1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include <sys/types.h> 27 28 #include "precompiled.hpp" 29 #include "jvm.h" 30 #include "asm/assembler.hpp" 31 #include "asm/assembler.inline.hpp" 32 #include "ci/ciEnv.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/cardTable.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "interpreter/bytecodeHistogram.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "compiler/compileTask.hpp" 42 #include "compiler/disassembler.hpp" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "nativeInst_aarch64.hpp" 46 #include "oops/accessDecorators.hpp" 47 #include "oops/compressedOops.inline.hpp" 48 #include "oops/klass.inline.hpp" 49 #include "runtime/biasedLocking.hpp" 50 #include "runtime/icache.hpp" 51 #include "runtime/interfaceSupport.inline.hpp" 52 #include "runtime/jniHandles.inline.hpp" 53 #include "runtime/objectMonitor.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "runtime/stubRoutines.hpp" 56 #include "runtime/thread.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #ifdef COMPILER1 59 #include "c1/c1_LIRAssembler.hpp" 60 #endif 61 #ifdef COMPILER2 62 #include "oops/oop.hpp" 63 #include "opto/compile.hpp" 64 #include "opto/node.hpp" 65 #include "opto/output.hpp" 66 #endif 67 68 #ifdef PRODUCT 69 #define BLOCK_COMMENT(str) /* nothing */ 70 #else 71 #define BLOCK_COMMENT(str) block_comment(str) 72 #endif 73 #define STOP(str) stop(str); 74 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 75 76 // Patch any kind of instruction; there may be several instructions. 77 // Return the total length (in bytes) of the instructions. 78 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 79 int instructions = 1; 80 assert((uint64_t)target < (1ull << 48), "48-bit overflow in address constant"); 81 intptr_t offset = (target - branch) >> 2; 82 unsigned insn = *(unsigned*)branch; 83 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 84 // Load register (literal) 85 Instruction_aarch64::spatch(branch, 23, 5, offset); 86 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 87 // Unconditional branch (immediate) 88 Instruction_aarch64::spatch(branch, 25, 0, offset); 89 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 90 // Conditional branch (immediate) 91 Instruction_aarch64::spatch(branch, 23, 5, offset); 92 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 93 // Compare & branch (immediate) 94 Instruction_aarch64::spatch(branch, 23, 5, offset); 95 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 96 // Test & branch (immediate) 97 Instruction_aarch64::spatch(branch, 18, 5, offset); 98 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 99 // PC-rel. addressing 100 offset = target-branch; 101 int shift = Instruction_aarch64::extract(insn, 31, 31); 102 if (shift) { 103 uint64_t dest = (uint64_t)target; 104 uint64_t pc_page = (uint64_t)branch >> 12; 105 uint64_t adr_page = (uint64_t)target >> 12; 106 unsigned offset_lo = dest & 0xfff; 107 offset = adr_page - pc_page; 108 109 // We handle 4 types of PC relative addressing 110 // 1 - adrp Rx, target_page 111 // ldr/str Ry, [Rx, #offset_in_page] 112 // 2 - adrp Rx, target_page 113 // add Ry, Rx, #offset_in_page 114 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 115 // movk Rx, #imm16<<32 116 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 117 // In the first 3 cases we must check that Rx is the same in the adrp and the 118 // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end 119 // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened 120 // to be followed by a random unrelated ldr/str, add or movk instruction. 121 // 122 unsigned insn2 = ((unsigned*)branch)[1]; 123 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 124 Instruction_aarch64::extract(insn, 4, 0) == 125 Instruction_aarch64::extract(insn2, 9, 5)) { 126 // Load/store register (unsigned immediate) 127 unsigned size = Instruction_aarch64::extract(insn2, 31, 30); 128 Instruction_aarch64::patch(branch + sizeof (unsigned), 129 21, 10, offset_lo >> size); 130 guarantee(((dest >> size) << size) == dest, "misaligned target"); 131 instructions = 2; 132 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 133 Instruction_aarch64::extract(insn, 4, 0) == 134 Instruction_aarch64::extract(insn2, 4, 0)) { 135 // add (immediate) 136 Instruction_aarch64::patch(branch + sizeof (unsigned), 137 21, 10, offset_lo); 138 instructions = 2; 139 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 140 Instruction_aarch64::extract(insn, 4, 0) == 141 Instruction_aarch64::extract(insn2, 4, 0)) { 142 // movk #imm16<<32 143 Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32); 144 uintptr_t dest = ((uintptr_t)target & 0xffffffffULL) | ((uintptr_t)branch & 0xffff00000000ULL); 145 uintptr_t pc_page = (uintptr_t)branch >> 12; 146 uintptr_t adr_page = (uintptr_t)dest >> 12; 147 offset = adr_page - pc_page; 148 instructions = 2; 149 } 150 } 151 int offset_lo = offset & 3; 152 offset >>= 2; 153 Instruction_aarch64::spatch(branch, 23, 5, offset); 154 Instruction_aarch64::patch(branch, 30, 29, offset_lo); 155 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { 156 uint64_t dest = (uint64_t)target; 157 // Move wide constant 158 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); 159 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); 160 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); 161 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); 162 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); 163 assert(target_addr_for_insn(branch) == target, "should be"); 164 instructions = 3; 165 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 166 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 167 // nothing to do 168 assert(target == 0, "did not expect to relocate target for polling page load"); 169 } else { 170 ShouldNotReachHere(); 171 } 172 return instructions * NativeInstruction::instruction_size; 173 } 174 175 int MacroAssembler::patch_oop(address insn_addr, address o) { 176 int instructions; 177 unsigned insn = *(unsigned*)insn_addr; 178 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 179 180 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 181 // narrow OOPs by setting the upper 16 bits in the first 182 // instruction. 183 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 184 // Move narrow OOP 185 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 186 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 187 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 188 instructions = 2; 189 } else { 190 // Move wide OOP 191 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 192 uintptr_t dest = (uintptr_t)o; 193 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 194 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 195 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 196 instructions = 3; 197 } 198 return instructions * NativeInstruction::instruction_size; 199 } 200 201 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 202 // Metatdata pointers are either narrow (32 bits) or wide (48 bits). 203 // We encode narrow ones by setting the upper 16 bits in the first 204 // instruction. 205 NativeInstruction *insn = nativeInstruction_at(insn_addr); 206 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 207 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 208 209 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 210 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 211 return 2 * NativeInstruction::instruction_size; 212 } 213 214 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { 215 intptr_t offset = 0; 216 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { 217 // Load register (literal) 218 offset = Instruction_aarch64::sextract(insn, 23, 5); 219 return address(((uint64_t)insn_addr + (offset << 2))); 220 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 221 // Unconditional branch (immediate) 222 offset = Instruction_aarch64::sextract(insn, 25, 0); 223 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 224 // Conditional branch (immediate) 225 offset = Instruction_aarch64::sextract(insn, 23, 5); 226 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 227 // Compare & branch (immediate) 228 offset = Instruction_aarch64::sextract(insn, 23, 5); 229 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 230 // Test & branch (immediate) 231 offset = Instruction_aarch64::sextract(insn, 18, 5); 232 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 233 // PC-rel. addressing 234 offset = Instruction_aarch64::extract(insn, 30, 29); 235 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 236 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; 237 if (shift) { 238 offset <<= shift; 239 uint64_t target_page = ((uint64_t)insn_addr) + offset; 240 target_page &= ((uint64_t)-1) << shift; 241 // Return the target address for the following sequences 242 // 1 - adrp Rx, target_page 243 // ldr/str Ry, [Rx, #offset_in_page] 244 // 2 - adrp Rx, target_page 245 // add Ry, Rx, #offset_in_page 246 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 247 // movk Rx, #imm12<<32 248 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 249 // 250 // In the first two cases we check that the register is the same and 251 // return the target_page + the offset within the page. 252 // Otherwise we assume it is a page aligned relocation and return 253 // the target page only. 254 // 255 unsigned insn2 = ((unsigned*)insn_addr)[1]; 256 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 257 Instruction_aarch64::extract(insn, 4, 0) == 258 Instruction_aarch64::extract(insn2, 9, 5)) { 259 // Load/store register (unsigned immediate) 260 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 261 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); 262 return address(target_page + (byte_offset << size)); 263 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 264 Instruction_aarch64::extract(insn, 4, 0) == 265 Instruction_aarch64::extract(insn2, 4, 0)) { 266 // add (immediate) 267 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 268 return address(target_page + byte_offset); 269 } else { 270 if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 271 Instruction_aarch64::extract(insn, 4, 0) == 272 Instruction_aarch64::extract(insn2, 4, 0)) { 273 target_page = (target_page & 0xffffffff) | 274 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 275 } 276 return (address)target_page; 277 } 278 } else { 279 ShouldNotReachHere(); 280 } 281 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { 282 uint32_t *insns = (uint32_t *)insn_addr; 283 // Move wide constant: movz, movk, movk. See movptr(). 284 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 285 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 286 return address(uint64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 287 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 288 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 289 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 290 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 291 return 0; 292 } else { 293 ShouldNotReachHere(); 294 } 295 return address(((uint64_t)insn_addr + (offset << 2))); 296 } 297 298 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod) { 299 if (acquire) { 300 lea(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 301 ldar(rscratch1, rscratch1); 302 } else { 303 ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 304 } 305 if (at_return) { 306 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 307 // we may safely use the sp instead to perform the stack watermark check. 308 cmp(in_nmethod ? sp : rfp, rscratch1); 309 br(Assembler::HI, slow_path); 310 } else { 311 tbnz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 312 } 313 } 314 315 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 316 // we must set sp to zero to clear frame 317 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 318 319 // must clear fp, so that compiled frames are not confused; it is 320 // possible that we need it only for debugging 321 if (clear_fp) { 322 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 323 } 324 325 // Always clear the pc because it could have been set by make_walkable() 326 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 327 } 328 329 // Calls to C land 330 // 331 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 332 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 333 // has to be reset to 0. This is required to allow proper stack traversal. 334 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 335 Register last_java_fp, 336 Register last_java_pc, 337 Register scratch) { 338 339 if (last_java_pc->is_valid()) { 340 str(last_java_pc, Address(rthread, 341 JavaThread::frame_anchor_offset() 342 + JavaFrameAnchor::last_Java_pc_offset())); 343 } 344 345 // determine last_java_sp register 346 if (last_java_sp == sp) { 347 mov(scratch, sp); 348 last_java_sp = scratch; 349 } else if (!last_java_sp->is_valid()) { 350 last_java_sp = esp; 351 } 352 353 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 354 355 // last_java_fp is optional 356 if (last_java_fp->is_valid()) { 357 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 358 } 359 } 360 361 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 362 Register last_java_fp, 363 address last_java_pc, 364 Register scratch) { 365 assert(last_java_pc != NULL, "must provide a valid PC"); 366 367 adr(scratch, last_java_pc); 368 str(scratch, Address(rthread, 369 JavaThread::frame_anchor_offset() 370 + JavaFrameAnchor::last_Java_pc_offset())); 371 372 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 373 } 374 375 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 376 Register last_java_fp, 377 Label &L, 378 Register scratch) { 379 if (L.is_bound()) { 380 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 381 } else { 382 InstructionMark im(this); 383 L.add_patch_at(code(), locator()); 384 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 385 } 386 } 387 388 static inline bool target_needs_far_branch(address addr) { 389 // codecache size <= 128M 390 if (!MacroAssembler::far_branches()) { 391 return false; 392 } 393 // codecache size > 240M 394 if (MacroAssembler::codestub_branch_needs_far_jump()) { 395 return true; 396 } 397 // codecache size: 128M..240M 398 return !CodeCache::is_non_nmethod(addr); 399 } 400 401 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 402 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 403 assert(CodeCache::find_blob(entry.target()) != NULL, 404 "destination of far call not found in code cache"); 405 if (target_needs_far_branch(entry.target())) { 406 uint64_t offset; 407 // We can use ADRP here because we know that the total size of 408 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 409 adrp(tmp, entry, offset); 410 add(tmp, tmp, offset); 411 if (cbuf) cbuf->set_insts_mark(); 412 blr(tmp); 413 } else { 414 if (cbuf) cbuf->set_insts_mark(); 415 bl(entry); 416 } 417 } 418 419 int MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 420 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 421 assert(CodeCache::find_blob(entry.target()) != NULL, 422 "destination of far call not found in code cache"); 423 address start = pc(); 424 if (target_needs_far_branch(entry.target())) { 425 uint64_t offset; 426 // We can use ADRP here because we know that the total size of 427 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 428 adrp(tmp, entry, offset); 429 add(tmp, tmp, offset); 430 if (cbuf) cbuf->set_insts_mark(); 431 br(tmp); 432 } else { 433 if (cbuf) cbuf->set_insts_mark(); 434 b(entry); 435 } 436 return pc() - start; 437 } 438 439 void MacroAssembler::reserved_stack_check() { 440 // testing if reserved zone needs to be enabled 441 Label no_reserved_zone_enabling; 442 443 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 444 cmp(sp, rscratch1); 445 br(Assembler::LO, no_reserved_zone_enabling); 446 447 enter(); // LR and FP are live. 448 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 449 mov(c_rarg0, rthread); 450 blr(rscratch1); 451 leave(); 452 453 // We have already removed our own frame. 454 // throw_delayed_StackOverflowError will think that it's been 455 // called by our caller. 456 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 457 br(rscratch1); 458 should_not_reach_here(); 459 460 bind(no_reserved_zone_enabling); 461 } 462 463 void MacroAssembler::biased_locking_enter(Register lock_reg, 464 Register obj_reg, 465 Register swap_reg, 466 Register tmp_reg, 467 bool swap_reg_contains_mark, 468 Label& done, 469 Label* slow_case, 470 BiasedLockingCounters* counters) { 471 assert(UseBiasedLocking, "why call this otherwise?"); 472 assert_different_registers(lock_reg, obj_reg, swap_reg); 473 474 if (PrintBiasedLockingStatistics && counters == NULL) 475 counters = BiasedLocking::counters(); 476 477 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg); 478 assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout"); 479 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); 480 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); 481 Address saved_mark_addr(lock_reg, 0); 482 483 // Biased locking 484 // See whether the lock is currently biased toward our thread and 485 // whether the epoch is still valid 486 // Note that the runtime guarantees sufficient alignment of JavaThread 487 // pointers to allow age to be placed into low bits 488 // First check to see whether biasing is even enabled for this object 489 Label cas_label; 490 if (!swap_reg_contains_mark) { 491 ldr(swap_reg, mark_addr); 492 } 493 andr(tmp_reg, swap_reg, markWord::biased_lock_mask_in_place); 494 cmp(tmp_reg, (u1)markWord::biased_lock_pattern); 495 br(Assembler::NE, cas_label); 496 // The bias pattern is present in the object's header. Need to check 497 // whether the bias owner and the epoch are both still current. 498 load_prototype_header(tmp_reg, obj_reg); 499 orr(tmp_reg, tmp_reg, rthread); 500 eor(tmp_reg, swap_reg, tmp_reg); 501 andr(tmp_reg, tmp_reg, ~((int) markWord::age_mask_in_place)); 502 if (counters != NULL) { 503 Label around; 504 cbnz(tmp_reg, around); 505 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); 506 b(done); 507 bind(around); 508 } else { 509 cbz(tmp_reg, done); 510 } 511 512 Label try_revoke_bias; 513 Label try_rebias; 514 515 // At this point we know that the header has the bias pattern and 516 // that we are not the bias owner in the current epoch. We need to 517 // figure out more details about the state of the header in order to 518 // know what operations can be legally performed on the object's 519 // header. 520 521 // If the low three bits in the xor result aren't clear, that means 522 // the prototype header is no longer biased and we have to revoke 523 // the bias on this object. 524 andr(rscratch1, tmp_reg, markWord::biased_lock_mask_in_place); 525 cbnz(rscratch1, try_revoke_bias); 526 527 // Biasing is still enabled for this data type. See whether the 528 // epoch of the current bias is still valid, meaning that the epoch 529 // bits of the mark word are equal to the epoch bits of the 530 // prototype header. (Note that the prototype header's epoch bits 531 // only change at a safepoint.) If not, attempt to rebias the object 532 // toward the current thread. Note that we must be absolutely sure 533 // that the current epoch is invalid in order to do this because 534 // otherwise the manipulations it performs on the mark word are 535 // illegal. 536 andr(rscratch1, tmp_reg, markWord::epoch_mask_in_place); 537 cbnz(rscratch1, try_rebias); 538 539 // The epoch of the current bias is still valid but we know nothing 540 // about the owner; it might be set or it might be clear. Try to 541 // acquire the bias of the object using an atomic operation. If this 542 // fails we will go in to the runtime to revoke the object's bias. 543 // Note that we first construct the presumed unbiased header so we 544 // don't accidentally blow away another thread's valid bias. 545 { 546 Label here; 547 mov(rscratch1, markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place); 548 andr(swap_reg, swap_reg, rscratch1); 549 orr(tmp_reg, swap_reg, rthread); 550 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 551 // If the biasing toward our thread failed, this means that 552 // another thread succeeded in biasing it toward itself and we 553 // need to revoke that bias. The revocation will occur in the 554 // interpreter runtime in the slow case. 555 bind(here); 556 if (counters != NULL) { 557 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), 558 tmp_reg, rscratch1, rscratch2); 559 } 560 } 561 b(done); 562 563 bind(try_rebias); 564 // At this point we know the epoch has expired, meaning that the 565 // current "bias owner", if any, is actually invalid. Under these 566 // circumstances _only_, we are allowed to use the current header's 567 // value as the comparison value when doing the cas to acquire the 568 // bias in the current epoch. In other words, we allow transfer of 569 // the bias from one thread to another directly in this situation. 570 // 571 // FIXME: due to a lack of registers we currently blow away the age 572 // bits in this situation. Should attempt to preserve them. 573 { 574 Label here; 575 load_prototype_header(tmp_reg, obj_reg); 576 orr(tmp_reg, rthread, tmp_reg); 577 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 578 // If the biasing toward our thread failed, then another thread 579 // succeeded in biasing it toward itself and we need to revoke that 580 // bias. The revocation will occur in the runtime in the slow case. 581 bind(here); 582 if (counters != NULL) { 583 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), 584 tmp_reg, rscratch1, rscratch2); 585 } 586 } 587 b(done); 588 589 bind(try_revoke_bias); 590 // The prototype mark in the klass doesn't have the bias bit set any 591 // more, indicating that objects of this data type are not supposed 592 // to be biased any more. We are going to try to reset the mark of 593 // this object to the prototype value and fall through to the 594 // CAS-based locking scheme. Note that if our CAS fails, it means 595 // that another thread raced us for the privilege of revoking the 596 // bias of this particular object, so it's okay to continue in the 597 // normal locking code. 598 // 599 // FIXME: due to a lack of registers we currently blow away the age 600 // bits in this situation. Should attempt to preserve them. 601 { 602 Label here, nope; 603 load_prototype_header(tmp_reg, obj_reg); 604 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope); 605 bind(here); 606 607 // Fall through to the normal CAS-based lock, because no matter what 608 // the result of the above CAS, some thread must have succeeded in 609 // removing the bias bit from the object's header. 610 if (counters != NULL) { 611 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg, 612 rscratch1, rscratch2); 613 } 614 bind(nope); 615 } 616 617 bind(cas_label); 618 } 619 620 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { 621 assert(UseBiasedLocking, "why call this otherwise?"); 622 623 // Check for biased locking unlock case, which is a no-op 624 // Note: we do not have to check the thread ID for two reasons. 625 // First, the interpreter checks for IllegalMonitorStateException at 626 // a higher level. Second, if the bias was revoked while we held the 627 // lock, the object could not be rebiased toward another thread, so 628 // the bias bit would be clear. 629 ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 630 andr(temp_reg, temp_reg, markWord::biased_lock_mask_in_place); 631 cmp(temp_reg, (u1)markWord::biased_lock_pattern); 632 br(Assembler::EQ, done); 633 } 634 635 static void pass_arg0(MacroAssembler* masm, Register arg) { 636 if (c_rarg0 != arg ) { 637 masm->mov(c_rarg0, arg); 638 } 639 } 640 641 static void pass_arg1(MacroAssembler* masm, Register arg) { 642 if (c_rarg1 != arg ) { 643 masm->mov(c_rarg1, arg); 644 } 645 } 646 647 static void pass_arg2(MacroAssembler* masm, Register arg) { 648 if (c_rarg2 != arg ) { 649 masm->mov(c_rarg2, arg); 650 } 651 } 652 653 static void pass_arg3(MacroAssembler* masm, Register arg) { 654 if (c_rarg3 != arg ) { 655 masm->mov(c_rarg3, arg); 656 } 657 } 658 659 void MacroAssembler::call_VM_base(Register oop_result, 660 Register java_thread, 661 Register last_java_sp, 662 address entry_point, 663 int number_of_arguments, 664 bool check_exceptions) { 665 // determine java_thread register 666 if (!java_thread->is_valid()) { 667 java_thread = rthread; 668 } 669 670 // determine last_java_sp register 671 if (!last_java_sp->is_valid()) { 672 last_java_sp = esp; 673 } 674 675 // debugging support 676 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 677 assert(java_thread == rthread, "unexpected register"); 678 #ifdef ASSERT 679 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 680 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 681 #endif // ASSERT 682 683 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 684 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 685 686 // push java thread (becomes first argument of C function) 687 688 mov(c_rarg0, java_thread); 689 690 // set last Java frame before call 691 assert(last_java_sp != rfp, "can't use rfp"); 692 693 Label l; 694 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 695 696 // do the call, remove parameters 697 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 698 699 // lr could be poisoned with PAC signature during throw_pending_exception 700 // if it was tail-call optimized by compiler, since lr is not callee-saved 701 // reload it with proper value 702 adr(lr, l); 703 704 // reset last Java frame 705 // Only interpreter should have to clear fp 706 reset_last_Java_frame(true); 707 708 // C++ interp handles this in the interpreter 709 check_and_handle_popframe(java_thread); 710 check_and_handle_earlyret(java_thread); 711 712 if (check_exceptions) { 713 // check for pending exceptions (java_thread is set upon return) 714 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 715 Label ok; 716 cbz(rscratch1, ok); 717 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 718 br(rscratch1); 719 bind(ok); 720 } 721 722 // get oop result if there is one and reset the value in the thread 723 if (oop_result->is_valid()) { 724 get_vm_result(oop_result, java_thread); 725 } 726 } 727 728 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 729 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 730 } 731 732 // Maybe emit a call via a trampoline. If the code cache is small 733 // trampolines won't be emitted. 734 735 address MacroAssembler::trampoline_call(Address entry, CodeBuffer* cbuf) { 736 assert(JavaThread::current()->is_Compiler_thread(), "just checking"); 737 assert(entry.rspec().type() == relocInfo::runtime_call_type 738 || entry.rspec().type() == relocInfo::opt_virtual_call_type 739 || entry.rspec().type() == relocInfo::static_call_type 740 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 741 742 bool need_trampoline = far_branches(); 743 if (!need_trampoline && entry.rspec().type() == relocInfo::runtime_call_type && !CodeCache::contains(entry.target())) { 744 // If it is a runtime call of an address outside small CodeCache, 745 // we need to check whether it is in range. 746 address target = entry.target(); 747 assert(target < CodeCache::low_bound() || target >= CodeCache::high_bound(), "target is inside CodeCache"); 748 // Case 1: -------T-------L====CodeCache====H------- 749 // ^-------longest branch---| 750 // Case 2: -------L====CodeCache====H-------T------- 751 // |-------longest branch ---^ 752 address longest_branch_start = (target < CodeCache::low_bound()) ? CodeCache::high_bound() - NativeInstruction::instruction_size 753 : CodeCache::low_bound(); 754 need_trampoline = !reachable_from_branch_at(longest_branch_start, target); 755 } 756 757 // We need a trampoline if branches are far. 758 if (need_trampoline) { 759 bool in_scratch_emit_size = false; 760 #ifdef COMPILER2 761 // We don't want to emit a trampoline if C2 is generating dummy 762 // code during its branch shortening phase. 763 CompileTask* task = ciEnv::current()->task(); 764 in_scratch_emit_size = 765 (task != NULL && is_c2_compile(task->comp_level()) && 766 Compile::current()->output()->in_scratch_emit_size()); 767 #endif 768 if (!in_scratch_emit_size) { 769 address stub = emit_trampoline_stub(offset(), entry.target()); 770 if (stub == NULL) { 771 postcond(pc() == badAddress); 772 return NULL; // CodeCache is full 773 } 774 } 775 } 776 777 if (cbuf) cbuf->set_insts_mark(); 778 relocate(entry.rspec()); 779 if (!need_trampoline) { 780 bl(entry.target()); 781 } else { 782 bl(pc()); 783 } 784 // just need to return a non-null address 785 postcond(pc() != badAddress); 786 return pc(); 787 } 788 789 790 // Emit a trampoline stub for a call to a target which is too far away. 791 // 792 // code sequences: 793 // 794 // call-site: 795 // branch-and-link to <destination> or <trampoline stub> 796 // 797 // Related trampoline stub for this call site in the stub section: 798 // load the call target from the constant pool 799 // branch (LR still points to the call site above) 800 801 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 802 address dest) { 803 // Max stub size: alignment nop, TrampolineStub. 804 address stub = start_a_stub(NativeInstruction::instruction_size 805 + NativeCallTrampolineStub::instruction_size); 806 if (stub == NULL) { 807 return NULL; // CodeBuffer::expand failed 808 } 809 810 // Create a trampoline stub relocation which relates this trampoline stub 811 // with the call instruction at insts_call_instruction_offset in the 812 // instructions code-section. 813 align(wordSize); 814 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 815 + insts_call_instruction_offset)); 816 const int stub_start_offset = offset(); 817 818 // Now, create the trampoline stub's code: 819 // - load the call 820 // - call 821 Label target; 822 ldr(rscratch1, target); 823 br(rscratch1); 824 bind(target); 825 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 826 "should be"); 827 emit_int64((int64_t)dest); 828 829 const address stub_start_addr = addr_at(stub_start_offset); 830 831 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 832 833 end_a_stub(); 834 return stub_start_addr; 835 } 836 837 void MacroAssembler::emit_static_call_stub() { 838 // CompiledDirectStaticCall::set_to_interpreted knows the 839 // exact layout of this stub. 840 841 isb(); 842 mov_metadata(rmethod, (Metadata*)NULL); 843 844 // Jump to the entry point of the i2c stub. 845 movptr(rscratch1, 0); 846 br(rscratch1); 847 } 848 849 void MacroAssembler::c2bool(Register x) { 850 // implements x == 0 ? 0 : 1 851 // note: must only look at least-significant byte of x 852 // since C-style booleans are stored in one byte 853 // only! (was bug) 854 tst(x, 0xff); 855 cset(x, Assembler::NE); 856 } 857 858 address MacroAssembler::ic_call(address entry, jint method_index) { 859 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 860 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 861 // uintptr_t offset; 862 // ldr_constant(rscratch2, const_ptr); 863 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 864 return trampoline_call(Address(entry, rh)); 865 } 866 867 // Implementation of call_VM versions 868 869 void MacroAssembler::call_VM(Register oop_result, 870 address entry_point, 871 bool check_exceptions) { 872 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 873 } 874 875 void MacroAssembler::call_VM(Register oop_result, 876 address entry_point, 877 Register arg_1, 878 bool check_exceptions) { 879 pass_arg1(this, arg_1); 880 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 881 } 882 883 void MacroAssembler::call_VM(Register oop_result, 884 address entry_point, 885 Register arg_1, 886 Register arg_2, 887 bool check_exceptions) { 888 assert(arg_1 != c_rarg2, "smashed arg"); 889 pass_arg2(this, arg_2); 890 pass_arg1(this, arg_1); 891 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 892 } 893 894 void MacroAssembler::call_VM(Register oop_result, 895 address entry_point, 896 Register arg_1, 897 Register arg_2, 898 Register arg_3, 899 bool check_exceptions) { 900 assert(arg_1 != c_rarg3, "smashed arg"); 901 assert(arg_2 != c_rarg3, "smashed arg"); 902 pass_arg3(this, arg_3); 903 904 assert(arg_1 != c_rarg2, "smashed arg"); 905 pass_arg2(this, arg_2); 906 907 pass_arg1(this, arg_1); 908 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 909 } 910 911 void MacroAssembler::call_VM(Register oop_result, 912 Register last_java_sp, 913 address entry_point, 914 int number_of_arguments, 915 bool check_exceptions) { 916 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 917 } 918 919 void MacroAssembler::call_VM(Register oop_result, 920 Register last_java_sp, 921 address entry_point, 922 Register arg_1, 923 bool check_exceptions) { 924 pass_arg1(this, arg_1); 925 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 926 } 927 928 void MacroAssembler::call_VM(Register oop_result, 929 Register last_java_sp, 930 address entry_point, 931 Register arg_1, 932 Register arg_2, 933 bool check_exceptions) { 934 935 assert(arg_1 != c_rarg2, "smashed arg"); 936 pass_arg2(this, arg_2); 937 pass_arg1(this, arg_1); 938 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 939 } 940 941 void MacroAssembler::call_VM(Register oop_result, 942 Register last_java_sp, 943 address entry_point, 944 Register arg_1, 945 Register arg_2, 946 Register arg_3, 947 bool check_exceptions) { 948 assert(arg_1 != c_rarg3, "smashed arg"); 949 assert(arg_2 != c_rarg3, "smashed arg"); 950 pass_arg3(this, arg_3); 951 assert(arg_1 != c_rarg2, "smashed arg"); 952 pass_arg2(this, arg_2); 953 pass_arg1(this, arg_1); 954 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 955 } 956 957 958 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 959 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 960 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 961 verify_oop(oop_result, "broken oop in call_VM_base"); 962 } 963 964 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 965 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 966 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 967 } 968 969 void MacroAssembler::align(int modulus) { 970 while (offset() % modulus != 0) nop(); 971 } 972 973 // these are no-ops overridden by InterpreterMacroAssembler 974 975 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 976 977 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 978 979 // Look up the method for a megamorphic invokeinterface call. 980 // The target method is determined by <intf_klass, itable_index>. 981 // The receiver klass is in recv_klass. 982 // On success, the result will be in method_result, and execution falls through. 983 // On failure, execution transfers to the given label. 984 void MacroAssembler::lookup_interface_method(Register recv_klass, 985 Register intf_klass, 986 RegisterOrConstant itable_index, 987 Register method_result, 988 Register scan_temp, 989 Label& L_no_such_interface, 990 bool return_method) { 991 assert_different_registers(recv_klass, intf_klass, scan_temp); 992 assert_different_registers(method_result, intf_klass, scan_temp); 993 assert(recv_klass != method_result || !return_method, 994 "recv_klass can be destroyed when method isn't needed"); 995 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 996 "caller must use same register for non-constant itable index as for method"); 997 998 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 999 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1000 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 1001 int scan_step = itableOffsetEntry::size() * wordSize; 1002 int vte_size = vtableEntry::size_in_bytes(); 1003 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1004 1005 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1006 1007 // %%% Could store the aligned, prescaled offset in the klassoop. 1008 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1009 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1010 add(scan_temp, scan_temp, vtable_base); 1011 1012 if (return_method) { 1013 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1014 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1015 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1016 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1017 if (itentry_off) 1018 add(recv_klass, recv_klass, itentry_off); 1019 } 1020 1021 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 1022 // if (scan->interface() == intf) { 1023 // result = (klass + scan->offset() + itable_index); 1024 // } 1025 // } 1026 Label search, found_method; 1027 1028 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 1029 cmp(intf_klass, method_result); 1030 br(Assembler::EQ, found_method); 1031 bind(search); 1032 // Check that the previous entry is non-null. A null entry means that 1033 // the receiver class doesn't implement the interface, and wasn't the 1034 // same as when the caller was compiled. 1035 cbz(method_result, L_no_such_interface); 1036 if (itableOffsetEntry::interface_offset_in_bytes() != 0) { 1037 add(scan_temp, scan_temp, scan_step); 1038 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 1039 } else { 1040 ldr(method_result, Address(pre(scan_temp, scan_step))); 1041 } 1042 cmp(intf_klass, method_result); 1043 br(Assembler::NE, search); 1044 1045 bind(found_method); 1046 1047 // Got a hit. 1048 if (return_method) { 1049 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 1050 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1051 } 1052 } 1053 1054 // virtual method calling 1055 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1056 RegisterOrConstant vtable_index, 1057 Register method_result) { 1058 const int base = in_bytes(Klass::vtable_start_offset()); 1059 assert(vtableEntry::size() * wordSize == 8, 1060 "adjust the scaling in the code below"); 1061 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 1062 1063 if (vtable_index.is_register()) { 1064 lea(method_result, Address(recv_klass, 1065 vtable_index.as_register(), 1066 Address::lsl(LogBytesPerWord))); 1067 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1068 } else { 1069 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1070 ldr(method_result, 1071 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1072 } 1073 } 1074 1075 void MacroAssembler::check_klass_subtype(Register sub_klass, 1076 Register super_klass, 1077 Register temp_reg, 1078 Label& L_success) { 1079 Label L_failure; 1080 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 1081 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 1082 bind(L_failure); 1083 } 1084 1085 1086 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1087 Register super_klass, 1088 Register temp_reg, 1089 Label* L_success, 1090 Label* L_failure, 1091 Label* L_slow_path, 1092 RegisterOrConstant super_check_offset) { 1093 assert_different_registers(sub_klass, super_klass, temp_reg); 1094 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1095 if (super_check_offset.is_register()) { 1096 assert_different_registers(sub_klass, super_klass, 1097 super_check_offset.as_register()); 1098 } else if (must_load_sco) { 1099 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1100 } 1101 1102 Label L_fallthrough; 1103 int label_nulls = 0; 1104 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1105 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1106 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 1107 assert(label_nulls <= 1, "at most one NULL in the batch"); 1108 1109 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1110 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1111 Address super_check_offset_addr(super_klass, sco_offset); 1112 1113 // Hacked jmp, which may only be used just before L_fallthrough. 1114 #define final_jmp(label) \ 1115 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1116 else b(label) /*omit semi*/ 1117 1118 // If the pointers are equal, we are done (e.g., String[] elements). 1119 // This self-check enables sharing of secondary supertype arrays among 1120 // non-primary types such as array-of-interface. Otherwise, each such 1121 // type would need its own customized SSA. 1122 // We move this check to the front of the fast path because many 1123 // type checks are in fact trivially successful in this manner, 1124 // so we get a nicely predicted branch right at the start of the check. 1125 cmp(sub_klass, super_klass); 1126 br(Assembler::EQ, *L_success); 1127 1128 // Check the supertype display: 1129 if (must_load_sco) { 1130 ldrw(temp_reg, super_check_offset_addr); 1131 super_check_offset = RegisterOrConstant(temp_reg); 1132 } 1133 Address super_check_addr(sub_klass, super_check_offset); 1134 ldr(rscratch1, super_check_addr); 1135 cmp(super_klass, rscratch1); // load displayed supertype 1136 1137 // This check has worked decisively for primary supers. 1138 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1139 // (Secondary supers are interfaces and very deeply nested subtypes.) 1140 // This works in the same check above because of a tricky aliasing 1141 // between the super_cache and the primary super display elements. 1142 // (The 'super_check_addr' can address either, as the case requires.) 1143 // Note that the cache is updated below if it does not help us find 1144 // what we need immediately. 1145 // So if it was a primary super, we can just fail immediately. 1146 // Otherwise, it's the slow path for us (no success at this point). 1147 1148 if (super_check_offset.is_register()) { 1149 br(Assembler::EQ, *L_success); 1150 subs(zr, super_check_offset.as_register(), sc_offset); 1151 if (L_failure == &L_fallthrough) { 1152 br(Assembler::EQ, *L_slow_path); 1153 } else { 1154 br(Assembler::NE, *L_failure); 1155 final_jmp(*L_slow_path); 1156 } 1157 } else if (super_check_offset.as_constant() == sc_offset) { 1158 // Need a slow path; fast failure is impossible. 1159 if (L_slow_path == &L_fallthrough) { 1160 br(Assembler::EQ, *L_success); 1161 } else { 1162 br(Assembler::NE, *L_slow_path); 1163 final_jmp(*L_success); 1164 } 1165 } else { 1166 // No slow path; it's a fast decision. 1167 if (L_failure == &L_fallthrough) { 1168 br(Assembler::EQ, *L_success); 1169 } else { 1170 br(Assembler::NE, *L_failure); 1171 final_jmp(*L_success); 1172 } 1173 } 1174 1175 bind(L_fallthrough); 1176 1177 #undef final_jmp 1178 } 1179 1180 // These two are taken from x86, but they look generally useful 1181 1182 // scans count pointer sized words at [addr] for occurence of value, 1183 // generic 1184 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1185 Register scratch) { 1186 Label Lloop, Lexit; 1187 cbz(count, Lexit); 1188 bind(Lloop); 1189 ldr(scratch, post(addr, wordSize)); 1190 cmp(value, scratch); 1191 br(EQ, Lexit); 1192 sub(count, count, 1); 1193 cbnz(count, Lloop); 1194 bind(Lexit); 1195 } 1196 1197 // scans count 4 byte words at [addr] for occurence of value, 1198 // generic 1199 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1200 Register scratch) { 1201 Label Lloop, Lexit; 1202 cbz(count, Lexit); 1203 bind(Lloop); 1204 ldrw(scratch, post(addr, wordSize)); 1205 cmpw(value, scratch); 1206 br(EQ, Lexit); 1207 sub(count, count, 1); 1208 cbnz(count, Lloop); 1209 bind(Lexit); 1210 } 1211 1212 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1213 Register super_klass, 1214 Register temp_reg, 1215 Register temp2_reg, 1216 Label* L_success, 1217 Label* L_failure, 1218 bool set_cond_codes) { 1219 assert_different_registers(sub_klass, super_klass, temp_reg); 1220 if (temp2_reg != noreg) 1221 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1222 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1223 1224 Label L_fallthrough; 1225 int label_nulls = 0; 1226 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1227 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1228 assert(label_nulls <= 1, "at most one NULL in the batch"); 1229 1230 // a couple of useful fields in sub_klass: 1231 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1232 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1233 Address secondary_supers_addr(sub_klass, ss_offset); 1234 Address super_cache_addr( sub_klass, sc_offset); 1235 1236 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1237 1238 // Do a linear scan of the secondary super-klass chain. 1239 // This code is rarely used, so simplicity is a virtue here. 1240 // The repne_scan instruction uses fixed registers, which we must spill. 1241 // Don't worry too much about pre-existing connections with the input regs. 1242 1243 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1244 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1245 1246 RegSet pushed_registers; 1247 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1248 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1249 1250 if (super_klass != r0) { 1251 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1252 } 1253 1254 push(pushed_registers, sp); 1255 1256 // Get super_klass value into r0 (even if it was in r5 or r2). 1257 if (super_klass != r0) { 1258 mov(r0, super_klass); 1259 } 1260 1261 #ifndef PRODUCT 1262 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1263 Address pst_counter_addr(rscratch2); 1264 ldr(rscratch1, pst_counter_addr); 1265 add(rscratch1, rscratch1, 1); 1266 str(rscratch1, pst_counter_addr); 1267 #endif //PRODUCT 1268 1269 // We will consult the secondary-super array. 1270 ldr(r5, secondary_supers_addr); 1271 // Load the array length. 1272 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1273 // Skip to start of data. 1274 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1275 1276 cmp(sp, zr); // Clear Z flag; SP is never zero 1277 // Scan R2 words at [R5] for an occurrence of R0. 1278 // Set NZ/Z based on last compare. 1279 repne_scan(r5, r0, r2, rscratch1); 1280 1281 // Unspill the temp. registers: 1282 pop(pushed_registers, sp); 1283 1284 br(Assembler::NE, *L_failure); 1285 1286 // Success. Cache the super we found and proceed in triumph. 1287 str(super_klass, super_cache_addr); 1288 1289 if (L_success != &L_fallthrough) { 1290 b(*L_success); 1291 } 1292 1293 #undef IS_A_TEMP 1294 1295 bind(L_fallthrough); 1296 } 1297 1298 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1299 assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required"); 1300 assert_different_registers(klass, rthread, scratch); 1301 1302 Label L_fallthrough, L_tmp; 1303 if (L_fast_path == NULL) { 1304 L_fast_path = &L_fallthrough; 1305 } else if (L_slow_path == NULL) { 1306 L_slow_path = &L_fallthrough; 1307 } 1308 // Fast path check: class is fully initialized 1309 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1310 subs(zr, scratch, InstanceKlass::fully_initialized); 1311 br(Assembler::EQ, *L_fast_path); 1312 1313 // Fast path check: current thread is initializer thread 1314 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1315 cmp(rthread, scratch); 1316 1317 if (L_slow_path == &L_fallthrough) { 1318 br(Assembler::EQ, *L_fast_path); 1319 bind(*L_slow_path); 1320 } else if (L_fast_path == &L_fallthrough) { 1321 br(Assembler::NE, *L_slow_path); 1322 bind(*L_fast_path); 1323 } else { 1324 Unimplemented(); 1325 } 1326 } 1327 1328 void MacroAssembler::verify_oop(Register reg, const char* s) { 1329 if (!VerifyOops) return; 1330 1331 // Pass register number to verify_oop_subroutine 1332 const char* b = NULL; 1333 { 1334 ResourceMark rm; 1335 stringStream ss; 1336 ss.print("verify_oop: %s: %s", reg->name(), s); 1337 b = code_string(ss.as_string()); 1338 } 1339 BLOCK_COMMENT("verify_oop {"); 1340 1341 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1342 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1343 1344 mov(r0, reg); 1345 movptr(rscratch1, (uintptr_t)(address)b); 1346 1347 // call indirectly to solve generation ordering problem 1348 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1349 ldr(rscratch2, Address(rscratch2)); 1350 blr(rscratch2); 1351 1352 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1353 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1354 1355 BLOCK_COMMENT("} verify_oop"); 1356 } 1357 1358 void MacroAssembler::verify_oop_addr(Address addr, const char* s) { 1359 if (!VerifyOops) return; 1360 1361 const char* b = NULL; 1362 { 1363 ResourceMark rm; 1364 stringStream ss; 1365 ss.print("verify_oop_addr: %s", s); 1366 b = code_string(ss.as_string()); 1367 } 1368 BLOCK_COMMENT("verify_oop_addr {"); 1369 1370 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1371 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1372 1373 // addr may contain sp so we will have to adjust it based on the 1374 // pushes that we just did. 1375 if (addr.uses(sp)) { 1376 lea(r0, addr); 1377 ldr(r0, Address(r0, 4 * wordSize)); 1378 } else { 1379 ldr(r0, addr); 1380 } 1381 movptr(rscratch1, (uintptr_t)(address)b); 1382 1383 // call indirectly to solve generation ordering problem 1384 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1385 ldr(rscratch2, Address(rscratch2)); 1386 blr(rscratch2); 1387 1388 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1389 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1390 1391 BLOCK_COMMENT("} verify_oop_addr"); 1392 } 1393 1394 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1395 int extra_slot_offset) { 1396 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1397 int stackElementSize = Interpreter::stackElementSize; 1398 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1399 #ifdef ASSERT 1400 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1401 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1402 #endif 1403 if (arg_slot.is_constant()) { 1404 return Address(esp, arg_slot.as_constant() * stackElementSize 1405 + offset); 1406 } else { 1407 add(rscratch1, esp, arg_slot.as_register(), 1408 ext::uxtx, exact_log2(stackElementSize)); 1409 return Address(rscratch1, offset); 1410 } 1411 } 1412 1413 void MacroAssembler::call_VM_leaf_base(address entry_point, 1414 int number_of_arguments, 1415 Label *retaddr) { 1416 Label E, L; 1417 1418 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1419 1420 mov(rscratch1, entry_point); 1421 blr(rscratch1); 1422 if (retaddr) 1423 bind(*retaddr); 1424 1425 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1426 } 1427 1428 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1429 call_VM_leaf_base(entry_point, number_of_arguments); 1430 } 1431 1432 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1433 pass_arg0(this, arg_0); 1434 call_VM_leaf_base(entry_point, 1); 1435 } 1436 1437 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1438 pass_arg0(this, arg_0); 1439 pass_arg1(this, arg_1); 1440 call_VM_leaf_base(entry_point, 2); 1441 } 1442 1443 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1444 Register arg_1, Register arg_2) { 1445 pass_arg0(this, arg_0); 1446 pass_arg1(this, arg_1); 1447 pass_arg2(this, arg_2); 1448 call_VM_leaf_base(entry_point, 3); 1449 } 1450 1451 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1452 pass_arg0(this, arg_0); 1453 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1454 } 1455 1456 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1457 1458 assert(arg_0 != c_rarg1, "smashed arg"); 1459 pass_arg1(this, arg_1); 1460 pass_arg0(this, arg_0); 1461 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1462 } 1463 1464 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1465 assert(arg_0 != c_rarg2, "smashed arg"); 1466 assert(arg_1 != c_rarg2, "smashed arg"); 1467 pass_arg2(this, arg_2); 1468 assert(arg_0 != c_rarg1, "smashed arg"); 1469 pass_arg1(this, arg_1); 1470 pass_arg0(this, arg_0); 1471 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1472 } 1473 1474 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1475 assert(arg_0 != c_rarg3, "smashed arg"); 1476 assert(arg_1 != c_rarg3, "smashed arg"); 1477 assert(arg_2 != c_rarg3, "smashed arg"); 1478 pass_arg3(this, arg_3); 1479 assert(arg_0 != c_rarg2, "smashed arg"); 1480 assert(arg_1 != c_rarg2, "smashed arg"); 1481 pass_arg2(this, arg_2); 1482 assert(arg_0 != c_rarg1, "smashed arg"); 1483 pass_arg1(this, arg_1); 1484 pass_arg0(this, arg_0); 1485 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1486 } 1487 1488 void MacroAssembler::null_check(Register reg, int offset) { 1489 if (needs_explicit_null_check(offset)) { 1490 // provoke OS NULL exception if reg = NULL by 1491 // accessing M[reg] w/o changing any registers 1492 // NOTE: this is plenty to provoke a segv 1493 ldr(zr, Address(reg)); 1494 } else { 1495 // nothing to do, (later) access of M[reg + offset] 1496 // will provoke OS NULL exception if reg = NULL 1497 } 1498 } 1499 1500 // MacroAssembler protected routines needed to implement 1501 // public methods 1502 1503 void MacroAssembler::mov(Register r, Address dest) { 1504 code_section()->relocate(pc(), dest.rspec()); 1505 uint64_t imm64 = (uint64_t)dest.target(); 1506 movptr(r, imm64); 1507 } 1508 1509 // Move a constant pointer into r. In AArch64 mode the virtual 1510 // address space is 48 bits in size, so we only need three 1511 // instructions to create a patchable instruction sequence that can 1512 // reach anywhere. 1513 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1514 #ifndef PRODUCT 1515 { 1516 char buffer[64]; 1517 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 1518 block_comment(buffer); 1519 } 1520 #endif 1521 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 1522 movz(r, imm64 & 0xffff); 1523 imm64 >>= 16; 1524 movk(r, imm64 & 0xffff, 16); 1525 imm64 >>= 16; 1526 movk(r, imm64 & 0xffff, 32); 1527 } 1528 1529 // Macro to mov replicated immediate to vector register. 1530 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 1531 // the upper 56/48/32 bits must be zeros for B/H/S type. 1532 // Vd will get the following values for different arrangements in T 1533 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 1534 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1535 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 1536 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1537 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1538 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1539 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 1540 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 1541 // Clobbers rscratch1 1542 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 1543 assert(T != T1Q, "unsupported"); 1544 if (T == T1D || T == T2D) { 1545 int imm = operand_valid_for_movi_immediate(imm64, T); 1546 if (-1 != imm) { 1547 movi(Vd, T, imm); 1548 } else { 1549 mov(rscratch1, imm64); 1550 dup(Vd, T, rscratch1); 1551 } 1552 return; 1553 } 1554 1555 #ifdef ASSERT 1556 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 1557 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 1558 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 1559 #endif 1560 int shift = operand_valid_for_movi_immediate(imm64, T); 1561 uint32_t imm32 = imm64 & 0xffffffffULL; 1562 if (shift >= 0) { 1563 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 1564 } else { 1565 movw(rscratch1, imm32); 1566 dup(Vd, T, rscratch1); 1567 } 1568 } 1569 1570 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 1571 { 1572 #ifndef PRODUCT 1573 { 1574 char buffer[64]; 1575 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1576 block_comment(buffer); 1577 } 1578 #endif 1579 if (operand_valid_for_logical_immediate(false, imm64)) { 1580 orr(dst, zr, imm64); 1581 } else { 1582 // we can use a combination of MOVZ or MOVN with 1583 // MOVK to build up the constant 1584 uint64_t imm_h[4]; 1585 int zero_count = 0; 1586 int neg_count = 0; 1587 int i; 1588 for (i = 0; i < 4; i++) { 1589 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1590 if (imm_h[i] == 0) { 1591 zero_count++; 1592 } else if (imm_h[i] == 0xffffL) { 1593 neg_count++; 1594 } 1595 } 1596 if (zero_count == 4) { 1597 // one MOVZ will do 1598 movz(dst, 0); 1599 } else if (neg_count == 4) { 1600 // one MOVN will do 1601 movn(dst, 0); 1602 } else if (zero_count == 3) { 1603 for (i = 0; i < 4; i++) { 1604 if (imm_h[i] != 0L) { 1605 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1606 break; 1607 } 1608 } 1609 } else if (neg_count == 3) { 1610 // one MOVN will do 1611 for (int i = 0; i < 4; i++) { 1612 if (imm_h[i] != 0xffffL) { 1613 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1614 break; 1615 } 1616 } 1617 } else if (zero_count == 2) { 1618 // one MOVZ and one MOVK will do 1619 for (i = 0; i < 3; i++) { 1620 if (imm_h[i] != 0L) { 1621 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1622 i++; 1623 break; 1624 } 1625 } 1626 for (;i < 4; i++) { 1627 if (imm_h[i] != 0L) { 1628 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1629 } 1630 } 1631 } else if (neg_count == 2) { 1632 // one MOVN and one MOVK will do 1633 for (i = 0; i < 4; i++) { 1634 if (imm_h[i] != 0xffffL) { 1635 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1636 i++; 1637 break; 1638 } 1639 } 1640 for (;i < 4; i++) { 1641 if (imm_h[i] != 0xffffL) { 1642 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1643 } 1644 } 1645 } else if (zero_count == 1) { 1646 // one MOVZ and two MOVKs will do 1647 for (i = 0; i < 4; i++) { 1648 if (imm_h[i] != 0L) { 1649 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1650 i++; 1651 break; 1652 } 1653 } 1654 for (;i < 4; i++) { 1655 if (imm_h[i] != 0x0L) { 1656 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1657 } 1658 } 1659 } else if (neg_count == 1) { 1660 // one MOVN and two MOVKs will do 1661 for (i = 0; i < 4; i++) { 1662 if (imm_h[i] != 0xffffL) { 1663 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1664 i++; 1665 break; 1666 } 1667 } 1668 for (;i < 4; i++) { 1669 if (imm_h[i] != 0xffffL) { 1670 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1671 } 1672 } 1673 } else { 1674 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1675 movz(dst, (uint32_t)imm_h[0], 0); 1676 for (i = 1; i < 4; i++) { 1677 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1678 } 1679 } 1680 } 1681 } 1682 1683 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 1684 { 1685 #ifndef PRODUCT 1686 { 1687 char buffer[64]; 1688 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 1689 block_comment(buffer); 1690 } 1691 #endif 1692 if (operand_valid_for_logical_immediate(true, imm32)) { 1693 orrw(dst, zr, imm32); 1694 } else { 1695 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1696 // constant 1697 uint32_t imm_h[2]; 1698 imm_h[0] = imm32 & 0xffff; 1699 imm_h[1] = ((imm32 >> 16) & 0xffff); 1700 if (imm_h[0] == 0) { 1701 movzw(dst, imm_h[1], 16); 1702 } else if (imm_h[0] == 0xffff) { 1703 movnw(dst, imm_h[1] ^ 0xffff, 16); 1704 } else if (imm_h[1] == 0) { 1705 movzw(dst, imm_h[0], 0); 1706 } else if (imm_h[1] == 0xffff) { 1707 movnw(dst, imm_h[0] ^ 0xffff, 0); 1708 } else { 1709 // use a MOVZ and MOVK (makes it easier to debug) 1710 movzw(dst, imm_h[0], 0); 1711 movkw(dst, imm_h[1], 16); 1712 } 1713 } 1714 } 1715 1716 // Form an address from base + offset in Rd. Rd may or may 1717 // not actually be used: you must use the Address that is returned. 1718 // It is up to you to ensure that the shift provided matches the size 1719 // of your data. 1720 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 1721 if (Address::offset_ok_for_immed(byte_offset, shift)) 1722 // It fits; no need for any heroics 1723 return Address(base, byte_offset); 1724 1725 // Don't do anything clever with negative or misaligned offsets 1726 unsigned mask = (1 << shift) - 1; 1727 if (byte_offset < 0 || byte_offset & mask) { 1728 mov(Rd, byte_offset); 1729 add(Rd, base, Rd); 1730 return Address(Rd); 1731 } 1732 1733 // See if we can do this with two 12-bit offsets 1734 { 1735 uint64_t word_offset = byte_offset >> shift; 1736 uint64_t masked_offset = word_offset & 0xfff000; 1737 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 1738 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1739 add(Rd, base, masked_offset << shift); 1740 word_offset -= masked_offset; 1741 return Address(Rd, word_offset << shift); 1742 } 1743 } 1744 1745 // Do it the hard way 1746 mov(Rd, byte_offset); 1747 add(Rd, base, Rd); 1748 return Address(Rd); 1749 } 1750 1751 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) { 1752 if (UseLSE) { 1753 mov(tmp, 1); 1754 ldadd(Assembler::word, tmp, zr, counter_addr); 1755 return; 1756 } 1757 Label retry_load; 1758 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 1759 prfm(Address(counter_addr), PSTL1STRM); 1760 bind(retry_load); 1761 // flush and load exclusive from the memory location 1762 ldxrw(tmp, counter_addr); 1763 addw(tmp, tmp, 1); 1764 // if we store+flush with no intervening write tmp wil be zero 1765 stxrw(tmp2, tmp, counter_addr); 1766 cbnzw(tmp2, retry_load); 1767 } 1768 1769 1770 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 1771 bool want_remainder, Register scratch) 1772 { 1773 // Full implementation of Java idiv and irem. The function 1774 // returns the (pc) offset of the div instruction - may be needed 1775 // for implicit exceptions. 1776 // 1777 // constraint : ra/rb =/= scratch 1778 // normal case 1779 // 1780 // input : ra: dividend 1781 // rb: divisor 1782 // 1783 // result: either 1784 // quotient (= ra idiv rb) 1785 // remainder (= ra irem rb) 1786 1787 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1788 1789 int idivl_offset = offset(); 1790 if (! want_remainder) { 1791 sdivw(result, ra, rb); 1792 } else { 1793 sdivw(scratch, ra, rb); 1794 Assembler::msubw(result, scratch, rb, ra); 1795 } 1796 1797 return idivl_offset; 1798 } 1799 1800 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 1801 bool want_remainder, Register scratch) 1802 { 1803 // Full implementation of Java ldiv and lrem. The function 1804 // returns the (pc) offset of the div instruction - may be needed 1805 // for implicit exceptions. 1806 // 1807 // constraint : ra/rb =/= scratch 1808 // normal case 1809 // 1810 // input : ra: dividend 1811 // rb: divisor 1812 // 1813 // result: either 1814 // quotient (= ra idiv rb) 1815 // remainder (= ra irem rb) 1816 1817 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1818 1819 int idivq_offset = offset(); 1820 if (! want_remainder) { 1821 sdiv(result, ra, rb); 1822 } else { 1823 sdiv(scratch, ra, rb); 1824 Assembler::msub(result, scratch, rb, ra); 1825 } 1826 1827 return idivq_offset; 1828 } 1829 1830 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 1831 address prev = pc() - NativeMembar::instruction_size; 1832 address last = code()->last_insn(); 1833 if (last != NULL && nativeInstruction_at(last)->is_Membar() && prev == last) { 1834 NativeMembar *bar = NativeMembar_at(prev); 1835 // We are merging two memory barrier instructions. On AArch64 we 1836 // can do this simply by ORing them together. 1837 bar->set_kind(bar->get_kind() | order_constraint); 1838 BLOCK_COMMENT("merged membar"); 1839 } else { 1840 code()->set_last_insn(pc()); 1841 dmb(Assembler::barrier(order_constraint)); 1842 } 1843 } 1844 1845 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 1846 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 1847 merge_ldst(rt, adr, size_in_bytes, is_store); 1848 code()->clear_last_insn(); 1849 return true; 1850 } else { 1851 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 1852 const uint64_t mask = size_in_bytes - 1; 1853 if (adr.getMode() == Address::base_plus_offset && 1854 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 1855 code()->set_last_insn(pc()); 1856 } 1857 return false; 1858 } 1859 } 1860 1861 void MacroAssembler::ldr(Register Rx, const Address &adr) { 1862 // We always try to merge two adjacent loads into one ldp. 1863 if (!try_merge_ldst(Rx, adr, 8, false)) { 1864 Assembler::ldr(Rx, adr); 1865 } 1866 } 1867 1868 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 1869 // We always try to merge two adjacent loads into one ldp. 1870 if (!try_merge_ldst(Rw, adr, 4, false)) { 1871 Assembler::ldrw(Rw, adr); 1872 } 1873 } 1874 1875 void MacroAssembler::str(Register Rx, const Address &adr) { 1876 // We always try to merge two adjacent stores into one stp. 1877 if (!try_merge_ldst(Rx, adr, 8, true)) { 1878 Assembler::str(Rx, adr); 1879 } 1880 } 1881 1882 void MacroAssembler::strw(Register Rw, const Address &adr) { 1883 // We always try to merge two adjacent stores into one stp. 1884 if (!try_merge_ldst(Rw, adr, 4, true)) { 1885 Assembler::strw(Rw, adr); 1886 } 1887 } 1888 1889 // MacroAssembler routines found actually to be needed 1890 1891 void MacroAssembler::push(Register src) 1892 { 1893 str(src, Address(pre(esp, -1 * wordSize))); 1894 } 1895 1896 void MacroAssembler::pop(Register dst) 1897 { 1898 ldr(dst, Address(post(esp, 1 * wordSize))); 1899 } 1900 1901 // Note: load_unsigned_short used to be called load_unsigned_word. 1902 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1903 int off = offset(); 1904 ldrh(dst, src); 1905 return off; 1906 } 1907 1908 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1909 int off = offset(); 1910 ldrb(dst, src); 1911 return off; 1912 } 1913 1914 int MacroAssembler::load_signed_short(Register dst, Address src) { 1915 int off = offset(); 1916 ldrsh(dst, src); 1917 return off; 1918 } 1919 1920 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1921 int off = offset(); 1922 ldrsb(dst, src); 1923 return off; 1924 } 1925 1926 int MacroAssembler::load_signed_short32(Register dst, Address src) { 1927 int off = offset(); 1928 ldrshw(dst, src); 1929 return off; 1930 } 1931 1932 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 1933 int off = offset(); 1934 ldrsbw(dst, src); 1935 return off; 1936 } 1937 1938 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1939 switch (size_in_bytes) { 1940 case 8: ldr(dst, src); break; 1941 case 4: ldrw(dst, src); break; 1942 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1943 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1944 default: ShouldNotReachHere(); 1945 } 1946 } 1947 1948 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1949 switch (size_in_bytes) { 1950 case 8: str(src, dst); break; 1951 case 4: strw(src, dst); break; 1952 case 2: strh(src, dst); break; 1953 case 1: strb(src, dst); break; 1954 default: ShouldNotReachHere(); 1955 } 1956 } 1957 1958 void MacroAssembler::decrementw(Register reg, int value) 1959 { 1960 if (value < 0) { incrementw(reg, -value); return; } 1961 if (value == 0) { return; } 1962 if (value < (1 << 12)) { subw(reg, reg, value); return; } 1963 /* else */ { 1964 guarantee(reg != rscratch2, "invalid dst for register decrement"); 1965 movw(rscratch2, (unsigned)value); 1966 subw(reg, reg, rscratch2); 1967 } 1968 } 1969 1970 void MacroAssembler::decrement(Register reg, int value) 1971 { 1972 if (value < 0) { increment(reg, -value); return; } 1973 if (value == 0) { return; } 1974 if (value < (1 << 12)) { sub(reg, reg, value); return; } 1975 /* else */ { 1976 assert(reg != rscratch2, "invalid dst for register decrement"); 1977 mov(rscratch2, (uint64_t)value); 1978 sub(reg, reg, rscratch2); 1979 } 1980 } 1981 1982 void MacroAssembler::decrementw(Address dst, int value) 1983 { 1984 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 1985 if (dst.getMode() == Address::literal) { 1986 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 1987 lea(rscratch2, dst); 1988 dst = Address(rscratch2); 1989 } 1990 ldrw(rscratch1, dst); 1991 decrementw(rscratch1, value); 1992 strw(rscratch1, dst); 1993 } 1994 1995 void MacroAssembler::decrement(Address dst, int value) 1996 { 1997 assert(!dst.uses(rscratch1), "invalid address for decrement"); 1998 if (dst.getMode() == Address::literal) { 1999 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2000 lea(rscratch2, dst); 2001 dst = Address(rscratch2); 2002 } 2003 ldr(rscratch1, dst); 2004 decrement(rscratch1, value); 2005 str(rscratch1, dst); 2006 } 2007 2008 void MacroAssembler::incrementw(Register reg, int value) 2009 { 2010 if (value < 0) { decrementw(reg, -value); return; } 2011 if (value == 0) { return; } 2012 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2013 /* else */ { 2014 assert(reg != rscratch2, "invalid dst for register increment"); 2015 movw(rscratch2, (unsigned)value); 2016 addw(reg, reg, rscratch2); 2017 } 2018 } 2019 2020 void MacroAssembler::increment(Register reg, int value) 2021 { 2022 if (value < 0) { decrement(reg, -value); return; } 2023 if (value == 0) { return; } 2024 if (value < (1 << 12)) { add(reg, reg, value); return; } 2025 /* else */ { 2026 assert(reg != rscratch2, "invalid dst for register increment"); 2027 movw(rscratch2, (unsigned)value); 2028 add(reg, reg, rscratch2); 2029 } 2030 } 2031 2032 void MacroAssembler::incrementw(Address dst, int value) 2033 { 2034 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2035 if (dst.getMode() == Address::literal) { 2036 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2037 lea(rscratch2, dst); 2038 dst = Address(rscratch2); 2039 } 2040 ldrw(rscratch1, dst); 2041 incrementw(rscratch1, value); 2042 strw(rscratch1, dst); 2043 } 2044 2045 void MacroAssembler::increment(Address dst, int value) 2046 { 2047 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2048 if (dst.getMode() == Address::literal) { 2049 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2050 lea(rscratch2, dst); 2051 dst = Address(rscratch2); 2052 } 2053 ldr(rscratch1, dst); 2054 increment(rscratch1, value); 2055 str(rscratch1, dst); 2056 } 2057 2058 // Push lots of registers in the bit set supplied. Don't push sp. 2059 // Return the number of words pushed 2060 int MacroAssembler::push(unsigned int bitset, Register stack) { 2061 int words_pushed = 0; 2062 2063 // Scan bitset to accumulate register pairs 2064 unsigned char regs[32]; 2065 int count = 0; 2066 for (int reg = 0; reg <= 30; reg++) { 2067 if (1 & bitset) 2068 regs[count++] = reg; 2069 bitset >>= 1; 2070 } 2071 regs[count++] = zr->encoding_nocheck(); 2072 count &= ~1; // Only push an even nuber of regs 2073 2074 if (count) { 2075 stp(as_Register(regs[0]), as_Register(regs[1]), 2076 Address(pre(stack, -count * wordSize))); 2077 words_pushed += 2; 2078 } 2079 for (int i = 2; i < count; i += 2) { 2080 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2081 Address(stack, i * wordSize)); 2082 words_pushed += 2; 2083 } 2084 2085 assert(words_pushed == count, "oops, pushed != count"); 2086 2087 return count; 2088 } 2089 2090 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2091 int words_pushed = 0; 2092 2093 // Scan bitset to accumulate register pairs 2094 unsigned char regs[32]; 2095 int count = 0; 2096 for (int reg = 0; reg <= 30; reg++) { 2097 if (1 & bitset) 2098 regs[count++] = reg; 2099 bitset >>= 1; 2100 } 2101 regs[count++] = zr->encoding_nocheck(); 2102 count &= ~1; 2103 2104 for (int i = 2; i < count; i += 2) { 2105 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2106 Address(stack, i * wordSize)); 2107 words_pushed += 2; 2108 } 2109 if (count) { 2110 ldp(as_Register(regs[0]), as_Register(regs[1]), 2111 Address(post(stack, count * wordSize))); 2112 words_pushed += 2; 2113 } 2114 2115 assert(words_pushed == count, "oops, pushed != count"); 2116 2117 return count; 2118 } 2119 2120 // Push lots of registers in the bit set supplied. Don't push sp. 2121 // Return the number of dwords pushed 2122 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 2123 int words_pushed = 0; 2124 bool use_sve = false; 2125 int sve_vector_size_in_bytes = 0; 2126 2127 #ifdef COMPILER2 2128 use_sve = Matcher::supports_scalable_vector(); 2129 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2130 #endif 2131 2132 // Scan bitset to accumulate register pairs 2133 unsigned char regs[32]; 2134 int count = 0; 2135 for (int reg = 0; reg <= 31; reg++) { 2136 if (1 & bitset) 2137 regs[count++] = reg; 2138 bitset >>= 1; 2139 } 2140 2141 if (count == 0) { 2142 return 0; 2143 } 2144 2145 // SVE 2146 if (use_sve && sve_vector_size_in_bytes > 16) { 2147 sub(stack, stack, sve_vector_size_in_bytes * count); 2148 for (int i = 0; i < count; i++) { 2149 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2150 } 2151 return count * sve_vector_size_in_bytes / 8; 2152 } 2153 2154 // NEON 2155 if (count == 1) { 2156 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2157 return 2; 2158 } 2159 2160 bool odd = (count & 1) == 1; 2161 int push_slots = count + (odd ? 1 : 0); 2162 2163 // Always pushing full 128 bit registers. 2164 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2165 words_pushed += 2; 2166 2167 for (int i = 2; i + 1 < count; i += 2) { 2168 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2169 words_pushed += 2; 2170 } 2171 2172 if (odd) { 2173 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2174 words_pushed++; 2175 } 2176 2177 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2178 return count * 2; 2179 } 2180 2181 // Return the number of dwords poped 2182 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 2183 int words_pushed = 0; 2184 bool use_sve = false; 2185 int sve_vector_size_in_bytes = 0; 2186 2187 #ifdef COMPILER2 2188 use_sve = Matcher::supports_scalable_vector(); 2189 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2190 #endif 2191 // Scan bitset to accumulate register pairs 2192 unsigned char regs[32]; 2193 int count = 0; 2194 for (int reg = 0; reg <= 31; reg++) { 2195 if (1 & bitset) 2196 regs[count++] = reg; 2197 bitset >>= 1; 2198 } 2199 2200 if (count == 0) { 2201 return 0; 2202 } 2203 2204 // SVE 2205 if (use_sve && sve_vector_size_in_bytes > 16) { 2206 for (int i = count - 1; i >= 0; i--) { 2207 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 2208 } 2209 add(stack, stack, sve_vector_size_in_bytes * count); 2210 return count * sve_vector_size_in_bytes / 8; 2211 } 2212 2213 // NEON 2214 if (count == 1) { 2215 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 2216 return 2; 2217 } 2218 2219 bool odd = (count & 1) == 1; 2220 int push_slots = count + (odd ? 1 : 0); 2221 2222 if (odd) { 2223 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2224 words_pushed++; 2225 } 2226 2227 for (int i = 2; i + 1 < count; i += 2) { 2228 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2229 words_pushed += 2; 2230 } 2231 2232 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 2233 words_pushed += 2; 2234 2235 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2236 2237 return count * 2; 2238 } 2239 2240 #ifdef ASSERT 2241 void MacroAssembler::verify_heapbase(const char* msg) { 2242 #if 0 2243 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2244 assert (Universe::heap() != NULL, "java heap should be initialized"); 2245 if (!UseCompressedOops || Universe::ptr_base() == NULL) { 2246 // rheapbase is allocated as general register 2247 return; 2248 } 2249 if (CheckCompressedOops) { 2250 Label ok; 2251 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2252 cmpptr(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2253 br(Assembler::EQ, ok); 2254 stop(msg); 2255 bind(ok); 2256 pop(1 << rscratch1->encoding(), sp); 2257 } 2258 #endif 2259 } 2260 #endif 2261 2262 void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) { 2263 Label done, not_weak; 2264 cbz(value, done); // Use NULL as-is. 2265 2266 STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u); 2267 tbz(r0, 0, not_weak); // Test for jweak tag. 2268 2269 // Resolve jweak. 2270 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value, 2271 Address(value, -JNIHandles::weak_tag_value), tmp, thread); 2272 verify_oop(value); 2273 b(done); 2274 2275 bind(not_weak); 2276 // Resolve (untagged) jobject. 2277 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread); 2278 verify_oop(value); 2279 bind(done); 2280 } 2281 2282 void MacroAssembler::stop(const char* msg) { 2283 BLOCK_COMMENT(msg); 2284 dcps1(0xdeae); 2285 emit_int64((uintptr_t)msg); 2286 } 2287 2288 void MacroAssembler::unimplemented(const char* what) { 2289 const char* buf = NULL; 2290 { 2291 ResourceMark rm; 2292 stringStream ss; 2293 ss.print("unimplemented: %s", what); 2294 buf = code_string(ss.as_string()); 2295 } 2296 stop(buf); 2297 } 2298 2299 // If a constant does not fit in an immediate field, generate some 2300 // number of MOV instructions and then perform the operation. 2301 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 2302 add_sub_imm_insn insn1, 2303 add_sub_reg_insn insn2, 2304 bool is32) { 2305 assert(Rd != zr, "Rd = zr and not setting flags?"); 2306 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2307 if (fits) { 2308 (this->*insn1)(Rd, Rn, imm); 2309 } else { 2310 if (uabs(imm) < (1 << 24)) { 2311 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2312 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2313 } else { 2314 assert_different_registers(Rd, Rn); 2315 mov(Rd, imm); 2316 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2317 } 2318 } 2319 } 2320 2321 // Seperate vsn which sets the flags. Optimisations are more restricted 2322 // because we must set the flags correctly. 2323 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 2324 add_sub_imm_insn insn1, 2325 add_sub_reg_insn insn2, 2326 bool is32) { 2327 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2328 if (fits) { 2329 (this->*insn1)(Rd, Rn, imm); 2330 } else { 2331 assert_different_registers(Rd, Rn); 2332 assert(Rd != zr, "overflow in immediate operand"); 2333 mov(Rd, imm); 2334 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2335 } 2336 } 2337 2338 2339 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2340 if (increment.is_register()) { 2341 add(Rd, Rn, increment.as_register()); 2342 } else { 2343 add(Rd, Rn, increment.as_constant()); 2344 } 2345 } 2346 2347 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2348 if (increment.is_register()) { 2349 addw(Rd, Rn, increment.as_register()); 2350 } else { 2351 addw(Rd, Rn, increment.as_constant()); 2352 } 2353 } 2354 2355 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2356 if (decrement.is_register()) { 2357 sub(Rd, Rn, decrement.as_register()); 2358 } else { 2359 sub(Rd, Rn, decrement.as_constant()); 2360 } 2361 } 2362 2363 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2364 if (decrement.is_register()) { 2365 subw(Rd, Rn, decrement.as_register()); 2366 } else { 2367 subw(Rd, Rn, decrement.as_constant()); 2368 } 2369 } 2370 2371 void MacroAssembler::reinit_heapbase() 2372 { 2373 if (UseCompressedOops) { 2374 if (Universe::is_fully_initialized()) { 2375 mov(rheapbase, CompressedOops::ptrs_base()); 2376 } else { 2377 lea(rheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr())); 2378 ldr(rheapbase, Address(rheapbase)); 2379 } 2380 } 2381 } 2382 2383 // this simulates the behaviour of the x86 cmpxchg instruction using a 2384 // load linked/store conditional pair. we use the acquire/release 2385 // versions of these instructions so that we flush pending writes as 2386 // per Java semantics. 2387 2388 // n.b the x86 version assumes the old value to be compared against is 2389 // in rax and updates rax with the value located in memory if the 2390 // cmpxchg fails. we supply a register for the old value explicitly 2391 2392 // the aarch64 load linked/store conditional instructions do not 2393 // accept an offset. so, unlike x86, we must provide a plain register 2394 // to identify the memory word to be compared/exchanged rather than a 2395 // register+offset Address. 2396 2397 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2398 Label &succeed, Label *fail) { 2399 // oldv holds comparison value 2400 // newv holds value to write in exchange 2401 // addr identifies memory word to compare against/update 2402 if (UseLSE) { 2403 mov(tmp, oldv); 2404 casal(Assembler::xword, oldv, newv, addr); 2405 cmp(tmp, oldv); 2406 br(Assembler::EQ, succeed); 2407 membar(AnyAny); 2408 } else { 2409 Label retry_load, nope; 2410 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2411 prfm(Address(addr), PSTL1STRM); 2412 bind(retry_load); 2413 // flush and load exclusive from the memory location 2414 // and fail if it is not what we expect 2415 ldaxr(tmp, addr); 2416 cmp(tmp, oldv); 2417 br(Assembler::NE, nope); 2418 // if we store+flush with no intervening write tmp wil be zero 2419 stlxr(tmp, newv, addr); 2420 cbzw(tmp, succeed); 2421 // retry so we only ever return after a load fails to compare 2422 // ensures we don't return a stale value after a failed write. 2423 b(retry_load); 2424 // if the memory word differs we return it in oldv and signal a fail 2425 bind(nope); 2426 membar(AnyAny); 2427 mov(oldv, tmp); 2428 } 2429 if (fail) 2430 b(*fail); 2431 } 2432 2433 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2434 Label &succeed, Label *fail) { 2435 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2436 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2437 } 2438 2439 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2440 Label &succeed, Label *fail) { 2441 // oldv holds comparison value 2442 // newv holds value to write in exchange 2443 // addr identifies memory word to compare against/update 2444 // tmp returns 0/1 for success/failure 2445 if (UseLSE) { 2446 mov(tmp, oldv); 2447 casal(Assembler::word, oldv, newv, addr); 2448 cmp(tmp, oldv); 2449 br(Assembler::EQ, succeed); 2450 membar(AnyAny); 2451 } else { 2452 Label retry_load, nope; 2453 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2454 prfm(Address(addr), PSTL1STRM); 2455 bind(retry_load); 2456 // flush and load exclusive from the memory location 2457 // and fail if it is not what we expect 2458 ldaxrw(tmp, addr); 2459 cmp(tmp, oldv); 2460 br(Assembler::NE, nope); 2461 // if we store+flush with no intervening write tmp wil be zero 2462 stlxrw(tmp, newv, addr); 2463 cbzw(tmp, succeed); 2464 // retry so we only ever return after a load fails to compare 2465 // ensures we don't return a stale value after a failed write. 2466 b(retry_load); 2467 // if the memory word differs we return it in oldv and signal a fail 2468 bind(nope); 2469 membar(AnyAny); 2470 mov(oldv, tmp); 2471 } 2472 if (fail) 2473 b(*fail); 2474 } 2475 2476 // A generic CAS; success or failure is in the EQ flag. A weak CAS 2477 // doesn't retry and may fail spuriously. If the oldval is wanted, 2478 // Pass a register for the result, otherwise pass noreg. 2479 2480 // Clobbers rscratch1 2481 void MacroAssembler::cmpxchg(Register addr, Register expected, 2482 Register new_val, 2483 enum operand_size size, 2484 bool acquire, bool release, 2485 bool weak, 2486 Register result) { 2487 if (result == noreg) result = rscratch1; 2488 BLOCK_COMMENT("cmpxchg {"); 2489 if (UseLSE) { 2490 mov(result, expected); 2491 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 2492 compare_eq(result, expected, size); 2493 } else { 2494 Label retry_load, done; 2495 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) 2496 prfm(Address(addr), PSTL1STRM); 2497 bind(retry_load); 2498 load_exclusive(result, addr, size, acquire); 2499 compare_eq(result, expected, size); 2500 br(Assembler::NE, done); 2501 store_exclusive(rscratch1, new_val, addr, size, release); 2502 if (weak) { 2503 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 2504 } else { 2505 cbnzw(rscratch1, retry_load); 2506 } 2507 bind(done); 2508 } 2509 BLOCK_COMMENT("} cmpxchg"); 2510 } 2511 2512 // A generic comparison. Only compares for equality, clobbers rscratch1. 2513 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 2514 if (size == xword) { 2515 cmp(rm, rn); 2516 } else if (size == word) { 2517 cmpw(rm, rn); 2518 } else if (size == halfword) { 2519 eorw(rscratch1, rm, rn); 2520 ands(zr, rscratch1, 0xffff); 2521 } else if (size == byte) { 2522 eorw(rscratch1, rm, rn); 2523 ands(zr, rscratch1, 0xff); 2524 } else { 2525 ShouldNotReachHere(); 2526 } 2527 } 2528 2529 2530 static bool different(Register a, RegisterOrConstant b, Register c) { 2531 if (b.is_constant()) 2532 return a != c; 2533 else 2534 return a != b.as_register() && a != c && b.as_register() != c; 2535 } 2536 2537 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2538 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2539 if (UseLSE) { \ 2540 prev = prev->is_valid() ? prev : zr; \ 2541 if (incr.is_register()) { \ 2542 AOP(sz, incr.as_register(), prev, addr); \ 2543 } else { \ 2544 mov(rscratch2, incr.as_constant()); \ 2545 AOP(sz, rscratch2, prev, addr); \ 2546 } \ 2547 return; \ 2548 } \ 2549 Register result = rscratch2; \ 2550 if (prev->is_valid()) \ 2551 result = different(prev, incr, addr) ? prev : rscratch2; \ 2552 \ 2553 Label retry_load; \ 2554 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ 2555 prfm(Address(addr), PSTL1STRM); \ 2556 bind(retry_load); \ 2557 LDXR(result, addr); \ 2558 OP(rscratch1, result, incr); \ 2559 STXR(rscratch2, rscratch1, addr); \ 2560 cbnzw(rscratch2, retry_load); \ 2561 if (prev->is_valid() && prev != result) { \ 2562 IOP(prev, rscratch1, incr); \ 2563 } \ 2564 } 2565 2566 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2567 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2568 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2569 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2570 2571 #undef ATOMIC_OP 2572 2573 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2574 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2575 if (UseLSE) { \ 2576 prev = prev->is_valid() ? prev : zr; \ 2577 AOP(sz, newv, prev, addr); \ 2578 return; \ 2579 } \ 2580 Register result = rscratch2; \ 2581 if (prev->is_valid()) \ 2582 result = different(prev, newv, addr) ? prev : rscratch2; \ 2583 \ 2584 Label retry_load; \ 2585 if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH)) \ 2586 prfm(Address(addr), PSTL1STRM); \ 2587 bind(retry_load); \ 2588 LDXR(result, addr); \ 2589 STXR(rscratch1, newv, addr); \ 2590 cbnzw(rscratch1, retry_load); \ 2591 if (prev->is_valid() && prev != result) \ 2592 mov(prev, result); \ 2593 } 2594 2595 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2596 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2597 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 2598 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 2599 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2600 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2601 2602 #undef ATOMIC_XCHG 2603 2604 #ifndef PRODUCT 2605 extern "C" void findpc(intptr_t x); 2606 #endif 2607 2608 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2609 { 2610 // In order to get locks to work, we need to fake a in_VM state 2611 if (ShowMessageBoxOnError ) { 2612 JavaThread* thread = JavaThread::current(); 2613 JavaThreadState saved_state = thread->thread_state(); 2614 thread->set_thread_state(_thread_in_vm); 2615 #ifndef PRODUCT 2616 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2617 ttyLocker ttyl; 2618 BytecodeCounter::print(); 2619 } 2620 #endif 2621 if (os::message_box(msg, "Execution stopped, print registers?")) { 2622 ttyLocker ttyl; 2623 tty->print_cr(" pc = 0x%016" PRIx64, pc); 2624 #ifndef PRODUCT 2625 tty->cr(); 2626 findpc(pc); 2627 tty->cr(); 2628 #endif 2629 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 2630 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 2631 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 2632 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 2633 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 2634 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 2635 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 2636 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 2637 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 2638 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 2639 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 2640 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 2641 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 2642 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 2643 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 2644 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 2645 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 2646 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 2647 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 2648 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 2649 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 2650 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 2651 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 2652 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 2653 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 2654 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 2655 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 2656 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 2657 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 2658 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 2659 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 2660 BREAKPOINT; 2661 } 2662 } 2663 fatal("DEBUG MESSAGE: %s", msg); 2664 } 2665 2666 RegSet MacroAssembler::call_clobbered_registers() { 2667 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 2668 #ifndef R18_RESERVED 2669 regs += r18_tls; 2670 #endif 2671 return regs; 2672 } 2673 2674 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 2675 int step = 4 * wordSize; 2676 push(call_clobbered_registers() - exclude, sp); 2677 sub(sp, sp, step); 2678 mov(rscratch1, -step); 2679 // Push v0-v7, v16-v31. 2680 for (int i = 31; i>= 4; i -= 4) { 2681 if (i <= v7->encoding() || i >= v16->encoding()) 2682 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 2683 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 2684 } 2685 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 2686 as_FloatRegister(3), T1D, Address(sp)); 2687 } 2688 2689 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 2690 for (int i = 0; i < 32; i += 4) { 2691 if (i <= v7->encoding() || i >= v16->encoding()) 2692 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2693 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 2694 } 2695 2696 reinitialize_ptrue(); 2697 2698 pop(call_clobbered_registers() - exclude, sp); 2699 } 2700 2701 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 2702 int sve_vector_size_in_bytes) { 2703 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 2704 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 2705 sub(sp, sp, sve_vector_size_in_bytes * FloatRegisterImpl::number_of_registers); 2706 for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++) { 2707 sve_str(as_FloatRegister(i), Address(sp, i)); 2708 } 2709 } else { 2710 int step = (save_vectors ? 8 : 4) * wordSize; 2711 mov(rscratch1, -step); 2712 sub(sp, sp, step); 2713 for (int i = 28; i >= 4; i -= 4) { 2714 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2715 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 2716 } 2717 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 2718 } 2719 } 2720 2721 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 2722 int sve_vector_size_in_bytes) { 2723 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 2724 for (int i = FloatRegisterImpl::number_of_registers - 1; i >= 0; i--) { 2725 sve_ldr(as_FloatRegister(i), Address(sp, i)); 2726 } 2727 add(sp, sp, sve_vector_size_in_bytes * FloatRegisterImpl::number_of_registers); 2728 } else { 2729 int step = (restore_vectors ? 8 : 4) * wordSize; 2730 for (int i = 0; i <= 28; i += 4) 2731 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 2732 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 2733 } 2734 2735 if (restore_vectors) { 2736 reinitialize_ptrue(); 2737 } 2738 2739 // integer registers except lr & sp 2740 pop(RegSet::range(r0, r17), sp); 2741 #ifdef R18_RESERVED 2742 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 2743 pop(RegSet::range(r20, r29), sp); 2744 #else 2745 pop(RegSet::range(r18_tls, r29), sp); 2746 #endif 2747 } 2748 2749 /** 2750 * Helpers for multiply_to_len(). 2751 */ 2752 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 2753 Register src1, Register src2) { 2754 adds(dest_lo, dest_lo, src1); 2755 adc(dest_hi, dest_hi, zr); 2756 adds(dest_lo, dest_lo, src2); 2757 adc(final_dest_hi, dest_hi, zr); 2758 } 2759 2760 // Generate an address from (r + r1 extend offset). "size" is the 2761 // size of the operand. The result may be in rscratch2. 2762 Address MacroAssembler::offsetted_address(Register r, Register r1, 2763 Address::extend ext, int offset, int size) { 2764 if (offset || (ext.shift() % size != 0)) { 2765 lea(rscratch2, Address(r, r1, ext)); 2766 return Address(rscratch2, offset); 2767 } else { 2768 return Address(r, r1, ext); 2769 } 2770 } 2771 2772 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 2773 { 2774 assert(offset >= 0, "spill to negative address?"); 2775 // Offset reachable ? 2776 // Not aligned - 9 bits signed offset 2777 // Aligned - 12 bits unsigned offset shifted 2778 Register base = sp; 2779 if ((offset & (size-1)) && offset >= (1<<8)) { 2780 add(tmp, base, offset & ((1<<12)-1)); 2781 base = tmp; 2782 offset &= -1u<<12; 2783 } 2784 2785 if (offset >= (1<<12) * size) { 2786 add(tmp, base, offset & (((1<<12)-1)<<12)); 2787 base = tmp; 2788 offset &= ~(((1<<12)-1)<<12); 2789 } 2790 2791 return Address(base, offset); 2792 } 2793 2794 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 2795 assert(offset >= 0, "spill to negative address?"); 2796 2797 Register base = sp; 2798 2799 // An immediate offset in the range 0 to 255 which is multiplied 2800 // by the current vector or predicate register size in bytes. 2801 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 2802 return Address(base, offset / sve_reg_size_in_bytes); 2803 } 2804 2805 add(tmp, base, offset); 2806 return Address(tmp); 2807 } 2808 2809 // Checks whether offset is aligned. 2810 // Returns true if it is, else false. 2811 bool MacroAssembler::merge_alignment_check(Register base, 2812 size_t size, 2813 int64_t cur_offset, 2814 int64_t prev_offset) const { 2815 if (AvoidUnalignedAccesses) { 2816 if (base == sp) { 2817 // Checks whether low offset if aligned to pair of registers. 2818 int64_t pair_mask = size * 2 - 1; 2819 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2820 return (offset & pair_mask) == 0; 2821 } else { // If base is not sp, we can't guarantee the access is aligned. 2822 return false; 2823 } 2824 } else { 2825 int64_t mask = size - 1; 2826 // Load/store pair instruction only supports element size aligned offset. 2827 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 2828 } 2829 } 2830 2831 // Checks whether current and previous loads/stores can be merged. 2832 // Returns true if it can be merged, else false. 2833 bool MacroAssembler::ldst_can_merge(Register rt, 2834 const Address &adr, 2835 size_t cur_size_in_bytes, 2836 bool is_store) const { 2837 address prev = pc() - NativeInstruction::instruction_size; 2838 address last = code()->last_insn(); 2839 2840 if (last == NULL || !nativeInstruction_at(last)->is_Imm_LdSt()) { 2841 return false; 2842 } 2843 2844 if (adr.getMode() != Address::base_plus_offset || prev != last) { 2845 return false; 2846 } 2847 2848 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2849 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 2850 2851 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 2852 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 2853 2854 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 2855 return false; 2856 } 2857 2858 int64_t max_offset = 63 * prev_size_in_bytes; 2859 int64_t min_offset = -64 * prev_size_in_bytes; 2860 2861 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 2862 2863 // Only same base can be merged. 2864 if (adr.base() != prev_ldst->base()) { 2865 return false; 2866 } 2867 2868 int64_t cur_offset = adr.offset(); 2869 int64_t prev_offset = prev_ldst->offset(); 2870 size_t diff = abs(cur_offset - prev_offset); 2871 if (diff != prev_size_in_bytes) { 2872 return false; 2873 } 2874 2875 // Following cases can not be merged: 2876 // ldr x2, [x2, #8] 2877 // ldr x3, [x2, #16] 2878 // or: 2879 // ldr x2, [x3, #8] 2880 // ldr x2, [x3, #16] 2881 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 2882 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 2883 return false; 2884 } 2885 2886 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 2887 // Offset range must be in ldp/stp instruction's range. 2888 if (low_offset > max_offset || low_offset < min_offset) { 2889 return false; 2890 } 2891 2892 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 2893 return true; 2894 } 2895 2896 return false; 2897 } 2898 2899 // Merge current load/store with previous load/store into ldp/stp. 2900 void MacroAssembler::merge_ldst(Register rt, 2901 const Address &adr, 2902 size_t cur_size_in_bytes, 2903 bool is_store) { 2904 2905 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 2906 2907 Register rt_low, rt_high; 2908 address prev = pc() - NativeInstruction::instruction_size; 2909 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 2910 2911 int64_t offset; 2912 2913 if (adr.offset() < prev_ldst->offset()) { 2914 offset = adr.offset(); 2915 rt_low = rt; 2916 rt_high = prev_ldst->target(); 2917 } else { 2918 offset = prev_ldst->offset(); 2919 rt_low = prev_ldst->target(); 2920 rt_high = rt; 2921 } 2922 2923 Address adr_p = Address(prev_ldst->base(), offset); 2924 // Overwrite previous generated binary. 2925 code_section()->set_end(prev); 2926 2927 const size_t sz = prev_ldst->size_in_bytes(); 2928 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 2929 if (!is_store) { 2930 BLOCK_COMMENT("merged ldr pair"); 2931 if (sz == 8) { 2932 ldp(rt_low, rt_high, adr_p); 2933 } else { 2934 ldpw(rt_low, rt_high, adr_p); 2935 } 2936 } else { 2937 BLOCK_COMMENT("merged str pair"); 2938 if (sz == 8) { 2939 stp(rt_low, rt_high, adr_p); 2940 } else { 2941 stpw(rt_low, rt_high, adr_p); 2942 } 2943 } 2944 } 2945 2946 /** 2947 * Multiply 64 bit by 64 bit first loop. 2948 */ 2949 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 2950 Register y, Register y_idx, Register z, 2951 Register carry, Register product, 2952 Register idx, Register kdx) { 2953 // 2954 // jlong carry, x[], y[], z[]; 2955 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2956 // huge_128 product = y[idx] * x[xstart] + carry; 2957 // z[kdx] = (jlong)product; 2958 // carry = (jlong)(product >>> 64); 2959 // } 2960 // z[xstart] = carry; 2961 // 2962 2963 Label L_first_loop, L_first_loop_exit; 2964 Label L_one_x, L_one_y, L_multiply; 2965 2966 subsw(xstart, xstart, 1); 2967 br(Assembler::MI, L_one_x); 2968 2969 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 2970 ldr(x_xstart, Address(rscratch1)); 2971 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 2972 2973 bind(L_first_loop); 2974 subsw(idx, idx, 1); 2975 br(Assembler::MI, L_first_loop_exit); 2976 subsw(idx, idx, 1); 2977 br(Assembler::MI, L_one_y); 2978 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2979 ldr(y_idx, Address(rscratch1)); 2980 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 2981 bind(L_multiply); 2982 2983 // AArch64 has a multiply-accumulate instruction that we can't use 2984 // here because it has no way to process carries, so we have to use 2985 // separate add and adc instructions. Bah. 2986 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 2987 mul(product, x_xstart, y_idx); 2988 adds(product, product, carry); 2989 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 2990 2991 subw(kdx, kdx, 2); 2992 ror(product, product, 32); // back to big-endian 2993 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 2994 2995 b(L_first_loop); 2996 2997 bind(L_one_y); 2998 ldrw(y_idx, Address(y, 0)); 2999 b(L_multiply); 3000 3001 bind(L_one_x); 3002 ldrw(x_xstart, Address(x, 0)); 3003 b(L_first_loop); 3004 3005 bind(L_first_loop_exit); 3006 } 3007 3008 /** 3009 * Multiply 128 bit by 128. Unrolled inner loop. 3010 * 3011 */ 3012 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3013 Register carry, Register carry2, 3014 Register idx, Register jdx, 3015 Register yz_idx1, Register yz_idx2, 3016 Register tmp, Register tmp3, Register tmp4, 3017 Register tmp6, Register product_hi) { 3018 3019 // jlong carry, x[], y[], z[]; 3020 // int kdx = ystart+1; 3021 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3022 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3023 // jlong carry2 = (jlong)(tmp3 >>> 64); 3024 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3025 // carry = (jlong)(tmp4 >>> 64); 3026 // z[kdx+idx+1] = (jlong)tmp3; 3027 // z[kdx+idx] = (jlong)tmp4; 3028 // } 3029 // idx += 2; 3030 // if (idx > 0) { 3031 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3032 // z[kdx+idx] = (jlong)yz_idx1; 3033 // carry = (jlong)(yz_idx1 >>> 64); 3034 // } 3035 // 3036 3037 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 3038 3039 lsrw(jdx, idx, 2); 3040 3041 bind(L_third_loop); 3042 3043 subsw(jdx, jdx, 1); 3044 br(Assembler::MI, L_third_loop_exit); 3045 subw(idx, idx, 4); 3046 3047 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3048 3049 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 3050 3051 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3052 3053 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 3054 ror(yz_idx2, yz_idx2, 32); 3055 3056 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 3057 3058 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3059 umulh(tmp4, product_hi, yz_idx1); 3060 3061 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 3062 ror(rscratch2, rscratch2, 32); 3063 3064 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 3065 umulh(carry2, product_hi, yz_idx2); 3066 3067 // propagate sum of both multiplications into carry:tmp4:tmp3 3068 adds(tmp3, tmp3, carry); 3069 adc(tmp4, tmp4, zr); 3070 adds(tmp3, tmp3, rscratch1); 3071 adcs(tmp4, tmp4, tmp); 3072 adc(carry, carry2, zr); 3073 adds(tmp4, tmp4, rscratch2); 3074 adc(carry, carry, zr); 3075 3076 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 3077 ror(tmp4, tmp4, 32); 3078 stp(tmp4, tmp3, Address(tmp6, 0)); 3079 3080 b(L_third_loop); 3081 bind (L_third_loop_exit); 3082 3083 andw (idx, idx, 0x3); 3084 cbz(idx, L_post_third_loop_done); 3085 3086 Label L_check_1; 3087 subsw(idx, idx, 2); 3088 br(Assembler::MI, L_check_1); 3089 3090 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3091 ldr(yz_idx1, Address(rscratch1, 0)); 3092 ror(yz_idx1, yz_idx1, 32); 3093 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3094 umulh(tmp4, product_hi, yz_idx1); 3095 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3096 ldr(yz_idx2, Address(rscratch1, 0)); 3097 ror(yz_idx2, yz_idx2, 32); 3098 3099 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 3100 3101 ror(tmp3, tmp3, 32); 3102 str(tmp3, Address(rscratch1, 0)); 3103 3104 bind (L_check_1); 3105 3106 andw (idx, idx, 0x1); 3107 subsw(idx, idx, 1); 3108 br(Assembler::MI, L_post_third_loop_done); 3109 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3110 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3111 umulh(carry2, tmp4, product_hi); 3112 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3113 3114 add2_with_carry(carry2, tmp3, tmp4, carry); 3115 3116 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3117 extr(carry, carry2, tmp3, 32); 3118 3119 bind(L_post_third_loop_done); 3120 } 3121 3122 /** 3123 * Code for BigInteger::multiplyToLen() instrinsic. 3124 * 3125 * r0: x 3126 * r1: xlen 3127 * r2: y 3128 * r3: ylen 3129 * r4: z 3130 * r5: zlen 3131 * r10: tmp1 3132 * r11: tmp2 3133 * r12: tmp3 3134 * r13: tmp4 3135 * r14: tmp5 3136 * r15: tmp6 3137 * r16: tmp7 3138 * 3139 */ 3140 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3141 Register z, Register zlen, 3142 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3143 Register tmp5, Register tmp6, Register product_hi) { 3144 3145 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3146 3147 const Register idx = tmp1; 3148 const Register kdx = tmp2; 3149 const Register xstart = tmp3; 3150 3151 const Register y_idx = tmp4; 3152 const Register carry = tmp5; 3153 const Register product = xlen; 3154 const Register x_xstart = zlen; // reuse register 3155 3156 // First Loop. 3157 // 3158 // final static long LONG_MASK = 0xffffffffL; 3159 // int xstart = xlen - 1; 3160 // int ystart = ylen - 1; 3161 // long carry = 0; 3162 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3163 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3164 // z[kdx] = (int)product; 3165 // carry = product >>> 32; 3166 // } 3167 // z[xstart] = (int)carry; 3168 // 3169 3170 movw(idx, ylen); // idx = ylen; 3171 movw(kdx, zlen); // kdx = xlen+ylen; 3172 mov(carry, zr); // carry = 0; 3173 3174 Label L_done; 3175 3176 movw(xstart, xlen); 3177 subsw(xstart, xstart, 1); 3178 br(Assembler::MI, L_done); 3179 3180 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3181 3182 Label L_second_loop; 3183 cbzw(kdx, L_second_loop); 3184 3185 Label L_carry; 3186 subw(kdx, kdx, 1); 3187 cbzw(kdx, L_carry); 3188 3189 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3190 lsr(carry, carry, 32); 3191 subw(kdx, kdx, 1); 3192 3193 bind(L_carry); 3194 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3195 3196 // Second and third (nested) loops. 3197 // 3198 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3199 // carry = 0; 3200 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3201 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3202 // (z[k] & LONG_MASK) + carry; 3203 // z[k] = (int)product; 3204 // carry = product >>> 32; 3205 // } 3206 // z[i] = (int)carry; 3207 // } 3208 // 3209 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3210 3211 const Register jdx = tmp1; 3212 3213 bind(L_second_loop); 3214 mov(carry, zr); // carry = 0; 3215 movw(jdx, ylen); // j = ystart+1 3216 3217 subsw(xstart, xstart, 1); // i = xstart-1; 3218 br(Assembler::MI, L_done); 3219 3220 str(z, Address(pre(sp, -4 * wordSize))); 3221 3222 Label L_last_x; 3223 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3224 subsw(xstart, xstart, 1); // i = xstart-1; 3225 br(Assembler::MI, L_last_x); 3226 3227 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 3228 ldr(product_hi, Address(rscratch1)); 3229 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 3230 3231 Label L_third_loop_prologue; 3232 bind(L_third_loop_prologue); 3233 3234 str(ylen, Address(sp, wordSize)); 3235 stp(x, xstart, Address(sp, 2 * wordSize)); 3236 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3237 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3238 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 3239 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 3240 3241 addw(tmp3, xlen, 1); 3242 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3243 subsw(tmp3, tmp3, 1); 3244 br(Assembler::MI, L_done); 3245 3246 lsr(carry, carry, 32); 3247 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3248 b(L_second_loop); 3249 3250 // Next infrequent code is moved outside loops. 3251 bind(L_last_x); 3252 ldrw(product_hi, Address(x, 0)); 3253 b(L_third_loop_prologue); 3254 3255 bind(L_done); 3256 } 3257 3258 // Code for BigInteger::mulAdd instrinsic 3259 // out = r0 3260 // in = r1 3261 // offset = r2 (already out.length-offset) 3262 // len = r3 3263 // k = r4 3264 // 3265 // pseudo code from java implementation: 3266 // carry = 0; 3267 // offset = out.length-offset - 1; 3268 // for (int j=len-1; j >= 0; j--) { 3269 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3270 // out[offset--] = (int)product; 3271 // carry = product >>> 32; 3272 // } 3273 // return (int)carry; 3274 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3275 Register len, Register k) { 3276 Label LOOP, END; 3277 // pre-loop 3278 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 3279 csel(out, zr, out, Assembler::EQ); 3280 br(Assembler::EQ, END); 3281 add(in, in, len, LSL, 2); // in[j+1] address 3282 add(offset, out, offset, LSL, 2); // out[offset + 1] address 3283 mov(out, zr); // used to keep carry now 3284 BIND(LOOP); 3285 ldrw(rscratch1, Address(pre(in, -4))); 3286 madd(rscratch1, rscratch1, k, out); 3287 ldrw(rscratch2, Address(pre(offset, -4))); 3288 add(rscratch1, rscratch1, rscratch2); 3289 strw(rscratch1, Address(offset)); 3290 lsr(out, rscratch1, 32); 3291 subs(len, len, 1); 3292 br(Assembler::NE, LOOP); 3293 BIND(END); 3294 } 3295 3296 /** 3297 * Emits code to update CRC-32 with a byte value according to constants in table 3298 * 3299 * @param [in,out]crc Register containing the crc. 3300 * @param [in]val Register containing the byte to fold into the CRC. 3301 * @param [in]table Register containing the table of crc constants. 3302 * 3303 * uint32_t crc; 3304 * val = crc_table[(val ^ crc) & 0xFF]; 3305 * crc = val ^ (crc >> 8); 3306 * 3307 */ 3308 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 3309 eor(val, val, crc); 3310 andr(val, val, 0xff); 3311 ldrw(val, Address(table, val, Address::lsl(2))); 3312 eor(crc, val, crc, Assembler::LSR, 8); 3313 } 3314 3315 /** 3316 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 3317 * 3318 * @param [in,out]crc Register containing the crc. 3319 * @param [in]v Register containing the 32-bit to fold into the CRC. 3320 * @param [in]table0 Register containing table 0 of crc constants. 3321 * @param [in]table1 Register containing table 1 of crc constants. 3322 * @param [in]table2 Register containing table 2 of crc constants. 3323 * @param [in]table3 Register containing table 3 of crc constants. 3324 * 3325 * uint32_t crc; 3326 * v = crc ^ v 3327 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 3328 * 3329 */ 3330 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 3331 Register table0, Register table1, Register table2, Register table3, 3332 bool upper) { 3333 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 3334 uxtb(tmp, v); 3335 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 3336 ubfx(tmp, v, 8, 8); 3337 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 3338 eor(crc, crc, tmp); 3339 ubfx(tmp, v, 16, 8); 3340 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 3341 eor(crc, crc, tmp); 3342 ubfx(tmp, v, 24, 8); 3343 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 3344 eor(crc, crc, tmp); 3345 } 3346 3347 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 3348 Register len, Register tmp0, Register tmp1, Register tmp2, 3349 Register tmp3) { 3350 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3351 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3352 3353 mvnw(crc, crc); 3354 3355 subs(len, len, 128); 3356 br(Assembler::GE, CRC_by64_pre); 3357 BIND(CRC_less64); 3358 adds(len, len, 128-32); 3359 br(Assembler::GE, CRC_by32_loop); 3360 BIND(CRC_less32); 3361 adds(len, len, 32-4); 3362 br(Assembler::GE, CRC_by4_loop); 3363 adds(len, len, 4); 3364 br(Assembler::GT, CRC_by1_loop); 3365 b(L_exit); 3366 3367 BIND(CRC_by32_loop); 3368 ldp(tmp0, tmp1, Address(post(buf, 16))); 3369 subs(len, len, 32); 3370 crc32x(crc, crc, tmp0); 3371 ldr(tmp2, Address(post(buf, 8))); 3372 crc32x(crc, crc, tmp1); 3373 ldr(tmp3, Address(post(buf, 8))); 3374 crc32x(crc, crc, tmp2); 3375 crc32x(crc, crc, tmp3); 3376 br(Assembler::GE, CRC_by32_loop); 3377 cmn(len, (u1)32); 3378 br(Assembler::NE, CRC_less32); 3379 b(L_exit); 3380 3381 BIND(CRC_by4_loop); 3382 ldrw(tmp0, Address(post(buf, 4))); 3383 subs(len, len, 4); 3384 crc32w(crc, crc, tmp0); 3385 br(Assembler::GE, CRC_by4_loop); 3386 adds(len, len, 4); 3387 br(Assembler::LE, L_exit); 3388 BIND(CRC_by1_loop); 3389 ldrb(tmp0, Address(post(buf, 1))); 3390 subs(len, len, 1); 3391 crc32b(crc, crc, tmp0); 3392 br(Assembler::GT, CRC_by1_loop); 3393 b(L_exit); 3394 3395 BIND(CRC_by64_pre); 3396 sub(buf, buf, 8); 3397 ldp(tmp0, tmp1, Address(buf, 8)); 3398 crc32x(crc, crc, tmp0); 3399 ldr(tmp2, Address(buf, 24)); 3400 crc32x(crc, crc, tmp1); 3401 ldr(tmp3, Address(buf, 32)); 3402 crc32x(crc, crc, tmp2); 3403 ldr(tmp0, Address(buf, 40)); 3404 crc32x(crc, crc, tmp3); 3405 ldr(tmp1, Address(buf, 48)); 3406 crc32x(crc, crc, tmp0); 3407 ldr(tmp2, Address(buf, 56)); 3408 crc32x(crc, crc, tmp1); 3409 ldr(tmp3, Address(pre(buf, 64))); 3410 3411 b(CRC_by64_loop); 3412 3413 align(CodeEntryAlignment); 3414 BIND(CRC_by64_loop); 3415 subs(len, len, 64); 3416 crc32x(crc, crc, tmp2); 3417 ldr(tmp0, Address(buf, 8)); 3418 crc32x(crc, crc, tmp3); 3419 ldr(tmp1, Address(buf, 16)); 3420 crc32x(crc, crc, tmp0); 3421 ldr(tmp2, Address(buf, 24)); 3422 crc32x(crc, crc, tmp1); 3423 ldr(tmp3, Address(buf, 32)); 3424 crc32x(crc, crc, tmp2); 3425 ldr(tmp0, Address(buf, 40)); 3426 crc32x(crc, crc, tmp3); 3427 ldr(tmp1, Address(buf, 48)); 3428 crc32x(crc, crc, tmp0); 3429 ldr(tmp2, Address(buf, 56)); 3430 crc32x(crc, crc, tmp1); 3431 ldr(tmp3, Address(pre(buf, 64))); 3432 br(Assembler::GE, CRC_by64_loop); 3433 3434 // post-loop 3435 crc32x(crc, crc, tmp2); 3436 crc32x(crc, crc, tmp3); 3437 3438 sub(len, len, 64); 3439 add(buf, buf, 8); 3440 cmn(len, (u1)128); 3441 br(Assembler::NE, CRC_less64); 3442 BIND(L_exit); 3443 mvnw(crc, crc); 3444 } 3445 3446 /** 3447 * @param crc register containing existing CRC (32-bit) 3448 * @param buf register pointing to input byte buffer (byte*) 3449 * @param len register containing number of bytes 3450 * @param table register that will contain address of CRC table 3451 * @param tmp scratch register 3452 */ 3453 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 3454 Register table0, Register table1, Register table2, Register table3, 3455 Register tmp, Register tmp2, Register tmp3) { 3456 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 3457 uint64_t offset; 3458 3459 if (UseCRC32) { 3460 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 3461 return; 3462 } 3463 3464 mvnw(crc, crc); 3465 3466 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 3467 if (offset) add(table0, table0, offset); 3468 add(table1, table0, 1*256*sizeof(juint)); 3469 add(table2, table0, 2*256*sizeof(juint)); 3470 add(table3, table0, 3*256*sizeof(juint)); 3471 3472 if (UseNeon) { 3473 cmp(len, (u1)64); 3474 br(Assembler::LT, L_by16); 3475 eor(v16, T16B, v16, v16); 3476 3477 Label L_fold; 3478 3479 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 3480 3481 ld1(v0, v1, T2D, post(buf, 32)); 3482 ld1r(v4, T2D, post(tmp, 8)); 3483 ld1r(v5, T2D, post(tmp, 8)); 3484 ld1r(v6, T2D, post(tmp, 8)); 3485 ld1r(v7, T2D, post(tmp, 8)); 3486 mov(v16, T4S, 0, crc); 3487 3488 eor(v0, T16B, v0, v16); 3489 sub(len, len, 64); 3490 3491 BIND(L_fold); 3492 pmull(v22, T8H, v0, v5, T8B); 3493 pmull(v20, T8H, v0, v7, T8B); 3494 pmull(v23, T8H, v0, v4, T8B); 3495 pmull(v21, T8H, v0, v6, T8B); 3496 3497 pmull2(v18, T8H, v0, v5, T16B); 3498 pmull2(v16, T8H, v0, v7, T16B); 3499 pmull2(v19, T8H, v0, v4, T16B); 3500 pmull2(v17, T8H, v0, v6, T16B); 3501 3502 uzp1(v24, T8H, v20, v22); 3503 uzp2(v25, T8H, v20, v22); 3504 eor(v20, T16B, v24, v25); 3505 3506 uzp1(v26, T8H, v16, v18); 3507 uzp2(v27, T8H, v16, v18); 3508 eor(v16, T16B, v26, v27); 3509 3510 ushll2(v22, T4S, v20, T8H, 8); 3511 ushll(v20, T4S, v20, T4H, 8); 3512 3513 ushll2(v18, T4S, v16, T8H, 8); 3514 ushll(v16, T4S, v16, T4H, 8); 3515 3516 eor(v22, T16B, v23, v22); 3517 eor(v18, T16B, v19, v18); 3518 eor(v20, T16B, v21, v20); 3519 eor(v16, T16B, v17, v16); 3520 3521 uzp1(v17, T2D, v16, v20); 3522 uzp2(v21, T2D, v16, v20); 3523 eor(v17, T16B, v17, v21); 3524 3525 ushll2(v20, T2D, v17, T4S, 16); 3526 ushll(v16, T2D, v17, T2S, 16); 3527 3528 eor(v20, T16B, v20, v22); 3529 eor(v16, T16B, v16, v18); 3530 3531 uzp1(v17, T2D, v20, v16); 3532 uzp2(v21, T2D, v20, v16); 3533 eor(v28, T16B, v17, v21); 3534 3535 pmull(v22, T8H, v1, v5, T8B); 3536 pmull(v20, T8H, v1, v7, T8B); 3537 pmull(v23, T8H, v1, v4, T8B); 3538 pmull(v21, T8H, v1, v6, T8B); 3539 3540 pmull2(v18, T8H, v1, v5, T16B); 3541 pmull2(v16, T8H, v1, v7, T16B); 3542 pmull2(v19, T8H, v1, v4, T16B); 3543 pmull2(v17, T8H, v1, v6, T16B); 3544 3545 ld1(v0, v1, T2D, post(buf, 32)); 3546 3547 uzp1(v24, T8H, v20, v22); 3548 uzp2(v25, T8H, v20, v22); 3549 eor(v20, T16B, v24, v25); 3550 3551 uzp1(v26, T8H, v16, v18); 3552 uzp2(v27, T8H, v16, v18); 3553 eor(v16, T16B, v26, v27); 3554 3555 ushll2(v22, T4S, v20, T8H, 8); 3556 ushll(v20, T4S, v20, T4H, 8); 3557 3558 ushll2(v18, T4S, v16, T8H, 8); 3559 ushll(v16, T4S, v16, T4H, 8); 3560 3561 eor(v22, T16B, v23, v22); 3562 eor(v18, T16B, v19, v18); 3563 eor(v20, T16B, v21, v20); 3564 eor(v16, T16B, v17, v16); 3565 3566 uzp1(v17, T2D, v16, v20); 3567 uzp2(v21, T2D, v16, v20); 3568 eor(v16, T16B, v17, v21); 3569 3570 ushll2(v20, T2D, v16, T4S, 16); 3571 ushll(v16, T2D, v16, T2S, 16); 3572 3573 eor(v20, T16B, v22, v20); 3574 eor(v16, T16B, v16, v18); 3575 3576 uzp1(v17, T2D, v20, v16); 3577 uzp2(v21, T2D, v20, v16); 3578 eor(v20, T16B, v17, v21); 3579 3580 shl(v16, T2D, v28, 1); 3581 shl(v17, T2D, v20, 1); 3582 3583 eor(v0, T16B, v0, v16); 3584 eor(v1, T16B, v1, v17); 3585 3586 subs(len, len, 32); 3587 br(Assembler::GE, L_fold); 3588 3589 mov(crc, 0); 3590 mov(tmp, v0, T1D, 0); 3591 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3592 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3593 mov(tmp, v0, T1D, 1); 3594 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3595 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3596 mov(tmp, v1, T1D, 0); 3597 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3598 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3599 mov(tmp, v1, T1D, 1); 3600 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3601 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3602 3603 add(len, len, 32); 3604 } 3605 3606 BIND(L_by16); 3607 subs(len, len, 16); 3608 br(Assembler::GE, L_by16_loop); 3609 adds(len, len, 16-4); 3610 br(Assembler::GE, L_by4_loop); 3611 adds(len, len, 4); 3612 br(Assembler::GT, L_by1_loop); 3613 b(L_exit); 3614 3615 BIND(L_by4_loop); 3616 ldrw(tmp, Address(post(buf, 4))); 3617 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 3618 subs(len, len, 4); 3619 br(Assembler::GE, L_by4_loop); 3620 adds(len, len, 4); 3621 br(Assembler::LE, L_exit); 3622 BIND(L_by1_loop); 3623 subs(len, len, 1); 3624 ldrb(tmp, Address(post(buf, 1))); 3625 update_byte_crc32(crc, tmp, table0); 3626 br(Assembler::GT, L_by1_loop); 3627 b(L_exit); 3628 3629 align(CodeEntryAlignment); 3630 BIND(L_by16_loop); 3631 subs(len, len, 16); 3632 ldp(tmp, tmp3, Address(post(buf, 16))); 3633 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3634 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3635 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 3636 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 3637 br(Assembler::GE, L_by16_loop); 3638 adds(len, len, 16-4); 3639 br(Assembler::GE, L_by4_loop); 3640 adds(len, len, 4); 3641 br(Assembler::GT, L_by1_loop); 3642 BIND(L_exit); 3643 mvnw(crc, crc); 3644 } 3645 3646 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 3647 Register len, Register tmp0, Register tmp1, Register tmp2, 3648 Register tmp3) { 3649 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3650 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3651 3652 subs(len, len, 128); 3653 br(Assembler::GE, CRC_by64_pre); 3654 BIND(CRC_less64); 3655 adds(len, len, 128-32); 3656 br(Assembler::GE, CRC_by32_loop); 3657 BIND(CRC_less32); 3658 adds(len, len, 32-4); 3659 br(Assembler::GE, CRC_by4_loop); 3660 adds(len, len, 4); 3661 br(Assembler::GT, CRC_by1_loop); 3662 b(L_exit); 3663 3664 BIND(CRC_by32_loop); 3665 ldp(tmp0, tmp1, Address(post(buf, 16))); 3666 subs(len, len, 32); 3667 crc32cx(crc, crc, tmp0); 3668 ldr(tmp2, Address(post(buf, 8))); 3669 crc32cx(crc, crc, tmp1); 3670 ldr(tmp3, Address(post(buf, 8))); 3671 crc32cx(crc, crc, tmp2); 3672 crc32cx(crc, crc, tmp3); 3673 br(Assembler::GE, CRC_by32_loop); 3674 cmn(len, (u1)32); 3675 br(Assembler::NE, CRC_less32); 3676 b(L_exit); 3677 3678 BIND(CRC_by4_loop); 3679 ldrw(tmp0, Address(post(buf, 4))); 3680 subs(len, len, 4); 3681 crc32cw(crc, crc, tmp0); 3682 br(Assembler::GE, CRC_by4_loop); 3683 adds(len, len, 4); 3684 br(Assembler::LE, L_exit); 3685 BIND(CRC_by1_loop); 3686 ldrb(tmp0, Address(post(buf, 1))); 3687 subs(len, len, 1); 3688 crc32cb(crc, crc, tmp0); 3689 br(Assembler::GT, CRC_by1_loop); 3690 b(L_exit); 3691 3692 BIND(CRC_by64_pre); 3693 sub(buf, buf, 8); 3694 ldp(tmp0, tmp1, Address(buf, 8)); 3695 crc32cx(crc, crc, tmp0); 3696 ldr(tmp2, Address(buf, 24)); 3697 crc32cx(crc, crc, tmp1); 3698 ldr(tmp3, Address(buf, 32)); 3699 crc32cx(crc, crc, tmp2); 3700 ldr(tmp0, Address(buf, 40)); 3701 crc32cx(crc, crc, tmp3); 3702 ldr(tmp1, Address(buf, 48)); 3703 crc32cx(crc, crc, tmp0); 3704 ldr(tmp2, Address(buf, 56)); 3705 crc32cx(crc, crc, tmp1); 3706 ldr(tmp3, Address(pre(buf, 64))); 3707 3708 b(CRC_by64_loop); 3709 3710 align(CodeEntryAlignment); 3711 BIND(CRC_by64_loop); 3712 subs(len, len, 64); 3713 crc32cx(crc, crc, tmp2); 3714 ldr(tmp0, Address(buf, 8)); 3715 crc32cx(crc, crc, tmp3); 3716 ldr(tmp1, Address(buf, 16)); 3717 crc32cx(crc, crc, tmp0); 3718 ldr(tmp2, Address(buf, 24)); 3719 crc32cx(crc, crc, tmp1); 3720 ldr(tmp3, Address(buf, 32)); 3721 crc32cx(crc, crc, tmp2); 3722 ldr(tmp0, Address(buf, 40)); 3723 crc32cx(crc, crc, tmp3); 3724 ldr(tmp1, Address(buf, 48)); 3725 crc32cx(crc, crc, tmp0); 3726 ldr(tmp2, Address(buf, 56)); 3727 crc32cx(crc, crc, tmp1); 3728 ldr(tmp3, Address(pre(buf, 64))); 3729 br(Assembler::GE, CRC_by64_loop); 3730 3731 // post-loop 3732 crc32cx(crc, crc, tmp2); 3733 crc32cx(crc, crc, tmp3); 3734 3735 sub(len, len, 64); 3736 add(buf, buf, 8); 3737 cmn(len, (u1)128); 3738 br(Assembler::NE, CRC_less64); 3739 BIND(L_exit); 3740 } 3741 3742 /** 3743 * @param crc register containing existing CRC (32-bit) 3744 * @param buf register pointing to input byte buffer (byte*) 3745 * @param len register containing number of bytes 3746 * @param table register that will contain address of CRC table 3747 * @param tmp scratch register 3748 */ 3749 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 3750 Register table0, Register table1, Register table2, Register table3, 3751 Register tmp, Register tmp2, Register tmp3) { 3752 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 3753 } 3754 3755 3756 SkipIfEqual::SkipIfEqual( 3757 MacroAssembler* masm, const bool* flag_addr, bool value) { 3758 _masm = masm; 3759 uint64_t offset; 3760 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 3761 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 3762 _masm->cbzw(rscratch1, _label); 3763 } 3764 3765 SkipIfEqual::~SkipIfEqual() { 3766 _masm->bind(_label); 3767 } 3768 3769 void MacroAssembler::addptr(const Address &dst, int32_t src) { 3770 Address adr; 3771 switch(dst.getMode()) { 3772 case Address::base_plus_offset: 3773 // This is the expected mode, although we allow all the other 3774 // forms below. 3775 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 3776 break; 3777 default: 3778 lea(rscratch2, dst); 3779 adr = Address(rscratch2); 3780 break; 3781 } 3782 ldr(rscratch1, adr); 3783 add(rscratch1, rscratch1, src); 3784 str(rscratch1, adr); 3785 } 3786 3787 void MacroAssembler::cmpptr(Register src1, Address src2) { 3788 uint64_t offset; 3789 adrp(rscratch1, src2, offset); 3790 ldr(rscratch1, Address(rscratch1, offset)); 3791 cmp(src1, rscratch1); 3792 } 3793 3794 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 3795 cmp(obj1, obj2); 3796 } 3797 3798 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 3799 load_method_holder(rresult, rmethod); 3800 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 3801 } 3802 3803 void MacroAssembler::load_method_holder(Register holder, Register method) { 3804 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 3805 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 3806 ldr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass* 3807 } 3808 3809 // Loads the obj's Klass* into dst. 3810 // src and dst must be distinct registers 3811 // Preserves all registers (incl src, rscratch1 and rscratch2), but clobbers condition flags 3812 void MacroAssembler::load_nklass(Register dst, Register src) { 3813 assert(UseCompressedClassPointers, "expects UseCompressedClassPointers"); 3814 3815 if (!UseCompactObjectHeaders) { 3816 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3817 return; 3818 } 3819 3820 Label fast; 3821 3822 // Check if we can take the (common) fast path, if obj is unlocked. 3823 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 3824 tbz(dst, exact_log2(markWord::monitor_value), fast); 3825 3826 // Fetch displaced header 3827 ldr(dst, Address(dst, OM_OFFSET_NO_MONITOR_VALUE_TAG(header))); 3828 3829 // Fast-path: shift and decode Klass*. 3830 bind(fast); 3831 lsr(dst, dst, markWord::klass_shift); 3832 } 3833 3834 void MacroAssembler::load_klass(Register dst, Register src, bool null_check_src) { 3835 if (null_check_src) { 3836 if (UseCompactObjectHeaders) { 3837 null_check(src, oopDesc::mark_offset_in_bytes()); 3838 } else { 3839 null_check(src, oopDesc::klass_offset_in_bytes()); 3840 } 3841 } 3842 3843 if (UseCompressedClassPointers) { 3844 if (UseCompactObjectHeaders) { 3845 load_nklass(dst, src); 3846 } else { 3847 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3848 } 3849 decode_klass_not_null(dst); 3850 } else { 3851 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3852 } 3853 } 3854 3855 // ((OopHandle)result).resolve(); 3856 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 3857 // OopHandle::resolve is an indirection. 3858 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp, noreg); 3859 } 3860 3861 // ((WeakHandle)result).resolve(); 3862 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 3863 assert_different_registers(rresult, rtmp); 3864 Label resolved; 3865 3866 // A null weak handle resolves to null. 3867 cbz(rresult, resolved); 3868 3869 // Only 64 bit platforms support GCs that require a tmp register 3870 // Only IN_HEAP loads require a thread_tmp register 3871 // WeakHandle::resolve is an indirection like jweak. 3872 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3873 rresult, Address(rresult), rtmp, /*tmp_thread*/noreg); 3874 bind(resolved); 3875 } 3876 3877 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) { 3878 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 3879 ldr(dst, Address(rmethod, Method::const_offset())); 3880 ldr(dst, Address(dst, ConstMethod::constants_offset())); 3881 ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes())); 3882 ldr(dst, Address(dst, mirror_offset)); 3883 resolve_oop_handle(dst, tmp); 3884 } 3885 3886 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 3887 assert_different_registers(oop, trial_klass, tmp); 3888 if (UseCompressedClassPointers) { 3889 if (UseCompactObjectHeaders) { 3890 load_nklass(tmp, oop); 3891 } else { 3892 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3893 } 3894 if (CompressedKlassPointers::base() == NULL) { 3895 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 3896 return; 3897 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 3898 && CompressedKlassPointers::shift() == 0) { 3899 // Only the bottom 32 bits matter 3900 cmpw(trial_klass, tmp); 3901 return; 3902 } 3903 decode_klass_not_null(tmp); 3904 } else { 3905 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3906 } 3907 cmp(trial_klass, tmp); 3908 } 3909 3910 void MacroAssembler::store_klass(Register dst, Register src) { 3911 // FIXME: Should this be a store release? concurrent gcs assumes 3912 // klass length is valid if klass field is not null. 3913 if (UseCompressedClassPointers) { 3914 encode_klass_not_null(src); 3915 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3916 } else { 3917 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3918 } 3919 } 3920 3921 void MacroAssembler::store_klass_gap(Register dst, Register src) { 3922 if (UseCompressedClassPointers) { 3923 // Store to klass gap in destination 3924 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 3925 } 3926 } 3927 3928 void MacroAssembler::load_prototype_header(Register dst, Register src) { 3929 load_klass(dst, src); 3930 ldr(dst, Address(dst, Klass::prototype_header_offset())); 3931 } 3932 3933 // Algorithm must match CompressedOops::encode. 3934 void MacroAssembler::encode_heap_oop(Register d, Register s) { 3935 #ifdef ASSERT 3936 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 3937 #endif 3938 verify_oop(s, "broken oop in encode_heap_oop"); 3939 if (CompressedOops::base() == NULL) { 3940 if (CompressedOops::shift() != 0) { 3941 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3942 lsr(d, s, LogMinObjAlignmentInBytes); 3943 } else { 3944 mov(d, s); 3945 } 3946 } else { 3947 subs(d, s, rheapbase); 3948 csel(d, d, zr, Assembler::HS); 3949 lsr(d, d, LogMinObjAlignmentInBytes); 3950 3951 /* Old algorithm: is this any worse? 3952 Label nonnull; 3953 cbnz(r, nonnull); 3954 sub(r, r, rheapbase); 3955 bind(nonnull); 3956 lsr(r, r, LogMinObjAlignmentInBytes); 3957 */ 3958 } 3959 } 3960 3961 void MacroAssembler::encode_heap_oop_not_null(Register r) { 3962 #ifdef ASSERT 3963 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 3964 if (CheckCompressedOops) { 3965 Label ok; 3966 cbnz(r, ok); 3967 stop("null oop passed to encode_heap_oop_not_null"); 3968 bind(ok); 3969 } 3970 #endif 3971 verify_oop(r, "broken oop in encode_heap_oop_not_null"); 3972 if (CompressedOops::base() != NULL) { 3973 sub(r, r, rheapbase); 3974 } 3975 if (CompressedOops::shift() != 0) { 3976 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 3977 lsr(r, r, LogMinObjAlignmentInBytes); 3978 } 3979 } 3980 3981 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 3982 #ifdef ASSERT 3983 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 3984 if (CheckCompressedOops) { 3985 Label ok; 3986 cbnz(src, ok); 3987 stop("null oop passed to encode_heap_oop_not_null2"); 3988 bind(ok); 3989 } 3990 #endif 3991 verify_oop(src, "broken oop in encode_heap_oop_not_null2"); 3992 3993 Register data = src; 3994 if (CompressedOops::base() != NULL) { 3995 sub(dst, src, rheapbase); 3996 data = dst; 3997 } 3998 if (CompressedOops::shift() != 0) { 3999 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4000 lsr(dst, data, LogMinObjAlignmentInBytes); 4001 data = dst; 4002 } 4003 if (data == src) 4004 mov(dst, src); 4005 } 4006 4007 void MacroAssembler::decode_heap_oop(Register d, Register s) { 4008 #ifdef ASSERT 4009 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 4010 #endif 4011 if (CompressedOops::base() == NULL) { 4012 if (CompressedOops::shift() != 0 || d != s) { 4013 lsl(d, s, CompressedOops::shift()); 4014 } 4015 } else { 4016 Label done; 4017 if (d != s) 4018 mov(d, s); 4019 cbz(s, done); 4020 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 4021 bind(done); 4022 } 4023 verify_oop(d, "broken oop in decode_heap_oop"); 4024 } 4025 4026 void MacroAssembler::decode_heap_oop_not_null(Register r) { 4027 assert (UseCompressedOops, "should only be used for compressed headers"); 4028 assert (Universe::heap() != NULL, "java heap should be initialized"); 4029 // Cannot assert, unverified entry point counts instructions (see .ad file) 4030 // vtableStubs also counts instructions in pd_code_size_limit. 4031 // Also do not verify_oop as this is called by verify_oop. 4032 if (CompressedOops::shift() != 0) { 4033 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4034 if (CompressedOops::base() != NULL) { 4035 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4036 } else { 4037 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4038 } 4039 } else { 4040 assert (CompressedOops::base() == NULL, "sanity"); 4041 } 4042 } 4043 4044 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 4045 assert (UseCompressedOops, "should only be used for compressed headers"); 4046 assert (Universe::heap() != NULL, "java heap should be initialized"); 4047 // Cannot assert, unverified entry point counts instructions (see .ad file) 4048 // vtableStubs also counts instructions in pd_code_size_limit. 4049 // Also do not verify_oop as this is called by verify_oop. 4050 if (CompressedOops::shift() != 0) { 4051 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4052 if (CompressedOops::base() != NULL) { 4053 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4054 } else { 4055 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4056 } 4057 } else { 4058 assert (CompressedOops::base() == NULL, "sanity"); 4059 if (dst != src) { 4060 mov(dst, src); 4061 } 4062 } 4063 } 4064 4065 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 4066 4067 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 4068 assert(UseCompressedClassPointers, "not using compressed class pointers"); 4069 assert(Metaspace::initialized(), "metaspace not initialized yet"); 4070 4071 if (_klass_decode_mode != KlassDecodeNone) { 4072 return _klass_decode_mode; 4073 } 4074 4075 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 4076 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 4077 4078 if (CompressedKlassPointers::base() == NULL) { 4079 return (_klass_decode_mode = KlassDecodeZero); 4080 } 4081 4082 if (operand_valid_for_logical_immediate( 4083 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 4084 const uint64_t range_mask = 4085 (1ULL << log2i(CompressedKlassPointers::range())) - 1; 4086 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 4087 return (_klass_decode_mode = KlassDecodeXor); 4088 } 4089 } 4090 4091 const uint64_t shifted_base = 4092 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4093 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 4094 "compressed class base bad alignment"); 4095 4096 return (_klass_decode_mode = KlassDecodeMovk); 4097 } 4098 4099 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 4100 switch (klass_decode_mode()) { 4101 case KlassDecodeZero: 4102 if (CompressedKlassPointers::shift() != 0) { 4103 lsr(dst, src, LogKlassAlignmentInBytes); 4104 } else { 4105 if (dst != src) mov(dst, src); 4106 } 4107 break; 4108 4109 case KlassDecodeXor: 4110 if (CompressedKlassPointers::shift() != 0) { 4111 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4112 lsr(dst, dst, LogKlassAlignmentInBytes); 4113 } else { 4114 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4115 } 4116 break; 4117 4118 case KlassDecodeMovk: 4119 if (CompressedKlassPointers::shift() != 0) { 4120 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 4121 } else { 4122 movw(dst, src); 4123 } 4124 break; 4125 4126 case KlassDecodeNone: 4127 ShouldNotReachHere(); 4128 break; 4129 } 4130 } 4131 4132 void MacroAssembler::encode_klass_not_null(Register r) { 4133 encode_klass_not_null(r, r); 4134 } 4135 4136 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 4137 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4138 4139 switch (klass_decode_mode()) { 4140 case KlassDecodeZero: 4141 if (CompressedKlassPointers::shift() != 0) { 4142 lsl(dst, src, LogKlassAlignmentInBytes); 4143 } else { 4144 if (dst != src) mov(dst, src); 4145 } 4146 break; 4147 4148 case KlassDecodeXor: 4149 if (CompressedKlassPointers::shift() != 0) { 4150 lsl(dst, src, LogKlassAlignmentInBytes); 4151 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 4152 } else { 4153 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4154 } 4155 break; 4156 4157 case KlassDecodeMovk: { 4158 const uint64_t shifted_base = 4159 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4160 4161 if (dst != src) movw(dst, src); 4162 movk(dst, shifted_base >> 32, 32); 4163 4164 if (CompressedKlassPointers::shift() != 0) { 4165 lsl(dst, dst, LogKlassAlignmentInBytes); 4166 } 4167 4168 break; 4169 } 4170 4171 case KlassDecodeNone: 4172 ShouldNotReachHere(); 4173 break; 4174 } 4175 } 4176 4177 void MacroAssembler::decode_klass_not_null(Register r) { 4178 decode_klass_not_null(r, r); 4179 } 4180 4181 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 4182 #ifdef ASSERT 4183 { 4184 ThreadInVMfromUnknown tiv; 4185 assert (UseCompressedOops, "should only be used for compressed oops"); 4186 assert (Universe::heap() != NULL, "java heap should be initialized"); 4187 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4188 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4189 } 4190 #endif 4191 int oop_index = oop_recorder()->find_index(obj); 4192 InstructionMark im(this); 4193 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4194 code_section()->relocate(inst_mark(), rspec); 4195 movz(dst, 0xDEAD, 16); 4196 movk(dst, 0xBEEF); 4197 } 4198 4199 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 4200 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4201 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4202 int index = oop_recorder()->find_index(k); 4203 assert(! Universe::heap()->is_in(k), "should not be an oop"); 4204 4205 InstructionMark im(this); 4206 RelocationHolder rspec = metadata_Relocation::spec(index); 4207 code_section()->relocate(inst_mark(), rspec); 4208 narrowKlass nk = CompressedKlassPointers::encode(k); 4209 movz(dst, (nk >> 16), 16); 4210 movk(dst, nk & 0xffff); 4211 } 4212 4213 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 4214 Register dst, Address src, 4215 Register tmp1, Register thread_tmp) { 4216 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4217 decorators = AccessInternal::decorator_fixup(decorators); 4218 bool as_raw = (decorators & AS_RAW) != 0; 4219 if (as_raw) { 4220 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4221 } else { 4222 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4223 } 4224 } 4225 4226 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 4227 Address dst, Register src, 4228 Register tmp1, Register thread_tmp) { 4229 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4230 decorators = AccessInternal::decorator_fixup(decorators); 4231 bool as_raw = (decorators & AS_RAW) != 0; 4232 if (as_raw) { 4233 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4234 } else { 4235 bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 4236 } 4237 } 4238 4239 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 4240 Register thread_tmp, DecoratorSet decorators) { 4241 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4242 } 4243 4244 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 4245 Register thread_tmp, DecoratorSet decorators) { 4246 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 4247 } 4248 4249 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1, 4250 Register thread_tmp, DecoratorSet decorators) { 4251 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 4252 } 4253 4254 // Used for storing NULLs. 4255 void MacroAssembler::store_heap_oop_null(Address dst) { 4256 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg); 4257 } 4258 4259 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 4260 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 4261 int index = oop_recorder()->allocate_metadata_index(obj); 4262 RelocationHolder rspec = metadata_Relocation::spec(index); 4263 return Address((address)obj, rspec); 4264 } 4265 4266 // Move an oop into a register. immediate is true if we want 4267 // immediate instructions and nmethod entry barriers are not enabled. 4268 // i.e. we are not going to patch this instruction while the code is being 4269 // executed by another thread. 4270 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 4271 int oop_index; 4272 if (obj == NULL) { 4273 oop_index = oop_recorder()->allocate_oop_index(obj); 4274 } else { 4275 #ifdef ASSERT 4276 { 4277 ThreadInVMfromUnknown tiv; 4278 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4279 } 4280 #endif 4281 oop_index = oop_recorder()->find_index(obj); 4282 } 4283 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4284 4285 // nmethod entry barrier necessitate using the constant pool. They have to be 4286 // ordered with respected to oop accesses. 4287 // Using immediate literals would necessitate ISBs. 4288 if (BarrierSet::barrier_set()->barrier_set_nmethod() != NULL || !immediate) { 4289 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 4290 ldr_constant(dst, Address(dummy, rspec)); 4291 } else 4292 mov(dst, Address((address)obj, rspec)); 4293 4294 } 4295 4296 // Move a metadata address into a register. 4297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 4298 int oop_index; 4299 if (obj == NULL) { 4300 oop_index = oop_recorder()->allocate_metadata_index(obj); 4301 } else { 4302 oop_index = oop_recorder()->find_index(obj); 4303 } 4304 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 4305 mov(dst, Address((address)obj, rspec)); 4306 } 4307 4308 Address MacroAssembler::constant_oop_address(jobject obj) { 4309 #ifdef ASSERT 4310 { 4311 ThreadInVMfromUnknown tiv; 4312 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 4313 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 4314 } 4315 #endif 4316 int oop_index = oop_recorder()->find_index(obj); 4317 return Address((address)obj, oop_Relocation::spec(oop_index)); 4318 } 4319 4320 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4321 void MacroAssembler::tlab_allocate(Register obj, 4322 Register var_size_in_bytes, 4323 int con_size_in_bytes, 4324 Register t1, 4325 Register t2, 4326 Label& slow_case) { 4327 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4328 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4329 } 4330 4331 // Defines obj, preserves var_size_in_bytes 4332 void MacroAssembler::eden_allocate(Register obj, 4333 Register var_size_in_bytes, 4334 int con_size_in_bytes, 4335 Register t1, 4336 Label& slow_case) { 4337 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4338 bs->eden_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); 4339 } 4340 4341 void MacroAssembler::verify_tlab() { 4342 #ifdef ASSERT 4343 if (UseTLAB && VerifyOops) { 4344 Label next, ok; 4345 4346 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 4347 4348 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4349 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 4350 cmp(rscratch2, rscratch1); 4351 br(Assembler::HS, next); 4352 STOP("assert(top >= start)"); 4353 should_not_reach_here(); 4354 4355 bind(next); 4356 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 4357 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4358 cmp(rscratch2, rscratch1); 4359 br(Assembler::HS, ok); 4360 STOP("assert(top <= end)"); 4361 should_not_reach_here(); 4362 4363 bind(ok); 4364 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 4365 } 4366 #endif 4367 } 4368 4369 // Writes to stack successive pages until offset reached to check for 4370 // stack overflow + shadow pages. This clobbers tmp. 4371 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 4372 assert_different_registers(tmp, size, rscratch1); 4373 mov(tmp, sp); 4374 // Bang stack for total size given plus shadow page size. 4375 // Bang one page at a time because large size can bang beyond yellow and 4376 // red zones. 4377 Label loop; 4378 mov(rscratch1, os::vm_page_size()); 4379 bind(loop); 4380 lea(tmp, Address(tmp, -os::vm_page_size())); 4381 subsw(size, size, rscratch1); 4382 str(size, Address(tmp)); 4383 br(Assembler::GT, loop); 4384 4385 // Bang down shadow pages too. 4386 // At this point, (tmp-0) is the last address touched, so don't 4387 // touch it again. (It was touched as (tmp-pagesize) but then tmp 4388 // was post-decremented.) Skip this address by starting at i=1, and 4389 // touch a few more pages below. N.B. It is important to touch all 4390 // the way down to and including i=StackShadowPages. 4391 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) { 4392 // this could be any sized move but this is can be a debugging crumb 4393 // so the bigger the better. 4394 lea(tmp, Address(tmp, -os::vm_page_size())); 4395 str(size, Address(tmp)); 4396 } 4397 } 4398 4399 // Move the address of the polling page into dest. 4400 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 4401 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 4402 } 4403 4404 // Read the polling page. The address of the polling page must 4405 // already be in r. 4406 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 4407 address mark; 4408 { 4409 InstructionMark im(this); 4410 code_section()->relocate(inst_mark(), rtype); 4411 ldrw(zr, Address(r, 0)); 4412 mark = inst_mark(); 4413 } 4414 verify_cross_modify_fence_not_required(); 4415 return mark; 4416 } 4417 4418 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 4419 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 4420 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 4421 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 4422 uint64_t dest_page = (uint64_t)dest.target() >> 12; 4423 int64_t offset_low = dest_page - low_page; 4424 int64_t offset_high = dest_page - high_page; 4425 4426 assert(is_valid_AArch64_address(dest.target()), "bad address"); 4427 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 4428 4429 InstructionMark im(this); 4430 code_section()->relocate(inst_mark(), dest.rspec()); 4431 // 8143067: Ensure that the adrp can reach the dest from anywhere within 4432 // the code cache so that if it is relocated we know it will still reach 4433 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 4434 _adrp(reg1, dest.target()); 4435 } else { 4436 uint64_t target = (uint64_t)dest.target(); 4437 uint64_t adrp_target 4438 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 4439 4440 _adrp(reg1, (address)adrp_target); 4441 movk(reg1, target >> 32, 32); 4442 } 4443 byte_offset = (uint64_t)dest.target() & 0xfff; 4444 } 4445 4446 void MacroAssembler::load_byte_map_base(Register reg) { 4447 CardTable::CardValue* byte_map_base = 4448 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 4449 4450 // Strictly speaking the byte_map_base isn't an address at all, and it might 4451 // even be negative. It is thus materialised as a constant. 4452 mov(reg, (uint64_t)byte_map_base); 4453 } 4454 4455 void MacroAssembler::build_frame(int framesize) { 4456 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 4457 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 4458 if (framesize < ((1 << 9) + 2 * wordSize)) { 4459 sub(sp, sp, framesize); 4460 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4461 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 4462 } else { 4463 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 4464 if (PreserveFramePointer) mov(rfp, sp); 4465 if (framesize < ((1 << 12) + 2 * wordSize)) 4466 sub(sp, sp, framesize - 2 * wordSize); 4467 else { 4468 mov(rscratch1, framesize - 2 * wordSize); 4469 sub(sp, sp, rscratch1); 4470 } 4471 } 4472 verify_cross_modify_fence_not_required(); 4473 } 4474 4475 void MacroAssembler::remove_frame(int framesize) { 4476 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 4477 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 4478 if (framesize < ((1 << 9) + 2 * wordSize)) { 4479 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4480 add(sp, sp, framesize); 4481 } else { 4482 if (framesize < ((1 << 12) + 2 * wordSize)) 4483 add(sp, sp, framesize - 2 * wordSize); 4484 else { 4485 mov(rscratch1, framesize - 2 * wordSize); 4486 add(sp, sp, rscratch1); 4487 } 4488 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 4489 } 4490 } 4491 4492 4493 // This method checks if provided byte array contains byte with highest bit set. 4494 address MacroAssembler::has_negatives(Register ary1, Register len, Register result) { 4495 // Simple and most common case of aligned small array which is not at the 4496 // end of memory page is placed here. All other cases are in stub. 4497 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 4498 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 4499 assert_different_registers(ary1, len, result); 4500 4501 cmpw(len, 0); 4502 br(LE, SET_RESULT); 4503 cmpw(len, 4 * wordSize); 4504 br(GE, STUB_LONG); // size > 32 then go to stub 4505 4506 int shift = 64 - exact_log2(os::vm_page_size()); 4507 lsl(rscratch1, ary1, shift); 4508 mov(rscratch2, (size_t)(4 * wordSize) << shift); 4509 adds(rscratch2, rscratch1, rscratch2); // At end of page? 4510 br(CS, STUB); // at the end of page then go to stub 4511 subs(len, len, wordSize); 4512 br(LT, END); 4513 4514 BIND(LOOP); 4515 ldr(rscratch1, Address(post(ary1, wordSize))); 4516 tst(rscratch1, UPPER_BIT_MASK); 4517 br(NE, SET_RESULT); 4518 subs(len, len, wordSize); 4519 br(GE, LOOP); 4520 cmpw(len, -wordSize); 4521 br(EQ, SET_RESULT); 4522 4523 BIND(END); 4524 ldr(result, Address(ary1)); 4525 sub(len, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 4526 lslv(result, result, len); 4527 tst(result, UPPER_BIT_MASK); 4528 b(SET_RESULT); 4529 4530 BIND(STUB); 4531 RuntimeAddress has_neg = RuntimeAddress(StubRoutines::aarch64::has_negatives()); 4532 assert(has_neg.target() != NULL, "has_negatives stub has not been generated"); 4533 address tpc1 = trampoline_call(has_neg); 4534 if (tpc1 == NULL) { 4535 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 4536 postcond(pc() == badAddress); 4537 return NULL; 4538 } 4539 b(DONE); 4540 4541 BIND(STUB_LONG); 4542 RuntimeAddress has_neg_long = RuntimeAddress(StubRoutines::aarch64::has_negatives_long()); 4543 assert(has_neg_long.target() != NULL, "has_negatives stub has not been generated"); 4544 address tpc2 = trampoline_call(has_neg_long); 4545 if (tpc2 == NULL) { 4546 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 4547 postcond(pc() == badAddress); 4548 return NULL; 4549 } 4550 b(DONE); 4551 4552 BIND(SET_RESULT); 4553 cset(result, NE); // set true or false 4554 4555 BIND(DONE); 4556 postcond(pc() != badAddress); 4557 return pc(); 4558 } 4559 4560 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 4561 Register tmp4, Register tmp5, Register result, 4562 Register cnt1, int elem_size) { 4563 Label DONE, SAME; 4564 Register tmp1 = rscratch1; 4565 Register tmp2 = rscratch2; 4566 Register cnt2 = tmp2; // cnt2 only used in array length compare 4567 int elem_per_word = wordSize/elem_size; 4568 int log_elem_size = exact_log2(elem_size); 4569 int length_offset = arrayOopDesc::length_offset_in_bytes(); 4570 int base_offset 4571 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 4572 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 4573 4574 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 4575 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4576 4577 #ifndef PRODUCT 4578 { 4579 const char kind = (elem_size == 2) ? 'U' : 'L'; 4580 char comment[64]; 4581 snprintf(comment, sizeof comment, "array_equals%c{", kind); 4582 BLOCK_COMMENT(comment); 4583 } 4584 #endif 4585 4586 // if (a1 == a2) 4587 // return true; 4588 cmpoop(a1, a2); // May have read barriers for a1 and a2. 4589 br(EQ, SAME); 4590 4591 if (UseSimpleArrayEquals) { 4592 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 4593 // if (a1 == null || a2 == null) 4594 // return false; 4595 // a1 & a2 == 0 means (some-pointer is null) or 4596 // (very-rare-or-even-probably-impossible-pointer-values) 4597 // so, we can save one branch in most cases 4598 tst(a1, a2); 4599 mov(result, false); 4600 br(EQ, A_MIGHT_BE_NULL); 4601 // if (a1.length != a2.length) 4602 // return false; 4603 bind(A_IS_NOT_NULL); 4604 ldrw(cnt1, Address(a1, length_offset)); 4605 ldrw(cnt2, Address(a2, length_offset)); 4606 eorw(tmp5, cnt1, cnt2); 4607 cbnzw(tmp5, DONE); 4608 lea(a1, Address(a1, base_offset)); 4609 lea(a2, Address(a2, base_offset)); 4610 // Check for short strings, i.e. smaller than wordSize. 4611 subs(cnt1, cnt1, elem_per_word); 4612 br(Assembler::LT, SHORT); 4613 // Main 8 byte comparison loop. 4614 bind(NEXT_WORD); { 4615 ldr(tmp1, Address(post(a1, wordSize))); 4616 ldr(tmp2, Address(post(a2, wordSize))); 4617 subs(cnt1, cnt1, elem_per_word); 4618 eor(tmp5, tmp1, tmp2); 4619 cbnz(tmp5, DONE); 4620 } br(GT, NEXT_WORD); 4621 // Last longword. In the case where length == 4 we compare the 4622 // same longword twice, but that's still faster than another 4623 // conditional branch. 4624 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4625 // length == 4. 4626 if (log_elem_size > 0) 4627 lsl(cnt1, cnt1, log_elem_size); 4628 ldr(tmp3, Address(a1, cnt1)); 4629 ldr(tmp4, Address(a2, cnt1)); 4630 eor(tmp5, tmp3, tmp4); 4631 cbnz(tmp5, DONE); 4632 b(SAME); 4633 bind(A_MIGHT_BE_NULL); 4634 // in case both a1 and a2 are not-null, proceed with loads 4635 cbz(a1, DONE); 4636 cbz(a2, DONE); 4637 b(A_IS_NOT_NULL); 4638 bind(SHORT); 4639 4640 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 4641 { 4642 ldrw(tmp1, Address(post(a1, 4))); 4643 ldrw(tmp2, Address(post(a2, 4))); 4644 eorw(tmp5, tmp1, tmp2); 4645 cbnzw(tmp5, DONE); 4646 } 4647 bind(TAIL03); 4648 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 4649 { 4650 ldrh(tmp3, Address(post(a1, 2))); 4651 ldrh(tmp4, Address(post(a2, 2))); 4652 eorw(tmp5, tmp3, tmp4); 4653 cbnzw(tmp5, DONE); 4654 } 4655 bind(TAIL01); 4656 if (elem_size == 1) { // Only needed when comparing byte arrays. 4657 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4658 { 4659 ldrb(tmp1, a1); 4660 ldrb(tmp2, a2); 4661 eorw(tmp5, tmp1, tmp2); 4662 cbnzw(tmp5, DONE); 4663 } 4664 } 4665 } else { 4666 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 4667 CSET_EQ, LAST_CHECK; 4668 mov(result, false); 4669 cbz(a1, DONE); 4670 ldrw(cnt1, Address(a1, length_offset)); 4671 cbz(a2, DONE); 4672 ldrw(cnt2, Address(a2, length_offset)); 4673 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 4674 // faster to perform another branch before comparing a1 and a2 4675 cmp(cnt1, (u1)elem_per_word); 4676 br(LE, SHORT); // short or same 4677 ldr(tmp3, Address(pre(a1, base_offset))); 4678 subs(zr, cnt1, stubBytesThreshold); 4679 br(GE, STUB); 4680 ldr(tmp4, Address(pre(a2, base_offset))); 4681 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4682 cmp(cnt2, cnt1); 4683 br(NE, DONE); 4684 4685 // Main 16 byte comparison loop with 2 exits 4686 bind(NEXT_DWORD); { 4687 ldr(tmp1, Address(pre(a1, wordSize))); 4688 ldr(tmp2, Address(pre(a2, wordSize))); 4689 subs(cnt1, cnt1, 2 * elem_per_word); 4690 br(LE, TAIL); 4691 eor(tmp4, tmp3, tmp4); 4692 cbnz(tmp4, DONE); 4693 ldr(tmp3, Address(pre(a1, wordSize))); 4694 ldr(tmp4, Address(pre(a2, wordSize))); 4695 cmp(cnt1, (u1)elem_per_word); 4696 br(LE, TAIL2); 4697 cmp(tmp1, tmp2); 4698 } br(EQ, NEXT_DWORD); 4699 b(DONE); 4700 4701 bind(TAIL); 4702 eor(tmp4, tmp3, tmp4); 4703 eor(tmp2, tmp1, tmp2); 4704 lslv(tmp2, tmp2, tmp5); 4705 orr(tmp5, tmp4, tmp2); 4706 cmp(tmp5, zr); 4707 b(CSET_EQ); 4708 4709 bind(TAIL2); 4710 eor(tmp2, tmp1, tmp2); 4711 cbnz(tmp2, DONE); 4712 b(LAST_CHECK); 4713 4714 bind(STUB); 4715 ldr(tmp4, Address(pre(a2, base_offset))); 4716 cmp(cnt2, cnt1); 4717 br(NE, DONE); 4718 if (elem_size == 2) { // convert to byte counter 4719 lsl(cnt1, cnt1, 1); 4720 } 4721 eor(tmp5, tmp3, tmp4); 4722 cbnz(tmp5, DONE); 4723 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 4724 assert(stub.target() != NULL, "array_equals_long stub has not been generated"); 4725 address tpc = trampoline_call(stub); 4726 if (tpc == NULL) { 4727 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 4728 postcond(pc() == badAddress); 4729 return NULL; 4730 } 4731 b(DONE); 4732 4733 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 4734 // so, if a2 == null => return false(0), else return true, so we can return a2 4735 mov(result, a2); 4736 b(DONE); 4737 bind(SHORT); 4738 cmp(cnt2, cnt1); 4739 br(NE, DONE); 4740 cbz(cnt1, SAME); 4741 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 4742 ldr(tmp3, Address(a1, base_offset)); 4743 ldr(tmp4, Address(a2, base_offset)); 4744 bind(LAST_CHECK); 4745 eor(tmp4, tmp3, tmp4); 4746 lslv(tmp5, tmp4, tmp5); 4747 cmp(tmp5, zr); 4748 bind(CSET_EQ); 4749 cset(result, EQ); 4750 b(DONE); 4751 } 4752 4753 bind(SAME); 4754 mov(result, true); 4755 // That's it. 4756 bind(DONE); 4757 4758 BLOCK_COMMENT("} array_equals"); 4759 postcond(pc() != badAddress); 4760 return pc(); 4761 } 4762 4763 // Compare Strings 4764 4765 // For Strings we're passed the address of the first characters in a1 4766 // and a2 and the length in cnt1. 4767 // elem_size is the element size in bytes: either 1 or 2. 4768 // There are two implementations. For arrays >= 8 bytes, all 4769 // comparisons (including the final one, which may overlap) are 4770 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 4771 // halfword, then a short, and then a byte. 4772 4773 void MacroAssembler::string_equals(Register a1, Register a2, 4774 Register result, Register cnt1, int elem_size) 4775 { 4776 Label SAME, DONE, SHORT, NEXT_WORD; 4777 Register tmp1 = rscratch1; 4778 Register tmp2 = rscratch2; 4779 Register cnt2 = tmp2; // cnt2 only used in array length compare 4780 4781 assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); 4782 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 4783 4784 #ifndef PRODUCT 4785 { 4786 const char kind = (elem_size == 2) ? 'U' : 'L'; 4787 char comment[64]; 4788 snprintf(comment, sizeof comment, "{string_equals%c", kind); 4789 BLOCK_COMMENT(comment); 4790 } 4791 #endif 4792 4793 mov(result, false); 4794 4795 // Check for short strings, i.e. smaller than wordSize. 4796 subs(cnt1, cnt1, wordSize); 4797 br(Assembler::LT, SHORT); 4798 // Main 8 byte comparison loop. 4799 bind(NEXT_WORD); { 4800 ldr(tmp1, Address(post(a1, wordSize))); 4801 ldr(tmp2, Address(post(a2, wordSize))); 4802 subs(cnt1, cnt1, wordSize); 4803 eor(tmp1, tmp1, tmp2); 4804 cbnz(tmp1, DONE); 4805 } br(GT, NEXT_WORD); 4806 // Last longword. In the case where length == 4 we compare the 4807 // same longword twice, but that's still faster than another 4808 // conditional branch. 4809 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 4810 // length == 4. 4811 ldr(tmp1, Address(a1, cnt1)); 4812 ldr(tmp2, Address(a2, cnt1)); 4813 eor(tmp2, tmp1, tmp2); 4814 cbnz(tmp2, DONE); 4815 b(SAME); 4816 4817 bind(SHORT); 4818 Label TAIL03, TAIL01; 4819 4820 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 4821 { 4822 ldrw(tmp1, Address(post(a1, 4))); 4823 ldrw(tmp2, Address(post(a2, 4))); 4824 eorw(tmp1, tmp1, tmp2); 4825 cbnzw(tmp1, DONE); 4826 } 4827 bind(TAIL03); 4828 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 4829 { 4830 ldrh(tmp1, Address(post(a1, 2))); 4831 ldrh(tmp2, Address(post(a2, 2))); 4832 eorw(tmp1, tmp1, tmp2); 4833 cbnzw(tmp1, DONE); 4834 } 4835 bind(TAIL01); 4836 if (elem_size == 1) { // Only needed when comparing 1-byte elements 4837 tbz(cnt1, 0, SAME); // 0-1 bytes left. 4838 { 4839 ldrb(tmp1, a1); 4840 ldrb(tmp2, a2); 4841 eorw(tmp1, tmp1, tmp2); 4842 cbnzw(tmp1, DONE); 4843 } 4844 } 4845 // Arrays are equal. 4846 bind(SAME); 4847 mov(result, true); 4848 4849 // That's it. 4850 bind(DONE); 4851 BLOCK_COMMENT("} string_equals"); 4852 } 4853 4854 4855 // The size of the blocks erased by the zero_blocks stub. We must 4856 // handle anything smaller than this ourselves in zero_words(). 4857 const int MacroAssembler::zero_words_block_size = 8; 4858 4859 // zero_words() is used by C2 ClearArray patterns and by 4860 // C1_MacroAssembler. It is as small as possible, handling small word 4861 // counts locally and delegating anything larger to the zero_blocks 4862 // stub. It is expanded many times in compiled code, so it is 4863 // important to keep it short. 4864 4865 // ptr: Address of a buffer to be zeroed. 4866 // cnt: Count in HeapWords. 4867 // 4868 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 4869 address MacroAssembler::zero_words(Register ptr, Register cnt) 4870 { 4871 assert(is_power_of_2(zero_words_block_size), "adjust this"); 4872 4873 BLOCK_COMMENT("zero_words {"); 4874 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 4875 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 4876 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 4877 4878 subs(rscratch1, cnt, zero_words_block_size); 4879 Label around; 4880 br(LO, around); 4881 { 4882 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 4883 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 4884 // Make sure this is a C2 compilation. C1 allocates space only for 4885 // trampoline stubs generated by Call LIR ops, and in any case it 4886 // makes sense for a C1 compilation task to proceed as quickly as 4887 // possible. 4888 CompileTask* task; 4889 if (StubRoutines::aarch64::complete() 4890 && Thread::current()->is_Compiler_thread() 4891 && (task = ciEnv::current()->task()) 4892 && is_c2_compile(task->comp_level())) { 4893 address tpc = trampoline_call(zero_blocks); 4894 if (tpc == NULL) { 4895 DEBUG_ONLY(reset_labels(around)); 4896 return NULL; 4897 } 4898 } else { 4899 far_call(zero_blocks); 4900 } 4901 } 4902 bind(around); 4903 4904 // We have a few words left to do. zero_blocks has adjusted r10 and r11 4905 // for us. 4906 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 4907 Label l; 4908 tbz(cnt, exact_log2(i), l); 4909 for (int j = 0; j < i; j += 2) { 4910 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 4911 } 4912 bind(l); 4913 } 4914 { 4915 Label l; 4916 tbz(cnt, 0, l); 4917 str(zr, Address(ptr)); 4918 bind(l); 4919 } 4920 4921 BLOCK_COMMENT("} zero_words"); 4922 return pc(); 4923 } 4924 4925 // base: Address of a buffer to be zeroed, 8 bytes aligned. 4926 // cnt: Immediate count in HeapWords. 4927 // 4928 // r10, r11, rscratch1, and rscratch2 are clobbered. 4929 address MacroAssembler::zero_words(Register base, uint64_t cnt) 4930 { 4931 assert(wordSize <= BlockZeroingLowLimit, 4932 "increase BlockZeroingLowLimit"); 4933 address result = nullptr; 4934 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 4935 #ifndef PRODUCT 4936 { 4937 char buf[64]; 4938 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 4939 BLOCK_COMMENT(buf); 4940 } 4941 #endif 4942 if (cnt >= 16) { 4943 uint64_t loops = cnt/16; 4944 if (loops > 1) { 4945 mov(rscratch2, loops - 1); 4946 } 4947 { 4948 Label loop; 4949 bind(loop); 4950 for (int i = 0; i < 16; i += 2) { 4951 stp(zr, zr, Address(base, i * BytesPerWord)); 4952 } 4953 add(base, base, 16 * BytesPerWord); 4954 if (loops > 1) { 4955 subs(rscratch2, rscratch2, 1); 4956 br(GE, loop); 4957 } 4958 } 4959 } 4960 cnt %= 16; 4961 int i = cnt & 1; // store any odd word to start 4962 if (i) str(zr, Address(base)); 4963 for (; i < (int)cnt; i += 2) { 4964 stp(zr, zr, Address(base, i * wordSize)); 4965 } 4966 BLOCK_COMMENT("} zero_words"); 4967 result = pc(); 4968 } else { 4969 mov(r10, base); mov(r11, cnt); 4970 result = zero_words(r10, r11); 4971 } 4972 return result; 4973 } 4974 4975 // Zero blocks of memory by using DC ZVA. 4976 // 4977 // Aligns the base address first sufficently for DC ZVA, then uses 4978 // DC ZVA repeatedly for every full block. cnt is the size to be 4979 // zeroed in HeapWords. Returns the count of words left to be zeroed 4980 // in cnt. 4981 // 4982 // NOTE: This is intended to be used in the zero_blocks() stub. If 4983 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 4984 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 4985 Register tmp = rscratch1; 4986 Register tmp2 = rscratch2; 4987 int zva_length = VM_Version::zva_length(); 4988 Label initial_table_end, loop_zva; 4989 Label fini; 4990 4991 // Base must be 16 byte aligned. If not just return and let caller handle it 4992 tst(base, 0x0f); 4993 br(Assembler::NE, fini); 4994 // Align base with ZVA length. 4995 neg(tmp, base); 4996 andr(tmp, tmp, zva_length - 1); 4997 4998 // tmp: the number of bytes to be filled to align the base with ZVA length. 4999 add(base, base, tmp); 5000 sub(cnt, cnt, tmp, Assembler::ASR, 3); 5001 adr(tmp2, initial_table_end); 5002 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 5003 br(tmp2); 5004 5005 for (int i = -zva_length + 16; i < 0; i += 16) 5006 stp(zr, zr, Address(base, i)); 5007 bind(initial_table_end); 5008 5009 sub(cnt, cnt, zva_length >> 3); 5010 bind(loop_zva); 5011 dc(Assembler::ZVA, base); 5012 subs(cnt, cnt, zva_length >> 3); 5013 add(base, base, zva_length); 5014 br(Assembler::GE, loop_zva); 5015 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 5016 bind(fini); 5017 } 5018 5019 // base: Address of a buffer to be filled, 8 bytes aligned. 5020 // cnt: Count in 8-byte unit. 5021 // value: Value to be filled with. 5022 // base will point to the end of the buffer after filling. 5023 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 5024 { 5025 // Algorithm: 5026 // 5027 // scratch1 = cnt & 7; 5028 // cnt -= scratch1; 5029 // p += scratch1; 5030 // switch (scratch1) { 5031 // do { 5032 // cnt -= 8; 5033 // p[-8] = v; 5034 // case 7: 5035 // p[-7] = v; 5036 // case 6: 5037 // p[-6] = v; 5038 // // ... 5039 // case 1: 5040 // p[-1] = v; 5041 // case 0: 5042 // p += 8; 5043 // } while (cnt); 5044 // } 5045 5046 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 5047 5048 Label fini, skip, entry, loop; 5049 const int unroll = 8; // Number of stp instructions we'll unroll 5050 5051 cbz(cnt, fini); 5052 tbz(base, 3, skip); 5053 str(value, Address(post(base, 8))); 5054 sub(cnt, cnt, 1); 5055 bind(skip); 5056 5057 andr(rscratch1, cnt, (unroll-1) * 2); 5058 sub(cnt, cnt, rscratch1); 5059 add(base, base, rscratch1, Assembler::LSL, 3); 5060 adr(rscratch2, entry); 5061 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 5062 br(rscratch2); 5063 5064 bind(loop); 5065 add(base, base, unroll * 16); 5066 for (int i = -unroll; i < 0; i++) 5067 stp(value, value, Address(base, i * 16)); 5068 bind(entry); 5069 subs(cnt, cnt, unroll * 2); 5070 br(Assembler::GE, loop); 5071 5072 tbz(cnt, 0, fini); 5073 str(value, Address(post(base, 8))); 5074 bind(fini); 5075 } 5076 5077 // Intrinsic for sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray and 5078 // java/lang/StringUTF16.compress. 5079 void MacroAssembler::encode_iso_array(Register src, Register dst, 5080 Register len, Register result, 5081 FloatRegister Vtmp1, FloatRegister Vtmp2, 5082 FloatRegister Vtmp3, FloatRegister Vtmp4) 5083 { 5084 Label DONE, SET_RESULT, NEXT_32, NEXT_32_PRFM, LOOP_8, NEXT_8, LOOP_1, NEXT_1, 5085 NEXT_32_START, NEXT_32_PRFM_START; 5086 Register tmp1 = rscratch1, tmp2 = rscratch2; 5087 5088 mov(result, len); // Save initial len 5089 5090 cmp(len, (u1)8); // handle shortest strings first 5091 br(LT, LOOP_1); 5092 cmp(len, (u1)32); 5093 br(LT, NEXT_8); 5094 // The following code uses the SIMD 'uzp1' and 'uzp2' instructions 5095 // to convert chars to bytes 5096 if (SoftwarePrefetchHintDistance >= 0) { 5097 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 5098 subs(tmp2, len, SoftwarePrefetchHintDistance/2 + 16); 5099 br(LE, NEXT_32_START); 5100 b(NEXT_32_PRFM_START); 5101 BIND(NEXT_32_PRFM); 5102 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 5103 BIND(NEXT_32_PRFM_START); 5104 prfm(Address(src, SoftwarePrefetchHintDistance)); 5105 orr(v4, T16B, Vtmp1, Vtmp2); 5106 orr(v5, T16B, Vtmp3, Vtmp4); 5107 uzp1(Vtmp1, T16B, Vtmp1, Vtmp2); 5108 uzp1(Vtmp3, T16B, Vtmp3, Vtmp4); 5109 uzp2(v5, T16B, v4, v5); // high bytes 5110 umov(tmp2, v5, D, 1); 5111 fmovd(tmp1, v5); 5112 orr(tmp1, tmp1, tmp2); 5113 cbnz(tmp1, LOOP_8); 5114 stpq(Vtmp1, Vtmp3, dst); 5115 sub(len, len, 32); 5116 add(dst, dst, 32); 5117 add(src, src, 64); 5118 subs(tmp2, len, SoftwarePrefetchHintDistance/2 + 16); 5119 br(GE, NEXT_32_PRFM); 5120 cmp(len, (u1)32); 5121 br(LT, LOOP_8); 5122 BIND(NEXT_32); 5123 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 5124 BIND(NEXT_32_START); 5125 } else { 5126 BIND(NEXT_32); 5127 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 5128 } 5129 prfm(Address(src, SoftwarePrefetchHintDistance)); 5130 uzp1(v4, T16B, Vtmp1, Vtmp2); 5131 uzp1(v5, T16B, Vtmp3, Vtmp4); 5132 orr(Vtmp1, T16B, Vtmp1, Vtmp2); 5133 orr(Vtmp3, T16B, Vtmp3, Vtmp4); 5134 uzp2(Vtmp1, T16B, Vtmp1, Vtmp3); // high bytes 5135 umov(tmp2, Vtmp1, D, 1); 5136 fmovd(tmp1, Vtmp1); 5137 orr(tmp1, tmp1, tmp2); 5138 cbnz(tmp1, LOOP_8); 5139 stpq(v4, v5, dst); 5140 sub(len, len, 32); 5141 add(dst, dst, 32); 5142 add(src, src, 64); 5143 cmp(len, (u1)32); 5144 br(GE, NEXT_32); 5145 cbz(len, DONE); 5146 5147 BIND(LOOP_8); 5148 cmp(len, (u1)8); 5149 br(LT, LOOP_1); 5150 BIND(NEXT_8); 5151 ld1(Vtmp1, T8H, src); 5152 uzp1(Vtmp2, T16B, Vtmp1, Vtmp1); // low bytes 5153 uzp2(Vtmp3, T16B, Vtmp1, Vtmp1); // high bytes 5154 fmovd(tmp1, Vtmp3); 5155 cbnz(tmp1, NEXT_1); 5156 strd(Vtmp2, dst); 5157 5158 sub(len, len, 8); 5159 add(dst, dst, 8); 5160 add(src, src, 16); 5161 cmp(len, (u1)8); 5162 br(GE, NEXT_8); 5163 5164 BIND(LOOP_1); 5165 5166 cbz(len, DONE); 5167 BIND(NEXT_1); 5168 ldrh(tmp1, Address(post(src, 2))); 5169 tst(tmp1, 0xff00); 5170 br(NE, SET_RESULT); 5171 strb(tmp1, Address(post(dst, 1))); 5172 subs(len, len, 1); 5173 br(GT, NEXT_1); 5174 5175 BIND(SET_RESULT); 5176 sub(result, result, len); // Return index where we stopped 5177 // Return len == 0 if we processed all 5178 // characters 5179 BIND(DONE); 5180 } 5181 5182 5183 // Inflate byte[] array to char[]. 5184 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 5185 FloatRegister vtmp1, FloatRegister vtmp2, 5186 FloatRegister vtmp3, Register tmp4) { 5187 Label big, done, after_init, to_stub; 5188 5189 assert_different_registers(src, dst, len, tmp4, rscratch1); 5190 5191 fmovd(vtmp1, 0.0); 5192 lsrw(tmp4, len, 3); 5193 bind(after_init); 5194 cbnzw(tmp4, big); 5195 // Short string: less than 8 bytes. 5196 { 5197 Label loop, tiny; 5198 5199 cmpw(len, 4); 5200 br(LT, tiny); 5201 // Use SIMD to do 4 bytes. 5202 ldrs(vtmp2, post(src, 4)); 5203 zip1(vtmp3, T8B, vtmp2, vtmp1); 5204 subw(len, len, 4); 5205 strd(vtmp3, post(dst, 8)); 5206 5207 cbzw(len, done); 5208 5209 // Do the remaining bytes by steam. 5210 bind(loop); 5211 ldrb(tmp4, post(src, 1)); 5212 strh(tmp4, post(dst, 2)); 5213 subw(len, len, 1); 5214 5215 bind(tiny); 5216 cbnz(len, loop); 5217 5218 b(done); 5219 } 5220 5221 if (SoftwarePrefetchHintDistance >= 0) { 5222 bind(to_stub); 5223 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 5224 assert(stub.target() != NULL, "large_byte_array_inflate stub has not been generated"); 5225 address tpc = trampoline_call(stub); 5226 if (tpc == NULL) { 5227 DEBUG_ONLY(reset_labels(big, done)); 5228 postcond(pc() == badAddress); 5229 return NULL; 5230 } 5231 b(after_init); 5232 } 5233 5234 // Unpack the bytes 8 at a time. 5235 bind(big); 5236 { 5237 Label loop, around, loop_last, loop_start; 5238 5239 if (SoftwarePrefetchHintDistance >= 0) { 5240 const int large_loop_threshold = (64 + 16)/8; 5241 ldrd(vtmp2, post(src, 8)); 5242 andw(len, len, 7); 5243 cmp(tmp4, (u1)large_loop_threshold); 5244 br(GE, to_stub); 5245 b(loop_start); 5246 5247 bind(loop); 5248 ldrd(vtmp2, post(src, 8)); 5249 bind(loop_start); 5250 subs(tmp4, tmp4, 1); 5251 br(EQ, loop_last); 5252 zip1(vtmp2, T16B, vtmp2, vtmp1); 5253 ldrd(vtmp3, post(src, 8)); 5254 st1(vtmp2, T8H, post(dst, 16)); 5255 subs(tmp4, tmp4, 1); 5256 zip1(vtmp3, T16B, vtmp3, vtmp1); 5257 st1(vtmp3, T8H, post(dst, 16)); 5258 br(NE, loop); 5259 b(around); 5260 bind(loop_last); 5261 zip1(vtmp2, T16B, vtmp2, vtmp1); 5262 st1(vtmp2, T8H, post(dst, 16)); 5263 bind(around); 5264 cbz(len, done); 5265 } else { 5266 andw(len, len, 7); 5267 bind(loop); 5268 ldrd(vtmp2, post(src, 8)); 5269 sub(tmp4, tmp4, 1); 5270 zip1(vtmp3, T16B, vtmp2, vtmp1); 5271 st1(vtmp3, T8H, post(dst, 16)); 5272 cbnz(tmp4, loop); 5273 } 5274 } 5275 5276 // Do the tail of up to 8 bytes. 5277 add(src, src, len); 5278 ldrd(vtmp3, Address(src, -8)); 5279 add(dst, dst, len, ext::uxtw, 1); 5280 zip1(vtmp3, T16B, vtmp3, vtmp1); 5281 strq(vtmp3, Address(dst, -16)); 5282 5283 bind(done); 5284 postcond(pc() != badAddress); 5285 return pc(); 5286 } 5287 5288 // Compress char[] array to byte[]. 5289 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 5290 FloatRegister tmp1Reg, FloatRegister tmp2Reg, 5291 FloatRegister tmp3Reg, FloatRegister tmp4Reg, 5292 Register result) { 5293 encode_iso_array(src, dst, len, result, 5294 tmp1Reg, tmp2Reg, tmp3Reg, tmp4Reg); 5295 cmp(len, zr); 5296 csel(result, result, zr, EQ); 5297 } 5298 5299 // get_thread() can be called anywhere inside generated code so we 5300 // need to save whatever non-callee save context might get clobbered 5301 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 5302 // the call setup code. 5303 // 5304 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 5305 // On other systems, the helper is a usual C function. 5306 // 5307 void MacroAssembler::get_thread(Register dst) { 5308 RegSet saved_regs = 5309 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 5310 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 5311 5312 push(saved_regs, sp); 5313 5314 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 5315 blr(lr); 5316 if (dst != c_rarg0) { 5317 mov(dst, c_rarg0); 5318 } 5319 5320 pop(saved_regs, sp); 5321 } 5322 5323 void MacroAssembler::cache_wb(Address line) { 5324 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 5325 assert(line.index() == noreg, "index should be noreg"); 5326 assert(line.offset() == 0, "offset should be 0"); 5327 // would like to assert this 5328 // assert(line._ext.shift == 0, "shift should be zero"); 5329 if (VM_Version::features() & VM_Version::CPU_DCPOP) { 5330 // writeback using clear virtual address to point of persistence 5331 dc(Assembler::CVAP, line.base()); 5332 } else { 5333 // no need to generate anything as Unsafe.writebackMemory should 5334 // never invoke this stub 5335 } 5336 } 5337 5338 void MacroAssembler::cache_wbsync(bool is_pre) { 5339 // we only need a barrier post sync 5340 if (!is_pre) { 5341 membar(Assembler::AnyAny); 5342 } 5343 } 5344 5345 void MacroAssembler::verify_sve_vector_length() { 5346 // Make sure that native code does not change SVE vector length. 5347 if (!UseSVE) return; 5348 Label verify_ok; 5349 movw(rscratch1, zr); 5350 sve_inc(rscratch1, B); 5351 subsw(zr, rscratch1, VM_Version::get_initial_sve_vector_length()); 5352 br(EQ, verify_ok); 5353 stop("Error: SVE vector length has changed since jvm startup"); 5354 bind(verify_ok); 5355 } 5356 5357 void MacroAssembler::verify_ptrue() { 5358 Label verify_ok; 5359 if (!UseSVE) { 5360 return; 5361 } 5362 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 5363 sve_dec(rscratch1, B); 5364 cbz(rscratch1, verify_ok); 5365 stop("Error: the preserved predicate register (p7) elements are not all true"); 5366 bind(verify_ok); 5367 } 5368 5369 void MacroAssembler::safepoint_isb() { 5370 isb(); 5371 #ifndef PRODUCT 5372 if (VerifyCrossModifyFence) { 5373 // Clear the thread state. 5374 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 5375 } 5376 #endif 5377 } 5378 5379 #ifndef PRODUCT 5380 void MacroAssembler::verify_cross_modify_fence_not_required() { 5381 if (VerifyCrossModifyFence) { 5382 // Check if thread needs a cross modify fence. 5383 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 5384 Label fence_not_required; 5385 cbz(rscratch1, fence_not_required); 5386 // If it does then fail. 5387 lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)); 5388 mov(c_rarg0, rthread); 5389 blr(rscratch1); 5390 bind(fence_not_required); 5391 } 5392 } 5393 #endif 5394 5395 void MacroAssembler::spin_wait() { 5396 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 5397 switch (VM_Version::spin_wait_desc().inst()) { 5398 case SpinWait::NOP: 5399 nop(); 5400 break; 5401 case SpinWait::ISB: 5402 isb(); 5403 break; 5404 case SpinWait::YIELD: 5405 yield(); 5406 break; 5407 default: 5408 ShouldNotReachHere(); 5409 } 5410 } 5411 } 5412 5413 // Implements fast-locking. 5414 // Branches to slow upon failure to lock the object, with ZF cleared. 5415 // Falls through upon success with ZF set. 5416 // 5417 // - obj: the object to be locked 5418 // - hdr: the header, already loaded from obj, will be destroyed 5419 // - t1, t2: temporary registers, will be destroyed 5420 void MacroAssembler::fast_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow) { 5421 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 5422 assert_different_registers(obj, hdr, t1, t2); 5423 5424 // Check if we would have space on lock-stack for the object. 5425 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 5426 cmpw(t1, (unsigned)LockStack::end_offset() - 1); 5427 br(Assembler::GT, slow); 5428 5429 // Load (object->mark() | 1) into hdr 5430 orr(hdr, hdr, markWord::unlocked_value); 5431 // Clear lock-bits, into t2 5432 eor(t2, hdr, markWord::unlocked_value); 5433 // Try to swing header from unlocked to locked 5434 cmpxchg(/*addr*/ obj, /*expected*/ hdr, /*new*/ t2, Assembler::xword, 5435 /*acquire*/ true, /*release*/ true, /*weak*/ false, t1); 5436 br(Assembler::NE, slow); 5437 5438 // After successful lock, push object on lock-stack 5439 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 5440 str(obj, Address(rthread, t1)); 5441 addw(t1, t1, oopSize); 5442 strw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 5443 } 5444 5445 // Implements fast-unlocking. 5446 // Branches to slow upon failure, with ZF cleared. 5447 // Falls through upon success, with ZF set. 5448 // 5449 // - obj: the object to be unlocked 5450 // - hdr: the (pre-loaded) header of the object 5451 // - t1, t2: temporary registers 5452 void MacroAssembler::fast_unlock(Register obj, Register hdr, Register t1, Register t2, Label& slow) { 5453 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 5454 assert_different_registers(obj, hdr, t1, t2); 5455 5456 #ifdef ASSERT 5457 { 5458 // The following checks rely on the fact that LockStack is only ever modified by 5459 // its owning thread, even if the lock got inflated concurrently; removal of LockStack 5460 // entries after inflation will happen delayed in that case. 5461 5462 // Check for lock-stack underflow. 5463 Label stack_ok; 5464 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 5465 cmpw(t1, (unsigned)LockStack::start_offset()); 5466 br(Assembler::GT, stack_ok); 5467 STOP("Lock-stack underflow"); 5468 bind(stack_ok); 5469 } 5470 { 5471 // Check if the top of the lock-stack matches the unlocked object. 5472 Label tos_ok; 5473 subw(t1, t1, oopSize); 5474 ldr(t1, Address(rthread, t1)); 5475 cmpoop(t1, obj); 5476 br(Assembler::EQ, tos_ok); 5477 STOP("Top of lock-stack does not match the unlocked object"); 5478 bind(tos_ok); 5479 } 5480 { 5481 // Check that hdr is fast-locked. 5482 Label hdr_ok; 5483 tst(hdr, markWord::lock_mask_in_place); 5484 br(Assembler::EQ, hdr_ok); 5485 STOP("Header is not fast-locked"); 5486 bind(hdr_ok); 5487 } 5488 #endif 5489 5490 // Load the new header (unlocked) into t1 5491 orr(t1, hdr, markWord::unlocked_value); 5492 5493 // Try to swing header from locked to unlocked 5494 cmpxchg(obj, hdr, t1, Assembler::xword, 5495 /*acquire*/ true, /*release*/ true, /*weak*/ false, t2); 5496 br(Assembler::NE, slow); 5497 5498 // After successful unlock, pop object from lock-stack 5499 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 5500 subw(t1, t1, oopSize); 5501 #ifdef ASSERT 5502 str(zr, Address(rthread, t1)); 5503 #endif 5504 strw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 5505 } --- EOF ---