1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "oops/compressedOops.hpp" 31 #include "runtime/vm_version.hpp" 32 #include "utilities/powerOfTwo.hpp" 33 34 // MacroAssembler extends Assembler by frequently used macros. 35 // 36 // Instructions for which a 'better' code sequence exists depending 37 // on arguments should also go in here. 38 39 class MacroAssembler: public Assembler { 40 friend class LIR_Assembler; 41 42 public: 43 using Assembler::mov; 44 using Assembler::movi; 45 46 protected: 47 48 // Support for VM calls 49 // 50 // This is the base routine called by the different versions of call_VM_leaf. The interpreter 51 // may customize this version by overriding it for its purposes (e.g., to save/restore 52 // additional registers when doing a VM call). 53 virtual void call_VM_leaf_base( 54 address entry_point, // the entry point 55 int number_of_arguments, // the number of arguments to pop after the call 56 Label *retaddr = NULL 57 ); 58 59 virtual void call_VM_leaf_base( 60 address entry_point, // the entry point 61 int number_of_arguments, // the number of arguments to pop after the call 62 Label &retaddr) { 63 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr); 64 } 65 66 // This is the base routine called by the different versions of call_VM. The interpreter 67 // may customize this version by overriding it for its purposes (e.g., to save/restore 68 // additional registers when doing a VM call). 69 // 70 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base 71 // returns the register which contains the thread upon return. If a thread register has been 72 // specified, the return value will correspond to that register. If no last_java_sp is specified 73 // (noreg) than rsp will be used instead. 74 virtual void call_VM_base( // returns the register containing the thread upon return 75 Register oop_result, // where an oop-result ends up if any; use noreg otherwise 76 Register java_thread, // the thread if computed before ; use noreg otherwise 77 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise 78 address entry_point, // the entry point 79 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call 80 bool check_exceptions // whether to check for pending exceptions after return 81 ); 82 83 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); 84 85 enum KlassDecodeMode { 86 KlassDecodeNone, 87 KlassDecodeZero, 88 KlassDecodeXor, 89 KlassDecodeMovk 90 }; 91 92 KlassDecodeMode klass_decode_mode(); 93 94 private: 95 static KlassDecodeMode _klass_decode_mode; 96 97 public: 98 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 99 100 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. 101 // The implementation is only non-empty for the InterpreterMacroAssembler, 102 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. 103 virtual void check_and_handle_popframe(Register java_thread); 104 virtual void check_and_handle_earlyret(Register java_thread); 105 106 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod); 107 108 // Biased locking support 109 // lock_reg and obj_reg must be loaded up with the appropriate values. 110 // swap_reg is killed. 111 // tmp_reg must be supplied and must not be rscratch1 or rscratch2 112 // Optional slow case is for implementations (interpreter and C1) which branch to 113 // slow case directly. Leaves condition codes set for C2's Fast_Lock node. 114 void biased_locking_enter(Register lock_reg, Register obj_reg, 115 Register swap_reg, Register tmp_reg, 116 bool swap_reg_contains_mark, 117 Label& done, Label* slow_case = NULL, 118 BiasedLockingCounters* counters = NULL); 119 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done); 120 121 122 // Helper functions for statistics gathering. 123 // Unconditional atomic increment. 124 void atomic_incw(Register counter_addr, Register tmp, Register tmp2); 125 void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) { 126 lea(tmp1, counter_addr); 127 atomic_incw(tmp1, tmp2, tmp3); 128 } 129 // Load Effective Address 130 void lea(Register r, const Address &a) { 131 InstructionMark im(this); 132 code_section()->relocate(inst_mark(), a.rspec()); 133 a.lea(this, r); 134 } 135 136 /* Sometimes we get misaligned loads and stores, usually from Unsafe 137 accesses, and these can exceed the offset range. */ 138 Address legitimize_address(const Address &a, int size, Register scratch) { 139 if (a.getMode() == Address::base_plus_offset) { 140 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) { 141 block_comment("legitimize_address {"); 142 lea(scratch, a); 143 block_comment("} legitimize_address"); 144 return Address(scratch); 145 } 146 } 147 return a; 148 } 149 150 void addmw(Address a, Register incr, Register scratch) { 151 ldrw(scratch, a); 152 addw(scratch, scratch, incr); 153 strw(scratch, a); 154 } 155 156 // Add constant to memory word 157 void addmw(Address a, int imm, Register scratch) { 158 ldrw(scratch, a); 159 if (imm > 0) 160 addw(scratch, scratch, (unsigned)imm); 161 else 162 subw(scratch, scratch, (unsigned)-imm); 163 strw(scratch, a); 164 } 165 166 void bind(Label& L) { 167 Assembler::bind(L); 168 code()->clear_last_insn(); 169 } 170 171 void membar(Membar_mask_bits order_constraint); 172 173 using Assembler::ldr; 174 using Assembler::str; 175 using Assembler::ldrw; 176 using Assembler::strw; 177 178 void ldr(Register Rx, const Address &adr); 179 void ldrw(Register Rw, const Address &adr); 180 void str(Register Rx, const Address &adr); 181 void strw(Register Rx, const Address &adr); 182 183 // Frame creation and destruction shared between JITs. 184 void build_frame(int framesize); 185 void remove_frame(int framesize); 186 187 virtual void _call_Unimplemented(address call_site) { 188 mov(rscratch2, call_site); 189 } 190 191 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__ 192 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention." 193 // https://reviews.llvm.org/D3311 194 195 #ifdef _WIN64 196 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__) 197 #else 198 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__) 199 #endif 200 201 // aliases defined in AARCH64 spec 202 203 template<class T> 204 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); } 205 206 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); } 207 inline void cmp(Register Rd, unsigned imm) = delete; 208 209 template<class T> 210 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); } 211 212 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); } 213 inline void cmn(Register Rd, unsigned imm) = delete; 214 215 void cset(Register Rd, Assembler::Condition cond) { 216 csinc(Rd, zr, zr, ~cond); 217 } 218 void csetw(Register Rd, Assembler::Condition cond) { 219 csincw(Rd, zr, zr, ~cond); 220 } 221 222 void cneg(Register Rd, Register Rn, Assembler::Condition cond) { 223 csneg(Rd, Rn, Rn, ~cond); 224 } 225 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) { 226 csnegw(Rd, Rn, Rn, ~cond); 227 } 228 229 inline void movw(Register Rd, Register Rn) { 230 if (Rd == sp || Rn == sp) { 231 Assembler::addw(Rd, Rn, 0U); 232 } else { 233 orrw(Rd, zr, Rn); 234 } 235 } 236 inline void mov(Register Rd, Register Rn) { 237 assert(Rd != r31_sp && Rn != r31_sp, "should be"); 238 if (Rd == Rn) { 239 } else if (Rd == sp || Rn == sp) { 240 Assembler::add(Rd, Rn, 0U); 241 } else { 242 orr(Rd, zr, Rn); 243 } 244 } 245 246 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); } 247 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); } 248 249 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); } 250 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); } 251 252 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); } 253 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); } 254 255 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 256 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 257 } 258 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) { 259 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 260 } 261 262 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 263 bfmw(Rd, Rn, lsb, (lsb + width - 1)); 264 } 265 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) { 266 bfm(Rd, Rn, lsb , (lsb + width - 1)); 267 } 268 269 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 270 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 271 } 272 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 273 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 274 } 275 276 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 277 sbfmw(Rd, Rn, lsb, (lsb + width - 1)); 278 } 279 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 280 sbfm(Rd, Rn, lsb , (lsb + width - 1)); 281 } 282 283 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 284 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1)); 285 } 286 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) { 287 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1)); 288 } 289 290 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) { 291 ubfmw(Rd, Rn, lsb, (lsb + width - 1)); 292 } 293 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) { 294 ubfm(Rd, Rn, lsb , (lsb + width - 1)); 295 } 296 297 inline void asrw(Register Rd, Register Rn, unsigned imm) { 298 sbfmw(Rd, Rn, imm, 31); 299 } 300 301 inline void asr(Register Rd, Register Rn, unsigned imm) { 302 sbfm(Rd, Rn, imm, 63); 303 } 304 305 inline void lslw(Register Rd, Register Rn, unsigned imm) { 306 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm)); 307 } 308 309 inline void lsl(Register Rd, Register Rn, unsigned imm) { 310 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm)); 311 } 312 313 inline void lsrw(Register Rd, Register Rn, unsigned imm) { 314 ubfmw(Rd, Rn, imm, 31); 315 } 316 317 inline void lsr(Register Rd, Register Rn, unsigned imm) { 318 ubfm(Rd, Rn, imm, 63); 319 } 320 321 inline void rorw(Register Rd, Register Rn, unsigned imm) { 322 extrw(Rd, Rn, Rn, imm); 323 } 324 325 inline void ror(Register Rd, Register Rn, unsigned imm) { 326 extr(Rd, Rn, Rn, imm); 327 } 328 329 inline void sxtbw(Register Rd, Register Rn) { 330 sbfmw(Rd, Rn, 0, 7); 331 } 332 inline void sxthw(Register Rd, Register Rn) { 333 sbfmw(Rd, Rn, 0, 15); 334 } 335 inline void sxtb(Register Rd, Register Rn) { 336 sbfm(Rd, Rn, 0, 7); 337 } 338 inline void sxth(Register Rd, Register Rn) { 339 sbfm(Rd, Rn, 0, 15); 340 } 341 inline void sxtw(Register Rd, Register Rn) { 342 sbfm(Rd, Rn, 0, 31); 343 } 344 345 inline void uxtbw(Register Rd, Register Rn) { 346 ubfmw(Rd, Rn, 0, 7); 347 } 348 inline void uxthw(Register Rd, Register Rn) { 349 ubfmw(Rd, Rn, 0, 15); 350 } 351 inline void uxtb(Register Rd, Register Rn) { 352 ubfm(Rd, Rn, 0, 7); 353 } 354 inline void uxth(Register Rd, Register Rn) { 355 ubfm(Rd, Rn, 0, 15); 356 } 357 inline void uxtw(Register Rd, Register Rn) { 358 ubfm(Rd, Rn, 0, 31); 359 } 360 361 inline void cmnw(Register Rn, Register Rm) { 362 addsw(zr, Rn, Rm); 363 } 364 inline void cmn(Register Rn, Register Rm) { 365 adds(zr, Rn, Rm); 366 } 367 368 inline void cmpw(Register Rn, Register Rm) { 369 subsw(zr, Rn, Rm); 370 } 371 inline void cmp(Register Rn, Register Rm) { 372 subs(zr, Rn, Rm); 373 } 374 375 inline void negw(Register Rd, Register Rn) { 376 subw(Rd, zr, Rn); 377 } 378 379 inline void neg(Register Rd, Register Rn) { 380 sub(Rd, zr, Rn); 381 } 382 383 inline void negsw(Register Rd, Register Rn) { 384 subsw(Rd, zr, Rn); 385 } 386 387 inline void negs(Register Rd, Register Rn) { 388 subs(Rd, zr, Rn); 389 } 390 391 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 392 addsw(zr, Rn, Rm, kind, shift); 393 } 394 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 395 adds(zr, Rn, Rm, kind, shift); 396 } 397 398 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 399 subsw(zr, Rn, Rm, kind, shift); 400 } 401 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) { 402 subs(zr, Rn, Rm, kind, shift); 403 } 404 405 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 406 subw(Rd, zr, Rn, kind, shift); 407 } 408 409 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 410 sub(Rd, zr, Rn, kind, shift); 411 } 412 413 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 414 subsw(Rd, zr, Rn, kind, shift); 415 } 416 417 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) { 418 subs(Rd, zr, Rn, kind, shift); 419 } 420 421 inline void mnegw(Register Rd, Register Rn, Register Rm) { 422 msubw(Rd, Rn, Rm, zr); 423 } 424 inline void mneg(Register Rd, Register Rn, Register Rm) { 425 msub(Rd, Rn, Rm, zr); 426 } 427 428 inline void mulw(Register Rd, Register Rn, Register Rm) { 429 maddw(Rd, Rn, Rm, zr); 430 } 431 inline void mul(Register Rd, Register Rn, Register Rm) { 432 madd(Rd, Rn, Rm, zr); 433 } 434 435 inline void smnegl(Register Rd, Register Rn, Register Rm) { 436 smsubl(Rd, Rn, Rm, zr); 437 } 438 inline void smull(Register Rd, Register Rn, Register Rm) { 439 smaddl(Rd, Rn, Rm, zr); 440 } 441 442 inline void umnegl(Register Rd, Register Rn, Register Rm) { 443 umsubl(Rd, Rn, Rm, zr); 444 } 445 inline void umull(Register Rd, Register Rn, Register Rm) { 446 umaddl(Rd, Rn, Rm, zr); 447 } 448 449 #define WRAP(INSN) \ 450 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \ 451 if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr) \ 452 nop(); \ 453 Assembler::INSN(Rd, Rn, Rm, Ra); \ 454 } 455 456 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw) 457 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl) 458 #undef WRAP 459 460 461 // macro assembly operations needed for aarch64 462 463 // first two private routines for loading 32 bit or 64 bit constants 464 private: 465 466 void mov_immediate64(Register dst, uint64_t imm64); 467 void mov_immediate32(Register dst, uint32_t imm32); 468 469 int push(unsigned int bitset, Register stack); 470 int pop(unsigned int bitset, Register stack); 471 472 int push_fp(unsigned int bitset, Register stack); 473 int pop_fp(unsigned int bitset, Register stack); 474 475 void mov(Register dst, Address a); 476 477 public: 478 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); } 479 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); } 480 481 void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); } 482 void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); } 483 484 static RegSet call_clobbered_registers(); 485 486 // Push and pop everything that might be clobbered by a native 487 // runtime call except rscratch1 and rscratch2. (They are always 488 // scratch, so we don't have to protect them.) Only save the lower 489 // 64 bits of each vector register. Additonal registers can be excluded 490 // in a passed RegSet. 491 void push_call_clobbered_registers_except(RegSet exclude); 492 void pop_call_clobbered_registers_except(RegSet exclude); 493 494 void push_call_clobbered_registers() { 495 push_call_clobbered_registers_except(RegSet()); 496 } 497 void pop_call_clobbered_registers() { 498 pop_call_clobbered_registers_except(RegSet()); 499 } 500 501 502 // now mov instructions for loading absolute addresses and 32 or 503 // 64 bit integers 504 505 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); } 506 507 inline void mov(Register dst, int imm64) { mov_immediate64(dst, (uint64_t)imm64); } 508 inline void mov(Register dst, long imm64) { mov_immediate64(dst, (uint64_t)imm64); } 509 inline void mov(Register dst, long long imm64) { mov_immediate64(dst, (uint64_t)imm64); } 510 inline void mov(Register dst, unsigned int imm64) { mov_immediate64(dst, (uint64_t)imm64); } 511 inline void mov(Register dst, unsigned long imm64) { mov_immediate64(dst, (uint64_t)imm64); } 512 inline void mov(Register dst, unsigned long long imm64) { mov_immediate64(dst, (uint64_t)imm64); } 513 514 inline void movw(Register dst, uint32_t imm32) 515 { 516 mov_immediate32(dst, imm32); 517 } 518 519 void mov(Register dst, RegisterOrConstant src) { 520 if (src.is_register()) 521 mov(dst, src.as_register()); 522 else 523 mov(dst, src.as_constant()); 524 } 525 526 void movptr(Register r, uintptr_t imm64); 527 528 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64); 529 530 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { 531 orr(Vd, T, Vn, Vn); 532 } 533 534 535 public: 536 537 // Generalized Test Bit And Branch, including a "far" variety which 538 // spans more than 32KiB. 539 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) { 540 assert(cond == EQ || cond == NE, "must be"); 541 542 if (isfar) 543 cond = ~cond; 544 545 void (Assembler::* branch)(Register Rt, int bitpos, Label &L); 546 if (cond == Assembler::EQ) 547 branch = &Assembler::tbz; 548 else 549 branch = &Assembler::tbnz; 550 551 if (isfar) { 552 Label L; 553 (this->*branch)(Rt, bitpos, L); 554 b(dest); 555 bind(L); 556 } else { 557 (this->*branch)(Rt, bitpos, dest); 558 } 559 } 560 561 // macro instructions for accessing and updating floating point 562 // status register 563 // 564 // FPSR : op1 == 011 565 // CRn == 0100 566 // CRm == 0100 567 // op2 == 001 568 569 inline void get_fpsr(Register reg) 570 { 571 mrs(0b11, 0b0100, 0b0100, 0b001, reg); 572 } 573 574 inline void set_fpsr(Register reg) 575 { 576 msr(0b011, 0b0100, 0b0100, 0b001, reg); 577 } 578 579 inline void clear_fpsr() 580 { 581 msr(0b011, 0b0100, 0b0100, 0b001, zr); 582 } 583 584 // DCZID_EL0: op1 == 011 585 // CRn == 0000 586 // CRm == 0000 587 // op2 == 111 588 inline void get_dczid_el0(Register reg) 589 { 590 mrs(0b011, 0b0000, 0b0000, 0b111, reg); 591 } 592 593 // CTR_EL0: op1 == 011 594 // CRn == 0000 595 // CRm == 0000 596 // op2 == 001 597 inline void get_ctr_el0(Register reg) 598 { 599 mrs(0b011, 0b0000, 0b0000, 0b001, reg); 600 } 601 602 // idiv variant which deals with MINLONG as dividend and -1 as divisor 603 int corrected_idivl(Register result, Register ra, Register rb, 604 bool want_remainder, Register tmp = rscratch1); 605 int corrected_idivq(Register result, Register ra, Register rb, 606 bool want_remainder, Register tmp = rscratch1); 607 608 // Support for NULL-checks 609 // 610 // Generates code that causes a NULL OS exception if the content of reg is NULL. 611 // If the accessed location is M[reg + offset] and the offset is known, provide the 612 // offset. No explicit code generation is needed if the offset is within a certain 613 // range (0 <= offset <= page_size). 614 615 virtual void null_check(Register reg, int offset = -1); 616 static bool needs_explicit_null_check(intptr_t offset); 617 static bool uses_implicit_null_check(void* address); 618 619 static address target_addr_for_insn(address insn_addr, unsigned insn); 620 static address target_addr_for_insn(address insn_addr) { 621 unsigned insn = *(unsigned*)insn_addr; 622 return target_addr_for_insn(insn_addr, insn); 623 } 624 625 // Required platform-specific helpers for Label::patch_instructions. 626 // They _shadow_ the declarations in AbstractAssembler, which are undefined. 627 static int pd_patch_instruction_size(address branch, address target); 628 static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) { 629 pd_patch_instruction_size(branch, target); 630 } 631 static address pd_call_destination(address branch) { 632 return target_addr_for_insn(branch); 633 } 634 #ifndef PRODUCT 635 static void pd_print_patched_instruction(address branch); 636 #endif 637 638 static int patch_oop(address insn_addr, address o); 639 static int patch_narrow_klass(address insn_addr, narrowKlass n); 640 641 address emit_trampoline_stub(int insts_call_instruction_offset, address target); 642 void emit_static_call_stub(); 643 644 // The following 4 methods return the offset of the appropriate move instruction 645 646 // Support for fast byte/short loading with zero extension (depending on particular CPU) 647 int load_unsigned_byte(Register dst, Address src); 648 int load_unsigned_short(Register dst, Address src); 649 650 // Support for fast byte/short loading with sign extension (depending on particular CPU) 651 int load_signed_byte(Register dst, Address src); 652 int load_signed_short(Register dst, Address src); 653 654 int load_signed_byte32(Register dst, Address src); 655 int load_signed_short32(Register dst, Address src); 656 657 // Support for sign-extension (hi:lo = extend_sign(lo)) 658 void extend_sign(Register hi, Register lo); 659 660 // Load and store values by size and signed-ness 661 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg); 662 void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg); 663 664 // Support for inc/dec with optimal instruction selection depending on value 665 666 // x86_64 aliases an unqualified register/address increment and 667 // decrement to call incrementq and decrementq but also supports 668 // explicitly sized calls to incrementq/decrementq or 669 // incrementl/decrementl 670 671 // for aarch64 the proper convention would be to use 672 // increment/decrement for 64 bit operatons and 673 // incrementw/decrementw for 32 bit operations. so when porting 674 // x86_64 code we can leave calls to increment/decrement as is, 675 // replace incrementq/decrementq with increment/decrement and 676 // replace incrementl/decrementl with incrementw/decrementw. 677 678 // n.b. increment/decrement calls with an Address destination will 679 // need to use a scratch register to load the value to be 680 // incremented. increment/decrement calls which add or subtract a 681 // constant value greater than 2^12 will need to use a 2nd scratch 682 // register to hold the constant. so, a register increment/decrement 683 // may trash rscratch2 and an address increment/decrement trash 684 // rscratch and rscratch2 685 686 void decrementw(Address dst, int value = 1); 687 void decrementw(Register reg, int value = 1); 688 689 void decrement(Register reg, int value = 1); 690 void decrement(Address dst, int value = 1); 691 692 void incrementw(Address dst, int value = 1); 693 void incrementw(Register reg, int value = 1); 694 695 void increment(Register reg, int value = 1); 696 void increment(Address dst, int value = 1); 697 698 699 // Alignment 700 void align(int modulus); 701 702 // Stack frame creation/removal 703 void enter() 704 { 705 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 706 mov(rfp, sp); 707 } 708 void leave() 709 { 710 mov(sp, rfp); 711 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 712 } 713 714 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) 715 // The pointer will be loaded into the thread register. 716 void get_thread(Register thread); 717 718 719 // Support for VM calls 720 // 721 // It is imperative that all calls into the VM are handled via the call_VM macros. 722 // They make sure that the stack linkage is setup correctly. call_VM's correspond 723 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. 724 725 726 void call_VM(Register oop_result, 727 address entry_point, 728 bool check_exceptions = true); 729 void call_VM(Register oop_result, 730 address entry_point, 731 Register arg_1, 732 bool check_exceptions = true); 733 void call_VM(Register oop_result, 734 address entry_point, 735 Register arg_1, Register arg_2, 736 bool check_exceptions = true); 737 void call_VM(Register oop_result, 738 address entry_point, 739 Register arg_1, Register arg_2, Register arg_3, 740 bool check_exceptions = true); 741 742 // Overloadings with last_Java_sp 743 void call_VM(Register oop_result, 744 Register last_java_sp, 745 address entry_point, 746 int number_of_arguments = 0, 747 bool check_exceptions = true); 748 void call_VM(Register oop_result, 749 Register last_java_sp, 750 address entry_point, 751 Register arg_1, bool 752 check_exceptions = true); 753 void call_VM(Register oop_result, 754 Register last_java_sp, 755 address entry_point, 756 Register arg_1, Register arg_2, 757 bool check_exceptions = true); 758 void call_VM(Register oop_result, 759 Register last_java_sp, 760 address entry_point, 761 Register arg_1, Register arg_2, Register arg_3, 762 bool check_exceptions = true); 763 764 void get_vm_result (Register oop_result, Register thread); 765 void get_vm_result_2(Register metadata_result, Register thread); 766 767 // These always tightly bind to MacroAssembler::call_VM_base 768 // bypassing the virtual implementation 769 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); 770 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); 771 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 772 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); 773 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); 774 775 void call_VM_leaf(address entry_point, 776 int number_of_arguments = 0); 777 void call_VM_leaf(address entry_point, 778 Register arg_1); 779 void call_VM_leaf(address entry_point, 780 Register arg_1, Register arg_2); 781 void call_VM_leaf(address entry_point, 782 Register arg_1, Register arg_2, Register arg_3); 783 784 // These always tightly bind to MacroAssembler::call_VM_leaf_base 785 // bypassing the virtual implementation 786 void super_call_VM_leaf(address entry_point); 787 void super_call_VM_leaf(address entry_point, Register arg_1); 788 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 789 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 790 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); 791 792 // last Java Frame (fills frame anchor) 793 void set_last_Java_frame(Register last_java_sp, 794 Register last_java_fp, 795 address last_java_pc, 796 Register scratch); 797 798 void set_last_Java_frame(Register last_java_sp, 799 Register last_java_fp, 800 Label &last_java_pc, 801 Register scratch); 802 803 void set_last_Java_frame(Register last_java_sp, 804 Register last_java_fp, 805 Register last_java_pc, 806 Register scratch); 807 808 void reset_last_Java_frame(Register thread); 809 810 // thread in the default location (rthread) 811 void reset_last_Java_frame(bool clear_fp); 812 813 // Stores 814 void store_check(Register obj); // store check for obj - register is destroyed afterwards 815 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) 816 817 void resolve_jobject(Register value, Register thread, Register tmp); 818 819 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 820 void c2bool(Register x); 821 822 void load_method_holder_cld(Register rresult, Register rmethod); 823 void load_method_holder(Register holder, Register method); 824 825 // oop manipulations 826 void load_klass(Register dst, Register src); 827 void store_klass(Register dst, Register src); 828 void cmp_klass(Register oop, Register trial_klass, Register tmp); 829 830 void resolve_weak_handle(Register result, Register tmp); 831 void resolve_oop_handle(Register result, Register tmp = r5); 832 void load_mirror(Register dst, Register method, Register tmp = r5); 833 834 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 835 Register tmp1, Register tmp_thread); 836 837 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src, 838 Register tmp1, Register tmp_thread); 839 840 void load_heap_oop(Register dst, Address src, Register tmp1 = noreg, 841 Register thread_tmp = noreg, DecoratorSet decorators = 0); 842 843 void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg, 844 Register thread_tmp = noreg, DecoratorSet decorators = 0); 845 void store_heap_oop(Address dst, Register src, Register tmp1 = noreg, 846 Register tmp_thread = noreg, DecoratorSet decorators = 0); 847 848 // currently unimplemented 849 // Used for storing NULL. All other oop constants should be 850 // stored using routines that take a jobject. 851 void store_heap_oop_null(Address dst); 852 853 void load_prototype_header(Register dst, Register src); 854 855 void store_klass_gap(Register dst, Register src); 856 857 // This dummy is to prevent a call to store_heap_oop from 858 // converting a zero (like NULL) into a Register by giving 859 // the compiler two choices it can't resolve 860 861 void store_heap_oop(Address dst, void* dummy); 862 863 void encode_heap_oop(Register d, Register s); 864 void encode_heap_oop(Register r) { encode_heap_oop(r, r); } 865 void decode_heap_oop(Register d, Register s); 866 void decode_heap_oop(Register r) { decode_heap_oop(r, r); } 867 void encode_heap_oop_not_null(Register r); 868 void decode_heap_oop_not_null(Register r); 869 void encode_heap_oop_not_null(Register dst, Register src); 870 void decode_heap_oop_not_null(Register dst, Register src); 871 872 void set_narrow_oop(Register dst, jobject obj); 873 874 void encode_klass_not_null(Register r); 875 void decode_klass_not_null(Register r); 876 void encode_klass_not_null(Register dst, Register src); 877 void decode_klass_not_null(Register dst, Register src); 878 879 void set_narrow_klass(Register dst, Klass* k); 880 881 // if heap base register is used - reinit it with the correct value 882 void reinit_heapbase(); 883 884 DEBUG_ONLY(void verify_heapbase(const char* msg);) 885 886 void push_CPU_state(bool save_vectors = false, bool use_sve = false, 887 int sve_vector_size_in_bytes = 0); 888 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false, 889 int sve_vector_size_in_bytes = 0); 890 891 // Round up to a power of two 892 void round_to(Register reg, int modulus); 893 894 // allocation 895 void eden_allocate( 896 Register obj, // result: pointer to object after successful allocation 897 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 898 int con_size_in_bytes, // object size in bytes if known at compile time 899 Register t1, // temp register 900 Label& slow_case // continuation point if fast allocation fails 901 ); 902 void tlab_allocate( 903 Register obj, // result: pointer to object after successful allocation 904 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 905 int con_size_in_bytes, // object size in bytes if known at compile time 906 Register t1, // temp register 907 Register t2, // temp register 908 Label& slow_case // continuation point if fast allocation fails 909 ); 910 void verify_tlab(); 911 912 // interface method calling 913 void lookup_interface_method(Register recv_klass, 914 Register intf_klass, 915 RegisterOrConstant itable_index, 916 Register method_result, 917 Register scan_temp, 918 Label& no_such_interface, 919 bool return_method = true); 920 921 // virtual method calling 922 // n.b. x86 allows RegisterOrConstant for vtable_index 923 void lookup_virtual_method(Register recv_klass, 924 RegisterOrConstant vtable_index, 925 Register method_result); 926 927 // Test sub_klass against super_klass, with fast and slow paths. 928 929 // The fast path produces a tri-state answer: yes / no / maybe-slow. 930 // One of the three labels can be NULL, meaning take the fall-through. 931 // If super_check_offset is -1, the value is loaded up from super_klass. 932 // No registers are killed, except temp_reg. 933 void check_klass_subtype_fast_path(Register sub_klass, 934 Register super_klass, 935 Register temp_reg, 936 Label* L_success, 937 Label* L_failure, 938 Label* L_slow_path, 939 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 940 941 // The rest of the type check; must be wired to a corresponding fast path. 942 // It does not repeat the fast path logic, so don't use it standalone. 943 // The temp_reg and temp2_reg can be noreg, if no temps are available. 944 // Updates the sub's secondary super cache as necessary. 945 // If set_cond_codes, condition codes will be Z on success, NZ on failure. 946 void check_klass_subtype_slow_path(Register sub_klass, 947 Register super_klass, 948 Register temp_reg, 949 Register temp2_reg, 950 Label* L_success, 951 Label* L_failure, 952 bool set_cond_codes = false); 953 954 // Simplified, combined version, good for typical uses. 955 // Falls through on failure. 956 void check_klass_subtype(Register sub_klass, 957 Register super_klass, 958 Register temp_reg, 959 Label& L_success); 960 961 void clinit_barrier(Register klass, 962 Register thread, 963 Label* L_fast_path = NULL, 964 Label* L_slow_path = NULL); 965 966 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); 967 968 void verify_sve_vector_length(); 969 void reinitialize_ptrue() { 970 if (UseSVE > 0) { 971 sve_ptrue(ptrue, B); 972 } 973 } 974 void verify_ptrue(); 975 976 // Debugging 977 978 // only if +VerifyOops 979 void verify_oop(Register reg, const char* s = "broken oop"); 980 void verify_oop_addr(Address addr, const char * s = "broken oop addr"); 981 982 // TODO: verify method and klass metadata (compare against vptr?) 983 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 984 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} 985 986 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 987 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 988 989 // only if +VerifyFPU 990 void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); 991 992 // prints msg, dumps registers and stops execution 993 void stop(const char* msg); 994 995 static void debug64(char* msg, int64_t pc, int64_t regs[]); 996 997 void untested() { stop("untested"); } 998 999 void unimplemented(const char* what = ""); 1000 1001 void should_not_reach_here() { stop("should not reach here"); } 1002 1003 // Stack overflow checking 1004 void bang_stack_with_offset(int offset) { 1005 // stack grows down, caller passes positive offset 1006 assert(offset > 0, "must bang with negative offset"); 1007 sub(rscratch2, sp, offset); 1008 str(zr, Address(rscratch2)); 1009 } 1010 1011 // Writes to stack successive pages until offset reached to check for 1012 // stack overflow + shadow pages. Also, clobbers tmp 1013 void bang_stack_size(Register size, Register tmp); 1014 1015 // Check for reserved stack access in method being exited (for JIT) 1016 void reserved_stack_check(); 1017 1018 // Arithmetics 1019 1020 void addptr(const Address &dst, int32_t src); 1021 void cmpptr(Register src1, Address src2); 1022 1023 void cmpoop(Register obj1, Register obj2); 1024 1025 // Various forms of CAS 1026 1027 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 1028 Label &suceed, Label *fail); 1029 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 1030 Label &suceed, Label *fail); 1031 1032 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 1033 Label &suceed, Label *fail); 1034 1035 void atomic_add(Register prev, RegisterOrConstant incr, Register addr); 1036 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr); 1037 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr); 1038 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr); 1039 1040 void atomic_xchg(Register prev, Register newv, Register addr); 1041 void atomic_xchgw(Register prev, Register newv, Register addr); 1042 void atomic_xchgl(Register prev, Register newv, Register addr); 1043 void atomic_xchglw(Register prev, Register newv, Register addr); 1044 void atomic_xchgal(Register prev, Register newv, Register addr); 1045 void atomic_xchgalw(Register prev, Register newv, Register addr); 1046 1047 void orptr(Address adr, RegisterOrConstant src) { 1048 ldr(rscratch1, adr); 1049 if (src.is_register()) 1050 orr(rscratch1, rscratch1, src.as_register()); 1051 else 1052 orr(rscratch1, rscratch1, src.as_constant()); 1053 str(rscratch1, adr); 1054 } 1055 1056 // A generic CAS; success or failure is in the EQ flag. 1057 // Clobbers rscratch1 1058 void cmpxchg(Register addr, Register expected, Register new_val, 1059 enum operand_size size, 1060 bool acquire, bool release, bool weak, 1061 Register result); 1062 1063 private: 1064 void compare_eq(Register rn, Register rm, enum operand_size size); 1065 1066 #ifdef ASSERT 1067 // Template short-hand support to clean-up after a failed call to trampoline 1068 // call generation (see trampoline_call() below), when a set of Labels must 1069 // be reset (before returning). 1070 template<typename Label, typename... More> 1071 void reset_labels(Label &lbl, More&... more) { 1072 lbl.reset(); reset_labels(more...); 1073 } 1074 template<typename Label> 1075 void reset_labels(Label &lbl) { 1076 lbl.reset(); 1077 } 1078 #endif 1079 1080 public: 1081 // Calls 1082 1083 address trampoline_call(Address entry, CodeBuffer* cbuf = NULL); 1084 1085 static bool far_branches() { 1086 return ReservedCodeCacheSize > branch_range; 1087 } 1088 1089 // Check if branches to the the non nmethod section require a far jump 1090 static bool codestub_branch_needs_far_jump() { 1091 return CodeCache::max_distance_to_non_nmethod() > branch_range; 1092 } 1093 1094 // Jumps that can reach anywhere in the code cache. 1095 // Trashes tmp. 1096 void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1); 1097 int far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1); 1098 1099 static int far_codestub_branch_size() { 1100 if (codestub_branch_needs_far_jump()) { 1101 return 3 * 4; // adrp, add, br 1102 } else { 1103 return 4; 1104 } 1105 } 1106 1107 // Emit the CompiledIC call idiom 1108 address ic_call(address entry, jint method_index = 0); 1109 1110 public: 1111 1112 // Data 1113 1114 void mov_metadata(Register dst, Metadata* obj); 1115 Address allocate_metadata_address(Metadata* obj); 1116 Address constant_oop_address(jobject obj); 1117 1118 void movoop(Register dst, jobject obj, bool immediate = false); 1119 1120 // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic. 1121 void kernel_crc32(Register crc, Register buf, Register len, 1122 Register table0, Register table1, Register table2, Register table3, 1123 Register tmp, Register tmp2, Register tmp3); 1124 // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic. 1125 void kernel_crc32c(Register crc, Register buf, Register len, 1126 Register table0, Register table1, Register table2, Register table3, 1127 Register tmp, Register tmp2, Register tmp3); 1128 1129 // Stack push and pop individual 64 bit registers 1130 void push(Register src); 1131 void pop(Register dst); 1132 1133 void repne_scan(Register addr, Register value, Register count, 1134 Register scratch); 1135 void repne_scanw(Register addr, Register value, Register count, 1136 Register scratch); 1137 1138 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm); 1139 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift); 1140 1141 // If a constant does not fit in an immediate field, generate some 1142 // number of MOV instructions and then perform the operation 1143 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 1144 add_sub_imm_insn insn1, 1145 add_sub_reg_insn insn2, bool is32); 1146 // Seperate vsn which sets the flags 1147 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 1148 add_sub_imm_insn insn1, 1149 add_sub_reg_insn insn2, bool is32); 1150 1151 #define WRAP(INSN, is32) \ 1152 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1153 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1154 } \ 1155 \ 1156 void INSN(Register Rd, Register Rn, Register Rm, \ 1157 enum shift_kind kind, unsigned shift = 0) { \ 1158 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1159 } \ 1160 \ 1161 void INSN(Register Rd, Register Rn, Register Rm) { \ 1162 Assembler::INSN(Rd, Rn, Rm); \ 1163 } \ 1164 \ 1165 void INSN(Register Rd, Register Rn, Register Rm, \ 1166 ext::operation option, int amount = 0) { \ 1167 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1168 } 1169 1170 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true) 1171 1172 #undef WRAP 1173 #define WRAP(INSN, is32) \ 1174 void INSN(Register Rd, Register Rn, uint64_t imm) { \ 1175 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \ 1176 } \ 1177 \ 1178 void INSN(Register Rd, Register Rn, Register Rm, \ 1179 enum shift_kind kind, unsigned shift = 0) { \ 1180 Assembler::INSN(Rd, Rn, Rm, kind, shift); \ 1181 } \ 1182 \ 1183 void INSN(Register Rd, Register Rn, Register Rm) { \ 1184 Assembler::INSN(Rd, Rn, Rm); \ 1185 } \ 1186 \ 1187 void INSN(Register Rd, Register Rn, Register Rm, \ 1188 ext::operation option, int amount = 0) { \ 1189 Assembler::INSN(Rd, Rn, Rm, option, amount); \ 1190 } 1191 1192 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true) 1193 1194 void add(Register Rd, Register Rn, RegisterOrConstant increment); 1195 void addw(Register Rd, Register Rn, RegisterOrConstant increment); 1196 void sub(Register Rd, Register Rn, RegisterOrConstant decrement); 1197 void subw(Register Rd, Register Rn, RegisterOrConstant decrement); 1198 1199 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset); 1200 1201 void tableswitch(Register index, jint lowbound, jint highbound, 1202 Label &jumptable, Label &jumptable_end, int stride = 1) { 1203 adr(rscratch1, jumptable); 1204 subsw(rscratch2, index, lowbound); 1205 subsw(zr, rscratch2, highbound - lowbound); 1206 br(Assembler::HS, jumptable_end); 1207 add(rscratch1, rscratch1, rscratch2, 1208 ext::sxtw, exact_log2(stride * Assembler::instruction_size)); 1209 br(rscratch1); 1210 } 1211 1212 // Form an address from base + offset in Rd. Rd may or may not 1213 // actually be used: you must use the Address that is returned. It 1214 // is up to you to ensure that the shift provided matches the size 1215 // of your data. 1216 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift); 1217 1218 // Return true iff an address is within the 48-bit AArch64 address 1219 // space. 1220 bool is_valid_AArch64_address(address a) { 1221 return ((uint64_t)a >> 48) == 0; 1222 } 1223 1224 // Load the base of the cardtable byte map into reg. 1225 void load_byte_map_base(Register reg); 1226 1227 // Prolog generator routines to support switch between x86 code and 1228 // generated ARM code 1229 1230 // routine to generate an x86 prolog for a stub function which 1231 // bootstraps into the generated ARM code which directly follows the 1232 // stub 1233 // 1234 1235 public: 1236 1237 void ldr_constant(Register dest, const Address &const_addr) { 1238 if (NearCpool) { 1239 ldr(dest, const_addr); 1240 } else { 1241 uint64_t offset; 1242 adrp(dest, InternalAddress(const_addr.target()), offset); 1243 ldr(dest, Address(dest, offset)); 1244 } 1245 } 1246 1247 address read_polling_page(Register r, relocInfo::relocType rtype); 1248 void get_polling_page(Register dest, relocInfo::relocType rtype); 1249 1250 // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic. 1251 void update_byte_crc32(Register crc, Register val, Register table); 1252 void update_word_crc32(Register crc, Register v, Register tmp, 1253 Register table0, Register table1, Register table2, Register table3, 1254 bool upper = false); 1255 1256 address has_negatives(Register ary1, Register len, Register result); 1257 1258 address arrays_equals(Register a1, Register a2, Register result, Register cnt1, 1259 Register tmp1, Register tmp2, Register tmp3, int elem_size); 1260 1261 void string_equals(Register a1, Register a2, Register result, Register cnt1, 1262 int elem_size); 1263 1264 void fill_words(Register base, Register cnt, Register value); 1265 address zero_words(Register base, uint64_t cnt); 1266 address zero_words(Register ptr, Register cnt); 1267 void zero_dcache_blocks(Register base, Register cnt); 1268 1269 static const int zero_words_block_size; 1270 1271 address byte_array_inflate(Register src, Register dst, Register len, 1272 FloatRegister vtmp1, FloatRegister vtmp2, 1273 FloatRegister vtmp3, Register tmp4); 1274 1275 void char_array_compress(Register src, Register dst, Register len, 1276 Register res, 1277 FloatRegister vtmp0, FloatRegister vtmp1, 1278 FloatRegister vtmp2, FloatRegister vtmp3, 1279 FloatRegister vtmp4, FloatRegister vtmp5); 1280 1281 void encode_iso_array(Register src, Register dst, 1282 Register len, Register res, bool ascii, 1283 FloatRegister vtmp0, FloatRegister vtmp1, 1284 FloatRegister vtmp2, FloatRegister vtmp3, 1285 FloatRegister vtmp4, FloatRegister vtmp5); 1286 1287 void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2, 1288 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5, 1289 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3, 1290 FloatRegister tmpC4, Register tmp1, Register tmp2, 1291 Register tmp3, Register tmp4, Register tmp5); 1292 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi, 1293 address pio2, address dsin_coef, address dcos_coef); 1294 private: 1295 // begin trigonometric functions support block 1296 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2); 1297 void generate__kernel_rem_pio2(address two_over_pi, address pio2); 1298 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef); 1299 void generate_kernel_cos(FloatRegister x, address dcos_coef); 1300 // end trigonometric functions support block 1301 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 1302 Register src1, Register src2); 1303 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 1304 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2); 1305 } 1306 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 1307 Register y, Register y_idx, Register z, 1308 Register carry, Register product, 1309 Register idx, Register kdx); 1310 void multiply_128_x_128_loop(Register y, Register z, 1311 Register carry, Register carry2, 1312 Register idx, Register jdx, 1313 Register yz_idx1, Register yz_idx2, 1314 Register tmp, Register tmp3, Register tmp4, 1315 Register tmp7, Register product_hi); 1316 void kernel_crc32_using_crc32(Register crc, Register buf, 1317 Register len, Register tmp0, Register tmp1, Register tmp2, 1318 Register tmp3); 1319 void kernel_crc32c_using_crc32c(Register crc, Register buf, 1320 Register len, Register tmp0, Register tmp1, Register tmp2, 1321 Register tmp3); 1322 public: 1323 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, 1324 Register zlen, Register tmp1, Register tmp2, Register tmp3, 1325 Register tmp4, Register tmp5, Register tmp6, Register tmp7); 1326 void mul_add(Register out, Register in, Register offs, Register len, Register k); 1327 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi, 1328 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0, 1329 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3); 1330 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi, 1331 FloatRegister p, FloatRegister z, FloatRegister t1); 1332 void ghash_processBlocks_wide(address p, Register state, Register subkeyH, 1333 Register data, Register blocks, int unrolls); 1334 void ghash_modmul (FloatRegister result, 1335 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b, 1336 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p, 1337 FloatRegister t1, FloatRegister t2, FloatRegister t3); 1338 1339 void aesenc_loadkeys(Register key, Register keylen); 1340 void aesecb_encrypt(Register from, Register to, Register keylen, 1341 FloatRegister data = v0, int unrolls = 1); 1342 void aesecb_decrypt(Register from, Register to, Register key, Register keylen); 1343 void aes_round(FloatRegister input, FloatRegister subkey); 1344 1345 // Place an ISB after code may have been modified due to a safepoint. 1346 void safepoint_isb(); 1347 1348 private: 1349 // Return the effective address r + (r1 << ext) + offset. 1350 // Uses rscratch2. 1351 Address offsetted_address(Register r, Register r1, Address::extend ext, 1352 int offset, int size); 1353 1354 private: 1355 // Returns an address on the stack which is reachable with a ldr/str of size 1356 // Uses rscratch2 if the address is not directly reachable 1357 Address spill_address(int size, int offset, Register tmp=rscratch2); 1358 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2); 1359 1360 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const; 1361 1362 // Check whether two loads/stores can be merged into ldp/stp. 1363 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const; 1364 1365 // Merge current load/store with previous load/store into ldp/stp. 1366 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1367 1368 // Try to merge two loads/stores into ldp/stp. If success, returns true else false. 1369 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store); 1370 1371 public: 1372 void spill(Register Rx, bool is64, int offset) { 1373 if (is64) { 1374 str(Rx, spill_address(8, offset)); 1375 } else { 1376 strw(Rx, spill_address(4, offset)); 1377 } 1378 } 1379 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1380 str(Vx, T, spill_address(1 << (int)T, offset)); 1381 } 1382 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1383 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1384 } 1385 void unspill(Register Rx, bool is64, int offset) { 1386 if (is64) { 1387 ldr(Rx, spill_address(8, offset)); 1388 } else { 1389 ldrw(Rx, spill_address(4, offset)); 1390 } 1391 } 1392 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) { 1393 ldr(Vx, T, spill_address(1 << (int)T, offset)); 1394 } 1395 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) { 1396 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset)); 1397 } 1398 void spill_copy128(int src_offset, int dst_offset, 1399 Register tmp1=rscratch1, Register tmp2=rscratch2) { 1400 if (src_offset < 512 && (src_offset & 7) == 0 && 1401 dst_offset < 512 && (dst_offset & 7) == 0) { 1402 ldp(tmp1, tmp2, Address(sp, src_offset)); 1403 stp(tmp1, tmp2, Address(sp, dst_offset)); 1404 } else { 1405 unspill(tmp1, true, src_offset); 1406 spill(tmp1, true, dst_offset); 1407 unspill(tmp1, true, src_offset+8); 1408 spill(tmp1, true, dst_offset+8); 1409 } 1410 } 1411 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset, 1412 int sve_vec_reg_size_in_bytes) { 1413 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size"); 1414 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) { 1415 spill_copy128(src_offset, dst_offset); 1416 src_offset += 16; 1417 dst_offset += 16; 1418 } 1419 } 1420 void cache_wb(Address line); 1421 void cache_wbsync(bool is_pre); 1422 1423 // Code for java.lang.Thread::onSpinWait() intrinsic. 1424 void spin_wait(); 1425 1426 private: 1427 // Check the current thread doesn't need a cross modify fence. 1428 void verify_cross_modify_fence_not_required() PRODUCT_RETURN; 1429 1430 }; 1431 1432 #ifdef ASSERT 1433 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } 1434 #endif 1435 1436 /** 1437 * class SkipIfEqual: 1438 * 1439 * Instantiating this class will result in assembly code being output that will 1440 * jump around any code emitted between the creation of the instance and it's 1441 * automatic destruction at the end of a scope block, depending on the value of 1442 * the flag passed to the constructor, which will be checked at run-time. 1443 */ 1444 class SkipIfEqual { 1445 private: 1446 MacroAssembler* _masm; 1447 Label _label; 1448 1449 public: 1450 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); 1451 ~SkipIfEqual(); 1452 }; 1453 1454 struct tableswitch { 1455 Register _reg; 1456 int _insn_index; jint _first_key; jint _last_key; 1457 Label _after; 1458 Label _branches; 1459 }; 1460 1461 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP