1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "oops/compressedOops.hpp"
  31 #include "runtime/vm_version.hpp"
  32 #include "utilities/powerOfTwo.hpp"
  33 
  34 // MacroAssembler extends Assembler by frequently used macros.
  35 //
  36 // Instructions for which a 'better' code sequence exists depending
  37 // on arguments should also go in here.
  38 
  39 class MacroAssembler: public Assembler {
  40   friend class LIR_Assembler;
  41 
  42  public:
  43   using Assembler::mov;
  44   using Assembler::movi;
  45 
  46  protected:
  47 
  48   // Support for VM calls
  49   //
  50   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  51   // may customize this version by overriding it for its purposes (e.g., to save/restore
  52   // additional registers when doing a VM call).
  53   virtual void call_VM_leaf_base(
  54     address entry_point,               // the entry point
  55     int     number_of_arguments,        // the number of arguments to pop after the call
  56     Label *retaddr = NULL
  57   );
  58 
  59   virtual void call_VM_leaf_base(
  60     address entry_point,               // the entry point
  61     int     number_of_arguments,        // the number of arguments to pop after the call
  62     Label &retaddr) {
  63     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  64   }
  65 
  66   // This is the base routine called by the different versions of call_VM. The interpreter
  67   // may customize this version by overriding it for its purposes (e.g., to save/restore
  68   // additional registers when doing a VM call).
  69   //
  70   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  71   // returns the register which contains the thread upon return. If a thread register has been
  72   // specified, the return value will correspond to that register. If no last_java_sp is specified
  73   // (noreg) than rsp will be used instead.
  74   virtual void call_VM_base(           // returns the register containing the thread upon return
  75     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  76     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  77     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  78     address  entry_point,              // the entry point
  79     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  80     bool     check_exceptions          // whether to check for pending exceptions after return
  81   );
  82 
  83   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  84 
  85   enum KlassDecodeMode {
  86     KlassDecodeNone,
  87     KlassDecodeZero,
  88     KlassDecodeXor,
  89     KlassDecodeMovk
  90   };
  91 
  92   KlassDecodeMode klass_decode_mode();
  93 
  94  private:
  95   static KlassDecodeMode _klass_decode_mode;
  96 
  97  public:
  98   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  99 
 100  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 101  // The implementation is only non-empty for the InterpreterMacroAssembler,
 102  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 103  virtual void check_and_handle_popframe(Register java_thread);
 104  virtual void check_and_handle_earlyret(Register java_thread);
 105 
 106   void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod);
 107 
 108   // Biased locking support
 109   // lock_reg and obj_reg must be loaded up with the appropriate values.
 110   // swap_reg is killed.
 111   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 112   // Optional slow case is for implementations (interpreter and C1) which branch to
 113   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 114   void biased_locking_enter(Register lock_reg, Register obj_reg,
 115                             Register swap_reg, Register tmp_reg,
 116                             bool swap_reg_contains_mark,
 117                             Label& done, Label* slow_case = NULL,
 118                             BiasedLockingCounters* counters = NULL);
 119   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 120 
 121 
 122   // Helper functions for statistics gathering.
 123   // Unconditional atomic increment.
 124   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 125   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 126     lea(tmp1, counter_addr);
 127     atomic_incw(tmp1, tmp2, tmp3);
 128   }
 129   // Load Effective Address
 130   void lea(Register r, const Address &a) {
 131     InstructionMark im(this);
 132     code_section()->relocate(inst_mark(), a.rspec());
 133     a.lea(this, r);
 134   }
 135 
 136   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 137      accesses, and these can exceed the offset range. */
 138   Address legitimize_address(const Address &a, int size, Register scratch) {
 139     if (a.getMode() == Address::base_plus_offset) {
 140       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 141         block_comment("legitimize_address {");
 142         lea(scratch, a);
 143         block_comment("} legitimize_address");
 144         return Address(scratch);
 145       }
 146     }
 147     return a;
 148   }
 149 
 150   void addmw(Address a, Register incr, Register scratch) {
 151     ldrw(scratch, a);
 152     addw(scratch, scratch, incr);
 153     strw(scratch, a);
 154   }
 155 
 156   // Add constant to memory word
 157   void addmw(Address a, int imm, Register scratch) {
 158     ldrw(scratch, a);
 159     if (imm > 0)
 160       addw(scratch, scratch, (unsigned)imm);
 161     else
 162       subw(scratch, scratch, (unsigned)-imm);
 163     strw(scratch, a);
 164   }
 165 
 166   void bind(Label& L) {
 167     Assembler::bind(L);
 168     code()->clear_last_insn();
 169   }
 170 
 171   void membar(Membar_mask_bits order_constraint);
 172 
 173   using Assembler::ldr;
 174   using Assembler::str;
 175   using Assembler::ldrw;
 176   using Assembler::strw;
 177 
 178   void ldr(Register Rx, const Address &adr);
 179   void ldrw(Register Rw, const Address &adr);
 180   void str(Register Rx, const Address &adr);
 181   void strw(Register Rx, const Address &adr);
 182 
 183   // Frame creation and destruction shared between JITs.
 184   void build_frame(int framesize);
 185   void remove_frame(int framesize);
 186 
 187   virtual void _call_Unimplemented(address call_site) {
 188     mov(rscratch2, call_site);
 189   }
 190 
 191 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 192 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 193 // https://reviews.llvm.org/D3311
 194 
 195 #ifdef _WIN64
 196 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 197 #else
 198 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 199 #endif
 200 
 201   // aliases defined in AARCH64 spec
 202 
 203   template<class T>
 204   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 205 
 206   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 207   inline void cmp(Register Rd, unsigned imm) = delete;
 208 
 209   template<class T>
 210   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 211 
 212   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 213   inline void cmn(Register Rd, unsigned imm) = delete;
 214 
 215   void cset(Register Rd, Assembler::Condition cond) {
 216     csinc(Rd, zr, zr, ~cond);
 217   }
 218   void csetw(Register Rd, Assembler::Condition cond) {
 219     csincw(Rd, zr, zr, ~cond);
 220   }
 221 
 222   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 223     csneg(Rd, Rn, Rn, ~cond);
 224   }
 225   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 226     csnegw(Rd, Rn, Rn, ~cond);
 227   }
 228 
 229   inline void movw(Register Rd, Register Rn) {
 230     if (Rd == sp || Rn == sp) {
 231       Assembler::addw(Rd, Rn, 0U);
 232     } else {
 233       orrw(Rd, zr, Rn);
 234     }
 235   }
 236   inline void mov(Register Rd, Register Rn) {
 237     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 238     if (Rd == Rn) {
 239     } else if (Rd == sp || Rn == sp) {
 240       Assembler::add(Rd, Rn, 0U);
 241     } else {
 242       orr(Rd, zr, Rn);
 243     }
 244   }
 245 
 246   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 247   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 248 
 249   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 250   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 251 
 252   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 253   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 254 
 255   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 256     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 257   }
 258   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 259     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 260   }
 261 
 262   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 263     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 264   }
 265   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 266     bfm(Rd, Rn, lsb , (lsb + width - 1));
 267   }
 268 
 269   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 270     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 271   }
 272   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 273     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 274   }
 275 
 276   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 277     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 278   }
 279   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 280     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 281   }
 282 
 283   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 284     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 285   }
 286   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 287     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 288   }
 289 
 290   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 291     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 292   }
 293   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 294     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 295   }
 296 
 297   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 298     sbfmw(Rd, Rn, imm, 31);
 299   }
 300 
 301   inline void asr(Register Rd, Register Rn, unsigned imm) {
 302     sbfm(Rd, Rn, imm, 63);
 303   }
 304 
 305   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 306     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 307   }
 308 
 309   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 310     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 311   }
 312 
 313   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 314     ubfmw(Rd, Rn, imm, 31);
 315   }
 316 
 317   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 318     ubfm(Rd, Rn, imm, 63);
 319   }
 320 
 321   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 322     extrw(Rd, Rn, Rn, imm);
 323   }
 324 
 325   inline void ror(Register Rd, Register Rn, unsigned imm) {
 326     extr(Rd, Rn, Rn, imm);
 327   }
 328 
 329   inline void sxtbw(Register Rd, Register Rn) {
 330     sbfmw(Rd, Rn, 0, 7);
 331   }
 332   inline void sxthw(Register Rd, Register Rn) {
 333     sbfmw(Rd, Rn, 0, 15);
 334   }
 335   inline void sxtb(Register Rd, Register Rn) {
 336     sbfm(Rd, Rn, 0, 7);
 337   }
 338   inline void sxth(Register Rd, Register Rn) {
 339     sbfm(Rd, Rn, 0, 15);
 340   }
 341   inline void sxtw(Register Rd, Register Rn) {
 342     sbfm(Rd, Rn, 0, 31);
 343   }
 344 
 345   inline void uxtbw(Register Rd, Register Rn) {
 346     ubfmw(Rd, Rn, 0, 7);
 347   }
 348   inline void uxthw(Register Rd, Register Rn) {
 349     ubfmw(Rd, Rn, 0, 15);
 350   }
 351   inline void uxtb(Register Rd, Register Rn) {
 352     ubfm(Rd, Rn, 0, 7);
 353   }
 354   inline void uxth(Register Rd, Register Rn) {
 355     ubfm(Rd, Rn, 0, 15);
 356   }
 357   inline void uxtw(Register Rd, Register Rn) {
 358     ubfm(Rd, Rn, 0, 31);
 359   }
 360 
 361   inline void cmnw(Register Rn, Register Rm) {
 362     addsw(zr, Rn, Rm);
 363   }
 364   inline void cmn(Register Rn, Register Rm) {
 365     adds(zr, Rn, Rm);
 366   }
 367 
 368   inline void cmpw(Register Rn, Register Rm) {
 369     subsw(zr, Rn, Rm);
 370   }
 371   inline void cmp(Register Rn, Register Rm) {
 372     subs(zr, Rn, Rm);
 373   }
 374 
 375   inline void negw(Register Rd, Register Rn) {
 376     subw(Rd, zr, Rn);
 377   }
 378 
 379   inline void neg(Register Rd, Register Rn) {
 380     sub(Rd, zr, Rn);
 381   }
 382 
 383   inline void negsw(Register Rd, Register Rn) {
 384     subsw(Rd, zr, Rn);
 385   }
 386 
 387   inline void negs(Register Rd, Register Rn) {
 388     subs(Rd, zr, Rn);
 389   }
 390 
 391   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 392     addsw(zr, Rn, Rm, kind, shift);
 393   }
 394   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 395     adds(zr, Rn, Rm, kind, shift);
 396   }
 397 
 398   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 399     subsw(zr, Rn, Rm, kind, shift);
 400   }
 401   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 402     subs(zr, Rn, Rm, kind, shift);
 403   }
 404 
 405   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 406     subw(Rd, zr, Rn, kind, shift);
 407   }
 408 
 409   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 410     sub(Rd, zr, Rn, kind, shift);
 411   }
 412 
 413   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 414     subsw(Rd, zr, Rn, kind, shift);
 415   }
 416 
 417   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 418     subs(Rd, zr, Rn, kind, shift);
 419   }
 420 
 421   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 422     msubw(Rd, Rn, Rm, zr);
 423   }
 424   inline void mneg(Register Rd, Register Rn, Register Rm) {
 425     msub(Rd, Rn, Rm, zr);
 426   }
 427 
 428   inline void mulw(Register Rd, Register Rn, Register Rm) {
 429     maddw(Rd, Rn, Rm, zr);
 430   }
 431   inline void mul(Register Rd, Register Rn, Register Rm) {
 432     madd(Rd, Rn, Rm, zr);
 433   }
 434 
 435   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 436     smsubl(Rd, Rn, Rm, zr);
 437   }
 438   inline void smull(Register Rd, Register Rn, Register Rm) {
 439     smaddl(Rd, Rn, Rm, zr);
 440   }
 441 
 442   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 443     umsubl(Rd, Rn, Rm, zr);
 444   }
 445   inline void umull(Register Rd, Register Rn, Register Rm) {
 446     umaddl(Rd, Rn, Rm, zr);
 447   }
 448 
 449 #define WRAP(INSN)                                                            \
 450   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 451     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 452       nop();                                                                  \
 453     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 454   }
 455 
 456   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 457   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 458 #undef WRAP
 459 
 460 
 461   // macro assembly operations needed for aarch64
 462 
 463   // first two private routines for loading 32 bit or 64 bit constants
 464 private:
 465 
 466   void mov_immediate64(Register dst, uint64_t imm64);
 467   void mov_immediate32(Register dst, uint32_t imm32);
 468 
 469   int push(unsigned int bitset, Register stack);
 470   int pop(unsigned int bitset, Register stack);
 471 
 472   int push_fp(unsigned int bitset, Register stack);
 473   int pop_fp(unsigned int bitset, Register stack);
 474 
 475   void mov(Register dst, Address a);
 476 
 477 public:
 478   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 479   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 480 
 481   void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); }
 482   void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); }
 483 
 484   static RegSet call_clobbered_registers();
 485 
 486   // Push and pop everything that might be clobbered by a native
 487   // runtime call except rscratch1 and rscratch2.  (They are always
 488   // scratch, so we don't have to protect them.)  Only save the lower
 489   // 64 bits of each vector register. Additonal registers can be excluded
 490   // in a passed RegSet.
 491   void push_call_clobbered_registers_except(RegSet exclude);
 492   void pop_call_clobbered_registers_except(RegSet exclude);
 493 
 494   void push_call_clobbered_registers() {
 495     push_call_clobbered_registers_except(RegSet());
 496   }
 497   void pop_call_clobbered_registers() {
 498     pop_call_clobbered_registers_except(RegSet());
 499   }
 500 
 501 
 502   // now mov instructions for loading absolute addresses and 32 or
 503   // 64 bit integers
 504 
 505   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 506 
 507   inline void mov(Register dst, int imm64)                { mov_immediate64(dst, (uint64_t)imm64); }
 508   inline void mov(Register dst, long imm64)               { mov_immediate64(dst, (uint64_t)imm64); }
 509   inline void mov(Register dst, long long imm64)          { mov_immediate64(dst, (uint64_t)imm64); }
 510   inline void mov(Register dst, unsigned int imm64)       { mov_immediate64(dst, (uint64_t)imm64); }
 511   inline void mov(Register dst, unsigned long imm64)      { mov_immediate64(dst, (uint64_t)imm64); }
 512   inline void mov(Register dst, unsigned long long imm64) { mov_immediate64(dst, (uint64_t)imm64); }
 513 
 514   inline void movw(Register dst, uint32_t imm32)
 515   {
 516     mov_immediate32(dst, imm32);
 517   }
 518 
 519   void mov(Register dst, RegisterOrConstant src) {
 520     if (src.is_register())
 521       mov(dst, src.as_register());
 522     else
 523       mov(dst, src.as_constant());
 524   }
 525 
 526   void movptr(Register r, uintptr_t imm64);
 527 
 528   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 529 
 530   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 531     orr(Vd, T, Vn, Vn);
 532   }
 533 
 534 
 535 public:
 536 
 537   // Generalized Test Bit And Branch, including a "far" variety which
 538   // spans more than 32KiB.
 539   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 540     assert(cond == EQ || cond == NE, "must be");
 541 
 542     if (isfar)
 543       cond = ~cond;
 544 
 545     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 546     if (cond == Assembler::EQ)
 547       branch = &Assembler::tbz;
 548     else
 549       branch = &Assembler::tbnz;
 550 
 551     if (isfar) {
 552       Label L;
 553       (this->*branch)(Rt, bitpos, L);
 554       b(dest);
 555       bind(L);
 556     } else {
 557       (this->*branch)(Rt, bitpos, dest);
 558     }
 559   }
 560 
 561   // macro instructions for accessing and updating floating point
 562   // status register
 563   //
 564   // FPSR : op1 == 011
 565   //        CRn == 0100
 566   //        CRm == 0100
 567   //        op2 == 001
 568 
 569   inline void get_fpsr(Register reg)
 570   {
 571     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 572   }
 573 
 574   inline void set_fpsr(Register reg)
 575   {
 576     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 577   }
 578 
 579   inline void clear_fpsr()
 580   {
 581     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 582   }
 583 
 584   // DCZID_EL0: op1 == 011
 585   //            CRn == 0000
 586   //            CRm == 0000
 587   //            op2 == 111
 588   inline void get_dczid_el0(Register reg)
 589   {
 590     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 591   }
 592 
 593   // CTR_EL0:   op1 == 011
 594   //            CRn == 0000
 595   //            CRm == 0000
 596   //            op2 == 001
 597   inline void get_ctr_el0(Register reg)
 598   {
 599     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 600   }
 601 
 602   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 603   int corrected_idivl(Register result, Register ra, Register rb,
 604                       bool want_remainder, Register tmp = rscratch1);
 605   int corrected_idivq(Register result, Register ra, Register rb,
 606                       bool want_remainder, Register tmp = rscratch1);
 607 
 608   // Support for NULL-checks
 609   //
 610   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 611   // If the accessed location is M[reg + offset] and the offset is known, provide the
 612   // offset. No explicit code generation is needed if the offset is within a certain
 613   // range (0 <= offset <= page_size).
 614 
 615   virtual void null_check(Register reg, int offset = -1);
 616   static bool needs_explicit_null_check(intptr_t offset);
 617   static bool uses_implicit_null_check(void* address);
 618 
 619   static address target_addr_for_insn(address insn_addr, unsigned insn);
 620   static address target_addr_for_insn(address insn_addr) {
 621     unsigned insn = *(unsigned*)insn_addr;
 622     return target_addr_for_insn(insn_addr, insn);
 623   }
 624 
 625   // Required platform-specific helpers for Label::patch_instructions.
 626   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 627   static int pd_patch_instruction_size(address branch, address target);
 628   static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) {
 629     pd_patch_instruction_size(branch, target);
 630   }
 631   static address pd_call_destination(address branch) {
 632     return target_addr_for_insn(branch);
 633   }
 634 #ifndef PRODUCT
 635   static void pd_print_patched_instruction(address branch);
 636 #endif
 637 
 638   static int patch_oop(address insn_addr, address o);
 639   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 640 
 641   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 642   void emit_static_call_stub();
 643 
 644   // The following 4 methods return the offset of the appropriate move instruction
 645 
 646   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 647   int load_unsigned_byte(Register dst, Address src);
 648   int load_unsigned_short(Register dst, Address src);
 649 
 650   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 651   int load_signed_byte(Register dst, Address src);
 652   int load_signed_short(Register dst, Address src);
 653 
 654   int load_signed_byte32(Register dst, Address src);
 655   int load_signed_short32(Register dst, Address src);
 656 
 657   // Support for sign-extension (hi:lo = extend_sign(lo))
 658   void extend_sign(Register hi, Register lo);
 659 
 660   // Load and store values by size and signed-ness
 661   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 662   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 663 
 664   // Support for inc/dec with optimal instruction selection depending on value
 665 
 666   // x86_64 aliases an unqualified register/address increment and
 667   // decrement to call incrementq and decrementq but also supports
 668   // explicitly sized calls to incrementq/decrementq or
 669   // incrementl/decrementl
 670 
 671   // for aarch64 the proper convention would be to use
 672   // increment/decrement for 64 bit operatons and
 673   // incrementw/decrementw for 32 bit operations. so when porting
 674   // x86_64 code we can leave calls to increment/decrement as is,
 675   // replace incrementq/decrementq with increment/decrement and
 676   // replace incrementl/decrementl with incrementw/decrementw.
 677 
 678   // n.b. increment/decrement calls with an Address destination will
 679   // need to use a scratch register to load the value to be
 680   // incremented. increment/decrement calls which add or subtract a
 681   // constant value greater than 2^12 will need to use a 2nd scratch
 682   // register to hold the constant. so, a register increment/decrement
 683   // may trash rscratch2 and an address increment/decrement trash
 684   // rscratch and rscratch2
 685 
 686   void decrementw(Address dst, int value = 1);
 687   void decrementw(Register reg, int value = 1);
 688 
 689   void decrement(Register reg, int value = 1);
 690   void decrement(Address dst, int value = 1);
 691 
 692   void incrementw(Address dst, int value = 1);
 693   void incrementw(Register reg, int value = 1);
 694 
 695   void increment(Register reg, int value = 1);
 696   void increment(Address dst, int value = 1);
 697 
 698 
 699   // Alignment
 700   void align(int modulus);
 701 
 702   // Stack frame creation/removal
 703   void enter()
 704   {
 705     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 706     mov(rfp, sp);
 707   }
 708   void leave()
 709   {
 710     mov(sp, rfp);
 711     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 712   }
 713 
 714   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 715   // The pointer will be loaded into the thread register.
 716   void get_thread(Register thread);
 717 
 718 
 719   // Support for VM calls
 720   //
 721   // It is imperative that all calls into the VM are handled via the call_VM macros.
 722   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 723   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 724 
 725 
 726   void call_VM(Register oop_result,
 727                address entry_point,
 728                bool check_exceptions = true);
 729   void call_VM(Register oop_result,
 730                address entry_point,
 731                Register arg_1,
 732                bool check_exceptions = true);
 733   void call_VM(Register oop_result,
 734                address entry_point,
 735                Register arg_1, Register arg_2,
 736                bool check_exceptions = true);
 737   void call_VM(Register oop_result,
 738                address entry_point,
 739                Register arg_1, Register arg_2, Register arg_3,
 740                bool check_exceptions = true);
 741 
 742   // Overloadings with last_Java_sp
 743   void call_VM(Register oop_result,
 744                Register last_java_sp,
 745                address entry_point,
 746                int number_of_arguments = 0,
 747                bool check_exceptions = true);
 748   void call_VM(Register oop_result,
 749                Register last_java_sp,
 750                address entry_point,
 751                Register arg_1, bool
 752                check_exceptions = true);
 753   void call_VM(Register oop_result,
 754                Register last_java_sp,
 755                address entry_point,
 756                Register arg_1, Register arg_2,
 757                bool check_exceptions = true);
 758   void call_VM(Register oop_result,
 759                Register last_java_sp,
 760                address entry_point,
 761                Register arg_1, Register arg_2, Register arg_3,
 762                bool check_exceptions = true);
 763 
 764   void get_vm_result  (Register oop_result, Register thread);
 765   void get_vm_result_2(Register metadata_result, Register thread);
 766 
 767   // These always tightly bind to MacroAssembler::call_VM_base
 768   // bypassing the virtual implementation
 769   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 770   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 771   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 772   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 773   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 774 
 775   void call_VM_leaf(address entry_point,
 776                     int number_of_arguments = 0);
 777   void call_VM_leaf(address entry_point,
 778                     Register arg_1);
 779   void call_VM_leaf(address entry_point,
 780                     Register arg_1, Register arg_2);
 781   void call_VM_leaf(address entry_point,
 782                     Register arg_1, Register arg_2, Register arg_3);
 783 
 784   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 785   // bypassing the virtual implementation
 786   void super_call_VM_leaf(address entry_point);
 787   void super_call_VM_leaf(address entry_point, Register arg_1);
 788   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 789   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 790   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 791 
 792   // last Java Frame (fills frame anchor)
 793   void set_last_Java_frame(Register last_java_sp,
 794                            Register last_java_fp,
 795                            address last_java_pc,
 796                            Register scratch);
 797 
 798   void set_last_Java_frame(Register last_java_sp,
 799                            Register last_java_fp,
 800                            Label &last_java_pc,
 801                            Register scratch);
 802 
 803   void set_last_Java_frame(Register last_java_sp,
 804                            Register last_java_fp,
 805                            Register last_java_pc,
 806                            Register scratch);
 807 
 808   void reset_last_Java_frame(Register thread);
 809 
 810   // thread in the default location (rthread)
 811   void reset_last_Java_frame(bool clear_fp);
 812 
 813   // Stores
 814   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 815   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 816 
 817   void resolve_jobject(Register value, Register thread, Register tmp);
 818 
 819   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 820   void c2bool(Register x);
 821 
 822   void load_method_holder_cld(Register rresult, Register rmethod);
 823   void load_method_holder(Register holder, Register method);
 824 
 825   // oop manipulations
 826   void load_nklass(Register dst, Register src);
 827   void load_klass(Register dst, Register src, bool null_check = false);
 828   void store_klass(Register dst, Register src);
 829   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 830 
 831   void resolve_weak_handle(Register result, Register tmp);
 832   void resolve_oop_handle(Register result, Register tmp = r5);
 833   void load_mirror(Register dst, Register method, Register tmp = r5);
 834 
 835   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 836                       Register tmp1, Register tmp_thread);
 837 
 838   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 839                        Register tmp1, Register tmp_thread);
 840 
 841   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 842                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 843 
 844   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 845                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 846   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 847                       Register tmp_thread = noreg, DecoratorSet decorators = 0);
 848 
 849   // currently unimplemented
 850   // Used for storing NULL. All other oop constants should be
 851   // stored using routines that take a jobject.
 852   void store_heap_oop_null(Address dst);
 853 
 854   void store_klass_gap(Register dst, Register src);
 855 
 856   void load_prototype_header(Register dst, Register src);
 857 
 858   // This dummy is to prevent a call to store_heap_oop from
 859   // converting a zero (like NULL) into a Register by giving
 860   // the compiler two choices it can't resolve
 861 
 862   void store_heap_oop(Address dst, void* dummy);
 863 
 864   void encode_heap_oop(Register d, Register s);
 865   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 866   void decode_heap_oop(Register d, Register s);
 867   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 868   void encode_heap_oop_not_null(Register r);
 869   void decode_heap_oop_not_null(Register r);
 870   void encode_heap_oop_not_null(Register dst, Register src);
 871   void decode_heap_oop_not_null(Register dst, Register src);
 872 
 873   void set_narrow_oop(Register dst, jobject obj);
 874 
 875   void encode_klass_not_null(Register r);
 876   void decode_klass_not_null(Register r);
 877   void encode_klass_not_null(Register dst, Register src);
 878   void decode_klass_not_null(Register dst, Register src);
 879 
 880   void set_narrow_klass(Register dst, Klass* k);
 881 
 882   // if heap base register is used - reinit it with the correct value
 883   void reinit_heapbase();
 884 
 885   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 886 
 887   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 888                       int sve_vector_size_in_bytes = 0);
 889   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 890                       int sve_vector_size_in_bytes = 0);
 891 
 892   // Round up to a power of two
 893   void round_to(Register reg, int modulus);
 894 
 895   // allocation
 896   void eden_allocate(
 897     Register obj,                      // result: pointer to object after successful allocation
 898     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 899     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 900     Register t1,                       // temp register
 901     Label&   slow_case                 // continuation point if fast allocation fails
 902   );
 903   void tlab_allocate(
 904     Register obj,                      // result: pointer to object after successful allocation
 905     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 906     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 907     Register t1,                       // temp register
 908     Register t2,                       // temp register
 909     Label&   slow_case                 // continuation point if fast allocation fails
 910   );
 911   void verify_tlab();
 912 
 913   // interface method calling
 914   void lookup_interface_method(Register recv_klass,
 915                                Register intf_klass,
 916                                RegisterOrConstant itable_index,
 917                                Register method_result,
 918                                Register scan_temp,
 919                                Label& no_such_interface,
 920                    bool return_method = true);
 921 
 922   // virtual method calling
 923   // n.b. x86 allows RegisterOrConstant for vtable_index
 924   void lookup_virtual_method(Register recv_klass,
 925                              RegisterOrConstant vtable_index,
 926                              Register method_result);
 927 
 928   // Test sub_klass against super_klass, with fast and slow paths.
 929 
 930   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 931   // One of the three labels can be NULL, meaning take the fall-through.
 932   // If super_check_offset is -1, the value is loaded up from super_klass.
 933   // No registers are killed, except temp_reg.
 934   void check_klass_subtype_fast_path(Register sub_klass,
 935                                      Register super_klass,
 936                                      Register temp_reg,
 937                                      Label* L_success,
 938                                      Label* L_failure,
 939                                      Label* L_slow_path,
 940                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 941 
 942   // The rest of the type check; must be wired to a corresponding fast path.
 943   // It does not repeat the fast path logic, so don't use it standalone.
 944   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 945   // Updates the sub's secondary super cache as necessary.
 946   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 947   void check_klass_subtype_slow_path(Register sub_klass,
 948                                      Register super_klass,
 949                                      Register temp_reg,
 950                                      Register temp2_reg,
 951                                      Label* L_success,
 952                                      Label* L_failure,
 953                                      bool set_cond_codes = false);
 954 
 955   // Simplified, combined version, good for typical uses.
 956   // Falls through on failure.
 957   void check_klass_subtype(Register sub_klass,
 958                            Register super_klass,
 959                            Register temp_reg,
 960                            Label& L_success);
 961 
 962   void clinit_barrier(Register klass,
 963                       Register thread,
 964                       Label* L_fast_path = NULL,
 965                       Label* L_slow_path = NULL);
 966 
 967   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 968 
 969   void verify_sve_vector_length();
 970   void reinitialize_ptrue() {
 971     if (UseSVE > 0) {
 972       sve_ptrue(ptrue, B);
 973     }
 974   }
 975   void verify_ptrue();
 976 
 977   // Debugging
 978 
 979   // only if +VerifyOops
 980   void verify_oop(Register reg, const char* s = "broken oop");
 981   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 982 
 983 // TODO: verify method and klass metadata (compare against vptr?)
 984   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 985   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 986 
 987 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 988 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 989 
 990   // only if +VerifyFPU
 991   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 992 
 993   // prints msg, dumps registers and stops execution
 994   void stop(const char* msg);
 995 
 996   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 997 
 998   void untested()                                { stop("untested"); }
 999 
1000   void unimplemented(const char* what = "");
1001 
1002   void should_not_reach_here()                   { stop("should not reach here"); }
1003 
1004   // Stack overflow checking
1005   void bang_stack_with_offset(int offset) {
1006     // stack grows down, caller passes positive offset
1007     assert(offset > 0, "must bang with negative offset");
1008     sub(rscratch2, sp, offset);
1009     str(zr, Address(rscratch2));
1010   }
1011 
1012   // Writes to stack successive pages until offset reached to check for
1013   // stack overflow + shadow pages.  Also, clobbers tmp
1014   void bang_stack_size(Register size, Register tmp);
1015 
1016   // Check for reserved stack access in method being exited (for JIT)
1017   void reserved_stack_check();
1018 
1019   // Arithmetics
1020 
1021   void addptr(const Address &dst, int32_t src);
1022   void cmpptr(Register src1, Address src2);
1023 
1024   void cmpoop(Register obj1, Register obj2);
1025 
1026   // Various forms of CAS
1027 
1028   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1029                           Label &suceed, Label *fail);
1030   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1031                   Label &suceed, Label *fail);
1032 
1033   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1034                   Label &suceed, Label *fail);
1035 
1036   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1037   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1038   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1039   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1040 
1041   void atomic_xchg(Register prev, Register newv, Register addr);
1042   void atomic_xchgw(Register prev, Register newv, Register addr);
1043   void atomic_xchgl(Register prev, Register newv, Register addr);
1044   void atomic_xchglw(Register prev, Register newv, Register addr);
1045   void atomic_xchgal(Register prev, Register newv, Register addr);
1046   void atomic_xchgalw(Register prev, Register newv, Register addr);
1047 
1048   void orptr(Address adr, RegisterOrConstant src) {
1049     ldr(rscratch1, adr);
1050     if (src.is_register())
1051       orr(rscratch1, rscratch1, src.as_register());
1052     else
1053       orr(rscratch1, rscratch1, src.as_constant());
1054     str(rscratch1, adr);
1055   }
1056 
1057   // A generic CAS; success or failure is in the EQ flag.
1058   // Clobbers rscratch1
1059   void cmpxchg(Register addr, Register expected, Register new_val,
1060                enum operand_size size,
1061                bool acquire, bool release, bool weak,
1062                Register result);
1063 
1064 private:
1065   void compare_eq(Register rn, Register rm, enum operand_size size);
1066 
1067 #ifdef ASSERT
1068   // Template short-hand support to clean-up after a failed call to trampoline
1069   // call generation (see trampoline_call() below),  when a set of Labels must
1070   // be reset (before returning).
1071   template<typename Label, typename... More>
1072   void reset_labels(Label &lbl, More&... more) {
1073     lbl.reset(); reset_labels(more...);
1074   }
1075   template<typename Label>
1076   void reset_labels(Label &lbl) {
1077     lbl.reset();
1078   }
1079 #endif
1080 
1081 public:
1082   // Calls
1083 
1084   address trampoline_call(Address entry, CodeBuffer* cbuf = NULL);
1085 
1086   static bool far_branches() {
1087     return ReservedCodeCacheSize > branch_range;
1088   }
1089 
1090   // Check if branches to the the non nmethod section require a far jump
1091   static bool codestub_branch_needs_far_jump() {
1092     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1093   }
1094 
1095   // Jumps that can reach anywhere in the code cache.
1096   // Trashes tmp.
1097   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1098   int far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1099 
1100   static int far_codestub_branch_size() {
1101     if (codestub_branch_needs_far_jump()) {
1102       return 3 * 4;  // adrp, add, br
1103     } else {
1104       return 4;
1105     }
1106   }
1107 
1108   // Emit the CompiledIC call idiom
1109   address ic_call(address entry, jint method_index = 0);
1110 
1111 public:
1112 
1113   // Data
1114 
1115   void mov_metadata(Register dst, Metadata* obj);
1116   Address allocate_metadata_address(Metadata* obj);
1117   Address constant_oop_address(jobject obj);
1118 
1119   void movoop(Register dst, jobject obj, bool immediate = false);
1120 
1121   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1122   void kernel_crc32(Register crc, Register buf, Register len,
1123         Register table0, Register table1, Register table2, Register table3,
1124         Register tmp, Register tmp2, Register tmp3);
1125   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1126   void kernel_crc32c(Register crc, Register buf, Register len,
1127         Register table0, Register table1, Register table2, Register table3,
1128         Register tmp, Register tmp2, Register tmp3);
1129 
1130   // Stack push and pop individual 64 bit registers
1131   void push(Register src);
1132   void pop(Register dst);
1133 
1134   void repne_scan(Register addr, Register value, Register count,
1135                   Register scratch);
1136   void repne_scanw(Register addr, Register value, Register count,
1137                    Register scratch);
1138 
1139   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1140   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1141 
1142   // If a constant does not fit in an immediate field, generate some
1143   // number of MOV instructions and then perform the operation
1144   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1145                              add_sub_imm_insn insn1,
1146                              add_sub_reg_insn insn2, bool is32);
1147   // Seperate vsn which sets the flags
1148   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1149                                add_sub_imm_insn insn1,
1150                                add_sub_reg_insn insn2, bool is32);
1151 
1152 #define WRAP(INSN, is32)                                                \
1153   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1154     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1155   }                                                                     \
1156                                                                         \
1157   void INSN(Register Rd, Register Rn, Register Rm,                      \
1158              enum shift_kind kind, unsigned shift = 0) {                \
1159     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1160   }                                                                     \
1161                                                                         \
1162   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1163     Assembler::INSN(Rd, Rn, Rm);                                        \
1164   }                                                                     \
1165                                                                         \
1166   void INSN(Register Rd, Register Rn, Register Rm,                      \
1167            ext::operation option, int amount = 0) {                     \
1168     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1169   }
1170 
1171   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1172 
1173 #undef WRAP
1174 #define WRAP(INSN, is32)                                                \
1175   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1176     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1177   }                                                                     \
1178                                                                         \
1179   void INSN(Register Rd, Register Rn, Register Rm,                      \
1180              enum shift_kind kind, unsigned shift = 0) {                \
1181     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1182   }                                                                     \
1183                                                                         \
1184   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1185     Assembler::INSN(Rd, Rn, Rm);                                        \
1186   }                                                                     \
1187                                                                         \
1188   void INSN(Register Rd, Register Rn, Register Rm,                      \
1189            ext::operation option, int amount = 0) {                     \
1190     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1191   }
1192 
1193   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1194 
1195   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1196   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1197   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1198   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1199 
1200   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1201 
1202   void tableswitch(Register index, jint lowbound, jint highbound,
1203                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1204     adr(rscratch1, jumptable);
1205     subsw(rscratch2, index, lowbound);
1206     subsw(zr, rscratch2, highbound - lowbound);
1207     br(Assembler::HS, jumptable_end);
1208     add(rscratch1, rscratch1, rscratch2,
1209         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1210     br(rscratch1);
1211   }
1212 
1213   // Form an address from base + offset in Rd.  Rd may or may not
1214   // actually be used: you must use the Address that is returned.  It
1215   // is up to you to ensure that the shift provided matches the size
1216   // of your data.
1217   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1218 
1219   // Return true iff an address is within the 48-bit AArch64 address
1220   // space.
1221   bool is_valid_AArch64_address(address a) {
1222     return ((uint64_t)a >> 48) == 0;
1223   }
1224 
1225   // Load the base of the cardtable byte map into reg.
1226   void load_byte_map_base(Register reg);
1227 
1228   // Prolog generator routines to support switch between x86 code and
1229   // generated ARM code
1230 
1231   // routine to generate an x86 prolog for a stub function which
1232   // bootstraps into the generated ARM code which directly follows the
1233   // stub
1234   //
1235 
1236   public:
1237 
1238   void ldr_constant(Register dest, const Address &const_addr) {
1239     if (NearCpool) {
1240       ldr(dest, const_addr);
1241     } else {
1242       uint64_t offset;
1243       adrp(dest, InternalAddress(const_addr.target()), offset);
1244       ldr(dest, Address(dest, offset));
1245     }
1246   }
1247 
1248   address read_polling_page(Register r, relocInfo::relocType rtype);
1249   void get_polling_page(Register dest, relocInfo::relocType rtype);
1250 
1251   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1252   void update_byte_crc32(Register crc, Register val, Register table);
1253   void update_word_crc32(Register crc, Register v, Register tmp,
1254         Register table0, Register table1, Register table2, Register table3,
1255         bool upper = false);
1256 
1257   address has_negatives(Register ary1, Register len, Register result);
1258 
1259   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1260                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1261 
1262   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1263                      int elem_size);
1264 
1265   void fill_words(Register base, Register cnt, Register value);
1266   address zero_words(Register base, uint64_t cnt);
1267   address zero_words(Register ptr, Register cnt);
1268   void zero_dcache_blocks(Register base, Register cnt);
1269 
1270   static const int zero_words_block_size;
1271 
1272   address byte_array_inflate(Register src, Register dst, Register len,
1273                              FloatRegister vtmp1, FloatRegister vtmp2,
1274                              FloatRegister vtmp3, Register tmp4);
1275 
1276   void char_array_compress(Register src, Register dst, Register len,
1277                            Register res,
1278                            FloatRegister vtmp0, FloatRegister vtmp1,
1279                            FloatRegister vtmp2, FloatRegister vtmp3,
1280                            FloatRegister vtmp4, FloatRegister vtmp5);
1281 
1282   void encode_iso_array(Register src, Register dst,
1283                         Register len, Register res, bool ascii,
1284                         FloatRegister vtmp0, FloatRegister vtmp1,
1285                         FloatRegister vtmp2, FloatRegister vtmp3,
1286                         FloatRegister vtmp4, FloatRegister vtmp5);
1287 
1288   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1289                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1290                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1291                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1292                 Register tmp3, Register tmp4, Register tmp5);
1293   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1294       address pio2, address dsin_coef, address dcos_coef);
1295  private:
1296   // begin trigonometric functions support block
1297   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1298   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1299   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1300   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1301   // end trigonometric functions support block
1302   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1303                        Register src1, Register src2);
1304   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1305     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1306   }
1307   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1308                              Register y, Register y_idx, Register z,
1309                              Register carry, Register product,
1310                              Register idx, Register kdx);
1311   void multiply_128_x_128_loop(Register y, Register z,
1312                                Register carry, Register carry2,
1313                                Register idx, Register jdx,
1314                                Register yz_idx1, Register yz_idx2,
1315                                Register tmp, Register tmp3, Register tmp4,
1316                                Register tmp7, Register product_hi);
1317   void kernel_crc32_using_crc32(Register crc, Register buf,
1318         Register len, Register tmp0, Register tmp1, Register tmp2,
1319         Register tmp3);
1320   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1321         Register len, Register tmp0, Register tmp1, Register tmp2,
1322         Register tmp3);
1323 public:
1324   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1325                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1326                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1327   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1328   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1329                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1330                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1331   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1332                     FloatRegister p, FloatRegister z, FloatRegister t1);
1333   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1334                                 Register data, Register blocks, int unrolls);
1335   void ghash_modmul (FloatRegister result,
1336                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1337                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1338                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1339 
1340   void aesenc_loadkeys(Register key, Register keylen);
1341   void aesecb_encrypt(Register from, Register to, Register keylen,
1342                       FloatRegister data = v0, int unrolls = 1);
1343   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1344   void aes_round(FloatRegister input, FloatRegister subkey);
1345 
1346   // Place an ISB after code may have been modified due to a safepoint.
1347   void safepoint_isb();
1348 
1349 private:
1350   // Return the effective address r + (r1 << ext) + offset.
1351   // Uses rscratch2.
1352   Address offsetted_address(Register r, Register r1, Address::extend ext,
1353                             int offset, int size);
1354 
1355 private:
1356   // Returns an address on the stack which is reachable with a ldr/str of size
1357   // Uses rscratch2 if the address is not directly reachable
1358   Address spill_address(int size, int offset, Register tmp=rscratch2);
1359   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1360 
1361   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1362 
1363   // Check whether two loads/stores can be merged into ldp/stp.
1364   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1365 
1366   // Merge current load/store with previous load/store into ldp/stp.
1367   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1368 
1369   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1370   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1371 
1372 public:
1373   void spill(Register Rx, bool is64, int offset) {
1374     if (is64) {
1375       str(Rx, spill_address(8, offset));
1376     } else {
1377       strw(Rx, spill_address(4, offset));
1378     }
1379   }
1380   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1381     str(Vx, T, spill_address(1 << (int)T, offset));
1382   }
1383   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1384     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1385   }
1386   void unspill(Register Rx, bool is64, int offset) {
1387     if (is64) {
1388       ldr(Rx, spill_address(8, offset));
1389     } else {
1390       ldrw(Rx, spill_address(4, offset));
1391     }
1392   }
1393   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1394     ldr(Vx, T, spill_address(1 << (int)T, offset));
1395   }
1396   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1397     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1398   }
1399   void spill_copy128(int src_offset, int dst_offset,
1400                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1401     if (src_offset < 512 && (src_offset & 7) == 0 &&
1402         dst_offset < 512 && (dst_offset & 7) == 0) {
1403       ldp(tmp1, tmp2, Address(sp, src_offset));
1404       stp(tmp1, tmp2, Address(sp, dst_offset));
1405     } else {
1406       unspill(tmp1, true, src_offset);
1407       spill(tmp1, true, dst_offset);
1408       unspill(tmp1, true, src_offset+8);
1409       spill(tmp1, true, dst_offset+8);
1410     }
1411   }
1412   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1413                                             int sve_vec_reg_size_in_bytes) {
1414     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1415     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1416       spill_copy128(src_offset, dst_offset);
1417       src_offset += 16;
1418       dst_offset += 16;
1419     }
1420   }
1421   void cache_wb(Address line);
1422   void cache_wbsync(bool is_pre);
1423 
1424   // Code for java.lang.Thread::onSpinWait() intrinsic.
1425   void spin_wait();
1426 
1427   void lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1428   void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1429 
1430 private:
1431   // Check the current thread doesn't need a cross modify fence.
1432   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1433 
1434 };
1435 
1436 #ifdef ASSERT
1437 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1438 #endif
1439 
1440 /**
1441  * class SkipIfEqual:
1442  *
1443  * Instantiating this class will result in assembly code being output that will
1444  * jump around any code emitted between the creation of the instance and it's
1445  * automatic destruction at the end of a scope block, depending on the value of
1446  * the flag passed to the constructor, which will be checked at run-time.
1447  */
1448 class SkipIfEqual {
1449  private:
1450   MacroAssembler* _masm;
1451   Label _label;
1452 
1453  public:
1454    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1455    ~SkipIfEqual();
1456 };
1457 
1458 struct tableswitch {
1459   Register _reg;
1460   int _insn_index; jint _first_key; jint _last_key;
1461   Label _after;
1462   Label _branches;
1463 };
1464 
1465 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP