1 /* 2 * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/biasedLocking.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/thread.inline.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 void InterpreterMacroAssembler::narrow(Register result) { 50 51 // Get method->_constMethod->_result_type 52 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 53 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 54 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 55 56 Label done, notBool, notByte, notChar; 57 58 // common case first 59 cmpw(rscratch1, T_INT); 60 br(Assembler::EQ, done); 61 62 // mask integer result to narrower return type. 63 cmpw(rscratch1, T_BOOLEAN); 64 br(Assembler::NE, notBool); 65 andw(result, result, 0x1); 66 b(done); 67 68 bind(notBool); 69 cmpw(rscratch1, T_BYTE); 70 br(Assembler::NE, notByte); 71 sbfx(result, result, 0, 8); 72 b(done); 73 74 bind(notByte); 75 cmpw(rscratch1, T_CHAR); 76 br(Assembler::NE, notChar); 77 ubfx(result, result, 0, 16); // truncate upper 16 bits 78 b(done); 79 80 bind(notChar); 81 sbfx(result, result, 0, 16); // sign-extend short 82 83 // Nothing to do for T_INT 84 bind(done); 85 } 86 87 void InterpreterMacroAssembler::jump_to_entry(address entry) { 88 assert(entry, "Entry must have been generated by now"); 89 b(entry); 90 } 91 92 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 93 if (JvmtiExport::can_pop_frame()) { 94 Label L; 95 // Initiate popframe handling only if it is not already being 96 // processed. If the flag has the popframe_processing bit set, it 97 // means that this code is called *during* popframe handling - we 98 // don't want to reenter. 99 // This method is only called just after the call into the vm in 100 // call_VM_base, so the arg registers are available. 101 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 102 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 103 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 104 // Call Interpreter::remove_activation_preserving_args_entry() to get the 105 // address of the same-named entrypoint in the generated interpreter code. 106 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 107 br(r0); 108 bind(L); 109 } 110 } 111 112 113 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 114 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 115 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 116 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 117 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 118 switch (state) { 119 case atos: ldr(r0, oop_addr); 120 str(zr, oop_addr); 121 verify_oop(r0, state); break; 122 case ltos: ldr(r0, val_addr); break; 123 case btos: // fall through 124 case ztos: // fall through 125 case ctos: // fall through 126 case stos: // fall through 127 case itos: ldrw(r0, val_addr); break; 128 case ftos: ldrs(v0, val_addr); break; 129 case dtos: ldrd(v0, val_addr); break; 130 case vtos: /* nothing to do */ break; 131 default : ShouldNotReachHere(); 132 } 133 // Clean up tos value in the thread object 134 movw(rscratch1, (int) ilgl); 135 strw(rscratch1, tos_addr); 136 strw(zr, val_addr); 137 } 138 139 140 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 141 if (JvmtiExport::can_force_early_return()) { 142 Label L; 143 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 144 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit; 145 146 // Initiate earlyret handling only if it is not already being processed. 147 // If the flag has the earlyret_processing bit set, it means that this code 148 // is called *during* earlyret handling - we don't want to reenter. 149 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 150 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 151 br(Assembler::NE, L); 152 153 // Call Interpreter::remove_activation_early_entry() to get the address of the 154 // same-named entrypoint in the generated interpreter code. 155 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 156 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 157 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 158 br(r0); 159 bind(L); 160 } 161 } 162 163 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 164 Register reg, 165 int bcp_offset) { 166 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 167 ldrh(reg, Address(rbcp, bcp_offset)); 168 rev16(reg, reg); 169 } 170 171 void InterpreterMacroAssembler::get_dispatch() { 172 uint64_t offset; 173 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 174 lea(rdispatch, Address(rdispatch, offset)); 175 } 176 177 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 178 int bcp_offset, 179 size_t index_size) { 180 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 181 if (index_size == sizeof(u2)) { 182 load_unsigned_short(index, Address(rbcp, bcp_offset)); 183 } else if (index_size == sizeof(u4)) { 184 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 185 ldrw(index, Address(rbcp, bcp_offset)); 186 // Check if the secondary index definition is still ~x, otherwise 187 // we have to change the following assembler code to calculate the 188 // plain index. 189 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 190 eonw(index, index, zr); // convert to plain index 191 } else if (index_size == sizeof(u1)) { 192 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 193 } else { 194 ShouldNotReachHere(); 195 } 196 } 197 198 // Return 199 // Rindex: index into constant pool 200 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 201 // 202 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 203 // the true address of the cache entry. 204 // 205 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 206 Register index, 207 int bcp_offset, 208 size_t index_size) { 209 assert_different_registers(cache, index); 210 assert_different_registers(cache, rcpool); 211 get_cache_index_at_bcp(index, bcp_offset, index_size); 212 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 213 // convert from field index to ConstantPoolCacheEntry 214 // aarch64 already has the cache in rcpool so there is no need to 215 // install it in cache. instead we pre-add the indexed offset to 216 // rcpool and return it in cache. All clients of this method need to 217 // be modified accordingly. 218 add(cache, rcpool, index, Assembler::LSL, 5); 219 } 220 221 222 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 223 Register index, 224 Register bytecode, 225 int byte_no, 226 int bcp_offset, 227 size_t index_size) { 228 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 229 // We use a 32-bit load here since the layout of 64-bit words on 230 // little-endian machines allow us that. 231 // n.b. unlike x86 cache already includes the index offset 232 lea(bytecode, Address(cache, 233 ConstantPoolCache::base_offset() 234 + ConstantPoolCacheEntry::indices_offset())); 235 ldarw(bytecode, bytecode); 236 const int shift_count = (1 + byte_no) * BitsPerByte; 237 ubfx(bytecode, bytecode, shift_count, BitsPerByte); 238 } 239 240 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 241 Register tmp, 242 int bcp_offset, 243 size_t index_size) { 244 assert(cache != tmp, "must use different register"); 245 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 246 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 247 // convert from field index to ConstantPoolCacheEntry index 248 // and from word offset to byte offset 249 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 250 ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize)); 251 // skip past the header 252 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 253 add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord); // construct pointer to cache entry 254 } 255 256 void InterpreterMacroAssembler::get_method_counters(Register method, 257 Register mcs, Label& skip) { 258 Label has_counters; 259 ldr(mcs, Address(method, Method::method_counters_offset())); 260 cbnz(mcs, has_counters); 261 call_VM(noreg, CAST_FROM_FN_PTR(address, 262 InterpreterRuntime::build_method_counters), method); 263 ldr(mcs, Address(method, Method::method_counters_offset())); 264 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 265 bind(has_counters); 266 } 267 268 // Load object from cpool->resolved_references(index) 269 void InterpreterMacroAssembler::load_resolved_reference_at_index( 270 Register result, Register index, Register tmp) { 271 assert_different_registers(result, index); 272 273 get_constant_pool(result); 274 // load pointer for resolved_references[] objArray 275 ldr(result, Address(result, ConstantPool::cache_offset_in_bytes())); 276 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 277 resolve_oop_handle(result, tmp); 278 // Add in the index 279 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 280 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop))); 281 } 282 283 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 284 Register cpool, Register index, Register klass, Register temp) { 285 add(temp, cpool, index, LSL, LogBytesPerWord); 286 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 287 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses 288 add(klass, klass, temp, LSL, LogBytesPerWord); 289 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 290 } 291 292 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 293 Register method, 294 Register cache) { 295 const int method_offset = in_bytes( 296 ConstantPoolCache::base_offset() + 297 ((byte_no == TemplateTable::f2_byte) 298 ? ConstantPoolCacheEntry::f2_offset() 299 : ConstantPoolCacheEntry::f1_offset())); 300 301 ldr(method, Address(cache, method_offset)); // get f1 Method* 302 } 303 304 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 305 // subtype of super_klass. 306 // 307 // Args: 308 // r0: superklass 309 // Rsub_klass: subklass 310 // 311 // Kills: 312 // r2, r5 313 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 314 Label& ok_is_subtype) { 315 assert(Rsub_klass != r0, "r0 holds superklass"); 316 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 317 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 318 319 // Profile the not-null value's klass. 320 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 321 322 // Do the check. 323 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 324 325 // Profile the failure of the check. 326 profile_typecheck_failed(r2); // blows r2 327 } 328 329 // Java Expression Stack 330 331 void InterpreterMacroAssembler::pop_ptr(Register r) { 332 ldr(r, post(esp, wordSize)); 333 } 334 335 void InterpreterMacroAssembler::pop_i(Register r) { 336 ldrw(r, post(esp, wordSize)); 337 } 338 339 void InterpreterMacroAssembler::pop_l(Register r) { 340 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 341 } 342 343 void InterpreterMacroAssembler::push_ptr(Register r) { 344 str(r, pre(esp, -wordSize)); 345 } 346 347 void InterpreterMacroAssembler::push_i(Register r) { 348 str(r, pre(esp, -wordSize)); 349 } 350 351 void InterpreterMacroAssembler::push_l(Register r) { 352 str(zr, pre(esp, -wordSize)); 353 str(r, pre(esp, - wordSize)); 354 } 355 356 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 357 ldrs(r, post(esp, wordSize)); 358 } 359 360 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 361 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 362 } 363 364 void InterpreterMacroAssembler::push_f(FloatRegister r) { 365 strs(r, pre(esp, -wordSize)); 366 } 367 368 void InterpreterMacroAssembler::push_d(FloatRegister r) { 369 strd(r, pre(esp, 2* -wordSize)); 370 } 371 372 void InterpreterMacroAssembler::pop(TosState state) { 373 switch (state) { 374 case atos: pop_ptr(); break; 375 case btos: 376 case ztos: 377 case ctos: 378 case stos: 379 case itos: pop_i(); break; 380 case ltos: pop_l(); break; 381 case ftos: pop_f(); break; 382 case dtos: pop_d(); break; 383 case vtos: /* nothing to do */ break; 384 default: ShouldNotReachHere(); 385 } 386 verify_oop(r0, state); 387 } 388 389 void InterpreterMacroAssembler::push(TosState state) { 390 verify_oop(r0, state); 391 switch (state) { 392 case atos: push_ptr(); break; 393 case btos: 394 case ztos: 395 case ctos: 396 case stos: 397 case itos: push_i(); break; 398 case ltos: push_l(); break; 399 case ftos: push_f(); break; 400 case dtos: push_d(); break; 401 case vtos: /* nothing to do */ break; 402 default : ShouldNotReachHere(); 403 } 404 } 405 406 // Helpers for swap and dup 407 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 408 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 409 } 410 411 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 412 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 413 } 414 415 void InterpreterMacroAssembler::load_float(Address src) { 416 ldrs(v0, src); 417 } 418 419 void InterpreterMacroAssembler::load_double(Address src) { 420 ldrd(v0, src); 421 } 422 423 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 424 // set sender sp 425 mov(r13, sp); 426 // record last_sp 427 str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 428 } 429 430 // Jump to from_interpreted entry of a call unless single stepping is possible 431 // in this thread in which case we must call the i2i entry 432 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 433 prepare_to_jump_from_interpreted(); 434 435 if (JvmtiExport::can_post_interpreter_events()) { 436 Label run_compiled_code; 437 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 438 // compiled code in threads for which the event is enabled. Check here for 439 // interp_only_mode if these events CAN be enabled. 440 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 441 cbzw(rscratch1, run_compiled_code); 442 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 443 br(rscratch1); 444 bind(run_compiled_code); 445 } 446 447 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 448 br(rscratch1); 449 } 450 451 // The following two routines provide a hook so that an implementation 452 // can schedule the dispatch in two parts. amd64 does not do this. 453 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 454 } 455 456 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 457 dispatch_next(state, step); 458 } 459 460 void InterpreterMacroAssembler::dispatch_base(TosState state, 461 address* table, 462 bool verifyoop, 463 bool generate_poll) { 464 if (VerifyActivationFrameSize) { 465 Unimplemented(); 466 } 467 if (verifyoop) { 468 verify_oop(r0, state); 469 } 470 471 Label safepoint; 472 address* const safepoint_table = Interpreter::safept_table(state); 473 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 474 475 if (needs_thread_local_poll) { 476 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 477 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 478 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 479 } 480 481 if (table == Interpreter::dispatch_table(state)) { 482 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 483 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 484 } else { 485 mov(rscratch2, (address)table); 486 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 487 } 488 br(rscratch2); 489 490 if (needs_thread_local_poll) { 491 bind(safepoint); 492 lea(rscratch2, ExternalAddress((address)safepoint_table)); 493 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 494 br(rscratch2); 495 } 496 } 497 498 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 499 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 500 } 501 502 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 503 dispatch_base(state, Interpreter::normal_table(state)); 504 } 505 506 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 507 dispatch_base(state, Interpreter::normal_table(state), false); 508 } 509 510 511 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 512 // load next bytecode 513 ldrb(rscratch1, Address(pre(rbcp, step))); 514 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); 515 } 516 517 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 518 // load current bytecode 519 ldrb(rscratch1, Address(rbcp, 0)); 520 dispatch_base(state, table); 521 } 522 523 // remove activation 524 // 525 // Apply stack watermark barrier. 526 // Unlock the receiver if this is a synchronized method. 527 // Unlock any Java monitors from syncronized blocks. 528 // Remove the activation from the stack. 529 // 530 // If there are locked Java monitors 531 // If throw_monitor_exception 532 // throws IllegalMonitorStateException 533 // Else if install_monitor_exception 534 // installs IllegalMonitorStateException 535 // Else 536 // no error processing 537 void InterpreterMacroAssembler::remove_activation( 538 TosState state, 539 bool throw_monitor_exception, 540 bool install_monitor_exception, 541 bool notify_jvmdi) { 542 // Note: Registers r3 xmm0 may be in use for the 543 // result check if synchronized method 544 Label unlocked, unlock, no_unlock; 545 546 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 547 // that would normally not be safe to use. Such bad returns into unsafe territory of 548 // the stack, will call InterpreterRuntime::at_unwind. 549 Label slow_path; 550 Label fast_path; 551 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 552 br(Assembler::AL, fast_path); 553 bind(slow_path); 554 push(state); 555 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 556 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 557 reset_last_Java_frame(true); 558 pop(state); 559 bind(fast_path); 560 561 // get the value of _do_not_unlock_if_synchronized into r3 562 const Address do_not_unlock_if_synchronized(rthread, 563 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 564 ldrb(r3, do_not_unlock_if_synchronized); 565 strb(zr, do_not_unlock_if_synchronized); // reset the flag 566 567 // get method access flags 568 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 569 ldr(r2, Address(r1, Method::access_flags_offset())); 570 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 571 572 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 573 // is set. 574 cbnz(r3, no_unlock); 575 576 // unlock monitor 577 push(state); // save result 578 579 // BasicObjectLock will be first in list, since this is a 580 // synchronized method. However, need to check that the object has 581 // not been unlocked by an explicit monitorexit bytecode. 582 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 583 wordSize - (int) sizeof(BasicObjectLock)); 584 // We use c_rarg1 so that if we go slow path it will be the correct 585 // register for unlock_object to pass to VM directly 586 lea(c_rarg1, monitor); // address of first monitor 587 588 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 589 cbnz(r0, unlock); 590 591 pop(state); 592 if (throw_monitor_exception) { 593 // Entry already unlocked, need to throw exception 594 call_VM(noreg, CAST_FROM_FN_PTR(address, 595 InterpreterRuntime::throw_illegal_monitor_state_exception)); 596 should_not_reach_here(); 597 } else { 598 // Monitor already unlocked during a stack unroll. If requested, 599 // install an illegal_monitor_state_exception. Continue with 600 // stack unrolling. 601 if (install_monitor_exception) { 602 call_VM(noreg, CAST_FROM_FN_PTR(address, 603 InterpreterRuntime::new_illegal_monitor_state_exception)); 604 } 605 b(unlocked); 606 } 607 608 bind(unlock); 609 unlock_object(c_rarg1); 610 pop(state); 611 612 // Check that for block-structured locking (i.e., that all locked 613 // objects has been unlocked) 614 bind(unlocked); 615 616 // r0: Might contain return value 617 618 // Check that all monitors are unlocked 619 { 620 Label loop, exception, entry, restart; 621 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 622 const Address monitor_block_top( 623 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 624 const Address monitor_block_bot( 625 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 626 627 bind(restart); 628 // We use c_rarg1 so that if we go slow path it will be the correct 629 // register for unlock_object to pass to VM directly 630 ldr(c_rarg1, monitor_block_top); // points to current entry, starting 631 // with top-most entry 632 lea(r19, monitor_block_bot); // points to word before bottom of 633 // monitor block 634 b(entry); 635 636 // Entry already locked, need to throw exception 637 bind(exception); 638 639 if (throw_monitor_exception) { 640 // Throw exception 641 MacroAssembler::call_VM(noreg, 642 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 643 throw_illegal_monitor_state_exception)); 644 should_not_reach_here(); 645 } else { 646 // Stack unrolling. Unlock object and install illegal_monitor_exception. 647 // Unlock does not block, so don't have to worry about the frame. 648 // We don't have to preserve c_rarg1 since we are going to throw an exception. 649 650 push(state); 651 unlock_object(c_rarg1); 652 pop(state); 653 654 if (install_monitor_exception) { 655 call_VM(noreg, CAST_FROM_FN_PTR(address, 656 InterpreterRuntime:: 657 new_illegal_monitor_state_exception)); 658 } 659 660 b(restart); 661 } 662 663 bind(loop); 664 // check if current entry is used 665 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 666 cbnz(rscratch1, exception); 667 668 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 669 bind(entry); 670 cmp(c_rarg1, r19); // check if bottom reached 671 br(Assembler::NE, loop); // if not at bottom then check this entry 672 } 673 674 bind(no_unlock); 675 676 // jvmti support 677 if (notify_jvmdi) { 678 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 679 } else { 680 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 681 } 682 683 // remove activation 684 // get sender esp 685 ldr(rscratch2, 686 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 687 if (StackReservedPages > 0) { 688 // testing if reserved zone needs to be re-enabled 689 Label no_reserved_zone_enabling; 690 691 // look for an overflow into the stack reserved zone, i.e. 692 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 693 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 694 cmp(rscratch2, rscratch1); 695 br(Assembler::LS, no_reserved_zone_enabling); 696 697 call_VM_leaf( 698 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 699 call_VM(noreg, CAST_FROM_FN_PTR(address, 700 InterpreterRuntime::throw_delayed_StackOverflowError)); 701 should_not_reach_here(); 702 703 bind(no_reserved_zone_enabling); 704 } 705 706 // restore sender esp 707 mov(esp, rscratch2); 708 // remove frame anchor 709 leave(); 710 // If we're returning to interpreted code we will shortly be 711 // adjusting SP to allow some space for ESP. If we're returning to 712 // compiled code the saved sender SP was saved in sender_sp, so this 713 // restores it. 714 andr(sp, esp, -16); 715 } 716 717 // Lock object 718 // 719 // Args: 720 // c_rarg1: BasicObjectLock to be used for locking 721 // 722 // Kills: 723 // r0 724 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) 725 // rscratch1, rscratch2 (scratch regs) 726 void InterpreterMacroAssembler::lock_object(Register lock_reg) 727 { 728 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 729 if (UseHeavyMonitors) { 730 call_VM(noreg, 731 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 732 lock_reg); 733 } else { 734 Label done; 735 736 const Register swap_reg = r0; 737 const Register tmp = c_rarg2; 738 const Register obj_reg = c_rarg3; // Will contain the oop 739 740 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 741 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 742 const int mark_offset = lock_offset + 743 BasicLock::displaced_header_offset_in_bytes(); 744 745 Label slow_case; 746 747 // Load object pointer into obj_reg %c_rarg3 748 ldr(obj_reg, Address(lock_reg, obj_offset)); 749 750 if (DiagnoseSyncOnValueBasedClasses != 0) { 751 load_klass(tmp, obj_reg); 752 ldrw(tmp, Address(tmp, Klass::access_flags_offset())); 753 tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 754 br(Assembler::NE, slow_case); 755 } 756 757 if (UseBiasedLocking) { 758 biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case); 759 } 760 761 // Load (object->mark() | 1) into swap_reg 762 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 763 orr(swap_reg, rscratch1, 1); 764 765 // Save (object->mark() | 1) into BasicLock's displaced header 766 str(swap_reg, Address(lock_reg, mark_offset)); 767 768 assert(lock_offset == 0, 769 "displached header must be first word in BasicObjectLock"); 770 771 Label fail; 772 if (PrintBiasedLockingStatistics) { 773 Label fast; 774 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail); 775 bind(fast); 776 atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()), 777 rscratch2, rscratch1, tmp); 778 b(done); 779 bind(fail); 780 } else { 781 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL); 782 } 783 784 // Fast check for recursive lock. 785 // 786 // Can apply the optimization only if this is a stack lock 787 // allocated in this thread. For efficiency, we can focus on 788 // recently allocated stack locks (instead of reading the stack 789 // base and checking whether 'mark' points inside the current 790 // thread stack): 791 // 1) (mark & 7) == 0, and 792 // 2) sp <= mark < mark + os::pagesize() 793 // 794 // Warning: sp + os::pagesize can overflow the stack base. We must 795 // neither apply the optimization for an inflated lock allocated 796 // just above the thread stack (this is why condition 1 matters) 797 // nor apply the optimization if the stack lock is inside the stack 798 // of another thread. The latter is avoided even in case of overflow 799 // because we have guard pages at the end of all stacks. Hence, if 800 // we go over the stack base and hit the stack of another thread, 801 // this should not be in a writeable area that could contain a 802 // stack lock allocated by that thread. As a consequence, a stack 803 // lock less than page size away from sp is guaranteed to be 804 // owned by the current thread. 805 // 806 // These 3 tests can be done by evaluating the following 807 // expression: ((mark - sp) & (7 - os::vm_page_size())), 808 // assuming both stack pointer and pagesize have their 809 // least significant 3 bits clear. 810 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 811 // NOTE2: aarch64 does not like to subtract sp from rn so take a 812 // copy 813 mov(rscratch1, sp); 814 sub(swap_reg, swap_reg, rscratch1); 815 ands(swap_reg, swap_reg, (uint64_t)(7 - os::vm_page_size())); 816 817 // Save the test result, for recursive case, the result is zero 818 str(swap_reg, Address(lock_reg, mark_offset)); 819 820 if (PrintBiasedLockingStatistics) { 821 br(Assembler::NE, slow_case); 822 atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()), 823 rscratch2, rscratch1, tmp); 824 } 825 br(Assembler::EQ, done); 826 827 bind(slow_case); 828 829 // Call the runtime routine for slow case 830 call_VM(noreg, 831 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 832 lock_reg); 833 834 bind(done); 835 } 836 } 837 838 839 // Unlocks an object. Used in monitorexit bytecode and 840 // remove_activation. Throws an IllegalMonitorException if object is 841 // not locked by current thread. 842 // 843 // Args: 844 // c_rarg1: BasicObjectLock for lock 845 // 846 // Kills: 847 // r0 848 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 849 // rscratch1, rscratch2 (scratch regs) 850 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 851 { 852 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 853 854 if (UseHeavyMonitors) { 855 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 856 } else { 857 Label done; 858 859 const Register swap_reg = r0; 860 const Register header_reg = c_rarg2; // Will contain the old oopMark 861 const Register obj_reg = c_rarg3; // Will contain the oop 862 863 save_bcp(); // Save in case of exception 864 865 // Convert from BasicObjectLock structure to object and BasicLock 866 // structure Store the BasicLock address into %r0 867 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 868 869 // Load oop into obj_reg(%c_rarg3) 870 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 871 872 // Free entry 873 str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 874 875 if (UseBiasedLocking) { 876 biased_locking_exit(obj_reg, header_reg, done); 877 } 878 879 // Load the old header from BasicLock structure 880 ldr(header_reg, Address(swap_reg, 881 BasicLock::displaced_header_offset_in_bytes())); 882 883 // Test for recursion 884 cbz(header_reg, done); 885 886 // Atomic swap back the old header 887 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL); 888 889 // Call the runtime routine for slow case. 890 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj 891 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 892 893 bind(done); 894 895 restore_bcp(); 896 } 897 } 898 899 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 900 Label& zero_continue) { 901 assert(ProfileInterpreter, "must be profiling interpreter"); 902 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 903 cbz(mdp, zero_continue); 904 } 905 906 // Set the method data pointer for the current bcp. 907 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 908 assert(ProfileInterpreter, "must be profiling interpreter"); 909 Label set_mdp; 910 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 911 912 // Test MDO to avoid the call if it is NULL. 913 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 914 cbz(r0, set_mdp); 915 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 916 // r0: mdi 917 // mdo is guaranteed to be non-zero here, we checked for it before the call. 918 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 919 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 920 add(r0, r1, r0); 921 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 922 bind(set_mdp); 923 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 924 } 925 926 void InterpreterMacroAssembler::verify_method_data_pointer() { 927 assert(ProfileInterpreter, "must be profiling interpreter"); 928 #ifdef ASSERT 929 Label verify_continue; 930 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 931 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 932 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 933 get_method(r1); 934 935 // If the mdp is valid, it will point to a DataLayout header which is 936 // consistent with the bcp. The converse is highly probable also. 937 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 938 ldr(rscratch1, Address(r1, Method::const_offset())); 939 add(r2, r2, rscratch1, Assembler::LSL); 940 lea(r2, Address(r2, ConstMethod::codes_offset())); 941 cmp(r2, rbcp); 942 br(Assembler::EQ, verify_continue); 943 // r1: method 944 // rbcp: bcp // rbcp == 22 945 // r3: mdp 946 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 947 r1, rbcp, r3); 948 bind(verify_continue); 949 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 950 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 951 #endif // ASSERT 952 } 953 954 955 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 956 int constant, 957 Register value) { 958 assert(ProfileInterpreter, "must be profiling interpreter"); 959 Address data(mdp_in, constant); 960 str(value, data); 961 } 962 963 964 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 965 int constant, 966 bool decrement) { 967 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 968 } 969 970 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 971 Register reg, 972 int constant, 973 bool decrement) { 974 assert(ProfileInterpreter, "must be profiling interpreter"); 975 // %%% this does 64bit counters at best it is wasting space 976 // at worst it is a rare bug when counters overflow 977 978 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 979 980 Address addr1(mdp_in, constant); 981 Address addr2(rscratch2, reg, Address::lsl(0)); 982 Address &addr = addr1; 983 if (reg != noreg) { 984 lea(rscratch2, addr1); 985 addr = addr2; 986 } 987 988 if (decrement) { 989 // Decrement the register. Set condition codes. 990 // Intel does this 991 // addptr(data, (int32_t) -DataLayout::counter_increment); 992 // If the decrement causes the counter to overflow, stay negative 993 // Label L; 994 // jcc(Assembler::negative, L); 995 // addptr(data, (int32_t) DataLayout::counter_increment); 996 // so we do this 997 ldr(rscratch1, addr); 998 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 999 Label L; 1000 br(Assembler::LO, L); // skip store if counter underflow 1001 str(rscratch1, addr); 1002 bind(L); 1003 } else { 1004 assert(DataLayout::counter_increment == 1, 1005 "flow-free idiom only works with 1"); 1006 // Intel does this 1007 // Increment the register. Set carry flag. 1008 // addptr(data, DataLayout::counter_increment); 1009 // If the increment causes the counter to overflow, pull back by 1. 1010 // sbbptr(data, (int32_t)0); 1011 // so we do this 1012 ldr(rscratch1, addr); 1013 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1014 Label L; 1015 br(Assembler::CS, L); // skip store if counter overflow 1016 str(rscratch1, addr); 1017 bind(L); 1018 } 1019 } 1020 1021 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1022 int flag_byte_constant) { 1023 assert(ProfileInterpreter, "must be profiling interpreter"); 1024 int flags_offset = in_bytes(DataLayout::flags_offset()); 1025 // Set the flag 1026 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1027 orr(rscratch1, rscratch1, flag_byte_constant); 1028 strb(rscratch1, Address(mdp_in, flags_offset)); 1029 } 1030 1031 1032 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1033 int offset, 1034 Register value, 1035 Register test_value_out, 1036 Label& not_equal_continue) { 1037 assert(ProfileInterpreter, "must be profiling interpreter"); 1038 if (test_value_out == noreg) { 1039 ldr(rscratch1, Address(mdp_in, offset)); 1040 cmp(value, rscratch1); 1041 } else { 1042 // Put the test value into a register, so caller can use it: 1043 ldr(test_value_out, Address(mdp_in, offset)); 1044 cmp(value, test_value_out); 1045 } 1046 br(Assembler::NE, not_equal_continue); 1047 } 1048 1049 1050 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1051 int offset_of_disp) { 1052 assert(ProfileInterpreter, "must be profiling interpreter"); 1053 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1054 add(mdp_in, mdp_in, rscratch1, LSL); 1055 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1056 } 1057 1058 1059 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1060 Register reg, 1061 int offset_of_disp) { 1062 assert(ProfileInterpreter, "must be profiling interpreter"); 1063 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1064 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1065 add(mdp_in, mdp_in, rscratch1, LSL); 1066 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1067 } 1068 1069 1070 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1071 int constant) { 1072 assert(ProfileInterpreter, "must be profiling interpreter"); 1073 add(mdp_in, mdp_in, (unsigned)constant); 1074 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1075 } 1076 1077 1078 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1079 assert(ProfileInterpreter, "must be profiling interpreter"); 1080 // save/restore across call_VM 1081 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1082 call_VM(noreg, 1083 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1084 return_bci); 1085 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1086 } 1087 1088 1089 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1090 Register bumped_count) { 1091 if (ProfileInterpreter) { 1092 Label profile_continue; 1093 1094 // If no method data exists, go to profile_continue. 1095 // Otherwise, assign to mdp 1096 test_method_data_pointer(mdp, profile_continue); 1097 1098 // We are taking a branch. Increment the taken count. 1099 // We inline increment_mdp_data_at to return bumped_count in a register 1100 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1101 Address data(mdp, in_bytes(JumpData::taken_offset())); 1102 ldr(bumped_count, data); 1103 assert(DataLayout::counter_increment == 1, 1104 "flow-free idiom only works with 1"); 1105 // Intel does this to catch overflow 1106 // addptr(bumped_count, DataLayout::counter_increment); 1107 // sbbptr(bumped_count, 0); 1108 // so we do this 1109 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1110 Label L; 1111 br(Assembler::CS, L); // skip store if counter overflow 1112 str(bumped_count, data); 1113 bind(L); 1114 // The method data pointer needs to be updated to reflect the new target. 1115 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1116 bind(profile_continue); 1117 } 1118 } 1119 1120 1121 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1122 if (ProfileInterpreter) { 1123 Label profile_continue; 1124 1125 // If no method data exists, go to profile_continue. 1126 test_method_data_pointer(mdp, profile_continue); 1127 1128 // We are taking a branch. Increment the not taken count. 1129 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1130 1131 // The method data pointer needs to be updated to correspond to 1132 // the next bytecode 1133 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1134 bind(profile_continue); 1135 } 1136 } 1137 1138 1139 void InterpreterMacroAssembler::profile_call(Register mdp) { 1140 if (ProfileInterpreter) { 1141 Label profile_continue; 1142 1143 // If no method data exists, go to profile_continue. 1144 test_method_data_pointer(mdp, profile_continue); 1145 1146 // We are making a call. Increment the count. 1147 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1148 1149 // The method data pointer needs to be updated to reflect the new target. 1150 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1151 bind(profile_continue); 1152 } 1153 } 1154 1155 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1156 if (ProfileInterpreter) { 1157 Label profile_continue; 1158 1159 // If no method data exists, go to profile_continue. 1160 test_method_data_pointer(mdp, profile_continue); 1161 1162 // We are making a call. Increment the count. 1163 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1164 1165 // The method data pointer needs to be updated to reflect the new target. 1166 update_mdp_by_constant(mdp, 1167 in_bytes(VirtualCallData:: 1168 virtual_call_data_size())); 1169 bind(profile_continue); 1170 } 1171 } 1172 1173 1174 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1175 Register mdp, 1176 Register reg2, 1177 bool receiver_can_be_null) { 1178 if (ProfileInterpreter) { 1179 Label profile_continue; 1180 1181 // If no method data exists, go to profile_continue. 1182 test_method_data_pointer(mdp, profile_continue); 1183 1184 Label skip_receiver_profile; 1185 if (receiver_can_be_null) { 1186 Label not_null; 1187 // We are making a call. Increment the count for null receiver. 1188 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1189 b(skip_receiver_profile); 1190 bind(not_null); 1191 } 1192 1193 // Record the receiver type. 1194 record_klass_in_profile(receiver, mdp, reg2, true); 1195 bind(skip_receiver_profile); 1196 1197 // The method data pointer needs to be updated to reflect the new target. 1198 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1199 bind(profile_continue); 1200 } 1201 } 1202 1203 // This routine creates a state machine for updating the multi-row 1204 // type profile at a virtual call site (or other type-sensitive bytecode). 1205 // The machine visits each row (of receiver/count) until the receiver type 1206 // is found, or until it runs out of rows. At the same time, it remembers 1207 // the location of the first empty row. (An empty row records null for its 1208 // receiver, and can be allocated for a newly-observed receiver type.) 1209 // Because there are two degrees of freedom in the state, a simple linear 1210 // search will not work; it must be a decision tree. Hence this helper 1211 // function is recursive, to generate the required tree structured code. 1212 // It's the interpreter, so we are trading off code space for speed. 1213 // See below for example code. 1214 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1215 Register receiver, Register mdp, 1216 Register reg2, int start_row, 1217 Label& done, bool is_virtual_call) { 1218 if (TypeProfileWidth == 0) { 1219 if (is_virtual_call) { 1220 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1221 } 1222 #if INCLUDE_JVMCI 1223 else if (EnableJVMCI) { 1224 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1225 } 1226 #endif // INCLUDE_JVMCI 1227 } else { 1228 int non_profiled_offset = -1; 1229 if (is_virtual_call) { 1230 non_profiled_offset = in_bytes(CounterData::count_offset()); 1231 } 1232 #if INCLUDE_JVMCI 1233 else if (EnableJVMCI) { 1234 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1235 } 1236 #endif // INCLUDE_JVMCI 1237 1238 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1239 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1240 } 1241 } 1242 1243 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1244 Register reg2, int start_row, Label& done, int total_rows, 1245 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1246 int non_profiled_offset) { 1247 int last_row = total_rows - 1; 1248 assert(start_row <= last_row, "must be work left to do"); 1249 // Test this row for both the item and for null. 1250 // Take any of three different outcomes: 1251 // 1. found item => increment count and goto done 1252 // 2. found null => keep looking for case 1, maybe allocate this cell 1253 // 3. found something else => keep looking for cases 1 and 2 1254 // Case 3 is handled by a recursive call. 1255 for (int row = start_row; row <= last_row; row++) { 1256 Label next_test; 1257 bool test_for_null_also = (row == start_row); 1258 1259 // See if the item is item[n]. 1260 int item_offset = in_bytes(item_offset_fn(row)); 1261 test_mdp_data_at(mdp, item_offset, item, 1262 (test_for_null_also ? reg2 : noreg), 1263 next_test); 1264 // (Reg2 now contains the item from the CallData.) 1265 1266 // The item is item[n]. Increment count[n]. 1267 int count_offset = in_bytes(item_count_offset_fn(row)); 1268 increment_mdp_data_at(mdp, count_offset); 1269 b(done); 1270 bind(next_test); 1271 1272 if (test_for_null_also) { 1273 Label found_null; 1274 // Failed the equality check on item[n]... Test for null. 1275 if (start_row == last_row) { 1276 // The only thing left to do is handle the null case. 1277 if (non_profiled_offset >= 0) { 1278 cbz(reg2, found_null); 1279 // Item did not match any saved item and there is no empty row for it. 1280 // Increment total counter to indicate polymorphic case. 1281 increment_mdp_data_at(mdp, non_profiled_offset); 1282 b(done); 1283 bind(found_null); 1284 } else { 1285 cbnz(reg2, done); 1286 } 1287 break; 1288 } 1289 // Since null is rare, make it be the branch-taken case. 1290 cbz(reg2, found_null); 1291 1292 // Put all the "Case 3" tests here. 1293 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1294 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1295 1296 // Found a null. Keep searching for a matching item, 1297 // but remember that this is an empty (unused) slot. 1298 bind(found_null); 1299 } 1300 } 1301 1302 // In the fall-through case, we found no matching item, but we 1303 // observed the item[start_row] is NULL. 1304 1305 // Fill in the item field and increment the count. 1306 int item_offset = in_bytes(item_offset_fn(start_row)); 1307 set_mdp_data_at(mdp, item_offset, item); 1308 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1309 mov(reg2, DataLayout::counter_increment); 1310 set_mdp_data_at(mdp, count_offset, reg2); 1311 if (start_row > 0) { 1312 b(done); 1313 } 1314 } 1315 1316 // Example state machine code for three profile rows: 1317 // // main copy of decision tree, rooted at row[1] 1318 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1319 // if (row[0].rec != NULL) { 1320 // // inner copy of decision tree, rooted at row[1] 1321 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1322 // if (row[1].rec != NULL) { 1323 // // degenerate decision tree, rooted at row[2] 1324 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1325 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow 1326 // row[2].init(rec); goto done; 1327 // } else { 1328 // // remember row[1] is empty 1329 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1330 // row[1].init(rec); goto done; 1331 // } 1332 // } else { 1333 // // remember row[0] is empty 1334 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1335 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1336 // row[0].init(rec); goto done; 1337 // } 1338 // done: 1339 1340 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1341 Register mdp, Register reg2, 1342 bool is_virtual_call) { 1343 assert(ProfileInterpreter, "must be profiling"); 1344 Label done; 1345 1346 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1347 1348 bind (done); 1349 } 1350 1351 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1352 Register mdp) { 1353 if (ProfileInterpreter) { 1354 Label profile_continue; 1355 uint row; 1356 1357 // If no method data exists, go to profile_continue. 1358 test_method_data_pointer(mdp, profile_continue); 1359 1360 // Update the total ret count. 1361 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1362 1363 for (row = 0; row < RetData::row_limit(); row++) { 1364 Label next_test; 1365 1366 // See if return_bci is equal to bci[n]: 1367 test_mdp_data_at(mdp, 1368 in_bytes(RetData::bci_offset(row)), 1369 return_bci, noreg, 1370 next_test); 1371 1372 // return_bci is equal to bci[n]. Increment the count. 1373 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1374 1375 // The method data pointer needs to be updated to reflect the new target. 1376 update_mdp_by_offset(mdp, 1377 in_bytes(RetData::bci_displacement_offset(row))); 1378 b(profile_continue); 1379 bind(next_test); 1380 } 1381 1382 update_mdp_for_ret(return_bci); 1383 1384 bind(profile_continue); 1385 } 1386 } 1387 1388 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1389 if (ProfileInterpreter) { 1390 Label profile_continue; 1391 1392 // If no method data exists, go to profile_continue. 1393 test_method_data_pointer(mdp, profile_continue); 1394 1395 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1396 1397 // The method data pointer needs to be updated. 1398 int mdp_delta = in_bytes(BitData::bit_data_size()); 1399 if (TypeProfileCasts) { 1400 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1401 } 1402 update_mdp_by_constant(mdp, mdp_delta); 1403 1404 bind(profile_continue); 1405 } 1406 } 1407 1408 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1409 if (ProfileInterpreter && TypeProfileCasts) { 1410 Label profile_continue; 1411 1412 // If no method data exists, go to profile_continue. 1413 test_method_data_pointer(mdp, profile_continue); 1414 1415 int count_offset = in_bytes(CounterData::count_offset()); 1416 // Back up the address, since we have already bumped the mdp. 1417 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1418 1419 // *Decrement* the counter. We expect to see zero or small negatives. 1420 increment_mdp_data_at(mdp, count_offset, true); 1421 1422 bind (profile_continue); 1423 } 1424 } 1425 1426 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1427 if (ProfileInterpreter) { 1428 Label profile_continue; 1429 1430 // If no method data exists, go to profile_continue. 1431 test_method_data_pointer(mdp, profile_continue); 1432 1433 // The method data pointer needs to be updated. 1434 int mdp_delta = in_bytes(BitData::bit_data_size()); 1435 if (TypeProfileCasts) { 1436 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1437 1438 // Record the object type. 1439 record_klass_in_profile(klass, mdp, reg2, false); 1440 } 1441 update_mdp_by_constant(mdp, mdp_delta); 1442 1443 bind(profile_continue); 1444 } 1445 } 1446 1447 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1448 if (ProfileInterpreter) { 1449 Label profile_continue; 1450 1451 // If no method data exists, go to profile_continue. 1452 test_method_data_pointer(mdp, profile_continue); 1453 1454 // Update the default case count 1455 increment_mdp_data_at(mdp, 1456 in_bytes(MultiBranchData::default_count_offset())); 1457 1458 // The method data pointer needs to be updated. 1459 update_mdp_by_offset(mdp, 1460 in_bytes(MultiBranchData:: 1461 default_displacement_offset())); 1462 1463 bind(profile_continue); 1464 } 1465 } 1466 1467 void InterpreterMacroAssembler::profile_switch_case(Register index, 1468 Register mdp, 1469 Register reg2) { 1470 if (ProfileInterpreter) { 1471 Label profile_continue; 1472 1473 // If no method data exists, go to profile_continue. 1474 test_method_data_pointer(mdp, profile_continue); 1475 1476 // Build the base (index * per_case_size_in_bytes()) + 1477 // case_array_offset_in_bytes() 1478 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1479 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1480 Assembler::maddw(index, index, reg2, rscratch1); 1481 1482 // Update the case count 1483 increment_mdp_data_at(mdp, 1484 index, 1485 in_bytes(MultiBranchData::relative_count_offset())); 1486 1487 // The method data pointer needs to be updated. 1488 update_mdp_by_offset(mdp, 1489 index, 1490 in_bytes(MultiBranchData:: 1491 relative_displacement_offset())); 1492 1493 bind(profile_continue); 1494 } 1495 } 1496 1497 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 1498 if (state == atos) { 1499 MacroAssembler::verify_oop(reg); 1500 } 1501 } 1502 1503 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1504 1505 1506 void InterpreterMacroAssembler::notify_method_entry() { 1507 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1508 // track stack depth. If it is possible to enter interp_only_mode we add 1509 // the code to check if the event should be sent. 1510 if (JvmtiExport::can_post_interpreter_events()) { 1511 Label L; 1512 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1513 cbzw(r3, L); 1514 call_VM(noreg, CAST_FROM_FN_PTR(address, 1515 InterpreterRuntime::post_method_entry)); 1516 bind(L); 1517 } 1518 1519 { 1520 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1521 get_method(c_rarg1); 1522 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1523 rthread, c_rarg1); 1524 } 1525 1526 // RedefineClasses() tracing support for obsolete method entry 1527 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1528 get_method(c_rarg1); 1529 call_VM_leaf( 1530 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1531 rthread, c_rarg1); 1532 } 1533 1534 } 1535 1536 1537 void InterpreterMacroAssembler::notify_method_exit( 1538 TosState state, NotifyMethodExitMode mode) { 1539 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1540 // track stack depth. If it is possible to enter interp_only_mode we add 1541 // the code to check if the event should be sent. 1542 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1543 Label L; 1544 // Note: frame::interpreter_frame_result has a dependency on how the 1545 // method result is saved across the call to post_method_exit. If this 1546 // is changed then the interpreter_frame_result implementation will 1547 // need to be updated too. 1548 1549 // template interpreter will leave the result on the top of the stack. 1550 push(state); 1551 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1552 cbz(r3, L); 1553 call_VM(noreg, 1554 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1555 bind(L); 1556 pop(state); 1557 } 1558 1559 { 1560 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1561 push(state); 1562 get_method(c_rarg1); 1563 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1564 rthread, c_rarg1); 1565 pop(state); 1566 } 1567 } 1568 1569 1570 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1571 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1572 int increment, Address mask, 1573 Register scratch, Register scratch2, 1574 bool preloaded, Condition cond, 1575 Label* where) { 1576 if (!preloaded) { 1577 ldrw(scratch, counter_addr); 1578 } 1579 add(scratch, scratch, increment); 1580 strw(scratch, counter_addr); 1581 ldrw(scratch2, mask); 1582 ands(scratch, scratch, scratch2); 1583 br(cond, *where); 1584 } 1585 1586 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1587 int number_of_arguments) { 1588 // interpreter specific 1589 // 1590 // Note: No need to save/restore rbcp & rlocals pointer since these 1591 // are callee saved registers and no blocking/ GC can happen 1592 // in leaf calls. 1593 #ifdef ASSERT 1594 { 1595 Label L; 1596 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1597 cbz(rscratch1, L); 1598 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1599 " last_sp != NULL"); 1600 bind(L); 1601 } 1602 #endif /* ASSERT */ 1603 // super call 1604 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1605 } 1606 1607 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1608 Register java_thread, 1609 Register last_java_sp, 1610 address entry_point, 1611 int number_of_arguments, 1612 bool check_exceptions) { 1613 // interpreter specific 1614 // 1615 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1616 // really make a difference for these runtime calls, since they are 1617 // slow anyway. Btw., bcp must be saved/restored since it may change 1618 // due to GC. 1619 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1620 save_bcp(); 1621 #ifdef ASSERT 1622 { 1623 Label L; 1624 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1625 cbz(rscratch1, L); 1626 stop("InterpreterMacroAssembler::call_VM_base:" 1627 " last_sp != NULL"); 1628 bind(L); 1629 } 1630 #endif /* ASSERT */ 1631 // super call 1632 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1633 entry_point, number_of_arguments, 1634 check_exceptions); 1635 // interpreter specific 1636 restore_bcp(); 1637 restore_locals(); 1638 } 1639 1640 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1641 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1642 Label update, next, none; 1643 1644 verify_oop(obj); 1645 1646 cbnz(obj, update); 1647 orptr(mdo_addr, TypeEntries::null_seen); 1648 b(next); 1649 1650 bind(update); 1651 load_klass(obj, obj); 1652 1653 ldr(rscratch1, mdo_addr); 1654 eor(obj, obj, rscratch1); 1655 tst(obj, TypeEntries::type_klass_mask); 1656 br(Assembler::EQ, next); // klass seen before, nothing to 1657 // do. The unknown bit may have been 1658 // set already but no need to check. 1659 1660 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1661 // already unknown. Nothing to do anymore. 1662 1663 cbz(rscratch1, none); 1664 cmp(rscratch1, (u1)TypeEntries::null_seen); 1665 br(Assembler::EQ, none); 1666 // There is a chance that the checks above 1667 // fail if another thread has just set the 1668 // profiling to this obj's klass 1669 eor(obj, obj, rscratch1); // get back original value before XOR 1670 ldr(rscratch1, mdo_addr); 1671 eor(obj, obj, rscratch1); 1672 tst(obj, TypeEntries::type_klass_mask); 1673 br(Assembler::EQ, next); 1674 1675 // different than before. Cannot keep accurate profile. 1676 orptr(mdo_addr, TypeEntries::type_unknown); 1677 b(next); 1678 1679 bind(none); 1680 // first time here. Set profile type. 1681 str(obj, mdo_addr); 1682 #ifdef ASSERT 1683 andr(obj, obj, TypeEntries::type_mask); 1684 verify_klass_ptr(obj); 1685 #endif 1686 1687 bind(next); 1688 } 1689 1690 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1691 if (!ProfileInterpreter) { 1692 return; 1693 } 1694 1695 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1696 Label profile_continue; 1697 1698 test_method_data_pointer(mdp, profile_continue); 1699 1700 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1701 1702 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1703 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1704 br(Assembler::NE, profile_continue); 1705 1706 if (MethodData::profile_arguments()) { 1707 Label done; 1708 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1709 1710 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1711 if (i > 0 || MethodData::profile_return()) { 1712 // If return value type is profiled we may have no argument to profile 1713 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1714 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1715 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1716 add(rscratch1, mdp, off_to_args); 1717 br(Assembler::LT, done); 1718 } 1719 ldr(tmp, Address(callee, Method::const_offset())); 1720 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1721 // stack offset o (zero based) from the start of the argument 1722 // list, for n arguments translates into offset n - o - 1 from 1723 // the end of the argument list 1724 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1725 sub(tmp, tmp, rscratch1); 1726 sub(tmp, tmp, 1); 1727 Address arg_addr = argument_address(tmp); 1728 ldr(tmp, arg_addr); 1729 1730 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1731 profile_obj_type(tmp, mdo_arg_addr); 1732 1733 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1734 off_to_args += to_add; 1735 } 1736 1737 if (MethodData::profile_return()) { 1738 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1739 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1740 } 1741 1742 add(rscratch1, mdp, off_to_args); 1743 bind(done); 1744 mov(mdp, rscratch1); 1745 1746 if (MethodData::profile_return()) { 1747 // We're right after the type profile for the last 1748 // argument. tmp is the number of cells left in the 1749 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1750 // if there's a return to profile. 1751 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1752 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1753 } 1754 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1755 } else { 1756 assert(MethodData::profile_return(), "either profile call args or call ret"); 1757 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1758 } 1759 1760 // mdp points right after the end of the 1761 // CallTypeData/VirtualCallTypeData, right after the cells for the 1762 // return value type if there's one 1763 1764 bind(profile_continue); 1765 } 1766 } 1767 1768 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1769 assert_different_registers(mdp, ret, tmp, rbcp); 1770 if (ProfileInterpreter && MethodData::profile_return()) { 1771 Label profile_continue, done; 1772 1773 test_method_data_pointer(mdp, profile_continue); 1774 1775 if (MethodData::profile_return_jsr292_only()) { 1776 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1777 1778 // If we don't profile all invoke bytecodes we must make sure 1779 // it's a bytecode we indeed profile. We can't go back to the 1780 // begining of the ProfileData we intend to update to check its 1781 // type because we're right after it and we don't known its 1782 // length 1783 Label do_profile; 1784 ldrb(rscratch1, Address(rbcp, 0)); 1785 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1786 br(Assembler::EQ, do_profile); 1787 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1788 br(Assembler::EQ, do_profile); 1789 get_method(tmp); 1790 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes())); 1791 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1792 br(Assembler::NE, profile_continue); 1793 1794 bind(do_profile); 1795 } 1796 1797 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1798 mov(tmp, ret); 1799 profile_obj_type(tmp, mdo_ret_addr); 1800 1801 bind(profile_continue); 1802 } 1803 } 1804 1805 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1806 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1807 if (ProfileInterpreter && MethodData::profile_parameters()) { 1808 Label profile_continue, done; 1809 1810 test_method_data_pointer(mdp, profile_continue); 1811 1812 // Load the offset of the area within the MDO used for 1813 // parameters. If it's negative we're not profiling any parameters 1814 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1815 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1816 1817 // Compute a pointer to the area for parameters from the offset 1818 // and move the pointer to the slot for the last 1819 // parameters. Collect profiling from last parameter down. 1820 // mdo start + parameters offset + array length - 1 1821 add(mdp, mdp, tmp1); 1822 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1823 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1824 1825 Label loop; 1826 bind(loop); 1827 1828 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1829 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1830 int per_arg_scale = exact_log2(DataLayout::cell_size); 1831 add(rscratch1, mdp, off_base); 1832 add(rscratch2, mdp, type_base); 1833 1834 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1835 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1836 1837 // load offset on the stack from the slot for this parameter 1838 ldr(tmp2, arg_off); 1839 neg(tmp2, tmp2); 1840 // read the parameter from the local area 1841 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1842 1843 // profile the parameter 1844 profile_obj_type(tmp2, arg_type); 1845 1846 // go to next parameter 1847 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1848 br(Assembler::GE, loop); 1849 1850 bind(profile_continue); 1851 } 1852 }