1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "jvm.h" 28 #include "asm/assembler.hpp" 29 #include "asm/assembler.inline.hpp" 30 #include "ci/ciEnv.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/cardTableBarrierSet.hpp" 34 #include "gc/shared/cardTable.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 #include "interpreter/bytecodeHistogram.hpp" 38 #include "interpreter/interpreter.hpp" 39 #include "compiler/compileTask.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "memory/resourceArea.hpp" 42 #include "memory/universe.hpp" 43 #include "nativeInst_aarch64.hpp" 44 #include "oops/accessDecorators.hpp" 45 #include "oops/compressedOops.inline.hpp" 46 #include "oops/klass.inline.hpp" 47 #include "runtime/biasedLocking.hpp" 48 #include "runtime/icache.hpp" 49 #include "runtime/interfaceSupport.inline.hpp" 50 #include "runtime/jniHandles.inline.hpp" 51 #include "runtime/objectMonitor.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "runtime/thread.hpp" 55 #include "utilities/globalDefinitions.hpp" 56 #include "utilities/powerOfTwo.hpp" 57 #ifdef COMPILER1 58 #include "c1/c1_LIRAssembler.hpp" 59 #endif 60 #ifdef COMPILER2 61 #include "oops/oop.hpp" 62 #include "opto/compile.hpp" 63 #include "opto/node.hpp" 64 #include "opto/output.hpp" 65 #endif 66 67 #include <sys/types.h> 68 69 #ifdef PRODUCT 70 #define BLOCK_COMMENT(str) /* nothing */ 71 #else 72 #define BLOCK_COMMENT(str) block_comment(str) 73 #endif 74 #define STOP(str) stop(str); 75 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 76 77 // Patch any kind of instruction; there may be several instructions. 78 // Return the total length (in bytes) of the instructions. 79 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 80 int instructions = 1; 81 assert((uint64_t)target < (1ull << 48), "48-bit overflow in address constant"); 82 intptr_t offset = (target - branch) >> 2; 83 unsigned insn = *(unsigned*)branch; 84 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 85 // Load register (literal) 86 Instruction_aarch64::spatch(branch, 23, 5, offset); 87 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 88 // Unconditional branch (immediate) 89 Instruction_aarch64::spatch(branch, 25, 0, offset); 90 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 91 // Conditional branch (immediate) 92 Instruction_aarch64::spatch(branch, 23, 5, offset); 93 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 94 // Compare & branch (immediate) 95 Instruction_aarch64::spatch(branch, 23, 5, offset); 96 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 97 // Test & branch (immediate) 98 Instruction_aarch64::spatch(branch, 18, 5, offset); 99 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 100 // PC-rel. addressing 101 offset = target-branch; 102 int shift = Instruction_aarch64::extract(insn, 31, 31); 103 if (shift) { 104 uint64_t dest = (uint64_t)target; 105 uint64_t pc_page = (uint64_t)branch >> 12; 106 uint64_t adr_page = (uint64_t)target >> 12; 107 unsigned offset_lo = dest & 0xfff; 108 offset = adr_page - pc_page; 109 110 // We handle 4 types of PC relative addressing 111 // 1 - adrp Rx, target_page 112 // ldr/str Ry, [Rx, #offset_in_page] 113 // 2 - adrp Rx, target_page 114 // add Ry, Rx, #offset_in_page 115 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 116 // movk Rx, #imm16<<32 117 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 118 // In the first 3 cases we must check that Rx is the same in the adrp and the 119 // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end 120 // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened 121 // to be followed by a random unrelated ldr/str, add or movk instruction. 122 // 123 unsigned insn2 = ((unsigned*)branch)[1]; 124 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 125 Instruction_aarch64::extract(insn, 4, 0) == 126 Instruction_aarch64::extract(insn2, 9, 5)) { 127 // Load/store register (unsigned immediate) 128 unsigned size = Instruction_aarch64::extract(insn2, 31, 30); 129 Instruction_aarch64::patch(branch + sizeof (unsigned), 130 21, 10, offset_lo >> size); 131 guarantee(((dest >> size) << size) == dest, "misaligned target"); 132 instructions = 2; 133 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 134 Instruction_aarch64::extract(insn, 4, 0) == 135 Instruction_aarch64::extract(insn2, 4, 0)) { 136 // add (immediate) 137 Instruction_aarch64::patch(branch + sizeof (unsigned), 138 21, 10, offset_lo); 139 instructions = 2; 140 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 141 Instruction_aarch64::extract(insn, 4, 0) == 142 Instruction_aarch64::extract(insn2, 4, 0)) { 143 // movk #imm16<<32 144 Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32); 145 uintptr_t dest = ((uintptr_t)target & 0xffffffffULL) | ((uintptr_t)branch & 0xffff00000000ULL); 146 uintptr_t pc_page = (uintptr_t)branch >> 12; 147 uintptr_t adr_page = (uintptr_t)dest >> 12; 148 offset = adr_page - pc_page; 149 instructions = 2; 150 } 151 } 152 int offset_lo = offset & 3; 153 offset >>= 2; 154 Instruction_aarch64::spatch(branch, 23, 5, offset); 155 Instruction_aarch64::patch(branch, 30, 29, offset_lo); 156 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { 157 uint64_t dest = (uint64_t)target; 158 // Move wide constant 159 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); 160 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); 161 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); 162 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); 163 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); 164 assert(target_addr_for_insn(branch) == target, "should be"); 165 instructions = 3; 166 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 167 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 168 // nothing to do 169 assert(target == 0, "did not expect to relocate target for polling page load"); 170 } else { 171 ShouldNotReachHere(); 172 } 173 return instructions * NativeInstruction::instruction_size; 174 } 175 176 int MacroAssembler::patch_oop(address insn_addr, address o) { 177 int instructions; 178 unsigned insn = *(unsigned*)insn_addr; 179 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 180 181 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 182 // narrow OOPs by setting the upper 16 bits in the first 183 // instruction. 184 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 185 // Move narrow OOP 186 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 187 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 188 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 189 instructions = 2; 190 } else { 191 // Move wide OOP 192 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 193 uintptr_t dest = (uintptr_t)o; 194 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 195 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 196 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 197 instructions = 3; 198 } 199 return instructions * NativeInstruction::instruction_size; 200 } 201 202 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 203 // Metatdata pointers are either narrow (32 bits) or wide (48 bits). 204 // We encode narrow ones by setting the upper 16 bits in the first 205 // instruction. 206 NativeInstruction *insn = nativeInstruction_at(insn_addr); 207 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 208 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 209 210 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 211 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 212 return 2 * NativeInstruction::instruction_size; 213 } 214 215 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { 216 intptr_t offset = 0; 217 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { 218 // Load register (literal) 219 offset = Instruction_aarch64::sextract(insn, 23, 5); 220 return address(((uint64_t)insn_addr + (offset << 2))); 221 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 222 // Unconditional branch (immediate) 223 offset = Instruction_aarch64::sextract(insn, 25, 0); 224 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 225 // Conditional branch (immediate) 226 offset = Instruction_aarch64::sextract(insn, 23, 5); 227 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 228 // Compare & branch (immediate) 229 offset = Instruction_aarch64::sextract(insn, 23, 5); 230 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 231 // Test & branch (immediate) 232 offset = Instruction_aarch64::sextract(insn, 18, 5); 233 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 234 // PC-rel. addressing 235 offset = Instruction_aarch64::extract(insn, 30, 29); 236 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 237 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; 238 if (shift) { 239 offset <<= shift; 240 uint64_t target_page = ((uint64_t)insn_addr) + offset; 241 target_page &= ((uint64_t)-1) << shift; 242 // Return the target address for the following sequences 243 // 1 - adrp Rx, target_page 244 // ldr/str Ry, [Rx, #offset_in_page] 245 // 2 - adrp Rx, target_page 246 // add Ry, Rx, #offset_in_page 247 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 248 // movk Rx, #imm12<<32 249 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 250 // 251 // In the first two cases we check that the register is the same and 252 // return the target_page + the offset within the page. 253 // Otherwise we assume it is a page aligned relocation and return 254 // the target page only. 255 // 256 unsigned insn2 = ((unsigned*)insn_addr)[1]; 257 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 258 Instruction_aarch64::extract(insn, 4, 0) == 259 Instruction_aarch64::extract(insn2, 9, 5)) { 260 // Load/store register (unsigned immediate) 261 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 262 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); 263 return address(target_page + (byte_offset << size)); 264 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 265 Instruction_aarch64::extract(insn, 4, 0) == 266 Instruction_aarch64::extract(insn2, 4, 0)) { 267 // add (immediate) 268 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 269 return address(target_page + byte_offset); 270 } else { 271 if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 272 Instruction_aarch64::extract(insn, 4, 0) == 273 Instruction_aarch64::extract(insn2, 4, 0)) { 274 target_page = (target_page & 0xffffffff) | 275 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 276 } 277 return (address)target_page; 278 } 279 } else { 280 ShouldNotReachHere(); 281 } 282 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { 283 uint32_t *insns = (uint32_t *)insn_addr; 284 // Move wide constant: movz, movk, movk. See movptr(). 285 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 286 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 287 return address(uint64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 288 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 289 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 290 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 291 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 292 return 0; 293 } else { 294 ShouldNotReachHere(); 295 } 296 return address(((uint64_t)insn_addr + (offset << 2))); 297 } 298 299 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod) { 300 if (acquire) { 301 lea(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 302 ldar(rscratch1, rscratch1); 303 } else { 304 ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 305 } 306 if (at_return) { 307 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 308 // we may safely use the sp instead to perform the stack watermark check. 309 cmp(in_nmethod ? sp : rfp, rscratch1); 310 br(Assembler::HI, slow_path); 311 } else { 312 tbnz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 313 } 314 } 315 316 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 317 // we must set sp to zero to clear frame 318 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 319 320 // must clear fp, so that compiled frames are not confused; it is 321 // possible that we need it only for debugging 322 if (clear_fp) { 323 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 324 } 325 326 // Always clear the pc because it could have been set by make_walkable() 327 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 328 } 329 330 // Calls to C land 331 // 332 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 333 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 334 // has to be reset to 0. This is required to allow proper stack traversal. 335 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 336 Register last_java_fp, 337 Register last_java_pc, 338 Register scratch) { 339 340 if (last_java_pc->is_valid()) { 341 str(last_java_pc, Address(rthread, 342 JavaThread::frame_anchor_offset() 343 + JavaFrameAnchor::last_Java_pc_offset())); 344 } 345 346 // determine last_java_sp register 347 if (last_java_sp == sp) { 348 mov(scratch, sp); 349 last_java_sp = scratch; 350 } else if (!last_java_sp->is_valid()) { 351 last_java_sp = esp; 352 } 353 354 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 355 356 // last_java_fp is optional 357 if (last_java_fp->is_valid()) { 358 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 359 } 360 } 361 362 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 363 Register last_java_fp, 364 address last_java_pc, 365 Register scratch) { 366 assert(last_java_pc != NULL, "must provide a valid PC"); 367 368 adr(scratch, last_java_pc); 369 str(scratch, Address(rthread, 370 JavaThread::frame_anchor_offset() 371 + JavaFrameAnchor::last_Java_pc_offset())); 372 373 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 374 } 375 376 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 377 Register last_java_fp, 378 Label &L, 379 Register scratch) { 380 if (L.is_bound()) { 381 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 382 } else { 383 InstructionMark im(this); 384 L.add_patch_at(code(), locator()); 385 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 386 } 387 } 388 389 static inline bool target_needs_far_branch(address addr) { 390 // codecache size <= 128M 391 if (!MacroAssembler::far_branches()) { 392 return false; 393 } 394 // codecache size > 240M 395 if (MacroAssembler::codestub_branch_needs_far_jump()) { 396 return true; 397 } 398 // codecache size: 128M..240M 399 return !CodeCache::is_non_nmethod(addr); 400 } 401 402 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 403 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 404 assert(CodeCache::find_blob(entry.target()) != NULL, 405 "destination of far call not found in code cache"); 406 if (target_needs_far_branch(entry.target())) { 407 uint64_t offset; 408 // We can use ADRP here because we know that the total size of 409 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 410 adrp(tmp, entry, offset); 411 add(tmp, tmp, offset); 412 if (cbuf) cbuf->set_insts_mark(); 413 blr(tmp); 414 } else { 415 if (cbuf) cbuf->set_insts_mark(); 416 bl(entry); 417 } 418 } 419 420 int MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 421 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 422 assert(CodeCache::find_blob(entry.target()) != NULL, 423 "destination of far call not found in code cache"); 424 address start = pc(); 425 if (target_needs_far_branch(entry.target())) { 426 uint64_t offset; 427 // We can use ADRP here because we know that the total size of 428 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 429 adrp(tmp, entry, offset); 430 add(tmp, tmp, offset); 431 if (cbuf) cbuf->set_insts_mark(); 432 br(tmp); 433 } else { 434 if (cbuf) cbuf->set_insts_mark(); 435 b(entry); 436 } 437 return pc() - start; 438 } 439 440 void MacroAssembler::reserved_stack_check() { 441 // testing if reserved zone needs to be enabled 442 Label no_reserved_zone_enabling; 443 444 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 445 cmp(sp, rscratch1); 446 br(Assembler::LO, no_reserved_zone_enabling); 447 448 enter(); // LR and FP are live. 449 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 450 mov(c_rarg0, rthread); 451 blr(rscratch1); 452 leave(); 453 454 // We have already removed our own frame. 455 // throw_delayed_StackOverflowError will think that it's been 456 // called by our caller. 457 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 458 br(rscratch1); 459 should_not_reach_here(); 460 461 bind(no_reserved_zone_enabling); 462 } 463 464 void MacroAssembler::biased_locking_enter(Register lock_reg, 465 Register obj_reg, 466 Register swap_reg, 467 Register tmp_reg, 468 bool swap_reg_contains_mark, 469 Label& done, 470 Label* slow_case, 471 BiasedLockingCounters* counters) { 472 assert(UseBiasedLocking, "why call this otherwise?"); 473 assert_different_registers(lock_reg, obj_reg, swap_reg); 474 475 if (PrintBiasedLockingStatistics && counters == NULL) 476 counters = BiasedLocking::counters(); 477 478 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg); 479 assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout"); 480 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); 481 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); 482 Address saved_mark_addr(lock_reg, 0); 483 484 // Biased locking 485 // See whether the lock is currently biased toward our thread and 486 // whether the epoch is still valid 487 // Note that the runtime guarantees sufficient alignment of JavaThread 488 // pointers to allow age to be placed into low bits 489 // First check to see whether biasing is even enabled for this object 490 Label cas_label; 491 if (!swap_reg_contains_mark) { 492 ldr(swap_reg, mark_addr); 493 } 494 andr(tmp_reg, swap_reg, markWord::biased_lock_mask_in_place); 495 cmp(tmp_reg, (u1)markWord::biased_lock_pattern); 496 br(Assembler::NE, cas_label); 497 // The bias pattern is present in the object's header. Need to check 498 // whether the bias owner and the epoch are both still current. 499 load_prototype_header(tmp_reg, obj_reg); 500 orr(tmp_reg, tmp_reg, rthread); 501 eor(tmp_reg, swap_reg, tmp_reg); 502 andr(tmp_reg, tmp_reg, ~((int) markWord::age_mask_in_place)); 503 if (counters != NULL) { 504 Label around; 505 cbnz(tmp_reg, around); 506 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); 507 b(done); 508 bind(around); 509 } else { 510 cbz(tmp_reg, done); 511 } 512 513 Label try_revoke_bias; 514 Label try_rebias; 515 516 // At this point we know that the header has the bias pattern and 517 // that we are not the bias owner in the current epoch. We need to 518 // figure out more details about the state of the header in order to 519 // know what operations can be legally performed on the object's 520 // header. 521 522 // If the low three bits in the xor result aren't clear, that means 523 // the prototype header is no longer biased and we have to revoke 524 // the bias on this object. 525 andr(rscratch1, tmp_reg, markWord::biased_lock_mask_in_place); 526 cbnz(rscratch1, try_revoke_bias); 527 528 // Biasing is still enabled for this data type. See whether the 529 // epoch of the current bias is still valid, meaning that the epoch 530 // bits of the mark word are equal to the epoch bits of the 531 // prototype header. (Note that the prototype header's epoch bits 532 // only change at a safepoint.) If not, attempt to rebias the object 533 // toward the current thread. Note that we must be absolutely sure 534 // that the current epoch is invalid in order to do this because 535 // otherwise the manipulations it performs on the mark word are 536 // illegal. 537 andr(rscratch1, tmp_reg, markWord::epoch_mask_in_place); 538 cbnz(rscratch1, try_rebias); 539 540 // The epoch of the current bias is still valid but we know nothing 541 // about the owner; it might be set or it might be clear. Try to 542 // acquire the bias of the object using an atomic operation. If this 543 // fails we will go in to the runtime to revoke the object's bias. 544 // Note that we first construct the presumed unbiased header so we 545 // don't accidentally blow away another thread's valid bias. 546 { 547 Label here; 548 mov(rscratch1, markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place); 549 andr(swap_reg, swap_reg, rscratch1); 550 orr(tmp_reg, swap_reg, rthread); 551 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 552 // If the biasing toward our thread failed, this means that 553 // another thread succeeded in biasing it toward itself and we 554 // need to revoke that bias. The revocation will occur in the 555 // interpreter runtime in the slow case. 556 bind(here); 557 if (counters != NULL) { 558 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), 559 tmp_reg, rscratch1, rscratch2); 560 } 561 } 562 b(done); 563 564 bind(try_rebias); 565 // At this point we know the epoch has expired, meaning that the 566 // current "bias owner", if any, is actually invalid. Under these 567 // circumstances _only_, we are allowed to use the current header's 568 // value as the comparison value when doing the cas to acquire the 569 // bias in the current epoch. In other words, we allow transfer of 570 // the bias from one thread to another directly in this situation. 571 // 572 // FIXME: due to a lack of registers we currently blow away the age 573 // bits in this situation. Should attempt to preserve them. 574 { 575 Label here; 576 load_prototype_header(tmp_reg, obj_reg); 577 orr(tmp_reg, rthread, tmp_reg); 578 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 579 // If the biasing toward our thread failed, then another thread 580 // succeeded in biasing it toward itself and we need to revoke that 581 // bias. The revocation will occur in the runtime in the slow case. 582 bind(here); 583 if (counters != NULL) { 584 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), 585 tmp_reg, rscratch1, rscratch2); 586 } 587 } 588 b(done); 589 590 bind(try_revoke_bias); 591 // The prototype mark in the klass doesn't have the bias bit set any 592 // more, indicating that objects of this data type are not supposed 593 // to be biased any more. We are going to try to reset the mark of 594 // this object to the prototype value and fall through to the 595 // CAS-based locking scheme. Note that if our CAS fails, it means 596 // that another thread raced us for the privilege of revoking the 597 // bias of this particular object, so it's okay to continue in the 598 // normal locking code. 599 // 600 // FIXME: due to a lack of registers we currently blow away the age 601 // bits in this situation. Should attempt to preserve them. 602 { 603 Label here, nope; 604 load_prototype_header(tmp_reg, obj_reg); 605 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope); 606 bind(here); 607 608 // Fall through to the normal CAS-based lock, because no matter what 609 // the result of the above CAS, some thread must have succeeded in 610 // removing the bias bit from the object's header. 611 if (counters != NULL) { 612 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg, 613 rscratch1, rscratch2); 614 } 615 bind(nope); 616 } 617 618 bind(cas_label); 619 } 620 621 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { 622 assert(UseBiasedLocking, "why call this otherwise?"); 623 624 // Check for biased locking unlock case, which is a no-op 625 // Note: we do not have to check the thread ID for two reasons. 626 // First, the interpreter checks for IllegalMonitorStateException at 627 // a higher level. Second, if the bias was revoked while we held the 628 // lock, the object could not be rebiased toward another thread, so 629 // the bias bit would be clear. 630 ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 631 andr(temp_reg, temp_reg, markWord::biased_lock_mask_in_place); 632 cmp(temp_reg, (u1)markWord::biased_lock_pattern); 633 br(Assembler::EQ, done); 634 } 635 636 static void pass_arg0(MacroAssembler* masm, Register arg) { 637 if (c_rarg0 != arg ) { 638 masm->mov(c_rarg0, arg); 639 } 640 } 641 642 static void pass_arg1(MacroAssembler* masm, Register arg) { 643 if (c_rarg1 != arg ) { 644 masm->mov(c_rarg1, arg); 645 } 646 } 647 648 static void pass_arg2(MacroAssembler* masm, Register arg) { 649 if (c_rarg2 != arg ) { 650 masm->mov(c_rarg2, arg); 651 } 652 } 653 654 static void pass_arg3(MacroAssembler* masm, Register arg) { 655 if (c_rarg3 != arg ) { 656 masm->mov(c_rarg3, arg); 657 } 658 } 659 660 void MacroAssembler::call_VM_base(Register oop_result, 661 Register java_thread, 662 Register last_java_sp, 663 address entry_point, 664 int number_of_arguments, 665 bool check_exceptions) { 666 // determine java_thread register 667 if (!java_thread->is_valid()) { 668 java_thread = rthread; 669 } 670 671 // determine last_java_sp register 672 if (!last_java_sp->is_valid()) { 673 last_java_sp = esp; 674 } 675 676 // debugging support 677 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 678 assert(java_thread == rthread, "unexpected register"); 679 #ifdef ASSERT 680 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 681 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 682 #endif // ASSERT 683 684 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 685 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 686 687 // push java thread (becomes first argument of C function) 688 689 mov(c_rarg0, java_thread); 690 691 // set last Java frame before call 692 assert(last_java_sp != rfp, "can't use rfp"); 693 694 Label l; 695 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 696 697 // do the call, remove parameters 698 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 699 700 // lr could be poisoned with PAC signature during throw_pending_exception 701 // if it was tail-call optimized by compiler, since lr is not callee-saved 702 // reload it with proper value 703 adr(lr, l); 704 705 // reset last Java frame 706 // Only interpreter should have to clear fp 707 reset_last_Java_frame(true); 708 709 // C++ interp handles this in the interpreter 710 check_and_handle_popframe(java_thread); 711 check_and_handle_earlyret(java_thread); 712 713 if (check_exceptions) { 714 // check for pending exceptions (java_thread is set upon return) 715 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 716 Label ok; 717 cbz(rscratch1, ok); 718 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 719 br(rscratch1); 720 bind(ok); 721 } 722 723 // get oop result if there is one and reset the value in the thread 724 if (oop_result->is_valid()) { 725 get_vm_result(oop_result, java_thread); 726 } 727 } 728 729 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 730 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 731 } 732 733 // Maybe emit a call via a trampoline. If the code cache is small 734 // trampolines won't be emitted. 735 736 address MacroAssembler::trampoline_call(Address entry, CodeBuffer* cbuf) { 737 assert(JavaThread::current()->is_Compiler_thread(), "just checking"); 738 assert(entry.rspec().type() == relocInfo::runtime_call_type 739 || entry.rspec().type() == relocInfo::opt_virtual_call_type 740 || entry.rspec().type() == relocInfo::static_call_type 741 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 742 743 bool need_trampoline = far_branches(); 744 if (!need_trampoline && entry.rspec().type() == relocInfo::runtime_call_type && !CodeCache::contains(entry.target())) { 745 // If it is a runtime call of an address outside small CodeCache, 746 // we need to check whether it is in range. 747 address target = entry.target(); 748 assert(target < CodeCache::low_bound() || target >= CodeCache::high_bound(), "target is inside CodeCache"); 749 // Case 1: -------T-------L====CodeCache====H------- 750 // ^-------longest branch---| 751 // Case 2: -------L====CodeCache====H-------T------- 752 // |-------longest branch ---^ 753 address longest_branch_start = (target < CodeCache::low_bound()) ? CodeCache::high_bound() - NativeInstruction::instruction_size 754 : CodeCache::low_bound(); 755 need_trampoline = !reachable_from_branch_at(longest_branch_start, target); 756 } 757 758 // We need a trampoline if branches are far. 759 if (need_trampoline) { 760 bool in_scratch_emit_size = false; 761 #ifdef COMPILER2 762 // We don't want to emit a trampoline if C2 is generating dummy 763 // code during its branch shortening phase. 764 CompileTask* task = ciEnv::current()->task(); 765 in_scratch_emit_size = 766 (task != NULL && is_c2_compile(task->comp_level()) && 767 Compile::current()->output()->in_scratch_emit_size()); 768 #endif 769 if (!in_scratch_emit_size) { 770 address stub = emit_trampoline_stub(offset(), entry.target()); 771 if (stub == NULL) { 772 postcond(pc() == badAddress); 773 return NULL; // CodeCache is full 774 } 775 } 776 } 777 778 if (cbuf) cbuf->set_insts_mark(); 779 relocate(entry.rspec()); 780 if (!need_trampoline) { 781 bl(entry.target()); 782 } else { 783 bl(pc()); 784 } 785 // just need to return a non-null address 786 postcond(pc() != badAddress); 787 return pc(); 788 } 789 790 791 // Emit a trampoline stub for a call to a target which is too far away. 792 // 793 // code sequences: 794 // 795 // call-site: 796 // branch-and-link to <destination> or <trampoline stub> 797 // 798 // Related trampoline stub for this call site in the stub section: 799 // load the call target from the constant pool 800 // branch (LR still points to the call site above) 801 802 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 803 address dest) { 804 // Max stub size: alignment nop, TrampolineStub. 805 address stub = start_a_stub(NativeInstruction::instruction_size 806 + NativeCallTrampolineStub::instruction_size); 807 if (stub == NULL) { 808 return NULL; // CodeBuffer::expand failed 809 } 810 811 // Create a trampoline stub relocation which relates this trampoline stub 812 // with the call instruction at insts_call_instruction_offset in the 813 // instructions code-section. 814 align(wordSize); 815 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 816 + insts_call_instruction_offset)); 817 const int stub_start_offset = offset(); 818 819 // Now, create the trampoline stub's code: 820 // - load the call 821 // - call 822 Label target; 823 ldr(rscratch1, target); 824 br(rscratch1); 825 bind(target); 826 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 827 "should be"); 828 emit_int64((int64_t)dest); 829 830 const address stub_start_addr = addr_at(stub_start_offset); 831 832 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 833 834 end_a_stub(); 835 return stub_start_addr; 836 } 837 838 void MacroAssembler::emit_static_call_stub() { 839 // CompiledDirectStaticCall::set_to_interpreted knows the 840 // exact layout of this stub. 841 842 isb(); 843 mov_metadata(rmethod, (Metadata*)NULL); 844 845 // Jump to the entry point of the i2c stub. 846 movptr(rscratch1, 0); 847 br(rscratch1); 848 } 849 850 void MacroAssembler::c2bool(Register x) { 851 // implements x == 0 ? 0 : 1 852 // note: must only look at least-significant byte of x 853 // since C-style booleans are stored in one byte 854 // only! (was bug) 855 tst(x, 0xff); 856 cset(x, Assembler::NE); 857 } 858 859 address MacroAssembler::ic_call(address entry, jint method_index) { 860 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 861 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 862 // uintptr_t offset; 863 // ldr_constant(rscratch2, const_ptr); 864 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 865 return trampoline_call(Address(entry, rh)); 866 } 867 868 // Implementation of call_VM versions 869 870 void MacroAssembler::call_VM(Register oop_result, 871 address entry_point, 872 bool check_exceptions) { 873 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 874 } 875 876 void MacroAssembler::call_VM(Register oop_result, 877 address entry_point, 878 Register arg_1, 879 bool check_exceptions) { 880 pass_arg1(this, arg_1); 881 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 882 } 883 884 void MacroAssembler::call_VM(Register oop_result, 885 address entry_point, 886 Register arg_1, 887 Register arg_2, 888 bool check_exceptions) { 889 assert(arg_1 != c_rarg2, "smashed arg"); 890 pass_arg2(this, arg_2); 891 pass_arg1(this, arg_1); 892 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 893 } 894 895 void MacroAssembler::call_VM(Register oop_result, 896 address entry_point, 897 Register arg_1, 898 Register arg_2, 899 Register arg_3, 900 bool check_exceptions) { 901 assert(arg_1 != c_rarg3, "smashed arg"); 902 assert(arg_2 != c_rarg3, "smashed arg"); 903 pass_arg3(this, arg_3); 904 905 assert(arg_1 != c_rarg2, "smashed arg"); 906 pass_arg2(this, arg_2); 907 908 pass_arg1(this, arg_1); 909 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 910 } 911 912 void MacroAssembler::call_VM(Register oop_result, 913 Register last_java_sp, 914 address entry_point, 915 int number_of_arguments, 916 bool check_exceptions) { 917 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 918 } 919 920 void MacroAssembler::call_VM(Register oop_result, 921 Register last_java_sp, 922 address entry_point, 923 Register arg_1, 924 bool check_exceptions) { 925 pass_arg1(this, arg_1); 926 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 927 } 928 929 void MacroAssembler::call_VM(Register oop_result, 930 Register last_java_sp, 931 address entry_point, 932 Register arg_1, 933 Register arg_2, 934 bool check_exceptions) { 935 936 assert(arg_1 != c_rarg2, "smashed arg"); 937 pass_arg2(this, arg_2); 938 pass_arg1(this, arg_1); 939 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 940 } 941 942 void MacroAssembler::call_VM(Register oop_result, 943 Register last_java_sp, 944 address entry_point, 945 Register arg_1, 946 Register arg_2, 947 Register arg_3, 948 bool check_exceptions) { 949 assert(arg_1 != c_rarg3, "smashed arg"); 950 assert(arg_2 != c_rarg3, "smashed arg"); 951 pass_arg3(this, arg_3); 952 assert(arg_1 != c_rarg2, "smashed arg"); 953 pass_arg2(this, arg_2); 954 pass_arg1(this, arg_1); 955 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 956 } 957 958 959 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 960 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 961 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 962 verify_oop(oop_result, "broken oop in call_VM_base"); 963 } 964 965 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 966 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 967 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 968 } 969 970 void MacroAssembler::align(int modulus) { 971 while (offset() % modulus != 0) nop(); 972 } 973 974 // these are no-ops overridden by InterpreterMacroAssembler 975 976 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 977 978 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 979 980 // Look up the method for a megamorphic invokeinterface call. 981 // The target method is determined by <intf_klass, itable_index>. 982 // The receiver klass is in recv_klass. 983 // On success, the result will be in method_result, and execution falls through. 984 // On failure, execution transfers to the given label. 985 void MacroAssembler::lookup_interface_method(Register recv_klass, 986 Register intf_klass, 987 RegisterOrConstant itable_index, 988 Register method_result, 989 Register scan_temp, 990 Label& L_no_such_interface, 991 bool return_method) { 992 assert_different_registers(recv_klass, intf_klass, scan_temp); 993 assert_different_registers(method_result, intf_klass, scan_temp); 994 assert(recv_klass != method_result || !return_method, 995 "recv_klass can be destroyed when method isn't needed"); 996 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 997 "caller must use same register for non-constant itable index as for method"); 998 999 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1000 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1001 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 1002 int scan_step = itableOffsetEntry::size() * wordSize; 1003 int vte_size = vtableEntry::size_in_bytes(); 1004 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1005 1006 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1007 1008 // %%% Could store the aligned, prescaled offset in the klassoop. 1009 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1010 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1011 add(scan_temp, scan_temp, vtable_base); 1012 1013 if (return_method) { 1014 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1015 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1016 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1017 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1018 if (itentry_off) 1019 add(recv_klass, recv_klass, itentry_off); 1020 } 1021 1022 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 1023 // if (scan->interface() == intf) { 1024 // result = (klass + scan->offset() + itable_index); 1025 // } 1026 // } 1027 Label search, found_method; 1028 1029 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 1030 cmp(intf_klass, method_result); 1031 br(Assembler::EQ, found_method); 1032 bind(search); 1033 // Check that the previous entry is non-null. A null entry means that 1034 // the receiver class doesn't implement the interface, and wasn't the 1035 // same as when the caller was compiled. 1036 cbz(method_result, L_no_such_interface); 1037 if (itableOffsetEntry::interface_offset_in_bytes() != 0) { 1038 add(scan_temp, scan_temp, scan_step); 1039 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 1040 } else { 1041 ldr(method_result, Address(pre(scan_temp, scan_step))); 1042 } 1043 cmp(intf_klass, method_result); 1044 br(Assembler::NE, search); 1045 1046 bind(found_method); 1047 1048 // Got a hit. 1049 if (return_method) { 1050 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 1051 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1052 } 1053 } 1054 1055 // virtual method calling 1056 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1057 RegisterOrConstant vtable_index, 1058 Register method_result) { 1059 const int base = in_bytes(Klass::vtable_start_offset()); 1060 assert(vtableEntry::size() * wordSize == 8, 1061 "adjust the scaling in the code below"); 1062 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 1063 1064 if (vtable_index.is_register()) { 1065 lea(method_result, Address(recv_klass, 1066 vtable_index.as_register(), 1067 Address::lsl(LogBytesPerWord))); 1068 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1069 } else { 1070 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1071 ldr(method_result, 1072 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1073 } 1074 } 1075 1076 void MacroAssembler::check_klass_subtype(Register sub_klass, 1077 Register super_klass, 1078 Register temp_reg, 1079 Label& L_success) { 1080 Label L_failure; 1081 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 1082 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 1083 bind(L_failure); 1084 } 1085 1086 1087 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1088 Register super_klass, 1089 Register temp_reg, 1090 Label* L_success, 1091 Label* L_failure, 1092 Label* L_slow_path, 1093 RegisterOrConstant super_check_offset) { 1094 assert_different_registers(sub_klass, super_klass, temp_reg); 1095 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1096 if (super_check_offset.is_register()) { 1097 assert_different_registers(sub_klass, super_klass, 1098 super_check_offset.as_register()); 1099 } else if (must_load_sco) { 1100 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1101 } 1102 1103 Label L_fallthrough; 1104 int label_nulls = 0; 1105 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1106 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1107 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 1108 assert(label_nulls <= 1, "at most one NULL in the batch"); 1109 1110 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1111 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1112 Address super_check_offset_addr(super_klass, sco_offset); 1113 1114 // Hacked jmp, which may only be used just before L_fallthrough. 1115 #define final_jmp(label) \ 1116 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1117 else b(label) /*omit semi*/ 1118 1119 // If the pointers are equal, we are done (e.g., String[] elements). 1120 // This self-check enables sharing of secondary supertype arrays among 1121 // non-primary types such as array-of-interface. Otherwise, each such 1122 // type would need its own customized SSA. 1123 // We move this check to the front of the fast path because many 1124 // type checks are in fact trivially successful in this manner, 1125 // so we get a nicely predicted branch right at the start of the check. 1126 cmp(sub_klass, super_klass); 1127 br(Assembler::EQ, *L_success); 1128 1129 // Check the supertype display: 1130 if (must_load_sco) { 1131 ldrw(temp_reg, super_check_offset_addr); 1132 super_check_offset = RegisterOrConstant(temp_reg); 1133 } 1134 Address super_check_addr(sub_klass, super_check_offset); 1135 ldr(rscratch1, super_check_addr); 1136 cmp(super_klass, rscratch1); // load displayed supertype 1137 1138 // This check has worked decisively for primary supers. 1139 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1140 // (Secondary supers are interfaces and very deeply nested subtypes.) 1141 // This works in the same check above because of a tricky aliasing 1142 // between the super_cache and the primary super display elements. 1143 // (The 'super_check_addr' can address either, as the case requires.) 1144 // Note that the cache is updated below if it does not help us find 1145 // what we need immediately. 1146 // So if it was a primary super, we can just fail immediately. 1147 // Otherwise, it's the slow path for us (no success at this point). 1148 1149 if (super_check_offset.is_register()) { 1150 br(Assembler::EQ, *L_success); 1151 subs(zr, super_check_offset.as_register(), sc_offset); 1152 if (L_failure == &L_fallthrough) { 1153 br(Assembler::EQ, *L_slow_path); 1154 } else { 1155 br(Assembler::NE, *L_failure); 1156 final_jmp(*L_slow_path); 1157 } 1158 } else if (super_check_offset.as_constant() == sc_offset) { 1159 // Need a slow path; fast failure is impossible. 1160 if (L_slow_path == &L_fallthrough) { 1161 br(Assembler::EQ, *L_success); 1162 } else { 1163 br(Assembler::NE, *L_slow_path); 1164 final_jmp(*L_success); 1165 } 1166 } else { 1167 // No slow path; it's a fast decision. 1168 if (L_failure == &L_fallthrough) { 1169 br(Assembler::EQ, *L_success); 1170 } else { 1171 br(Assembler::NE, *L_failure); 1172 final_jmp(*L_success); 1173 } 1174 } 1175 1176 bind(L_fallthrough); 1177 1178 #undef final_jmp 1179 } 1180 1181 // These two are taken from x86, but they look generally useful 1182 1183 // scans count pointer sized words at [addr] for occurence of value, 1184 // generic 1185 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1186 Register scratch) { 1187 Label Lloop, Lexit; 1188 cbz(count, Lexit); 1189 bind(Lloop); 1190 ldr(scratch, post(addr, wordSize)); 1191 cmp(value, scratch); 1192 br(EQ, Lexit); 1193 sub(count, count, 1); 1194 cbnz(count, Lloop); 1195 bind(Lexit); 1196 } 1197 1198 // scans count 4 byte words at [addr] for occurence of value, 1199 // generic 1200 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1201 Register scratch) { 1202 Label Lloop, Lexit; 1203 cbz(count, Lexit); 1204 bind(Lloop); 1205 ldrw(scratch, post(addr, wordSize)); 1206 cmpw(value, scratch); 1207 br(EQ, Lexit); 1208 sub(count, count, 1); 1209 cbnz(count, Lloop); 1210 bind(Lexit); 1211 } 1212 1213 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1214 Register super_klass, 1215 Register temp_reg, 1216 Register temp2_reg, 1217 Label* L_success, 1218 Label* L_failure, 1219 bool set_cond_codes) { 1220 assert_different_registers(sub_klass, super_klass, temp_reg); 1221 if (temp2_reg != noreg) 1222 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1223 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1224 1225 Label L_fallthrough; 1226 int label_nulls = 0; 1227 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1228 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1229 assert(label_nulls <= 1, "at most one NULL in the batch"); 1230 1231 // a couple of useful fields in sub_klass: 1232 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1233 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1234 Address secondary_supers_addr(sub_klass, ss_offset); 1235 Address super_cache_addr( sub_klass, sc_offset); 1236 1237 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1238 1239 // Do a linear scan of the secondary super-klass chain. 1240 // This code is rarely used, so simplicity is a virtue here. 1241 // The repne_scan instruction uses fixed registers, which we must spill. 1242 // Don't worry too much about pre-existing connections with the input regs. 1243 1244 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1245 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1246 1247 RegSet pushed_registers; 1248 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1249 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1250 1251 if (super_klass != r0) { 1252 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1253 } 1254 1255 push(pushed_registers, sp); 1256 1257 // Get super_klass value into r0 (even if it was in r5 or r2). 1258 if (super_klass != r0) { 1259 mov(r0, super_klass); 1260 } 1261 1262 #ifndef PRODUCT 1263 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1264 Address pst_counter_addr(rscratch2); 1265 ldr(rscratch1, pst_counter_addr); 1266 add(rscratch1, rscratch1, 1); 1267 str(rscratch1, pst_counter_addr); 1268 #endif //PRODUCT 1269 1270 // We will consult the secondary-super array. 1271 ldr(r5, secondary_supers_addr); 1272 // Load the array length. 1273 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1274 // Skip to start of data. 1275 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1276 1277 cmp(sp, zr); // Clear Z flag; SP is never zero 1278 // Scan R2 words at [R5] for an occurrence of R0. 1279 // Set NZ/Z based on last compare. 1280 repne_scan(r5, r0, r2, rscratch1); 1281 1282 // Unspill the temp. registers: 1283 pop(pushed_registers, sp); 1284 1285 br(Assembler::NE, *L_failure); 1286 1287 // Success. Cache the super we found and proceed in triumph. 1288 str(super_klass, super_cache_addr); 1289 1290 if (L_success != &L_fallthrough) { 1291 b(*L_success); 1292 } 1293 1294 #undef IS_A_TEMP 1295 1296 bind(L_fallthrough); 1297 } 1298 1299 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1300 assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required"); 1301 assert_different_registers(klass, rthread, scratch); 1302 1303 Label L_fallthrough, L_tmp; 1304 if (L_fast_path == NULL) { 1305 L_fast_path = &L_fallthrough; 1306 } else if (L_slow_path == NULL) { 1307 L_slow_path = &L_fallthrough; 1308 } 1309 // Fast path check: class is fully initialized 1310 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1311 subs(zr, scratch, InstanceKlass::fully_initialized); 1312 br(Assembler::EQ, *L_fast_path); 1313 1314 // Fast path check: current thread is initializer thread 1315 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1316 cmp(rthread, scratch); 1317 1318 if (L_slow_path == &L_fallthrough) { 1319 br(Assembler::EQ, *L_fast_path); 1320 bind(*L_slow_path); 1321 } else if (L_fast_path == &L_fallthrough) { 1322 br(Assembler::NE, *L_slow_path); 1323 bind(*L_fast_path); 1324 } else { 1325 Unimplemented(); 1326 } 1327 } 1328 1329 void MacroAssembler::verify_oop(Register reg, const char* s) { 1330 if (!VerifyOops) return; 1331 1332 // Pass register number to verify_oop_subroutine 1333 const char* b = NULL; 1334 { 1335 ResourceMark rm; 1336 stringStream ss; 1337 ss.print("verify_oop: %s: %s", reg->name(), s); 1338 b = code_string(ss.as_string()); 1339 } 1340 BLOCK_COMMENT("verify_oop {"); 1341 1342 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1343 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1344 1345 mov(r0, reg); 1346 movptr(rscratch1, (uintptr_t)(address)b); 1347 1348 // call indirectly to solve generation ordering problem 1349 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1350 ldr(rscratch2, Address(rscratch2)); 1351 blr(rscratch2); 1352 1353 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1354 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1355 1356 BLOCK_COMMENT("} verify_oop"); 1357 } 1358 1359 void MacroAssembler::verify_oop_addr(Address addr, const char* s) { 1360 if (!VerifyOops) return; 1361 1362 const char* b = NULL; 1363 { 1364 ResourceMark rm; 1365 stringStream ss; 1366 ss.print("verify_oop_addr: %s", s); 1367 b = code_string(ss.as_string()); 1368 } 1369 BLOCK_COMMENT("verify_oop_addr {"); 1370 1371 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1372 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1373 1374 // addr may contain sp so we will have to adjust it based on the 1375 // pushes that we just did. 1376 if (addr.uses(sp)) { 1377 lea(r0, addr); 1378 ldr(r0, Address(r0, 4 * wordSize)); 1379 } else { 1380 ldr(r0, addr); 1381 } 1382 movptr(rscratch1, (uintptr_t)(address)b); 1383 1384 // call indirectly to solve generation ordering problem 1385 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1386 ldr(rscratch2, Address(rscratch2)); 1387 blr(rscratch2); 1388 1389 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1390 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1391 1392 BLOCK_COMMENT("} verify_oop_addr"); 1393 } 1394 1395 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1396 int extra_slot_offset) { 1397 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1398 int stackElementSize = Interpreter::stackElementSize; 1399 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1400 #ifdef ASSERT 1401 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1402 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1403 #endif 1404 if (arg_slot.is_constant()) { 1405 return Address(esp, arg_slot.as_constant() * stackElementSize 1406 + offset); 1407 } else { 1408 add(rscratch1, esp, arg_slot.as_register(), 1409 ext::uxtx, exact_log2(stackElementSize)); 1410 return Address(rscratch1, offset); 1411 } 1412 } 1413 1414 void MacroAssembler::call_VM_leaf_base(address entry_point, 1415 int number_of_arguments, 1416 Label *retaddr) { 1417 Label E, L; 1418 1419 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1420 1421 mov(rscratch1, entry_point); 1422 blr(rscratch1); 1423 if (retaddr) 1424 bind(*retaddr); 1425 1426 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1427 } 1428 1429 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1430 call_VM_leaf_base(entry_point, number_of_arguments); 1431 } 1432 1433 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1434 pass_arg0(this, arg_0); 1435 call_VM_leaf_base(entry_point, 1); 1436 } 1437 1438 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1439 pass_arg0(this, arg_0); 1440 pass_arg1(this, arg_1); 1441 call_VM_leaf_base(entry_point, 2); 1442 } 1443 1444 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1445 Register arg_1, Register arg_2) { 1446 pass_arg0(this, arg_0); 1447 pass_arg1(this, arg_1); 1448 pass_arg2(this, arg_2); 1449 call_VM_leaf_base(entry_point, 3); 1450 } 1451 1452 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1453 pass_arg0(this, arg_0); 1454 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1455 } 1456 1457 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1458 1459 assert(arg_0 != c_rarg1, "smashed arg"); 1460 pass_arg1(this, arg_1); 1461 pass_arg0(this, arg_0); 1462 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1463 } 1464 1465 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1466 assert(arg_0 != c_rarg2, "smashed arg"); 1467 assert(arg_1 != c_rarg2, "smashed arg"); 1468 pass_arg2(this, arg_2); 1469 assert(arg_0 != c_rarg1, "smashed arg"); 1470 pass_arg1(this, arg_1); 1471 pass_arg0(this, arg_0); 1472 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1473 } 1474 1475 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1476 assert(arg_0 != c_rarg3, "smashed arg"); 1477 assert(arg_1 != c_rarg3, "smashed arg"); 1478 assert(arg_2 != c_rarg3, "smashed arg"); 1479 pass_arg3(this, arg_3); 1480 assert(arg_0 != c_rarg2, "smashed arg"); 1481 assert(arg_1 != c_rarg2, "smashed arg"); 1482 pass_arg2(this, arg_2); 1483 assert(arg_0 != c_rarg1, "smashed arg"); 1484 pass_arg1(this, arg_1); 1485 pass_arg0(this, arg_0); 1486 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1487 } 1488 1489 void MacroAssembler::null_check(Register reg, int offset) { 1490 if (needs_explicit_null_check(offset)) { 1491 // provoke OS NULL exception if reg = NULL by 1492 // accessing M[reg] w/o changing any registers 1493 // NOTE: this is plenty to provoke a segv 1494 ldr(zr, Address(reg)); 1495 } else { 1496 // nothing to do, (later) access of M[reg + offset] 1497 // will provoke OS NULL exception if reg = NULL 1498 } 1499 } 1500 1501 // MacroAssembler protected routines needed to implement 1502 // public methods 1503 1504 void MacroAssembler::mov(Register r, Address dest) { 1505 code_section()->relocate(pc(), dest.rspec()); 1506 uint64_t imm64 = (uint64_t)dest.target(); 1507 movptr(r, imm64); 1508 } 1509 1510 // Move a constant pointer into r. In AArch64 mode the virtual 1511 // address space is 48 bits in size, so we only need three 1512 // instructions to create a patchable instruction sequence that can 1513 // reach anywhere. 1514 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1515 #ifndef PRODUCT 1516 { 1517 char buffer[64]; 1518 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 1519 block_comment(buffer); 1520 } 1521 #endif 1522 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 1523 movz(r, imm64 & 0xffff); 1524 imm64 >>= 16; 1525 movk(r, imm64 & 0xffff, 16); 1526 imm64 >>= 16; 1527 movk(r, imm64 & 0xffff, 32); 1528 } 1529 1530 // Macro to mov replicated immediate to vector register. 1531 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 1532 // the upper 56/48/32 bits must be zeros for B/H/S type. 1533 // Vd will get the following values for different arrangements in T 1534 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 1535 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1536 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 1537 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1538 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1539 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1540 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 1541 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 1542 // Clobbers rscratch1 1543 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 1544 assert(T != T1Q, "unsupported"); 1545 if (T == T1D || T == T2D) { 1546 int imm = operand_valid_for_movi_immediate(imm64, T); 1547 if (-1 != imm) { 1548 movi(Vd, T, imm); 1549 } else { 1550 mov(rscratch1, imm64); 1551 dup(Vd, T, rscratch1); 1552 } 1553 return; 1554 } 1555 1556 #ifdef ASSERT 1557 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 1558 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 1559 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 1560 #endif 1561 int shift = operand_valid_for_movi_immediate(imm64, T); 1562 uint32_t imm32 = imm64 & 0xffffffffULL; 1563 if (shift >= 0) { 1564 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 1565 } else { 1566 movw(rscratch1, imm32); 1567 dup(Vd, T, rscratch1); 1568 } 1569 } 1570 1571 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 1572 { 1573 #ifndef PRODUCT 1574 { 1575 char buffer[64]; 1576 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1577 block_comment(buffer); 1578 } 1579 #endif 1580 if (operand_valid_for_logical_immediate(false, imm64)) { 1581 orr(dst, zr, imm64); 1582 } else { 1583 // we can use a combination of MOVZ or MOVN with 1584 // MOVK to build up the constant 1585 uint64_t imm_h[4]; 1586 int zero_count = 0; 1587 int neg_count = 0; 1588 int i; 1589 for (i = 0; i < 4; i++) { 1590 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1591 if (imm_h[i] == 0) { 1592 zero_count++; 1593 } else if (imm_h[i] == 0xffffL) { 1594 neg_count++; 1595 } 1596 } 1597 if (zero_count == 4) { 1598 // one MOVZ will do 1599 movz(dst, 0); 1600 } else if (neg_count == 4) { 1601 // one MOVN will do 1602 movn(dst, 0); 1603 } else if (zero_count == 3) { 1604 for (i = 0; i < 4; i++) { 1605 if (imm_h[i] != 0L) { 1606 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1607 break; 1608 } 1609 } 1610 } else if (neg_count == 3) { 1611 // one MOVN will do 1612 for (int i = 0; i < 4; i++) { 1613 if (imm_h[i] != 0xffffL) { 1614 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1615 break; 1616 } 1617 } 1618 } else if (zero_count == 2) { 1619 // one MOVZ and one MOVK will do 1620 for (i = 0; i < 3; i++) { 1621 if (imm_h[i] != 0L) { 1622 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1623 i++; 1624 break; 1625 } 1626 } 1627 for (;i < 4; i++) { 1628 if (imm_h[i] != 0L) { 1629 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1630 } 1631 } 1632 } else if (neg_count == 2) { 1633 // one MOVN and one MOVK will do 1634 for (i = 0; i < 4; i++) { 1635 if (imm_h[i] != 0xffffL) { 1636 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1637 i++; 1638 break; 1639 } 1640 } 1641 for (;i < 4; i++) { 1642 if (imm_h[i] != 0xffffL) { 1643 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1644 } 1645 } 1646 } else if (zero_count == 1) { 1647 // one MOVZ and two MOVKs will do 1648 for (i = 0; i < 4; i++) { 1649 if (imm_h[i] != 0L) { 1650 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1651 i++; 1652 break; 1653 } 1654 } 1655 for (;i < 4; i++) { 1656 if (imm_h[i] != 0x0L) { 1657 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1658 } 1659 } 1660 } else if (neg_count == 1) { 1661 // one MOVN and two MOVKs will do 1662 for (i = 0; i < 4; i++) { 1663 if (imm_h[i] != 0xffffL) { 1664 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1665 i++; 1666 break; 1667 } 1668 } 1669 for (;i < 4; i++) { 1670 if (imm_h[i] != 0xffffL) { 1671 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1672 } 1673 } 1674 } else { 1675 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1676 movz(dst, (uint32_t)imm_h[0], 0); 1677 for (i = 1; i < 4; i++) { 1678 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1679 } 1680 } 1681 } 1682 } 1683 1684 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 1685 { 1686 #ifndef PRODUCT 1687 { 1688 char buffer[64]; 1689 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 1690 block_comment(buffer); 1691 } 1692 #endif 1693 if (operand_valid_for_logical_immediate(true, imm32)) { 1694 orrw(dst, zr, imm32); 1695 } else { 1696 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1697 // constant 1698 uint32_t imm_h[2]; 1699 imm_h[0] = imm32 & 0xffff; 1700 imm_h[1] = ((imm32 >> 16) & 0xffff); 1701 if (imm_h[0] == 0) { 1702 movzw(dst, imm_h[1], 16); 1703 } else if (imm_h[0] == 0xffff) { 1704 movnw(dst, imm_h[1] ^ 0xffff, 16); 1705 } else if (imm_h[1] == 0) { 1706 movzw(dst, imm_h[0], 0); 1707 } else if (imm_h[1] == 0xffff) { 1708 movnw(dst, imm_h[0] ^ 0xffff, 0); 1709 } else { 1710 // use a MOVZ and MOVK (makes it easier to debug) 1711 movzw(dst, imm_h[0], 0); 1712 movkw(dst, imm_h[1], 16); 1713 } 1714 } 1715 } 1716 1717 // Form an address from base + offset in Rd. Rd may or may 1718 // not actually be used: you must use the Address that is returned. 1719 // It is up to you to ensure that the shift provided matches the size 1720 // of your data. 1721 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 1722 if (Address::offset_ok_for_immed(byte_offset, shift)) 1723 // It fits; no need for any heroics 1724 return Address(base, byte_offset); 1725 1726 // Don't do anything clever with negative or misaligned offsets 1727 unsigned mask = (1 << shift) - 1; 1728 if (byte_offset < 0 || byte_offset & mask) { 1729 mov(Rd, byte_offset); 1730 add(Rd, base, Rd); 1731 return Address(Rd); 1732 } 1733 1734 // See if we can do this with two 12-bit offsets 1735 { 1736 uint64_t word_offset = byte_offset >> shift; 1737 uint64_t masked_offset = word_offset & 0xfff000; 1738 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 1739 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1740 add(Rd, base, masked_offset << shift); 1741 word_offset -= masked_offset; 1742 return Address(Rd, word_offset << shift); 1743 } 1744 } 1745 1746 // Do it the hard way 1747 mov(Rd, byte_offset); 1748 add(Rd, base, Rd); 1749 return Address(Rd); 1750 } 1751 1752 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) { 1753 if (UseLSE) { 1754 mov(tmp, 1); 1755 ldadd(Assembler::word, tmp, zr, counter_addr); 1756 return; 1757 } 1758 Label retry_load; 1759 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 1760 prfm(Address(counter_addr), PSTL1STRM); 1761 bind(retry_load); 1762 // flush and load exclusive from the memory location 1763 ldxrw(tmp, counter_addr); 1764 addw(tmp, tmp, 1); 1765 // if we store+flush with no intervening write tmp wil be zero 1766 stxrw(tmp2, tmp, counter_addr); 1767 cbnzw(tmp2, retry_load); 1768 } 1769 1770 1771 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 1772 bool want_remainder, Register scratch) 1773 { 1774 // Full implementation of Java idiv and irem. The function 1775 // returns the (pc) offset of the div instruction - may be needed 1776 // for implicit exceptions. 1777 // 1778 // constraint : ra/rb =/= scratch 1779 // normal case 1780 // 1781 // input : ra: dividend 1782 // rb: divisor 1783 // 1784 // result: either 1785 // quotient (= ra idiv rb) 1786 // remainder (= ra irem rb) 1787 1788 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1789 1790 int idivl_offset = offset(); 1791 if (! want_remainder) { 1792 sdivw(result, ra, rb); 1793 } else { 1794 sdivw(scratch, ra, rb); 1795 Assembler::msubw(result, scratch, rb, ra); 1796 } 1797 1798 return idivl_offset; 1799 } 1800 1801 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 1802 bool want_remainder, Register scratch) 1803 { 1804 // Full implementation of Java ldiv and lrem. The function 1805 // returns the (pc) offset of the div instruction - may be needed 1806 // for implicit exceptions. 1807 // 1808 // constraint : ra/rb =/= scratch 1809 // normal case 1810 // 1811 // input : ra: dividend 1812 // rb: divisor 1813 // 1814 // result: either 1815 // quotient (= ra idiv rb) 1816 // remainder (= ra irem rb) 1817 1818 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1819 1820 int idivq_offset = offset(); 1821 if (! want_remainder) { 1822 sdiv(result, ra, rb); 1823 } else { 1824 sdiv(scratch, ra, rb); 1825 Assembler::msub(result, scratch, rb, ra); 1826 } 1827 1828 return idivq_offset; 1829 } 1830 1831 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 1832 address prev = pc() - NativeMembar::instruction_size; 1833 address last = code()->last_insn(); 1834 if (last != NULL && nativeInstruction_at(last)->is_Membar() && prev == last) { 1835 NativeMembar *bar = NativeMembar_at(prev); 1836 // We are merging two memory barrier instructions. On AArch64 we 1837 // can do this simply by ORing them together. 1838 bar->set_kind(bar->get_kind() | order_constraint); 1839 BLOCK_COMMENT("merged membar"); 1840 } else { 1841 code()->set_last_insn(pc()); 1842 dmb(Assembler::barrier(order_constraint)); 1843 } 1844 } 1845 1846 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 1847 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 1848 merge_ldst(rt, adr, size_in_bytes, is_store); 1849 code()->clear_last_insn(); 1850 return true; 1851 } else { 1852 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 1853 const uint64_t mask = size_in_bytes - 1; 1854 if (adr.getMode() == Address::base_plus_offset && 1855 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 1856 code()->set_last_insn(pc()); 1857 } 1858 return false; 1859 } 1860 } 1861 1862 void MacroAssembler::ldr(Register Rx, const Address &adr) { 1863 // We always try to merge two adjacent loads into one ldp. 1864 if (!try_merge_ldst(Rx, adr, 8, false)) { 1865 Assembler::ldr(Rx, adr); 1866 } 1867 } 1868 1869 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 1870 // We always try to merge two adjacent loads into one ldp. 1871 if (!try_merge_ldst(Rw, adr, 4, false)) { 1872 Assembler::ldrw(Rw, adr); 1873 } 1874 } 1875 1876 void MacroAssembler::str(Register Rx, const Address &adr) { 1877 // We always try to merge two adjacent stores into one stp. 1878 if (!try_merge_ldst(Rx, adr, 8, true)) { 1879 Assembler::str(Rx, adr); 1880 } 1881 } 1882 1883 void MacroAssembler::strw(Register Rw, const Address &adr) { 1884 // We always try to merge two adjacent stores into one stp. 1885 if (!try_merge_ldst(Rw, adr, 4, true)) { 1886 Assembler::strw(Rw, adr); 1887 } 1888 } 1889 1890 // MacroAssembler routines found actually to be needed 1891 1892 void MacroAssembler::push(Register src) 1893 { 1894 str(src, Address(pre(esp, -1 * wordSize))); 1895 } 1896 1897 void MacroAssembler::pop(Register dst) 1898 { 1899 ldr(dst, Address(post(esp, 1 * wordSize))); 1900 } 1901 1902 // Note: load_unsigned_short used to be called load_unsigned_word. 1903 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1904 int off = offset(); 1905 ldrh(dst, src); 1906 return off; 1907 } 1908 1909 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1910 int off = offset(); 1911 ldrb(dst, src); 1912 return off; 1913 } 1914 1915 int MacroAssembler::load_signed_short(Register dst, Address src) { 1916 int off = offset(); 1917 ldrsh(dst, src); 1918 return off; 1919 } 1920 1921 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1922 int off = offset(); 1923 ldrsb(dst, src); 1924 return off; 1925 } 1926 1927 int MacroAssembler::load_signed_short32(Register dst, Address src) { 1928 int off = offset(); 1929 ldrshw(dst, src); 1930 return off; 1931 } 1932 1933 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 1934 int off = offset(); 1935 ldrsbw(dst, src); 1936 return off; 1937 } 1938 1939 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1940 switch (size_in_bytes) { 1941 case 8: ldr(dst, src); break; 1942 case 4: ldrw(dst, src); break; 1943 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1944 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1945 default: ShouldNotReachHere(); 1946 } 1947 } 1948 1949 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1950 switch (size_in_bytes) { 1951 case 8: str(src, dst); break; 1952 case 4: strw(src, dst); break; 1953 case 2: strh(src, dst); break; 1954 case 1: strb(src, dst); break; 1955 default: ShouldNotReachHere(); 1956 } 1957 } 1958 1959 void MacroAssembler::decrementw(Register reg, int value) 1960 { 1961 if (value < 0) { incrementw(reg, -value); return; } 1962 if (value == 0) { return; } 1963 if (value < (1 << 12)) { subw(reg, reg, value); return; } 1964 /* else */ { 1965 guarantee(reg != rscratch2, "invalid dst for register decrement"); 1966 movw(rscratch2, (unsigned)value); 1967 subw(reg, reg, rscratch2); 1968 } 1969 } 1970 1971 void MacroAssembler::decrement(Register reg, int value) 1972 { 1973 if (value < 0) { increment(reg, -value); return; } 1974 if (value == 0) { return; } 1975 if (value < (1 << 12)) { sub(reg, reg, value); return; } 1976 /* else */ { 1977 assert(reg != rscratch2, "invalid dst for register decrement"); 1978 mov(rscratch2, (uint64_t)value); 1979 sub(reg, reg, rscratch2); 1980 } 1981 } 1982 1983 void MacroAssembler::decrementw(Address dst, int value) 1984 { 1985 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 1986 if (dst.getMode() == Address::literal) { 1987 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1988 lea(rscratch2, dst); 1989 dst = Address(rscratch2); 1990 } 1991 ldrw(rscratch1, dst); 1992 decrementw(rscratch1, value); 1993 strw(rscratch1, dst); 1994 } 1995 1996 void MacroAssembler::decrement(Address dst, int value) 1997 { 1998 assert(!dst.uses(rscratch1), "invalid address for decrement"); 1999 if (dst.getMode() == Address::literal) { 2000 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2001 lea(rscratch2, dst); 2002 dst = Address(rscratch2); 2003 } 2004 ldr(rscratch1, dst); 2005 decrement(rscratch1, value); 2006 str(rscratch1, dst); 2007 } 2008 2009 void MacroAssembler::incrementw(Register reg, int value) 2010 { 2011 if (value < 0) { decrementw(reg, -value); return; } 2012 if (value == 0) { return; } 2013 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2014 /* else */ { 2015 assert(reg != rscratch2, "invalid dst for register increment"); 2016 movw(rscratch2, (unsigned)value); 2017 addw(reg, reg, rscratch2); 2018 } 2019 } 2020 2021 void MacroAssembler::increment(Register reg, int value) 2022 { 2023 if (value < 0) { decrement(reg, -value); return; } 2024 if (value == 0) { return; } 2025 if (value < (1 << 12)) { add(reg, reg, value); return; } 2026 /* else */ { 2027 assert(reg != rscratch2, "invalid dst for register increment"); 2028 movw(rscratch2, (unsigned)value); 2029 add(reg, reg, rscratch2); 2030 } 2031 } 2032 2033 void MacroAssembler::incrementw(Address dst, int value) 2034 { 2035 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2036 if (dst.getMode() == Address::literal) { 2037 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2038 lea(rscratch2, dst); 2039 dst = Address(rscratch2); 2040 } 2041 ldrw(rscratch1, dst); 2042 incrementw(rscratch1, value); 2043 strw(rscratch1, dst); 2044 } 2045 2046 void MacroAssembler::increment(Address dst, int value) 2047 { 2048 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2049 if (dst.getMode() == Address::literal) { 2050 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2051 lea(rscratch2, dst); 2052 dst = Address(rscratch2); 2053 } 2054 ldr(rscratch1, dst); 2055 increment(rscratch1, value); 2056 str(rscratch1, dst); 2057 } 2058 2059 // Push lots of registers in the bit set supplied. Don't push sp. 2060 // Return the number of words pushed 2061 int MacroAssembler::push(unsigned int bitset, Register stack) { 2062 int words_pushed = 0; 2063 2064 // Scan bitset to accumulate register pairs 2065 unsigned char regs[32]; 2066 int count = 0; 2067 for (int reg = 0; reg <= 30; reg++) { 2068 if (1 & bitset) 2069 regs[count++] = reg; 2070 bitset >>= 1; 2071 } 2072 regs[count++] = zr->encoding_nocheck(); 2073 count &= ~1; // Only push an even nuber of regs 2074 2075 if (count) { 2076 stp(as_Register(regs[0]), as_Register(regs[1]), 2077 Address(pre(stack, -count * wordSize))); 2078 words_pushed += 2; 2079 } 2080 for (int i = 2; i < count; i += 2) { 2081 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2082 Address(stack, i * wordSize)); 2083 words_pushed += 2; 2084 } 2085 2086 assert(words_pushed == count, "oops, pushed != count"); 2087 2088 return count; 2089 } 2090 2091 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2092 int words_pushed = 0; 2093 2094 // Scan bitset to accumulate register pairs 2095 unsigned char regs[32]; 2096 int count = 0; 2097 for (int reg = 0; reg <= 30; reg++) { 2098 if (1 & bitset) 2099 regs[count++] = reg; 2100 bitset >>= 1; 2101 } 2102 regs[count++] = zr->encoding_nocheck(); 2103 count &= ~1; 2104 2105 for (int i = 2; i < count; i += 2) { 2106 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2107 Address(stack, i * wordSize)); 2108 words_pushed += 2; 2109 } 2110 if (count) { 2111 ldp(as_Register(regs[0]), as_Register(regs[1]), 2112 Address(post(stack, count * wordSize))); 2113 words_pushed += 2; 2114 } 2115 2116 assert(words_pushed == count, "oops, pushed != count"); 2117 2118 return count; 2119 } 2120 2121 // Push lots of registers in the bit set supplied. Don't push sp. 2122 // Return the number of dwords pushed 2123 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 2124 int words_pushed = 0; 2125 bool use_sve = false; 2126 int sve_vector_size_in_bytes = 0; 2127 2128 #ifdef COMPILER2 2129 use_sve = Matcher::supports_scalable_vector(); 2130 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2131 #endif 2132 2133 // Scan bitset to accumulate register pairs 2134 unsigned char regs[32]; 2135 int count = 0; 2136 for (int reg = 0; reg <= 31; reg++) { 2137 if (1 & bitset) 2138 regs[count++] = reg; 2139 bitset >>= 1; 2140 } 2141 2142 if (count == 0) { 2143 return 0; 2144 } 2145 2146 // SVE 2147 if (use_sve && sve_vector_size_in_bytes > 16) { 2148 sub(stack, stack, sve_vector_size_in_bytes * count); 2149 for (int i = 0; i < count; i++) { 2150 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2151 } 2152 return count * sve_vector_size_in_bytes / 8; 2153 } 2154 2155 // NEON 2156 if (count == 1) { 2157 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2158 return 2; 2159 } 2160 2161 bool odd = (count & 1) == 1; 2162 int push_slots = count + (odd ? 1 : 0); 2163 2164 // Always pushing full 128 bit registers. 2165 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2166 words_pushed += 2; 2167 2168 for (int i = 2; i + 1 < count; i += 2) { 2169 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2170 words_pushed += 2; 2171 } 2172 2173 if (odd) { 2174 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2175 words_pushed++; 2176 } 2177 2178 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2179 return count * 2; 2180 } 2181 2182 // Return the number of dwords poped 2183 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 2184 int words_pushed = 0; 2185 bool use_sve = false; 2186 int sve_vector_size_in_bytes = 0; 2187 2188 #ifdef COMPILER2 2189 use_sve = Matcher::supports_scalable_vector(); 2190 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2191 #endif 2192 // Scan bitset to accumulate register pairs 2193 unsigned char regs[32]; 2194 int count = 0; 2195 for (int reg = 0; reg <= 31; reg++) { 2196 if (1 & bitset) 2197 regs[count++] = reg; 2198 bitset >>= 1; 2199 } 2200 2201 if (count == 0) { 2202 return 0; 2203 } 2204 2205 // SVE 2206 if (use_sve && sve_vector_size_in_bytes > 16) { 2207 for (int i = count - 1; i >= 0; i--) { 2208 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 2209 } 2210 add(stack, stack, sve_vector_size_in_bytes * count); 2211 return count * sve_vector_size_in_bytes / 8; 2212 } 2213 2214 // NEON 2215 if (count == 1) { 2216 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 2217 return 2; 2218 } 2219 2220 bool odd = (count & 1) == 1; 2221 int push_slots = count + (odd ? 1 : 0); 2222 2223 if (odd) { 2224 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2225 words_pushed++; 2226 } 2227 2228 for (int i = 2; i + 1 < count; i += 2) { 2229 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2230 words_pushed += 2; 2231 } 2232 2233 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 2234 words_pushed += 2; 2235 2236 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2237 2238 return count * 2; 2239 } 2240 2241 #ifdef ASSERT 2242 void MacroAssembler::verify_heapbase(const char* msg) { 2243 #if 0 2244 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2245 assert (Universe::heap() != NULL, "java heap should be initialized"); 2246 if (!UseCompressedOops || Universe::ptr_base() == NULL) { 2247 // rheapbase is allocated as general register 2248 return; 2249 } 2250 if (CheckCompressedOops) { 2251 Label ok; 2252 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2253 cmpptr(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2254 br(Assembler::EQ, ok); 2255 stop(msg); 2256 bind(ok); 2257 pop(1 << rscratch1->encoding(), sp); 2258 } 2259 #endif 2260 } 2261 #endif 2262 2263 void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) { 2264 Label done, not_weak; 2265 cbz(value, done); // Use NULL as-is. 2266 2267 STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u); 2268 tbz(r0, 0, not_weak); // Test for jweak tag. 2269 2270 // Resolve jweak. 2271 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value, 2272 Address(value, -JNIHandles::weak_tag_value), tmp, thread); 2273 verify_oop(value); 2274 b(done); 2275 2276 bind(not_weak); 2277 // Resolve (untagged) jobject. 2278 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread); 2279 verify_oop(value); 2280 bind(done); 2281 } 2282 2283 void MacroAssembler::stop(const char* msg) { 2284 BLOCK_COMMENT(msg); 2285 dcps1(0xdeae); 2286 emit_int64((uintptr_t)msg); 2287 } 2288 2289 void MacroAssembler::unimplemented(const char* what) { 2290 const char* buf = NULL; 2291 { 2292 ResourceMark rm; 2293 stringStream ss; 2294 ss.print("unimplemented: %s", what); 2295 buf = code_string(ss.as_string()); 2296 } 2297 stop(buf); 2298 } 2299 2300 // If a constant does not fit in an immediate field, generate some 2301 // number of MOV instructions and then perform the operation. 2302 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 2303 add_sub_imm_insn insn1, 2304 add_sub_reg_insn insn2, 2305 bool is32) { 2306 assert(Rd != zr, "Rd = zr and not setting flags?"); 2307 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2308 if (fits) { 2309 (this->*insn1)(Rd, Rn, imm); 2310 } else { 2311 if (uabs(imm) < (1 << 24)) { 2312 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2313 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2314 } else { 2315 assert_different_registers(Rd, Rn); 2316 mov(Rd, imm); 2317 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2318 } 2319 } 2320 } 2321 2322 // Seperate vsn which sets the flags. Optimisations are more restricted 2323 // because we must set the flags correctly. 2324 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 2325 add_sub_imm_insn insn1, 2326 add_sub_reg_insn insn2, 2327 bool is32) { 2328 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2329 if (fits) { 2330 (this->*insn1)(Rd, Rn, imm); 2331 } else { 2332 assert_different_registers(Rd, Rn); 2333 assert(Rd != zr, "overflow in immediate operand"); 2334 mov(Rd, imm); 2335 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2336 } 2337 } 2338 2339 2340 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2341 if (increment.is_register()) { 2342 add(Rd, Rn, increment.as_register()); 2343 } else { 2344 add(Rd, Rn, increment.as_constant()); 2345 } 2346 } 2347 2348 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2349 if (increment.is_register()) { 2350 addw(Rd, Rn, increment.as_register()); 2351 } else { 2352 addw(Rd, Rn, increment.as_constant()); 2353 } 2354 } 2355 2356 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2357 if (decrement.is_register()) { 2358 sub(Rd, Rn, decrement.as_register()); 2359 } else { 2360 sub(Rd, Rn, decrement.as_constant()); 2361 } 2362 } 2363 2364 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2365 if (decrement.is_register()) { 2366 subw(Rd, Rn, decrement.as_register()); 2367 } else { 2368 subw(Rd, Rn, decrement.as_constant()); 2369 } 2370 } 2371 2372 void MacroAssembler::reinit_heapbase() 2373 { 2374 if (UseCompressedOops) { 2375 if (Universe::is_fully_initialized()) { 2376 mov(rheapbase, CompressedOops::ptrs_base()); 2377 } else { 2378 lea(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2379 ldr(rheapbase, Address(rheapbase)); 2380 } 2381 } 2382 } 2383 2384 // this simulates the behaviour of the x86 cmpxchg instruction using a 2385 // load linked/store conditional pair. we use the acquire/release 2386 // versions of these instructions so that we flush pending writes as 2387 // per Java semantics. 2388 2389 // n.b the x86 version assumes the old value to be compared against is 2390 // in rax and updates rax with the value located in memory if the 2391 // cmpxchg fails. we supply a register for the old value explicitly 2392 2393 // the aarch64 load linked/store conditional instructions do not 2394 // accept an offset. so, unlike x86, we must provide a plain register 2395 // to identify the memory word to be compared/exchanged rather than a 2396 // register+offset Address. 2397 2398 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2399 Label &succeed, Label *fail) { 2400 // oldv holds comparison value 2401 // newv holds value to write in exchange 2402 // addr identifies memory word to compare against/update 2403 if (UseLSE) { 2404 mov(tmp, oldv); 2405 casal(Assembler::xword, oldv, newv, addr); 2406 cmp(tmp, oldv); 2407 br(Assembler::EQ, succeed); 2408 membar(AnyAny); 2409 } else { 2410 Label retry_load, nope; 2411 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2412 prfm(Address(addr), PSTL1STRM); 2413 bind(retry_load); 2414 // flush and load exclusive from the memory location 2415 // and fail if it is not what we expect 2416 ldaxr(tmp, addr); 2417 cmp(tmp, oldv); 2418 br(Assembler::NE, nope); 2419 // if we store+flush with no intervening write tmp wil be zero 2420 stlxr(tmp, newv, addr); 2421 cbzw(tmp, succeed); 2422 // retry so we only ever return after a load fails to compare 2423 // ensures we don't return a stale value after a failed write. 2424 b(retry_load); 2425 // if the memory word differs we return it in oldv and signal a fail 2426 bind(nope); 2427 membar(AnyAny); 2428 mov(oldv, tmp); 2429 } 2430 if (fail) 2431 b(*fail); 2432 } 2433 2434 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2435 Label &succeed, Label *fail) { 2436 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2437 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2438 } 2439 2440 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2441 Label &succeed, Label *fail) { 2442 // oldv holds comparison value 2443 // newv holds value to write in exchange 2444 // addr identifies memory word to compare against/update 2445 // tmp returns 0/1 for success/failure 2446 if (UseLSE) { 2447 mov(tmp, oldv); 2448 casal(Assembler::word, oldv, newv, addr); 2449 cmp(tmp, oldv); 2450 br(Assembler::EQ, succeed); 2451 membar(AnyAny); 2452 } else { 2453 Label retry_load, nope; 2454 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2455 prfm(Address(addr), PSTL1STRM); 2456 bind(retry_load); 2457 // flush and load exclusive from the memory location 2458 // and fail if it is not what we expect 2459 ldaxrw(tmp, addr); 2460 cmp(tmp, oldv); 2461 br(Assembler::NE, nope); 2462 // if we store+flush with no intervening write tmp wil be zero 2463 stlxrw(tmp, newv, addr); 2464 cbzw(tmp, succeed); 2465 // retry so we only ever return after a load fails to compare 2466 // ensures we don't return a stale value after a failed write. 2467 b(retry_load); 2468 // if the memory word differs we return it in oldv and signal a fail 2469 bind(nope); 2470 membar(AnyAny); 2471 mov(oldv, tmp); 2472 } 2473 if (fail) 2474 b(*fail); 2475 } 2476 2477 // A generic CAS; success or failure is in the EQ flag. A weak CAS 2478 // doesn't retry and may fail spuriously. If the oldval is wanted, 2479 // Pass a register for the result, otherwise pass noreg. 2480 2481 // Clobbers rscratch1 2482 void MacroAssembler::cmpxchg(Register addr, Register expected, 2483 Register new_val, 2484 enum operand_size size, 2485 bool acquire, bool release, 2486 bool weak, 2487 Register result) { 2488 if (result == noreg) result = rscratch1; 2489 BLOCK_COMMENT("cmpxchg {"); 2490 if (UseLSE) { 2491 mov(result, expected); 2492 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 2493 compare_eq(result, expected, size); 2494 #ifdef ASSERT 2495 // Poison rscratch1 which is written on !UseLSE branch 2496 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 2497 #endif 2498 } else { 2499 Label retry_load, done; 2500 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2501 prfm(Address(addr), PSTL1STRM); 2502 bind(retry_load); 2503 load_exclusive(result, addr, size, acquire); 2504 compare_eq(result, expected, size); 2505 br(Assembler::NE, done); 2506 store_exclusive(rscratch1, new_val, addr, size, release); 2507 if (weak) { 2508 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 2509 } else { 2510 cbnzw(rscratch1, retry_load); 2511 } 2512 bind(done); 2513 } 2514 BLOCK_COMMENT("} cmpxchg"); 2515 } 2516 2517 // A generic comparison. Only compares for equality, clobbers rscratch1. 2518 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 2519 if (size == xword) { 2520 cmp(rm, rn); 2521 } else if (size == word) { 2522 cmpw(rm, rn); 2523 } else if (size == halfword) { 2524 eorw(rscratch1, rm, rn); 2525 ands(zr, rscratch1, 0xffff); 2526 } else if (size == byte) { 2527 eorw(rscratch1, rm, rn); 2528 ands(zr, rscratch1, 0xff); 2529 } else { 2530 ShouldNotReachHere(); 2531 } 2532 } 2533 2534 2535 static bool different(Register a, RegisterOrConstant b, Register c) { 2536 if (b.is_constant()) 2537 return a != c; 2538 else 2539 return a != b.as_register() && a != c && b.as_register() != c; 2540 } 2541 2542 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2543 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2544 if (UseLSE) { \ 2545 prev = prev->is_valid() ? prev : zr; \ 2546 if (incr.is_register()) { \ 2547 AOP(sz, incr.as_register(), prev, addr); \ 2548 } else { \ 2549 mov(rscratch2, incr.as_constant()); \ 2550 AOP(sz, rscratch2, prev, addr); \ 2551 } \ 2552 return; \ 2553 } \ 2554 Register result = rscratch2; \ 2555 if (prev->is_valid()) \ 2556 result = different(prev, incr, addr) ? prev : rscratch2; \ 2557 \ 2558 Label retry_load; \ 2559 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ 2560 prfm(Address(addr), PSTL1STRM); \ 2561 bind(retry_load); \ 2562 LDXR(result, addr); \ 2563 OP(rscratch1, result, incr); \ 2564 STXR(rscratch2, rscratch1, addr); \ 2565 cbnzw(rscratch2, retry_load); \ 2566 if (prev->is_valid() && prev != result) { \ 2567 IOP(prev, rscratch1, incr); \ 2568 } \ 2569 } 2570 2571 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2572 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2573 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2574 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2575 2576 #undef ATOMIC_OP 2577 2578 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2579 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2580 if (UseLSE) { \ 2581 prev = prev->is_valid() ? prev : zr; \ 2582 AOP(sz, newv, prev, addr); \ 2583 return; \ 2584 } \ 2585 Register result = rscratch2; \ 2586 if (prev->is_valid()) \ 2587 result = different(prev, newv, addr) ? prev : rscratch2; \ 2588 \ 2589 Label retry_load; \ 2590 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ 2591 prfm(Address(addr), PSTL1STRM); \ 2592 bind(retry_load); \ 2593 LDXR(result, addr); \ 2594 STXR(rscratch1, newv, addr); \ 2595 cbnzw(rscratch1, retry_load); \ 2596 if (prev->is_valid() && prev != result) \ 2597 mov(prev, result); \ 2598 } 2599 2600 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2601 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2602 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 2603 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 2604 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2605 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2606 2607 #undef ATOMIC_XCHG 2608 2609 #ifndef PRODUCT 2610 extern "C" void findpc(intptr_t x); 2611 #endif 2612 2613 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2614 { 2615 // In order to get locks to work, we need to fake a in_VM state 2616 if (ShowMessageBoxOnError ) { 2617 JavaThread* thread = JavaThread::current(); 2618 JavaThreadState saved_state = thread->thread_state(); 2619 thread->set_thread_state(_thread_in_vm); 2620 #ifndef PRODUCT 2621 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2622 ttyLocker ttyl; 2623 BytecodeCounter::print(); 2624 } 2625 #endif 2626 if (os::message_box(msg, "Execution stopped, print registers?")) { 2627 ttyLocker ttyl; 2628 tty->print_cr(" pc = 0x%016" PRIx64, pc); 2629 #ifndef PRODUCT 2630 tty->cr(); 2631 findpc(pc); 2632 tty->cr(); 2633 #endif 2634 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 2635 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 2636 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 2637 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 2638 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 2639 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 2640 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 2641 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 2642 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 2643 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 2644 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 2645 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 2646 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 2647 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 2648 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 2649 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 2650 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 2651 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 2652 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 2653 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 2654 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 2655 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 2656 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 2657 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 2658 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 2659 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 2660 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 2661 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 2662 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 2663 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 2664 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 2665 BREAKPOINT; 2666 } 2667 } 2668 fatal("DEBUG MESSAGE: %s", msg); 2669 } 2670 2671 RegSet MacroAssembler::call_clobbered_registers() { 2672 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 2673 #ifndef R18_RESERVED 2674 regs += r18_tls; 2675 #endif 2676 return regs; 2677 } 2678 2679 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 2680 int step = 4 * wordSize; 2681 push(call_clobbered_registers() - exclude, sp); 2682 sub(sp, sp, step); 2683 mov(rscratch1, -step); 2684 // Push v0-v7, v16-v31. 2685 for (int i = 31; i>= 4; i -= 4) { 2686 if (i <= v7->encoding() || i >= v16->encoding()) 2687 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 2688 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 2689 } 2690 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 2691 as_FloatRegister(3), T1D, Address(sp)); 2692 } 2693 2694 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 2695 for (int i = 0; i < 32; i += 4) { 2696 if (i <= v7->encoding() || i >= v16->encoding()) 2697 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2698 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 2699 } 2700 2701 reinitialize_ptrue(); 2702 2703 pop(call_clobbered_registers() - exclude, sp); 2704 } 2705 2706 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 2707 int sve_vector_size_in_bytes) { 2708 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 2709 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 2710 sub(sp, sp, sve_vector_size_in_bytes * FloatRegisterImpl::number_of_registers); 2711 for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++) { 2712 sve_str(as_FloatRegister(i), Address(sp, i)); 2713 } 2714 } else { 2715 int step = (save_vectors ? 8 : 4) * wordSize; 2716 mov(rscratch1, -step); 2717 sub(sp, sp, step); 2718 for (int i = 28; i >= 4; i -= 4) { 2719 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2720 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 2721 } 2722 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 2723 } 2724 } 2725 2726 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 2727 int sve_vector_size_in_bytes) { 2728 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 2729 for (int i = FloatRegisterImpl::number_of_registers - 1; i >= 0; i--) { 2730 sve_ldr(as_FloatRegister(i), Address(sp, i)); 2731 } 2732 add(sp, sp, sve_vector_size_in_bytes * FloatRegisterImpl::number_of_registers); 2733 } else { 2734 int step = (restore_vectors ? 8 : 4) * wordSize; 2735 for (int i = 0; i <= 28; i += 4) 2736 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2737 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 2738 } 2739 2740 if (restore_vectors) { 2741 reinitialize_ptrue(); 2742 } 2743 2744 // integer registers except lr & sp 2745 pop(RegSet::range(r0, r17), sp); 2746 #ifdef R18_RESERVED 2747 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 2748 pop(RegSet::range(r20, r29), sp); 2749 #else 2750 pop(RegSet::range(r18_tls, r29), sp); 2751 #endif 2752 } 2753 2754 /** 2755 * Helpers for multiply_to_len(). 2756 */ 2757 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 2758 Register src1, Register src2) { 2759 adds(dest_lo, dest_lo, src1); 2760 adc(dest_hi, dest_hi, zr); 2761 adds(dest_lo, dest_lo, src2); 2762 adc(final_dest_hi, dest_hi, zr); 2763 } 2764 2765 // Generate an address from (r + r1 extend offset). "size" is the 2766 // size of the operand. The result may be in rscratch2. 2767 Address MacroAssembler::offsetted_address(Register r, Register r1, 2768 Address::extend ext, int offset, int size) { 2769 if (offset || (ext.shift() % size != 0)) { 2770 lea(rscratch2, Address(r, r1, ext)); 2771 return Address(rscratch2, offset); 2772 } else { 2773 return Address(r, r1, ext); 2774 } 2775 } 2776 2777 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 2778 { 2779 assert(offset >= 0, "spill to negative address?"); 2780 // Offset reachable ? 2781 // Not aligned - 9 bits signed offset 2782 // Aligned - 12 bits unsigned offset shifted 2783 Register base = sp; 2784 if ((offset & (size-1)) && offset >= (1<<8)) { 2785 add(tmp, base, offset & ((1<<12)-1)); 2786 base = tmp; 2787 offset &= -1u<<12; 2788 } 2789 2790 if (offset >= (1<<12) * size) { 2791 add(tmp, base, offset & (((1<<12)-1)<<12)); 2792 base = tmp; 2793 offset &= ~(((1<<12)-1)<<12); 2794 } 2795 2796 return Address(base, offset); 2797 } 2798 2799 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 2800 assert(offset >= 0, "spill to negative address?"); 2801 2802 Register base = sp; 2803 2804 // An immediate offset in the range 0 to 255 which is multiplied 2805 // by the current vector or predicate register size in bytes. 2806 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 2807 return Address(base, offset / sve_reg_size_in_bytes); 2808 } 2809 2810 add(tmp, base, offset); 2811 return Address(tmp); 2812 } 2813 2814 // Checks whether offset is aligned. 2815 // Returns true if it is, else false. 2816 bool MacroAssembler::merge_alignment_check(Register base, 2817 size_t size, 2818 int64_t cur_offset, 2819 int64_t prev_offset) const { 2820 if (AvoidUnalignedAccesses) { 2821 if (base == sp) { 2822 // Checks whether low offset if aligned to pair of registers. 2823 int64_t pair_mask = size * 2 - 1; 2824 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2825 return (offset & pair_mask) == 0; 2826 } else { // If base is not sp, we can't guarantee the access is aligned. 2827 return false; 2828 } 2829 } else { 2830 int64_t mask = size - 1; 2831 // Load/store pair instruction only supports element size aligned offset. 2832 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 2833 } 2834 } 2835 2836 // Checks whether current and previous loads/stores can be merged. 2837 // Returns true if it can be merged, else false. 2838 bool MacroAssembler::ldst_can_merge(Register rt, 2839 const Address &adr, 2840 size_t cur_size_in_bytes, 2841 bool is_store) const { 2842 address prev = pc() - NativeInstruction::instruction_size; 2843 address last = code()->last_insn(); 2844 2845 if (last == NULL || !nativeInstruction_at(last)->is_Imm_LdSt()) { 2846 return false; 2847 } 2848 2849 if (adr.getMode() != Address::base_plus_offset || prev != last) { 2850 return false; 2851 } 2852 2853 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2854 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 2855 2856 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 2857 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 2858 2859 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 2860 return false; 2861 } 2862 2863 int64_t max_offset = 63 * prev_size_in_bytes; 2864 int64_t min_offset = -64 * prev_size_in_bytes; 2865 2866 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 2867 2868 // Only same base can be merged. 2869 if (adr.base() != prev_ldst->base()) { 2870 return false; 2871 } 2872 2873 int64_t cur_offset = adr.offset(); 2874 int64_t prev_offset = prev_ldst->offset(); 2875 size_t diff = abs(cur_offset - prev_offset); 2876 if (diff != prev_size_in_bytes) { 2877 return false; 2878 } 2879 2880 // Following cases can not be merged: 2881 // ldr x2, [x2, #8] 2882 // ldr x3, [x2, #16] 2883 // or: 2884 // ldr x2, [x3, #8] 2885 // ldr x2, [x3, #16] 2886 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 2887 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 2888 return false; 2889 } 2890 2891 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2892 // Offset range must be in ldp/stp instruction's range. 2893 if (low_offset > max_offset || low_offset < min_offset) { 2894 return false; 2895 } 2896 2897 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 2898 return true; 2899 } 2900 2901 return false; 2902 } 2903 2904 // Merge current load/store with previous load/store into ldp/stp. 2905 void MacroAssembler::merge_ldst(Register rt, 2906 const Address &adr, 2907 size_t cur_size_in_bytes, 2908 bool is_store) { 2909 2910 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 2911 2912 Register rt_low, rt_high; 2913 address prev = pc() - NativeInstruction::instruction_size; 2914 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2915 2916 int64_t offset; 2917 2918 if (adr.offset() < prev_ldst->offset()) { 2919 offset = adr.offset(); 2920 rt_low = rt; 2921 rt_high = prev_ldst->target(); 2922 } else { 2923 offset = prev_ldst->offset(); 2924 rt_low = prev_ldst->target(); 2925 rt_high = rt; 2926 } 2927 2928 Address adr_p = Address(prev_ldst->base(), offset); 2929 // Overwrite previous generated binary. 2930 code_section()->set_end(prev); 2931 2932 const size_t sz = prev_ldst->size_in_bytes(); 2933 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 2934 if (!is_store) { 2935 BLOCK_COMMENT("merged ldr pair"); 2936 if (sz == 8) { 2937 ldp(rt_low, rt_high, adr_p); 2938 } else { 2939 ldpw(rt_low, rt_high, adr_p); 2940 } 2941 } else { 2942 BLOCK_COMMENT("merged str pair"); 2943 if (sz == 8) { 2944 stp(rt_low, rt_high, adr_p); 2945 } else { 2946 stpw(rt_low, rt_high, adr_p); 2947 } 2948 } 2949 } 2950 2951 /** 2952 * Multiply 64 bit by 64 bit first loop. 2953 */ 2954 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 2955 Register y, Register y_idx, Register z, 2956 Register carry, Register product, 2957 Register idx, Register kdx) { 2958 // 2959 // jlong carry, x[], y[], z[]; 2960 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2961 // huge_128 product = y[idx] * x[xstart] + carry; 2962 // z[kdx] = (jlong)product; 2963 // carry = (jlong)(product >>> 64); 2964 // } 2965 // z[xstart] = carry; 2966 // 2967 2968 Label L_first_loop, L_first_loop_exit; 2969 Label L_one_x, L_one_y, L_multiply; 2970 2971 subsw(xstart, xstart, 1); 2972 br(Assembler::MI, L_one_x); 2973 2974 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 2975 ldr(x_xstart, Address(rscratch1)); 2976 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 2977 2978 bind(L_first_loop); 2979 subsw(idx, idx, 1); 2980 br(Assembler::MI, L_first_loop_exit); 2981 subsw(idx, idx, 1); 2982 br(Assembler::MI, L_one_y); 2983 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2984 ldr(y_idx, Address(rscratch1)); 2985 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 2986 bind(L_multiply); 2987 2988 // AArch64 has a multiply-accumulate instruction that we can't use 2989 // here because it has no way to process carries, so we have to use 2990 // separate add and adc instructions. Bah. 2991 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 2992 mul(product, x_xstart, y_idx); 2993 adds(product, product, carry); 2994 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 2995 2996 subw(kdx, kdx, 2); 2997 ror(product, product, 32); // back to big-endian 2998 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 2999 3000 b(L_first_loop); 3001 3002 bind(L_one_y); 3003 ldrw(y_idx, Address(y, 0)); 3004 b(L_multiply); 3005 3006 bind(L_one_x); 3007 ldrw(x_xstart, Address(x, 0)); 3008 b(L_first_loop); 3009 3010 bind(L_first_loop_exit); 3011 } 3012 3013 /** 3014 * Multiply 128 bit by 128. Unrolled inner loop. 3015 * 3016 */ 3017 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3018 Register carry, Register carry2, 3019 Register idx, Register jdx, 3020 Register yz_idx1, Register yz_idx2, 3021 Register tmp, Register tmp3, Register tmp4, 3022 Register tmp6, Register product_hi) { 3023 3024 // jlong carry, x[], y[], z[]; 3025 // int kdx = ystart+1; 3026 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3027 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3028 // jlong carry2 = (jlong)(tmp3 >>> 64); 3029 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3030 // carry = (jlong)(tmp4 >>> 64); 3031 // z[kdx+idx+1] = (jlong)tmp3; 3032 // z[kdx+idx] = (jlong)tmp4; 3033 // } 3034 // idx += 2; 3035 // if (idx > 0) { 3036 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3037 // z[kdx+idx] = (jlong)yz_idx1; 3038 // carry = (jlong)(yz_idx1 >>> 64); 3039 // } 3040 // 3041 3042 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 3043 3044 lsrw(jdx, idx, 2); 3045 3046 bind(L_third_loop); 3047 3048 subsw(jdx, jdx, 1); 3049 br(Assembler::MI, L_third_loop_exit); 3050 subw(idx, idx, 4); 3051 3052 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3053 3054 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 3055 3056 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3057 3058 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 3059 ror(yz_idx2, yz_idx2, 32); 3060 3061 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 3062 3063 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3064 umulh(tmp4, product_hi, yz_idx1); 3065 3066 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 3067 ror(rscratch2, rscratch2, 32); 3068 3069 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 3070 umulh(carry2, product_hi, yz_idx2); 3071 3072 // propagate sum of both multiplications into carry:tmp4:tmp3 3073 adds(tmp3, tmp3, carry); 3074 adc(tmp4, tmp4, zr); 3075 adds(tmp3, tmp3, rscratch1); 3076 adcs(tmp4, tmp4, tmp); 3077 adc(carry, carry2, zr); 3078 adds(tmp4, tmp4, rscratch2); 3079 adc(carry, carry, zr); 3080 3081 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 3082 ror(tmp4, tmp4, 32); 3083 stp(tmp4, tmp3, Address(tmp6, 0)); 3084 3085 b(L_third_loop); 3086 bind (L_third_loop_exit); 3087 3088 andw (idx, idx, 0x3); 3089 cbz(idx, L_post_third_loop_done); 3090 3091 Label L_check_1; 3092 subsw(idx, idx, 2); 3093 br(Assembler::MI, L_check_1); 3094 3095 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3096 ldr(yz_idx1, Address(rscratch1, 0)); 3097 ror(yz_idx1, yz_idx1, 32); 3098 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3099 umulh(tmp4, product_hi, yz_idx1); 3100 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3101 ldr(yz_idx2, Address(rscratch1, 0)); 3102 ror(yz_idx2, yz_idx2, 32); 3103 3104 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 3105 3106 ror(tmp3, tmp3, 32); 3107 str(tmp3, Address(rscratch1, 0)); 3108 3109 bind (L_check_1); 3110 3111 andw (idx, idx, 0x1); 3112 subsw(idx, idx, 1); 3113 br(Assembler::MI, L_post_third_loop_done); 3114 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3115 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3116 umulh(carry2, tmp4, product_hi); 3117 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3118 3119 add2_with_carry(carry2, tmp3, tmp4, carry); 3120 3121 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3122 extr(carry, carry2, tmp3, 32); 3123 3124 bind(L_post_third_loop_done); 3125 } 3126 3127 /** 3128 * Code for BigInteger::multiplyToLen() instrinsic. 3129 * 3130 * r0: x 3131 * r1: xlen 3132 * r2: y 3133 * r3: ylen 3134 * r4: z 3135 * r5: zlen 3136 * r10: tmp1 3137 * r11: tmp2 3138 * r12: tmp3 3139 * r13: tmp4 3140 * r14: tmp5 3141 * r15: tmp6 3142 * r16: tmp7 3143 * 3144 */ 3145 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3146 Register z, Register zlen, 3147 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3148 Register tmp5, Register tmp6, Register product_hi) { 3149 3150 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3151 3152 const Register idx = tmp1; 3153 const Register kdx = tmp2; 3154 const Register xstart = tmp3; 3155 3156 const Register y_idx = tmp4; 3157 const Register carry = tmp5; 3158 const Register product = xlen; 3159 const Register x_xstart = zlen; // reuse register 3160 3161 // First Loop. 3162 // 3163 // final static long LONG_MASK = 0xffffffffL; 3164 // int xstart = xlen - 1; 3165 // int ystart = ylen - 1; 3166 // long carry = 0; 3167 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3168 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3169 // z[kdx] = (int)product; 3170 // carry = product >>> 32; 3171 // } 3172 // z[xstart] = (int)carry; 3173 // 3174 3175 movw(idx, ylen); // idx = ylen; 3176 movw(kdx, zlen); // kdx = xlen+ylen; 3177 mov(carry, zr); // carry = 0; 3178 3179 Label L_done; 3180 3181 movw(xstart, xlen); 3182 subsw(xstart, xstart, 1); 3183 br(Assembler::MI, L_done); 3184 3185 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3186 3187 Label L_second_loop; 3188 cbzw(kdx, L_second_loop); 3189 3190 Label L_carry; 3191 subw(kdx, kdx, 1); 3192 cbzw(kdx, L_carry); 3193 3194 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3195 lsr(carry, carry, 32); 3196 subw(kdx, kdx, 1); 3197 3198 bind(L_carry); 3199 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3200 3201 // Second and third (nested) loops. 3202 // 3203 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3204 // carry = 0; 3205 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3206 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3207 // (z[k] & LONG_MASK) + carry; 3208 // z[k] = (int)product; 3209 // carry = product >>> 32; 3210 // } 3211 // z[i] = (int)carry; 3212 // } 3213 // 3214 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3215 3216 const Register jdx = tmp1; 3217 3218 bind(L_second_loop); 3219 mov(carry, zr); // carry = 0; 3220 movw(jdx, ylen); // j = ystart+1 3221 3222 subsw(xstart, xstart, 1); // i = xstart-1; 3223 br(Assembler::MI, L_done); 3224 3225 str(z, Address(pre(sp, -4 * wordSize))); 3226 3227 Label L_last_x; 3228 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3229 subsw(xstart, xstart, 1); // i = xstart-1; 3230 br(Assembler::MI, L_last_x); 3231 3232 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 3233 ldr(product_hi, Address(rscratch1)); 3234 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 3235 3236 Label L_third_loop_prologue; 3237 bind(L_third_loop_prologue); 3238 3239 str(ylen, Address(sp, wordSize)); 3240 stp(x, xstart, Address(sp, 2 * wordSize)); 3241 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3242 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3243 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 3244 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 3245 3246 addw(tmp3, xlen, 1); 3247 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3248 subsw(tmp3, tmp3, 1); 3249 br(Assembler::MI, L_done); 3250 3251 lsr(carry, carry, 32); 3252 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3253 b(L_second_loop); 3254 3255 // Next infrequent code is moved outside loops. 3256 bind(L_last_x); 3257 ldrw(product_hi, Address(x, 0)); 3258 b(L_third_loop_prologue); 3259 3260 bind(L_done); 3261 } 3262 3263 // Code for BigInteger::mulAdd instrinsic 3264 // out = r0 3265 // in = r1 3266 // offset = r2 (already out.length-offset) 3267 // len = r3 3268 // k = r4 3269 // 3270 // pseudo code from java implementation: 3271 // carry = 0; 3272 // offset = out.length-offset - 1; 3273 // for (int j=len-1; j >= 0; j--) { 3274 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3275 // out[offset--] = (int)product; 3276 // carry = product >>> 32; 3277 // } 3278 // return (int)carry; 3279 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3280 Register len, Register k) { 3281 Label LOOP, END; 3282 // pre-loop 3283 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 3284 csel(out, zr, out, Assembler::EQ); 3285 br(Assembler::EQ, END); 3286 add(in, in, len, LSL, 2); // in[j+1] address 3287 add(offset, out, offset, LSL, 2); // out[offset + 1] address 3288 mov(out, zr); // used to keep carry now 3289 BIND(LOOP); 3290 ldrw(rscratch1, Address(pre(in, -4))); 3291 madd(rscratch1, rscratch1, k, out); 3292 ldrw(rscratch2, Address(pre(offset, -4))); 3293 add(rscratch1, rscratch1, rscratch2); 3294 strw(rscratch1, Address(offset)); 3295 lsr(out, rscratch1, 32); 3296 subs(len, len, 1); 3297 br(Assembler::NE, LOOP); 3298 BIND(END); 3299 } 3300 3301 /** 3302 * Emits code to update CRC-32 with a byte value according to constants in table 3303 * 3304 * @param [in,out]crc Register containing the crc. 3305 * @param [in]val Register containing the byte to fold into the CRC. 3306 * @param [in]table Register containing the table of crc constants. 3307 * 3308 * uint32_t crc; 3309 * val = crc_table[(val ^ crc) & 0xFF]; 3310 * crc = val ^ (crc >> 8); 3311 * 3312 */ 3313 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 3314 eor(val, val, crc); 3315 andr(val, val, 0xff); 3316 ldrw(val, Address(table, val, Address::lsl(2))); 3317 eor(crc, val, crc, Assembler::LSR, 8); 3318 } 3319 3320 /** 3321 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 3322 * 3323 * @param [in,out]crc Register containing the crc. 3324 * @param [in]v Register containing the 32-bit to fold into the CRC. 3325 * @param [in]table0 Register containing table 0 of crc constants. 3326 * @param [in]table1 Register containing table 1 of crc constants. 3327 * @param [in]table2 Register containing table 2 of crc constants. 3328 * @param [in]table3 Register containing table 3 of crc constants. 3329 * 3330 * uint32_t crc; 3331 * v = crc ^ v 3332 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 3333 * 3334 */ 3335 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 3336 Register table0, Register table1, Register table2, Register table3, 3337 bool upper) { 3338 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 3339 uxtb(tmp, v); 3340 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 3341 ubfx(tmp, v, 8, 8); 3342 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 3343 eor(crc, crc, tmp); 3344 ubfx(tmp, v, 16, 8); 3345 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 3346 eor(crc, crc, tmp); 3347 ubfx(tmp, v, 24, 8); 3348 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 3349 eor(crc, crc, tmp); 3350 } 3351 3352 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 3353 Register len, Register tmp0, Register tmp1, Register tmp2, 3354 Register tmp3) { 3355 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3356 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3357 3358 mvnw(crc, crc); 3359 3360 subs(len, len, 128); 3361 br(Assembler::GE, CRC_by64_pre); 3362 BIND(CRC_less64); 3363 adds(len, len, 128-32); 3364 br(Assembler::GE, CRC_by32_loop); 3365 BIND(CRC_less32); 3366 adds(len, len, 32-4); 3367 br(Assembler::GE, CRC_by4_loop); 3368 adds(len, len, 4); 3369 br(Assembler::GT, CRC_by1_loop); 3370 b(L_exit); 3371 3372 BIND(CRC_by32_loop); 3373 ldp(tmp0, tmp1, Address(post(buf, 16))); 3374 subs(len, len, 32); 3375 crc32x(crc, crc, tmp0); 3376 ldr(tmp2, Address(post(buf, 8))); 3377 crc32x(crc, crc, tmp1); 3378 ldr(tmp3, Address(post(buf, 8))); 3379 crc32x(crc, crc, tmp2); 3380 crc32x(crc, crc, tmp3); 3381 br(Assembler::GE, CRC_by32_loop); 3382 cmn(len, (u1)32); 3383 br(Assembler::NE, CRC_less32); 3384 b(L_exit); 3385 3386 BIND(CRC_by4_loop); 3387 ldrw(tmp0, Address(post(buf, 4))); 3388 subs(len, len, 4); 3389 crc32w(crc, crc, tmp0); 3390 br(Assembler::GE, CRC_by4_loop); 3391 adds(len, len, 4); 3392 br(Assembler::LE, L_exit); 3393 BIND(CRC_by1_loop); 3394 ldrb(tmp0, Address(post(buf, 1))); 3395 subs(len, len, 1); 3396 crc32b(crc, crc, tmp0); 3397 br(Assembler::GT, CRC_by1_loop); 3398 b(L_exit); 3399 3400 BIND(CRC_by64_pre); 3401 sub(buf, buf, 8); 3402 ldp(tmp0, tmp1, Address(buf, 8)); 3403 crc32x(crc, crc, tmp0); 3404 ldr(tmp2, Address(buf, 24)); 3405 crc32x(crc, crc, tmp1); 3406 ldr(tmp3, Address(buf, 32)); 3407 crc32x(crc, crc, tmp2); 3408 ldr(tmp0, Address(buf, 40)); 3409 crc32x(crc, crc, tmp3); 3410 ldr(tmp1, Address(buf, 48)); 3411 crc32x(crc, crc, tmp0); 3412 ldr(tmp2, Address(buf, 56)); 3413 crc32x(crc, crc, tmp1); 3414 ldr(tmp3, Address(pre(buf, 64))); 3415 3416 b(CRC_by64_loop); 3417 3418 align(CodeEntryAlignment); 3419 BIND(CRC_by64_loop); 3420 subs(len, len, 64); 3421 crc32x(crc, crc, tmp2); 3422 ldr(tmp0, Address(buf, 8)); 3423 crc32x(crc, crc, tmp3); 3424 ldr(tmp1, Address(buf, 16)); 3425 crc32x(crc, crc, tmp0); 3426 ldr(tmp2, Address(buf, 24)); 3427 crc32x(crc, crc, tmp1); 3428 ldr(tmp3, Address(buf, 32)); 3429 crc32x(crc, crc, tmp2); 3430 ldr(tmp0, Address(buf, 40)); 3431 crc32x(crc, crc, tmp3); 3432 ldr(tmp1, Address(buf, 48)); 3433 crc32x(crc, crc, tmp0); 3434 ldr(tmp2, Address(buf, 56)); 3435 crc32x(crc, crc, tmp1); 3436 ldr(tmp3, Address(pre(buf, 64))); 3437 br(Assembler::GE, CRC_by64_loop); 3438 3439 // post-loop 3440 crc32x(crc, crc, tmp2); 3441 crc32x(crc, crc, tmp3); 3442 3443 sub(len, len, 64); 3444 add(buf, buf, 8); 3445 cmn(len, (u1)128); 3446 br(Assembler::NE, CRC_less64); 3447 BIND(L_exit); 3448 mvnw(crc, crc); 3449 } 3450 3451 /** 3452 * @param crc register containing existing CRC (32-bit) 3453 * @param buf register pointing to input byte buffer (byte*) 3454 * @param len register containing number of bytes 3455 * @param table register that will contain address of CRC table 3456 * @param tmp scratch register 3457 */ 3458 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 3459 Register table0, Register table1, Register table2, Register table3, 3460 Register tmp, Register tmp2, Register tmp3) { 3461 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 3462 uint64_t offset; 3463 3464 if (UseCRC32) { 3465 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 3466 return; 3467 } 3468 3469 mvnw(crc, crc); 3470 3471 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 3472 if (offset) add(table0, table0, offset); 3473 add(table1, table0, 1*256*sizeof(juint)); 3474 add(table2, table0, 2*256*sizeof(juint)); 3475 add(table3, table0, 3*256*sizeof(juint)); 3476 3477 if (UseNeon) { 3478 cmp(len, (u1)64); 3479 br(Assembler::LT, L_by16); 3480 eor(v16, T16B, v16, v16); 3481 3482 Label L_fold; 3483 3484 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 3485 3486 ld1(v0, v1, T2D, post(buf, 32)); 3487 ld1r(v4, T2D, post(tmp, 8)); 3488 ld1r(v5, T2D, post(tmp, 8)); 3489 ld1r(v6, T2D, post(tmp, 8)); 3490 ld1r(v7, T2D, post(tmp, 8)); 3491 mov(v16, T4S, 0, crc); 3492 3493 eor(v0, T16B, v0, v16); 3494 sub(len, len, 64); 3495 3496 BIND(L_fold); 3497 pmull(v22, T8H, v0, v5, T8B); 3498 pmull(v20, T8H, v0, v7, T8B); 3499 pmull(v23, T8H, v0, v4, T8B); 3500 pmull(v21, T8H, v0, v6, T8B); 3501 3502 pmull2(v18, T8H, v0, v5, T16B); 3503 pmull2(v16, T8H, v0, v7, T16B); 3504 pmull2(v19, T8H, v0, v4, T16B); 3505 pmull2(v17, T8H, v0, v6, T16B); 3506 3507 uzp1(v24, T8H, v20, v22); 3508 uzp2(v25, T8H, v20, v22); 3509 eor(v20, T16B, v24, v25); 3510 3511 uzp1(v26, T8H, v16, v18); 3512 uzp2(v27, T8H, v16, v18); 3513 eor(v16, T16B, v26, v27); 3514 3515 ushll2(v22, T4S, v20, T8H, 8); 3516 ushll(v20, T4S, v20, T4H, 8); 3517 3518 ushll2(v18, T4S, v16, T8H, 8); 3519 ushll(v16, T4S, v16, T4H, 8); 3520 3521 eor(v22, T16B, v23, v22); 3522 eor(v18, T16B, v19, v18); 3523 eor(v20, T16B, v21, v20); 3524 eor(v16, T16B, v17, v16); 3525 3526 uzp1(v17, T2D, v16, v20); 3527 uzp2(v21, T2D, v16, v20); 3528 eor(v17, T16B, v17, v21); 3529 3530 ushll2(v20, T2D, v17, T4S, 16); 3531 ushll(v16, T2D, v17, T2S, 16); 3532 3533 eor(v20, T16B, v20, v22); 3534 eor(v16, T16B, v16, v18); 3535 3536 uzp1(v17, T2D, v20, v16); 3537 uzp2(v21, T2D, v20, v16); 3538 eor(v28, T16B, v17, v21); 3539 3540 pmull(v22, T8H, v1, v5, T8B); 3541 pmull(v20, T8H, v1, v7, T8B); 3542 pmull(v23, T8H, v1, v4, T8B); 3543 pmull(v21, T8H, v1, v6, T8B); 3544 3545 pmull2(v18, T8H, v1, v5, T16B); 3546 pmull2(v16, T8H, v1, v7, T16B); 3547 pmull2(v19, T8H, v1, v4, T16B); 3548 pmull2(v17, T8H, v1, v6, T16B); 3549 3550 ld1(v0, v1, T2D, post(buf, 32)); 3551 3552 uzp1(v24, T8H, v20, v22); 3553 uzp2(v25, T8H, v20, v22); 3554 eor(v20, T16B, v24, v25); 3555 3556 uzp1(v26, T8H, v16, v18); 3557 uzp2(v27, T8H, v16, v18); 3558 eor(v16, T16B, v26, v27); 3559 3560 ushll2(v22, T4S, v20, T8H, 8); 3561 ushll(v20, T4S, v20, T4H, 8); 3562 3563 ushll2(v18, T4S, v16, T8H, 8); 3564 ushll(v16, T4S, v16, T4H, 8); 3565 3566 eor(v22, T16B, v23, v22); 3567 eor(v18, T16B, v19, v18); 3568 eor(v20, T16B, v21, v20); 3569 eor(v16, T16B, v17, v16); 3570 3571 uzp1(v17, T2D, v16, v20); 3572 uzp2(v21, T2D, v16, v20); 3573 eor(v16, T16B, v17, v21); 3574 3575 ushll2(v20, T2D, v16, T4S, 16); 3576 ushll(v16, T2D, v16, T2S, 16); 3577 3578 eor(v20, T16B, v22, v20); 3579 eor(v16, T16B, v16, v18); 3580 3581 uzp1(v17, T2D, v20, v16); 3582 uzp2(v21, T2D, v20, v16); 3583 eor(v20, T16B, v17, v21); 3584 3585 shl(v16, T2D, v28, 1); 3586 shl(v17, T2D, v20, 1); 3587 3588 eor(v0, T16B, v0, v16); 3589 eor(v1, T16B, v1, v17); 3590 3591 subs(len, len, 32); 3592 br(Assembler::GE, L_fold); 3593 3594 mov(crc, 0); 3595 mov(tmp, v0, T1D, 0); 3596 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3597 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3598 mov(tmp, v0, T1D, 1); 3599 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3600 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3601 mov(tmp, v1, T1D, 0); 3602 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3603 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3604 mov(tmp, v1, T1D, 1); 3605 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3606 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3607 3608 add(len, len, 32); 3609 } 3610 3611 BIND(L_by16); 3612 subs(len, len, 16); 3613 br(Assembler::GE, L_by16_loop); 3614 adds(len, len, 16-4); 3615 br(Assembler::GE, L_by4_loop); 3616 adds(len, len, 4); 3617 br(Assembler::GT, L_by1_loop); 3618 b(L_exit); 3619 3620 BIND(L_by4_loop); 3621 ldrw(tmp, Address(post(buf, 4))); 3622 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 3623 subs(len, len, 4); 3624 br(Assembler::GE, L_by4_loop); 3625 adds(len, len, 4); 3626 br(Assembler::LE, L_exit); 3627 BIND(L_by1_loop); 3628 subs(len, len, 1); 3629 ldrb(tmp, Address(post(buf, 1))); 3630 update_byte_crc32(crc, tmp, table0); 3631 br(Assembler::GT, L_by1_loop); 3632 b(L_exit); 3633 3634 align(CodeEntryAlignment); 3635 BIND(L_by16_loop); 3636 subs(len, len, 16); 3637 ldp(tmp, tmp3, Address(post(buf, 16))); 3638 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3639 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3640 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 3641 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 3642 br(Assembler::GE, L_by16_loop); 3643 adds(len, len, 16-4); 3644 br(Assembler::GE, L_by4_loop); 3645 adds(len, len, 4); 3646 br(Assembler::GT, L_by1_loop); 3647 BIND(L_exit); 3648 mvnw(crc, crc); 3649 } 3650 3651 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 3652 Register len, Register tmp0, Register tmp1, Register tmp2, 3653 Register tmp3) { 3654 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3655 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3656 3657 subs(len, len, 128); 3658 br(Assembler::GE, CRC_by64_pre); 3659 BIND(CRC_less64); 3660 adds(len, len, 128-32); 3661 br(Assembler::GE, CRC_by32_loop); 3662 BIND(CRC_less32); 3663 adds(len, len, 32-4); 3664 br(Assembler::GE, CRC_by4_loop); 3665 adds(len, len, 4); 3666 br(Assembler::GT, CRC_by1_loop); 3667 b(L_exit); 3668 3669 BIND(CRC_by32_loop); 3670 ldp(tmp0, tmp1, Address(post(buf, 16))); 3671 subs(len, len, 32); 3672 crc32cx(crc, crc, tmp0); 3673 ldr(tmp2, Address(post(buf, 8))); 3674 crc32cx(crc, crc, tmp1); 3675 ldr(tmp3, Address(post(buf, 8))); 3676 crc32cx(crc, crc, tmp2); 3677 crc32cx(crc, crc, tmp3); 3678 br(Assembler::GE, CRC_by32_loop); 3679 cmn(len, (u1)32); 3680 br(Assembler::NE, CRC_less32); 3681 b(L_exit); 3682 3683 BIND(CRC_by4_loop); 3684 ldrw(tmp0, Address(post(buf, 4))); 3685 subs(len, len, 4); 3686 crc32cw(crc, crc, tmp0); 3687 br(Assembler::GE, CRC_by4_loop); 3688 adds(len, len, 4); 3689 br(Assembler::LE, L_exit); 3690 BIND(CRC_by1_loop); 3691 ldrb(tmp0, Address(post(buf, 1))); 3692 subs(len, len, 1); 3693 crc32cb(crc, crc, tmp0); 3694 br(Assembler::GT, CRC_by1_loop); 3695 b(L_exit); 3696 3697 BIND(CRC_by64_pre); 3698 sub(buf, buf, 8); 3699 ldp(tmp0, tmp1, Address(buf, 8)); 3700 crc32cx(crc, crc, tmp0); 3701 ldr(tmp2, Address(buf, 24)); 3702 crc32cx(crc, crc, tmp1); 3703 ldr(tmp3, Address(buf, 32)); 3704 crc32cx(crc, crc, tmp2); 3705 ldr(tmp0, Address(buf, 40)); 3706 crc32cx(crc, crc, tmp3); 3707 ldr(tmp1, Address(buf, 48)); 3708 crc32cx(crc, crc, tmp0); 3709 ldr(tmp2, Address(buf, 56)); 3710 crc32cx(crc, crc, tmp1); 3711 ldr(tmp3, Address(pre(buf, 64))); 3712 3713 b(CRC_by64_loop); 3714 3715 align(CodeEntryAlignment); 3716 BIND(CRC_by64_loop); 3717 subs(len, len, 64); 3718 crc32cx(crc, crc, tmp2); 3719 ldr(tmp0, Address(buf, 8)); 3720 crc32cx(crc, crc, tmp3); 3721 ldr(tmp1, Address(buf, 16)); 3722 crc32cx(crc, crc, tmp0); 3723 ldr(tmp2, Address(buf, 24)); 3724 crc32cx(crc, crc, tmp1); 3725 ldr(tmp3, Address(buf, 32)); 3726 crc32cx(crc, crc, tmp2); 3727 ldr(tmp0, Address(buf, 40)); 3728 crc32cx(crc, crc, tmp3); 3729 ldr(tmp1, Address(buf, 48)); 3730 crc32cx(crc, crc, tmp0); 3731 ldr(tmp2, Address(buf, 56)); 3732 crc32cx(crc, crc, tmp1); 3733 ldr(tmp3, Address(pre(buf, 64))); 3734 br(Assembler::GE, CRC_by64_loop); 3735 3736 // post-loop 3737 crc32cx(crc, crc, tmp2); 3738 crc32cx(crc, crc, tmp3); 3739 3740 sub(len, len, 64); 3741 add(buf, buf, 8); 3742 cmn(len, (u1)128); 3743 br(Assembler::NE, CRC_less64); 3744 BIND(L_exit); 3745 } 3746 3747 /** 3748 * @param crc register containing existing CRC (32-bit) 3749 * @param buf register pointing to input byte buffer (byte*) 3750 * @param len register containing number of bytes 3751 * @param table register that will contain address of CRC table 3752 * @param tmp scratch register 3753 */ 3754 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 3755 Register table0, Register table1, Register table2, Register table3, 3756 Register tmp, Register tmp2, Register tmp3) { 3757 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 3758 } 3759 3760 3761 SkipIfEqual::SkipIfEqual( 3762 MacroAssembler* masm, const bool* flag_addr, bool value) { 3763 _masm = masm; 3764 uint64_t offset; 3765 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 3766 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 3767 _masm->cbzw(rscratch1, _label); 3768 } 3769 3770 SkipIfEqual::~SkipIfEqual() { 3771 _masm->bind(_label); 3772 } 3773 3774 void MacroAssembler::addptr(const Address &dst, int32_t src) { 3775 Address adr; 3776 switch(dst.getMode()) { 3777 case Address::base_plus_offset: 3778 // This is the expected mode, although we allow all the other 3779 // forms below. 3780 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 3781 break; 3782 default: 3783 lea(rscratch2, dst); 3784 adr = Address(rscratch2); 3785 break; 3786 } 3787 ldr(rscratch1, adr); 3788 add(rscratch1, rscratch1, src); 3789 str(rscratch1, adr); 3790 } 3791 3792 void MacroAssembler::cmpptr(Register src1, Address src2) { 3793 uint64_t offset; 3794 adrp(rscratch1, src2, offset); 3795 ldr(rscratch1, Address(rscratch1, offset)); 3796 cmp(src1, rscratch1); 3797 } 3798 3799 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 3800 cmp(obj1, obj2); 3801 } 3802 3803 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 3804 load_method_holder(rresult, rmethod); 3805 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 3806 } 3807 3808 void MacroAssembler::load_method_holder(Register holder, Register method) { 3809 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 3810 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 3811 ldr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass* 3812 } 3813 3814 // Loads the obj's Klass* into dst. 3815 // src and dst must be distinct registers 3816 // Preserves all registers (incl src, rscratch1 and rscratch2), but clobbers condition flags 3817 void MacroAssembler::load_nklass(Register dst, Register src) { 3818 assert(UseCompressedClassPointers, "expects UseCompressedClassPointers"); 3819 3820 if (!UseCompactObjectHeaders) { 3821 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3822 return; 3823 } 3824 3825 Label fast; 3826 3827 // Check if we can take the (common) fast path, if obj is unlocked. 3828 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 3829 tbz(dst, exact_log2(markWord::monitor_value), fast); 3830 3831 // Fetch displaced header 3832 ldr(dst, Address(dst, OM_OFFSET_NO_MONITOR_VALUE_TAG(header))); 3833 3834 // Fast-path: shift and decode Klass*. 3835 bind(fast); 3836 lsr(dst, dst, markWord::klass_shift); 3837 } 3838 3839 void MacroAssembler::load_klass(Register dst, Register src, bool null_check_src) { 3840 if (null_check_src) { 3841 if (UseCompactObjectHeaders) { 3842 null_check(src, oopDesc::mark_offset_in_bytes()); 3843 } else { 3844 null_check(src, oopDesc::klass_offset_in_bytes()); 3845 } 3846 } 3847 3848 if (UseCompressedClassPointers) { 3849 if (UseCompactObjectHeaders) { 3850 load_nklass(dst, src); 3851 } else { 3852 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3853 } 3854 decode_klass_not_null(dst); 3855 } else { 3856 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3857 } 3858 } 3859 3860 // ((OopHandle)result).resolve(); 3861 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 3862 // OopHandle::resolve is an indirection. 3863 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp, noreg); 3864 } 3865 3866 // ((WeakHandle)result).resolve(); 3867 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 3868 assert_different_registers(rresult, rtmp); 3869 Label resolved; 3870 3871 // A null weak handle resolves to null. 3872 cbz(rresult, resolved); 3873 3874 // Only 64 bit platforms support GCs that require a tmp register 3875 // Only IN_HEAP loads require a thread_tmp register 3876 // WeakHandle::resolve is an indirection like jweak. 3877 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3878 rresult, Address(rresult), rtmp, /*tmp_thread*/noreg); 3879 bind(resolved); 3880 } 3881 3882 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) { 3883 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 3884 ldr(dst, Address(rmethod, Method::const_offset())); 3885 ldr(dst, Address(dst, ConstMethod::constants_offset())); 3886 ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes())); 3887 ldr(dst, Address(dst, mirror_offset)); 3888 resolve_oop_handle(dst, tmp); 3889 } 3890 3891 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 3892 assert_different_registers(oop, trial_klass, tmp); 3893 if (UseCompressedClassPointers) { 3894 if (UseCompactObjectHeaders) { 3895 load_nklass(tmp, oop); 3896 } else { 3897 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3898 } 3899 if (CompressedKlassPointers::base() == NULL) { 3900 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 3901 return; 3902 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 3903 && CompressedKlassPointers::shift() == 0) { 3904 // Only the bottom 32 bits matter 3905 cmpw(trial_klass, tmp); 3906 return; 3907 } 3908 decode_klass_not_null(tmp); 3909 } else { 3910 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3911 } 3912 cmp(trial_klass, tmp); 3913 } 3914 3915 void MacroAssembler::store_klass(Register dst, Register src) { 3916 // FIXME: Should this be a store release? concurrent gcs assumes 3917 // klass length is valid if klass field is not null. 3918 if (UseCompressedClassPointers) { 3919 encode_klass_not_null(src); 3920 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3921 } else { 3922 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3923 } 3924 } 3925 3926 void MacroAssembler::store_klass_gap(Register dst, Register src) { 3927 if (UseCompressedClassPointers) { 3928 // Store to klass gap in destination 3929 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 3930 } 3931 } 3932 3933 void MacroAssembler::load_prototype_header(Register dst, Register src) { 3934 load_klass(dst, src); 3935 ldr(dst, Address(dst, Klass::prototype_header_offset())); 3936 } 3937 3938 // Algorithm must match CompressedOops::encode. 3939 void MacroAssembler::encode_heap_oop(Register d, Register s) { 3940 #ifdef ASSERT 3941 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 3942 #endif 3943 verify_oop(s, "broken oop in encode_heap_oop"); 3944 if (CompressedOops::base() == NULL) { 3945 if (CompressedOops::shift() != 0) { 3946 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3947 lsr(d, s, LogMinObjAlignmentInBytes); 3948 } else { 3949 mov(d, s); 3950 } 3951 } else { 3952 subs(d, s, rheapbase); 3953 csel(d, d, zr, Assembler::HS); 3954 lsr(d, d, LogMinObjAlignmentInBytes); 3955 3956 /* Old algorithm: is this any worse? 3957 Label nonnull; 3958 cbnz(r, nonnull); 3959 sub(r, r, rheapbase); 3960 bind(nonnull); 3961 lsr(r, r, LogMinObjAlignmentInBytes); 3962 */ 3963 } 3964 } 3965 3966 void MacroAssembler::encode_heap_oop_not_null(Register r) { 3967 #ifdef ASSERT 3968 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 3969 if (CheckCompressedOops) { 3970 Label ok; 3971 cbnz(r, ok); 3972 stop("null oop passed to encode_heap_oop_not_null"); 3973 bind(ok); 3974 } 3975 #endif 3976 verify_oop(r, "broken oop in encode_heap_oop_not_null"); 3977 if (CompressedOops::base() != NULL) { 3978 sub(r, r, rheapbase); 3979 } 3980 if (CompressedOops::shift() != 0) { 3981 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3982 lsr(r, r, LogMinObjAlignmentInBytes); 3983 } 3984 } 3985 3986 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 3987 #ifdef ASSERT 3988 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 3989 if (CheckCompressedOops) { 3990 Label ok; 3991 cbnz(src, ok); 3992 stop("null oop passed to encode_heap_oop_not_null2"); 3993 bind(ok); 3994 } 3995 #endif 3996 verify_oop(src, "broken oop in encode_heap_oop_not_null2"); 3997 3998 Register data = src; 3999 if (CompressedOops::base() != NULL) { 4000 sub(dst, src, rheapbase); 4001 data = dst; 4002 } 4003 if (CompressedOops::shift() != 0) { 4004 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4005 lsr(dst, data, LogMinObjAlignmentInBytes); 4006 data = dst; 4007 } 4008 if (data == src) 4009 mov(dst, src); 4010 } 4011 4012 void MacroAssembler::decode_heap_oop(Register d, Register s) { 4013 #ifdef ASSERT 4014 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 4015 #endif 4016 if (CompressedOops::base() == NULL) { 4017 if (CompressedOops::shift() != 0 || d != s) { 4018 lsl(d, s, CompressedOops::shift()); 4019 } 4020 } else { 4021 Label done; 4022 if (d != s) 4023 mov(d, s); 4024 cbz(s, done); 4025 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 4026 bind(done); 4027 } 4028 verify_oop(d, "broken oop in decode_heap_oop"); 4029 } 4030 4031 void MacroAssembler::decode_heap_oop_not_null(Register r) { 4032 assert (UseCompressedOops, "should only be used for compressed headers"); 4033 assert (Universe::heap() != NULL, "java heap should be initialized"); 4034 // Cannot assert, unverified entry point counts instructions (see .ad file) 4035 // vtableStubs also counts instructions in pd_code_size_limit. 4036 // Also do not verify_oop as this is called by verify_oop. 4037 if (CompressedOops::shift() != 0) { 4038 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4039 if (CompressedOops::base() != NULL) { 4040 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4041 } else { 4042 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4043 } 4044 } else { 4045 assert (CompressedOops::base() == NULL, "sanity"); 4046 } 4047 } 4048 4049 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 4050 assert (UseCompressedOops, "should only be used for compressed headers"); 4051 assert (Universe::heap() != NULL, "java heap should be initialized"); 4052 // Cannot assert, unverified entry point counts instructions (see .ad file) 4053 // vtableStubs also counts instructions in pd_code_size_limit. 4054 // Also do not verify_oop as this is called by verify_oop. 4055 if (CompressedOops::shift() != 0) { 4056 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4057 if (CompressedOops::base() != NULL) { 4058 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4059 } else { 4060 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4061 } 4062 } else { 4063 assert (CompressedOops::base() == NULL, "sanity"); 4064 if (dst != src) { 4065 mov(dst, src); 4066 } 4067 } 4068 } 4069 4070 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 4071 4072 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 4073 assert(UseCompressedClassPointers, "not using compressed class pointers"); 4074 assert(Metaspace::initialized(), "metaspace not initialized yet"); 4075 4076 if (_klass_decode_mode != KlassDecodeNone) { 4077 return _klass_decode_mode; 4078 } 4079 4080 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 4081 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 4082 4083 if (CompressedKlassPointers::base() == NULL) { 4084 return (_klass_decode_mode = KlassDecodeZero); 4085 } 4086 4087 if (operand_valid_for_logical_immediate( 4088 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 4089 const uint64_t range_mask = 4090 (1ULL << log2i(CompressedKlassPointers::range())) - 1; 4091 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 4092 return (_klass_decode_mode = KlassDecodeXor); 4093 } 4094 } 4095 4096 const uint64_t shifted_base = 4097 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4098 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 4099 "compressed class base bad alignment"); 4100 4101 return (_klass_decode_mode = KlassDecodeMovk); 4102 } 4103 4104 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 4105 switch (klass_decode_mode()) { 4106 case KlassDecodeZero: 4107 if (CompressedKlassPointers::shift() != 0) { 4108 lsr(dst, src, LogKlassAlignmentInBytes); 4109 } else { 4110 if (dst != src) mov(dst, src); 4111 } 4112 break; 4113 4114 case KlassDecodeXor: 4115 if (CompressedKlassPointers::shift() != 0) { 4116 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4117 lsr(dst, dst, LogKlassAlignmentInBytes); 4118 } else { 4119 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4120 } 4121 break; 4122 4123 case KlassDecodeMovk: 4124 if (CompressedKlassPointers::shift() != 0) { 4125 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 4126 } else { 4127 movw(dst, src); 4128 } 4129 break; 4130 4131 case KlassDecodeNone: 4132 ShouldNotReachHere(); 4133 break; 4134 } 4135 } 4136 4137 void MacroAssembler::encode_klass_not_null(Register r) { 4138 encode_klass_not_null(r, r); 4139 } 4140 4141 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 4142 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4143 4144 switch (klass_decode_mode()) { 4145 case KlassDecodeZero: 4146 if (CompressedKlassPointers::shift() != 0) { 4147 lsl(dst, src, LogKlassAlignmentInBytes); 4148 } else { 4149 if (dst != src) mov(dst, src); 4150 } 4151 break; 4152 4153 case KlassDecodeXor: 4154 if (CompressedKlassPointers::shift() != 0) { 4155 lsl(dst, src, LogKlassAlignmentInBytes); 4156 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 4157 } else { 4158 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4159 } 4160 break; 4161 4162 case KlassDecodeMovk: { 4163 const uint64_t shifted_base = 4164 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4165 4166 if (dst != src) movw(dst, src); 4167 movk(dst, shifted_base >> 32, 32); 4168 4169 if (CompressedKlassPointers::shift() != 0) { 4170 lsl(dst, dst, LogKlassAlignmentInBytes); 4171 } 4172 4173 break; 4174 } 4175 4176 case KlassDecodeNone: 4177 ShouldNotReachHere(); 4178 break; 4179 } 4180 } 4181 4182 void MacroAssembler::decode_klass_not_null(Register r) { 4183 decode_klass_not_null(r, r); 4184 } 4185 4186 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 4187 #ifdef ASSERT 4188 { 4189 ThreadInVMfromUnknown tiv; 4190 assert (UseCompressedOops, "should only be used for compressed oops"); 4191 assert (Universe::heap() != NULL, "java heap should be initialized"); 4192 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4193 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4194 } 4195 #endif 4196 int oop_index = oop_recorder()->find_index(obj); 4197 InstructionMark im(this); 4198 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4199 code_section()->relocate(inst_mark(), rspec); 4200 movz(dst, 0xDEAD, 16); 4201 movk(dst, 0xBEEF); 4202 } 4203 4204 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 4205 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4206 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4207 int index = oop_recorder()->find_index(k); 4208 assert(! Universe::heap()->is_in(k), "should not be an oop"); 4209 4210 InstructionMark im(this); 4211 RelocationHolder rspec = metadata_Relocation::spec(index); 4212 code_section()->relocate(inst_mark(), rspec); 4213 narrowKlass nk = CompressedKlassPointers::encode(k); 4214 movz(dst, (nk >> 16), 16); 4215 movk(dst, nk & 0xffff); 4216 } 4217 4218 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 4219 Register dst, Address src, 4220 Register tmp1, Register thread_tmp) { 4221 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4222 decorators = AccessInternal::decorator_fixup(decorators); 4223 bool as_raw = (decorators & AS_RAW) != 0; 4224 if (as_raw) { 4225 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4226 } else { 4227 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4228 } 4229 } 4230 4231 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 4232 Address dst, Register src, 4233 Register tmp1, Register thread_tmp) { 4234 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4235 decorators = AccessInternal::decorator_fixup(decorators); 4236 bool as_raw = (decorators & AS_RAW) != 0; 4237 if (as_raw) { 4238 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4239 } else { 4240 bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4241 } 4242 } 4243 4244 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 4245 Register thread_tmp, DecoratorSet decorators) { 4246 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4247 } 4248 4249 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 4250 Register thread_tmp, DecoratorSet decorators) { 4251 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 4252 } 4253 4254 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1, 4255 Register thread_tmp, DecoratorSet decorators) { 4256 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4257 } 4258 4259 // Used for storing NULLs. 4260 void MacroAssembler::store_heap_oop_null(Address dst) { 4261 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg); 4262 } 4263 4264 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 4265 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 4266 int index = oop_recorder()->allocate_metadata_index(obj); 4267 RelocationHolder rspec = metadata_Relocation::spec(index); 4268 return Address((address)obj, rspec); 4269 } 4270 4271 // Move an oop into a register. immediate is true if we want 4272 // immediate instructions and nmethod entry barriers are not enabled. 4273 // i.e. we are not going to patch this instruction while the code is being 4274 // executed by another thread. 4275 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 4276 int oop_index; 4277 if (obj == NULL) { 4278 oop_index = oop_recorder()->allocate_oop_index(obj); 4279 } else { 4280 #ifdef ASSERT 4281 { 4282 ThreadInVMfromUnknown tiv; 4283 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4284 } 4285 #endif 4286 oop_index = oop_recorder()->find_index(obj); 4287 } 4288 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4289 4290 // nmethod entry barrier necessitate using the constant pool. They have to be 4291 // ordered with respected to oop accesses. 4292 // Using immediate literals would necessitate ISBs. 4293 if (BarrierSet::barrier_set()->barrier_set_nmethod() != NULL || !immediate) { 4294 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 4295 ldr_constant(dst, Address(dummy, rspec)); 4296 } else 4297 mov(dst, Address((address)obj, rspec)); 4298 4299 } 4300 4301 // Move a metadata address into a register. 4302 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 4303 int oop_index; 4304 if (obj == NULL) { 4305 oop_index = oop_recorder()->allocate_metadata_index(obj); 4306 } else { 4307 oop_index = oop_recorder()->find_index(obj); 4308 } 4309 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 4310 mov(dst, Address((address)obj, rspec)); 4311 } 4312 4313 Address MacroAssembler::constant_oop_address(jobject obj) { 4314 #ifdef ASSERT 4315 { 4316 ThreadInVMfromUnknown tiv; 4317 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4318 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 4319 } 4320 #endif 4321 int oop_index = oop_recorder()->find_index(obj); 4322 return Address((address)obj, oop_Relocation::spec(oop_index)); 4323 } 4324 4325 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4326 void MacroAssembler::tlab_allocate(Register obj, 4327 Register var_size_in_bytes, 4328 int con_size_in_bytes, 4329 Register t1, 4330 Register t2, 4331 Label& slow_case) { 4332 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4333 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4334 } 4335 4336 // Defines obj, preserves var_size_in_bytes 4337 void MacroAssembler::eden_allocate(Register obj, 4338 Register var_size_in_bytes, 4339 int con_size_in_bytes, 4340 Register t1, 4341 Label& slow_case) { 4342 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4343 bs->eden_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); 4344 } 4345 4346 void MacroAssembler::verify_tlab() { 4347 #ifdef ASSERT 4348 if (UseTLAB && VerifyOops) { 4349 Label next, ok; 4350 4351 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 4352 4353 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4354 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 4355 cmp(rscratch2, rscratch1); 4356 br(Assembler::HS, next); 4357 STOP("assert(top >= start)"); 4358 should_not_reach_here(); 4359 4360 bind(next); 4361 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 4362 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4363 cmp(rscratch2, rscratch1); 4364 br(Assembler::HS, ok); 4365 STOP("assert(top <= end)"); 4366 should_not_reach_here(); 4367 4368 bind(ok); 4369 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 4370 } 4371 #endif 4372 } 4373 4374 // Writes to stack successive pages until offset reached to check for 4375 // stack overflow + shadow pages. This clobbers tmp. 4376 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 4377 assert_different_registers(tmp, size, rscratch1); 4378 mov(tmp, sp); 4379 // Bang stack for total size given plus shadow page size. 4380 // Bang one page at a time because large size can bang beyond yellow and 4381 // red zones. 4382 Label loop; 4383 mov(rscratch1, os::vm_page_size()); 4384 bind(loop); 4385 lea(tmp, Address(tmp, -os::vm_page_size())); 4386 subsw(size, size, rscratch1); 4387 str(size, Address(tmp)); 4388 br(Assembler::GT, loop); 4389 4390 // Bang down shadow pages too. 4391 // At this point, (tmp-0) is the last address touched, so don't 4392 // touch it again. (It was touched as (tmp-pagesize) but then tmp 4393 // was post-decremented.) Skip this address by starting at i=1, and 4394 // touch a few more pages below. N.B. It is important to touch all 4395 // the way down to and including i=StackShadowPages. 4396 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) { 4397 // this could be any sized move but this is can be a debugging crumb 4398 // so the bigger the better. 4399 lea(tmp, Address(tmp, -os::vm_page_size())); 4400 str(size, Address(tmp)); 4401 } 4402 } 4403 4404 // Move the address of the polling page into dest. 4405 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 4406 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 4407 } 4408 4409 // Read the polling page. The address of the polling page must 4410 // already be in r. 4411 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 4412 address mark; 4413 { 4414 InstructionMark im(this); 4415 code_section()->relocate(inst_mark(), rtype); 4416 ldrw(zr, Address(r, 0)); 4417 mark = inst_mark(); 4418 } 4419 verify_cross_modify_fence_not_required(); 4420 return mark; 4421 } 4422 4423 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 4424 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 4425 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 4426 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 4427 uint64_t dest_page = (uint64_t)dest.target() >> 12; 4428 int64_t offset_low = dest_page - low_page; 4429 int64_t offset_high = dest_page - high_page; 4430 4431 assert(is_valid_AArch64_address(dest.target()), "bad address"); 4432 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 4433 4434 InstructionMark im(this); 4435 code_section()->relocate(inst_mark(), dest.rspec()); 4436 // 8143067: Ensure that the adrp can reach the dest from anywhere within 4437 // the code cache so that if it is relocated we know it will still reach 4438 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 4439 _adrp(reg1, dest.target()); 4440 } else { 4441 uint64_t target = (uint64_t)dest.target(); 4442 uint64_t adrp_target 4443 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 4444 4445 _adrp(reg1, (address)adrp_target); 4446 movk(reg1, target >> 32, 32); 4447 } 4448 byte_offset = (uint64_t)dest.target() & 0xfff; 4449 } 4450 4451 void MacroAssembler::load_byte_map_base(Register reg) { 4452 CardTable::CardValue* byte_map_base = 4453 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 4454 4455 // Strictly speaking the byte_map_base isn't an address at all, and it might 4456 // even be negative. It is thus materialised as a constant. 4457 mov(reg, (uint64_t)byte_map_base); 4458 } 4459 4460 void MacroAssembler::build_frame(int framesize) { 4461 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 4462 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 4463 if (framesize < ((1 << 9) + 2 * wordSize)) { 4464 sub(sp, sp, framesize); 4465 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4466 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 4467 } else { 4468 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 4469 if (PreserveFramePointer) mov(rfp, sp); 4470 if (framesize < ((1 << 12) + 2 * wordSize)) 4471 sub(sp, sp, framesize - 2 * wordSize); 4472 else { 4473 mov(rscratch1, framesize - 2 * wordSize); 4474 sub(sp, sp, rscratch1); 4475 } 4476 } 4477 verify_cross_modify_fence_not_required(); 4478 } 4479 4480 void MacroAssembler::remove_frame(int framesize) { 4481 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 4482 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 4483 if (framesize < ((1 << 9) + 2 * wordSize)) { 4484 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4485 add(sp, sp, framesize); 4486 } else { 4487 if (framesize < ((1 << 12) + 2 * wordSize)) 4488 add(sp, sp, framesize - 2 * wordSize); 4489 else { 4490 mov(rscratch1, framesize - 2 * wordSize); 4491 add(sp, sp, rscratch1); 4492 } 4493 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 4494 } 4495 } 4496 4497 4498 // This method checks if provided byte array contains byte with highest bit set. 4499 address MacroAssembler::has_negatives(Register ary1, Register len, Register result) { 4500 // Simple and most common case of aligned small array which is not at the 4501 // end of memory page is placed here. All other cases are in stub. 4502 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 4503 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 4504 assert_different_registers(ary1, len, result); 4505 4506 cmpw(len, 0); 4507 br(LE, SET_RESULT); 4508 cmpw(len, 4 * wordSize); 4509 br(GE, STUB_LONG); // size > 32 then go to stub 4510 4511 int shift = 64 - exact_log2(os::vm_page_size()); 4512 lsl(rscratch1, ary1, shift); 4513 mov(rscratch2, (size_t)(4 * wordSize) << shift); 4514 adds(rscratch2, rscratch1, rscratch2); // At end of page? 4515 br(CS, STUB); // at the end of page then go to stub 4516 subs(len, len, wordSize); 4517 br(LT, END); 4518 4519 BIND(LOOP); 4520 ldr(rscratch1, Address(post(ary1, wordSize))); 4521 tst(rscratch1, UPPER_BIT_MASK); 4522 br(NE, SET_RESULT); 4523 subs(len, len, wordSize); 4524 br(GE, LOOP); 4525 cmpw(len, -wordSize); 4526 br(EQ, SET_RESULT); 4527 4528 BIND(END); 4529 ldr(result, Address(ary1)); 4530 sub(len, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 4531 lslv(result, result, len); 4532 tst(result, UPPER_BIT_MASK); 4533 b(SET_RESULT); 4534 4535 BIND(STUB); 4536 RuntimeAddress has_neg = RuntimeAddress(StubRoutines::aarch64::has_negatives()); 4537 assert(has_neg.target() != NULL, "has_negatives stub has not been generated"); 4538 address tpc1 = trampoline_call(has_neg); 4539 if (tpc1 == NULL) { 4540 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 4541 postcond(pc() == badAddress); 4542 return NULL; 4543 } 4544 b(DONE); 4545 4546 BIND(STUB_LONG); 4547 RuntimeAddress has_neg_long = RuntimeAddress(StubRoutines::aarch64::has_negatives_long()); 4548 assert(has_neg_long.target() != NULL, "has_negatives stub has not been generated"); 4549 address tpc2 = trampoline_call(has_neg_long); 4550 if (tpc2 == NULL) { 4551 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 4552 postcond(pc() == badAddress); 4553 return NULL; 4554 } 4555 b(DONE); 4556 4557 BIND(SET_RESULT); 4558 cset(result, NE); // set true or false 4559 4560 BIND(DONE); 4561 postcond(pc() != badAddress); 4562 return pc(); 4563 } 4564 4565 // Clobbers: rscratch1, rscratch2, rflags 4566 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 4567 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 4568 Register tmp4, Register tmp5, Register result, 4569 Register cnt1, int elem_size) { 4570 Label DONE, SAME; 4571 Register tmp1 = rscratch1; 4572 Register tmp2 = rscratch2; 4573 Register cnt2 = tmp2; // cnt2 only used in array length compare 4574 int elem_per_word = wordSize/elem_size; 4575 int log_elem_size = exact_log2(elem_size); 4576 int length_offset = arrayOopDesc::length_offset_in_bytes(); 4577 int base_offset 4578 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 4579 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 4580 4581 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 4582 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4583 4584 #ifndef PRODUCT 4585 { 4586 const char kind = (elem_size == 2) ? 'U' : 'L'; 4587 char comment[64]; 4588 snprintf(comment, sizeof comment, "array_equals%c{", kind); 4589 BLOCK_COMMENT(comment); 4590 } 4591 #endif 4592 4593 // if (a1 == a2) 4594 // return true; 4595 cmpoop(a1, a2); // May have read barriers for a1 and a2. 4596 br(EQ, SAME); 4597 4598 if (UseSimpleArrayEquals) { 4599 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 4600 // if (a1 == null || a2 == null) 4601 // return false; 4602 // a1 & a2 == 0 means (some-pointer is null) or 4603 // (very-rare-or-even-probably-impossible-pointer-values) 4604 // so, we can save one branch in most cases 4605 tst(a1, a2); 4606 mov(result, false); 4607 br(EQ, A_MIGHT_BE_NULL); 4608 // if (a1.length != a2.length) 4609 // return false; 4610 bind(A_IS_NOT_NULL); 4611 ldrw(cnt1, Address(a1, length_offset)); 4612 ldrw(cnt2, Address(a2, length_offset)); 4613 eorw(tmp5, cnt1, cnt2); 4614 cbnzw(tmp5, DONE); 4615 lea(a1, Address(a1, base_offset)); 4616 lea(a2, Address(a2, base_offset)); 4617 // Check for short strings, i.e. smaller than wordSize. 4618 subs(cnt1, cnt1, elem_per_word); 4619 br(Assembler::LT, SHORT); 4620 // Main 8 byte comparison loop. 4621 bind(NEXT_WORD); { 4622 ldr(tmp1, Address(post(a1, wordSize))); 4623 ldr(tmp2, Address(post(a2, wordSize))); 4624 subs(cnt1, cnt1, elem_per_word); 4625 eor(tmp5, tmp1, tmp2); 4626 cbnz(tmp5, DONE); 4627 } br(GT, NEXT_WORD); 4628 // Last longword. In the case where length == 4 we compare the 4629 // same longword twice, but that's still faster than another 4630 // conditional branch. 4631 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4632 // length == 4. 4633 if (log_elem_size > 0) 4634 lsl(cnt1, cnt1, log_elem_size); 4635 ldr(tmp3, Address(a1, cnt1)); 4636 ldr(tmp4, Address(a2, cnt1)); 4637 eor(tmp5, tmp3, tmp4); 4638 cbnz(tmp5, DONE); 4639 b(SAME); 4640 bind(A_MIGHT_BE_NULL); 4641 // in case both a1 and a2 are not-null, proceed with loads 4642 cbz(a1, DONE); 4643 cbz(a2, DONE); 4644 b(A_IS_NOT_NULL); 4645 bind(SHORT); 4646 4647 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 4648 { 4649 ldrw(tmp1, Address(post(a1, 4))); 4650 ldrw(tmp2, Address(post(a2, 4))); 4651 eorw(tmp5, tmp1, tmp2); 4652 cbnzw(tmp5, DONE); 4653 } 4654 bind(TAIL03); 4655 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 4656 { 4657 ldrh(tmp3, Address(post(a1, 2))); 4658 ldrh(tmp4, Address(post(a2, 2))); 4659 eorw(tmp5, tmp3, tmp4); 4660 cbnzw(tmp5, DONE); 4661 } 4662 bind(TAIL01); 4663 if (elem_size == 1) { // Only needed when comparing byte arrays. 4664 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4665 { 4666 ldrb(tmp1, a1); 4667 ldrb(tmp2, a2); 4668 eorw(tmp5, tmp1, tmp2); 4669 cbnzw(tmp5, DONE); 4670 } 4671 } 4672 } else { 4673 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 4674 CSET_EQ, LAST_CHECK; 4675 mov(result, false); 4676 cbz(a1, DONE); 4677 ldrw(cnt1, Address(a1, length_offset)); 4678 cbz(a2, DONE); 4679 ldrw(cnt2, Address(a2, length_offset)); 4680 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 4681 // faster to perform another branch before comparing a1 and a2 4682 cmp(cnt1, (u1)elem_per_word); 4683 br(LE, SHORT); // short or same 4684 ldr(tmp3, Address(pre(a1, base_offset))); 4685 subs(zr, cnt1, stubBytesThreshold); 4686 br(GE, STUB); 4687 ldr(tmp4, Address(pre(a2, base_offset))); 4688 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4689 cmp(cnt2, cnt1); 4690 br(NE, DONE); 4691 4692 // Main 16 byte comparison loop with 2 exits 4693 bind(NEXT_DWORD); { 4694 ldr(tmp1, Address(pre(a1, wordSize))); 4695 ldr(tmp2, Address(pre(a2, wordSize))); 4696 subs(cnt1, cnt1, 2 * elem_per_word); 4697 br(LE, TAIL); 4698 eor(tmp4, tmp3, tmp4); 4699 cbnz(tmp4, DONE); 4700 ldr(tmp3, Address(pre(a1, wordSize))); 4701 ldr(tmp4, Address(pre(a2, wordSize))); 4702 cmp(cnt1, (u1)elem_per_word); 4703 br(LE, TAIL2); 4704 cmp(tmp1, tmp2); 4705 } br(EQ, NEXT_DWORD); 4706 b(DONE); 4707 4708 bind(TAIL); 4709 eor(tmp4, tmp3, tmp4); 4710 eor(tmp2, tmp1, tmp2); 4711 lslv(tmp2, tmp2, tmp5); 4712 orr(tmp5, tmp4, tmp2); 4713 cmp(tmp5, zr); 4714 b(CSET_EQ); 4715 4716 bind(TAIL2); 4717 eor(tmp2, tmp1, tmp2); 4718 cbnz(tmp2, DONE); 4719 b(LAST_CHECK); 4720 4721 bind(STUB); 4722 ldr(tmp4, Address(pre(a2, base_offset))); 4723 cmp(cnt2, cnt1); 4724 br(NE, DONE); 4725 if (elem_size == 2) { // convert to byte counter 4726 lsl(cnt1, cnt1, 1); 4727 } 4728 eor(tmp5, tmp3, tmp4); 4729 cbnz(tmp5, DONE); 4730 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 4731 assert(stub.target() != NULL, "array_equals_long stub has not been generated"); 4732 address tpc = trampoline_call(stub); 4733 if (tpc == NULL) { 4734 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 4735 postcond(pc() == badAddress); 4736 return NULL; 4737 } 4738 b(DONE); 4739 4740 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 4741 // so, if a2 == null => return false(0), else return true, so we can return a2 4742 mov(result, a2); 4743 b(DONE); 4744 bind(SHORT); 4745 cmp(cnt2, cnt1); 4746 br(NE, DONE); 4747 cbz(cnt1, SAME); 4748 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4749 ldr(tmp3, Address(a1, base_offset)); 4750 ldr(tmp4, Address(a2, base_offset)); 4751 bind(LAST_CHECK); 4752 eor(tmp4, tmp3, tmp4); 4753 lslv(tmp5, tmp4, tmp5); 4754 cmp(tmp5, zr); 4755 bind(CSET_EQ); 4756 cset(result, EQ); 4757 b(DONE); 4758 } 4759 4760 bind(SAME); 4761 mov(result, true); 4762 // That's it. 4763 bind(DONE); 4764 4765 BLOCK_COMMENT("} array_equals"); 4766 postcond(pc() != badAddress); 4767 return pc(); 4768 } 4769 4770 // Compare Strings 4771 4772 // For Strings we're passed the address of the first characters in a1 4773 // and a2 and the length in cnt1. 4774 // elem_size is the element size in bytes: either 1 or 2. 4775 // There are two implementations. For arrays >= 8 bytes, all 4776 // comparisons (including the final one, which may overlap) are 4777 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 4778 // halfword, then a short, and then a byte. 4779 4780 void MacroAssembler::string_equals(Register a1, Register a2, 4781 Register result, Register cnt1, int elem_size) 4782 { 4783 Label SAME, DONE, SHORT, NEXT_WORD; 4784 Register tmp1 = rscratch1; 4785 Register tmp2 = rscratch2; 4786 Register cnt2 = tmp2; // cnt2 only used in array length compare 4787 4788 assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); 4789 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4790 4791 #ifndef PRODUCT 4792 { 4793 const char kind = (elem_size == 2) ? 'U' : 'L'; 4794 char comment[64]; 4795 snprintf(comment, sizeof comment, "{string_equals%c", kind); 4796 BLOCK_COMMENT(comment); 4797 } 4798 #endif 4799 4800 mov(result, false); 4801 4802 // Check for short strings, i.e. smaller than wordSize. 4803 subs(cnt1, cnt1, wordSize); 4804 br(Assembler::LT, SHORT); 4805 // Main 8 byte comparison loop. 4806 bind(NEXT_WORD); { 4807 ldr(tmp1, Address(post(a1, wordSize))); 4808 ldr(tmp2, Address(post(a2, wordSize))); 4809 subs(cnt1, cnt1, wordSize); 4810 eor(tmp1, tmp1, tmp2); 4811 cbnz(tmp1, DONE); 4812 } br(GT, NEXT_WORD); 4813 // Last longword. In the case where length == 4 we compare the 4814 // same longword twice, but that's still faster than another 4815 // conditional branch. 4816 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4817 // length == 4. 4818 ldr(tmp1, Address(a1, cnt1)); 4819 ldr(tmp2, Address(a2, cnt1)); 4820 eor(tmp2, tmp1, tmp2); 4821 cbnz(tmp2, DONE); 4822 b(SAME); 4823 4824 bind(SHORT); 4825 Label TAIL03, TAIL01; 4826 4827 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 4828 { 4829 ldrw(tmp1, Address(post(a1, 4))); 4830 ldrw(tmp2, Address(post(a2, 4))); 4831 eorw(tmp1, tmp1, tmp2); 4832 cbnzw(tmp1, DONE); 4833 } 4834 bind(TAIL03); 4835 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 4836 { 4837 ldrh(tmp1, Address(post(a1, 2))); 4838 ldrh(tmp2, Address(post(a2, 2))); 4839 eorw(tmp1, tmp1, tmp2); 4840 cbnzw(tmp1, DONE); 4841 } 4842 bind(TAIL01); 4843 if (elem_size == 1) { // Only needed when comparing 1-byte elements 4844 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4845 { 4846 ldrb(tmp1, a1); 4847 ldrb(tmp2, a2); 4848 eorw(tmp1, tmp1, tmp2); 4849 cbnzw(tmp1, DONE); 4850 } 4851 } 4852 // Arrays are equal. 4853 bind(SAME); 4854 mov(result, true); 4855 4856 // That's it. 4857 bind(DONE); 4858 BLOCK_COMMENT("} string_equals"); 4859 } 4860 4861 4862 // The size of the blocks erased by the zero_blocks stub. We must 4863 // handle anything smaller than this ourselves in zero_words(). 4864 const int MacroAssembler::zero_words_block_size = 8; 4865 4866 // zero_words() is used by C2 ClearArray patterns and by 4867 // C1_MacroAssembler. It is as small as possible, handling small word 4868 // counts locally and delegating anything larger to the zero_blocks 4869 // stub. It is expanded many times in compiled code, so it is 4870 // important to keep it short. 4871 4872 // ptr: Address of a buffer to be zeroed. 4873 // cnt: Count in HeapWords. 4874 // 4875 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 4876 address MacroAssembler::zero_words(Register ptr, Register cnt) 4877 { 4878 assert(is_power_of_2(zero_words_block_size), "adjust this"); 4879 4880 BLOCK_COMMENT("zero_words {"); 4881 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 4882 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 4883 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 4884 4885 subs(rscratch1, cnt, zero_words_block_size); 4886 Label around; 4887 br(LO, around); 4888 { 4889 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 4890 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 4891 // Make sure this is a C2 compilation. C1 allocates space only for 4892 // trampoline stubs generated by Call LIR ops, and in any case it 4893 // makes sense for a C1 compilation task to proceed as quickly as 4894 // possible. 4895 CompileTask* task; 4896 if (StubRoutines::aarch64::complete() 4897 && Thread::current()->is_Compiler_thread() 4898 && (task = ciEnv::current()->task()) 4899 && is_c2_compile(task->comp_level())) { 4900 address tpc = trampoline_call(zero_blocks); 4901 if (tpc == NULL) { 4902 DEBUG_ONLY(reset_labels(around)); 4903 return NULL; 4904 } 4905 } else { 4906 far_call(zero_blocks); 4907 } 4908 } 4909 bind(around); 4910 4911 // We have a few words left to do. zero_blocks has adjusted r10 and r11 4912 // for us. 4913 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 4914 Label l; 4915 tbz(cnt, exact_log2(i), l); 4916 for (int j = 0; j < i; j += 2) { 4917 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 4918 } 4919 bind(l); 4920 } 4921 { 4922 Label l; 4923 tbz(cnt, 0, l); 4924 str(zr, Address(ptr)); 4925 bind(l); 4926 } 4927 4928 BLOCK_COMMENT("} zero_words"); 4929 return pc(); 4930 } 4931 4932 // base: Address of a buffer to be zeroed, 8 bytes aligned. 4933 // cnt: Immediate count in HeapWords. 4934 // 4935 // r10, r11, rscratch1, and rscratch2 are clobbered. 4936 address MacroAssembler::zero_words(Register base, uint64_t cnt) 4937 { 4938 assert(wordSize <= BlockZeroingLowLimit, 4939 "increase BlockZeroingLowLimit"); 4940 address result = nullptr; 4941 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 4942 #ifndef PRODUCT 4943 { 4944 char buf[64]; 4945 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 4946 BLOCK_COMMENT(buf); 4947 } 4948 #endif 4949 if (cnt >= 16) { 4950 uint64_t loops = cnt/16; 4951 if (loops > 1) { 4952 mov(rscratch2, loops - 1); 4953 } 4954 { 4955 Label loop; 4956 bind(loop); 4957 for (int i = 0; i < 16; i += 2) { 4958 stp(zr, zr, Address(base, i * BytesPerWord)); 4959 } 4960 add(base, base, 16 * BytesPerWord); 4961 if (loops > 1) { 4962 subs(rscratch2, rscratch2, 1); 4963 br(GE, loop); 4964 } 4965 } 4966 } 4967 cnt %= 16; 4968 int i = cnt & 1; // store any odd word to start 4969 if (i) str(zr, Address(base)); 4970 for (; i < (int)cnt; i += 2) { 4971 stp(zr, zr, Address(base, i * wordSize)); 4972 } 4973 BLOCK_COMMENT("} zero_words"); 4974 result = pc(); 4975 } else { 4976 mov(r10, base); mov(r11, cnt); 4977 result = zero_words(r10, r11); 4978 } 4979 return result; 4980 } 4981 4982 // Zero blocks of memory by using DC ZVA. 4983 // 4984 // Aligns the base address first sufficently for DC ZVA, then uses 4985 // DC ZVA repeatedly for every full block. cnt is the size to be 4986 // zeroed in HeapWords. Returns the count of words left to be zeroed 4987 // in cnt. 4988 // 4989 // NOTE: This is intended to be used in the zero_blocks() stub. If 4990 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 4991 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 4992 Register tmp = rscratch1; 4993 Register tmp2 = rscratch2; 4994 int zva_length = VM_Version::zva_length(); 4995 Label initial_table_end, loop_zva; 4996 Label fini; 4997 4998 // Base must be 16 byte aligned. If not just return and let caller handle it 4999 tst(base, 0x0f); 5000 br(Assembler::NE, fini); 5001 // Align base with ZVA length. 5002 neg(tmp, base); 5003 andr(tmp, tmp, zva_length - 1); 5004 5005 // tmp: the number of bytes to be filled to align the base with ZVA length. 5006 add(base, base, tmp); 5007 sub(cnt, cnt, tmp, Assembler::ASR, 3); 5008 adr(tmp2, initial_table_end); 5009 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 5010 br(tmp2); 5011 5012 for (int i = -zva_length + 16; i < 0; i += 16) 5013 stp(zr, zr, Address(base, i)); 5014 bind(initial_table_end); 5015 5016 sub(cnt, cnt, zva_length >> 3); 5017 bind(loop_zva); 5018 dc(Assembler::ZVA, base); 5019 subs(cnt, cnt, zva_length >> 3); 5020 add(base, base, zva_length); 5021 br(Assembler::GE, loop_zva); 5022 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 5023 bind(fini); 5024 } 5025 5026 // base: Address of a buffer to be filled, 8 bytes aligned. 5027 // cnt: Count in 8-byte unit. 5028 // value: Value to be filled with. 5029 // base will point to the end of the buffer after filling. 5030 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 5031 { 5032 // Algorithm: 5033 // 5034 // scratch1 = cnt & 7; 5035 // cnt -= scratch1; 5036 // p += scratch1; 5037 // switch (scratch1) { 5038 // do { 5039 // cnt -= 8; 5040 // p[-8] = v; 5041 // case 7: 5042 // p[-7] = v; 5043 // case 6: 5044 // p[-6] = v; 5045 // // ... 5046 // case 1: 5047 // p[-1] = v; 5048 // case 0: 5049 // p += 8; 5050 // } while (cnt); 5051 // } 5052 5053 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 5054 5055 Label fini, skip, entry, loop; 5056 const int unroll = 8; // Number of stp instructions we'll unroll 5057 5058 cbz(cnt, fini); 5059 tbz(base, 3, skip); 5060 str(value, Address(post(base, 8))); 5061 sub(cnt, cnt, 1); 5062 bind(skip); 5063 5064 andr(rscratch1, cnt, (unroll-1) * 2); 5065 sub(cnt, cnt, rscratch1); 5066 add(base, base, rscratch1, Assembler::LSL, 3); 5067 adr(rscratch2, entry); 5068 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 5069 br(rscratch2); 5070 5071 bind(loop); 5072 add(base, base, unroll * 16); 5073 for (int i = -unroll; i < 0; i++) 5074 stp(value, value, Address(base, i * 16)); 5075 bind(entry); 5076 subs(cnt, cnt, unroll * 2); 5077 br(Assembler::GE, loop); 5078 5079 tbz(cnt, 0, fini); 5080 str(value, Address(post(base, 8))); 5081 bind(fini); 5082 } 5083 5084 // Intrinsic for 5085 // 5086 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 5087 // return the number of characters copied. 5088 // - java/lang/StringUTF16.compress 5089 // return zero (0) if copy fails, otherwise 'len'. 5090 // 5091 // This version always returns the number of characters copied, and does not 5092 // clobber the 'len' register. A successful copy will complete with the post- 5093 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 5094 // post-condition: 0 <= 'res' < 'len'. 5095 // 5096 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 5097 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 5098 // beyond the acceptable, even though the footprint would be smaller. 5099 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 5100 // avoid additional bloat. 5101 // 5102 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 5103 void MacroAssembler::encode_iso_array(Register src, Register dst, 5104 Register len, Register res, bool ascii, 5105 FloatRegister vtmp0, FloatRegister vtmp1, 5106 FloatRegister vtmp2, FloatRegister vtmp3, 5107 FloatRegister vtmp4, FloatRegister vtmp5) 5108 { 5109 Register cnt = res; 5110 Register max = rscratch1; 5111 Register chk = rscratch2; 5112 5113 prfm(Address(src), PLDL1STRM); 5114 movw(cnt, len); 5115 5116 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 5117 5118 Label LOOP_32, DONE_32, FAIL_32; 5119 5120 BIND(LOOP_32); 5121 { 5122 cmpw(cnt, 32); 5123 br(LT, DONE_32); 5124 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 5125 // Extract lower bytes. 5126 FloatRegister vlo0 = vtmp4; 5127 FloatRegister vlo1 = vtmp5; 5128 uzp1(vlo0, T16B, vtmp0, vtmp1); 5129 uzp1(vlo1, T16B, vtmp2, vtmp3); 5130 // Merge bits... 5131 orr(vtmp0, T16B, vtmp0, vtmp1); 5132 orr(vtmp2, T16B, vtmp2, vtmp3); 5133 // Extract merged upper bytes. 5134 FloatRegister vhix = vtmp0; 5135 uzp2(vhix, T16B, vtmp0, vtmp2); 5136 // ISO-check on hi-parts (all zero). 5137 // ASCII-check on lo-parts (no sign). 5138 FloatRegister vlox = vtmp1; // Merge lower bytes. 5139 ASCII(orr(vlox, T16B, vlo0, vlo1)); 5140 umov(chk, vhix, D, 1); ASCII(cmlt(vlox, T16B, vlox)); 5141 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 5142 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 5143 ASCII(orr(chk, chk, max)); 5144 cbnz(chk, FAIL_32); 5145 subw(cnt, cnt, 32); 5146 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 5147 b(LOOP_32); 5148 } 5149 BIND(FAIL_32); 5150 sub(src, src, 64); 5151 BIND(DONE_32); 5152 5153 Label LOOP_8, SKIP_8; 5154 5155 BIND(LOOP_8); 5156 { 5157 cmpw(cnt, 8); 5158 br(LT, SKIP_8); 5159 FloatRegister vhi = vtmp0; 5160 FloatRegister vlo = vtmp1; 5161 ld1(vtmp3, T8H, src); 5162 uzp1(vlo, T16B, vtmp3, vtmp3); 5163 uzp2(vhi, T16B, vtmp3, vtmp3); 5164 // ISO-check on hi-parts (all zero). 5165 // ASCII-check on lo-parts (no sign). 5166 ASCII(cmlt(vtmp2, T16B, vlo)); 5167 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 5168 ASCII(umov(max, vtmp2, B, 0)); 5169 ASCII(orr(chk, chk, max)); 5170 cbnz(chk, SKIP_8); 5171 5172 strd(vlo, Address(post(dst, 8))); 5173 subw(cnt, cnt, 8); 5174 add(src, src, 16); 5175 b(LOOP_8); 5176 } 5177 BIND(SKIP_8); 5178 5179 #undef ASCII 5180 5181 Label LOOP, DONE; 5182 5183 cbz(cnt, DONE); 5184 BIND(LOOP); 5185 { 5186 Register chr = rscratch1; 5187 ldrh(chr, Address(post(src, 2))); 5188 tst(chr, ascii ? 0xff80 : 0xff00); 5189 br(NE, DONE); 5190 strb(chr, Address(post(dst, 1))); 5191 subs(cnt, cnt, 1); 5192 br(GT, LOOP); 5193 } 5194 BIND(DONE); 5195 // Return index where we stopped. 5196 subw(res, len, cnt); 5197 } 5198 5199 // Inflate byte[] array to char[]. 5200 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 5201 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 5202 FloatRegister vtmp1, FloatRegister vtmp2, 5203 FloatRegister vtmp3, Register tmp4) { 5204 Label big, done, after_init, to_stub; 5205 5206 assert_different_registers(src, dst, len, tmp4, rscratch1); 5207 5208 fmovd(vtmp1, 0.0); 5209 lsrw(tmp4, len, 3); 5210 bind(after_init); 5211 cbnzw(tmp4, big); 5212 // Short string: less than 8 bytes. 5213 { 5214 Label loop, tiny; 5215 5216 cmpw(len, 4); 5217 br(LT, tiny); 5218 // Use SIMD to do 4 bytes. 5219 ldrs(vtmp2, post(src, 4)); 5220 zip1(vtmp3, T8B, vtmp2, vtmp1); 5221 subw(len, len, 4); 5222 strd(vtmp3, post(dst, 8)); 5223 5224 cbzw(len, done); 5225 5226 // Do the remaining bytes by steam. 5227 bind(loop); 5228 ldrb(tmp4, post(src, 1)); 5229 strh(tmp4, post(dst, 2)); 5230 subw(len, len, 1); 5231 5232 bind(tiny); 5233 cbnz(len, loop); 5234 5235 b(done); 5236 } 5237 5238 if (SoftwarePrefetchHintDistance >= 0) { 5239 bind(to_stub); 5240 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 5241 assert(stub.target() != NULL, "large_byte_array_inflate stub has not been generated"); 5242 address tpc = trampoline_call(stub); 5243 if (tpc == NULL) { 5244 DEBUG_ONLY(reset_labels(big, done)); 5245 postcond(pc() == badAddress); 5246 return NULL; 5247 } 5248 b(after_init); 5249 } 5250 5251 // Unpack the bytes 8 at a time. 5252 bind(big); 5253 { 5254 Label loop, around, loop_last, loop_start; 5255 5256 if (SoftwarePrefetchHintDistance >= 0) { 5257 const int large_loop_threshold = (64 + 16)/8; 5258 ldrd(vtmp2, post(src, 8)); 5259 andw(len, len, 7); 5260 cmp(tmp4, (u1)large_loop_threshold); 5261 br(GE, to_stub); 5262 b(loop_start); 5263 5264 bind(loop); 5265 ldrd(vtmp2, post(src, 8)); 5266 bind(loop_start); 5267 subs(tmp4, tmp4, 1); 5268 br(EQ, loop_last); 5269 zip1(vtmp2, T16B, vtmp2, vtmp1); 5270 ldrd(vtmp3, post(src, 8)); 5271 st1(vtmp2, T8H, post(dst, 16)); 5272 subs(tmp4, tmp4, 1); 5273 zip1(vtmp3, T16B, vtmp3, vtmp1); 5274 st1(vtmp3, T8H, post(dst, 16)); 5275 br(NE, loop); 5276 b(around); 5277 bind(loop_last); 5278 zip1(vtmp2, T16B, vtmp2, vtmp1); 5279 st1(vtmp2, T8H, post(dst, 16)); 5280 bind(around); 5281 cbz(len, done); 5282 } else { 5283 andw(len, len, 7); 5284 bind(loop); 5285 ldrd(vtmp2, post(src, 8)); 5286 sub(tmp4, tmp4, 1); 5287 zip1(vtmp3, T16B, vtmp2, vtmp1); 5288 st1(vtmp3, T8H, post(dst, 16)); 5289 cbnz(tmp4, loop); 5290 } 5291 } 5292 5293 // Do the tail of up to 8 bytes. 5294 add(src, src, len); 5295 ldrd(vtmp3, Address(src, -8)); 5296 add(dst, dst, len, ext::uxtw, 1); 5297 zip1(vtmp3, T16B, vtmp3, vtmp1); 5298 strq(vtmp3, Address(dst, -16)); 5299 5300 bind(done); 5301 postcond(pc() != badAddress); 5302 return pc(); 5303 } 5304 5305 // Compress char[] array to byte[]. 5306 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 5307 Register res, 5308 FloatRegister tmp0, FloatRegister tmp1, 5309 FloatRegister tmp2, FloatRegister tmp3, 5310 FloatRegister tmp4, FloatRegister tmp5) { 5311 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 5312 // Adjust result: res == len ? len : 0 5313 cmp(len, res); 5314 csel(res, res, zr, EQ); 5315 } 5316 5317 // get_thread() can be called anywhere inside generated code so we 5318 // need to save whatever non-callee save context might get clobbered 5319 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 5320 // the call setup code. 5321 // 5322 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 5323 // On other systems, the helper is a usual C function. 5324 // 5325 void MacroAssembler::get_thread(Register dst) { 5326 RegSet saved_regs = 5327 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 5328 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 5329 5330 push(saved_regs, sp); 5331 5332 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 5333 blr(lr); 5334 if (dst != c_rarg0) { 5335 mov(dst, c_rarg0); 5336 } 5337 5338 pop(saved_regs, sp); 5339 } 5340 5341 void MacroAssembler::cache_wb(Address line) { 5342 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 5343 assert(line.index() == noreg, "index should be noreg"); 5344 assert(line.offset() == 0, "offset should be 0"); 5345 // would like to assert this 5346 // assert(line._ext.shift == 0, "shift should be zero"); 5347 if (VM_Version::features() & VM_Version::CPU_DCPOP) { 5348 // writeback using clear virtual address to point of persistence 5349 dc(Assembler::CVAP, line.base()); 5350 } else { 5351 // no need to generate anything as Unsafe.writebackMemory should 5352 // never invoke this stub 5353 } 5354 } 5355 5356 void MacroAssembler::cache_wbsync(bool is_pre) { 5357 // we only need a barrier post sync 5358 if (!is_pre) { 5359 membar(Assembler::AnyAny); 5360 } 5361 } 5362 5363 void MacroAssembler::verify_sve_vector_length() { 5364 // Make sure that native code does not change SVE vector length. 5365 if (!UseSVE) return; 5366 Label verify_ok; 5367 movw(rscratch1, zr); 5368 sve_inc(rscratch1, B); 5369 subsw(zr, rscratch1, VM_Version::get_initial_sve_vector_length()); 5370 br(EQ, verify_ok); 5371 stop("Error: SVE vector length has changed since jvm startup"); 5372 bind(verify_ok); 5373 } 5374 5375 void MacroAssembler::verify_ptrue() { 5376 Label verify_ok; 5377 if (!UseSVE) { 5378 return; 5379 } 5380 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 5381 sve_dec(rscratch1, B); 5382 cbz(rscratch1, verify_ok); 5383 stop("Error: the preserved predicate register (p7) elements are not all true"); 5384 bind(verify_ok); 5385 } 5386 5387 void MacroAssembler::safepoint_isb() { 5388 isb(); 5389 #ifndef PRODUCT 5390 if (VerifyCrossModifyFence) { 5391 // Clear the thread state. 5392 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 5393 } 5394 #endif 5395 } 5396 5397 #ifndef PRODUCT 5398 void MacroAssembler::verify_cross_modify_fence_not_required() { 5399 if (VerifyCrossModifyFence) { 5400 // Check if thread needs a cross modify fence. 5401 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 5402 Label fence_not_required; 5403 cbz(rscratch1, fence_not_required); 5404 // If it does then fail. 5405 lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)); 5406 mov(c_rarg0, rthread); 5407 blr(rscratch1); 5408 bind(fence_not_required); 5409 } 5410 } 5411 #endif 5412 5413 void MacroAssembler::spin_wait() { 5414 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 5415 switch (VM_Version::spin_wait_desc().inst()) { 5416 case SpinWait::NOP: 5417 nop(); 5418 break; 5419 case SpinWait::ISB: 5420 isb(); 5421 break; 5422 case SpinWait::YIELD: 5423 yield(); 5424 break; 5425 default: 5426 ShouldNotReachHere(); 5427 } 5428 } 5429 } 5430 5431 // Implements lightweight-locking. 5432 // 5433 // - obj: the object to be locked 5434 // - t1, t2, t3: temporary registers, will be destroyed 5435 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 5436 void MacroAssembler::lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 5437 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 5438 assert_different_registers(obj, t1, t2, t3, rscratch1); 5439 5440 Label push; 5441 const Register top = t1; 5442 const Register mark = t2; 5443 const Register t = t3; 5444 5445 // Preload the markWord. It is important that this is the first 5446 // instruction emitted as it is part of C1's null check semantics. 5447 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 5448 5449 // Check if the lock-stack is full. 5450 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 5451 cmpw(top, (unsigned)LockStack::end_offset()); 5452 br(Assembler::GE, slow); 5453 5454 // Check for recursion. 5455 subw(t, top, oopSize); 5456 ldr(t, Address(rthread, t)); 5457 cmp(obj, t); 5458 br(Assembler::EQ, push); 5459 5460 // Check header for monitor (0b10). 5461 tst(mark, markWord::monitor_value); 5462 br(Assembler::NE, slow); 5463 5464 // Try to lock. Transition lock bits 0b01 => 0b00 5465 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 5466 orr(mark, mark, markWord::unlocked_value); 5467 eor(t, mark, markWord::unlocked_value); 5468 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 5469 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 5470 br(Assembler::NE, slow); 5471 5472 bind(push); 5473 // After successful lock, push object on lock-stack. 5474 str(obj, Address(rthread, top)); 5475 addw(top, top, oopSize); 5476 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 5477 } 5478 5479 // Implements lightweight-unlocking. 5480 // 5481 // - obj: the object to be unlocked 5482 // - t1, t2, t3: temporary registers 5483 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 5484 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 5485 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 5486 // cmpxchg clobbers rscratch1. 5487 assert_different_registers(obj, t1, t2, t3, rscratch1); 5488 5489 #ifdef ASSERT 5490 { 5491 // Check for lock-stack underflow. 5492 Label stack_ok; 5493 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 5494 cmpw(t1, (unsigned)LockStack::start_offset()); 5495 br(Assembler::GE, stack_ok); 5496 STOP("Lock-stack underflow"); 5497 bind(stack_ok); 5498 } 5499 #endif 5500 5501 Label unlocked, push_and_slow; 5502 const Register top = t1; 5503 const Register mark = t2; 5504 const Register t = t3; 5505 5506 // Check if obj is top of lock-stack. 5507 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 5508 subw(top, top, oopSize); 5509 ldr(t, Address(rthread, top)); 5510 cmp(obj, t); 5511 br(Assembler::NE, slow); 5512 5513 // Pop lock-stack. 5514 DEBUG_ONLY(str(zr, Address(rthread, top));) 5515 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 5516 5517 // Check if recursive. 5518 subw(t, top, oopSize); 5519 ldr(t, Address(rthread, t)); 5520 cmp(obj, t); 5521 br(Assembler::EQ, unlocked); 5522 5523 // Not recursive. Check header for monitor (0b10). 5524 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 5525 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 5526 5527 #ifdef ASSERT 5528 // Check header not unlocked (0b01). 5529 Label not_unlocked; 5530 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 5531 stop("lightweight_unlock already unlocked"); 5532 bind(not_unlocked); 5533 #endif 5534 5535 // Try to unlock. Transition lock bits 0b00 => 0b01 5536 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 5537 orr(t, mark, markWord::unlocked_value); 5538 cmpxchg(obj, mark, t, Assembler::xword, 5539 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 5540 br(Assembler::EQ, unlocked); 5541 5542 bind(push_and_slow); 5543 // Restore lock-stack and handle the unlock in runtime. 5544 DEBUG_ONLY(str(obj, Address(rthread, top));) 5545 addw(top, top, oopSize); 5546 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 5547 b(slow); 5548 5549 bind(unlocked); 5550 }