1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include <sys/types.h> 27 28 #include "precompiled.hpp" 29 #include "jvm.h" 30 #include "asm/assembler.hpp" 31 #include "asm/assembler.inline.hpp" 32 #include "ci/ciEnv.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/cardTable.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "interpreter/bytecodeHistogram.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "compiler/compileTask.hpp" 42 #include "compiler/disassembler.hpp" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "nativeInst_aarch64.hpp" 46 #include "oops/accessDecorators.hpp" 47 #include "oops/compressedOops.inline.hpp" 48 #include "oops/klass.inline.hpp" 49 #include "runtime/biasedLocking.hpp" 50 #include "runtime/icache.hpp" 51 #include "runtime/interfaceSupport.inline.hpp" 52 #include "runtime/jniHandles.inline.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/thread.hpp" 56 #include "utilities/powerOfTwo.hpp" 57 #ifdef COMPILER1 58 #include "c1/c1_LIRAssembler.hpp" 59 #endif 60 #ifdef COMPILER2 61 #include "oops/oop.hpp" 62 #include "opto/compile.hpp" 63 #include "opto/node.hpp" 64 #include "opto/output.hpp" 65 #endif 66 67 #ifdef PRODUCT 68 #define BLOCK_COMMENT(str) /* nothing */ 69 #else 70 #define BLOCK_COMMENT(str) block_comment(str) 71 #endif 72 #define STOP(str) stop(str); 73 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 74 75 // Patch any kind of instruction; there may be several instructions. 76 // Return the total length (in bytes) of the instructions. 77 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 78 int instructions = 1; 79 assert((uint64_t)target < (1ull << 48), "48-bit overflow in address constant"); 80 intptr_t offset = (target - branch) >> 2; 81 unsigned insn = *(unsigned*)branch; 82 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 83 // Load register (literal) 84 Instruction_aarch64::spatch(branch, 23, 5, offset); 85 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 86 // Unconditional branch (immediate) 87 Instruction_aarch64::spatch(branch, 25, 0, offset); 88 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 89 // Conditional branch (immediate) 90 Instruction_aarch64::spatch(branch, 23, 5, offset); 91 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 92 // Compare & branch (immediate) 93 Instruction_aarch64::spatch(branch, 23, 5, offset); 94 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 95 // Test & branch (immediate) 96 Instruction_aarch64::spatch(branch, 18, 5, offset); 97 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 98 // PC-rel. addressing 99 offset = target-branch; 100 int shift = Instruction_aarch64::extract(insn, 31, 31); 101 if (shift) { 102 uint64_t dest = (uint64_t)target; 103 uint64_t pc_page = (uint64_t)branch >> 12; 104 uint64_t adr_page = (uint64_t)target >> 12; 105 unsigned offset_lo = dest & 0xfff; 106 offset = adr_page - pc_page; 107 108 // We handle 4 types of PC relative addressing 109 // 1 - adrp Rx, target_page 110 // ldr/str Ry, [Rx, #offset_in_page] 111 // 2 - adrp Rx, target_page 112 // add Ry, Rx, #offset_in_page 113 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 114 // movk Rx, #imm16<<32 115 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 116 // In the first 3 cases we must check that Rx is the same in the adrp and the 117 // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end 118 // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened 119 // to be followed by a random unrelated ldr/str, add or movk instruction. 120 // 121 unsigned insn2 = ((unsigned*)branch)[1]; 122 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 123 Instruction_aarch64::extract(insn, 4, 0) == 124 Instruction_aarch64::extract(insn2, 9, 5)) { 125 // Load/store register (unsigned immediate) 126 unsigned size = Instruction_aarch64::extract(insn2, 31, 30); 127 Instruction_aarch64::patch(branch + sizeof (unsigned), 128 21, 10, offset_lo >> size); 129 guarantee(((dest >> size) << size) == dest, "misaligned target"); 130 instructions = 2; 131 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 132 Instruction_aarch64::extract(insn, 4, 0) == 133 Instruction_aarch64::extract(insn2, 4, 0)) { 134 // add (immediate) 135 Instruction_aarch64::patch(branch + sizeof (unsigned), 136 21, 10, offset_lo); 137 instructions = 2; 138 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 139 Instruction_aarch64::extract(insn, 4, 0) == 140 Instruction_aarch64::extract(insn2, 4, 0)) { 141 // movk #imm16<<32 142 Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32); 143 uintptr_t dest = ((uintptr_t)target & 0xffffffffULL) | ((uintptr_t)branch & 0xffff00000000ULL); 144 uintptr_t pc_page = (uintptr_t)branch >> 12; 145 uintptr_t adr_page = (uintptr_t)dest >> 12; 146 offset = adr_page - pc_page; 147 instructions = 2; 148 } 149 } 150 int offset_lo = offset & 3; 151 offset >>= 2; 152 Instruction_aarch64::spatch(branch, 23, 5, offset); 153 Instruction_aarch64::patch(branch, 30, 29, offset_lo); 154 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { 155 uint64_t dest = (uint64_t)target; 156 // Move wide constant 157 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); 158 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); 159 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); 160 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); 161 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); 162 assert(target_addr_for_insn(branch) == target, "should be"); 163 instructions = 3; 164 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 165 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 166 // nothing to do 167 assert(target == 0, "did not expect to relocate target for polling page load"); 168 } else { 169 ShouldNotReachHere(); 170 } 171 return instructions * NativeInstruction::instruction_size; 172 } 173 174 int MacroAssembler::patch_oop(address insn_addr, address o) { 175 int instructions; 176 unsigned insn = *(unsigned*)insn_addr; 177 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 178 179 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 180 // narrow OOPs by setting the upper 16 bits in the first 181 // instruction. 182 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 183 // Move narrow OOP 184 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 185 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 186 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 187 instructions = 2; 188 } else { 189 // Move wide OOP 190 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 191 uintptr_t dest = (uintptr_t)o; 192 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 193 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 194 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 195 instructions = 3; 196 } 197 return instructions * NativeInstruction::instruction_size; 198 } 199 200 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 201 // Metatdata pointers are either narrow (32 bits) or wide (48 bits). 202 // We encode narrow ones by setting the upper 16 bits in the first 203 // instruction. 204 NativeInstruction *insn = nativeInstruction_at(insn_addr); 205 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 206 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 207 208 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 209 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 210 return 2 * NativeInstruction::instruction_size; 211 } 212 213 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { 214 intptr_t offset = 0; 215 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { 216 // Load register (literal) 217 offset = Instruction_aarch64::sextract(insn, 23, 5); 218 return address(((uint64_t)insn_addr + (offset << 2))); 219 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 220 // Unconditional branch (immediate) 221 offset = Instruction_aarch64::sextract(insn, 25, 0); 222 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 223 // Conditional branch (immediate) 224 offset = Instruction_aarch64::sextract(insn, 23, 5); 225 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 226 // Compare & branch (immediate) 227 offset = Instruction_aarch64::sextract(insn, 23, 5); 228 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 229 // Test & branch (immediate) 230 offset = Instruction_aarch64::sextract(insn, 18, 5); 231 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 232 // PC-rel. addressing 233 offset = Instruction_aarch64::extract(insn, 30, 29); 234 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 235 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; 236 if (shift) { 237 offset <<= shift; 238 uint64_t target_page = ((uint64_t)insn_addr) + offset; 239 target_page &= ((uint64_t)-1) << shift; 240 // Return the target address for the following sequences 241 // 1 - adrp Rx, target_page 242 // ldr/str Ry, [Rx, #offset_in_page] 243 // 2 - adrp Rx, target_page 244 // add Ry, Rx, #offset_in_page 245 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 246 // movk Rx, #imm12<<32 247 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 248 // 249 // In the first two cases we check that the register is the same and 250 // return the target_page + the offset within the page. 251 // Otherwise we assume it is a page aligned relocation and return 252 // the target page only. 253 // 254 unsigned insn2 = ((unsigned*)insn_addr)[1]; 255 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 256 Instruction_aarch64::extract(insn, 4, 0) == 257 Instruction_aarch64::extract(insn2, 9, 5)) { 258 // Load/store register (unsigned immediate) 259 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 260 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); 261 return address(target_page + (byte_offset << size)); 262 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 263 Instruction_aarch64::extract(insn, 4, 0) == 264 Instruction_aarch64::extract(insn2, 4, 0)) { 265 // add (immediate) 266 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 267 return address(target_page + byte_offset); 268 } else { 269 if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 270 Instruction_aarch64::extract(insn, 4, 0) == 271 Instruction_aarch64::extract(insn2, 4, 0)) { 272 target_page = (target_page & 0xffffffff) | 273 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 274 } 275 return (address)target_page; 276 } 277 } else { 278 ShouldNotReachHere(); 279 } 280 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { 281 uint32_t *insns = (uint32_t *)insn_addr; 282 // Move wide constant: movz, movk, movk. See movptr(). 283 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 284 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 285 return address(uint64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 286 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 287 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 288 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 289 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 290 return 0; 291 } else { 292 ShouldNotReachHere(); 293 } 294 return address(((uint64_t)insn_addr + (offset << 2))); 295 } 296 297 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod) { 298 if (acquire) { 299 lea(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 300 ldar(rscratch1, rscratch1); 301 } else { 302 ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 303 } 304 if (at_return) { 305 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 306 // we may safely use the sp instead to perform the stack watermark check. 307 cmp(in_nmethod ? sp : rfp, rscratch1); 308 br(Assembler::HI, slow_path); 309 } else { 310 tbnz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 311 } 312 } 313 314 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 315 // we must set sp to zero to clear frame 316 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 317 318 // must clear fp, so that compiled frames are not confused; it is 319 // possible that we need it only for debugging 320 if (clear_fp) { 321 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 322 } 323 324 // Always clear the pc because it could have been set by make_walkable() 325 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 326 } 327 328 // Calls to C land 329 // 330 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 331 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 332 // has to be reset to 0. This is required to allow proper stack traversal. 333 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 334 Register last_java_fp, 335 Register last_java_pc, 336 Register scratch) { 337 338 if (last_java_pc->is_valid()) { 339 str(last_java_pc, Address(rthread, 340 JavaThread::frame_anchor_offset() 341 + JavaFrameAnchor::last_Java_pc_offset())); 342 } 343 344 // determine last_java_sp register 345 if (last_java_sp == sp) { 346 mov(scratch, sp); 347 last_java_sp = scratch; 348 } else if (!last_java_sp->is_valid()) { 349 last_java_sp = esp; 350 } 351 352 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 353 354 // last_java_fp is optional 355 if (last_java_fp->is_valid()) { 356 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 357 } 358 } 359 360 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 361 Register last_java_fp, 362 address last_java_pc, 363 Register scratch) { 364 assert(last_java_pc != NULL, "must provide a valid PC"); 365 366 adr(scratch, last_java_pc); 367 str(scratch, Address(rthread, 368 JavaThread::frame_anchor_offset() 369 + JavaFrameAnchor::last_Java_pc_offset())); 370 371 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 372 } 373 374 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 375 Register last_java_fp, 376 Label &L, 377 Register scratch) { 378 if (L.is_bound()) { 379 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 380 } else { 381 InstructionMark im(this); 382 L.add_patch_at(code(), locator()); 383 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 384 } 385 } 386 387 static inline bool target_needs_far_branch(address addr) { 388 // codecache size <= 128M 389 if (!MacroAssembler::far_branches()) { 390 return false; 391 } 392 // codecache size > 240M 393 if (MacroAssembler::codestub_branch_needs_far_jump()) { 394 return true; 395 } 396 // codecache size: 128M..240M 397 return !CodeCache::is_non_nmethod(addr); 398 } 399 400 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 401 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 402 assert(CodeCache::find_blob(entry.target()) != NULL, 403 "destination of far call not found in code cache"); 404 if (target_needs_far_branch(entry.target())) { 405 uint64_t offset; 406 // We can use ADRP here because we know that the total size of 407 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 408 adrp(tmp, entry, offset); 409 add(tmp, tmp, offset); 410 if (cbuf) cbuf->set_insts_mark(); 411 blr(tmp); 412 } else { 413 if (cbuf) cbuf->set_insts_mark(); 414 bl(entry); 415 } 416 } 417 418 int MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 419 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 420 assert(CodeCache::find_blob(entry.target()) != NULL, 421 "destination of far call not found in code cache"); 422 address start = pc(); 423 if (target_needs_far_branch(entry.target())) { 424 uint64_t offset; 425 // We can use ADRP here because we know that the total size of 426 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 427 adrp(tmp, entry, offset); 428 add(tmp, tmp, offset); 429 if (cbuf) cbuf->set_insts_mark(); 430 br(tmp); 431 } else { 432 if (cbuf) cbuf->set_insts_mark(); 433 b(entry); 434 } 435 return pc() - start; 436 } 437 438 void MacroAssembler::reserved_stack_check() { 439 // testing if reserved zone needs to be enabled 440 Label no_reserved_zone_enabling; 441 442 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 443 cmp(sp, rscratch1); 444 br(Assembler::LO, no_reserved_zone_enabling); 445 446 enter(); // LR and FP are live. 447 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 448 mov(c_rarg0, rthread); 449 blr(rscratch1); 450 leave(); 451 452 // We have already removed our own frame. 453 // throw_delayed_StackOverflowError will think that it's been 454 // called by our caller. 455 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 456 br(rscratch1); 457 should_not_reach_here(); 458 459 bind(no_reserved_zone_enabling); 460 } 461 462 void MacroAssembler::biased_locking_enter(Register lock_reg, 463 Register obj_reg, 464 Register swap_reg, 465 Register tmp_reg, 466 bool swap_reg_contains_mark, 467 Label& done, 468 Label* slow_case, 469 BiasedLockingCounters* counters) { 470 assert(UseBiasedLocking, "why call this otherwise?"); 471 assert_different_registers(lock_reg, obj_reg, swap_reg); 472 473 if (PrintBiasedLockingStatistics && counters == NULL) 474 counters = BiasedLocking::counters(); 475 476 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg); 477 assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout"); 478 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); 479 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); 480 Address saved_mark_addr(lock_reg, 0); 481 482 // Biased locking 483 // See whether the lock is currently biased toward our thread and 484 // whether the epoch is still valid 485 // Note that the runtime guarantees sufficient alignment of JavaThread 486 // pointers to allow age to be placed into low bits 487 // First check to see whether biasing is even enabled for this object 488 Label cas_label; 489 if (!swap_reg_contains_mark) { 490 ldr(swap_reg, mark_addr); 491 } 492 andr(tmp_reg, swap_reg, markWord::biased_lock_mask_in_place); 493 cmp(tmp_reg, (u1)markWord::biased_lock_pattern); 494 br(Assembler::NE, cas_label); 495 // The bias pattern is present in the object's header. Need to check 496 // whether the bias owner and the epoch are both still current. 497 load_prototype_header(tmp_reg, obj_reg); 498 orr(tmp_reg, tmp_reg, rthread); 499 eor(tmp_reg, swap_reg, tmp_reg); 500 andr(tmp_reg, tmp_reg, ~((int) markWord::age_mask_in_place)); 501 if (counters != NULL) { 502 Label around; 503 cbnz(tmp_reg, around); 504 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); 505 b(done); 506 bind(around); 507 } else { 508 cbz(tmp_reg, done); 509 } 510 511 Label try_revoke_bias; 512 Label try_rebias; 513 514 // At this point we know that the header has the bias pattern and 515 // that we are not the bias owner in the current epoch. We need to 516 // figure out more details about the state of the header in order to 517 // know what operations can be legally performed on the object's 518 // header. 519 520 // If the low three bits in the xor result aren't clear, that means 521 // the prototype header is no longer biased and we have to revoke 522 // the bias on this object. 523 andr(rscratch1, tmp_reg, markWord::biased_lock_mask_in_place); 524 cbnz(rscratch1, try_revoke_bias); 525 526 // Biasing is still enabled for this data type. See whether the 527 // epoch of the current bias is still valid, meaning that the epoch 528 // bits of the mark word are equal to the epoch bits of the 529 // prototype header. (Note that the prototype header's epoch bits 530 // only change at a safepoint.) If not, attempt to rebias the object 531 // toward the current thread. Note that we must be absolutely sure 532 // that the current epoch is invalid in order to do this because 533 // otherwise the manipulations it performs on the mark word are 534 // illegal. 535 andr(rscratch1, tmp_reg, markWord::epoch_mask_in_place); 536 cbnz(rscratch1, try_rebias); 537 538 // The epoch of the current bias is still valid but we know nothing 539 // about the owner; it might be set or it might be clear. Try to 540 // acquire the bias of the object using an atomic operation. If this 541 // fails we will go in to the runtime to revoke the object's bias. 542 // Note that we first construct the presumed unbiased header so we 543 // don't accidentally blow away another thread's valid bias. 544 { 545 Label here; 546 mov(rscratch1, markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place); 547 andr(swap_reg, swap_reg, rscratch1); 548 orr(tmp_reg, swap_reg, rthread); 549 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 550 // If the biasing toward our thread failed, this means that 551 // another thread succeeded in biasing it toward itself and we 552 // need to revoke that bias. The revocation will occur in the 553 // interpreter runtime in the slow case. 554 bind(here); 555 if (counters != NULL) { 556 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), 557 tmp_reg, rscratch1, rscratch2); 558 } 559 } 560 b(done); 561 562 bind(try_rebias); 563 // At this point we know the epoch has expired, meaning that the 564 // current "bias owner", if any, is actually invalid. Under these 565 // circumstances _only_, we are allowed to use the current header's 566 // value as the comparison value when doing the cas to acquire the 567 // bias in the current epoch. In other words, we allow transfer of 568 // the bias from one thread to another directly in this situation. 569 // 570 // FIXME: due to a lack of registers we currently blow away the age 571 // bits in this situation. Should attempt to preserve them. 572 { 573 Label here; 574 load_prototype_header(tmp_reg, obj_reg); 575 orr(tmp_reg, rthread, tmp_reg); 576 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 577 // If the biasing toward our thread failed, then another thread 578 // succeeded in biasing it toward itself and we need to revoke that 579 // bias. The revocation will occur in the runtime in the slow case. 580 bind(here); 581 if (counters != NULL) { 582 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), 583 tmp_reg, rscratch1, rscratch2); 584 } 585 } 586 b(done); 587 588 bind(try_revoke_bias); 589 // The prototype mark in the klass doesn't have the bias bit set any 590 // more, indicating that objects of this data type are not supposed 591 // to be biased any more. We are going to try to reset the mark of 592 // this object to the prototype value and fall through to the 593 // CAS-based locking scheme. Note that if our CAS fails, it means 594 // that another thread raced us for the privilege of revoking the 595 // bias of this particular object, so it's okay to continue in the 596 // normal locking code. 597 // 598 // FIXME: due to a lack of registers we currently blow away the age 599 // bits in this situation. Should attempt to preserve them. 600 { 601 Label here, nope; 602 load_prototype_header(tmp_reg, obj_reg); 603 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope); 604 bind(here); 605 606 // Fall through to the normal CAS-based lock, because no matter what 607 // the result of the above CAS, some thread must have succeeded in 608 // removing the bias bit from the object's header. 609 if (counters != NULL) { 610 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg, 611 rscratch1, rscratch2); 612 } 613 bind(nope); 614 } 615 616 bind(cas_label); 617 } 618 619 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { 620 assert(UseBiasedLocking, "why call this otherwise?"); 621 622 // Check for biased locking unlock case, which is a no-op 623 // Note: we do not have to check the thread ID for two reasons. 624 // First, the interpreter checks for IllegalMonitorStateException at 625 // a higher level. Second, if the bias was revoked while we held the 626 // lock, the object could not be rebiased toward another thread, so 627 // the bias bit would be clear. 628 ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 629 andr(temp_reg, temp_reg, markWord::biased_lock_mask_in_place); 630 cmp(temp_reg, (u1)markWord::biased_lock_pattern); 631 br(Assembler::EQ, done); 632 } 633 634 static void pass_arg0(MacroAssembler* masm, Register arg) { 635 if (c_rarg0 != arg ) { 636 masm->mov(c_rarg0, arg); 637 } 638 } 639 640 static void pass_arg1(MacroAssembler* masm, Register arg) { 641 if (c_rarg1 != arg ) { 642 masm->mov(c_rarg1, arg); 643 } 644 } 645 646 static void pass_arg2(MacroAssembler* masm, Register arg) { 647 if (c_rarg2 != arg ) { 648 masm->mov(c_rarg2, arg); 649 } 650 } 651 652 static void pass_arg3(MacroAssembler* masm, Register arg) { 653 if (c_rarg3 != arg ) { 654 masm->mov(c_rarg3, arg); 655 } 656 } 657 658 void MacroAssembler::call_VM_base(Register oop_result, 659 Register java_thread, 660 Register last_java_sp, 661 address entry_point, 662 int number_of_arguments, 663 bool check_exceptions) { 664 // determine java_thread register 665 if (!java_thread->is_valid()) { 666 java_thread = rthread; 667 } 668 669 // determine last_java_sp register 670 if (!last_java_sp->is_valid()) { 671 last_java_sp = esp; 672 } 673 674 // debugging support 675 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 676 assert(java_thread == rthread, "unexpected register"); 677 #ifdef ASSERT 678 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 679 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 680 #endif // ASSERT 681 682 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 683 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 684 685 // push java thread (becomes first argument of C function) 686 687 mov(c_rarg0, java_thread); 688 689 // set last Java frame before call 690 assert(last_java_sp != rfp, "can't use rfp"); 691 692 Label l; 693 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 694 695 // do the call, remove parameters 696 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 697 698 // lr could be poisoned with PAC signature during throw_pending_exception 699 // if it was tail-call optimized by compiler, since lr is not callee-saved 700 // reload it with proper value 701 adr(lr, l); 702 703 // reset last Java frame 704 // Only interpreter should have to clear fp 705 reset_last_Java_frame(true); 706 707 // C++ interp handles this in the interpreter 708 check_and_handle_popframe(java_thread); 709 check_and_handle_earlyret(java_thread); 710 711 if (check_exceptions) { 712 // check for pending exceptions (java_thread is set upon return) 713 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 714 Label ok; 715 cbz(rscratch1, ok); 716 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 717 br(rscratch1); 718 bind(ok); 719 } 720 721 // get oop result if there is one and reset the value in the thread 722 if (oop_result->is_valid()) { 723 get_vm_result(oop_result, java_thread); 724 } 725 } 726 727 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 728 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 729 } 730 731 // Maybe emit a call via a trampoline. If the code cache is small 732 // trampolines won't be emitted. 733 734 address MacroAssembler::trampoline_call(Address entry, CodeBuffer* cbuf) { 735 assert(JavaThread::current()->is_Compiler_thread(), "just checking"); 736 assert(entry.rspec().type() == relocInfo::runtime_call_type 737 || entry.rspec().type() == relocInfo::opt_virtual_call_type 738 || entry.rspec().type() == relocInfo::static_call_type 739 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 740 741 bool need_trampoline = far_branches(); 742 if (!need_trampoline && entry.rspec().type() == relocInfo::runtime_call_type && !CodeCache::contains(entry.target())) { 743 // If it is a runtime call of an address outside small CodeCache, 744 // we need to check whether it is in range. 745 address target = entry.target(); 746 assert(target < CodeCache::low_bound() || target >= CodeCache::high_bound(), "target is inside CodeCache"); 747 // Case 1: -------T-------L====CodeCache====H------- 748 // ^-------longest branch---| 749 // Case 2: -------L====CodeCache====H-------T------- 750 // |-------longest branch ---^ 751 address longest_branch_start = (target < CodeCache::low_bound()) ? CodeCache::high_bound() - NativeInstruction::instruction_size 752 : CodeCache::low_bound(); 753 need_trampoline = !reachable_from_branch_at(longest_branch_start, target); 754 } 755 756 // We need a trampoline if branches are far. 757 if (need_trampoline) { 758 bool in_scratch_emit_size = false; 759 #ifdef COMPILER2 760 // We don't want to emit a trampoline if C2 is generating dummy 761 // code during its branch shortening phase. 762 CompileTask* task = ciEnv::current()->task(); 763 in_scratch_emit_size = 764 (task != NULL && is_c2_compile(task->comp_level()) && 765 Compile::current()->output()->in_scratch_emit_size()); 766 #endif 767 if (!in_scratch_emit_size) { 768 address stub = emit_trampoline_stub(offset(), entry.target()); 769 if (stub == NULL) { 770 postcond(pc() == badAddress); 771 return NULL; // CodeCache is full 772 } 773 } 774 } 775 776 if (cbuf) cbuf->set_insts_mark(); 777 relocate(entry.rspec()); 778 if (!need_trampoline) { 779 bl(entry.target()); 780 } else { 781 bl(pc()); 782 } 783 // just need to return a non-null address 784 postcond(pc() != badAddress); 785 return pc(); 786 } 787 788 789 // Emit a trampoline stub for a call to a target which is too far away. 790 // 791 // code sequences: 792 // 793 // call-site: 794 // branch-and-link to <destination> or <trampoline stub> 795 // 796 // Related trampoline stub for this call site in the stub section: 797 // load the call target from the constant pool 798 // branch (LR still points to the call site above) 799 800 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 801 address dest) { 802 // Max stub size: alignment nop, TrampolineStub. 803 address stub = start_a_stub(NativeInstruction::instruction_size 804 + NativeCallTrampolineStub::instruction_size); 805 if (stub == NULL) { 806 return NULL; // CodeBuffer::expand failed 807 } 808 809 // Create a trampoline stub relocation which relates this trampoline stub 810 // with the call instruction at insts_call_instruction_offset in the 811 // instructions code-section. 812 align(wordSize); 813 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 814 + insts_call_instruction_offset)); 815 const int stub_start_offset = offset(); 816 817 // Now, create the trampoline stub's code: 818 // - load the call 819 // - call 820 Label target; 821 ldr(rscratch1, target); 822 br(rscratch1); 823 bind(target); 824 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 825 "should be"); 826 emit_int64((int64_t)dest); 827 828 const address stub_start_addr = addr_at(stub_start_offset); 829 830 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 831 832 end_a_stub(); 833 return stub_start_addr; 834 } 835 836 void MacroAssembler::emit_static_call_stub() { 837 // CompiledDirectStaticCall::set_to_interpreted knows the 838 // exact layout of this stub. 839 840 isb(); 841 mov_metadata(rmethod, (Metadata*)NULL); 842 843 // Jump to the entry point of the i2c stub. 844 movptr(rscratch1, 0); 845 br(rscratch1); 846 } 847 848 void MacroAssembler::c2bool(Register x) { 849 // implements x == 0 ? 0 : 1 850 // note: must only look at least-significant byte of x 851 // since C-style booleans are stored in one byte 852 // only! (was bug) 853 tst(x, 0xff); 854 cset(x, Assembler::NE); 855 } 856 857 address MacroAssembler::ic_call(address entry, jint method_index) { 858 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 859 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 860 // uintptr_t offset; 861 // ldr_constant(rscratch2, const_ptr); 862 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 863 return trampoline_call(Address(entry, rh)); 864 } 865 866 // Implementation of call_VM versions 867 868 void MacroAssembler::call_VM(Register oop_result, 869 address entry_point, 870 bool check_exceptions) { 871 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 872 } 873 874 void MacroAssembler::call_VM(Register oop_result, 875 address entry_point, 876 Register arg_1, 877 bool check_exceptions) { 878 pass_arg1(this, arg_1); 879 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 880 } 881 882 void MacroAssembler::call_VM(Register oop_result, 883 address entry_point, 884 Register arg_1, 885 Register arg_2, 886 bool check_exceptions) { 887 assert(arg_1 != c_rarg2, "smashed arg"); 888 pass_arg2(this, arg_2); 889 pass_arg1(this, arg_1); 890 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 891 } 892 893 void MacroAssembler::call_VM(Register oop_result, 894 address entry_point, 895 Register arg_1, 896 Register arg_2, 897 Register arg_3, 898 bool check_exceptions) { 899 assert(arg_1 != c_rarg3, "smashed arg"); 900 assert(arg_2 != c_rarg3, "smashed arg"); 901 pass_arg3(this, arg_3); 902 903 assert(arg_1 != c_rarg2, "smashed arg"); 904 pass_arg2(this, arg_2); 905 906 pass_arg1(this, arg_1); 907 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 908 } 909 910 void MacroAssembler::call_VM(Register oop_result, 911 Register last_java_sp, 912 address entry_point, 913 int number_of_arguments, 914 bool check_exceptions) { 915 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 916 } 917 918 void MacroAssembler::call_VM(Register oop_result, 919 Register last_java_sp, 920 address entry_point, 921 Register arg_1, 922 bool check_exceptions) { 923 pass_arg1(this, arg_1); 924 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 925 } 926 927 void MacroAssembler::call_VM(Register oop_result, 928 Register last_java_sp, 929 address entry_point, 930 Register arg_1, 931 Register arg_2, 932 bool check_exceptions) { 933 934 assert(arg_1 != c_rarg2, "smashed arg"); 935 pass_arg2(this, arg_2); 936 pass_arg1(this, arg_1); 937 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 938 } 939 940 void MacroAssembler::call_VM(Register oop_result, 941 Register last_java_sp, 942 address entry_point, 943 Register arg_1, 944 Register arg_2, 945 Register arg_3, 946 bool check_exceptions) { 947 assert(arg_1 != c_rarg3, "smashed arg"); 948 assert(arg_2 != c_rarg3, "smashed arg"); 949 pass_arg3(this, arg_3); 950 assert(arg_1 != c_rarg2, "smashed arg"); 951 pass_arg2(this, arg_2); 952 pass_arg1(this, arg_1); 953 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 954 } 955 956 957 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 958 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 959 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 960 verify_oop(oop_result, "broken oop in call_VM_base"); 961 } 962 963 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 964 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 965 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 966 } 967 968 void MacroAssembler::align(int modulus) { 969 while (offset() % modulus != 0) nop(); 970 } 971 972 // these are no-ops overridden by InterpreterMacroAssembler 973 974 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 975 976 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 977 978 // Look up the method for a megamorphic invokeinterface call. 979 // The target method is determined by <intf_klass, itable_index>. 980 // The receiver klass is in recv_klass. 981 // On success, the result will be in method_result, and execution falls through. 982 // On failure, execution transfers to the given label. 983 void MacroAssembler::lookup_interface_method(Register recv_klass, 984 Register intf_klass, 985 RegisterOrConstant itable_index, 986 Register method_result, 987 Register scan_temp, 988 Label& L_no_such_interface, 989 bool return_method) { 990 assert_different_registers(recv_klass, intf_klass, scan_temp); 991 assert_different_registers(method_result, intf_klass, scan_temp); 992 assert(recv_klass != method_result || !return_method, 993 "recv_klass can be destroyed when method isn't needed"); 994 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 995 "caller must use same register for non-constant itable index as for method"); 996 997 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 998 int vtable_base = in_bytes(Klass::vtable_start_offset()); 999 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 1000 int scan_step = itableOffsetEntry::size() * wordSize; 1001 int vte_size = vtableEntry::size_in_bytes(); 1002 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1003 1004 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1005 1006 // %%% Could store the aligned, prescaled offset in the klassoop. 1007 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1008 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1009 add(scan_temp, scan_temp, vtable_base); 1010 1011 if (return_method) { 1012 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1013 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1014 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1015 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1016 if (itentry_off) 1017 add(recv_klass, recv_klass, itentry_off); 1018 } 1019 1020 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 1021 // if (scan->interface() == intf) { 1022 // result = (klass + scan->offset() + itable_index); 1023 // } 1024 // } 1025 Label search, found_method; 1026 1027 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 1028 cmp(intf_klass, method_result); 1029 br(Assembler::EQ, found_method); 1030 bind(search); 1031 // Check that the previous entry is non-null. A null entry means that 1032 // the receiver class doesn't implement the interface, and wasn't the 1033 // same as when the caller was compiled. 1034 cbz(method_result, L_no_such_interface); 1035 if (itableOffsetEntry::interface_offset_in_bytes() != 0) { 1036 add(scan_temp, scan_temp, scan_step); 1037 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 1038 } else { 1039 ldr(method_result, Address(pre(scan_temp, scan_step))); 1040 } 1041 cmp(intf_klass, method_result); 1042 br(Assembler::NE, search); 1043 1044 bind(found_method); 1045 1046 // Got a hit. 1047 if (return_method) { 1048 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 1049 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1050 } 1051 } 1052 1053 // virtual method calling 1054 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1055 RegisterOrConstant vtable_index, 1056 Register method_result) { 1057 const int base = in_bytes(Klass::vtable_start_offset()); 1058 assert(vtableEntry::size() * wordSize == 8, 1059 "adjust the scaling in the code below"); 1060 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 1061 1062 if (vtable_index.is_register()) { 1063 lea(method_result, Address(recv_klass, 1064 vtable_index.as_register(), 1065 Address::lsl(LogBytesPerWord))); 1066 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1067 } else { 1068 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1069 ldr(method_result, 1070 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1071 } 1072 } 1073 1074 void MacroAssembler::check_klass_subtype(Register sub_klass, 1075 Register super_klass, 1076 Register temp_reg, 1077 Label& L_success) { 1078 Label L_failure; 1079 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 1080 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 1081 bind(L_failure); 1082 } 1083 1084 1085 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1086 Register super_klass, 1087 Register temp_reg, 1088 Label* L_success, 1089 Label* L_failure, 1090 Label* L_slow_path, 1091 RegisterOrConstant super_check_offset) { 1092 assert_different_registers(sub_klass, super_klass, temp_reg); 1093 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1094 if (super_check_offset.is_register()) { 1095 assert_different_registers(sub_klass, super_klass, 1096 super_check_offset.as_register()); 1097 } else if (must_load_sco) { 1098 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1099 } 1100 1101 Label L_fallthrough; 1102 int label_nulls = 0; 1103 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1104 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1105 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 1106 assert(label_nulls <= 1, "at most one NULL in the batch"); 1107 1108 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1109 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1110 Address super_check_offset_addr(super_klass, sco_offset); 1111 1112 // Hacked jmp, which may only be used just before L_fallthrough. 1113 #define final_jmp(label) \ 1114 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1115 else b(label) /*omit semi*/ 1116 1117 // If the pointers are equal, we are done (e.g., String[] elements). 1118 // This self-check enables sharing of secondary supertype arrays among 1119 // non-primary types such as array-of-interface. Otherwise, each such 1120 // type would need its own customized SSA. 1121 // We move this check to the front of the fast path because many 1122 // type checks are in fact trivially successful in this manner, 1123 // so we get a nicely predicted branch right at the start of the check. 1124 cmp(sub_klass, super_klass); 1125 br(Assembler::EQ, *L_success); 1126 1127 // Check the supertype display: 1128 if (must_load_sco) { 1129 ldrw(temp_reg, super_check_offset_addr); 1130 super_check_offset = RegisterOrConstant(temp_reg); 1131 } 1132 Address super_check_addr(sub_klass, super_check_offset); 1133 ldr(rscratch1, super_check_addr); 1134 cmp(super_klass, rscratch1); // load displayed supertype 1135 1136 // This check has worked decisively for primary supers. 1137 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1138 // (Secondary supers are interfaces and very deeply nested subtypes.) 1139 // This works in the same check above because of a tricky aliasing 1140 // between the super_cache and the primary super display elements. 1141 // (The 'super_check_addr' can address either, as the case requires.) 1142 // Note that the cache is updated below if it does not help us find 1143 // what we need immediately. 1144 // So if it was a primary super, we can just fail immediately. 1145 // Otherwise, it's the slow path for us (no success at this point). 1146 1147 if (super_check_offset.is_register()) { 1148 br(Assembler::EQ, *L_success); 1149 subs(zr, super_check_offset.as_register(), sc_offset); 1150 if (L_failure == &L_fallthrough) { 1151 br(Assembler::EQ, *L_slow_path); 1152 } else { 1153 br(Assembler::NE, *L_failure); 1154 final_jmp(*L_slow_path); 1155 } 1156 } else if (super_check_offset.as_constant() == sc_offset) { 1157 // Need a slow path; fast failure is impossible. 1158 if (L_slow_path == &L_fallthrough) { 1159 br(Assembler::EQ, *L_success); 1160 } else { 1161 br(Assembler::NE, *L_slow_path); 1162 final_jmp(*L_success); 1163 } 1164 } else { 1165 // No slow path; it's a fast decision. 1166 if (L_failure == &L_fallthrough) { 1167 br(Assembler::EQ, *L_success); 1168 } else { 1169 br(Assembler::NE, *L_failure); 1170 final_jmp(*L_success); 1171 } 1172 } 1173 1174 bind(L_fallthrough); 1175 1176 #undef final_jmp 1177 } 1178 1179 // These two are taken from x86, but they look generally useful 1180 1181 // scans count pointer sized words at [addr] for occurence of value, 1182 // generic 1183 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1184 Register scratch) { 1185 Label Lloop, Lexit; 1186 cbz(count, Lexit); 1187 bind(Lloop); 1188 ldr(scratch, post(addr, wordSize)); 1189 cmp(value, scratch); 1190 br(EQ, Lexit); 1191 sub(count, count, 1); 1192 cbnz(count, Lloop); 1193 bind(Lexit); 1194 } 1195 1196 // scans count 4 byte words at [addr] for occurence of value, 1197 // generic 1198 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1199 Register scratch) { 1200 Label Lloop, Lexit; 1201 cbz(count, Lexit); 1202 bind(Lloop); 1203 ldrw(scratch, post(addr, wordSize)); 1204 cmpw(value, scratch); 1205 br(EQ, Lexit); 1206 sub(count, count, 1); 1207 cbnz(count, Lloop); 1208 bind(Lexit); 1209 } 1210 1211 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1212 Register super_klass, 1213 Register temp_reg, 1214 Register temp2_reg, 1215 Label* L_success, 1216 Label* L_failure, 1217 bool set_cond_codes) { 1218 assert_different_registers(sub_klass, super_klass, temp_reg); 1219 if (temp2_reg != noreg) 1220 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1221 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1222 1223 Label L_fallthrough; 1224 int label_nulls = 0; 1225 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1226 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1227 assert(label_nulls <= 1, "at most one NULL in the batch"); 1228 1229 // a couple of useful fields in sub_klass: 1230 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1231 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1232 Address secondary_supers_addr(sub_klass, ss_offset); 1233 Address super_cache_addr( sub_klass, sc_offset); 1234 1235 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1236 1237 // Do a linear scan of the secondary super-klass chain. 1238 // This code is rarely used, so simplicity is a virtue here. 1239 // The repne_scan instruction uses fixed registers, which we must spill. 1240 // Don't worry too much about pre-existing connections with the input regs. 1241 1242 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1243 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1244 1245 RegSet pushed_registers; 1246 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1247 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1248 1249 if (super_klass != r0) { 1250 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1251 } 1252 1253 push(pushed_registers, sp); 1254 1255 // Get super_klass value into r0 (even if it was in r5 or r2). 1256 if (super_klass != r0) { 1257 mov(r0, super_klass); 1258 } 1259 1260 #ifndef PRODUCT 1261 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1262 Address pst_counter_addr(rscratch2); 1263 ldr(rscratch1, pst_counter_addr); 1264 add(rscratch1, rscratch1, 1); 1265 str(rscratch1, pst_counter_addr); 1266 #endif //PRODUCT 1267 1268 // We will consult the secondary-super array. 1269 ldr(r5, secondary_supers_addr); 1270 // Load the array length. 1271 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1272 // Skip to start of data. 1273 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1274 1275 cmp(sp, zr); // Clear Z flag; SP is never zero 1276 // Scan R2 words at [R5] for an occurrence of R0. 1277 // Set NZ/Z based on last compare. 1278 repne_scan(r5, r0, r2, rscratch1); 1279 1280 // Unspill the temp. registers: 1281 pop(pushed_registers, sp); 1282 1283 br(Assembler::NE, *L_failure); 1284 1285 // Success. Cache the super we found and proceed in triumph. 1286 str(super_klass, super_cache_addr); 1287 1288 if (L_success != &L_fallthrough) { 1289 b(*L_success); 1290 } 1291 1292 #undef IS_A_TEMP 1293 1294 bind(L_fallthrough); 1295 } 1296 1297 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1298 assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required"); 1299 assert_different_registers(klass, rthread, scratch); 1300 1301 Label L_fallthrough, L_tmp; 1302 if (L_fast_path == NULL) { 1303 L_fast_path = &L_fallthrough; 1304 } else if (L_slow_path == NULL) { 1305 L_slow_path = &L_fallthrough; 1306 } 1307 // Fast path check: class is fully initialized 1308 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1309 subs(zr, scratch, InstanceKlass::fully_initialized); 1310 br(Assembler::EQ, *L_fast_path); 1311 1312 // Fast path check: current thread is initializer thread 1313 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1314 cmp(rthread, scratch); 1315 1316 if (L_slow_path == &L_fallthrough) { 1317 br(Assembler::EQ, *L_fast_path); 1318 bind(*L_slow_path); 1319 } else if (L_fast_path == &L_fallthrough) { 1320 br(Assembler::NE, *L_slow_path); 1321 bind(*L_fast_path); 1322 } else { 1323 Unimplemented(); 1324 } 1325 } 1326 1327 void MacroAssembler::verify_oop(Register reg, const char* s) { 1328 if (!VerifyOops) return; 1329 1330 // Pass register number to verify_oop_subroutine 1331 const char* b = NULL; 1332 { 1333 ResourceMark rm; 1334 stringStream ss; 1335 ss.print("verify_oop: %s: %s", reg->name(), s); 1336 b = code_string(ss.as_string()); 1337 } 1338 BLOCK_COMMENT("verify_oop {"); 1339 1340 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1341 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1342 1343 mov(r0, reg); 1344 movptr(rscratch1, (uintptr_t)(address)b); 1345 1346 // call indirectly to solve generation ordering problem 1347 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1348 ldr(rscratch2, Address(rscratch2)); 1349 blr(rscratch2); 1350 1351 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1352 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1353 1354 BLOCK_COMMENT("} verify_oop"); 1355 } 1356 1357 void MacroAssembler::verify_oop_addr(Address addr, const char* s) { 1358 if (!VerifyOops) return; 1359 1360 const char* b = NULL; 1361 { 1362 ResourceMark rm; 1363 stringStream ss; 1364 ss.print("verify_oop_addr: %s", s); 1365 b = code_string(ss.as_string()); 1366 } 1367 BLOCK_COMMENT("verify_oop_addr {"); 1368 1369 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1370 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1371 1372 // addr may contain sp so we will have to adjust it based on the 1373 // pushes that we just did. 1374 if (addr.uses(sp)) { 1375 lea(r0, addr); 1376 ldr(r0, Address(r0, 4 * wordSize)); 1377 } else { 1378 ldr(r0, addr); 1379 } 1380 movptr(rscratch1, (uintptr_t)(address)b); 1381 1382 // call indirectly to solve generation ordering problem 1383 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1384 ldr(rscratch2, Address(rscratch2)); 1385 blr(rscratch2); 1386 1387 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1388 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1389 1390 BLOCK_COMMENT("} verify_oop_addr"); 1391 } 1392 1393 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1394 int extra_slot_offset) { 1395 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1396 int stackElementSize = Interpreter::stackElementSize; 1397 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1398 #ifdef ASSERT 1399 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1400 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1401 #endif 1402 if (arg_slot.is_constant()) { 1403 return Address(esp, arg_slot.as_constant() * stackElementSize 1404 + offset); 1405 } else { 1406 add(rscratch1, esp, arg_slot.as_register(), 1407 ext::uxtx, exact_log2(stackElementSize)); 1408 return Address(rscratch1, offset); 1409 } 1410 } 1411 1412 void MacroAssembler::call_VM_leaf_base(address entry_point, 1413 int number_of_arguments, 1414 Label *retaddr) { 1415 Label E, L; 1416 1417 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1418 1419 mov(rscratch1, entry_point); 1420 blr(rscratch1); 1421 if (retaddr) 1422 bind(*retaddr); 1423 1424 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1425 } 1426 1427 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1428 call_VM_leaf_base(entry_point, number_of_arguments); 1429 } 1430 1431 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1432 pass_arg0(this, arg_0); 1433 call_VM_leaf_base(entry_point, 1); 1434 } 1435 1436 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1437 pass_arg0(this, arg_0); 1438 pass_arg1(this, arg_1); 1439 call_VM_leaf_base(entry_point, 2); 1440 } 1441 1442 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1443 Register arg_1, Register arg_2) { 1444 pass_arg0(this, arg_0); 1445 pass_arg1(this, arg_1); 1446 pass_arg2(this, arg_2); 1447 call_VM_leaf_base(entry_point, 3); 1448 } 1449 1450 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1451 pass_arg0(this, arg_0); 1452 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1453 } 1454 1455 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1456 1457 assert(arg_0 != c_rarg1, "smashed arg"); 1458 pass_arg1(this, arg_1); 1459 pass_arg0(this, arg_0); 1460 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1461 } 1462 1463 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1464 assert(arg_0 != c_rarg2, "smashed arg"); 1465 assert(arg_1 != c_rarg2, "smashed arg"); 1466 pass_arg2(this, arg_2); 1467 assert(arg_0 != c_rarg1, "smashed arg"); 1468 pass_arg1(this, arg_1); 1469 pass_arg0(this, arg_0); 1470 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1471 } 1472 1473 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1474 assert(arg_0 != c_rarg3, "smashed arg"); 1475 assert(arg_1 != c_rarg3, "smashed arg"); 1476 assert(arg_2 != c_rarg3, "smashed arg"); 1477 pass_arg3(this, arg_3); 1478 assert(arg_0 != c_rarg2, "smashed arg"); 1479 assert(arg_1 != c_rarg2, "smashed arg"); 1480 pass_arg2(this, arg_2); 1481 assert(arg_0 != c_rarg1, "smashed arg"); 1482 pass_arg1(this, arg_1); 1483 pass_arg0(this, arg_0); 1484 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1485 } 1486 1487 void MacroAssembler::null_check(Register reg, int offset) { 1488 if (needs_explicit_null_check(offset)) { 1489 // provoke OS NULL exception if reg = NULL by 1490 // accessing M[reg] w/o changing any registers 1491 // NOTE: this is plenty to provoke a segv 1492 ldr(zr, Address(reg)); 1493 } else { 1494 // nothing to do, (later) access of M[reg + offset] 1495 // will provoke OS NULL exception if reg = NULL 1496 } 1497 } 1498 1499 // MacroAssembler protected routines needed to implement 1500 // public methods 1501 1502 void MacroAssembler::mov(Register r, Address dest) { 1503 code_section()->relocate(pc(), dest.rspec()); 1504 uint64_t imm64 = (uint64_t)dest.target(); 1505 movptr(r, imm64); 1506 } 1507 1508 // Move a constant pointer into r. In AArch64 mode the virtual 1509 // address space is 48 bits in size, so we only need three 1510 // instructions to create a patchable instruction sequence that can 1511 // reach anywhere. 1512 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1513 #ifndef PRODUCT 1514 { 1515 char buffer[64]; 1516 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 1517 block_comment(buffer); 1518 } 1519 #endif 1520 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 1521 movz(r, imm64 & 0xffff); 1522 imm64 >>= 16; 1523 movk(r, imm64 & 0xffff, 16); 1524 imm64 >>= 16; 1525 movk(r, imm64 & 0xffff, 32); 1526 } 1527 1528 // Macro to mov replicated immediate to vector register. 1529 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 1530 // the upper 56/48/32 bits must be zeros for B/H/S type. 1531 // Vd will get the following values for different arrangements in T 1532 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 1533 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1534 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 1535 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1536 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1537 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1538 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 1539 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 1540 // Clobbers rscratch1 1541 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 1542 assert(T != T1Q, "unsupported"); 1543 if (T == T1D || T == T2D) { 1544 int imm = operand_valid_for_movi_immediate(imm64, T); 1545 if (-1 != imm) { 1546 movi(Vd, T, imm); 1547 } else { 1548 mov(rscratch1, imm64); 1549 dup(Vd, T, rscratch1); 1550 } 1551 return; 1552 } 1553 1554 #ifdef ASSERT 1555 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 1556 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 1557 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 1558 #endif 1559 int shift = operand_valid_for_movi_immediate(imm64, T); 1560 uint32_t imm32 = imm64 & 0xffffffffULL; 1561 if (shift >= 0) { 1562 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 1563 } else { 1564 movw(rscratch1, imm32); 1565 dup(Vd, T, rscratch1); 1566 } 1567 } 1568 1569 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 1570 { 1571 #ifndef PRODUCT 1572 { 1573 char buffer[64]; 1574 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1575 block_comment(buffer); 1576 } 1577 #endif 1578 if (operand_valid_for_logical_immediate(false, imm64)) { 1579 orr(dst, zr, imm64); 1580 } else { 1581 // we can use a combination of MOVZ or MOVN with 1582 // MOVK to build up the constant 1583 uint64_t imm_h[4]; 1584 int zero_count = 0; 1585 int neg_count = 0; 1586 int i; 1587 for (i = 0; i < 4; i++) { 1588 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1589 if (imm_h[i] == 0) { 1590 zero_count++; 1591 } else if (imm_h[i] == 0xffffL) { 1592 neg_count++; 1593 } 1594 } 1595 if (zero_count == 4) { 1596 // one MOVZ will do 1597 movz(dst, 0); 1598 } else if (neg_count == 4) { 1599 // one MOVN will do 1600 movn(dst, 0); 1601 } else if (zero_count == 3) { 1602 for (i = 0; i < 4; i++) { 1603 if (imm_h[i] != 0L) { 1604 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1605 break; 1606 } 1607 } 1608 } else if (neg_count == 3) { 1609 // one MOVN will do 1610 for (int i = 0; i < 4; i++) { 1611 if (imm_h[i] != 0xffffL) { 1612 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1613 break; 1614 } 1615 } 1616 } else if (zero_count == 2) { 1617 // one MOVZ and one MOVK will do 1618 for (i = 0; i < 3; i++) { 1619 if (imm_h[i] != 0L) { 1620 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1621 i++; 1622 break; 1623 } 1624 } 1625 for (;i < 4; i++) { 1626 if (imm_h[i] != 0L) { 1627 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1628 } 1629 } 1630 } else if (neg_count == 2) { 1631 // one MOVN and one MOVK will do 1632 for (i = 0; i < 4; i++) { 1633 if (imm_h[i] != 0xffffL) { 1634 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1635 i++; 1636 break; 1637 } 1638 } 1639 for (;i < 4; i++) { 1640 if (imm_h[i] != 0xffffL) { 1641 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1642 } 1643 } 1644 } else if (zero_count == 1) { 1645 // one MOVZ and two MOVKs will do 1646 for (i = 0; i < 4; i++) { 1647 if (imm_h[i] != 0L) { 1648 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1649 i++; 1650 break; 1651 } 1652 } 1653 for (;i < 4; i++) { 1654 if (imm_h[i] != 0x0L) { 1655 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1656 } 1657 } 1658 } else if (neg_count == 1) { 1659 // one MOVN and two MOVKs will do 1660 for (i = 0; i < 4; i++) { 1661 if (imm_h[i] != 0xffffL) { 1662 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1663 i++; 1664 break; 1665 } 1666 } 1667 for (;i < 4; i++) { 1668 if (imm_h[i] != 0xffffL) { 1669 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1670 } 1671 } 1672 } else { 1673 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1674 movz(dst, (uint32_t)imm_h[0], 0); 1675 for (i = 1; i < 4; i++) { 1676 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1677 } 1678 } 1679 } 1680 } 1681 1682 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 1683 { 1684 #ifndef PRODUCT 1685 { 1686 char buffer[64]; 1687 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 1688 block_comment(buffer); 1689 } 1690 #endif 1691 if (operand_valid_for_logical_immediate(true, imm32)) { 1692 orrw(dst, zr, imm32); 1693 } else { 1694 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1695 // constant 1696 uint32_t imm_h[2]; 1697 imm_h[0] = imm32 & 0xffff; 1698 imm_h[1] = ((imm32 >> 16) & 0xffff); 1699 if (imm_h[0] == 0) { 1700 movzw(dst, imm_h[1], 16); 1701 } else if (imm_h[0] == 0xffff) { 1702 movnw(dst, imm_h[1] ^ 0xffff, 16); 1703 } else if (imm_h[1] == 0) { 1704 movzw(dst, imm_h[0], 0); 1705 } else if (imm_h[1] == 0xffff) { 1706 movnw(dst, imm_h[0] ^ 0xffff, 0); 1707 } else { 1708 // use a MOVZ and MOVK (makes it easier to debug) 1709 movzw(dst, imm_h[0], 0); 1710 movkw(dst, imm_h[1], 16); 1711 } 1712 } 1713 } 1714 1715 // Form an address from base + offset in Rd. Rd may or may 1716 // not actually be used: you must use the Address that is returned. 1717 // It is up to you to ensure that the shift provided matches the size 1718 // of your data. 1719 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 1720 if (Address::offset_ok_for_immed(byte_offset, shift)) 1721 // It fits; no need for any heroics 1722 return Address(base, byte_offset); 1723 1724 // Don't do anything clever with negative or misaligned offsets 1725 unsigned mask = (1 << shift) - 1; 1726 if (byte_offset < 0 || byte_offset & mask) { 1727 mov(Rd, byte_offset); 1728 add(Rd, base, Rd); 1729 return Address(Rd); 1730 } 1731 1732 // See if we can do this with two 12-bit offsets 1733 { 1734 uint64_t word_offset = byte_offset >> shift; 1735 uint64_t masked_offset = word_offset & 0xfff000; 1736 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 1737 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1738 add(Rd, base, masked_offset << shift); 1739 word_offset -= masked_offset; 1740 return Address(Rd, word_offset << shift); 1741 } 1742 } 1743 1744 // Do it the hard way 1745 mov(Rd, byte_offset); 1746 add(Rd, base, Rd); 1747 return Address(Rd); 1748 } 1749 1750 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) { 1751 if (UseLSE) { 1752 mov(tmp, 1); 1753 ldadd(Assembler::word, tmp, zr, counter_addr); 1754 return; 1755 } 1756 Label retry_load; 1757 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 1758 prfm(Address(counter_addr), PSTL1STRM); 1759 bind(retry_load); 1760 // flush and load exclusive from the memory location 1761 ldxrw(tmp, counter_addr); 1762 addw(tmp, tmp, 1); 1763 // if we store+flush with no intervening write tmp wil be zero 1764 stxrw(tmp2, tmp, counter_addr); 1765 cbnzw(tmp2, retry_load); 1766 } 1767 1768 1769 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 1770 bool want_remainder, Register scratch) 1771 { 1772 // Full implementation of Java idiv and irem. The function 1773 // returns the (pc) offset of the div instruction - may be needed 1774 // for implicit exceptions. 1775 // 1776 // constraint : ra/rb =/= scratch 1777 // normal case 1778 // 1779 // input : ra: dividend 1780 // rb: divisor 1781 // 1782 // result: either 1783 // quotient (= ra idiv rb) 1784 // remainder (= ra irem rb) 1785 1786 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1787 1788 int idivl_offset = offset(); 1789 if (! want_remainder) { 1790 sdivw(result, ra, rb); 1791 } else { 1792 sdivw(scratch, ra, rb); 1793 Assembler::msubw(result, scratch, rb, ra); 1794 } 1795 1796 return idivl_offset; 1797 } 1798 1799 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 1800 bool want_remainder, Register scratch) 1801 { 1802 // Full implementation of Java ldiv and lrem. The function 1803 // returns the (pc) offset of the div instruction - may be needed 1804 // for implicit exceptions. 1805 // 1806 // constraint : ra/rb =/= scratch 1807 // normal case 1808 // 1809 // input : ra: dividend 1810 // rb: divisor 1811 // 1812 // result: either 1813 // quotient (= ra idiv rb) 1814 // remainder (= ra irem rb) 1815 1816 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1817 1818 int idivq_offset = offset(); 1819 if (! want_remainder) { 1820 sdiv(result, ra, rb); 1821 } else { 1822 sdiv(scratch, ra, rb); 1823 Assembler::msub(result, scratch, rb, ra); 1824 } 1825 1826 return idivq_offset; 1827 } 1828 1829 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 1830 address prev = pc() - NativeMembar::instruction_size; 1831 address last = code()->last_insn(); 1832 if (last != NULL && nativeInstruction_at(last)->is_Membar() && prev == last) { 1833 NativeMembar *bar = NativeMembar_at(prev); 1834 // We are merging two memory barrier instructions. On AArch64 we 1835 // can do this simply by ORing them together. 1836 bar->set_kind(bar->get_kind() | order_constraint); 1837 BLOCK_COMMENT("merged membar"); 1838 } else { 1839 code()->set_last_insn(pc()); 1840 dmb(Assembler::barrier(order_constraint)); 1841 } 1842 } 1843 1844 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 1845 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 1846 merge_ldst(rt, adr, size_in_bytes, is_store); 1847 code()->clear_last_insn(); 1848 return true; 1849 } else { 1850 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 1851 const uint64_t mask = size_in_bytes - 1; 1852 if (adr.getMode() == Address::base_plus_offset && 1853 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 1854 code()->set_last_insn(pc()); 1855 } 1856 return false; 1857 } 1858 } 1859 1860 void MacroAssembler::ldr(Register Rx, const Address &adr) { 1861 // We always try to merge two adjacent loads into one ldp. 1862 if (!try_merge_ldst(Rx, adr, 8, false)) { 1863 Assembler::ldr(Rx, adr); 1864 } 1865 } 1866 1867 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 1868 // We always try to merge two adjacent loads into one ldp. 1869 if (!try_merge_ldst(Rw, adr, 4, false)) { 1870 Assembler::ldrw(Rw, adr); 1871 } 1872 } 1873 1874 void MacroAssembler::str(Register Rx, const Address &adr) { 1875 // We always try to merge two adjacent stores into one stp. 1876 if (!try_merge_ldst(Rx, adr, 8, true)) { 1877 Assembler::str(Rx, adr); 1878 } 1879 } 1880 1881 void MacroAssembler::strw(Register Rw, const Address &adr) { 1882 // We always try to merge two adjacent stores into one stp. 1883 if (!try_merge_ldst(Rw, adr, 4, true)) { 1884 Assembler::strw(Rw, adr); 1885 } 1886 } 1887 1888 // MacroAssembler routines found actually to be needed 1889 1890 void MacroAssembler::push(Register src) 1891 { 1892 str(src, Address(pre(esp, -1 * wordSize))); 1893 } 1894 1895 void MacroAssembler::pop(Register dst) 1896 { 1897 ldr(dst, Address(post(esp, 1 * wordSize))); 1898 } 1899 1900 // Note: load_unsigned_short used to be called load_unsigned_word. 1901 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1902 int off = offset(); 1903 ldrh(dst, src); 1904 return off; 1905 } 1906 1907 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1908 int off = offset(); 1909 ldrb(dst, src); 1910 return off; 1911 } 1912 1913 int MacroAssembler::load_signed_short(Register dst, Address src) { 1914 int off = offset(); 1915 ldrsh(dst, src); 1916 return off; 1917 } 1918 1919 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1920 int off = offset(); 1921 ldrsb(dst, src); 1922 return off; 1923 } 1924 1925 int MacroAssembler::load_signed_short32(Register dst, Address src) { 1926 int off = offset(); 1927 ldrshw(dst, src); 1928 return off; 1929 } 1930 1931 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 1932 int off = offset(); 1933 ldrsbw(dst, src); 1934 return off; 1935 } 1936 1937 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1938 switch (size_in_bytes) { 1939 case 8: ldr(dst, src); break; 1940 case 4: ldrw(dst, src); break; 1941 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1942 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1943 default: ShouldNotReachHere(); 1944 } 1945 } 1946 1947 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1948 switch (size_in_bytes) { 1949 case 8: str(src, dst); break; 1950 case 4: strw(src, dst); break; 1951 case 2: strh(src, dst); break; 1952 case 1: strb(src, dst); break; 1953 default: ShouldNotReachHere(); 1954 } 1955 } 1956 1957 void MacroAssembler::decrementw(Register reg, int value) 1958 { 1959 if (value < 0) { incrementw(reg, -value); return; } 1960 if (value == 0) { return; } 1961 if (value < (1 << 12)) { subw(reg, reg, value); return; } 1962 /* else */ { 1963 guarantee(reg != rscratch2, "invalid dst for register decrement"); 1964 movw(rscratch2, (unsigned)value); 1965 subw(reg, reg, rscratch2); 1966 } 1967 } 1968 1969 void MacroAssembler::decrement(Register reg, int value) 1970 { 1971 if (value < 0) { increment(reg, -value); return; } 1972 if (value == 0) { return; } 1973 if (value < (1 << 12)) { sub(reg, reg, value); return; } 1974 /* else */ { 1975 assert(reg != rscratch2, "invalid dst for register decrement"); 1976 mov(rscratch2, (uint64_t)value); 1977 sub(reg, reg, rscratch2); 1978 } 1979 } 1980 1981 void MacroAssembler::decrementw(Address dst, int value) 1982 { 1983 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 1984 if (dst.getMode() == Address::literal) { 1985 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1986 lea(rscratch2, dst); 1987 dst = Address(rscratch2); 1988 } 1989 ldrw(rscratch1, dst); 1990 decrementw(rscratch1, value); 1991 strw(rscratch1, dst); 1992 } 1993 1994 void MacroAssembler::decrement(Address dst, int value) 1995 { 1996 assert(!dst.uses(rscratch1), "invalid address for decrement"); 1997 if (dst.getMode() == Address::literal) { 1998 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1999 lea(rscratch2, dst); 2000 dst = Address(rscratch2); 2001 } 2002 ldr(rscratch1, dst); 2003 decrement(rscratch1, value); 2004 str(rscratch1, dst); 2005 } 2006 2007 void MacroAssembler::incrementw(Register reg, int value) 2008 { 2009 if (value < 0) { decrementw(reg, -value); return; } 2010 if (value == 0) { return; } 2011 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2012 /* else */ { 2013 assert(reg != rscratch2, "invalid dst for register increment"); 2014 movw(rscratch2, (unsigned)value); 2015 addw(reg, reg, rscratch2); 2016 } 2017 } 2018 2019 void MacroAssembler::increment(Register reg, int value) 2020 { 2021 if (value < 0) { decrement(reg, -value); return; } 2022 if (value == 0) { return; } 2023 if (value < (1 << 12)) { add(reg, reg, value); return; } 2024 /* else */ { 2025 assert(reg != rscratch2, "invalid dst for register increment"); 2026 movw(rscratch2, (unsigned)value); 2027 add(reg, reg, rscratch2); 2028 } 2029 } 2030 2031 void MacroAssembler::incrementw(Address dst, int value) 2032 { 2033 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2034 if (dst.getMode() == Address::literal) { 2035 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2036 lea(rscratch2, dst); 2037 dst = Address(rscratch2); 2038 } 2039 ldrw(rscratch1, dst); 2040 incrementw(rscratch1, value); 2041 strw(rscratch1, dst); 2042 } 2043 2044 void MacroAssembler::increment(Address dst, int value) 2045 { 2046 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2047 if (dst.getMode() == Address::literal) { 2048 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2049 lea(rscratch2, dst); 2050 dst = Address(rscratch2); 2051 } 2052 ldr(rscratch1, dst); 2053 increment(rscratch1, value); 2054 str(rscratch1, dst); 2055 } 2056 2057 // Push lots of registers in the bit set supplied. Don't push sp. 2058 // Return the number of words pushed 2059 int MacroAssembler::push(unsigned int bitset, Register stack) { 2060 int words_pushed = 0; 2061 2062 // Scan bitset to accumulate register pairs 2063 unsigned char regs[32]; 2064 int count = 0; 2065 for (int reg = 0; reg <= 30; reg++) { 2066 if (1 & bitset) 2067 regs[count++] = reg; 2068 bitset >>= 1; 2069 } 2070 regs[count++] = zr->encoding_nocheck(); 2071 count &= ~1; // Only push an even nuber of regs 2072 2073 if (count) { 2074 stp(as_Register(regs[0]), as_Register(regs[1]), 2075 Address(pre(stack, -count * wordSize))); 2076 words_pushed += 2; 2077 } 2078 for (int i = 2; i < count; i += 2) { 2079 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2080 Address(stack, i * wordSize)); 2081 words_pushed += 2; 2082 } 2083 2084 assert(words_pushed == count, "oops, pushed != count"); 2085 2086 return count; 2087 } 2088 2089 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2090 int words_pushed = 0; 2091 2092 // Scan bitset to accumulate register pairs 2093 unsigned char regs[32]; 2094 int count = 0; 2095 for (int reg = 0; reg <= 30; reg++) { 2096 if (1 & bitset) 2097 regs[count++] = reg; 2098 bitset >>= 1; 2099 } 2100 regs[count++] = zr->encoding_nocheck(); 2101 count &= ~1; 2102 2103 for (int i = 2; i < count; i += 2) { 2104 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2105 Address(stack, i * wordSize)); 2106 words_pushed += 2; 2107 } 2108 if (count) { 2109 ldp(as_Register(regs[0]), as_Register(regs[1]), 2110 Address(post(stack, count * wordSize))); 2111 words_pushed += 2; 2112 } 2113 2114 assert(words_pushed == count, "oops, pushed != count"); 2115 2116 return count; 2117 } 2118 2119 // Push lots of registers in the bit set supplied. Don't push sp. 2120 // Return the number of dwords pushed 2121 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 2122 int words_pushed = 0; 2123 bool use_sve = false; 2124 int sve_vector_size_in_bytes = 0; 2125 2126 #ifdef COMPILER2 2127 use_sve = Matcher::supports_scalable_vector(); 2128 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2129 #endif 2130 2131 // Scan bitset to accumulate register pairs 2132 unsigned char regs[32]; 2133 int count = 0; 2134 for (int reg = 0; reg <= 31; reg++) { 2135 if (1 & bitset) 2136 regs[count++] = reg; 2137 bitset >>= 1; 2138 } 2139 2140 if (count == 0) { 2141 return 0; 2142 } 2143 2144 // SVE 2145 if (use_sve && sve_vector_size_in_bytes > 16) { 2146 sub(stack, stack, sve_vector_size_in_bytes * count); 2147 for (int i = 0; i < count; i++) { 2148 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2149 } 2150 return count * sve_vector_size_in_bytes / 8; 2151 } 2152 2153 // NEON 2154 if (count == 1) { 2155 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2156 return 2; 2157 } 2158 2159 bool odd = (count & 1) == 1; 2160 int push_slots = count + (odd ? 1 : 0); 2161 2162 // Always pushing full 128 bit registers. 2163 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2164 words_pushed += 2; 2165 2166 for (int i = 2; i + 1 < count; i += 2) { 2167 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2168 words_pushed += 2; 2169 } 2170 2171 if (odd) { 2172 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2173 words_pushed++; 2174 } 2175 2176 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2177 return count * 2; 2178 } 2179 2180 // Return the number of dwords poped 2181 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 2182 int words_pushed = 0; 2183 bool use_sve = false; 2184 int sve_vector_size_in_bytes = 0; 2185 2186 #ifdef COMPILER2 2187 use_sve = Matcher::supports_scalable_vector(); 2188 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2189 #endif 2190 // Scan bitset to accumulate register pairs 2191 unsigned char regs[32]; 2192 int count = 0; 2193 for (int reg = 0; reg <= 31; reg++) { 2194 if (1 & bitset) 2195 regs[count++] = reg; 2196 bitset >>= 1; 2197 } 2198 2199 if (count == 0) { 2200 return 0; 2201 } 2202 2203 // SVE 2204 if (use_sve && sve_vector_size_in_bytes > 16) { 2205 for (int i = count - 1; i >= 0; i--) { 2206 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 2207 } 2208 add(stack, stack, sve_vector_size_in_bytes * count); 2209 return count * sve_vector_size_in_bytes / 8; 2210 } 2211 2212 // NEON 2213 if (count == 1) { 2214 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 2215 return 2; 2216 } 2217 2218 bool odd = (count & 1) == 1; 2219 int push_slots = count + (odd ? 1 : 0); 2220 2221 if (odd) { 2222 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2223 words_pushed++; 2224 } 2225 2226 for (int i = 2; i + 1 < count; i += 2) { 2227 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2228 words_pushed += 2; 2229 } 2230 2231 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 2232 words_pushed += 2; 2233 2234 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2235 2236 return count * 2; 2237 } 2238 2239 #ifdef ASSERT 2240 void MacroAssembler::verify_heapbase(const char* msg) { 2241 #if 0 2242 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2243 assert (Universe::heap() != NULL, "java heap should be initialized"); 2244 if (!UseCompressedOops || Universe::ptr_base() == NULL) { 2245 // rheapbase is allocated as general register 2246 return; 2247 } 2248 if (CheckCompressedOops) { 2249 Label ok; 2250 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2251 cmpptr(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2252 br(Assembler::EQ, ok); 2253 stop(msg); 2254 bind(ok); 2255 pop(1 << rscratch1->encoding(), sp); 2256 } 2257 #endif 2258 } 2259 #endif 2260 2261 void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) { 2262 Label done, not_weak; 2263 cbz(value, done); // Use NULL as-is. 2264 2265 STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u); 2266 tbz(r0, 0, not_weak); // Test for jweak tag. 2267 2268 // Resolve jweak. 2269 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value, 2270 Address(value, -JNIHandles::weak_tag_value), tmp, thread); 2271 verify_oop(value); 2272 b(done); 2273 2274 bind(not_weak); 2275 // Resolve (untagged) jobject. 2276 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread); 2277 verify_oop(value); 2278 bind(done); 2279 } 2280 2281 void MacroAssembler::stop(const char* msg) { 2282 BLOCK_COMMENT(msg); 2283 dcps1(0xdeae); 2284 emit_int64((uintptr_t)msg); 2285 } 2286 2287 void MacroAssembler::unimplemented(const char* what) { 2288 const char* buf = NULL; 2289 { 2290 ResourceMark rm; 2291 stringStream ss; 2292 ss.print("unimplemented: %s", what); 2293 buf = code_string(ss.as_string()); 2294 } 2295 stop(buf); 2296 } 2297 2298 // If a constant does not fit in an immediate field, generate some 2299 // number of MOV instructions and then perform the operation. 2300 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 2301 add_sub_imm_insn insn1, 2302 add_sub_reg_insn insn2, 2303 bool is32) { 2304 assert(Rd != zr, "Rd = zr and not setting flags?"); 2305 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2306 if (fits) { 2307 (this->*insn1)(Rd, Rn, imm); 2308 } else { 2309 if (uabs(imm) < (1 << 24)) { 2310 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2311 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2312 } else { 2313 assert_different_registers(Rd, Rn); 2314 mov(Rd, imm); 2315 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2316 } 2317 } 2318 } 2319 2320 // Seperate vsn which sets the flags. Optimisations are more restricted 2321 // because we must set the flags correctly. 2322 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 2323 add_sub_imm_insn insn1, 2324 add_sub_reg_insn insn2, 2325 bool is32) { 2326 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2327 if (fits) { 2328 (this->*insn1)(Rd, Rn, imm); 2329 } else { 2330 assert_different_registers(Rd, Rn); 2331 assert(Rd != zr, "overflow in immediate operand"); 2332 mov(Rd, imm); 2333 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2334 } 2335 } 2336 2337 2338 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2339 if (increment.is_register()) { 2340 add(Rd, Rn, increment.as_register()); 2341 } else { 2342 add(Rd, Rn, increment.as_constant()); 2343 } 2344 } 2345 2346 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2347 if (increment.is_register()) { 2348 addw(Rd, Rn, increment.as_register()); 2349 } else { 2350 addw(Rd, Rn, increment.as_constant()); 2351 } 2352 } 2353 2354 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2355 if (decrement.is_register()) { 2356 sub(Rd, Rn, decrement.as_register()); 2357 } else { 2358 sub(Rd, Rn, decrement.as_constant()); 2359 } 2360 } 2361 2362 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2363 if (decrement.is_register()) { 2364 subw(Rd, Rn, decrement.as_register()); 2365 } else { 2366 subw(Rd, Rn, decrement.as_constant()); 2367 } 2368 } 2369 2370 void MacroAssembler::reinit_heapbase() 2371 { 2372 if (UseCompressedOops) { 2373 if (Universe::is_fully_initialized()) { 2374 mov(rheapbase, CompressedOops::ptrs_base()); 2375 } else { 2376 lea(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2377 ldr(rheapbase, Address(rheapbase)); 2378 } 2379 } 2380 } 2381 2382 // this simulates the behaviour of the x86 cmpxchg instruction using a 2383 // load linked/store conditional pair. we use the acquire/release 2384 // versions of these instructions so that we flush pending writes as 2385 // per Java semantics. 2386 2387 // n.b the x86 version assumes the old value to be compared against is 2388 // in rax and updates rax with the value located in memory if the 2389 // cmpxchg fails. we supply a register for the old value explicitly 2390 2391 // the aarch64 load linked/store conditional instructions do not 2392 // accept an offset. so, unlike x86, we must provide a plain register 2393 // to identify the memory word to be compared/exchanged rather than a 2394 // register+offset Address. 2395 2396 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2397 Label &succeed, Label *fail) { 2398 // oldv holds comparison value 2399 // newv holds value to write in exchange 2400 // addr identifies memory word to compare against/update 2401 if (UseLSE) { 2402 mov(tmp, oldv); 2403 casal(Assembler::xword, oldv, newv, addr); 2404 cmp(tmp, oldv); 2405 br(Assembler::EQ, succeed); 2406 membar(AnyAny); 2407 } else { 2408 Label retry_load, nope; 2409 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2410 prfm(Address(addr), PSTL1STRM); 2411 bind(retry_load); 2412 // flush and load exclusive from the memory location 2413 // and fail if it is not what we expect 2414 ldaxr(tmp, addr); 2415 cmp(tmp, oldv); 2416 br(Assembler::NE, nope); 2417 // if we store+flush with no intervening write tmp wil be zero 2418 stlxr(tmp, newv, addr); 2419 cbzw(tmp, succeed); 2420 // retry so we only ever return after a load fails to compare 2421 // ensures we don't return a stale value after a failed write. 2422 b(retry_load); 2423 // if the memory word differs we return it in oldv and signal a fail 2424 bind(nope); 2425 membar(AnyAny); 2426 mov(oldv, tmp); 2427 } 2428 if (fail) 2429 b(*fail); 2430 } 2431 2432 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2433 Label &succeed, Label *fail) { 2434 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2435 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2436 } 2437 2438 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2439 Label &succeed, Label *fail) { 2440 // oldv holds comparison value 2441 // newv holds value to write in exchange 2442 // addr identifies memory word to compare against/update 2443 // tmp returns 0/1 for success/failure 2444 if (UseLSE) { 2445 mov(tmp, oldv); 2446 casal(Assembler::word, oldv, newv, addr); 2447 cmp(tmp, oldv); 2448 br(Assembler::EQ, succeed); 2449 membar(AnyAny); 2450 } else { 2451 Label retry_load, nope; 2452 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2453 prfm(Address(addr), PSTL1STRM); 2454 bind(retry_load); 2455 // flush and load exclusive from the memory location 2456 // and fail if it is not what we expect 2457 ldaxrw(tmp, addr); 2458 cmp(tmp, oldv); 2459 br(Assembler::NE, nope); 2460 // if we store+flush with no intervening write tmp wil be zero 2461 stlxrw(tmp, newv, addr); 2462 cbzw(tmp, succeed); 2463 // retry so we only ever return after a load fails to compare 2464 // ensures we don't return a stale value after a failed write. 2465 b(retry_load); 2466 // if the memory word differs we return it in oldv and signal a fail 2467 bind(nope); 2468 membar(AnyAny); 2469 mov(oldv, tmp); 2470 } 2471 if (fail) 2472 b(*fail); 2473 } 2474 2475 // A generic CAS; success or failure is in the EQ flag. A weak CAS 2476 // doesn't retry and may fail spuriously. If the oldval is wanted, 2477 // Pass a register for the result, otherwise pass noreg. 2478 2479 // Clobbers rscratch1 2480 void MacroAssembler::cmpxchg(Register addr, Register expected, 2481 Register new_val, 2482 enum operand_size size, 2483 bool acquire, bool release, 2484 bool weak, 2485 Register result) { 2486 if (result == noreg) result = rscratch1; 2487 BLOCK_COMMENT("cmpxchg {"); 2488 if (UseLSE) { 2489 mov(result, expected); 2490 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 2491 compare_eq(result, expected, size); 2492 } else { 2493 Label retry_load, done; 2494 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2495 prfm(Address(addr), PSTL1STRM); 2496 bind(retry_load); 2497 load_exclusive(result, addr, size, acquire); 2498 compare_eq(result, expected, size); 2499 br(Assembler::NE, done); 2500 store_exclusive(rscratch1, new_val, addr, size, release); 2501 if (weak) { 2502 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 2503 } else { 2504 cbnzw(rscratch1, retry_load); 2505 } 2506 bind(done); 2507 } 2508 BLOCK_COMMENT("} cmpxchg"); 2509 } 2510 2511 // A generic comparison. Only compares for equality, clobbers rscratch1. 2512 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 2513 if (size == xword) { 2514 cmp(rm, rn); 2515 } else if (size == word) { 2516 cmpw(rm, rn); 2517 } else if (size == halfword) { 2518 eorw(rscratch1, rm, rn); 2519 ands(zr, rscratch1, 0xffff); 2520 } else if (size == byte) { 2521 eorw(rscratch1, rm, rn); 2522 ands(zr, rscratch1, 0xff); 2523 } else { 2524 ShouldNotReachHere(); 2525 } 2526 } 2527 2528 2529 static bool different(Register a, RegisterOrConstant b, Register c) { 2530 if (b.is_constant()) 2531 return a != c; 2532 else 2533 return a != b.as_register() && a != c && b.as_register() != c; 2534 } 2535 2536 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2537 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2538 if (UseLSE) { \ 2539 prev = prev->is_valid() ? prev : zr; \ 2540 if (incr.is_register()) { \ 2541 AOP(sz, incr.as_register(), prev, addr); \ 2542 } else { \ 2543 mov(rscratch2, incr.as_constant()); \ 2544 AOP(sz, rscratch2, prev, addr); \ 2545 } \ 2546 return; \ 2547 } \ 2548 Register result = rscratch2; \ 2549 if (prev->is_valid()) \ 2550 result = different(prev, incr, addr) ? prev : rscratch2; \ 2551 \ 2552 Label retry_load; \ 2553 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ 2554 prfm(Address(addr), PSTL1STRM); \ 2555 bind(retry_load); \ 2556 LDXR(result, addr); \ 2557 OP(rscratch1, result, incr); \ 2558 STXR(rscratch2, rscratch1, addr); \ 2559 cbnzw(rscratch2, retry_load); \ 2560 if (prev->is_valid() && prev != result) { \ 2561 IOP(prev, rscratch1, incr); \ 2562 } \ 2563 } 2564 2565 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2566 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2567 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2568 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2569 2570 #undef ATOMIC_OP 2571 2572 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2573 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2574 if (UseLSE) { \ 2575 prev = prev->is_valid() ? prev : zr; \ 2576 AOP(sz, newv, prev, addr); \ 2577 return; \ 2578 } \ 2579 Register result = rscratch2; \ 2580 if (prev->is_valid()) \ 2581 result = different(prev, newv, addr) ? prev : rscratch2; \ 2582 \ 2583 Label retry_load; \ 2584 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ 2585 prfm(Address(addr), PSTL1STRM); \ 2586 bind(retry_load); \ 2587 LDXR(result, addr); \ 2588 STXR(rscratch1, newv, addr); \ 2589 cbnzw(rscratch1, retry_load); \ 2590 if (prev->is_valid() && prev != result) \ 2591 mov(prev, result); \ 2592 } 2593 2594 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2595 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2596 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 2597 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 2598 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2599 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2600 2601 #undef ATOMIC_XCHG 2602 2603 #ifndef PRODUCT 2604 extern "C" void findpc(intptr_t x); 2605 #endif 2606 2607 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2608 { 2609 // In order to get locks to work, we need to fake a in_VM state 2610 if (ShowMessageBoxOnError ) { 2611 JavaThread* thread = JavaThread::current(); 2612 JavaThreadState saved_state = thread->thread_state(); 2613 thread->set_thread_state(_thread_in_vm); 2614 #ifndef PRODUCT 2615 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2616 ttyLocker ttyl; 2617 BytecodeCounter::print(); 2618 } 2619 #endif 2620 if (os::message_box(msg, "Execution stopped, print registers?")) { 2621 ttyLocker ttyl; 2622 tty->print_cr(" pc = 0x%016" PRIx64, pc); 2623 #ifndef PRODUCT 2624 tty->cr(); 2625 findpc(pc); 2626 tty->cr(); 2627 #endif 2628 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 2629 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 2630 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 2631 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 2632 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 2633 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 2634 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 2635 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 2636 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 2637 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 2638 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 2639 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 2640 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 2641 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 2642 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 2643 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 2644 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 2645 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 2646 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 2647 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 2648 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 2649 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 2650 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 2651 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 2652 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 2653 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 2654 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 2655 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 2656 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 2657 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 2658 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 2659 BREAKPOINT; 2660 } 2661 } 2662 fatal("DEBUG MESSAGE: %s", msg); 2663 } 2664 2665 RegSet MacroAssembler::call_clobbered_registers() { 2666 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 2667 #ifndef R18_RESERVED 2668 regs += r18_tls; 2669 #endif 2670 return regs; 2671 } 2672 2673 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 2674 int step = 4 * wordSize; 2675 push(call_clobbered_registers() - exclude, sp); 2676 sub(sp, sp, step); 2677 mov(rscratch1, -step); 2678 // Push v0-v7, v16-v31. 2679 for (int i = 31; i>= 4; i -= 4) { 2680 if (i <= v7->encoding() || i >= v16->encoding()) 2681 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 2682 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 2683 } 2684 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 2685 as_FloatRegister(3), T1D, Address(sp)); 2686 } 2687 2688 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 2689 for (int i = 0; i < 32; i += 4) { 2690 if (i <= v7->encoding() || i >= v16->encoding()) 2691 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2692 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 2693 } 2694 2695 reinitialize_ptrue(); 2696 2697 pop(call_clobbered_registers() - exclude, sp); 2698 } 2699 2700 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 2701 int sve_vector_size_in_bytes) { 2702 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 2703 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 2704 sub(sp, sp, sve_vector_size_in_bytes * FloatRegisterImpl::number_of_registers); 2705 for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++) { 2706 sve_str(as_FloatRegister(i), Address(sp, i)); 2707 } 2708 } else { 2709 int step = (save_vectors ? 8 : 4) * wordSize; 2710 mov(rscratch1, -step); 2711 sub(sp, sp, step); 2712 for (int i = 28; i >= 4; i -= 4) { 2713 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2714 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 2715 } 2716 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 2717 } 2718 } 2719 2720 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 2721 int sve_vector_size_in_bytes) { 2722 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 2723 for (int i = FloatRegisterImpl::number_of_registers - 1; i >= 0; i--) { 2724 sve_ldr(as_FloatRegister(i), Address(sp, i)); 2725 } 2726 add(sp, sp, sve_vector_size_in_bytes * FloatRegisterImpl::number_of_registers); 2727 } else { 2728 int step = (restore_vectors ? 8 : 4) * wordSize; 2729 for (int i = 0; i <= 28; i += 4) 2730 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2731 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 2732 } 2733 2734 if (restore_vectors) { 2735 reinitialize_ptrue(); 2736 } 2737 2738 // integer registers except lr & sp 2739 pop(RegSet::range(r0, r17), sp); 2740 #ifdef R18_RESERVED 2741 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 2742 pop(RegSet::range(r20, r29), sp); 2743 #else 2744 pop(RegSet::range(r18_tls, r29), sp); 2745 #endif 2746 } 2747 2748 /** 2749 * Helpers for multiply_to_len(). 2750 */ 2751 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 2752 Register src1, Register src2) { 2753 adds(dest_lo, dest_lo, src1); 2754 adc(dest_hi, dest_hi, zr); 2755 adds(dest_lo, dest_lo, src2); 2756 adc(final_dest_hi, dest_hi, zr); 2757 } 2758 2759 // Generate an address from (r + r1 extend offset). "size" is the 2760 // size of the operand. The result may be in rscratch2. 2761 Address MacroAssembler::offsetted_address(Register r, Register r1, 2762 Address::extend ext, int offset, int size) { 2763 if (offset || (ext.shift() % size != 0)) { 2764 lea(rscratch2, Address(r, r1, ext)); 2765 return Address(rscratch2, offset); 2766 } else { 2767 return Address(r, r1, ext); 2768 } 2769 } 2770 2771 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 2772 { 2773 assert(offset >= 0, "spill to negative address?"); 2774 // Offset reachable ? 2775 // Not aligned - 9 bits signed offset 2776 // Aligned - 12 bits unsigned offset shifted 2777 Register base = sp; 2778 if ((offset & (size-1)) && offset >= (1<<8)) { 2779 add(tmp, base, offset & ((1<<12)-1)); 2780 base = tmp; 2781 offset &= -1u<<12; 2782 } 2783 2784 if (offset >= (1<<12) * size) { 2785 add(tmp, base, offset & (((1<<12)-1)<<12)); 2786 base = tmp; 2787 offset &= ~(((1<<12)-1)<<12); 2788 } 2789 2790 return Address(base, offset); 2791 } 2792 2793 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 2794 assert(offset >= 0, "spill to negative address?"); 2795 2796 Register base = sp; 2797 2798 // An immediate offset in the range 0 to 255 which is multiplied 2799 // by the current vector or predicate register size in bytes. 2800 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 2801 return Address(base, offset / sve_reg_size_in_bytes); 2802 } 2803 2804 add(tmp, base, offset); 2805 return Address(tmp); 2806 } 2807 2808 // Checks whether offset is aligned. 2809 // Returns true if it is, else false. 2810 bool MacroAssembler::merge_alignment_check(Register base, 2811 size_t size, 2812 int64_t cur_offset, 2813 int64_t prev_offset) const { 2814 if (AvoidUnalignedAccesses) { 2815 if (base == sp) { 2816 // Checks whether low offset if aligned to pair of registers. 2817 int64_t pair_mask = size * 2 - 1; 2818 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2819 return (offset & pair_mask) == 0; 2820 } else { // If base is not sp, we can't guarantee the access is aligned. 2821 return false; 2822 } 2823 } else { 2824 int64_t mask = size - 1; 2825 // Load/store pair instruction only supports element size aligned offset. 2826 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 2827 } 2828 } 2829 2830 // Checks whether current and previous loads/stores can be merged. 2831 // Returns true if it can be merged, else false. 2832 bool MacroAssembler::ldst_can_merge(Register rt, 2833 const Address &adr, 2834 size_t cur_size_in_bytes, 2835 bool is_store) const { 2836 address prev = pc() - NativeInstruction::instruction_size; 2837 address last = code()->last_insn(); 2838 2839 if (last == NULL || !nativeInstruction_at(last)->is_Imm_LdSt()) { 2840 return false; 2841 } 2842 2843 if (adr.getMode() != Address::base_plus_offset || prev != last) { 2844 return false; 2845 } 2846 2847 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2848 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 2849 2850 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 2851 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 2852 2853 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 2854 return false; 2855 } 2856 2857 int64_t max_offset = 63 * prev_size_in_bytes; 2858 int64_t min_offset = -64 * prev_size_in_bytes; 2859 2860 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 2861 2862 // Only same base can be merged. 2863 if (adr.base() != prev_ldst->base()) { 2864 return false; 2865 } 2866 2867 int64_t cur_offset = adr.offset(); 2868 int64_t prev_offset = prev_ldst->offset(); 2869 size_t diff = abs(cur_offset - prev_offset); 2870 if (diff != prev_size_in_bytes) { 2871 return false; 2872 } 2873 2874 // Following cases can not be merged: 2875 // ldr x2, [x2, #8] 2876 // ldr x3, [x2, #16] 2877 // or: 2878 // ldr x2, [x3, #8] 2879 // ldr x2, [x3, #16] 2880 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 2881 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 2882 return false; 2883 } 2884 2885 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2886 // Offset range must be in ldp/stp instruction's range. 2887 if (low_offset > max_offset || low_offset < min_offset) { 2888 return false; 2889 } 2890 2891 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 2892 return true; 2893 } 2894 2895 return false; 2896 } 2897 2898 // Merge current load/store with previous load/store into ldp/stp. 2899 void MacroAssembler::merge_ldst(Register rt, 2900 const Address &adr, 2901 size_t cur_size_in_bytes, 2902 bool is_store) { 2903 2904 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 2905 2906 Register rt_low, rt_high; 2907 address prev = pc() - NativeInstruction::instruction_size; 2908 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2909 2910 int64_t offset; 2911 2912 if (adr.offset() < prev_ldst->offset()) { 2913 offset = adr.offset(); 2914 rt_low = rt; 2915 rt_high = prev_ldst->target(); 2916 } else { 2917 offset = prev_ldst->offset(); 2918 rt_low = prev_ldst->target(); 2919 rt_high = rt; 2920 } 2921 2922 Address adr_p = Address(prev_ldst->base(), offset); 2923 // Overwrite previous generated binary. 2924 code_section()->set_end(prev); 2925 2926 const size_t sz = prev_ldst->size_in_bytes(); 2927 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 2928 if (!is_store) { 2929 BLOCK_COMMENT("merged ldr pair"); 2930 if (sz == 8) { 2931 ldp(rt_low, rt_high, adr_p); 2932 } else { 2933 ldpw(rt_low, rt_high, adr_p); 2934 } 2935 } else { 2936 BLOCK_COMMENT("merged str pair"); 2937 if (sz == 8) { 2938 stp(rt_low, rt_high, adr_p); 2939 } else { 2940 stpw(rt_low, rt_high, adr_p); 2941 } 2942 } 2943 } 2944 2945 /** 2946 * Multiply 64 bit by 64 bit first loop. 2947 */ 2948 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 2949 Register y, Register y_idx, Register z, 2950 Register carry, Register product, 2951 Register idx, Register kdx) { 2952 // 2953 // jlong carry, x[], y[], z[]; 2954 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2955 // huge_128 product = y[idx] * x[xstart] + carry; 2956 // z[kdx] = (jlong)product; 2957 // carry = (jlong)(product >>> 64); 2958 // } 2959 // z[xstart] = carry; 2960 // 2961 2962 Label L_first_loop, L_first_loop_exit; 2963 Label L_one_x, L_one_y, L_multiply; 2964 2965 subsw(xstart, xstart, 1); 2966 br(Assembler::MI, L_one_x); 2967 2968 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 2969 ldr(x_xstart, Address(rscratch1)); 2970 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 2971 2972 bind(L_first_loop); 2973 subsw(idx, idx, 1); 2974 br(Assembler::MI, L_first_loop_exit); 2975 subsw(idx, idx, 1); 2976 br(Assembler::MI, L_one_y); 2977 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2978 ldr(y_idx, Address(rscratch1)); 2979 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 2980 bind(L_multiply); 2981 2982 // AArch64 has a multiply-accumulate instruction that we can't use 2983 // here because it has no way to process carries, so we have to use 2984 // separate add and adc instructions. Bah. 2985 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 2986 mul(product, x_xstart, y_idx); 2987 adds(product, product, carry); 2988 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 2989 2990 subw(kdx, kdx, 2); 2991 ror(product, product, 32); // back to big-endian 2992 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 2993 2994 b(L_first_loop); 2995 2996 bind(L_one_y); 2997 ldrw(y_idx, Address(y, 0)); 2998 b(L_multiply); 2999 3000 bind(L_one_x); 3001 ldrw(x_xstart, Address(x, 0)); 3002 b(L_first_loop); 3003 3004 bind(L_first_loop_exit); 3005 } 3006 3007 /** 3008 * Multiply 128 bit by 128. Unrolled inner loop. 3009 * 3010 */ 3011 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3012 Register carry, Register carry2, 3013 Register idx, Register jdx, 3014 Register yz_idx1, Register yz_idx2, 3015 Register tmp, Register tmp3, Register tmp4, 3016 Register tmp6, Register product_hi) { 3017 3018 // jlong carry, x[], y[], z[]; 3019 // int kdx = ystart+1; 3020 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3021 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3022 // jlong carry2 = (jlong)(tmp3 >>> 64); 3023 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3024 // carry = (jlong)(tmp4 >>> 64); 3025 // z[kdx+idx+1] = (jlong)tmp3; 3026 // z[kdx+idx] = (jlong)tmp4; 3027 // } 3028 // idx += 2; 3029 // if (idx > 0) { 3030 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3031 // z[kdx+idx] = (jlong)yz_idx1; 3032 // carry = (jlong)(yz_idx1 >>> 64); 3033 // } 3034 // 3035 3036 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 3037 3038 lsrw(jdx, idx, 2); 3039 3040 bind(L_third_loop); 3041 3042 subsw(jdx, jdx, 1); 3043 br(Assembler::MI, L_third_loop_exit); 3044 subw(idx, idx, 4); 3045 3046 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3047 3048 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 3049 3050 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3051 3052 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 3053 ror(yz_idx2, yz_idx2, 32); 3054 3055 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 3056 3057 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3058 umulh(tmp4, product_hi, yz_idx1); 3059 3060 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 3061 ror(rscratch2, rscratch2, 32); 3062 3063 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 3064 umulh(carry2, product_hi, yz_idx2); 3065 3066 // propagate sum of both multiplications into carry:tmp4:tmp3 3067 adds(tmp3, tmp3, carry); 3068 adc(tmp4, tmp4, zr); 3069 adds(tmp3, tmp3, rscratch1); 3070 adcs(tmp4, tmp4, tmp); 3071 adc(carry, carry2, zr); 3072 adds(tmp4, tmp4, rscratch2); 3073 adc(carry, carry, zr); 3074 3075 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 3076 ror(tmp4, tmp4, 32); 3077 stp(tmp4, tmp3, Address(tmp6, 0)); 3078 3079 b(L_third_loop); 3080 bind (L_third_loop_exit); 3081 3082 andw (idx, idx, 0x3); 3083 cbz(idx, L_post_third_loop_done); 3084 3085 Label L_check_1; 3086 subsw(idx, idx, 2); 3087 br(Assembler::MI, L_check_1); 3088 3089 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3090 ldr(yz_idx1, Address(rscratch1, 0)); 3091 ror(yz_idx1, yz_idx1, 32); 3092 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3093 umulh(tmp4, product_hi, yz_idx1); 3094 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3095 ldr(yz_idx2, Address(rscratch1, 0)); 3096 ror(yz_idx2, yz_idx2, 32); 3097 3098 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 3099 3100 ror(tmp3, tmp3, 32); 3101 str(tmp3, Address(rscratch1, 0)); 3102 3103 bind (L_check_1); 3104 3105 andw (idx, idx, 0x1); 3106 subsw(idx, idx, 1); 3107 br(Assembler::MI, L_post_third_loop_done); 3108 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3109 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3110 umulh(carry2, tmp4, product_hi); 3111 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3112 3113 add2_with_carry(carry2, tmp3, tmp4, carry); 3114 3115 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3116 extr(carry, carry2, tmp3, 32); 3117 3118 bind(L_post_third_loop_done); 3119 } 3120 3121 /** 3122 * Code for BigInteger::multiplyToLen() instrinsic. 3123 * 3124 * r0: x 3125 * r1: xlen 3126 * r2: y 3127 * r3: ylen 3128 * r4: z 3129 * r5: zlen 3130 * r10: tmp1 3131 * r11: tmp2 3132 * r12: tmp3 3133 * r13: tmp4 3134 * r14: tmp5 3135 * r15: tmp6 3136 * r16: tmp7 3137 * 3138 */ 3139 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3140 Register z, Register zlen, 3141 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3142 Register tmp5, Register tmp6, Register product_hi) { 3143 3144 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3145 3146 const Register idx = tmp1; 3147 const Register kdx = tmp2; 3148 const Register xstart = tmp3; 3149 3150 const Register y_idx = tmp4; 3151 const Register carry = tmp5; 3152 const Register product = xlen; 3153 const Register x_xstart = zlen; // reuse register 3154 3155 // First Loop. 3156 // 3157 // final static long LONG_MASK = 0xffffffffL; 3158 // int xstart = xlen - 1; 3159 // int ystart = ylen - 1; 3160 // long carry = 0; 3161 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3162 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3163 // z[kdx] = (int)product; 3164 // carry = product >>> 32; 3165 // } 3166 // z[xstart] = (int)carry; 3167 // 3168 3169 movw(idx, ylen); // idx = ylen; 3170 movw(kdx, zlen); // kdx = xlen+ylen; 3171 mov(carry, zr); // carry = 0; 3172 3173 Label L_done; 3174 3175 movw(xstart, xlen); 3176 subsw(xstart, xstart, 1); 3177 br(Assembler::MI, L_done); 3178 3179 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3180 3181 Label L_second_loop; 3182 cbzw(kdx, L_second_loop); 3183 3184 Label L_carry; 3185 subw(kdx, kdx, 1); 3186 cbzw(kdx, L_carry); 3187 3188 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3189 lsr(carry, carry, 32); 3190 subw(kdx, kdx, 1); 3191 3192 bind(L_carry); 3193 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3194 3195 // Second and third (nested) loops. 3196 // 3197 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3198 // carry = 0; 3199 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3200 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3201 // (z[k] & LONG_MASK) + carry; 3202 // z[k] = (int)product; 3203 // carry = product >>> 32; 3204 // } 3205 // z[i] = (int)carry; 3206 // } 3207 // 3208 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3209 3210 const Register jdx = tmp1; 3211 3212 bind(L_second_loop); 3213 mov(carry, zr); // carry = 0; 3214 movw(jdx, ylen); // j = ystart+1 3215 3216 subsw(xstart, xstart, 1); // i = xstart-1; 3217 br(Assembler::MI, L_done); 3218 3219 str(z, Address(pre(sp, -4 * wordSize))); 3220 3221 Label L_last_x; 3222 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3223 subsw(xstart, xstart, 1); // i = xstart-1; 3224 br(Assembler::MI, L_last_x); 3225 3226 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 3227 ldr(product_hi, Address(rscratch1)); 3228 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 3229 3230 Label L_third_loop_prologue; 3231 bind(L_third_loop_prologue); 3232 3233 str(ylen, Address(sp, wordSize)); 3234 stp(x, xstart, Address(sp, 2 * wordSize)); 3235 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3236 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3237 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 3238 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 3239 3240 addw(tmp3, xlen, 1); 3241 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3242 subsw(tmp3, tmp3, 1); 3243 br(Assembler::MI, L_done); 3244 3245 lsr(carry, carry, 32); 3246 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3247 b(L_second_loop); 3248 3249 // Next infrequent code is moved outside loops. 3250 bind(L_last_x); 3251 ldrw(product_hi, Address(x, 0)); 3252 b(L_third_loop_prologue); 3253 3254 bind(L_done); 3255 } 3256 3257 // Code for BigInteger::mulAdd instrinsic 3258 // out = r0 3259 // in = r1 3260 // offset = r2 (already out.length-offset) 3261 // len = r3 3262 // k = r4 3263 // 3264 // pseudo code from java implementation: 3265 // carry = 0; 3266 // offset = out.length-offset - 1; 3267 // for (int j=len-1; j >= 0; j--) { 3268 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3269 // out[offset--] = (int)product; 3270 // carry = product >>> 32; 3271 // } 3272 // return (int)carry; 3273 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3274 Register len, Register k) { 3275 Label LOOP, END; 3276 // pre-loop 3277 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 3278 csel(out, zr, out, Assembler::EQ); 3279 br(Assembler::EQ, END); 3280 add(in, in, len, LSL, 2); // in[j+1] address 3281 add(offset, out, offset, LSL, 2); // out[offset + 1] address 3282 mov(out, zr); // used to keep carry now 3283 BIND(LOOP); 3284 ldrw(rscratch1, Address(pre(in, -4))); 3285 madd(rscratch1, rscratch1, k, out); 3286 ldrw(rscratch2, Address(pre(offset, -4))); 3287 add(rscratch1, rscratch1, rscratch2); 3288 strw(rscratch1, Address(offset)); 3289 lsr(out, rscratch1, 32); 3290 subs(len, len, 1); 3291 br(Assembler::NE, LOOP); 3292 BIND(END); 3293 } 3294 3295 /** 3296 * Emits code to update CRC-32 with a byte value according to constants in table 3297 * 3298 * @param [in,out]crc Register containing the crc. 3299 * @param [in]val Register containing the byte to fold into the CRC. 3300 * @param [in]table Register containing the table of crc constants. 3301 * 3302 * uint32_t crc; 3303 * val = crc_table[(val ^ crc) & 0xFF]; 3304 * crc = val ^ (crc >> 8); 3305 * 3306 */ 3307 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 3308 eor(val, val, crc); 3309 andr(val, val, 0xff); 3310 ldrw(val, Address(table, val, Address::lsl(2))); 3311 eor(crc, val, crc, Assembler::LSR, 8); 3312 } 3313 3314 /** 3315 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 3316 * 3317 * @param [in,out]crc Register containing the crc. 3318 * @param [in]v Register containing the 32-bit to fold into the CRC. 3319 * @param [in]table0 Register containing table 0 of crc constants. 3320 * @param [in]table1 Register containing table 1 of crc constants. 3321 * @param [in]table2 Register containing table 2 of crc constants. 3322 * @param [in]table3 Register containing table 3 of crc constants. 3323 * 3324 * uint32_t crc; 3325 * v = crc ^ v 3326 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 3327 * 3328 */ 3329 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 3330 Register table0, Register table1, Register table2, Register table3, 3331 bool upper) { 3332 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 3333 uxtb(tmp, v); 3334 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 3335 ubfx(tmp, v, 8, 8); 3336 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 3337 eor(crc, crc, tmp); 3338 ubfx(tmp, v, 16, 8); 3339 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 3340 eor(crc, crc, tmp); 3341 ubfx(tmp, v, 24, 8); 3342 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 3343 eor(crc, crc, tmp); 3344 } 3345 3346 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 3347 Register len, Register tmp0, Register tmp1, Register tmp2, 3348 Register tmp3) { 3349 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3350 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3351 3352 mvnw(crc, crc); 3353 3354 subs(len, len, 128); 3355 br(Assembler::GE, CRC_by64_pre); 3356 BIND(CRC_less64); 3357 adds(len, len, 128-32); 3358 br(Assembler::GE, CRC_by32_loop); 3359 BIND(CRC_less32); 3360 adds(len, len, 32-4); 3361 br(Assembler::GE, CRC_by4_loop); 3362 adds(len, len, 4); 3363 br(Assembler::GT, CRC_by1_loop); 3364 b(L_exit); 3365 3366 BIND(CRC_by32_loop); 3367 ldp(tmp0, tmp1, Address(post(buf, 16))); 3368 subs(len, len, 32); 3369 crc32x(crc, crc, tmp0); 3370 ldr(tmp2, Address(post(buf, 8))); 3371 crc32x(crc, crc, tmp1); 3372 ldr(tmp3, Address(post(buf, 8))); 3373 crc32x(crc, crc, tmp2); 3374 crc32x(crc, crc, tmp3); 3375 br(Assembler::GE, CRC_by32_loop); 3376 cmn(len, (u1)32); 3377 br(Assembler::NE, CRC_less32); 3378 b(L_exit); 3379 3380 BIND(CRC_by4_loop); 3381 ldrw(tmp0, Address(post(buf, 4))); 3382 subs(len, len, 4); 3383 crc32w(crc, crc, tmp0); 3384 br(Assembler::GE, CRC_by4_loop); 3385 adds(len, len, 4); 3386 br(Assembler::LE, L_exit); 3387 BIND(CRC_by1_loop); 3388 ldrb(tmp0, Address(post(buf, 1))); 3389 subs(len, len, 1); 3390 crc32b(crc, crc, tmp0); 3391 br(Assembler::GT, CRC_by1_loop); 3392 b(L_exit); 3393 3394 BIND(CRC_by64_pre); 3395 sub(buf, buf, 8); 3396 ldp(tmp0, tmp1, Address(buf, 8)); 3397 crc32x(crc, crc, tmp0); 3398 ldr(tmp2, Address(buf, 24)); 3399 crc32x(crc, crc, tmp1); 3400 ldr(tmp3, Address(buf, 32)); 3401 crc32x(crc, crc, tmp2); 3402 ldr(tmp0, Address(buf, 40)); 3403 crc32x(crc, crc, tmp3); 3404 ldr(tmp1, Address(buf, 48)); 3405 crc32x(crc, crc, tmp0); 3406 ldr(tmp2, Address(buf, 56)); 3407 crc32x(crc, crc, tmp1); 3408 ldr(tmp3, Address(pre(buf, 64))); 3409 3410 b(CRC_by64_loop); 3411 3412 align(CodeEntryAlignment); 3413 BIND(CRC_by64_loop); 3414 subs(len, len, 64); 3415 crc32x(crc, crc, tmp2); 3416 ldr(tmp0, Address(buf, 8)); 3417 crc32x(crc, crc, tmp3); 3418 ldr(tmp1, Address(buf, 16)); 3419 crc32x(crc, crc, tmp0); 3420 ldr(tmp2, Address(buf, 24)); 3421 crc32x(crc, crc, tmp1); 3422 ldr(tmp3, Address(buf, 32)); 3423 crc32x(crc, crc, tmp2); 3424 ldr(tmp0, Address(buf, 40)); 3425 crc32x(crc, crc, tmp3); 3426 ldr(tmp1, Address(buf, 48)); 3427 crc32x(crc, crc, tmp0); 3428 ldr(tmp2, Address(buf, 56)); 3429 crc32x(crc, crc, tmp1); 3430 ldr(tmp3, Address(pre(buf, 64))); 3431 br(Assembler::GE, CRC_by64_loop); 3432 3433 // post-loop 3434 crc32x(crc, crc, tmp2); 3435 crc32x(crc, crc, tmp3); 3436 3437 sub(len, len, 64); 3438 add(buf, buf, 8); 3439 cmn(len, (u1)128); 3440 br(Assembler::NE, CRC_less64); 3441 BIND(L_exit); 3442 mvnw(crc, crc); 3443 } 3444 3445 /** 3446 * @param crc register containing existing CRC (32-bit) 3447 * @param buf register pointing to input byte buffer (byte*) 3448 * @param len register containing number of bytes 3449 * @param table register that will contain address of CRC table 3450 * @param tmp scratch register 3451 */ 3452 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 3453 Register table0, Register table1, Register table2, Register table3, 3454 Register tmp, Register tmp2, Register tmp3) { 3455 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 3456 uint64_t offset; 3457 3458 if (UseCRC32) { 3459 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 3460 return; 3461 } 3462 3463 mvnw(crc, crc); 3464 3465 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 3466 if (offset) add(table0, table0, offset); 3467 add(table1, table0, 1*256*sizeof(juint)); 3468 add(table2, table0, 2*256*sizeof(juint)); 3469 add(table3, table0, 3*256*sizeof(juint)); 3470 3471 if (UseNeon) { 3472 cmp(len, (u1)64); 3473 br(Assembler::LT, L_by16); 3474 eor(v16, T16B, v16, v16); 3475 3476 Label L_fold; 3477 3478 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 3479 3480 ld1(v0, v1, T2D, post(buf, 32)); 3481 ld1r(v4, T2D, post(tmp, 8)); 3482 ld1r(v5, T2D, post(tmp, 8)); 3483 ld1r(v6, T2D, post(tmp, 8)); 3484 ld1r(v7, T2D, post(tmp, 8)); 3485 mov(v16, T4S, 0, crc); 3486 3487 eor(v0, T16B, v0, v16); 3488 sub(len, len, 64); 3489 3490 BIND(L_fold); 3491 pmull(v22, T8H, v0, v5, T8B); 3492 pmull(v20, T8H, v0, v7, T8B); 3493 pmull(v23, T8H, v0, v4, T8B); 3494 pmull(v21, T8H, v0, v6, T8B); 3495 3496 pmull2(v18, T8H, v0, v5, T16B); 3497 pmull2(v16, T8H, v0, v7, T16B); 3498 pmull2(v19, T8H, v0, v4, T16B); 3499 pmull2(v17, T8H, v0, v6, T16B); 3500 3501 uzp1(v24, T8H, v20, v22); 3502 uzp2(v25, T8H, v20, v22); 3503 eor(v20, T16B, v24, v25); 3504 3505 uzp1(v26, T8H, v16, v18); 3506 uzp2(v27, T8H, v16, v18); 3507 eor(v16, T16B, v26, v27); 3508 3509 ushll2(v22, T4S, v20, T8H, 8); 3510 ushll(v20, T4S, v20, T4H, 8); 3511 3512 ushll2(v18, T4S, v16, T8H, 8); 3513 ushll(v16, T4S, v16, T4H, 8); 3514 3515 eor(v22, T16B, v23, v22); 3516 eor(v18, T16B, v19, v18); 3517 eor(v20, T16B, v21, v20); 3518 eor(v16, T16B, v17, v16); 3519 3520 uzp1(v17, T2D, v16, v20); 3521 uzp2(v21, T2D, v16, v20); 3522 eor(v17, T16B, v17, v21); 3523 3524 ushll2(v20, T2D, v17, T4S, 16); 3525 ushll(v16, T2D, v17, T2S, 16); 3526 3527 eor(v20, T16B, v20, v22); 3528 eor(v16, T16B, v16, v18); 3529 3530 uzp1(v17, T2D, v20, v16); 3531 uzp2(v21, T2D, v20, v16); 3532 eor(v28, T16B, v17, v21); 3533 3534 pmull(v22, T8H, v1, v5, T8B); 3535 pmull(v20, T8H, v1, v7, T8B); 3536 pmull(v23, T8H, v1, v4, T8B); 3537 pmull(v21, T8H, v1, v6, T8B); 3538 3539 pmull2(v18, T8H, v1, v5, T16B); 3540 pmull2(v16, T8H, v1, v7, T16B); 3541 pmull2(v19, T8H, v1, v4, T16B); 3542 pmull2(v17, T8H, v1, v6, T16B); 3543 3544 ld1(v0, v1, T2D, post(buf, 32)); 3545 3546 uzp1(v24, T8H, v20, v22); 3547 uzp2(v25, T8H, v20, v22); 3548 eor(v20, T16B, v24, v25); 3549 3550 uzp1(v26, T8H, v16, v18); 3551 uzp2(v27, T8H, v16, v18); 3552 eor(v16, T16B, v26, v27); 3553 3554 ushll2(v22, T4S, v20, T8H, 8); 3555 ushll(v20, T4S, v20, T4H, 8); 3556 3557 ushll2(v18, T4S, v16, T8H, 8); 3558 ushll(v16, T4S, v16, T4H, 8); 3559 3560 eor(v22, T16B, v23, v22); 3561 eor(v18, T16B, v19, v18); 3562 eor(v20, T16B, v21, v20); 3563 eor(v16, T16B, v17, v16); 3564 3565 uzp1(v17, T2D, v16, v20); 3566 uzp2(v21, T2D, v16, v20); 3567 eor(v16, T16B, v17, v21); 3568 3569 ushll2(v20, T2D, v16, T4S, 16); 3570 ushll(v16, T2D, v16, T2S, 16); 3571 3572 eor(v20, T16B, v22, v20); 3573 eor(v16, T16B, v16, v18); 3574 3575 uzp1(v17, T2D, v20, v16); 3576 uzp2(v21, T2D, v20, v16); 3577 eor(v20, T16B, v17, v21); 3578 3579 shl(v16, T2D, v28, 1); 3580 shl(v17, T2D, v20, 1); 3581 3582 eor(v0, T16B, v0, v16); 3583 eor(v1, T16B, v1, v17); 3584 3585 subs(len, len, 32); 3586 br(Assembler::GE, L_fold); 3587 3588 mov(crc, 0); 3589 mov(tmp, v0, T1D, 0); 3590 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3591 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3592 mov(tmp, v0, T1D, 1); 3593 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3594 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3595 mov(tmp, v1, T1D, 0); 3596 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3597 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3598 mov(tmp, v1, T1D, 1); 3599 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3600 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3601 3602 add(len, len, 32); 3603 } 3604 3605 BIND(L_by16); 3606 subs(len, len, 16); 3607 br(Assembler::GE, L_by16_loop); 3608 adds(len, len, 16-4); 3609 br(Assembler::GE, L_by4_loop); 3610 adds(len, len, 4); 3611 br(Assembler::GT, L_by1_loop); 3612 b(L_exit); 3613 3614 BIND(L_by4_loop); 3615 ldrw(tmp, Address(post(buf, 4))); 3616 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 3617 subs(len, len, 4); 3618 br(Assembler::GE, L_by4_loop); 3619 adds(len, len, 4); 3620 br(Assembler::LE, L_exit); 3621 BIND(L_by1_loop); 3622 subs(len, len, 1); 3623 ldrb(tmp, Address(post(buf, 1))); 3624 update_byte_crc32(crc, tmp, table0); 3625 br(Assembler::GT, L_by1_loop); 3626 b(L_exit); 3627 3628 align(CodeEntryAlignment); 3629 BIND(L_by16_loop); 3630 subs(len, len, 16); 3631 ldp(tmp, tmp3, Address(post(buf, 16))); 3632 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3633 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3634 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 3635 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 3636 br(Assembler::GE, L_by16_loop); 3637 adds(len, len, 16-4); 3638 br(Assembler::GE, L_by4_loop); 3639 adds(len, len, 4); 3640 br(Assembler::GT, L_by1_loop); 3641 BIND(L_exit); 3642 mvnw(crc, crc); 3643 } 3644 3645 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 3646 Register len, Register tmp0, Register tmp1, Register tmp2, 3647 Register tmp3) { 3648 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3649 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3650 3651 subs(len, len, 128); 3652 br(Assembler::GE, CRC_by64_pre); 3653 BIND(CRC_less64); 3654 adds(len, len, 128-32); 3655 br(Assembler::GE, CRC_by32_loop); 3656 BIND(CRC_less32); 3657 adds(len, len, 32-4); 3658 br(Assembler::GE, CRC_by4_loop); 3659 adds(len, len, 4); 3660 br(Assembler::GT, CRC_by1_loop); 3661 b(L_exit); 3662 3663 BIND(CRC_by32_loop); 3664 ldp(tmp0, tmp1, Address(post(buf, 16))); 3665 subs(len, len, 32); 3666 crc32cx(crc, crc, tmp0); 3667 ldr(tmp2, Address(post(buf, 8))); 3668 crc32cx(crc, crc, tmp1); 3669 ldr(tmp3, Address(post(buf, 8))); 3670 crc32cx(crc, crc, tmp2); 3671 crc32cx(crc, crc, tmp3); 3672 br(Assembler::GE, CRC_by32_loop); 3673 cmn(len, (u1)32); 3674 br(Assembler::NE, CRC_less32); 3675 b(L_exit); 3676 3677 BIND(CRC_by4_loop); 3678 ldrw(tmp0, Address(post(buf, 4))); 3679 subs(len, len, 4); 3680 crc32cw(crc, crc, tmp0); 3681 br(Assembler::GE, CRC_by4_loop); 3682 adds(len, len, 4); 3683 br(Assembler::LE, L_exit); 3684 BIND(CRC_by1_loop); 3685 ldrb(tmp0, Address(post(buf, 1))); 3686 subs(len, len, 1); 3687 crc32cb(crc, crc, tmp0); 3688 br(Assembler::GT, CRC_by1_loop); 3689 b(L_exit); 3690 3691 BIND(CRC_by64_pre); 3692 sub(buf, buf, 8); 3693 ldp(tmp0, tmp1, Address(buf, 8)); 3694 crc32cx(crc, crc, tmp0); 3695 ldr(tmp2, Address(buf, 24)); 3696 crc32cx(crc, crc, tmp1); 3697 ldr(tmp3, Address(buf, 32)); 3698 crc32cx(crc, crc, tmp2); 3699 ldr(tmp0, Address(buf, 40)); 3700 crc32cx(crc, crc, tmp3); 3701 ldr(tmp1, Address(buf, 48)); 3702 crc32cx(crc, crc, tmp0); 3703 ldr(tmp2, Address(buf, 56)); 3704 crc32cx(crc, crc, tmp1); 3705 ldr(tmp3, Address(pre(buf, 64))); 3706 3707 b(CRC_by64_loop); 3708 3709 align(CodeEntryAlignment); 3710 BIND(CRC_by64_loop); 3711 subs(len, len, 64); 3712 crc32cx(crc, crc, tmp2); 3713 ldr(tmp0, Address(buf, 8)); 3714 crc32cx(crc, crc, tmp3); 3715 ldr(tmp1, Address(buf, 16)); 3716 crc32cx(crc, crc, tmp0); 3717 ldr(tmp2, Address(buf, 24)); 3718 crc32cx(crc, crc, tmp1); 3719 ldr(tmp3, Address(buf, 32)); 3720 crc32cx(crc, crc, tmp2); 3721 ldr(tmp0, Address(buf, 40)); 3722 crc32cx(crc, crc, tmp3); 3723 ldr(tmp1, Address(buf, 48)); 3724 crc32cx(crc, crc, tmp0); 3725 ldr(tmp2, Address(buf, 56)); 3726 crc32cx(crc, crc, tmp1); 3727 ldr(tmp3, Address(pre(buf, 64))); 3728 br(Assembler::GE, CRC_by64_loop); 3729 3730 // post-loop 3731 crc32cx(crc, crc, tmp2); 3732 crc32cx(crc, crc, tmp3); 3733 3734 sub(len, len, 64); 3735 add(buf, buf, 8); 3736 cmn(len, (u1)128); 3737 br(Assembler::NE, CRC_less64); 3738 BIND(L_exit); 3739 } 3740 3741 /** 3742 * @param crc register containing existing CRC (32-bit) 3743 * @param buf register pointing to input byte buffer (byte*) 3744 * @param len register containing number of bytes 3745 * @param table register that will contain address of CRC table 3746 * @param tmp scratch register 3747 */ 3748 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 3749 Register table0, Register table1, Register table2, Register table3, 3750 Register tmp, Register tmp2, Register tmp3) { 3751 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 3752 } 3753 3754 3755 SkipIfEqual::SkipIfEqual( 3756 MacroAssembler* masm, const bool* flag_addr, bool value) { 3757 _masm = masm; 3758 uint64_t offset; 3759 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 3760 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 3761 _masm->cbzw(rscratch1, _label); 3762 } 3763 3764 SkipIfEqual::~SkipIfEqual() { 3765 _masm->bind(_label); 3766 } 3767 3768 void MacroAssembler::addptr(const Address &dst, int32_t src) { 3769 Address adr; 3770 switch(dst.getMode()) { 3771 case Address::base_plus_offset: 3772 // This is the expected mode, although we allow all the other 3773 // forms below. 3774 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 3775 break; 3776 default: 3777 lea(rscratch2, dst); 3778 adr = Address(rscratch2); 3779 break; 3780 } 3781 ldr(rscratch1, adr); 3782 add(rscratch1, rscratch1, src); 3783 str(rscratch1, adr); 3784 } 3785 3786 void MacroAssembler::cmpptr(Register src1, Address src2) { 3787 uint64_t offset; 3788 adrp(rscratch1, src2, offset); 3789 ldr(rscratch1, Address(rscratch1, offset)); 3790 cmp(src1, rscratch1); 3791 } 3792 3793 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 3794 cmp(obj1, obj2); 3795 } 3796 3797 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 3798 load_method_holder(rresult, rmethod); 3799 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 3800 } 3801 3802 void MacroAssembler::load_method_holder(Register holder, Register method) { 3803 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 3804 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 3805 ldr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass* 3806 } 3807 3808 void MacroAssembler::load_klass(Register dst, Register src) { 3809 if (UseCompressedClassPointers) { 3810 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3811 decode_klass_not_null(dst); 3812 } else { 3813 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3814 } 3815 } 3816 3817 // ((OopHandle)result).resolve(); 3818 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 3819 // OopHandle::resolve is an indirection. 3820 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp, noreg); 3821 } 3822 3823 // ((WeakHandle)result).resolve(); 3824 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 3825 assert_different_registers(rresult, rtmp); 3826 Label resolved; 3827 3828 // A null weak handle resolves to null. 3829 cbz(rresult, resolved); 3830 3831 // Only 64 bit platforms support GCs that require a tmp register 3832 // Only IN_HEAP loads require a thread_tmp register 3833 // WeakHandle::resolve is an indirection like jweak. 3834 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3835 rresult, Address(rresult), rtmp, /*tmp_thread*/noreg); 3836 bind(resolved); 3837 } 3838 3839 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) { 3840 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 3841 ldr(dst, Address(rmethod, Method::const_offset())); 3842 ldr(dst, Address(dst, ConstMethod::constants_offset())); 3843 ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes())); 3844 ldr(dst, Address(dst, mirror_offset)); 3845 resolve_oop_handle(dst, tmp); 3846 } 3847 3848 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 3849 if (UseCompressedClassPointers) { 3850 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3851 if (CompressedKlassPointers::base() == NULL) { 3852 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 3853 return; 3854 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 3855 && CompressedKlassPointers::shift() == 0) { 3856 // Only the bottom 32 bits matter 3857 cmpw(trial_klass, tmp); 3858 return; 3859 } 3860 decode_klass_not_null(tmp); 3861 } else { 3862 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3863 } 3864 cmp(trial_klass, tmp); 3865 } 3866 3867 void MacroAssembler::load_prototype_header(Register dst, Register src) { 3868 load_klass(dst, src); 3869 ldr(dst, Address(dst, Klass::prototype_header_offset())); 3870 } 3871 3872 void MacroAssembler::store_klass(Register dst, Register src) { 3873 // FIXME: Should this be a store release? concurrent gcs assumes 3874 // klass length is valid if klass field is not null. 3875 if (UseCompressedClassPointers) { 3876 encode_klass_not_null(src); 3877 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3878 } else { 3879 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3880 } 3881 } 3882 3883 void MacroAssembler::store_klass_gap(Register dst, Register src) { 3884 if (UseCompressedClassPointers) { 3885 // Store to klass gap in destination 3886 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 3887 } 3888 } 3889 3890 // Algorithm must match CompressedOops::encode. 3891 void MacroAssembler::encode_heap_oop(Register d, Register s) { 3892 #ifdef ASSERT 3893 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 3894 #endif 3895 verify_oop(s, "broken oop in encode_heap_oop"); 3896 if (CompressedOops::base() == NULL) { 3897 if (CompressedOops::shift() != 0) { 3898 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3899 lsr(d, s, LogMinObjAlignmentInBytes); 3900 } else { 3901 mov(d, s); 3902 } 3903 } else { 3904 subs(d, s, rheapbase); 3905 csel(d, d, zr, Assembler::HS); 3906 lsr(d, d, LogMinObjAlignmentInBytes); 3907 3908 /* Old algorithm: is this any worse? 3909 Label nonnull; 3910 cbnz(r, nonnull); 3911 sub(r, r, rheapbase); 3912 bind(nonnull); 3913 lsr(r, r, LogMinObjAlignmentInBytes); 3914 */ 3915 } 3916 } 3917 3918 void MacroAssembler::encode_heap_oop_not_null(Register r) { 3919 #ifdef ASSERT 3920 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 3921 if (CheckCompressedOops) { 3922 Label ok; 3923 cbnz(r, ok); 3924 stop("null oop passed to encode_heap_oop_not_null"); 3925 bind(ok); 3926 } 3927 #endif 3928 verify_oop(r, "broken oop in encode_heap_oop_not_null"); 3929 if (CompressedOops::base() != NULL) { 3930 sub(r, r, rheapbase); 3931 } 3932 if (CompressedOops::shift() != 0) { 3933 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3934 lsr(r, r, LogMinObjAlignmentInBytes); 3935 } 3936 } 3937 3938 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 3939 #ifdef ASSERT 3940 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 3941 if (CheckCompressedOops) { 3942 Label ok; 3943 cbnz(src, ok); 3944 stop("null oop passed to encode_heap_oop_not_null2"); 3945 bind(ok); 3946 } 3947 #endif 3948 verify_oop(src, "broken oop in encode_heap_oop_not_null2"); 3949 3950 Register data = src; 3951 if (CompressedOops::base() != NULL) { 3952 sub(dst, src, rheapbase); 3953 data = dst; 3954 } 3955 if (CompressedOops::shift() != 0) { 3956 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3957 lsr(dst, data, LogMinObjAlignmentInBytes); 3958 data = dst; 3959 } 3960 if (data == src) 3961 mov(dst, src); 3962 } 3963 3964 void MacroAssembler::decode_heap_oop(Register d, Register s) { 3965 #ifdef ASSERT 3966 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 3967 #endif 3968 if (CompressedOops::base() == NULL) { 3969 if (CompressedOops::shift() != 0 || d != s) { 3970 lsl(d, s, CompressedOops::shift()); 3971 } 3972 } else { 3973 Label done; 3974 if (d != s) 3975 mov(d, s); 3976 cbz(s, done); 3977 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 3978 bind(done); 3979 } 3980 verify_oop(d, "broken oop in decode_heap_oop"); 3981 } 3982 3983 void MacroAssembler::decode_heap_oop_not_null(Register r) { 3984 assert (UseCompressedOops, "should only be used for compressed headers"); 3985 assert (Universe::heap() != NULL, "java heap should be initialized"); 3986 // Cannot assert, unverified entry point counts instructions (see .ad file) 3987 // vtableStubs also counts instructions in pd_code_size_limit. 3988 // Also do not verify_oop as this is called by verify_oop. 3989 if (CompressedOops::shift() != 0) { 3990 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3991 if (CompressedOops::base() != NULL) { 3992 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3993 } else { 3994 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3995 } 3996 } else { 3997 assert (CompressedOops::base() == NULL, "sanity"); 3998 } 3999 } 4000 4001 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 4002 assert (UseCompressedOops, "should only be used for compressed headers"); 4003 assert (Universe::heap() != NULL, "java heap should be initialized"); 4004 // Cannot assert, unverified entry point counts instructions (see .ad file) 4005 // vtableStubs also counts instructions in pd_code_size_limit. 4006 // Also do not verify_oop as this is called by verify_oop. 4007 if (CompressedOops::shift() != 0) { 4008 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4009 if (CompressedOops::base() != NULL) { 4010 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4011 } else { 4012 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4013 } 4014 } else { 4015 assert (CompressedOops::base() == NULL, "sanity"); 4016 if (dst != src) { 4017 mov(dst, src); 4018 } 4019 } 4020 } 4021 4022 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 4023 4024 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 4025 assert(UseCompressedClassPointers, "not using compressed class pointers"); 4026 assert(Metaspace::initialized(), "metaspace not initialized yet"); 4027 4028 if (_klass_decode_mode != KlassDecodeNone) { 4029 return _klass_decode_mode; 4030 } 4031 4032 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 4033 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 4034 4035 if (CompressedKlassPointers::base() == NULL) { 4036 return (_klass_decode_mode = KlassDecodeZero); 4037 } 4038 4039 if (operand_valid_for_logical_immediate( 4040 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 4041 const uint64_t range_mask = 4042 (1ULL << log2i(CompressedKlassPointers::range())) - 1; 4043 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 4044 return (_klass_decode_mode = KlassDecodeXor); 4045 } 4046 } 4047 4048 const uint64_t shifted_base = 4049 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4050 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 4051 "compressed class base bad alignment"); 4052 4053 return (_klass_decode_mode = KlassDecodeMovk); 4054 } 4055 4056 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 4057 switch (klass_decode_mode()) { 4058 case KlassDecodeZero: 4059 if (CompressedKlassPointers::shift() != 0) { 4060 lsr(dst, src, LogKlassAlignmentInBytes); 4061 } else { 4062 if (dst != src) mov(dst, src); 4063 } 4064 break; 4065 4066 case KlassDecodeXor: 4067 if (CompressedKlassPointers::shift() != 0) { 4068 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4069 lsr(dst, dst, LogKlassAlignmentInBytes); 4070 } else { 4071 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4072 } 4073 break; 4074 4075 case KlassDecodeMovk: 4076 if (CompressedKlassPointers::shift() != 0) { 4077 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 4078 } else { 4079 movw(dst, src); 4080 } 4081 break; 4082 4083 case KlassDecodeNone: 4084 ShouldNotReachHere(); 4085 break; 4086 } 4087 } 4088 4089 void MacroAssembler::encode_klass_not_null(Register r) { 4090 encode_klass_not_null(r, r); 4091 } 4092 4093 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 4094 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4095 4096 switch (klass_decode_mode()) { 4097 case KlassDecodeZero: 4098 if (CompressedKlassPointers::shift() != 0) { 4099 lsl(dst, src, LogKlassAlignmentInBytes); 4100 } else { 4101 if (dst != src) mov(dst, src); 4102 } 4103 break; 4104 4105 case KlassDecodeXor: 4106 if (CompressedKlassPointers::shift() != 0) { 4107 lsl(dst, src, LogKlassAlignmentInBytes); 4108 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 4109 } else { 4110 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4111 } 4112 break; 4113 4114 case KlassDecodeMovk: { 4115 const uint64_t shifted_base = 4116 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4117 4118 if (dst != src) movw(dst, src); 4119 movk(dst, shifted_base >> 32, 32); 4120 4121 if (CompressedKlassPointers::shift() != 0) { 4122 lsl(dst, dst, LogKlassAlignmentInBytes); 4123 } 4124 4125 break; 4126 } 4127 4128 case KlassDecodeNone: 4129 ShouldNotReachHere(); 4130 break; 4131 } 4132 } 4133 4134 void MacroAssembler::decode_klass_not_null(Register r) { 4135 decode_klass_not_null(r, r); 4136 } 4137 4138 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 4139 #ifdef ASSERT 4140 { 4141 ThreadInVMfromUnknown tiv; 4142 assert (UseCompressedOops, "should only be used for compressed oops"); 4143 assert (Universe::heap() != NULL, "java heap should be initialized"); 4144 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4145 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4146 } 4147 #endif 4148 int oop_index = oop_recorder()->find_index(obj); 4149 InstructionMark im(this); 4150 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4151 code_section()->relocate(inst_mark(), rspec); 4152 movz(dst, 0xDEAD, 16); 4153 movk(dst, 0xBEEF); 4154 } 4155 4156 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 4157 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4158 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4159 int index = oop_recorder()->find_index(k); 4160 assert(! Universe::heap()->is_in(k), "should not be an oop"); 4161 4162 InstructionMark im(this); 4163 RelocationHolder rspec = metadata_Relocation::spec(index); 4164 code_section()->relocate(inst_mark(), rspec); 4165 narrowKlass nk = CompressedKlassPointers::encode(k); 4166 movz(dst, (nk >> 16), 16); 4167 movk(dst, nk & 0xffff); 4168 } 4169 4170 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 4171 Register dst, Address src, 4172 Register tmp1, Register thread_tmp) { 4173 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4174 decorators = AccessInternal::decorator_fixup(decorators); 4175 bool as_raw = (decorators & AS_RAW) != 0; 4176 if (as_raw) { 4177 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4178 } else { 4179 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4180 } 4181 } 4182 4183 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 4184 Address dst, Register src, 4185 Register tmp1, Register thread_tmp) { 4186 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4187 decorators = AccessInternal::decorator_fixup(decorators); 4188 bool as_raw = (decorators & AS_RAW) != 0; 4189 if (as_raw) { 4190 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4191 } else { 4192 bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4193 } 4194 } 4195 4196 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 4197 Register thread_tmp, DecoratorSet decorators) { 4198 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4199 } 4200 4201 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 4202 Register thread_tmp, DecoratorSet decorators) { 4203 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 4204 } 4205 4206 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1, 4207 Register thread_tmp, DecoratorSet decorators) { 4208 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4209 } 4210 4211 // Used for storing NULLs. 4212 void MacroAssembler::store_heap_oop_null(Address dst) { 4213 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg); 4214 } 4215 4216 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 4217 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 4218 int index = oop_recorder()->allocate_metadata_index(obj); 4219 RelocationHolder rspec = metadata_Relocation::spec(index); 4220 return Address((address)obj, rspec); 4221 } 4222 4223 // Move an oop into a register. immediate is true if we want 4224 // immediate instructions and nmethod entry barriers are not enabled. 4225 // i.e. we are not going to patch this instruction while the code is being 4226 // executed by another thread. 4227 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 4228 int oop_index; 4229 if (obj == NULL) { 4230 oop_index = oop_recorder()->allocate_oop_index(obj); 4231 } else { 4232 #ifdef ASSERT 4233 { 4234 ThreadInVMfromUnknown tiv; 4235 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4236 } 4237 #endif 4238 oop_index = oop_recorder()->find_index(obj); 4239 } 4240 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4241 4242 // nmethod entry barrier necessitate using the constant pool. They have to be 4243 // ordered with respected to oop accesses. 4244 // Using immediate literals would necessitate ISBs. 4245 if (BarrierSet::barrier_set()->barrier_set_nmethod() != NULL || !immediate) { 4246 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 4247 ldr_constant(dst, Address(dummy, rspec)); 4248 } else 4249 mov(dst, Address((address)obj, rspec)); 4250 4251 } 4252 4253 // Move a metadata address into a register. 4254 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 4255 int oop_index; 4256 if (obj == NULL) { 4257 oop_index = oop_recorder()->allocate_metadata_index(obj); 4258 } else { 4259 oop_index = oop_recorder()->find_index(obj); 4260 } 4261 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 4262 mov(dst, Address((address)obj, rspec)); 4263 } 4264 4265 Address MacroAssembler::constant_oop_address(jobject obj) { 4266 #ifdef ASSERT 4267 { 4268 ThreadInVMfromUnknown tiv; 4269 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4270 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 4271 } 4272 #endif 4273 int oop_index = oop_recorder()->find_index(obj); 4274 return Address((address)obj, oop_Relocation::spec(oop_index)); 4275 } 4276 4277 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4278 void MacroAssembler::tlab_allocate(Register obj, 4279 Register var_size_in_bytes, 4280 int con_size_in_bytes, 4281 Register t1, 4282 Register t2, 4283 Label& slow_case) { 4284 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4285 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4286 } 4287 4288 // Defines obj, preserves var_size_in_bytes 4289 void MacroAssembler::eden_allocate(Register obj, 4290 Register var_size_in_bytes, 4291 int con_size_in_bytes, 4292 Register t1, 4293 Label& slow_case) { 4294 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4295 bs->eden_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); 4296 } 4297 4298 void MacroAssembler::verify_tlab() { 4299 #ifdef ASSERT 4300 if (UseTLAB && VerifyOops) { 4301 Label next, ok; 4302 4303 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 4304 4305 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4306 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 4307 cmp(rscratch2, rscratch1); 4308 br(Assembler::HS, next); 4309 STOP("assert(top >= start)"); 4310 should_not_reach_here(); 4311 4312 bind(next); 4313 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 4314 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4315 cmp(rscratch2, rscratch1); 4316 br(Assembler::HS, ok); 4317 STOP("assert(top <= end)"); 4318 should_not_reach_here(); 4319 4320 bind(ok); 4321 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 4322 } 4323 #endif 4324 } 4325 4326 // Writes to stack successive pages until offset reached to check for 4327 // stack overflow + shadow pages. This clobbers tmp. 4328 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 4329 assert_different_registers(tmp, size, rscratch1); 4330 mov(tmp, sp); 4331 // Bang stack for total size given plus shadow page size. 4332 // Bang one page at a time because large size can bang beyond yellow and 4333 // red zones. 4334 Label loop; 4335 mov(rscratch1, os::vm_page_size()); 4336 bind(loop); 4337 lea(tmp, Address(tmp, -os::vm_page_size())); 4338 subsw(size, size, rscratch1); 4339 str(size, Address(tmp)); 4340 br(Assembler::GT, loop); 4341 4342 // Bang down shadow pages too. 4343 // At this point, (tmp-0) is the last address touched, so don't 4344 // touch it again. (It was touched as (tmp-pagesize) but then tmp 4345 // was post-decremented.) Skip this address by starting at i=1, and 4346 // touch a few more pages below. N.B. It is important to touch all 4347 // the way down to and including i=StackShadowPages. 4348 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) { 4349 // this could be any sized move but this is can be a debugging crumb 4350 // so the bigger the better. 4351 lea(tmp, Address(tmp, -os::vm_page_size())); 4352 str(size, Address(tmp)); 4353 } 4354 } 4355 4356 // Move the address of the polling page into dest. 4357 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 4358 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 4359 } 4360 4361 // Read the polling page. The address of the polling page must 4362 // already be in r. 4363 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 4364 address mark; 4365 { 4366 InstructionMark im(this); 4367 code_section()->relocate(inst_mark(), rtype); 4368 ldrw(zr, Address(r, 0)); 4369 mark = inst_mark(); 4370 } 4371 verify_cross_modify_fence_not_required(); 4372 return mark; 4373 } 4374 4375 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 4376 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 4377 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 4378 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 4379 uint64_t dest_page = (uint64_t)dest.target() >> 12; 4380 int64_t offset_low = dest_page - low_page; 4381 int64_t offset_high = dest_page - high_page; 4382 4383 assert(is_valid_AArch64_address(dest.target()), "bad address"); 4384 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 4385 4386 InstructionMark im(this); 4387 code_section()->relocate(inst_mark(), dest.rspec()); 4388 // 8143067: Ensure that the adrp can reach the dest from anywhere within 4389 // the code cache so that if it is relocated we know it will still reach 4390 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 4391 _adrp(reg1, dest.target()); 4392 } else { 4393 uint64_t target = (uint64_t)dest.target(); 4394 uint64_t adrp_target 4395 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 4396 4397 _adrp(reg1, (address)adrp_target); 4398 movk(reg1, target >> 32, 32); 4399 } 4400 byte_offset = (uint64_t)dest.target() & 0xfff; 4401 } 4402 4403 void MacroAssembler::load_byte_map_base(Register reg) { 4404 CardTable::CardValue* byte_map_base = 4405 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 4406 4407 // Strictly speaking the byte_map_base isn't an address at all, and it might 4408 // even be negative. It is thus materialised as a constant. 4409 mov(reg, (uint64_t)byte_map_base); 4410 } 4411 4412 void MacroAssembler::build_frame(int framesize) { 4413 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 4414 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 4415 if (framesize < ((1 << 9) + 2 * wordSize)) { 4416 sub(sp, sp, framesize); 4417 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4418 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 4419 } else { 4420 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 4421 if (PreserveFramePointer) mov(rfp, sp); 4422 if (framesize < ((1 << 12) + 2 * wordSize)) 4423 sub(sp, sp, framesize - 2 * wordSize); 4424 else { 4425 mov(rscratch1, framesize - 2 * wordSize); 4426 sub(sp, sp, rscratch1); 4427 } 4428 } 4429 verify_cross_modify_fence_not_required(); 4430 } 4431 4432 void MacroAssembler::remove_frame(int framesize) { 4433 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 4434 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 4435 if (framesize < ((1 << 9) + 2 * wordSize)) { 4436 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4437 add(sp, sp, framesize); 4438 } else { 4439 if (framesize < ((1 << 12) + 2 * wordSize)) 4440 add(sp, sp, framesize - 2 * wordSize); 4441 else { 4442 mov(rscratch1, framesize - 2 * wordSize); 4443 add(sp, sp, rscratch1); 4444 } 4445 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 4446 } 4447 } 4448 4449 4450 // This method checks if provided byte array contains byte with highest bit set. 4451 address MacroAssembler::has_negatives(Register ary1, Register len, Register result) { 4452 // Simple and most common case of aligned small array which is not at the 4453 // end of memory page is placed here. All other cases are in stub. 4454 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 4455 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 4456 assert_different_registers(ary1, len, result); 4457 4458 cmpw(len, 0); 4459 br(LE, SET_RESULT); 4460 cmpw(len, 4 * wordSize); 4461 br(GE, STUB_LONG); // size > 32 then go to stub 4462 4463 int shift = 64 - exact_log2(os::vm_page_size()); 4464 lsl(rscratch1, ary1, shift); 4465 mov(rscratch2, (size_t)(4 * wordSize) << shift); 4466 adds(rscratch2, rscratch1, rscratch2); // At end of page? 4467 br(CS, STUB); // at the end of page then go to stub 4468 subs(len, len, wordSize); 4469 br(LT, END); 4470 4471 BIND(LOOP); 4472 ldr(rscratch1, Address(post(ary1, wordSize))); 4473 tst(rscratch1, UPPER_BIT_MASK); 4474 br(NE, SET_RESULT); 4475 subs(len, len, wordSize); 4476 br(GE, LOOP); 4477 cmpw(len, -wordSize); 4478 br(EQ, SET_RESULT); 4479 4480 BIND(END); 4481 ldr(result, Address(ary1)); 4482 sub(len, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 4483 lslv(result, result, len); 4484 tst(result, UPPER_BIT_MASK); 4485 b(SET_RESULT); 4486 4487 BIND(STUB); 4488 RuntimeAddress has_neg = RuntimeAddress(StubRoutines::aarch64::has_negatives()); 4489 assert(has_neg.target() != NULL, "has_negatives stub has not been generated"); 4490 address tpc1 = trampoline_call(has_neg); 4491 if (tpc1 == NULL) { 4492 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 4493 postcond(pc() == badAddress); 4494 return NULL; 4495 } 4496 b(DONE); 4497 4498 BIND(STUB_LONG); 4499 RuntimeAddress has_neg_long = RuntimeAddress(StubRoutines::aarch64::has_negatives_long()); 4500 assert(has_neg_long.target() != NULL, "has_negatives stub has not been generated"); 4501 address tpc2 = trampoline_call(has_neg_long); 4502 if (tpc2 == NULL) { 4503 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 4504 postcond(pc() == badAddress); 4505 return NULL; 4506 } 4507 b(DONE); 4508 4509 BIND(SET_RESULT); 4510 cset(result, NE); // set true or false 4511 4512 BIND(DONE); 4513 postcond(pc() != badAddress); 4514 return pc(); 4515 } 4516 4517 // Clobbers: rscratch1, rscratch2, rflags 4518 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 4519 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 4520 Register tmp4, Register tmp5, Register result, 4521 Register cnt1, int elem_size) { 4522 Label DONE, SAME; 4523 Register tmp1 = rscratch1; 4524 Register tmp2 = rscratch2; 4525 Register cnt2 = tmp2; // cnt2 only used in array length compare 4526 int elem_per_word = wordSize/elem_size; 4527 int log_elem_size = exact_log2(elem_size); 4528 int length_offset = arrayOopDesc::length_offset_in_bytes(); 4529 int base_offset 4530 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 4531 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 4532 4533 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 4534 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4535 4536 #ifndef PRODUCT 4537 { 4538 const char kind = (elem_size == 2) ? 'U' : 'L'; 4539 char comment[64]; 4540 snprintf(comment, sizeof comment, "array_equals%c{", kind); 4541 BLOCK_COMMENT(comment); 4542 } 4543 #endif 4544 4545 // if (a1 == a2) 4546 // return true; 4547 cmpoop(a1, a2); // May have read barriers for a1 and a2. 4548 br(EQ, SAME); 4549 4550 if (UseSimpleArrayEquals) { 4551 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 4552 // if (a1 == null || a2 == null) 4553 // return false; 4554 // a1 & a2 == 0 means (some-pointer is null) or 4555 // (very-rare-or-even-probably-impossible-pointer-values) 4556 // so, we can save one branch in most cases 4557 tst(a1, a2); 4558 mov(result, false); 4559 br(EQ, A_MIGHT_BE_NULL); 4560 // if (a1.length != a2.length) 4561 // return false; 4562 bind(A_IS_NOT_NULL); 4563 ldrw(cnt1, Address(a1, length_offset)); 4564 ldrw(cnt2, Address(a2, length_offset)); 4565 eorw(tmp5, cnt1, cnt2); 4566 cbnzw(tmp5, DONE); 4567 lea(a1, Address(a1, base_offset)); 4568 lea(a2, Address(a2, base_offset)); 4569 // Check for short strings, i.e. smaller than wordSize. 4570 subs(cnt1, cnt1, elem_per_word); 4571 br(Assembler::LT, SHORT); 4572 // Main 8 byte comparison loop. 4573 bind(NEXT_WORD); { 4574 ldr(tmp1, Address(post(a1, wordSize))); 4575 ldr(tmp2, Address(post(a2, wordSize))); 4576 subs(cnt1, cnt1, elem_per_word); 4577 eor(tmp5, tmp1, tmp2); 4578 cbnz(tmp5, DONE); 4579 } br(GT, NEXT_WORD); 4580 // Last longword. In the case where length == 4 we compare the 4581 // same longword twice, but that's still faster than another 4582 // conditional branch. 4583 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4584 // length == 4. 4585 if (log_elem_size > 0) 4586 lsl(cnt1, cnt1, log_elem_size); 4587 ldr(tmp3, Address(a1, cnt1)); 4588 ldr(tmp4, Address(a2, cnt1)); 4589 eor(tmp5, tmp3, tmp4); 4590 cbnz(tmp5, DONE); 4591 b(SAME); 4592 bind(A_MIGHT_BE_NULL); 4593 // in case both a1 and a2 are not-null, proceed with loads 4594 cbz(a1, DONE); 4595 cbz(a2, DONE); 4596 b(A_IS_NOT_NULL); 4597 bind(SHORT); 4598 4599 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 4600 { 4601 ldrw(tmp1, Address(post(a1, 4))); 4602 ldrw(tmp2, Address(post(a2, 4))); 4603 eorw(tmp5, tmp1, tmp2); 4604 cbnzw(tmp5, DONE); 4605 } 4606 bind(TAIL03); 4607 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 4608 { 4609 ldrh(tmp3, Address(post(a1, 2))); 4610 ldrh(tmp4, Address(post(a2, 2))); 4611 eorw(tmp5, tmp3, tmp4); 4612 cbnzw(tmp5, DONE); 4613 } 4614 bind(TAIL01); 4615 if (elem_size == 1) { // Only needed when comparing byte arrays. 4616 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4617 { 4618 ldrb(tmp1, a1); 4619 ldrb(tmp2, a2); 4620 eorw(tmp5, tmp1, tmp2); 4621 cbnzw(tmp5, DONE); 4622 } 4623 } 4624 } else { 4625 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 4626 CSET_EQ, LAST_CHECK; 4627 mov(result, false); 4628 cbz(a1, DONE); 4629 ldrw(cnt1, Address(a1, length_offset)); 4630 cbz(a2, DONE); 4631 ldrw(cnt2, Address(a2, length_offset)); 4632 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 4633 // faster to perform another branch before comparing a1 and a2 4634 cmp(cnt1, (u1)elem_per_word); 4635 br(LE, SHORT); // short or same 4636 ldr(tmp3, Address(pre(a1, base_offset))); 4637 subs(zr, cnt1, stubBytesThreshold); 4638 br(GE, STUB); 4639 ldr(tmp4, Address(pre(a2, base_offset))); 4640 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4641 cmp(cnt2, cnt1); 4642 br(NE, DONE); 4643 4644 // Main 16 byte comparison loop with 2 exits 4645 bind(NEXT_DWORD); { 4646 ldr(tmp1, Address(pre(a1, wordSize))); 4647 ldr(tmp2, Address(pre(a2, wordSize))); 4648 subs(cnt1, cnt1, 2 * elem_per_word); 4649 br(LE, TAIL); 4650 eor(tmp4, tmp3, tmp4); 4651 cbnz(tmp4, DONE); 4652 ldr(tmp3, Address(pre(a1, wordSize))); 4653 ldr(tmp4, Address(pre(a2, wordSize))); 4654 cmp(cnt1, (u1)elem_per_word); 4655 br(LE, TAIL2); 4656 cmp(tmp1, tmp2); 4657 } br(EQ, NEXT_DWORD); 4658 b(DONE); 4659 4660 bind(TAIL); 4661 eor(tmp4, tmp3, tmp4); 4662 eor(tmp2, tmp1, tmp2); 4663 lslv(tmp2, tmp2, tmp5); 4664 orr(tmp5, tmp4, tmp2); 4665 cmp(tmp5, zr); 4666 b(CSET_EQ); 4667 4668 bind(TAIL2); 4669 eor(tmp2, tmp1, tmp2); 4670 cbnz(tmp2, DONE); 4671 b(LAST_CHECK); 4672 4673 bind(STUB); 4674 ldr(tmp4, Address(pre(a2, base_offset))); 4675 cmp(cnt2, cnt1); 4676 br(NE, DONE); 4677 if (elem_size == 2) { // convert to byte counter 4678 lsl(cnt1, cnt1, 1); 4679 } 4680 eor(tmp5, tmp3, tmp4); 4681 cbnz(tmp5, DONE); 4682 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 4683 assert(stub.target() != NULL, "array_equals_long stub has not been generated"); 4684 address tpc = trampoline_call(stub); 4685 if (tpc == NULL) { 4686 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 4687 postcond(pc() == badAddress); 4688 return NULL; 4689 } 4690 b(DONE); 4691 4692 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 4693 // so, if a2 == null => return false(0), else return true, so we can return a2 4694 mov(result, a2); 4695 b(DONE); 4696 bind(SHORT); 4697 cmp(cnt2, cnt1); 4698 br(NE, DONE); 4699 cbz(cnt1, SAME); 4700 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4701 ldr(tmp3, Address(a1, base_offset)); 4702 ldr(tmp4, Address(a2, base_offset)); 4703 bind(LAST_CHECK); 4704 eor(tmp4, tmp3, tmp4); 4705 lslv(tmp5, tmp4, tmp5); 4706 cmp(tmp5, zr); 4707 bind(CSET_EQ); 4708 cset(result, EQ); 4709 b(DONE); 4710 } 4711 4712 bind(SAME); 4713 mov(result, true); 4714 // That's it. 4715 bind(DONE); 4716 4717 BLOCK_COMMENT("} array_equals"); 4718 postcond(pc() != badAddress); 4719 return pc(); 4720 } 4721 4722 // Compare Strings 4723 4724 // For Strings we're passed the address of the first characters in a1 4725 // and a2 and the length in cnt1. 4726 // elem_size is the element size in bytes: either 1 or 2. 4727 // There are two implementations. For arrays >= 8 bytes, all 4728 // comparisons (including the final one, which may overlap) are 4729 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 4730 // halfword, then a short, and then a byte. 4731 4732 void MacroAssembler::string_equals(Register a1, Register a2, 4733 Register result, Register cnt1, int elem_size) 4734 { 4735 Label SAME, DONE, SHORT, NEXT_WORD; 4736 Register tmp1 = rscratch1; 4737 Register tmp2 = rscratch2; 4738 Register cnt2 = tmp2; // cnt2 only used in array length compare 4739 4740 assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); 4741 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4742 4743 #ifndef PRODUCT 4744 { 4745 const char kind = (elem_size == 2) ? 'U' : 'L'; 4746 char comment[64]; 4747 snprintf(comment, sizeof comment, "{string_equals%c", kind); 4748 BLOCK_COMMENT(comment); 4749 } 4750 #endif 4751 4752 mov(result, false); 4753 4754 // Check for short strings, i.e. smaller than wordSize. 4755 subs(cnt1, cnt1, wordSize); 4756 br(Assembler::LT, SHORT); 4757 // Main 8 byte comparison loop. 4758 bind(NEXT_WORD); { 4759 ldr(tmp1, Address(post(a1, wordSize))); 4760 ldr(tmp2, Address(post(a2, wordSize))); 4761 subs(cnt1, cnt1, wordSize); 4762 eor(tmp1, tmp1, tmp2); 4763 cbnz(tmp1, DONE); 4764 } br(GT, NEXT_WORD); 4765 // Last longword. In the case where length == 4 we compare the 4766 // same longword twice, but that's still faster than another 4767 // conditional branch. 4768 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4769 // length == 4. 4770 ldr(tmp1, Address(a1, cnt1)); 4771 ldr(tmp2, Address(a2, cnt1)); 4772 eor(tmp2, tmp1, tmp2); 4773 cbnz(tmp2, DONE); 4774 b(SAME); 4775 4776 bind(SHORT); 4777 Label TAIL03, TAIL01; 4778 4779 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 4780 { 4781 ldrw(tmp1, Address(post(a1, 4))); 4782 ldrw(tmp2, Address(post(a2, 4))); 4783 eorw(tmp1, tmp1, tmp2); 4784 cbnzw(tmp1, DONE); 4785 } 4786 bind(TAIL03); 4787 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 4788 { 4789 ldrh(tmp1, Address(post(a1, 2))); 4790 ldrh(tmp2, Address(post(a2, 2))); 4791 eorw(tmp1, tmp1, tmp2); 4792 cbnzw(tmp1, DONE); 4793 } 4794 bind(TAIL01); 4795 if (elem_size == 1) { // Only needed when comparing 1-byte elements 4796 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4797 { 4798 ldrb(tmp1, a1); 4799 ldrb(tmp2, a2); 4800 eorw(tmp1, tmp1, tmp2); 4801 cbnzw(tmp1, DONE); 4802 } 4803 } 4804 // Arrays are equal. 4805 bind(SAME); 4806 mov(result, true); 4807 4808 // That's it. 4809 bind(DONE); 4810 BLOCK_COMMENT("} string_equals"); 4811 } 4812 4813 4814 // The size of the blocks erased by the zero_blocks stub. We must 4815 // handle anything smaller than this ourselves in zero_words(). 4816 const int MacroAssembler::zero_words_block_size = 8; 4817 4818 // zero_words() is used by C2 ClearArray patterns and by 4819 // C1_MacroAssembler. It is as small as possible, handling small word 4820 // counts locally and delegating anything larger to the zero_blocks 4821 // stub. It is expanded many times in compiled code, so it is 4822 // important to keep it short. 4823 4824 // ptr: Address of a buffer to be zeroed. 4825 // cnt: Count in HeapWords. 4826 // 4827 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 4828 address MacroAssembler::zero_words(Register ptr, Register cnt) 4829 { 4830 assert(is_power_of_2(zero_words_block_size), "adjust this"); 4831 4832 BLOCK_COMMENT("zero_words {"); 4833 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 4834 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 4835 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 4836 4837 subs(rscratch1, cnt, zero_words_block_size); 4838 Label around; 4839 br(LO, around); 4840 { 4841 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 4842 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 4843 // Make sure this is a C2 compilation. C1 allocates space only for 4844 // trampoline stubs generated by Call LIR ops, and in any case it 4845 // makes sense for a C1 compilation task to proceed as quickly as 4846 // possible. 4847 CompileTask* task; 4848 if (StubRoutines::aarch64::complete() 4849 && Thread::current()->is_Compiler_thread() 4850 && (task = ciEnv::current()->task()) 4851 && is_c2_compile(task->comp_level())) { 4852 address tpc = trampoline_call(zero_blocks); 4853 if (tpc == NULL) { 4854 DEBUG_ONLY(reset_labels(around)); 4855 return NULL; 4856 } 4857 } else { 4858 far_call(zero_blocks); 4859 } 4860 } 4861 bind(around); 4862 4863 // We have a few words left to do. zero_blocks has adjusted r10 and r11 4864 // for us. 4865 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 4866 Label l; 4867 tbz(cnt, exact_log2(i), l); 4868 for (int j = 0; j < i; j += 2) { 4869 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 4870 } 4871 bind(l); 4872 } 4873 { 4874 Label l; 4875 tbz(cnt, 0, l); 4876 str(zr, Address(ptr)); 4877 bind(l); 4878 } 4879 4880 BLOCK_COMMENT("} zero_words"); 4881 return pc(); 4882 } 4883 4884 // base: Address of a buffer to be zeroed, 8 bytes aligned. 4885 // cnt: Immediate count in HeapWords. 4886 // 4887 // r10, r11, rscratch1, and rscratch2 are clobbered. 4888 address MacroAssembler::zero_words(Register base, uint64_t cnt) 4889 { 4890 assert(wordSize <= BlockZeroingLowLimit, 4891 "increase BlockZeroingLowLimit"); 4892 address result = nullptr; 4893 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 4894 #ifndef PRODUCT 4895 { 4896 char buf[64]; 4897 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 4898 BLOCK_COMMENT(buf); 4899 } 4900 #endif 4901 if (cnt >= 16) { 4902 uint64_t loops = cnt/16; 4903 if (loops > 1) { 4904 mov(rscratch2, loops - 1); 4905 } 4906 { 4907 Label loop; 4908 bind(loop); 4909 for (int i = 0; i < 16; i += 2) { 4910 stp(zr, zr, Address(base, i * BytesPerWord)); 4911 } 4912 add(base, base, 16 * BytesPerWord); 4913 if (loops > 1) { 4914 subs(rscratch2, rscratch2, 1); 4915 br(GE, loop); 4916 } 4917 } 4918 } 4919 cnt %= 16; 4920 int i = cnt & 1; // store any odd word to start 4921 if (i) str(zr, Address(base)); 4922 for (; i < (int)cnt; i += 2) { 4923 stp(zr, zr, Address(base, i * wordSize)); 4924 } 4925 BLOCK_COMMENT("} zero_words"); 4926 result = pc(); 4927 } else { 4928 mov(r10, base); mov(r11, cnt); 4929 result = zero_words(r10, r11); 4930 } 4931 return result; 4932 } 4933 4934 // Zero blocks of memory by using DC ZVA. 4935 // 4936 // Aligns the base address first sufficently for DC ZVA, then uses 4937 // DC ZVA repeatedly for every full block. cnt is the size to be 4938 // zeroed in HeapWords. Returns the count of words left to be zeroed 4939 // in cnt. 4940 // 4941 // NOTE: This is intended to be used in the zero_blocks() stub. If 4942 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 4943 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 4944 Register tmp = rscratch1; 4945 Register tmp2 = rscratch2; 4946 int zva_length = VM_Version::zva_length(); 4947 Label initial_table_end, loop_zva; 4948 Label fini; 4949 4950 // Base must be 16 byte aligned. If not just return and let caller handle it 4951 tst(base, 0x0f); 4952 br(Assembler::NE, fini); 4953 // Align base with ZVA length. 4954 neg(tmp, base); 4955 andr(tmp, tmp, zva_length - 1); 4956 4957 // tmp: the number of bytes to be filled to align the base with ZVA length. 4958 add(base, base, tmp); 4959 sub(cnt, cnt, tmp, Assembler::ASR, 3); 4960 adr(tmp2, initial_table_end); 4961 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 4962 br(tmp2); 4963 4964 for (int i = -zva_length + 16; i < 0; i += 16) 4965 stp(zr, zr, Address(base, i)); 4966 bind(initial_table_end); 4967 4968 sub(cnt, cnt, zva_length >> 3); 4969 bind(loop_zva); 4970 dc(Assembler::ZVA, base); 4971 subs(cnt, cnt, zva_length >> 3); 4972 add(base, base, zva_length); 4973 br(Assembler::GE, loop_zva); 4974 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 4975 bind(fini); 4976 } 4977 4978 // base: Address of a buffer to be filled, 8 bytes aligned. 4979 // cnt: Count in 8-byte unit. 4980 // value: Value to be filled with. 4981 // base will point to the end of the buffer after filling. 4982 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 4983 { 4984 // Algorithm: 4985 // 4986 // scratch1 = cnt & 7; 4987 // cnt -= scratch1; 4988 // p += scratch1; 4989 // switch (scratch1) { 4990 // do { 4991 // cnt -= 8; 4992 // p[-8] = v; 4993 // case 7: 4994 // p[-7] = v; 4995 // case 6: 4996 // p[-6] = v; 4997 // // ... 4998 // case 1: 4999 // p[-1] = v; 5000 // case 0: 5001 // p += 8; 5002 // } while (cnt); 5003 // } 5004 5005 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 5006 5007 Label fini, skip, entry, loop; 5008 const int unroll = 8; // Number of stp instructions we'll unroll 5009 5010 cbz(cnt, fini); 5011 tbz(base, 3, skip); 5012 str(value, Address(post(base, 8))); 5013 sub(cnt, cnt, 1); 5014 bind(skip); 5015 5016 andr(rscratch1, cnt, (unroll-1) * 2); 5017 sub(cnt, cnt, rscratch1); 5018 add(base, base, rscratch1, Assembler::LSL, 3); 5019 adr(rscratch2, entry); 5020 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 5021 br(rscratch2); 5022 5023 bind(loop); 5024 add(base, base, unroll * 16); 5025 for (int i = -unroll; i < 0; i++) 5026 stp(value, value, Address(base, i * 16)); 5027 bind(entry); 5028 subs(cnt, cnt, unroll * 2); 5029 br(Assembler::GE, loop); 5030 5031 tbz(cnt, 0, fini); 5032 str(value, Address(post(base, 8))); 5033 bind(fini); 5034 } 5035 5036 // Intrinsic for 5037 // 5038 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 5039 // return the number of characters copied. 5040 // - java/lang/StringUTF16.compress 5041 // return zero (0) if copy fails, otherwise 'len'. 5042 // 5043 // This version always returns the number of characters copied, and does not 5044 // clobber the 'len' register. A successful copy will complete with the post- 5045 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 5046 // post-condition: 0 <= 'res' < 'len'. 5047 // 5048 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 5049 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 5050 // beyond the acceptable, even though the footprint would be smaller. 5051 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 5052 // avoid additional bloat. 5053 // 5054 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 5055 void MacroAssembler::encode_iso_array(Register src, Register dst, 5056 Register len, Register res, bool ascii, 5057 FloatRegister vtmp0, FloatRegister vtmp1, 5058 FloatRegister vtmp2, FloatRegister vtmp3, 5059 FloatRegister vtmp4, FloatRegister vtmp5) 5060 { 5061 Register cnt = res; 5062 Register max = rscratch1; 5063 Register chk = rscratch2; 5064 5065 prfm(Address(src), PLDL1STRM); 5066 movw(cnt, len); 5067 5068 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 5069 5070 Label LOOP_32, DONE_32, FAIL_32; 5071 5072 BIND(LOOP_32); 5073 { 5074 cmpw(cnt, 32); 5075 br(LT, DONE_32); 5076 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 5077 // Extract lower bytes. 5078 FloatRegister vlo0 = vtmp4; 5079 FloatRegister vlo1 = vtmp5; 5080 uzp1(vlo0, T16B, vtmp0, vtmp1); 5081 uzp1(vlo1, T16B, vtmp2, vtmp3); 5082 // Merge bits... 5083 orr(vtmp0, T16B, vtmp0, vtmp1); 5084 orr(vtmp2, T16B, vtmp2, vtmp3); 5085 // Extract merged upper bytes. 5086 FloatRegister vhix = vtmp0; 5087 uzp2(vhix, T16B, vtmp0, vtmp2); 5088 // ISO-check on hi-parts (all zero). 5089 // ASCII-check on lo-parts (no sign). 5090 FloatRegister vlox = vtmp1; // Merge lower bytes. 5091 ASCII(orr(vlox, T16B, vlo0, vlo1)); 5092 umov(chk, vhix, D, 1); ASCII(cmlt(vlox, T16B, vlox)); 5093 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 5094 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 5095 ASCII(orr(chk, chk, max)); 5096 cbnz(chk, FAIL_32); 5097 subw(cnt, cnt, 32); 5098 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 5099 b(LOOP_32); 5100 } 5101 BIND(FAIL_32); 5102 sub(src, src, 64); 5103 BIND(DONE_32); 5104 5105 Label LOOP_8, SKIP_8; 5106 5107 BIND(LOOP_8); 5108 { 5109 cmpw(cnt, 8); 5110 br(LT, SKIP_8); 5111 FloatRegister vhi = vtmp0; 5112 FloatRegister vlo = vtmp1; 5113 ld1(vtmp3, T8H, src); 5114 uzp1(vlo, T16B, vtmp3, vtmp3); 5115 uzp2(vhi, T16B, vtmp3, vtmp3); 5116 // ISO-check on hi-parts (all zero). 5117 // ASCII-check on lo-parts (no sign). 5118 ASCII(cmlt(vtmp2, T16B, vlo)); 5119 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 5120 ASCII(umov(max, vtmp2, B, 0)); 5121 ASCII(orr(chk, chk, max)); 5122 cbnz(chk, SKIP_8); 5123 5124 strd(vlo, Address(post(dst, 8))); 5125 subw(cnt, cnt, 8); 5126 add(src, src, 16); 5127 b(LOOP_8); 5128 } 5129 BIND(SKIP_8); 5130 5131 #undef ASCII 5132 5133 Label LOOP, DONE; 5134 5135 cbz(cnt, DONE); 5136 BIND(LOOP); 5137 { 5138 Register chr = rscratch1; 5139 ldrh(chr, Address(post(src, 2))); 5140 tst(chr, ascii ? 0xff80 : 0xff00); 5141 br(NE, DONE); 5142 strb(chr, Address(post(dst, 1))); 5143 subs(cnt, cnt, 1); 5144 br(GT, LOOP); 5145 } 5146 BIND(DONE); 5147 // Return index where we stopped. 5148 subw(res, len, cnt); 5149 } 5150 5151 // Inflate byte[] array to char[]. 5152 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 5153 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 5154 FloatRegister vtmp1, FloatRegister vtmp2, 5155 FloatRegister vtmp3, Register tmp4) { 5156 Label big, done, after_init, to_stub; 5157 5158 assert_different_registers(src, dst, len, tmp4, rscratch1); 5159 5160 fmovd(vtmp1, 0.0); 5161 lsrw(tmp4, len, 3); 5162 bind(after_init); 5163 cbnzw(tmp4, big); 5164 // Short string: less than 8 bytes. 5165 { 5166 Label loop, tiny; 5167 5168 cmpw(len, 4); 5169 br(LT, tiny); 5170 // Use SIMD to do 4 bytes. 5171 ldrs(vtmp2, post(src, 4)); 5172 zip1(vtmp3, T8B, vtmp2, vtmp1); 5173 subw(len, len, 4); 5174 strd(vtmp3, post(dst, 8)); 5175 5176 cbzw(len, done); 5177 5178 // Do the remaining bytes by steam. 5179 bind(loop); 5180 ldrb(tmp4, post(src, 1)); 5181 strh(tmp4, post(dst, 2)); 5182 subw(len, len, 1); 5183 5184 bind(tiny); 5185 cbnz(len, loop); 5186 5187 b(done); 5188 } 5189 5190 if (SoftwarePrefetchHintDistance >= 0) { 5191 bind(to_stub); 5192 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 5193 assert(stub.target() != NULL, "large_byte_array_inflate stub has not been generated"); 5194 address tpc = trampoline_call(stub); 5195 if (tpc == NULL) { 5196 DEBUG_ONLY(reset_labels(big, done)); 5197 postcond(pc() == badAddress); 5198 return NULL; 5199 } 5200 b(after_init); 5201 } 5202 5203 // Unpack the bytes 8 at a time. 5204 bind(big); 5205 { 5206 Label loop, around, loop_last, loop_start; 5207 5208 if (SoftwarePrefetchHintDistance >= 0) { 5209 const int large_loop_threshold = (64 + 16)/8; 5210 ldrd(vtmp2, post(src, 8)); 5211 andw(len, len, 7); 5212 cmp(tmp4, (u1)large_loop_threshold); 5213 br(GE, to_stub); 5214 b(loop_start); 5215 5216 bind(loop); 5217 ldrd(vtmp2, post(src, 8)); 5218 bind(loop_start); 5219 subs(tmp4, tmp4, 1); 5220 br(EQ, loop_last); 5221 zip1(vtmp2, T16B, vtmp2, vtmp1); 5222 ldrd(vtmp3, post(src, 8)); 5223 st1(vtmp2, T8H, post(dst, 16)); 5224 subs(tmp4, tmp4, 1); 5225 zip1(vtmp3, T16B, vtmp3, vtmp1); 5226 st1(vtmp3, T8H, post(dst, 16)); 5227 br(NE, loop); 5228 b(around); 5229 bind(loop_last); 5230 zip1(vtmp2, T16B, vtmp2, vtmp1); 5231 st1(vtmp2, T8H, post(dst, 16)); 5232 bind(around); 5233 cbz(len, done); 5234 } else { 5235 andw(len, len, 7); 5236 bind(loop); 5237 ldrd(vtmp2, post(src, 8)); 5238 sub(tmp4, tmp4, 1); 5239 zip1(vtmp3, T16B, vtmp2, vtmp1); 5240 st1(vtmp3, T8H, post(dst, 16)); 5241 cbnz(tmp4, loop); 5242 } 5243 } 5244 5245 // Do the tail of up to 8 bytes. 5246 add(src, src, len); 5247 ldrd(vtmp3, Address(src, -8)); 5248 add(dst, dst, len, ext::uxtw, 1); 5249 zip1(vtmp3, T16B, vtmp3, vtmp1); 5250 strq(vtmp3, Address(dst, -16)); 5251 5252 bind(done); 5253 postcond(pc() != badAddress); 5254 return pc(); 5255 } 5256 5257 // Compress char[] array to byte[]. 5258 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 5259 Register res, 5260 FloatRegister tmp0, FloatRegister tmp1, 5261 FloatRegister tmp2, FloatRegister tmp3, 5262 FloatRegister tmp4, FloatRegister tmp5) { 5263 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 5264 // Adjust result: res == len ? len : 0 5265 cmp(len, res); 5266 csel(res, res, zr, EQ); 5267 } 5268 5269 // get_thread() can be called anywhere inside generated code so we 5270 // need to save whatever non-callee save context might get clobbered 5271 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 5272 // the call setup code. 5273 // 5274 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 5275 // On other systems, the helper is a usual C function. 5276 // 5277 void MacroAssembler::get_thread(Register dst) { 5278 RegSet saved_regs = 5279 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 5280 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 5281 5282 push(saved_regs, sp); 5283 5284 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 5285 blr(lr); 5286 if (dst != c_rarg0) { 5287 mov(dst, c_rarg0); 5288 } 5289 5290 pop(saved_regs, sp); 5291 } 5292 5293 void MacroAssembler::cache_wb(Address line) { 5294 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 5295 assert(line.index() == noreg, "index should be noreg"); 5296 assert(line.offset() == 0, "offset should be 0"); 5297 // would like to assert this 5298 // assert(line._ext.shift == 0, "shift should be zero"); 5299 if (VM_Version::features() & VM_Version::CPU_DCPOP) { 5300 // writeback using clear virtual address to point of persistence 5301 dc(Assembler::CVAP, line.base()); 5302 } else { 5303 // no need to generate anything as Unsafe.writebackMemory should 5304 // never invoke this stub 5305 } 5306 } 5307 5308 void MacroAssembler::cache_wbsync(bool is_pre) { 5309 // we only need a barrier post sync 5310 if (!is_pre) { 5311 membar(Assembler::AnyAny); 5312 } 5313 } 5314 5315 void MacroAssembler::verify_sve_vector_length() { 5316 // Make sure that native code does not change SVE vector length. 5317 if (!UseSVE) return; 5318 Label verify_ok; 5319 movw(rscratch1, zr); 5320 sve_inc(rscratch1, B); 5321 subsw(zr, rscratch1, VM_Version::get_initial_sve_vector_length()); 5322 br(EQ, verify_ok); 5323 stop("Error: SVE vector length has changed since jvm startup"); 5324 bind(verify_ok); 5325 } 5326 5327 void MacroAssembler::verify_ptrue() { 5328 Label verify_ok; 5329 if (!UseSVE) { 5330 return; 5331 } 5332 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 5333 sve_dec(rscratch1, B); 5334 cbz(rscratch1, verify_ok); 5335 stop("Error: the preserved predicate register (p7) elements are not all true"); 5336 bind(verify_ok); 5337 } 5338 5339 void MacroAssembler::safepoint_isb() { 5340 isb(); 5341 #ifndef PRODUCT 5342 if (VerifyCrossModifyFence) { 5343 // Clear the thread state. 5344 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 5345 } 5346 #endif 5347 } 5348 5349 #ifndef PRODUCT 5350 void MacroAssembler::verify_cross_modify_fence_not_required() { 5351 if (VerifyCrossModifyFence) { 5352 // Check if thread needs a cross modify fence. 5353 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 5354 Label fence_not_required; 5355 cbz(rscratch1, fence_not_required); 5356 // If it does then fail. 5357 lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)); 5358 mov(c_rarg0, rthread); 5359 blr(rscratch1); 5360 bind(fence_not_required); 5361 } 5362 } 5363 #endif 5364 5365 void MacroAssembler::spin_wait() { 5366 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 5367 switch (VM_Version::spin_wait_desc().inst()) { 5368 case SpinWait::NOP: 5369 nop(); 5370 break; 5371 case SpinWait::ISB: 5372 isb(); 5373 break; 5374 case SpinWait::YIELD: 5375 yield(); 5376 break; 5377 default: 5378 ShouldNotReachHere(); 5379 } 5380 } 5381 }