don't profile all invoke bytecodes we must make sure
1779       // it's a bytecode we indeed profile. We can't go back to the
1780       // begining of the ProfileData we intend to update to check its
1781       // type because we're right after it and we don't known its
1782       // length
1783       Label do_profile;
1784       ldrb(rscratch1, Address(rbcp, 0));
1785       cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1786       br(Assembler::EQ, do_profile);
1787       cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1788       br(Assembler::EQ, do_profile);
1789       get_method(tmp);
1790       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1791       subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1792       br(Assembler::NE, profile_continue);
1793 
1794       bind(do_profile);
1795     }
1796 
1797     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1798     mov(tmp, ret);
1799     profile_obj_type(tmp, mdo_ret_addr);
1800 
1801     bind(profile_continue);
1802   }
1803 }
1804 
1805 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1806   assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1807   if (ProfileInterpreter && MethodData::profile_parameters()) {
1808     Label profile_continue, done;
1809 
1810     test_method_data_pointer(mdp, profile_continue);
1811 
1812     // Load the offset of the area within the MDO used for
1813     // parameters. If it's negative we're not profiling any parameters
1814     ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1815     tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1816 
1817     // Compute a pointer to the area for parameters from the offset
1818     // and move the pointer to the slot for the last
1819     // parameters. Collect profiling from last parameter down.
1820     // mdo start + parameters offset + array length - 1
1821     add(mdp, mdp, tmp1);
1822     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1823     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1824 
1825     Label loop;
1826     bind(loop);
1827 
1828     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1829     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1830     int per_arg_scale = exact_log2(DataLayout::cell_size);
1831     add(rscratch1, mdp, off_base);
1832     add(rscratch2, mdp, type_base);
1833 
1834     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1835     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1836 
1837     // load offset on the stack from the slot for this parameter
1838     ldr(tmp2, arg_off);
1839     neg(tmp2, tmp2);
1840     // read the parameter from the local area
1841     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1842 
1843     // profile the parameter
1844     profile_obj_type(tmp2, arg_type);
1845 
1846     // go to next parameter
1847     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1848     br(Assembler::GE, loop);
1849 
1850     bind(profile_continue);
1851   }
1852 }