1 /*
2 * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "compiler/compiler_globals.hpp"
29 #include "gc/shared/barrierSet.hpp"
30 #include "gc/shared/barrierSetAssembler.hpp"
31 #include "interp_masm_aarch64.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "logging/log.hpp"
35 #include "oops/arrayOop.hpp"
36 #include "oops/markWord.hpp"
37 #include "oops/method.hpp"
38 #include "oops/methodData.hpp"
39 #include "prims/jvmtiExport.hpp"
40 #include "prims/jvmtiThreadState.hpp"
41 #include "runtime/basicLock.hpp"
42 #include "runtime/biasedLocking.hpp"
43 #include "runtime/frame.inline.hpp"
44 #include "runtime/safepointMechanism.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "runtime/thread.inline.hpp"
47 #include "utilities/powerOfTwo.hpp"
48
49 void InterpreterMacroAssembler::narrow(Register result) {
50
51 // Get method->_constMethod->_result_type
52 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
53 ldr(rscratch1, Address(rscratch1, Method::const_offset()));
54 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
55
56 Label done, notBool, notByte, notChar;
57
58 // common case first
59 cmpw(rscratch1, T_INT);
60 br(Assembler::EQ, done);
61
62 // mask integer result to narrower return type.
63 cmpw(rscratch1, T_BOOLEAN);
64 br(Assembler::NE, notBool);
65 andw(result, result, 0x1);
66 b(done);
67
68 bind(notBool);
69 cmpw(rscratch1, T_BYTE);
70 br(Assembler::NE, notByte);
71 sbfx(result, result, 0, 8);
72 b(done);
73
74 bind(notByte);
75 cmpw(rscratch1, T_CHAR);
76 br(Assembler::NE, notChar);
77 ubfx(result, result, 0, 16); // truncate upper 16 bits
78 b(done);
79
80 bind(notChar);
81 sbfx(result, result, 0, 16); // sign-extend short
82
83 // Nothing to do for T_INT
84 bind(done);
85 }
86
87 void InterpreterMacroAssembler::jump_to_entry(address entry) {
88 assert(entry, "Entry must have been generated by now");
89 b(entry);
90 }
91
92 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
93 if (JvmtiExport::can_pop_frame()) {
94 Label L;
95 // Initiate popframe handling only if it is not already being
96 // processed. If the flag has the popframe_processing bit set, it
97 // means that this code is called *during* popframe handling - we
98 // don't want to reenter.
99 // This method is only called just after the call into the vm in
100 // call_VM_base, so the arg registers are available.
101 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
102 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
103 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
104 // Call Interpreter::remove_activation_preserving_args_entry() to get the
105 // address of the same-named entrypoint in the generated interpreter code.
106 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
107 br(r0);
108 bind(L);
109 }
110 }
111
112
113 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
114 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
115 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
116 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
117 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
118 switch (state) {
119 case atos: ldr(r0, oop_addr);
120 str(zr, oop_addr);
121 verify_oop(r0, state); break;
122 case ltos: ldr(r0, val_addr); break;
123 case btos: // fall through
124 case ztos: // fall through
125 case ctos: // fall through
126 case stos: // fall through
127 case itos: ldrw(r0, val_addr); break;
128 case ftos: ldrs(v0, val_addr); break;
129 case dtos: ldrd(v0, val_addr); break;
130 case vtos: /* nothing to do */ break;
131 default : ShouldNotReachHere();
132 }
133 // Clean up tos value in the thread object
134 movw(rscratch1, (int) ilgl);
135 strw(rscratch1, tos_addr);
136 strw(zr, val_addr);
137 }
138
139
140 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
141 if (JvmtiExport::can_force_early_return()) {
142 Label L;
143 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
144 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
145
146 // Initiate earlyret handling only if it is not already being processed.
147 // If the flag has the earlyret_processing bit set, it means that this code
148 // is called *during* earlyret handling - we don't want to reenter.
149 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
150 cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
151 br(Assembler::NE, L);
152
153 // Call Interpreter::remove_activation_early_entry() to get the address of the
154 // same-named entrypoint in the generated interpreter code.
155 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
156 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
157 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
158 br(r0);
159 bind(L);
160 }
161 }
162
163 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
164 Register reg,
165 int bcp_offset) {
166 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
167 ldrh(reg, Address(rbcp, bcp_offset));
168 rev16(reg, reg);
169 }
170
171 void InterpreterMacroAssembler::get_dispatch() {
172 uint64_t offset;
173 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
174 lea(rdispatch, Address(rdispatch, offset));
175 }
176
177 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
178 int bcp_offset,
179 size_t index_size) {
180 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
181 if (index_size == sizeof(u2)) {
182 load_unsigned_short(index, Address(rbcp, bcp_offset));
183 } else if (index_size == sizeof(u4)) {
184 // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
185 ldrw(index, Address(rbcp, bcp_offset));
186 // Check if the secondary index definition is still ~x, otherwise
187 // we have to change the following assembler code to calculate the
188 // plain index.
189 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
190 eonw(index, index, zr); // convert to plain index
191 } else if (index_size == sizeof(u1)) {
192 load_unsigned_byte(index, Address(rbcp, bcp_offset));
193 } else {
194 ShouldNotReachHere();
195 }
196 }
197
198 // Return
199 // Rindex: index into constant pool
200 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
201 //
202 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
203 // the true address of the cache entry.
204 //
205 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
206 Register index,
207 int bcp_offset,
208 size_t index_size) {
209 assert_different_registers(cache, index);
210 assert_different_registers(cache, rcpool);
211 get_cache_index_at_bcp(index, bcp_offset, index_size);
212 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
213 // convert from field index to ConstantPoolCacheEntry
214 // aarch64 already has the cache in rcpool so there is no need to
215 // install it in cache. instead we pre-add the indexed offset to
216 // rcpool and return it in cache. All clients of this method need to
217 // be modified accordingly.
218 add(cache, rcpool, index, Assembler::LSL, 5);
219 }
220
221
222 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
223 Register index,
224 Register bytecode,
225 int byte_no,
226 int bcp_offset,
227 size_t index_size) {
228 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
229 // We use a 32-bit load here since the layout of 64-bit words on
230 // little-endian machines allow us that.
231 // n.b. unlike x86 cache already includes the index offset
232 lea(bytecode, Address(cache,
233 ConstantPoolCache::base_offset()
234 + ConstantPoolCacheEntry::indices_offset()));
235 ldarw(bytecode, bytecode);
236 const int shift_count = (1 + byte_no) * BitsPerByte;
237 ubfx(bytecode, bytecode, shift_count, BitsPerByte);
238 }
239
240 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
241 Register tmp,
242 int bcp_offset,
243 size_t index_size) {
244 assert(cache != tmp, "must use different register");
245 get_cache_index_at_bcp(tmp, bcp_offset, index_size);
246 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
247 // convert from field index to ConstantPoolCacheEntry index
248 // and from word offset to byte offset
249 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
250 ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
251 // skip past the header
252 add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
253 add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord); // construct pointer to cache entry
254 }
255
256 void InterpreterMacroAssembler::get_method_counters(Register method,
257 Register mcs, Label& skip) {
258 Label has_counters;
259 ldr(mcs, Address(method, Method::method_counters_offset()));
260 cbnz(mcs, has_counters);
261 call_VM(noreg, CAST_FROM_FN_PTR(address,
262 InterpreterRuntime::build_method_counters), method);
263 ldr(mcs, Address(method, Method::method_counters_offset()));
264 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
265 bind(has_counters);
266 }
267
268 // Load object from cpool->resolved_references(index)
269 void InterpreterMacroAssembler::load_resolved_reference_at_index(
270 Register result, Register index, Register tmp) {
271 assert_different_registers(result, index);
272
273 get_constant_pool(result);
274 // load pointer for resolved_references[] objArray
275 ldr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
276 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
277 resolve_oop_handle(result, tmp);
278 // Add in the index
279 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
280 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)));
281 }
282
283 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
284 Register cpool, Register index, Register klass, Register temp) {
285 add(temp, cpool, index, LSL, LogBytesPerWord);
286 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
287 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses
288 add(klass, klass, temp, LSL, LogBytesPerWord);
289 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
290 }
291
292 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
293 Register method,
294 Register cache) {
295 const int method_offset = in_bytes(
296 ConstantPoolCache::base_offset() +
297 ((byte_no == TemplateTable::f2_byte)
298 ? ConstantPoolCacheEntry::f2_offset()
299 : ConstantPoolCacheEntry::f1_offset()));
300
301 ldr(method, Address(cache, method_offset)); // get f1 Method*
302 }
303
304 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
305 // subtype of super_klass.
306 //
307 // Args:
308 // r0: superklass
309 // Rsub_klass: subklass
310 //
311 // Kills:
312 // r2, r5
313 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
314 Label& ok_is_subtype) {
315 assert(Rsub_klass != r0, "r0 holds superklass");
316 assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
317 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
318
319 // Profile the not-null value's klass.
320 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
321
322 // Do the check.
323 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
324
325 // Profile the failure of the check.
326 profile_typecheck_failed(r2); // blows r2
327 }
328
329 // Java Expression Stack
330
331 void InterpreterMacroAssembler::pop_ptr(Register r) {
332 ldr(r, post(esp, wordSize));
333 }
334
335 void InterpreterMacroAssembler::pop_i(Register r) {
336 ldrw(r, post(esp, wordSize));
337 }
338
339 void InterpreterMacroAssembler::pop_l(Register r) {
340 ldr(r, post(esp, 2 * Interpreter::stackElementSize));
341 }
342
343 void InterpreterMacroAssembler::push_ptr(Register r) {
344 str(r, pre(esp, -wordSize));
345 }
346
347 void InterpreterMacroAssembler::push_i(Register r) {
348 str(r, pre(esp, -wordSize));
349 }
350
351 void InterpreterMacroAssembler::push_l(Register r) {
352 str(zr, pre(esp, -wordSize));
353 str(r, pre(esp, - wordSize));
354 }
355
356 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
357 ldrs(r, post(esp, wordSize));
358 }
359
360 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
361 ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
362 }
363
364 void InterpreterMacroAssembler::push_f(FloatRegister r) {
365 strs(r, pre(esp, -wordSize));
366 }
367
368 void InterpreterMacroAssembler::push_d(FloatRegister r) {
369 strd(r, pre(esp, 2* -wordSize));
370 }
371
372 void InterpreterMacroAssembler::pop(TosState state) {
373 switch (state) {
374 case atos: pop_ptr(); break;
375 case btos:
376 case ztos:
377 case ctos:
378 case stos:
379 case itos: pop_i(); break;
380 case ltos: pop_l(); break;
381 case ftos: pop_f(); break;
382 case dtos: pop_d(); break;
383 case vtos: /* nothing to do */ break;
384 default: ShouldNotReachHere();
385 }
386 verify_oop(r0, state);
387 }
388
389 void InterpreterMacroAssembler::push(TosState state) {
390 verify_oop(r0, state);
391 switch (state) {
392 case atos: push_ptr(); break;
393 case btos:
394 case ztos:
395 case ctos:
396 case stos:
397 case itos: push_i(); break;
398 case ltos: push_l(); break;
399 case ftos: push_f(); break;
400 case dtos: push_d(); break;
401 case vtos: /* nothing to do */ break;
402 default : ShouldNotReachHere();
403 }
404 }
405
406 // Helpers for swap and dup
407 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
408 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
409 }
410
411 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
412 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
413 }
414
415 void InterpreterMacroAssembler::load_float(Address src) {
416 ldrs(v0, src);
417 }
418
419 void InterpreterMacroAssembler::load_double(Address src) {
420 ldrd(v0, src);
421 }
422
423 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
424 // set sender sp
425 mov(r13, sp);
426 // record last_sp
427 str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
428 }
429
430 // Jump to from_interpreted entry of a call unless single stepping is possible
431 // in this thread in which case we must call the i2i entry
432 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
433 prepare_to_jump_from_interpreted();
434
435 if (JvmtiExport::can_post_interpreter_events()) {
436 Label run_compiled_code;
437 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
438 // compiled code in threads for which the event is enabled. Check here for
439 // interp_only_mode if these events CAN be enabled.
440 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
441 cbzw(rscratch1, run_compiled_code);
442 ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
443 br(rscratch1);
444 bind(run_compiled_code);
445 }
446
447 ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
448 br(rscratch1);
449 }
450
451 // The following two routines provide a hook so that an implementation
452 // can schedule the dispatch in two parts. amd64 does not do this.
453 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
454 }
455
456 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
457 dispatch_next(state, step);
458 }
459
460 void InterpreterMacroAssembler::dispatch_base(TosState state,
461 address* table,
462 bool verifyoop,
463 bool generate_poll) {
464 if (VerifyActivationFrameSize) {
465 Unimplemented();
466 }
467 if (verifyoop) {
468 verify_oop(r0, state);
469 }
470
471 Label safepoint;
472 address* const safepoint_table = Interpreter::safept_table(state);
473 bool needs_thread_local_poll = generate_poll && table != safepoint_table;
474
475 if (needs_thread_local_poll) {
476 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
477 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
478 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
479 }
480
481 if (table == Interpreter::dispatch_table(state)) {
482 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
483 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
484 } else {
485 mov(rscratch2, (address)table);
486 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
487 }
488 br(rscratch2);
489
490 if (needs_thread_local_poll) {
491 bind(safepoint);
492 lea(rscratch2, ExternalAddress((address)safepoint_table));
493 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
494 br(rscratch2);
495 }
496 }
497
498 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
499 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
500 }
501
502 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
503 dispatch_base(state, Interpreter::normal_table(state));
504 }
505
506 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
507 dispatch_base(state, Interpreter::normal_table(state), false);
508 }
509
510
511 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
512 // load next bytecode
513 ldrb(rscratch1, Address(pre(rbcp, step)));
514 dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
515 }
516
517 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
518 // load current bytecode
519 ldrb(rscratch1, Address(rbcp, 0));
520 dispatch_base(state, table);
521 }
522
523 // remove activation
524 //
525 // Apply stack watermark barrier.
526 // Unlock the receiver if this is a synchronized method.
527 // Unlock any Java monitors from syncronized blocks.
528 // Remove the activation from the stack.
529 //
530 // If there are locked Java monitors
531 // If throw_monitor_exception
532 // throws IllegalMonitorStateException
533 // Else if install_monitor_exception
534 // installs IllegalMonitorStateException
535 // Else
536 // no error processing
537 void InterpreterMacroAssembler::remove_activation(
538 TosState state,
539 bool throw_monitor_exception,
540 bool install_monitor_exception,
541 bool notify_jvmdi) {
542 // Note: Registers r3 xmm0 may be in use for the
543 // result check if synchronized method
544 Label unlocked, unlock, no_unlock;
545
546 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
547 // that would normally not be safe to use. Such bad returns into unsafe territory of
548 // the stack, will call InterpreterRuntime::at_unwind.
549 Label slow_path;
550 Label fast_path;
551 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
552 br(Assembler::AL, fast_path);
553 bind(slow_path);
554 push(state);
555 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1);
556 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
557 reset_last_Java_frame(true);
558 pop(state);
559 bind(fast_path);
560
561 // get the value of _do_not_unlock_if_synchronized into r3
562 const Address do_not_unlock_if_synchronized(rthread,
563 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
564 ldrb(r3, do_not_unlock_if_synchronized);
565 strb(zr, do_not_unlock_if_synchronized); // reset the flag
566
567 // get method access flags
568 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
569 ldr(r2, Address(r1, Method::access_flags_offset()));
570 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
571
572 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
573 // is set.
574 cbnz(r3, no_unlock);
575
576 // unlock monitor
577 push(state); // save result
578
579 // BasicObjectLock will be first in list, since this is a
580 // synchronized method. However, need to check that the object has
581 // not been unlocked by an explicit monitorexit bytecode.
582 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
583 wordSize - (int) sizeof(BasicObjectLock));
584 // We use c_rarg1 so that if we go slow path it will be the correct
585 // register for unlock_object to pass to VM directly
586 lea(c_rarg1, monitor); // address of first monitor
587
588 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
589 cbnz(r0, unlock);
590
591 pop(state);
592 if (throw_monitor_exception) {
593 // Entry already unlocked, need to throw exception
594 call_VM(noreg, CAST_FROM_FN_PTR(address,
595 InterpreterRuntime::throw_illegal_monitor_state_exception));
596 should_not_reach_here();
597 } else {
598 // Monitor already unlocked during a stack unroll. If requested,
599 // install an illegal_monitor_state_exception. Continue with
600 // stack unrolling.
601 if (install_monitor_exception) {
602 call_VM(noreg, CAST_FROM_FN_PTR(address,
603 InterpreterRuntime::new_illegal_monitor_state_exception));
604 }
605 b(unlocked);
606 }
607
608 bind(unlock);
609 unlock_object(c_rarg1);
610 pop(state);
611
612 // Check that for block-structured locking (i.e., that all locked
613 // objects has been unlocked)
614 bind(unlocked);
615
616 // r0: Might contain return value
617
618 // Check that all monitors are unlocked
619 {
620 Label loop, exception, entry, restart;
621 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
622 const Address monitor_block_top(
623 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
624 const Address monitor_block_bot(
625 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
626
627 bind(restart);
628 // We use c_rarg1 so that if we go slow path it will be the correct
629 // register for unlock_object to pass to VM directly
630 ldr(c_rarg1, monitor_block_top); // points to current entry, starting
631 // with top-most entry
632 lea(r19, monitor_block_bot); // points to word before bottom of
633 // monitor block
634 b(entry);
635
636 // Entry already locked, need to throw exception
637 bind(exception);
638
639 if (throw_monitor_exception) {
640 // Throw exception
641 MacroAssembler::call_VM(noreg,
642 CAST_FROM_FN_PTR(address, InterpreterRuntime::
643 throw_illegal_monitor_state_exception));
644 should_not_reach_here();
645 } else {
646 // Stack unrolling. Unlock object and install illegal_monitor_exception.
647 // Unlock does not block, so don't have to worry about the frame.
648 // We don't have to preserve c_rarg1 since we are going to throw an exception.
649
650 push(state);
651 unlock_object(c_rarg1);
652 pop(state);
653
654 if (install_monitor_exception) {
655 call_VM(noreg, CAST_FROM_FN_PTR(address,
656 InterpreterRuntime::
657 new_illegal_monitor_state_exception));
658 }
659
660 b(restart);
661 }
662
663 bind(loop);
664 // check if current entry is used
665 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
666 cbnz(rscratch1, exception);
667
668 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
669 bind(entry);
670 cmp(c_rarg1, r19); // check if bottom reached
671 br(Assembler::NE, loop); // if not at bottom then check this entry
672 }
673
674 bind(no_unlock);
675
676 // jvmti support
677 if (notify_jvmdi) {
678 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
679 } else {
680 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
681 }
682
683 // remove activation
684 // get sender esp
685 ldr(rscratch2,
686 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
687 if (StackReservedPages > 0) {
688 // testing if reserved zone needs to be re-enabled
689 Label no_reserved_zone_enabling;
690
691 // look for an overflow into the stack reserved zone, i.e.
692 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
693 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
694 cmp(rscratch2, rscratch1);
695 br(Assembler::LS, no_reserved_zone_enabling);
696
697 call_VM_leaf(
698 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
699 call_VM(noreg, CAST_FROM_FN_PTR(address,
700 InterpreterRuntime::throw_delayed_StackOverflowError));
701 should_not_reach_here();
702
703 bind(no_reserved_zone_enabling);
704 }
705
706 // restore sender esp
707 mov(esp, rscratch2);
708 // remove frame anchor
709 leave();
710 // If we're returning to interpreted code we will shortly be
711 // adjusting SP to allow some space for ESP. If we're returning to
712 // compiled code the saved sender SP was saved in sender_sp, so this
713 // restores it.
714 andr(sp, esp, -16);
715 }
716
717 // Lock object
718 //
719 // Args:
720 // c_rarg1: BasicObjectLock to be used for locking
721 //
722 // Kills:
723 // r0
724 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
725 // rscratch1, rscratch2 (scratch regs)
726 void InterpreterMacroAssembler::lock_object(Register lock_reg)
727 {
728 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
729 if (UseHeavyMonitors) {
730 call_VM(noreg,
731 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
732 lock_reg);
733 } else {
734 Label done;
735
736 const Register swap_reg = r0;
737 const Register tmp = c_rarg2;
738 const Register obj_reg = c_rarg3; // Will contain the oop
739
740 const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
741 const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
742 const int mark_offset = lock_offset +
743 BasicLock::displaced_header_offset_in_bytes();
744
745 Label slow_case;
746
747 // Load object pointer into obj_reg %c_rarg3
748 ldr(obj_reg, Address(lock_reg, obj_offset));
749
750 if (DiagnoseSyncOnValueBasedClasses != 0) {
751 load_klass(tmp, obj_reg);
752 ldrw(tmp, Address(tmp, Klass::access_flags_offset()));
753 tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS);
754 br(Assembler::NE, slow_case);
755 }
756
757 if (UseBiasedLocking) {
758 biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
759 }
760
761 // Load (object->mark() | 1) into swap_reg
762 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
763 orr(swap_reg, rscratch1, 1);
764
765 // Save (object->mark() | 1) into BasicLock's displaced header
766 str(swap_reg, Address(lock_reg, mark_offset));
767
768 assert(lock_offset == 0,
769 "displached header must be first word in BasicObjectLock");
770
771 Label fail;
772 if (PrintBiasedLockingStatistics) {
773 Label fast;
774 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
775 bind(fast);
776 atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
777 rscratch2, rscratch1, tmp);
778 b(done);
779 bind(fail);
780 } else {
781 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
782 }
783
784 // Fast check for recursive lock.
785 //
786 // Can apply the optimization only if this is a stack lock
787 // allocated in this thread. For efficiency, we can focus on
788 // recently allocated stack locks (instead of reading the stack
789 // base and checking whether 'mark' points inside the current
790 // thread stack):
791 // 1) (mark & 7) == 0, and
792 // 2) sp <= mark < mark + os::pagesize()
793 //
794 // Warning: sp + os::pagesize can overflow the stack base. We must
795 // neither apply the optimization for an inflated lock allocated
796 // just above the thread stack (this is why condition 1 matters)
797 // nor apply the optimization if the stack lock is inside the stack
798 // of another thread. The latter is avoided even in case of overflow
799 // because we have guard pages at the end of all stacks. Hence, if
800 // we go over the stack base and hit the stack of another thread,
801 // this should not be in a writeable area that could contain a
802 // stack lock allocated by that thread. As a consequence, a stack
803 // lock less than page size away from sp is guaranteed to be
804 // owned by the current thread.
805 //
806 // These 3 tests can be done by evaluating the following
807 // expression: ((mark - sp) & (7 - os::vm_page_size())),
808 // assuming both stack pointer and pagesize have their
809 // least significant 3 bits clear.
810 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg
811 // NOTE2: aarch64 does not like to subtract sp from rn so take a
812 // copy
813 mov(rscratch1, sp);
814 sub(swap_reg, swap_reg, rscratch1);
815 ands(swap_reg, swap_reg, (uint64_t)(7 - os::vm_page_size()));
816
817 // Save the test result, for recursive case, the result is zero
818 str(swap_reg, Address(lock_reg, mark_offset));
819
820 if (PrintBiasedLockingStatistics) {
821 br(Assembler::NE, slow_case);
822 atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
823 rscratch2, rscratch1, tmp);
824 }
825 br(Assembler::EQ, done);
826
827 bind(slow_case);
828
829 // Call the runtime routine for slow case
830 call_VM(noreg,
831 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
832 lock_reg);
833
834 bind(done);
835 }
836 }
837
838
839 // Unlocks an object. Used in monitorexit bytecode and
840 // remove_activation. Throws an IllegalMonitorException if object is
841 // not locked by current thread.
842 //
843 // Args:
844 // c_rarg1: BasicObjectLock for lock
845 //
846 // Kills:
847 // r0
848 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
849 // rscratch1, rscratch2 (scratch regs)
850 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
851 {
852 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
853
854 if (UseHeavyMonitors) {
855 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
856 } else {
857 Label done;
858
859 const Register swap_reg = r0;
860 const Register header_reg = c_rarg2; // Will contain the old oopMark
861 const Register obj_reg = c_rarg3; // Will contain the oop
862
863 save_bcp(); // Save in case of exception
864
865 // Convert from BasicObjectLock structure to object and BasicLock
866 // structure Store the BasicLock address into %r0
867 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
868
869 // Load oop into obj_reg(%c_rarg3)
870 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
871
872 // Free entry
873 str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
874
875 if (UseBiasedLocking) {
876 biased_locking_exit(obj_reg, header_reg, done);
877 }
878
879 // Load the old header from BasicLock structure
880 ldr(header_reg, Address(swap_reg,
881 BasicLock::displaced_header_offset_in_bytes()));
882
883 // Test for recursion
884 cbz(header_reg, done);
885
886 // Atomic swap back the old header
887 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
888
889 // Call the runtime routine for slow case.
890 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
891 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
892
893 bind(done);
894
895 restore_bcp();
896 }
897 }
898
899 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
900 Label& zero_continue) {
901 assert(ProfileInterpreter, "must be profiling interpreter");
902 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
903 cbz(mdp, zero_continue);
904 }
905
906 // Set the method data pointer for the current bcp.
907 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
908 assert(ProfileInterpreter, "must be profiling interpreter");
909 Label set_mdp;
910 stp(r0, r1, Address(pre(sp, -2 * wordSize)));
911
912 // Test MDO to avoid the call if it is NULL.
913 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
914 cbz(r0, set_mdp);
915 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
916 // r0: mdi
917 // mdo is guaranteed to be non-zero here, we checked for it before the call.
918 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
919 lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
920 add(r0, r1, r0);
921 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
922 bind(set_mdp);
923 ldp(r0, r1, Address(post(sp, 2 * wordSize)));
924 }
925
926 void InterpreterMacroAssembler::verify_method_data_pointer() {
927 assert(ProfileInterpreter, "must be profiling interpreter");
928 #ifdef ASSERT
929 Label verify_continue;
930 stp(r0, r1, Address(pre(sp, -2 * wordSize)));
931 stp(r2, r3, Address(pre(sp, -2 * wordSize)));
932 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
933 get_method(r1);
934
935 // If the mdp is valid, it will point to a DataLayout header which is
936 // consistent with the bcp. The converse is highly probable also.
937 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
938 ldr(rscratch1, Address(r1, Method::const_offset()));
939 add(r2, r2, rscratch1, Assembler::LSL);
940 lea(r2, Address(r2, ConstMethod::codes_offset()));
941 cmp(r2, rbcp);
942 br(Assembler::EQ, verify_continue);
943 // r1: method
944 // rbcp: bcp // rbcp == 22
945 // r3: mdp
946 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
947 r1, rbcp, r3);
948 bind(verify_continue);
949 ldp(r2, r3, Address(post(sp, 2 * wordSize)));
950 ldp(r0, r1, Address(post(sp, 2 * wordSize)));
951 #endif // ASSERT
952 }
953
954
955 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
956 int constant,
957 Register value) {
958 assert(ProfileInterpreter, "must be profiling interpreter");
959 Address data(mdp_in, constant);
960 str(value, data);
961 }
962
963
964 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
965 int constant,
966 bool decrement) {
967 increment_mdp_data_at(mdp_in, noreg, constant, decrement);
968 }
969
970 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
971 Register reg,
972 int constant,
973 bool decrement) {
974 assert(ProfileInterpreter, "must be profiling interpreter");
975 // %%% this does 64bit counters at best it is wasting space
976 // at worst it is a rare bug when counters overflow
977
978 assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
979
980 Address addr1(mdp_in, constant);
981 Address addr2(rscratch2, reg, Address::lsl(0));
982 Address &addr = addr1;
983 if (reg != noreg) {
984 lea(rscratch2, addr1);
985 addr = addr2;
986 }
987
988 if (decrement) {
989 // Decrement the register. Set condition codes.
990 // Intel does this
991 // addptr(data, (int32_t) -DataLayout::counter_increment);
992 // If the decrement causes the counter to overflow, stay negative
993 // Label L;
994 // jcc(Assembler::negative, L);
995 // addptr(data, (int32_t) DataLayout::counter_increment);
996 // so we do this
997 ldr(rscratch1, addr);
998 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
999 Label L;
1000 br(Assembler::LO, L); // skip store if counter underflow
1001 str(rscratch1, addr);
1002 bind(L);
1003 } else {
1004 assert(DataLayout::counter_increment == 1,
1005 "flow-free idiom only works with 1");
1006 // Intel does this
1007 // Increment the register. Set carry flag.
1008 // addptr(data, DataLayout::counter_increment);
1009 // If the increment causes the counter to overflow, pull back by 1.
1010 // sbbptr(data, (int32_t)0);
1011 // so we do this
1012 ldr(rscratch1, addr);
1013 adds(rscratch1, rscratch1, DataLayout::counter_increment);
1014 Label L;
1015 br(Assembler::CS, L); // skip store if counter overflow
1016 str(rscratch1, addr);
1017 bind(L);
1018 }
1019 }
1020
1021 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1022 int flag_byte_constant) {
1023 assert(ProfileInterpreter, "must be profiling interpreter");
1024 int flags_offset = in_bytes(DataLayout::flags_offset());
1025 // Set the flag
1026 ldrb(rscratch1, Address(mdp_in, flags_offset));
1027 orr(rscratch1, rscratch1, flag_byte_constant);
1028 strb(rscratch1, Address(mdp_in, flags_offset));
1029 }
1030
1031
1032 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1033 int offset,
1034 Register value,
1035 Register test_value_out,
1036 Label& not_equal_continue) {
1037 assert(ProfileInterpreter, "must be profiling interpreter");
1038 if (test_value_out == noreg) {
1039 ldr(rscratch1, Address(mdp_in, offset));
1040 cmp(value, rscratch1);
1041 } else {
1042 // Put the test value into a register, so caller can use it:
1043 ldr(test_value_out, Address(mdp_in, offset));
1044 cmp(value, test_value_out);
1045 }
1046 br(Assembler::NE, not_equal_continue);
1047 }
1048
1049
1050 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1051 int offset_of_disp) {
1052 assert(ProfileInterpreter, "must be profiling interpreter");
1053 ldr(rscratch1, Address(mdp_in, offset_of_disp));
1054 add(mdp_in, mdp_in, rscratch1, LSL);
1055 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1056 }
1057
1058
1059 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1060 Register reg,
1061 int offset_of_disp) {
1062 assert(ProfileInterpreter, "must be profiling interpreter");
1063 lea(rscratch1, Address(mdp_in, offset_of_disp));
1064 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1065 add(mdp_in, mdp_in, rscratch1, LSL);
1066 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1067 }
1068
1069
1070 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1071 int constant) {
1072 assert(ProfileInterpreter, "must be profiling interpreter");
1073 add(mdp_in, mdp_in, (unsigned)constant);
1074 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1075 }
1076
1077
1078 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1079 assert(ProfileInterpreter, "must be profiling interpreter");
1080 // save/restore across call_VM
1081 stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1082 call_VM(noreg,
1083 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1084 return_bci);
1085 ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1086 }
1087
1088
1089 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1090 Register bumped_count) {
1091 if (ProfileInterpreter) {
1092 Label profile_continue;
1093
1094 // If no method data exists, go to profile_continue.
1095 // Otherwise, assign to mdp
1096 test_method_data_pointer(mdp, profile_continue);
1097
1098 // We are taking a branch. Increment the taken count.
1099 // We inline increment_mdp_data_at to return bumped_count in a register
1100 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1101 Address data(mdp, in_bytes(JumpData::taken_offset()));
1102 ldr(bumped_count, data);
1103 assert(DataLayout::counter_increment == 1,
1104 "flow-free idiom only works with 1");
1105 // Intel does this to catch overflow
1106 // addptr(bumped_count, DataLayout::counter_increment);
1107 // sbbptr(bumped_count, 0);
1108 // so we do this
1109 adds(bumped_count, bumped_count, DataLayout::counter_increment);
1110 Label L;
1111 br(Assembler::CS, L); // skip store if counter overflow
1112 str(bumped_count, data);
1113 bind(L);
1114 // The method data pointer needs to be updated to reflect the new target.
1115 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1116 bind(profile_continue);
1117 }
1118 }
1119
1120
1121 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1122 if (ProfileInterpreter) {
1123 Label profile_continue;
1124
1125 // If no method data exists, go to profile_continue.
1126 test_method_data_pointer(mdp, profile_continue);
1127
1128 // We are taking a branch. Increment the not taken count.
1129 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1130
1131 // The method data pointer needs to be updated to correspond to
1132 // the next bytecode
1133 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1134 bind(profile_continue);
1135 }
1136 }
1137
1138
1139 void InterpreterMacroAssembler::profile_call(Register mdp) {
1140 if (ProfileInterpreter) {
1141 Label profile_continue;
1142
1143 // If no method data exists, go to profile_continue.
1144 test_method_data_pointer(mdp, profile_continue);
1145
1146 // We are making a call. Increment the count.
1147 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1148
1149 // The method data pointer needs to be updated to reflect the new target.
1150 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1151 bind(profile_continue);
1152 }
1153 }
1154
1155 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1156 if (ProfileInterpreter) {
1157 Label profile_continue;
1158
1159 // If no method data exists, go to profile_continue.
1160 test_method_data_pointer(mdp, profile_continue);
1161
1162 // We are making a call. Increment the count.
1163 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1164
1165 // The method data pointer needs to be updated to reflect the new target.
1166 update_mdp_by_constant(mdp,
1167 in_bytes(VirtualCallData::
1168 virtual_call_data_size()));
1169 bind(profile_continue);
1170 }
1171 }
1172
1173
1174 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1175 Register mdp,
1176 Register reg2,
1177 bool receiver_can_be_null) {
1178 if (ProfileInterpreter) {
1179 Label profile_continue;
1180
1181 // If no method data exists, go to profile_continue.
1182 test_method_data_pointer(mdp, profile_continue);
1183
1184 Label skip_receiver_profile;
1185 if (receiver_can_be_null) {
1186 Label not_null;
1187 // We are making a call. Increment the count for null receiver.
1188 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1189 b(skip_receiver_profile);
1190 bind(not_null);
1191 }
1192
1193 // Record the receiver type.
1194 record_klass_in_profile(receiver, mdp, reg2, true);
1195 bind(skip_receiver_profile);
1196
1197 // The method data pointer needs to be updated to reflect the new target.
1198 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1199 bind(profile_continue);
1200 }
1201 }
1202
1203 // This routine creates a state machine for updating the multi-row
1204 // type profile at a virtual call site (or other type-sensitive bytecode).
1205 // The machine visits each row (of receiver/count) until the receiver type
1206 // is found, or until it runs out of rows. At the same time, it remembers
1207 // the location of the first empty row. (An empty row records null for its
1208 // receiver, and can be allocated for a newly-observed receiver type.)
1209 // Because there are two degrees of freedom in the state, a simple linear
1210 // search will not work; it must be a decision tree. Hence this helper
1211 // function is recursive, to generate the required tree structured code.
1212 // It's the interpreter, so we are trading off code space for speed.
1213 // See below for example code.
1214 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1215 Register receiver, Register mdp,
1216 Register reg2, int start_row,
1217 Label& done, bool is_virtual_call) {
1218 if (TypeProfileWidth == 0) {
1219 if (is_virtual_call) {
1220 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1221 }
1222 #if INCLUDE_JVMCI
1223 else if (EnableJVMCI) {
1224 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1225 }
1226 #endif // INCLUDE_JVMCI
1227 } else {
1228 int non_profiled_offset = -1;
1229 if (is_virtual_call) {
1230 non_profiled_offset = in_bytes(CounterData::count_offset());
1231 }
1232 #if INCLUDE_JVMCI
1233 else if (EnableJVMCI) {
1234 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1235 }
1236 #endif // INCLUDE_JVMCI
1237
1238 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1239 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1240 }
1241 }
1242
1243 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1244 Register reg2, int start_row, Label& done, int total_rows,
1245 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1246 int non_profiled_offset) {
1247 int last_row = total_rows - 1;
1248 assert(start_row <= last_row, "must be work left to do");
1249 // Test this row for both the item and for null.
1250 // Take any of three different outcomes:
1251 // 1. found item => increment count and goto done
1252 // 2. found null => keep looking for case 1, maybe allocate this cell
1253 // 3. found something else => keep looking for cases 1 and 2
1254 // Case 3 is handled by a recursive call.
1255 for (int row = start_row; row <= last_row; row++) {
1256 Label next_test;
1257 bool test_for_null_also = (row == start_row);
1258
1259 // See if the item is item[n].
1260 int item_offset = in_bytes(item_offset_fn(row));
1261 test_mdp_data_at(mdp, item_offset, item,
1262 (test_for_null_also ? reg2 : noreg),
1263 next_test);
1264 // (Reg2 now contains the item from the CallData.)
1265
1266 // The item is item[n]. Increment count[n].
1267 int count_offset = in_bytes(item_count_offset_fn(row));
1268 increment_mdp_data_at(mdp, count_offset);
1269 b(done);
1270 bind(next_test);
1271
1272 if (test_for_null_also) {
1273 Label found_null;
1274 // Failed the equality check on item[n]... Test for null.
1275 if (start_row == last_row) {
1276 // The only thing left to do is handle the null case.
1277 if (non_profiled_offset >= 0) {
1278 cbz(reg2, found_null);
1279 // Item did not match any saved item and there is no empty row for it.
1280 // Increment total counter to indicate polymorphic case.
1281 increment_mdp_data_at(mdp, non_profiled_offset);
1282 b(done);
1283 bind(found_null);
1284 } else {
1285 cbnz(reg2, done);
1286 }
1287 break;
1288 }
1289 // Since null is rare, make it be the branch-taken case.
1290 cbz(reg2, found_null);
1291
1292 // Put all the "Case 3" tests here.
1293 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1294 item_offset_fn, item_count_offset_fn, non_profiled_offset);
1295
1296 // Found a null. Keep searching for a matching item,
1297 // but remember that this is an empty (unused) slot.
1298 bind(found_null);
1299 }
1300 }
1301
1302 // In the fall-through case, we found no matching item, but we
1303 // observed the item[start_row] is NULL.
1304
1305 // Fill in the item field and increment the count.
1306 int item_offset = in_bytes(item_offset_fn(start_row));
1307 set_mdp_data_at(mdp, item_offset, item);
1308 int count_offset = in_bytes(item_count_offset_fn(start_row));
1309 mov(reg2, DataLayout::counter_increment);
1310 set_mdp_data_at(mdp, count_offset, reg2);
1311 if (start_row > 0) {
1312 b(done);
1313 }
1314 }
1315
1316 // Example state machine code for three profile rows:
1317 // // main copy of decision tree, rooted at row[1]
1318 // if (row[0].rec == rec) { row[0].incr(); goto done; }
1319 // if (row[0].rec != NULL) {
1320 // // inner copy of decision tree, rooted at row[1]
1321 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1322 // if (row[1].rec != NULL) {
1323 // // degenerate decision tree, rooted at row[2]
1324 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1325 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1326 // row[2].init(rec); goto done;
1327 // } else {
1328 // // remember row[1] is empty
1329 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1330 // row[1].init(rec); goto done;
1331 // }
1332 // } else {
1333 // // remember row[0] is empty
1334 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1335 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1336 // row[0].init(rec); goto done;
1337 // }
1338 // done:
1339
1340 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1341 Register mdp, Register reg2,
1342 bool is_virtual_call) {
1343 assert(ProfileInterpreter, "must be profiling");
1344 Label done;
1345
1346 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1347
1348 bind (done);
1349 }
1350
1351 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1352 Register mdp) {
1353 if (ProfileInterpreter) {
1354 Label profile_continue;
1355 uint row;
1356
1357 // If no method data exists, go to profile_continue.
1358 test_method_data_pointer(mdp, profile_continue);
1359
1360 // Update the total ret count.
1361 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1362
1363 for (row = 0; row < RetData::row_limit(); row++) {
1364 Label next_test;
1365
1366 // See if return_bci is equal to bci[n]:
1367 test_mdp_data_at(mdp,
1368 in_bytes(RetData::bci_offset(row)),
1369 return_bci, noreg,
1370 next_test);
1371
1372 // return_bci is equal to bci[n]. Increment the count.
1373 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1374
1375 // The method data pointer needs to be updated to reflect the new target.
1376 update_mdp_by_offset(mdp,
1377 in_bytes(RetData::bci_displacement_offset(row)));
1378 b(profile_continue);
1379 bind(next_test);
1380 }
1381
1382 update_mdp_for_ret(return_bci);
1383
1384 bind(profile_continue);
1385 }
1386 }
1387
1388 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1389 if (ProfileInterpreter) {
1390 Label profile_continue;
1391
1392 // If no method data exists, go to profile_continue.
1393 test_method_data_pointer(mdp, profile_continue);
1394
1395 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1396
1397 // The method data pointer needs to be updated.
1398 int mdp_delta = in_bytes(BitData::bit_data_size());
1399 if (TypeProfileCasts) {
1400 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1401 }
1402 update_mdp_by_constant(mdp, mdp_delta);
1403
1404 bind(profile_continue);
1405 }
1406 }
1407
1408 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1409 if (ProfileInterpreter && TypeProfileCasts) {
1410 Label profile_continue;
1411
1412 // If no method data exists, go to profile_continue.
1413 test_method_data_pointer(mdp, profile_continue);
1414
1415 int count_offset = in_bytes(CounterData::count_offset());
1416 // Back up the address, since we have already bumped the mdp.
1417 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1418
1419 // *Decrement* the counter. We expect to see zero or small negatives.
1420 increment_mdp_data_at(mdp, count_offset, true);
1421
1422 bind (profile_continue);
1423 }
1424 }
1425
1426 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1427 if (ProfileInterpreter) {
1428 Label profile_continue;
1429
1430 // If no method data exists, go to profile_continue.
1431 test_method_data_pointer(mdp, profile_continue);
1432
1433 // The method data pointer needs to be updated.
1434 int mdp_delta = in_bytes(BitData::bit_data_size());
1435 if (TypeProfileCasts) {
1436 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1437
1438 // Record the object type.
1439 record_klass_in_profile(klass, mdp, reg2, false);
1440 }
1441 update_mdp_by_constant(mdp, mdp_delta);
1442
1443 bind(profile_continue);
1444 }
1445 }
1446
1447 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1448 if (ProfileInterpreter) {
1449 Label profile_continue;
1450
1451 // If no method data exists, go to profile_continue.
1452 test_method_data_pointer(mdp, profile_continue);
1453
1454 // Update the default case count
1455 increment_mdp_data_at(mdp,
1456 in_bytes(MultiBranchData::default_count_offset()));
1457
1458 // The method data pointer needs to be updated.
1459 update_mdp_by_offset(mdp,
1460 in_bytes(MultiBranchData::
1461 default_displacement_offset()));
1462
1463 bind(profile_continue);
1464 }
1465 }
1466
1467 void InterpreterMacroAssembler::profile_switch_case(Register index,
1468 Register mdp,
1469 Register reg2) {
1470 if (ProfileInterpreter) {
1471 Label profile_continue;
1472
1473 // If no method data exists, go to profile_continue.
1474 test_method_data_pointer(mdp, profile_continue);
1475
1476 // Build the base (index * per_case_size_in_bytes()) +
1477 // case_array_offset_in_bytes()
1478 movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1479 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1480 Assembler::maddw(index, index, reg2, rscratch1);
1481
1482 // Update the case count
1483 increment_mdp_data_at(mdp,
1484 index,
1485 in_bytes(MultiBranchData::relative_count_offset()));
1486
1487 // The method data pointer needs to be updated.
1488 update_mdp_by_offset(mdp,
1489 index,
1490 in_bytes(MultiBranchData::
1491 relative_displacement_offset()));
1492
1493 bind(profile_continue);
1494 }
1495 }
1496
1497 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1498 if (state == atos) {
1499 MacroAssembler::verify_oop(reg);
1500 }
1501 }
1502
1503 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1504
1505
1506 void InterpreterMacroAssembler::notify_method_entry() {
1507 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1508 // track stack depth. If it is possible to enter interp_only_mode we add
1509 // the code to check if the event should be sent.
1510 if (JvmtiExport::can_post_interpreter_events()) {
1511 Label L;
1512 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1513 cbzw(r3, L);
1514 call_VM(noreg, CAST_FROM_FN_PTR(address,
1515 InterpreterRuntime::post_method_entry));
1516 bind(L);
1517 }
1518
1519 {
1520 SkipIfEqual skip(this, &DTraceMethodProbes, false);
1521 get_method(c_rarg1);
1522 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1523 rthread, c_rarg1);
1524 }
1525
1526 // RedefineClasses() tracing support for obsolete method entry
1527 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1528 get_method(c_rarg1);
1529 call_VM_leaf(
1530 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1531 rthread, c_rarg1);
1532 }
1533
1534 }
1535
1536
1537 void InterpreterMacroAssembler::notify_method_exit(
1538 TosState state, NotifyMethodExitMode mode) {
1539 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1540 // track stack depth. If it is possible to enter interp_only_mode we add
1541 // the code to check if the event should be sent.
1542 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1543 Label L;
1544 // Note: frame::interpreter_frame_result has a dependency on how the
1545 // method result is saved across the call to post_method_exit. If this
1546 // is changed then the interpreter_frame_result implementation will
1547 // need to be updated too.
1548
1549 // template interpreter will leave the result on the top of the stack.
1550 push(state);
1551 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1552 cbz(r3, L);
1553 call_VM(noreg,
1554 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1555 bind(L);
1556 pop(state);
1557 }
1558
1559 {
1560 SkipIfEqual skip(this, &DTraceMethodProbes, false);
1561 push(state);
1562 get_method(c_rarg1);
1563 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1564 rthread, c_rarg1);
1565 pop(state);
1566 }
1567 }
1568
1569
1570 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1571 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1572 int increment, Address mask,
1573 Register scratch, Register scratch2,
1574 bool preloaded, Condition cond,
1575 Label* where) {
1576 if (!preloaded) {
1577 ldrw(scratch, counter_addr);
1578 }
1579 add(scratch, scratch, increment);
1580 strw(scratch, counter_addr);
1581 ldrw(scratch2, mask);
1582 ands(scratch, scratch, scratch2);
1583 br(cond, *where);
1584 }
1585
1586 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1587 int number_of_arguments) {
1588 // interpreter specific
1589 //
1590 // Note: No need to save/restore rbcp & rlocals pointer since these
1591 // are callee saved registers and no blocking/ GC can happen
1592 // in leaf calls.
1593 #ifdef ASSERT
1594 {
1595 Label L;
1596 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1597 cbz(rscratch1, L);
1598 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1599 " last_sp != NULL");
1600 bind(L);
1601 }
1602 #endif /* ASSERT */
1603 // super call
1604 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1605 }
1606
1607 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1608 Register java_thread,
1609 Register last_java_sp,
1610 address entry_point,
1611 int number_of_arguments,
1612 bool check_exceptions) {
1613 // interpreter specific
1614 //
1615 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1616 // really make a difference for these runtime calls, since they are
1617 // slow anyway. Btw., bcp must be saved/restored since it may change
1618 // due to GC.
1619 // assert(java_thread == noreg , "not expecting a precomputed java thread");
1620 save_bcp();
1621 #ifdef ASSERT
1622 {
1623 Label L;
1624 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1625 cbz(rscratch1, L);
1626 stop("InterpreterMacroAssembler::call_VM_base:"
1627 " last_sp != NULL");
1628 bind(L);
1629 }
1630 #endif /* ASSERT */
1631 // super call
1632 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1633 entry_point, number_of_arguments,
1634 check_exceptions);
1635 // interpreter specific
1636 restore_bcp();
1637 restore_locals();
1638 }
1639
1640 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1641 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1642 Label update, next, none;
1643
1644 verify_oop(obj);
1645
1646 cbnz(obj, update);
1647 orptr(mdo_addr, TypeEntries::null_seen);
1648 b(next);
1649
1650 bind(update);
1651 load_klass(obj, obj);
1652
1653 ldr(rscratch1, mdo_addr);
1654 eor(obj, obj, rscratch1);
1655 tst(obj, TypeEntries::type_klass_mask);
1656 br(Assembler::EQ, next); // klass seen before, nothing to
1657 // do. The unknown bit may have been
1658 // set already but no need to check.
1659
1660 tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1661 // already unknown. Nothing to do anymore.
1662
1663 cbz(rscratch1, none);
1664 cmp(rscratch1, (u1)TypeEntries::null_seen);
1665 br(Assembler::EQ, none);
1666 // There is a chance that the checks above
1667 // fail if another thread has just set the
1668 // profiling to this obj's klass
1669 eor(obj, obj, rscratch1); // get back original value before XOR
1670 ldr(rscratch1, mdo_addr);
1671 eor(obj, obj, rscratch1);
1672 tst(obj, TypeEntries::type_klass_mask);
1673 br(Assembler::EQ, next);
1674
1675 // different than before. Cannot keep accurate profile.
1676 orptr(mdo_addr, TypeEntries::type_unknown);
1677 b(next);
1678
1679 bind(none);
1680 // first time here. Set profile type.
1681 str(obj, mdo_addr);
1682 #ifdef ASSERT
1683 andr(obj, obj, TypeEntries::type_mask);
1684 verify_klass_ptr(obj);
1685 #endif
1686
1687 bind(next);
1688 }
1689
1690 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1691 if (!ProfileInterpreter) {
1692 return;
1693 }
1694
1695 if (MethodData::profile_arguments() || MethodData::profile_return()) {
1696 Label profile_continue;
1697
1698 test_method_data_pointer(mdp, profile_continue);
1699
1700 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1701
1702 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1703 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1704 br(Assembler::NE, profile_continue);
1705
1706 if (MethodData::profile_arguments()) {
1707 Label done;
1708 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1709
1710 for (int i = 0; i < TypeProfileArgsLimit; i++) {
1711 if (i > 0 || MethodData::profile_return()) {
1712 // If return value type is profiled we may have no argument to profile
1713 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1714 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1715 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1716 add(rscratch1, mdp, off_to_args);
1717 br(Assembler::LT, done);
1718 }
1719 ldr(tmp, Address(callee, Method::const_offset()));
1720 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1721 // stack offset o (zero based) from the start of the argument
1722 // list, for n arguments translates into offset n - o - 1 from
1723 // the end of the argument list
1724 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1725 sub(tmp, tmp, rscratch1);
1726 sub(tmp, tmp, 1);
1727 Address arg_addr = argument_address(tmp);
1728 ldr(tmp, arg_addr);
1729
1730 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1731 profile_obj_type(tmp, mdo_arg_addr);
1732
1733 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1734 off_to_args += to_add;
1735 }
1736
1737 if (MethodData::profile_return()) {
1738 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1739 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1740 }
1741
1742 add(rscratch1, mdp, off_to_args);
1743 bind(done);
1744 mov(mdp, rscratch1);
1745
1746 if (MethodData::profile_return()) {
1747 // We're right after the type profile for the last
1748 // argument. tmp is the number of cells left in the
1749 // CallTypeData/VirtualCallTypeData to reach its end. Non null
1750 // if there's a return to profile.
1751 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1752 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1753 }
1754 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1755 } else {
1756 assert(MethodData::profile_return(), "either profile call args or call ret");
1757 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1758 }
1759
1760 // mdp points right after the end of the
1761 // CallTypeData/VirtualCallTypeData, right after the cells for the
1762 // return value type if there's one
1763
1764 bind(profile_continue);
1765 }
1766 }
1767
1768 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1769 assert_different_registers(mdp, ret, tmp, rbcp);
1770 if (ProfileInterpreter && MethodData::profile_return()) {
1771 Label profile_continue, done;
1772
1773 test_method_data_pointer(mdp, profile_continue);
1774
1775 if (MethodData::profile_return_jsr292_only()) {
1776 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1777
1778 // If we don't profile all invoke bytecodes we must make sure
1779 // it's a bytecode we indeed profile. We can't go back to the
1780 // begining of the ProfileData we intend to update to check its
1781 // type because we're right after it and we don't known its
1782 // length
1783 Label do_profile;
1784 ldrb(rscratch1, Address(rbcp, 0));
1785 cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1786 br(Assembler::EQ, do_profile);
1787 cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1788 br(Assembler::EQ, do_profile);
1789 get_method(tmp);
1790 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1791 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1792 br(Assembler::NE, profile_continue);
1793
1794 bind(do_profile);
1795 }
1796
1797 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1798 mov(tmp, ret);
1799 profile_obj_type(tmp, mdo_ret_addr);
1800
1801 bind(profile_continue);
1802 }
1803 }
1804
1805 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1806 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1807 if (ProfileInterpreter && MethodData::profile_parameters()) {
1808 Label profile_continue, done;
1809
1810 test_method_data_pointer(mdp, profile_continue);
1811
1812 // Load the offset of the area within the MDO used for
1813 // parameters. If it's negative we're not profiling any parameters
1814 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1815 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set
1816
1817 // Compute a pointer to the area for parameters from the offset
1818 // and move the pointer to the slot for the last
1819 // parameters. Collect profiling from last parameter down.
1820 // mdo start + parameters offset + array length - 1
1821 add(mdp, mdp, tmp1);
1822 ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1823 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1824
1825 Label loop;
1826 bind(loop);
1827
1828 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1829 int type_base = in_bytes(ParametersTypeData::type_offset(0));
1830 int per_arg_scale = exact_log2(DataLayout::cell_size);
1831 add(rscratch1, mdp, off_base);
1832 add(rscratch2, mdp, type_base);
1833
1834 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1835 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1836
1837 // load offset on the stack from the slot for this parameter
1838 ldr(tmp2, arg_off);
1839 neg(tmp2, tmp2);
1840 // read the parameter from the local area
1841 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1842
1843 // profile the parameter
1844 profile_obj_type(tmp2, arg_type);
1845
1846 // go to next parameter
1847 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1848 br(Assembler::GE, loop);
1849
1850 bind(profile_continue);
1851 }
1852 }