1 /* 2 * Copyright (c) 2008, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "c1/c1_Compilation.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciInstance.hpp" 34 #include "gc/shared/collectedHeap.hpp" 35 #include "memory/universe.hpp" 36 #include "nativeInst_arm.hpp" 37 #include "oops/objArrayKlass.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 #include "utilities/powerOfTwo.hpp" 42 #include "vmreg_arm.inline.hpp" 43 44 #define __ _masm-> 45 46 // Note: Rtemp usage is this file should not impact C2 and should be 47 // correct as long as it is not implicitly used in lower layers (the 48 // arm [macro]assembler) and used with care in the other C1 specific 49 // files. 50 51 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 52 ShouldNotCallThis(); // Not used on ARM 53 return false; 54 } 55 56 57 LIR_Opr LIR_Assembler::receiverOpr() { 58 // The first register in Java calling conventions 59 return FrameMap::R0_oop_opr; 60 } 61 62 LIR_Opr LIR_Assembler::osrBufferPointer() { 63 return FrameMap::as_pointer_opr(R0); 64 } 65 66 #ifndef PRODUCT 67 void LIR_Assembler::verify_reserved_argument_area_size(int args_count) { 68 assert(args_count * wordSize <= frame_map()->reserved_argument_area_size(), "not enough space for arguments"); 69 } 70 #endif // !PRODUCT 71 72 void LIR_Assembler::store_parameter(jint c, int offset_from_sp_in_words) { 73 assert(offset_from_sp_in_words >= 0, "invalid offset from sp"); 74 int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord; 75 assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space"); 76 __ mov_slow(Rtemp, c); 77 __ str(Rtemp, Address(SP, offset_from_sp_in_bytes)); 78 } 79 80 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_sp_in_words) { 81 assert(offset_from_sp_in_words >= 0, "invalid offset from sp"); 82 int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord; 83 assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space"); 84 __ mov_metadata(Rtemp, m); 85 __ str(Rtemp, Address(SP, offset_from_sp_in_bytes)); 86 } 87 88 //--------------fpu register translations----------------------- 89 90 91 void LIR_Assembler::breakpoint() { 92 __ breakpoint(); 93 } 94 95 void LIR_Assembler::push(LIR_Opr opr) { 96 Unimplemented(); 97 } 98 99 void LIR_Assembler::pop(LIR_Opr opr) { 100 Unimplemented(); 101 } 102 103 //------------------------------------------- 104 Address LIR_Assembler::as_Address(LIR_Address* addr) { 105 Register base = addr->base()->as_pointer_register(); 106 107 108 if (addr->index()->is_illegal() || addr->index()->is_constant()) { 109 int offset = addr->disp(); 110 if (addr->index()->is_constant()) { 111 offset += addr->index()->as_constant_ptr()->as_jint() << addr->scale(); 112 } 113 114 if ((offset <= -4096) || (offset >= 4096)) { 115 BAILOUT_("offset not in range", Address(base)); 116 } 117 118 return Address(base, offset); 119 120 } else { 121 assert(addr->disp() == 0, "can't have both"); 122 int scale = addr->scale(); 123 124 assert(addr->index()->is_single_cpu(), "should be"); 125 return scale >= 0 ? Address(base, addr->index()->as_register(), lsl, scale) : 126 Address(base, addr->index()->as_register(), lsr, -scale); 127 } 128 } 129 130 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 131 Address base = as_Address(addr); 132 assert(base.index() == noreg, "must be"); 133 if (base.disp() + BytesPerWord >= 4096) { BAILOUT_("offset not in range", Address(base.base(),0)); } 134 return Address(base.base(), base.disp() + BytesPerWord); 135 } 136 137 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 138 return as_Address(addr); 139 } 140 141 142 void LIR_Assembler::osr_entry() { 143 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 144 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 145 ValueStack* entry_state = osr_entry->end()->state(); 146 int number_of_locks = entry_state->locks_size(); 147 148 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 149 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 150 151 assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 152 int monitor_offset = (method()->max_locals() + 2 * (number_of_locks - 1)) * BytesPerWord; 153 for (int i = 0; i < number_of_locks; i++) { 154 int slot_offset = monitor_offset - (i * 2 * BytesPerWord); 155 __ ldr(R1, Address(OSR_buf, slot_offset + 0*BytesPerWord)); 156 __ ldr(R2, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 157 __ str(R1, frame_map()->address_for_monitor_lock(i)); 158 __ str(R2, frame_map()->address_for_monitor_object(i)); 159 } 160 } 161 162 163 int LIR_Assembler::check_icache() { 164 Register receiver = LIR_Assembler::receiverOpr()->as_register(); 165 int offset = __ offset(); 166 __ inline_cache_check(receiver, Ricklass); 167 return offset; 168 } 169 170 void LIR_Assembler::clinit_barrier(ciMethod* method) { 171 ShouldNotReachHere(); // not implemented 172 } 173 174 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 175 jobject o = (jobject)Universe::non_oop_word(); 176 int index = __ oop_recorder()->allocate_oop_index(o); 177 178 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), index); 179 180 __ patchable_mov_oop(reg, o, index); 181 patching_epilog(patch, lir_patch_normal, reg, info); 182 } 183 184 185 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 186 Metadata* o = (Metadata*)Universe::non_oop_word(); 187 int index = __ oop_recorder()->allocate_metadata_index(o); 188 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); 189 190 __ patchable_mov_metadata(reg, o, index); 191 patching_epilog(patch, lir_patch_normal, reg, info); 192 } 193 194 195 int LIR_Assembler::initial_frame_size_in_bytes() const { 196 // Subtracts two words to account for return address and link 197 return frame_map()->framesize()*VMRegImpl::stack_slot_size - 2*wordSize; 198 } 199 200 201 int LIR_Assembler::emit_exception_handler() { 202 // TODO: ARM 203 __ nop(); // See comments in other ports 204 205 address handler_base = __ start_a_stub(exception_handler_size()); 206 if (handler_base == NULL) { 207 bailout("exception handler overflow"); 208 return -1; 209 } 210 211 int offset = code_offset(); 212 213 // check that there is really an exception 214 __ verify_not_null_oop(Rexception_obj); 215 216 __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type); 217 __ should_not_reach_here(); 218 219 assert(code_offset() - offset <= exception_handler_size(), "overflow"); 220 __ end_a_stub(); 221 222 return offset; 223 } 224 225 // Emit the code to remove the frame from the stack in the exception 226 // unwind path. 227 int LIR_Assembler::emit_unwind_handler() { 228 #ifndef PRODUCT 229 if (CommentedAssembly) { 230 _masm->block_comment("Unwind handler"); 231 } 232 #endif 233 234 int offset = code_offset(); 235 236 // Fetch the exception from TLS and clear out exception related thread state 237 Register zero = __ zero_register(Rtemp); 238 __ ldr(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset())); 239 __ str(zero, Address(Rthread, JavaThread::exception_oop_offset())); 240 __ str(zero, Address(Rthread, JavaThread::exception_pc_offset())); 241 242 __ bind(_unwind_handler_entry); 243 __ verify_not_null_oop(Rexception_obj); 244 245 // Preform needed unlocking 246 MonitorExitStub* stub = NULL; 247 if (method()->is_synchronized()) { 248 monitor_address(0, FrameMap::R0_opr); 249 stub = new MonitorExitStub(FrameMap::R0_opr, true, 0); 250 __ unlock_object(R2, R1, R0, Rtemp, *stub->entry()); 251 __ bind(*stub->continuation()); 252 } 253 254 // remove the activation and dispatch to the unwind handler 255 __ remove_frame(initial_frame_size_in_bytes()); // restores FP and LR 256 __ jump(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type, Rtemp); 257 258 // Emit the slow path assembly 259 if (stub != NULL) { 260 stub->emit_code(this); 261 } 262 263 return offset; 264 } 265 266 267 int LIR_Assembler::emit_deopt_handler() { 268 address handler_base = __ start_a_stub(deopt_handler_size()); 269 if (handler_base == NULL) { 270 bailout("deopt handler overflow"); 271 return -1; 272 } 273 274 int offset = code_offset(); 275 276 __ mov_relative_address(LR, __ pc()); 277 __ push(LR); // stub expects LR to be saved 278 __ jump(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type, noreg); 279 280 assert(code_offset() - offset <= deopt_handler_size(), "overflow"); 281 __ end_a_stub(); 282 283 return offset; 284 } 285 286 287 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 288 // Pop the frame before safepoint polling 289 __ remove_frame(initial_frame_size_in_bytes()); 290 __ read_polling_page(Rtemp, relocInfo::poll_return_type); 291 __ ret(); 292 } 293 294 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 295 296 int offset = __ offset(); 297 __ get_polling_page(Rtemp); 298 __ relocate(relocInfo::poll_type); 299 add_debug_info_for_branch(info); // help pc_desc_at to find correct scope for current PC 300 __ ldr(Rtemp, Address(Rtemp)); 301 302 return offset; 303 } 304 305 306 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 307 if (from_reg != to_reg) { 308 __ mov(to_reg, from_reg); 309 } 310 } 311 312 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 313 assert(src->is_constant() && dest->is_register(), "must be"); 314 LIR_Const* c = src->as_constant_ptr(); 315 316 switch (c->type()) { 317 case T_ADDRESS: 318 case T_INT: 319 assert(patch_code == lir_patch_none, "no patching handled here"); 320 __ mov_slow(dest->as_register(), c->as_jint()); 321 break; 322 323 case T_LONG: 324 assert(patch_code == lir_patch_none, "no patching handled here"); 325 __ mov_slow(dest->as_register_lo(), c->as_jint_lo()); 326 __ mov_slow(dest->as_register_hi(), c->as_jint_hi()); 327 break; 328 329 case T_OBJECT: 330 if (patch_code == lir_patch_none) { 331 __ mov_oop(dest->as_register(), c->as_jobject()); 332 } else { 333 jobject2reg_with_patching(dest->as_register(), info); 334 } 335 break; 336 337 case T_METADATA: 338 if (patch_code == lir_patch_none) { 339 __ mov_metadata(dest->as_register(), c->as_metadata()); 340 } else { 341 klass2reg_with_patching(dest->as_register(), info); 342 } 343 break; 344 345 case T_FLOAT: 346 if (dest->is_single_fpu()) { 347 __ mov_float(dest->as_float_reg(), c->as_jfloat()); 348 } else { 349 // Simple getters can return float constant directly into r0 350 __ mov_slow(dest->as_register(), c->as_jint_bits()); 351 } 352 break; 353 354 case T_DOUBLE: 355 if (dest->is_double_fpu()) { 356 __ mov_double(dest->as_double_reg(), c->as_jdouble()); 357 } else { 358 // Simple getters can return double constant directly into r1r0 359 __ mov_slow(dest->as_register_lo(), c->as_jint_lo_bits()); 360 __ mov_slow(dest->as_register_hi(), c->as_jint_hi_bits()); 361 } 362 break; 363 364 default: 365 ShouldNotReachHere(); 366 } 367 } 368 369 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 370 assert(src->is_constant(), "must be"); 371 assert(dest->is_stack(), "must be"); 372 LIR_Const* c = src->as_constant_ptr(); 373 374 switch (c->type()) { 375 case T_INT: // fall through 376 case T_FLOAT: 377 __ mov_slow(Rtemp, c->as_jint_bits()); 378 __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); 379 break; 380 381 case T_ADDRESS: 382 __ mov_slow(Rtemp, c->as_jint()); 383 __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); 384 break; 385 386 case T_OBJECT: 387 __ mov_oop(Rtemp, c->as_jobject()); 388 __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); 389 break; 390 391 case T_LONG: // fall through 392 case T_DOUBLE: 393 __ mov_slow(Rtemp, c->as_jint_lo_bits()); 394 __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes)); 395 if (c->as_jint_hi_bits() != c->as_jint_lo_bits()) { 396 __ mov_slow(Rtemp, c->as_jint_hi_bits()); 397 } 398 __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes)); 399 break; 400 401 default: 402 ShouldNotReachHere(); 403 } 404 } 405 406 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, 407 CodeEmitInfo* info, bool wide) { 408 assert((src->as_constant_ptr()->type() == T_OBJECT && src->as_constant_ptr()->as_jobject() == NULL),"cannot handle otherwise"); 409 __ mov(Rtemp, 0); 410 411 int null_check_offset = code_offset(); 412 __ str(Rtemp, as_Address(dest->as_address_ptr())); 413 414 if (info != NULL) { 415 assert(false, "arm32 didn't support this before, investigate if bug"); 416 add_debug_info_for_null_check(null_check_offset, info); 417 } 418 } 419 420 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 421 assert(src->is_register() && dest->is_register(), "must be"); 422 423 if (src->is_single_cpu()) { 424 if (dest->is_single_cpu()) { 425 move_regs(src->as_register(), dest->as_register()); 426 } else if (dest->is_single_fpu()) { 427 __ fmsr(dest->as_float_reg(), src->as_register()); 428 } else { 429 ShouldNotReachHere(); 430 } 431 } else if (src->is_double_cpu()) { 432 if (dest->is_double_cpu()) { 433 __ long_move(dest->as_register_lo(), dest->as_register_hi(), src->as_register_lo(), src->as_register_hi()); 434 } else { 435 __ fmdrr(dest->as_double_reg(), src->as_register_lo(), src->as_register_hi()); 436 } 437 } else if (src->is_single_fpu()) { 438 if (dest->is_single_fpu()) { 439 __ mov_float(dest->as_float_reg(), src->as_float_reg()); 440 } else if (dest->is_single_cpu()) { 441 __ mov_fpr2gpr_float(dest->as_register(), src->as_float_reg()); 442 } else { 443 ShouldNotReachHere(); 444 } 445 } else if (src->is_double_fpu()) { 446 if (dest->is_double_fpu()) { 447 __ mov_double(dest->as_double_reg(), src->as_double_reg()); 448 } else if (dest->is_double_cpu()) { 449 __ fmrrd(dest->as_register_lo(), dest->as_register_hi(), src->as_double_reg()); 450 } else { 451 ShouldNotReachHere(); 452 } 453 } else { 454 ShouldNotReachHere(); 455 } 456 } 457 458 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 459 assert(src->is_register(), "should not call otherwise"); 460 assert(dest->is_stack(), "should not call otherwise"); 461 462 Address addr = dest->is_single_word() ? 463 frame_map()->address_for_slot(dest->single_stack_ix()) : 464 frame_map()->address_for_slot(dest->double_stack_ix()); 465 466 assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending"); 467 if (src->is_single_fpu() || src->is_double_fpu()) { 468 if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); } 469 } 470 471 if (src->is_single_cpu()) { 472 switch (type) { 473 case T_OBJECT: 474 case T_ARRAY: __ verify_oop(src->as_register()); // fall through 475 case T_ADDRESS: 476 case T_METADATA: __ str(src->as_register(), addr); break; 477 case T_FLOAT: // used in intBitsToFloat intrinsic implementation, fall through 478 case T_INT: __ str_32(src->as_register(), addr); break; 479 default: 480 ShouldNotReachHere(); 481 } 482 } else if (src->is_double_cpu()) { 483 __ str(src->as_register_lo(), addr); 484 __ str(src->as_register_hi(), frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes)); 485 } else if (src->is_single_fpu()) { 486 __ str_float(src->as_float_reg(), addr); 487 } else if (src->is_double_fpu()) { 488 __ str_double(src->as_double_reg(), addr); 489 } else { 490 ShouldNotReachHere(); 491 } 492 } 493 494 495 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, 496 LIR_PatchCode patch_code, CodeEmitInfo* info, 497 bool pop_fpu_stack, bool wide, 498 bool unaligned) { 499 LIR_Address* to_addr = dest->as_address_ptr(); 500 Register base_reg = to_addr->base()->as_pointer_register(); 501 const bool needs_patching = (patch_code != lir_patch_none); 502 503 PatchingStub* patch = NULL; 504 if (needs_patching) { 505 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 506 } 507 508 int null_check_offset = code_offset(); 509 510 switch (type) { 511 case T_ARRAY: 512 case T_OBJECT: 513 if (UseCompressedOops && !wide) { 514 ShouldNotReachHere(); 515 } else { 516 __ str(src->as_register(), as_Address(to_addr)); 517 } 518 break; 519 520 case T_ADDRESS: 521 __ str(src->as_pointer_register(), as_Address(to_addr)); 522 break; 523 524 case T_BYTE: 525 case T_BOOLEAN: 526 __ strb(src->as_register(), as_Address(to_addr)); 527 break; 528 529 case T_CHAR: 530 case T_SHORT: 531 __ strh(src->as_register(), as_Address(to_addr)); 532 break; 533 534 case T_INT: 535 #ifdef __SOFTFP__ 536 case T_FLOAT: 537 #endif // __SOFTFP__ 538 __ str_32(src->as_register(), as_Address(to_addr)); 539 break; 540 541 542 #ifdef __SOFTFP__ 543 case T_DOUBLE: 544 #endif // __SOFTFP__ 545 case T_LONG: { 546 Register from_lo = src->as_register_lo(); 547 Register from_hi = src->as_register_hi(); 548 if (to_addr->index()->is_register()) { 549 assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); 550 assert(to_addr->disp() == 0, "Not yet supporting both"); 551 __ add(Rtemp, base_reg, to_addr->index()->as_register()); 552 base_reg = Rtemp; 553 __ str(from_lo, Address(Rtemp)); 554 if (patch != NULL) { 555 __ nop(); // see comment before patching_epilog for 2nd str 556 patching_epilog(patch, lir_patch_low, base_reg, info); 557 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 558 patch_code = lir_patch_high; 559 } 560 __ str(from_hi, Address(Rtemp, BytesPerWord)); 561 } else if (base_reg == from_lo) { 562 __ str(from_hi, as_Address_hi(to_addr)); 563 if (patch != NULL) { 564 __ nop(); // see comment before patching_epilog for 2nd str 565 patching_epilog(patch, lir_patch_high, base_reg, info); 566 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 567 patch_code = lir_patch_low; 568 } 569 __ str(from_lo, as_Address_lo(to_addr)); 570 } else { 571 __ str(from_lo, as_Address_lo(to_addr)); 572 if (patch != NULL) { 573 __ nop(); // see comment before patching_epilog for 2nd str 574 patching_epilog(patch, lir_patch_low, base_reg, info); 575 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 576 patch_code = lir_patch_high; 577 } 578 __ str(from_hi, as_Address_hi(to_addr)); 579 } 580 break; 581 } 582 583 #ifndef __SOFTFP__ 584 case T_FLOAT: 585 if (to_addr->index()->is_register()) { 586 assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); 587 __ add(Rtemp, base_reg, to_addr->index()->as_register()); 588 if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); } 589 __ fsts(src->as_float_reg(), Address(Rtemp, to_addr->disp())); 590 } else { 591 __ fsts(src->as_float_reg(), as_Address(to_addr)); 592 } 593 break; 594 595 case T_DOUBLE: 596 if (to_addr->index()->is_register()) { 597 assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); 598 __ add(Rtemp, base_reg, to_addr->index()->as_register()); 599 if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); } 600 __ fstd(src->as_double_reg(), Address(Rtemp, to_addr->disp())); 601 } else { 602 __ fstd(src->as_double_reg(), as_Address(to_addr)); 603 } 604 break; 605 #endif // __SOFTFP__ 606 607 608 default: 609 ShouldNotReachHere(); 610 } 611 612 if (info != NULL) { 613 add_debug_info_for_null_check(null_check_offset, info); 614 } 615 616 if (patch != NULL) { 617 // Offset embedded into LDR/STR instruction may appear not enough 618 // to address a field. So, provide a space for one more instruction 619 // that will deal with larger offsets. 620 __ nop(); 621 patching_epilog(patch, patch_code, base_reg, info); 622 } 623 } 624 625 626 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 627 assert(src->is_stack(), "should not call otherwise"); 628 assert(dest->is_register(), "should not call otherwise"); 629 630 Address addr = src->is_single_word() ? 631 frame_map()->address_for_slot(src->single_stack_ix()) : 632 frame_map()->address_for_slot(src->double_stack_ix()); 633 634 assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending"); 635 if (dest->is_single_fpu() || dest->is_double_fpu()) { 636 if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); } 637 } 638 639 if (dest->is_single_cpu()) { 640 switch (type) { 641 case T_OBJECT: 642 case T_ARRAY: 643 case T_ADDRESS: 644 case T_METADATA: __ ldr(dest->as_register(), addr); break; 645 case T_FLOAT: // used in floatToRawIntBits intrinsic implemenation 646 case T_INT: __ ldr_u32(dest->as_register(), addr); break; 647 default: 648 ShouldNotReachHere(); 649 } 650 if ((type == T_OBJECT) || (type == T_ARRAY)) { 651 __ verify_oop(dest->as_register()); 652 } 653 } else if (dest->is_double_cpu()) { 654 __ ldr(dest->as_register_lo(), addr); 655 __ ldr(dest->as_register_hi(), frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes)); 656 } else if (dest->is_single_fpu()) { 657 __ ldr_float(dest->as_float_reg(), addr); 658 } else if (dest->is_double_fpu()) { 659 __ ldr_double(dest->as_double_reg(), addr); 660 } else { 661 ShouldNotReachHere(); 662 } 663 } 664 665 666 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 667 if (src->is_single_stack()) { 668 switch (src->type()) { 669 case T_OBJECT: 670 case T_ARRAY: 671 case T_ADDRESS: 672 case T_METADATA: 673 __ ldr(Rtemp, frame_map()->address_for_slot(src->single_stack_ix())); 674 __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); 675 break; 676 677 case T_INT: 678 case T_FLOAT: 679 __ ldr_u32(Rtemp, frame_map()->address_for_slot(src->single_stack_ix())); 680 __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); 681 break; 682 683 default: 684 ShouldNotReachHere(); 685 } 686 } else { 687 assert(src->is_double_stack(), "must be"); 688 __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes)); 689 __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes)); 690 __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes)); 691 __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes)); 692 } 693 } 694 695 696 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, 697 LIR_PatchCode patch_code, CodeEmitInfo* info, 698 bool wide, bool unaligned) { 699 assert(src->is_address(), "should not call otherwise"); 700 assert(dest->is_register(), "should not call otherwise"); 701 LIR_Address* addr = src->as_address_ptr(); 702 703 Register base_reg = addr->base()->as_pointer_register(); 704 705 PatchingStub* patch = NULL; 706 if (patch_code != lir_patch_none) { 707 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 708 } 709 if (info != NULL) { 710 add_debug_info_for_null_check_here(info); 711 } 712 713 switch (type) { 714 case T_OBJECT: // fall through 715 case T_ARRAY: 716 if (UseCompressedOops && !wide) { 717 __ ldr_u32(dest->as_register(), as_Address(addr)); 718 } else { 719 __ ldr(dest->as_register(), as_Address(addr)); 720 } 721 break; 722 723 case T_ADDRESS: 724 __ ldr(dest->as_pointer_register(), as_Address(addr)); 725 break; 726 727 case T_INT: 728 #ifdef __SOFTFP__ 729 case T_FLOAT: 730 #endif // __SOFTFP__ 731 __ ldr(dest->as_pointer_register(), as_Address(addr)); 732 break; 733 734 case T_BOOLEAN: 735 __ ldrb(dest->as_register(), as_Address(addr)); 736 break; 737 738 case T_BYTE: 739 __ ldrsb(dest->as_register(), as_Address(addr)); 740 break; 741 742 case T_CHAR: 743 __ ldrh(dest->as_register(), as_Address(addr)); 744 break; 745 746 case T_SHORT: 747 __ ldrsh(dest->as_register(), as_Address(addr)); 748 break; 749 750 751 #ifdef __SOFTFP__ 752 case T_DOUBLE: 753 #endif // __SOFTFP__ 754 case T_LONG: { 755 Register to_lo = dest->as_register_lo(); 756 Register to_hi = dest->as_register_hi(); 757 if (addr->index()->is_register()) { 758 assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); 759 assert(addr->disp() == 0, "Not yet supporting both"); 760 __ add(Rtemp, base_reg, addr->index()->as_register()); 761 base_reg = Rtemp; 762 __ ldr(to_lo, Address(Rtemp)); 763 if (patch != NULL) { 764 __ nop(); // see comment before patching_epilog for 2nd ldr 765 patching_epilog(patch, lir_patch_low, base_reg, info); 766 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 767 patch_code = lir_patch_high; 768 } 769 __ ldr(to_hi, Address(Rtemp, BytesPerWord)); 770 } else if (base_reg == to_lo) { 771 __ ldr(to_hi, as_Address_hi(addr)); 772 if (patch != NULL) { 773 __ nop(); // see comment before patching_epilog for 2nd ldr 774 patching_epilog(patch, lir_patch_high, base_reg, info); 775 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 776 patch_code = lir_patch_low; 777 } 778 __ ldr(to_lo, as_Address_lo(addr)); 779 } else { 780 __ ldr(to_lo, as_Address_lo(addr)); 781 if (patch != NULL) { 782 __ nop(); // see comment before patching_epilog for 2nd ldr 783 patching_epilog(patch, lir_patch_low, base_reg, info); 784 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 785 patch_code = lir_patch_high; 786 } 787 __ ldr(to_hi, as_Address_hi(addr)); 788 } 789 break; 790 } 791 792 #ifndef __SOFTFP__ 793 case T_FLOAT: 794 if (addr->index()->is_register()) { 795 assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); 796 __ add(Rtemp, base_reg, addr->index()->as_register()); 797 if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); } 798 __ flds(dest->as_float_reg(), Address(Rtemp, addr->disp())); 799 } else { 800 __ flds(dest->as_float_reg(), as_Address(addr)); 801 } 802 break; 803 804 case T_DOUBLE: 805 if (addr->index()->is_register()) { 806 assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); 807 __ add(Rtemp, base_reg, addr->index()->as_register()); 808 if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); } 809 __ fldd(dest->as_double_reg(), Address(Rtemp, addr->disp())); 810 } else { 811 __ fldd(dest->as_double_reg(), as_Address(addr)); 812 } 813 break; 814 #endif // __SOFTFP__ 815 816 817 default: 818 ShouldNotReachHere(); 819 } 820 821 if (patch != NULL) { 822 // Offset embedded into LDR/STR instruction may appear not enough 823 // to address a field. So, provide a space for one more instruction 824 // that will deal with larger offsets. 825 __ nop(); 826 patching_epilog(patch, patch_code, base_reg, info); 827 } 828 829 } 830 831 832 void LIR_Assembler::emit_op3(LIR_Op3* op) { 833 bool is_32 = op->result_opr()->is_single_cpu(); 834 835 if (op->code() == lir_idiv && op->in_opr2()->is_constant() && is_32) { 836 int c = op->in_opr2()->as_constant_ptr()->as_jint(); 837 assert(is_power_of_2(c), "non power-of-2 constant should be put in a register"); 838 839 Register left = op->in_opr1()->as_register(); 840 Register dest = op->result_opr()->as_register(); 841 if (c == 1) { 842 __ mov(dest, left); 843 } else if (c == 2) { 844 __ add_32(dest, left, AsmOperand(left, lsr, 31)); 845 __ asr_32(dest, dest, 1); 846 } else if (c != (int) 0x80000000) { 847 int power = log2i_exact(c); 848 __ asr_32(Rtemp, left, 31); 849 __ add_32(dest, left, AsmOperand(Rtemp, lsr, 32-power)); // dest = left + (left < 0 ? 2^power - 1 : 0); 850 __ asr_32(dest, dest, power); // dest = dest >>> power; 851 } else { 852 // x/0x80000000 is a special case, since dividend is a power of two, but is negative. 853 // The only possible result values are 0 and 1, with 1 only for dividend == divisor == 0x80000000. 854 __ cmp_32(left, c); 855 __ mov(dest, 0, ne); 856 __ mov(dest, 1, eq); 857 } 858 } else { 859 assert(op->code() == lir_idiv || op->code() == lir_irem, "unexpected op3"); 860 __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::runtime_call_type); 861 add_debug_info_for_div0_here(op->info()); 862 } 863 } 864 865 866 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 867 #ifdef ASSERT 868 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); 869 if (op->block() != NULL) _branch_target_blocks.append(op->block()); 870 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); 871 assert(op->info() == NULL, "CodeEmitInfo?"); 872 #endif // ASSERT 873 874 #ifdef __SOFTFP__ 875 assert (op->code() != lir_cond_float_branch, "this should be impossible"); 876 #else 877 if (op->code() == lir_cond_float_branch) { 878 __ fmstat(); 879 __ b(*(op->ublock()->label()), vs); 880 } 881 #endif // __SOFTFP__ 882 883 AsmCondition acond = al; 884 switch (op->cond()) { 885 case lir_cond_equal: acond = eq; break; 886 case lir_cond_notEqual: acond = ne; break; 887 case lir_cond_less: acond = lt; break; 888 case lir_cond_lessEqual: acond = le; break; 889 case lir_cond_greaterEqual: acond = ge; break; 890 case lir_cond_greater: acond = gt; break; 891 case lir_cond_aboveEqual: acond = hs; break; 892 case lir_cond_belowEqual: acond = ls; break; 893 default: assert(op->cond() == lir_cond_always, "must be"); 894 } 895 __ b(*(op->label()), acond); 896 } 897 898 899 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 900 LIR_Opr src = op->in_opr(); 901 LIR_Opr dest = op->result_opr(); 902 903 switch (op->bytecode()) { 904 case Bytecodes::_i2l: 905 move_regs(src->as_register(), dest->as_register_lo()); 906 __ mov(dest->as_register_hi(), AsmOperand(src->as_register(), asr, 31)); 907 break; 908 case Bytecodes::_l2i: 909 move_regs(src->as_register_lo(), dest->as_register()); 910 break; 911 case Bytecodes::_i2b: 912 __ sign_extend(dest->as_register(), src->as_register(), 8); 913 break; 914 case Bytecodes::_i2s: 915 __ sign_extend(dest->as_register(), src->as_register(), 16); 916 break; 917 case Bytecodes::_i2c: 918 __ zero_extend(dest->as_register(), src->as_register(), 16); 919 break; 920 case Bytecodes::_f2d: 921 __ convert_f2d(dest->as_double_reg(), src->as_float_reg()); 922 break; 923 case Bytecodes::_d2f: 924 __ convert_d2f(dest->as_float_reg(), src->as_double_reg()); 925 break; 926 case Bytecodes::_i2f: 927 __ fmsr(Stemp, src->as_register()); 928 __ fsitos(dest->as_float_reg(), Stemp); 929 break; 930 case Bytecodes::_i2d: 931 __ fmsr(Stemp, src->as_register()); 932 __ fsitod(dest->as_double_reg(), Stemp); 933 break; 934 case Bytecodes::_f2i: 935 __ ftosizs(Stemp, src->as_float_reg()); 936 __ fmrs(dest->as_register(), Stemp); 937 break; 938 case Bytecodes::_d2i: 939 __ ftosizd(Stemp, src->as_double_reg()); 940 __ fmrs(dest->as_register(), Stemp); 941 break; 942 default: 943 ShouldNotReachHere(); 944 } 945 } 946 947 948 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 949 if (op->init_check()) { 950 Register tmp = op->tmp1()->as_register(); 951 __ ldrb(tmp, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); 952 add_debug_info_for_null_check_here(op->stub()->info()); 953 __ cmp(tmp, InstanceKlass::fully_initialized); 954 __ b(*op->stub()->entry(), ne); 955 } 956 __ allocate_object(op->obj()->as_register(), 957 op->tmp1()->as_register(), 958 op->tmp2()->as_register(), 959 op->tmp3()->as_register(), 960 op->header_size(), 961 op->object_size(), 962 op->klass()->as_register(), 963 *op->stub()->entry()); 964 __ bind(*op->stub()->continuation()); 965 } 966 967 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 968 if (UseSlowPath || 969 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) || 970 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) { 971 __ b(*op->stub()->entry()); 972 } else { 973 __ allocate_array(op->obj()->as_register(), 974 op->len()->as_register(), 975 op->tmp1()->as_register(), 976 op->tmp2()->as_register(), 977 op->tmp3()->as_register(), 978 arrayOopDesc::header_size(op->type()), 979 type2aelembytes(op->type()), 980 op->klass()->as_register(), 981 *op->stub()->entry()); 982 } 983 __ bind(*op->stub()->continuation()); 984 } 985 986 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias, 987 ciMethodData *md, ciProfileData *data, 988 Register recv, Register tmp1, Label* update_done) { 989 assert_different_registers(mdo, recv, tmp1); 990 uint i; 991 for (i = 0; i < VirtualCallData::row_limit(); i++) { 992 Label next_test; 993 // See if the receiver is receiver[n]. 994 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - 995 mdo_offset_bias); 996 __ ldr(tmp1, receiver_addr); 997 __ verify_klass_ptr(tmp1); 998 __ cmp(recv, tmp1); 999 __ b(next_test, ne); 1000 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - 1001 mdo_offset_bias); 1002 __ ldr(tmp1, data_addr); 1003 __ add(tmp1, tmp1, DataLayout::counter_increment); 1004 __ str(tmp1, data_addr); 1005 __ b(*update_done); 1006 __ bind(next_test); 1007 } 1008 1009 // Didn't find receiver; find next empty slot and fill it in 1010 for (i = 0; i < VirtualCallData::row_limit(); i++) { 1011 Label next_test; 1012 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - 1013 mdo_offset_bias); 1014 __ ldr(tmp1, recv_addr); 1015 __ cbnz(tmp1, next_test); 1016 __ str(recv, recv_addr); 1017 __ mov(tmp1, DataLayout::counter_increment); 1018 __ str(tmp1, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - 1019 mdo_offset_bias)); 1020 __ b(*update_done); 1021 __ bind(next_test); 1022 } 1023 } 1024 1025 void LIR_Assembler::setup_md_access(ciMethod* method, int bci, 1026 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { 1027 md = method->method_data_or_null(); 1028 assert(md != NULL, "Sanity"); 1029 data = md->bci_to_data(bci); 1030 assert(data != NULL, "need data for checkcast"); 1031 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1032 if (md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes() >= 4096) { 1033 // The offset is large so bias the mdo by the base of the slot so 1034 // that the ldr can use an immediate offset to reference the slots of the data 1035 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset()); 1036 } 1037 } 1038 1039 // On 32-bit ARM, code before this helper should test obj for null (ZF should be set if obj is null). 1040 void LIR_Assembler::typecheck_profile_helper1(ciMethod* method, int bci, 1041 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias, 1042 Register obj, Register mdo, Register data_val, Label* obj_is_null) { 1043 assert(method != NULL, "Should have method"); 1044 assert_different_registers(obj, mdo, data_val); 1045 setup_md_access(method, bci, md, data, mdo_offset_bias); 1046 Label not_null; 1047 __ b(not_null, ne); 1048 __ mov_metadata(mdo, md->constant_encoding()); 1049 if (mdo_offset_bias > 0) { 1050 __ mov_slow(data_val, mdo_offset_bias); 1051 __ add(mdo, mdo, data_val); 1052 } 1053 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias); 1054 __ ldrb(data_val, flags_addr); 1055 __ orr(data_val, data_val, (uint)BitData::null_seen_byte_constant()); 1056 __ strb(data_val, flags_addr); 1057 __ b(*obj_is_null); 1058 __ bind(not_null); 1059 } 1060 1061 void LIR_Assembler::typecheck_profile_helper2(ciMethodData* md, ciProfileData* data, int mdo_offset_bias, 1062 Register mdo, Register recv, Register value, Register tmp1, 1063 Label* profile_cast_success, Label* profile_cast_failure, 1064 Label* success, Label* failure) { 1065 assert_different_registers(mdo, value, tmp1); 1066 __ bind(*profile_cast_success); 1067 __ mov_metadata(mdo, md->constant_encoding()); 1068 if (mdo_offset_bias > 0) { 1069 __ mov_slow(tmp1, mdo_offset_bias); 1070 __ add(mdo, mdo, tmp1); 1071 } 1072 __ load_klass(recv, value); 1073 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success); 1074 __ b(*success); 1075 // Cast failure case 1076 __ bind(*profile_cast_failure); 1077 __ mov_metadata(mdo, md->constant_encoding()); 1078 if (mdo_offset_bias > 0) { 1079 __ mov_slow(tmp1, mdo_offset_bias); 1080 __ add(mdo, mdo, tmp1); 1081 } 1082 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); 1083 __ ldr(tmp1, data_addr); 1084 __ sub(tmp1, tmp1, DataLayout::counter_increment); 1085 __ str(tmp1, data_addr); 1086 __ b(*failure); 1087 } 1088 1089 // Sets `res` to true, if `cond` holds. 1090 static void set_instanceof_result(MacroAssembler* _masm, Register res, AsmCondition cond) { 1091 __ mov(res, 1, cond); 1092 } 1093 1094 1095 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1096 // TODO: ARM - can be more effective with one more register 1097 switch (op->code()) { 1098 case lir_store_check: { 1099 CodeStub* stub = op->stub(); 1100 Register value = op->object()->as_register(); 1101 Register array = op->array()->as_register(); 1102 Register klass_RInfo = op->tmp1()->as_register(); 1103 Register k_RInfo = op->tmp2()->as_register(); 1104 assert_different_registers(klass_RInfo, k_RInfo, Rtemp); 1105 if (op->should_profile()) { 1106 assert_different_registers(value, klass_RInfo, k_RInfo, Rtemp); 1107 } 1108 1109 // check if it needs to be profiled 1110 ciMethodData* md; 1111 ciProfileData* data; 1112 int mdo_offset_bias = 0; 1113 Label profile_cast_success, profile_cast_failure, done; 1114 Label *success_target = op->should_profile() ? &profile_cast_success : &done; 1115 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry(); 1116 1117 if (op->should_profile()) { 1118 __ cmp(value, 0); 1119 typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, value, k_RInfo, Rtemp, &done); 1120 } else { 1121 __ cbz(value, done); 1122 } 1123 assert_different_registers(k_RInfo, value); 1124 add_debug_info_for_null_check_here(op->info_for_exception()); 1125 __ load_klass(k_RInfo, array); 1126 __ load_klass(klass_RInfo, value); 1127 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1128 __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); 1129 // check for immediate positive hit 1130 __ ldr(Rtemp, Address(klass_RInfo, Rtemp)); 1131 __ cmp(klass_RInfo, k_RInfo); 1132 __ cond_cmp(Rtemp, k_RInfo, ne); 1133 __ b(*success_target, eq); 1134 // check for immediate negative hit 1135 __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); 1136 __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset())); 1137 __ b(*failure_target, ne); 1138 // slow case 1139 assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); 1140 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); 1141 __ cbz(R0, *failure_target); 1142 if (op->should_profile()) { 1143 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp; 1144 if (mdo == value) { 1145 mdo = k_RInfo; 1146 recv = klass_RInfo; 1147 } 1148 typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, value, tmp1, 1149 &profile_cast_success, &profile_cast_failure, 1150 &done, stub->entry()); 1151 } 1152 __ bind(done); 1153 break; 1154 } 1155 1156 case lir_checkcast: { 1157 CodeStub* stub = op->stub(); 1158 Register obj = op->object()->as_register(); 1159 Register res = op->result_opr()->as_register(); 1160 Register klass_RInfo = op->tmp1()->as_register(); 1161 Register k_RInfo = op->tmp2()->as_register(); 1162 ciKlass* k = op->klass(); 1163 assert_different_registers(res, k_RInfo, klass_RInfo, Rtemp); 1164 1165 if (stub->is_simple_exception_stub()) { 1166 // TODO: ARM - Late binding is used to prevent confusion of register allocator 1167 assert(stub->is_exception_throw_stub(), "must be"); 1168 ((SimpleExceptionStub*)stub)->set_obj(op->result_opr()); 1169 } 1170 ciMethodData* md; 1171 ciProfileData* data; 1172 int mdo_offset_bias = 0; 1173 1174 Label done; 1175 1176 Label profile_cast_failure, profile_cast_success; 1177 Label *failure_target = op->should_profile() ? &profile_cast_failure : op->stub()->entry(); 1178 Label *success_target = op->should_profile() ? &profile_cast_success : &done; 1179 1180 1181 __ movs(res, obj); 1182 if (op->should_profile()) { 1183 typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done); 1184 } else { 1185 __ b(done, eq); 1186 } 1187 if (k->is_loaded()) { 1188 __ mov_metadata(k_RInfo, k->constant_encoding()); 1189 } else if (k_RInfo != obj) { 1190 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1191 __ movs(res, obj); 1192 } else { 1193 // Patching doesn't update "res" register after GC, so do patching first 1194 klass2reg_with_patching(Rtemp, op->info_for_patch()); 1195 __ movs(res, obj); 1196 __ mov(k_RInfo, Rtemp); 1197 } 1198 __ load_klass(klass_RInfo, res, ne); 1199 1200 if (op->fast_check()) { 1201 __ cmp(klass_RInfo, k_RInfo, ne); 1202 __ b(*failure_target, ne); 1203 } else if (k->is_loaded()) { 1204 __ b(*success_target, eq); 1205 __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset())); 1206 if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) { 1207 __ cmp(Rtemp, k_RInfo); 1208 __ b(*failure_target, ne); 1209 } else { 1210 __ cmp(klass_RInfo, k_RInfo); 1211 __ cmp(Rtemp, k_RInfo, ne); 1212 __ b(*success_target, eq); 1213 assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); 1214 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); 1215 __ cbz(R0, *failure_target); 1216 } 1217 } else { 1218 __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); 1219 __ b(*success_target, eq); 1220 // check for immediate positive hit 1221 __ ldr(Rtemp, Address(klass_RInfo, Rtemp)); 1222 __ cmp(klass_RInfo, k_RInfo); 1223 __ cmp(Rtemp, k_RInfo, ne); 1224 __ b(*success_target, eq); 1225 // check for immediate negative hit 1226 __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); 1227 __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset())); 1228 __ b(*failure_target, ne); 1229 // slow case 1230 assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); 1231 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); 1232 __ cbz(R0, *failure_target); 1233 } 1234 1235 if (op->should_profile()) { 1236 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp; 1237 typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1, 1238 &profile_cast_success, &profile_cast_failure, 1239 &done, stub->entry()); 1240 } 1241 __ bind(done); 1242 break; 1243 } 1244 1245 case lir_instanceof: { 1246 Register obj = op->object()->as_register(); 1247 Register res = op->result_opr()->as_register(); 1248 Register klass_RInfo = op->tmp1()->as_register(); 1249 Register k_RInfo = op->tmp2()->as_register(); 1250 ciKlass* k = op->klass(); 1251 assert_different_registers(res, klass_RInfo, k_RInfo, Rtemp); 1252 1253 ciMethodData* md; 1254 ciProfileData* data; 1255 int mdo_offset_bias = 0; 1256 1257 Label done; 1258 1259 Label profile_cast_failure, profile_cast_success; 1260 Label *failure_target = op->should_profile() ? &profile_cast_failure : &done; 1261 Label *success_target = op->should_profile() ? &profile_cast_success : &done; 1262 1263 __ movs(res, obj); 1264 1265 if (op->should_profile()) { 1266 typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done); 1267 } else { 1268 __ b(done, eq); 1269 } 1270 1271 if (k->is_loaded()) { 1272 __ mov_metadata(k_RInfo, k->constant_encoding()); 1273 } else { 1274 op->info_for_patch()->add_register_oop(FrameMap::as_oop_opr(res)); 1275 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1276 } 1277 __ load_klass(klass_RInfo, res); 1278 1279 if (!op->should_profile()) { 1280 __ mov(res, 0); 1281 } 1282 1283 if (op->fast_check()) { 1284 __ cmp(klass_RInfo, k_RInfo); 1285 if (!op->should_profile()) { 1286 set_instanceof_result(_masm, res, eq); 1287 } else { 1288 __ b(profile_cast_failure, ne); 1289 } 1290 } else if (k->is_loaded()) { 1291 __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset())); 1292 if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) { 1293 __ cmp(Rtemp, k_RInfo); 1294 if (!op->should_profile()) { 1295 set_instanceof_result(_masm, res, eq); 1296 } else { 1297 __ b(profile_cast_failure, ne); 1298 } 1299 } else { 1300 __ cmp(klass_RInfo, k_RInfo); 1301 __ cond_cmp(Rtemp, k_RInfo, ne); 1302 if (!op->should_profile()) { 1303 set_instanceof_result(_masm, res, eq); 1304 } 1305 __ b(*success_target, eq); 1306 assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); 1307 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); 1308 if (!op->should_profile()) { 1309 move_regs(R0, res); 1310 } else { 1311 __ cbz(R0, *failure_target); 1312 } 1313 } 1314 } else { 1315 __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); 1316 // check for immediate positive hit 1317 __ cmp(klass_RInfo, k_RInfo); 1318 if (!op->should_profile()) { 1319 __ ldr(res, Address(klass_RInfo, Rtemp), ne); 1320 __ cond_cmp(res, k_RInfo, ne); 1321 set_instanceof_result(_masm, res, eq); 1322 } else { 1323 __ ldr(Rtemp, Address(klass_RInfo, Rtemp), ne); 1324 __ cond_cmp(Rtemp, k_RInfo, ne); 1325 } 1326 __ b(*success_target, eq); 1327 // check for immediate negative hit 1328 if (op->should_profile()) { 1329 __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); 1330 } 1331 __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset())); 1332 if (!op->should_profile()) { 1333 __ mov(res, 0, ne); 1334 } 1335 __ b(*failure_target, ne); 1336 // slow case 1337 assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); 1338 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); 1339 if (!op->should_profile()) { 1340 move_regs(R0, res); 1341 } 1342 if (op->should_profile()) { 1343 __ cbz(R0, *failure_target); 1344 } 1345 } 1346 1347 if (op->should_profile()) { 1348 Label done_ok, done_failure; 1349 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp; 1350 typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1, 1351 &profile_cast_success, &profile_cast_failure, 1352 &done_ok, &done_failure); 1353 __ bind(done_failure); 1354 __ mov(res, 0); 1355 __ b(done); 1356 __ bind(done_ok); 1357 __ mov(res, 1); 1358 } 1359 __ bind(done); 1360 break; 1361 } 1362 default: 1363 ShouldNotReachHere(); 1364 } 1365 } 1366 1367 1368 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1369 // if (*addr == cmpval) { 1370 // *addr = newval; 1371 // dest = 1; 1372 // } else { 1373 // dest = 0; 1374 // } 1375 // FIXME: membar_release 1376 __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp); 1377 Register addr = op->addr()->is_register() ? 1378 op->addr()->as_pointer_register() : 1379 op->addr()->as_address_ptr()->base()->as_pointer_register(); 1380 assert(op->addr()->is_register() || op->addr()->as_address_ptr()->disp() == 0, "unexpected disp"); 1381 assert(op->addr()->is_register() || op->addr()->as_address_ptr()->index() == LIR_OprDesc::illegalOpr(), "unexpected index"); 1382 if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 1383 Register cmpval = op->cmp_value()->as_register(); 1384 Register newval = op->new_value()->as_register(); 1385 Register dest = op->result_opr()->as_register(); 1386 assert_different_registers(dest, addr, cmpval, newval, Rtemp); 1387 1388 __ atomic_cas_bool(cmpval, newval, addr, 0, Rtemp); // Rtemp free by default at C1 LIR layer 1389 __ mov(dest, 1, eq); 1390 __ mov(dest, 0, ne); 1391 } else if (op->code() == lir_cas_long) { 1392 assert(VM_Version::supports_cx8(), "wrong machine"); 1393 Register cmp_value_lo = op->cmp_value()->as_register_lo(); 1394 Register cmp_value_hi = op->cmp_value()->as_register_hi(); 1395 Register new_value_lo = op->new_value()->as_register_lo(); 1396 Register new_value_hi = op->new_value()->as_register_hi(); 1397 Register dest = op->result_opr()->as_register(); 1398 Register tmp_lo = op->tmp1()->as_register_lo(); 1399 Register tmp_hi = op->tmp1()->as_register_hi(); 1400 1401 assert_different_registers(tmp_lo, tmp_hi, cmp_value_lo, cmp_value_hi, dest, new_value_lo, new_value_hi, addr); 1402 assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair"); 1403 assert(new_value_hi->encoding() == new_value_lo->encoding() + 1, "non aligned register pair"); 1404 assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair"); 1405 assert((new_value_lo->encoding() & 0x1) == 0, "misaligned register pair"); 1406 __ atomic_cas64(tmp_lo, tmp_hi, dest, cmp_value_lo, cmp_value_hi, 1407 new_value_lo, new_value_hi, addr, 0); 1408 } else { 1409 Unimplemented(); 1410 } 1411 // FIXME: is full membar really needed instead of just membar_acquire? 1412 __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp); 1413 } 1414 1415 1416 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { 1417 AsmCondition acond = al; 1418 AsmCondition ncond = nv; 1419 if (opr1 != opr2) { 1420 switch (condition) { 1421 case lir_cond_equal: acond = eq; ncond = ne; break; 1422 case lir_cond_notEqual: acond = ne; ncond = eq; break; 1423 case lir_cond_less: acond = lt; ncond = ge; break; 1424 case lir_cond_lessEqual: acond = le; ncond = gt; break; 1425 case lir_cond_greaterEqual: acond = ge; ncond = lt; break; 1426 case lir_cond_greater: acond = gt; ncond = le; break; 1427 case lir_cond_aboveEqual: acond = hs; ncond = lo; break; 1428 case lir_cond_belowEqual: acond = ls; ncond = hi; break; 1429 default: ShouldNotReachHere(); 1430 } 1431 } 1432 1433 for (;;) { // two iterations only 1434 if (opr1 == result) { 1435 // do nothing 1436 } else if (opr1->is_single_cpu()) { 1437 __ mov(result->as_register(), opr1->as_register(), acond); 1438 } else if (opr1->is_double_cpu()) { 1439 __ long_move(result->as_register_lo(), result->as_register_hi(), 1440 opr1->as_register_lo(), opr1->as_register_hi(), acond); 1441 } else if (opr1->is_single_stack()) { 1442 __ ldr(result->as_register(), frame_map()->address_for_slot(opr1->single_stack_ix()), acond); 1443 } else if (opr1->is_double_stack()) { 1444 __ ldr(result->as_register_lo(), 1445 frame_map()->address_for_slot(opr1->double_stack_ix(), lo_word_offset_in_bytes), acond); 1446 __ ldr(result->as_register_hi(), 1447 frame_map()->address_for_slot(opr1->double_stack_ix(), hi_word_offset_in_bytes), acond); 1448 } else if (opr1->is_illegal()) { 1449 // do nothing: this part of the cmove has been optimized away in the peephole optimizer 1450 } else { 1451 assert(opr1->is_constant(), "must be"); 1452 LIR_Const* c = opr1->as_constant_ptr(); 1453 1454 switch (c->type()) { 1455 case T_INT: 1456 __ mov_slow(result->as_register(), c->as_jint(), acond); 1457 break; 1458 case T_LONG: 1459 __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond); 1460 __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond); 1461 break; 1462 case T_OBJECT: 1463 __ mov_oop(result->as_register(), c->as_jobject(), 0, acond); 1464 break; 1465 case T_FLOAT: 1466 #ifdef __SOFTFP__ 1467 // not generated now. 1468 __ mov_slow(result->as_register(), c->as_jint(), acond); 1469 #else 1470 __ mov_float(result->as_float_reg(), c->as_jfloat(), acond); 1471 #endif // __SOFTFP__ 1472 break; 1473 case T_DOUBLE: 1474 #ifdef __SOFTFP__ 1475 // not generated now. 1476 __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond); 1477 __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond); 1478 #else 1479 __ mov_double(result->as_double_reg(), c->as_jdouble(), acond); 1480 #endif // __SOFTFP__ 1481 break; 1482 case T_METADATA: 1483 __ mov_metadata(result->as_register(), c->as_metadata(), acond); 1484 break; 1485 default: 1486 ShouldNotReachHere(); 1487 } 1488 } 1489 1490 // Negate the condition and repeat the algorithm with the second operand 1491 if (opr1 == opr2) { break; } 1492 opr1 = opr2; 1493 acond = ncond; 1494 } 1495 } 1496 1497 #ifdef ASSERT 1498 static int reg_size(LIR_Opr op) { 1499 switch (op->type()) { 1500 case T_FLOAT: 1501 case T_INT: return BytesPerInt; 1502 case T_LONG: 1503 case T_DOUBLE: return BytesPerLong; 1504 case T_OBJECT: 1505 case T_ARRAY: 1506 case T_METADATA: return BytesPerWord; 1507 case T_ADDRESS: 1508 case T_ILLEGAL: // fall through 1509 default: ShouldNotReachHere(); return -1; 1510 } 1511 } 1512 #endif 1513 1514 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 1515 assert(info == NULL, "unused on this code path"); 1516 assert(dest->is_register(), "wrong items state"); 1517 1518 if (right->is_address()) { 1519 // special case for adding shifted/extended register 1520 const Register res = dest->as_pointer_register(); 1521 const Register lreg = left->as_pointer_register(); 1522 const LIR_Address* addr = right->as_address_ptr(); 1523 1524 assert(addr->base()->as_pointer_register() == lreg && addr->index()->is_register() && addr->disp() == 0, "must be"); 1525 1526 int scale = addr->scale(); 1527 AsmShift shift = lsl; 1528 1529 1530 assert(reg_size(addr->base()) == reg_size(addr->index()), "should be"); 1531 assert(reg_size(addr->base()) == reg_size(dest), "should be"); 1532 assert(reg_size(dest) == wordSize, "should be"); 1533 1534 AsmOperand operand(addr->index()->as_pointer_register(), shift, scale); 1535 switch (code) { 1536 case lir_add: __ add(res, lreg, operand); break; 1537 case lir_sub: __ sub(res, lreg, operand); break; 1538 default: ShouldNotReachHere(); 1539 } 1540 1541 } else if (left->is_address()) { 1542 assert(code == lir_sub && right->is_single_cpu(), "special case used by strength_reduce_multiply()"); 1543 const LIR_Address* addr = left->as_address_ptr(); 1544 const Register res = dest->as_register(); 1545 const Register rreg = right->as_register(); 1546 assert(addr->base()->as_register() == rreg && addr->index()->is_register() && addr->disp() == 0, "must be"); 1547 __ rsb(res, rreg, AsmOperand(addr->index()->as_register(), lsl, addr->scale())); 1548 1549 } else if (dest->is_single_cpu()) { 1550 assert(left->is_single_cpu(), "unexpected left operand"); 1551 1552 const Register res = dest->as_register(); 1553 const Register lreg = left->as_register(); 1554 1555 if (right->is_single_cpu()) { 1556 const Register rreg = right->as_register(); 1557 switch (code) { 1558 case lir_add: __ add_32(res, lreg, rreg); break; 1559 case lir_sub: __ sub_32(res, lreg, rreg); break; 1560 case lir_mul: __ mul_32(res, lreg, rreg); break; 1561 default: ShouldNotReachHere(); 1562 } 1563 } else { 1564 assert(right->is_constant(), "must be"); 1565 const jint c = right->as_constant_ptr()->as_jint(); 1566 if (!Assembler::is_arith_imm_in_range(c)) { 1567 BAILOUT("illegal arithmetic operand"); 1568 } 1569 switch (code) { 1570 case lir_add: __ add_32(res, lreg, c); break; 1571 case lir_sub: __ sub_32(res, lreg, c); break; 1572 default: ShouldNotReachHere(); 1573 } 1574 } 1575 1576 } else if (dest->is_double_cpu()) { 1577 Register res_lo = dest->as_register_lo(); 1578 Register res_hi = dest->as_register_hi(); 1579 Register lreg_lo = left->as_register_lo(); 1580 Register lreg_hi = left->as_register_hi(); 1581 if (right->is_double_cpu()) { 1582 Register rreg_lo = right->as_register_lo(); 1583 Register rreg_hi = right->as_register_hi(); 1584 if (res_lo == lreg_hi || res_lo == rreg_hi) { 1585 res_lo = Rtemp; 1586 } 1587 switch (code) { 1588 case lir_add: 1589 __ adds(res_lo, lreg_lo, rreg_lo); 1590 __ adc(res_hi, lreg_hi, rreg_hi); 1591 break; 1592 case lir_sub: 1593 __ subs(res_lo, lreg_lo, rreg_lo); 1594 __ sbc(res_hi, lreg_hi, rreg_hi); 1595 break; 1596 default: 1597 ShouldNotReachHere(); 1598 } 1599 } else { 1600 assert(right->is_constant(), "must be"); 1601 assert((right->as_constant_ptr()->as_jlong() >> 32) == 0, "out of range"); 1602 const jint c = (jint) right->as_constant_ptr()->as_jlong(); 1603 if (res_lo == lreg_hi) { 1604 res_lo = Rtemp; 1605 } 1606 switch (code) { 1607 case lir_add: 1608 __ adds(res_lo, lreg_lo, c); 1609 __ adc(res_hi, lreg_hi, 0); 1610 break; 1611 case lir_sub: 1612 __ subs(res_lo, lreg_lo, c); 1613 __ sbc(res_hi, lreg_hi, 0); 1614 break; 1615 default: 1616 ShouldNotReachHere(); 1617 } 1618 } 1619 move_regs(res_lo, dest->as_register_lo()); 1620 1621 } else if (dest->is_single_fpu()) { 1622 assert(left->is_single_fpu(), "must be"); 1623 assert(right->is_single_fpu(), "must be"); 1624 const FloatRegister res = dest->as_float_reg(); 1625 const FloatRegister lreg = left->as_float_reg(); 1626 const FloatRegister rreg = right->as_float_reg(); 1627 switch (code) { 1628 case lir_add: __ add_float(res, lreg, rreg); break; 1629 case lir_sub: __ sub_float(res, lreg, rreg); break; 1630 case lir_mul: __ mul_float(res, lreg, rreg); break; 1631 case lir_div: __ div_float(res, lreg, rreg); break; 1632 default: ShouldNotReachHere(); 1633 } 1634 } else if (dest->is_double_fpu()) { 1635 assert(left->is_double_fpu(), "must be"); 1636 assert(right->is_double_fpu(), "must be"); 1637 const FloatRegister res = dest->as_double_reg(); 1638 const FloatRegister lreg = left->as_double_reg(); 1639 const FloatRegister rreg = right->as_double_reg(); 1640 switch (code) { 1641 case lir_add: __ add_double(res, lreg, rreg); break; 1642 case lir_sub: __ sub_double(res, lreg, rreg); break; 1643 case lir_mul: __ mul_double(res, lreg, rreg); break; 1644 case lir_div: __ div_double(res, lreg, rreg); break; 1645 default: ShouldNotReachHere(); 1646 } 1647 } else { 1648 ShouldNotReachHere(); 1649 } 1650 } 1651 1652 1653 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) { 1654 switch (code) { 1655 case lir_abs: 1656 __ abs_double(dest->as_double_reg(), value->as_double_reg()); 1657 break; 1658 case lir_sqrt: 1659 __ sqrt_double(dest->as_double_reg(), value->as_double_reg()); 1660 break; 1661 default: 1662 ShouldNotReachHere(); 1663 } 1664 } 1665 1666 1667 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) { 1668 assert(dest->is_register(), "wrong items state"); 1669 assert(left->is_register(), "wrong items state"); 1670 1671 if (dest->is_single_cpu()) { 1672 1673 const Register res = dest->as_register(); 1674 const Register lreg = left->as_register(); 1675 1676 if (right->is_single_cpu()) { 1677 const Register rreg = right->as_register(); 1678 switch (code) { 1679 case lir_logic_and: __ and_32(res, lreg, rreg); break; 1680 case lir_logic_or: __ orr_32(res, lreg, rreg); break; 1681 case lir_logic_xor: __ eor_32(res, lreg, rreg); break; 1682 default: ShouldNotReachHere(); 1683 } 1684 } else { 1685 assert(right->is_constant(), "must be"); 1686 const uint c = (uint)right->as_constant_ptr()->as_jint(); 1687 if (!Assembler::is_arith_imm_in_range(c)) { 1688 BAILOUT("illegal arithmetic operand"); 1689 } 1690 switch (code) { 1691 case lir_logic_and: __ and_32(res, lreg, c); break; 1692 case lir_logic_or: __ orr_32(res, lreg, c); break; 1693 case lir_logic_xor: __ eor_32(res, lreg, c); break; 1694 default: ShouldNotReachHere(); 1695 } 1696 } 1697 } else { 1698 assert(dest->is_double_cpu(), "should be"); 1699 Register res_lo = dest->as_register_lo(); 1700 1701 assert (dest->type() == T_LONG, "unexpected result type"); 1702 assert (left->type() == T_LONG, "unexpected left type"); 1703 assert (right->type() == T_LONG, "unexpected right type"); 1704 1705 const Register res_hi = dest->as_register_hi(); 1706 const Register lreg_lo = left->as_register_lo(); 1707 const Register lreg_hi = left->as_register_hi(); 1708 1709 if (right->is_register()) { 1710 const Register rreg_lo = right->as_register_lo(); 1711 const Register rreg_hi = right->as_register_hi(); 1712 if (res_lo == lreg_hi || res_lo == rreg_hi) { 1713 res_lo = Rtemp; // Temp register helps to avoid overlap between result and input 1714 } 1715 switch (code) { 1716 case lir_logic_and: 1717 __ andr(res_lo, lreg_lo, rreg_lo); 1718 __ andr(res_hi, lreg_hi, rreg_hi); 1719 break; 1720 case lir_logic_or: 1721 __ orr(res_lo, lreg_lo, rreg_lo); 1722 __ orr(res_hi, lreg_hi, rreg_hi); 1723 break; 1724 case lir_logic_xor: 1725 __ eor(res_lo, lreg_lo, rreg_lo); 1726 __ eor(res_hi, lreg_hi, rreg_hi); 1727 break; 1728 default: 1729 ShouldNotReachHere(); 1730 } 1731 move_regs(res_lo, dest->as_register_lo()); 1732 } else { 1733 assert(right->is_constant(), "must be"); 1734 const jint c_lo = (jint) right->as_constant_ptr()->as_jlong(); 1735 const jint c_hi = (jint) (right->as_constant_ptr()->as_jlong() >> 32); 1736 // Case for logic_or from do_ClassIDIntrinsic() 1737 if (c_hi == 0 && AsmOperand::is_rotated_imm(c_lo)) { 1738 switch (code) { 1739 case lir_logic_and: 1740 __ andr(res_lo, lreg_lo, c_lo); 1741 __ mov(res_hi, 0); 1742 break; 1743 case lir_logic_or: 1744 __ orr(res_lo, lreg_lo, c_lo); 1745 break; 1746 case lir_logic_xor: 1747 __ eor(res_lo, lreg_lo, c_lo); 1748 break; 1749 default: 1750 ShouldNotReachHere(); 1751 } 1752 } else if (code == lir_logic_and && 1753 c_hi == -1 && 1754 (AsmOperand::is_rotated_imm(c_lo) || 1755 AsmOperand::is_rotated_imm(~c_lo))) { 1756 // Another case which handles logic_and from do_ClassIDIntrinsic() 1757 if (AsmOperand::is_rotated_imm(c_lo)) { 1758 __ andr(res_lo, lreg_lo, c_lo); 1759 } else { 1760 __ bic(res_lo, lreg_lo, ~c_lo); 1761 } 1762 if (res_hi != lreg_hi) { 1763 __ mov(res_hi, lreg_hi); 1764 } 1765 } else { 1766 BAILOUT("64 bit constant cannot be inlined"); 1767 } 1768 } 1769 } 1770 } 1771 1772 1773 1774 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1775 if (opr1->is_single_cpu()) { 1776 if (opr2->is_constant()) { 1777 switch (opr2->as_constant_ptr()->type()) { 1778 case T_INT: { 1779 const jint c = opr2->as_constant_ptr()->as_jint(); 1780 if (Assembler::is_arith_imm_in_range(c)) { 1781 __ cmp_32(opr1->as_register(), c); 1782 } else if (Assembler::is_arith_imm_in_range(-c)) { 1783 __ cmn_32(opr1->as_register(), -c); 1784 } else { 1785 // This can happen when compiling lookupswitch 1786 __ mov_slow(Rtemp, c); 1787 __ cmp_32(opr1->as_register(), Rtemp); 1788 } 1789 break; 1790 } 1791 case T_OBJECT: 1792 assert(opr2->as_constant_ptr()->as_jobject() == NULL, "cannot handle otherwise"); 1793 __ cmp(opr1->as_register(), 0); 1794 break; 1795 case T_METADATA: 1796 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "Only equality tests"); 1797 assert(opr2->as_constant_ptr()->as_metadata() == NULL, "cannot handle otherwise"); 1798 __ cmp(opr1->as_register(), 0); 1799 break; 1800 default: 1801 ShouldNotReachHere(); 1802 } 1803 } else if (opr2->is_single_cpu()) { 1804 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) { 1805 assert(opr2->type() == T_OBJECT || opr2->type() == T_ARRAY, "incompatibe type"); 1806 __ cmpoop(opr1->as_register(), opr2->as_register()); 1807 } else if (opr1->type() == T_METADATA || opr1->type() == T_ADDRESS) { 1808 assert(opr2->type() == T_METADATA || opr2->type() == T_ADDRESS, "incompatibe type"); 1809 __ cmp(opr1->as_register(), opr2->as_register()); 1810 } else { 1811 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_METADATA && opr2->type() != T_ADDRESS, "incompatibe type"); 1812 __ cmp_32(opr1->as_register(), opr2->as_register()); 1813 } 1814 } else { 1815 ShouldNotReachHere(); 1816 } 1817 } else if (opr1->is_double_cpu()) { 1818 Register xlo = opr1->as_register_lo(); 1819 Register xhi = opr1->as_register_hi(); 1820 if (opr2->is_constant() && opr2->as_jlong() == 0) { 1821 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "cannot handle otherwise"); 1822 __ orrs(Rtemp, xlo, xhi); 1823 } else if (opr2->is_register()) { 1824 Register ylo = opr2->as_register_lo(); 1825 Register yhi = opr2->as_register_hi(); 1826 if (condition == lir_cond_equal || condition == lir_cond_notEqual) { 1827 __ teq(xhi, yhi); 1828 __ teq(xlo, ylo, eq); 1829 } else { 1830 __ subs(Rtemp, xlo, ylo); 1831 __ sbcs(Rtemp, xhi, yhi); 1832 } 1833 } else { 1834 ShouldNotReachHere(); 1835 } 1836 } else if (opr1->is_single_fpu()) { 1837 if (opr2->is_constant()) { 1838 assert(opr2->as_jfloat() == 0.0f, "cannot handle otherwise"); 1839 __ cmp_zero_float(opr1->as_float_reg()); 1840 } else { 1841 __ cmp_float(opr1->as_float_reg(), opr2->as_float_reg()); 1842 } 1843 } else if (opr1->is_double_fpu()) { 1844 if (opr2->is_constant()) { 1845 assert(opr2->as_jdouble() == 0.0, "cannot handle otherwise"); 1846 __ cmp_zero_double(opr1->as_double_reg()); 1847 } else { 1848 __ cmp_double(opr1->as_double_reg(), opr2->as_double_reg()); 1849 } 1850 } else { 1851 ShouldNotReachHere(); 1852 } 1853 } 1854 1855 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 1856 const Register res = dst->as_register(); 1857 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1858 comp_op(lir_cond_unknown, left, right, op); 1859 __ fmstat(); 1860 if (code == lir_ucmp_fd2i) { // unordered is less 1861 __ mvn(res, 0, lt); 1862 __ mov(res, 1, ge); 1863 } else { // unordered is greater 1864 __ mov(res, 1, cs); 1865 __ mvn(res, 0, cc); 1866 } 1867 __ mov(res, 0, eq); 1868 1869 } else { 1870 assert(code == lir_cmp_l2i, "must be"); 1871 1872 Label done; 1873 const Register xlo = left->as_register_lo(); 1874 const Register xhi = left->as_register_hi(); 1875 const Register ylo = right->as_register_lo(); 1876 const Register yhi = right->as_register_hi(); 1877 __ cmp(xhi, yhi); 1878 __ mov(res, 1, gt); 1879 __ mvn(res, 0, lt); 1880 __ b(done, ne); 1881 __ subs(res, xlo, ylo); 1882 __ mov(res, 1, hi); 1883 __ mvn(res, 0, lo); 1884 __ bind(done); 1885 } 1886 } 1887 1888 1889 void LIR_Assembler::align_call(LIR_Code code) { 1890 // Not needed 1891 } 1892 1893 1894 void LIR_Assembler::call(LIR_OpJavaCall *op, relocInfo::relocType rtype) { 1895 int ret_addr_offset = __ patchable_call(op->addr(), rtype); 1896 assert(ret_addr_offset == __ offset(), "embedded return address not allowed"); 1897 add_call_info_here(op->info()); 1898 } 1899 1900 1901 void LIR_Assembler::ic_call(LIR_OpJavaCall *op) { 1902 bool near_range = __ cache_fully_reachable(); 1903 address oop_address = pc(); 1904 1905 bool use_movw = VM_Version::supports_movw(); 1906 1907 // Ricklass may contain something that is not a metadata pointer so 1908 // mov_metadata can't be used 1909 InlinedAddress value((address)Universe::non_oop_word()); 1910 InlinedAddress addr(op->addr()); 1911 if (use_movw) { 1912 __ movw(Ricklass, ((unsigned int)Universe::non_oop_word()) & 0xffff); 1913 __ movt(Ricklass, ((unsigned int)Universe::non_oop_word()) >> 16); 1914 } else { 1915 // No movw/movt, must be load a pc relative value but no 1916 // relocation so no metadata table to load from. 1917 // Use a b instruction rather than a bl, inline constant after the 1918 // branch, use a PC relative ldr to load the constant, arrange for 1919 // the call to return after the constant(s). 1920 __ ldr_literal(Ricklass, value); 1921 } 1922 __ relocate(virtual_call_Relocation::spec(oop_address)); 1923 if (near_range && use_movw) { 1924 __ bl(op->addr()); 1925 } else { 1926 Label call_return; 1927 __ adr(LR, call_return); 1928 if (near_range) { 1929 __ b(op->addr()); 1930 } else { 1931 __ indirect_jump(addr, Rtemp); 1932 __ bind_literal(addr); 1933 } 1934 if (!use_movw) { 1935 __ bind_literal(value); 1936 } 1937 __ bind(call_return); 1938 } 1939 add_call_info(code_offset(), op->info()); 1940 } 1941 1942 void LIR_Assembler::emit_static_call_stub() { 1943 address call_pc = __ pc(); 1944 address stub = __ start_a_stub(call_stub_size()); 1945 if (stub == NULL) { 1946 BAILOUT("static call stub overflow"); 1947 } 1948 1949 DEBUG_ONLY(int offset = code_offset();) 1950 1951 InlinedMetadata metadata_literal(NULL); 1952 __ relocate(static_stub_Relocation::spec(call_pc)); 1953 // If not a single instruction, NativeMovConstReg::next_instruction_address() 1954 // must jump over the whole following ldr_literal. 1955 // (See CompiledStaticCall::set_to_interpreted()) 1956 #ifdef ASSERT 1957 address ldr_site = __ pc(); 1958 #endif 1959 __ ldr_literal(Rmethod, metadata_literal); 1960 assert(nativeMovConstReg_at(ldr_site)->next_instruction_address() == __ pc(), "Fix ldr_literal or its parsing"); 1961 bool near_range = __ cache_fully_reachable(); 1962 InlinedAddress dest((address)-1); 1963 if (near_range) { 1964 address branch_site = __ pc(); 1965 __ b(branch_site); // b to self maps to special NativeJump -1 destination 1966 } else { 1967 __ indirect_jump(dest, Rtemp); 1968 } 1969 __ bind_literal(metadata_literal); // includes spec_for_immediate reloc 1970 if (!near_range) { 1971 __ bind_literal(dest); // special NativeJump -1 destination 1972 } 1973 1974 assert(code_offset() - offset <= call_stub_size(), "overflow"); 1975 __ end_a_stub(); 1976 } 1977 1978 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 1979 assert(exceptionOop->as_register() == Rexception_obj, "must match"); 1980 assert(exceptionPC->as_register() == Rexception_pc, "must match"); 1981 info->add_register_oop(exceptionOop); 1982 1983 Runtime1::StubID handle_id = compilation()->has_fpu_code() ? 1984 Runtime1::handle_exception_id : 1985 Runtime1::handle_exception_nofpu_id; 1986 Label return_address; 1987 __ adr(Rexception_pc, return_address); 1988 __ call(Runtime1::entry_for(handle_id), relocInfo::runtime_call_type); 1989 __ bind(return_address); 1990 add_call_info_here(info); // for exception handler 1991 } 1992 1993 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 1994 assert(exceptionOop->as_register() == Rexception_obj, "must match"); 1995 __ b(_unwind_handler_entry); 1996 } 1997 1998 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 1999 AsmShift shift = lsl; 2000 switch (code) { 2001 case lir_shl: shift = lsl; break; 2002 case lir_shr: shift = asr; break; 2003 case lir_ushr: shift = lsr; break; 2004 default: ShouldNotReachHere(); 2005 } 2006 2007 if (dest->is_single_cpu()) { 2008 __ andr(Rtemp, count->as_register(), 31); 2009 __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, Rtemp)); 2010 } else if (dest->is_double_cpu()) { 2011 Register dest_lo = dest->as_register_lo(); 2012 Register dest_hi = dest->as_register_hi(); 2013 Register src_lo = left->as_register_lo(); 2014 Register src_hi = left->as_register_hi(); 2015 Register Rcount = count->as_register(); 2016 // Resolve possible register conflicts 2017 if (shift == lsl && dest_hi == src_lo) { 2018 dest_hi = Rtemp; 2019 } else if (shift != lsl && dest_lo == src_hi) { 2020 dest_lo = Rtemp; 2021 } else if (dest_lo == src_lo && dest_hi == src_hi) { 2022 dest_lo = Rtemp; 2023 } else if (dest_lo == Rcount || dest_hi == Rcount) { 2024 Rcount = Rtemp; 2025 } 2026 __ andr(Rcount, count->as_register(), 63); 2027 __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, Rcount); 2028 move_regs(dest_lo, dest->as_register_lo()); 2029 move_regs(dest_hi, dest->as_register_hi()); 2030 } else { 2031 ShouldNotReachHere(); 2032 } 2033 } 2034 2035 2036 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2037 AsmShift shift = lsl; 2038 switch (code) { 2039 case lir_shl: shift = lsl; break; 2040 case lir_shr: shift = asr; break; 2041 case lir_ushr: shift = lsr; break; 2042 default: ShouldNotReachHere(); 2043 } 2044 2045 if (dest->is_single_cpu()) { 2046 count &= 31; 2047 if (count != 0) { 2048 __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, count)); 2049 } else { 2050 move_regs(left->as_register(), dest->as_register()); 2051 } 2052 } else if (dest->is_double_cpu()) { 2053 count &= 63; 2054 if (count != 0) { 2055 Register dest_lo = dest->as_register_lo(); 2056 Register dest_hi = dest->as_register_hi(); 2057 Register src_lo = left->as_register_lo(); 2058 Register src_hi = left->as_register_hi(); 2059 // Resolve possible register conflicts 2060 if (shift == lsl && dest_hi == src_lo) { 2061 dest_hi = Rtemp; 2062 } else if (shift != lsl && dest_lo == src_hi) { 2063 dest_lo = Rtemp; 2064 } 2065 __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, count); 2066 move_regs(dest_lo, dest->as_register_lo()); 2067 move_regs(dest_hi, dest->as_register_hi()); 2068 } else { 2069 __ long_move(dest->as_register_lo(), dest->as_register_hi(), 2070 left->as_register_lo(), left->as_register_hi()); 2071 } 2072 } else { 2073 ShouldNotReachHere(); 2074 } 2075 } 2076 2077 2078 // Saves 4 given registers in reserved argument area. 2079 void LIR_Assembler::save_in_reserved_area(Register r1, Register r2, Register r3, Register r4) { 2080 verify_reserved_argument_area_size(4); 2081 __ stmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4)); 2082 } 2083 2084 // Restores 4 given registers from reserved argument area. 2085 void LIR_Assembler::restore_from_reserved_area(Register r1, Register r2, Register r3, Register r4) { 2086 __ ldmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4), no_writeback); 2087 } 2088 2089 2090 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 2091 ciArrayKlass* default_type = op->expected_type(); 2092 Register src = op->src()->as_register(); 2093 Register src_pos = op->src_pos()->as_register(); 2094 Register dst = op->dst()->as_register(); 2095 Register dst_pos = op->dst_pos()->as_register(); 2096 Register length = op->length()->as_register(); 2097 Register tmp = op->tmp()->as_register(); 2098 Register tmp2 = Rtemp; 2099 2100 assert(src == R0 && src_pos == R1 && dst == R2 && dst_pos == R3, "code assumption"); 2101 2102 CodeStub* stub = op->stub(); 2103 2104 int flags = op->flags(); 2105 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; 2106 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 2107 2108 // If we don't know anything or it's an object array, just go through the generic arraycopy 2109 if (default_type == NULL) { 2110 2111 // save arguments, because they will be killed by a runtime call 2112 save_in_reserved_area(R0, R1, R2, R3); 2113 2114 // pass length argument on SP[0] 2115 __ str(length, Address(SP, -2*wordSize, pre_indexed)); // 2 words for a proper stack alignment 2116 2117 address copyfunc_addr = StubRoutines::generic_arraycopy(); 2118 assert(copyfunc_addr != NULL, "generic arraycopy stub required"); 2119 #ifndef PRODUCT 2120 if (PrintC1Statistics) { 2121 __ inc_counter((address)&Runtime1::_generic_arraycopystub_cnt, tmp, tmp2); 2122 } 2123 #endif // !PRODUCT 2124 // the stub is in the code cache so close enough 2125 __ call(copyfunc_addr, relocInfo::runtime_call_type); 2126 2127 __ add(SP, SP, 2*wordSize); 2128 2129 __ cbz_32(R0, *stub->continuation()); 2130 2131 __ mvn_32(tmp, R0); 2132 restore_from_reserved_area(R0, R1, R2, R3); // load saved arguments in slow case only 2133 __ sub_32(length, length, tmp); 2134 __ add_32(src_pos, src_pos, tmp); 2135 __ add_32(dst_pos, dst_pos, tmp); 2136 2137 __ b(*stub->entry()); 2138 2139 __ bind(*stub->continuation()); 2140 return; 2141 } 2142 2143 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), 2144 "must be true at this point"); 2145 int elem_size = type2aelembytes(basic_type); 2146 int shift = exact_log2(elem_size); 2147 2148 // Check for NULL 2149 if (flags & LIR_OpArrayCopy::src_null_check) { 2150 if (flags & LIR_OpArrayCopy::dst_null_check) { 2151 __ cmp(src, 0); 2152 __ cond_cmp(dst, 0, ne); // make one instruction shorter if both checks are needed 2153 __ b(*stub->entry(), eq); 2154 } else { 2155 __ cbz(src, *stub->entry()); 2156 } 2157 } else if (flags & LIR_OpArrayCopy::dst_null_check) { 2158 __ cbz(dst, *stub->entry()); 2159 } 2160 2161 // If the compiler was not able to prove that exact type of the source or the destination 2162 // of the arraycopy is an array type, check at runtime if the source or the destination is 2163 // an instance type. 2164 if (flags & LIR_OpArrayCopy::type_check) { 2165 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { 2166 __ load_klass(tmp, dst); 2167 __ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2168 __ mov_slow(tmp, Klass::_lh_neutral_value); 2169 __ cmp_32(tmp2, tmp); 2170 __ b(*stub->entry(), ge); 2171 } 2172 2173 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { 2174 __ load_klass(tmp, src); 2175 __ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2176 __ mov_slow(tmp, Klass::_lh_neutral_value); 2177 __ cmp_32(tmp2, tmp); 2178 __ b(*stub->entry(), ge); 2179 } 2180 } 2181 2182 // Check if negative 2183 const int all_positive_checks = LIR_OpArrayCopy::src_pos_positive_check | 2184 LIR_OpArrayCopy::dst_pos_positive_check | 2185 LIR_OpArrayCopy::length_positive_check; 2186 switch (flags & all_positive_checks) { 2187 case LIR_OpArrayCopy::src_pos_positive_check: 2188 __ branch_if_negative_32(src_pos, *stub->entry()); 2189 break; 2190 case LIR_OpArrayCopy::dst_pos_positive_check: 2191 __ branch_if_negative_32(dst_pos, *stub->entry()); 2192 break; 2193 case LIR_OpArrayCopy::length_positive_check: 2194 __ branch_if_negative_32(length, *stub->entry()); 2195 break; 2196 case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::dst_pos_positive_check: 2197 __ branch_if_any_negative_32(src_pos, dst_pos, tmp, *stub->entry()); 2198 break; 2199 case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::length_positive_check: 2200 __ branch_if_any_negative_32(src_pos, length, tmp, *stub->entry()); 2201 break; 2202 case LIR_OpArrayCopy::dst_pos_positive_check | LIR_OpArrayCopy::length_positive_check: 2203 __ branch_if_any_negative_32(dst_pos, length, tmp, *stub->entry()); 2204 break; 2205 case all_positive_checks: 2206 __ branch_if_any_negative_32(src_pos, dst_pos, length, tmp, *stub->entry()); 2207 break; 2208 default: 2209 assert((flags & all_positive_checks) == 0, "the last option"); 2210 } 2211 2212 // Range checks 2213 if (flags & LIR_OpArrayCopy::src_range_check) { 2214 __ ldr_s32(tmp2, Address(src, arrayOopDesc::length_offset_in_bytes())); 2215 __ add_32(tmp, src_pos, length); 2216 __ cmp_32(tmp, tmp2); 2217 __ b(*stub->entry(), hi); 2218 } 2219 if (flags & LIR_OpArrayCopy::dst_range_check) { 2220 __ ldr_s32(tmp2, Address(dst, arrayOopDesc::length_offset_in_bytes())); 2221 __ add_32(tmp, dst_pos, length); 2222 __ cmp_32(tmp, tmp2); 2223 __ b(*stub->entry(), hi); 2224 } 2225 2226 // Check if src and dst are of the same type 2227 if (flags & LIR_OpArrayCopy::type_check) { 2228 // We don't know the array types are compatible 2229 if (basic_type != T_OBJECT) { 2230 // Simple test for basic type arrays 2231 if (UseCompressedClassPointers) { 2232 // We don't need decode because we just need to compare 2233 __ ldr_u32(tmp, Address(src, oopDesc::klass_offset_in_bytes())); 2234 __ ldr_u32(tmp2, Address(dst, oopDesc::klass_offset_in_bytes())); 2235 __ cmp_32(tmp, tmp2); 2236 } else { 2237 __ load_klass(tmp, src); 2238 __ load_klass(tmp2, dst); 2239 __ cmp(tmp, tmp2); 2240 } 2241 __ b(*stub->entry(), ne); 2242 } else { 2243 // For object arrays, if src is a sub class of dst then we can 2244 // safely do the copy. 2245 Label cont, slow; 2246 2247 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2248 2249 __ load_klass(tmp, src); 2250 __ load_klass(tmp2, dst); 2251 2252 // We are at a call so all live registers are saved before we 2253 // get here 2254 assert_different_registers(tmp, tmp2, R6, altFP_7_11); 2255 2256 __ check_klass_subtype_fast_path(tmp, tmp2, R6, altFP_7_11, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL); 2257 2258 __ mov(R6, R0); 2259 __ mov(altFP_7_11, R1); 2260 __ mov(R0, tmp); 2261 __ mov(R1, tmp2); 2262 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); // does not blow any registers except R0, LR and Rtemp 2263 __ cmp_32(R0, 0); 2264 __ mov(R0, R6); 2265 __ mov(R1, altFP_7_11); 2266 2267 if (copyfunc_addr != NULL) { // use stub if available 2268 // src is not a sub class of dst so we have to do a 2269 // per-element check. 2270 2271 __ b(cont, ne); 2272 2273 __ bind(slow); 2274 2275 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2276 if ((flags & mask) != mask) { 2277 // Check that at least both of them object arrays. 2278 assert(flags & mask, "one of the two should be known to be an object array"); 2279 2280 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2281 __ load_klass(tmp, src); 2282 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2283 __ load_klass(tmp, dst); 2284 } 2285 int lh_offset = in_bytes(Klass::layout_helper_offset()); 2286 2287 __ ldr_u32(tmp2, Address(tmp, lh_offset)); 2288 2289 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2290 __ mov_slow(tmp, objArray_lh); 2291 __ cmp_32(tmp, tmp2); 2292 __ b(*stub->entry(), ne); 2293 } 2294 2295 save_in_reserved_area(R0, R1, R2, R3); 2296 2297 Register src_ptr = R0; 2298 Register dst_ptr = R1; 2299 Register len = R2; 2300 Register chk_off = R3; 2301 Register super_k = tmp; 2302 2303 __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2304 __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift); 2305 2306 __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2307 __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift); 2308 __ load_klass(tmp, dst); 2309 2310 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 2311 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2312 2313 __ ldr(super_k, Address(tmp, ek_offset)); 2314 2315 __ mov(len, length); 2316 __ ldr_u32(chk_off, Address(super_k, sco_offset)); 2317 __ push(super_k); 2318 2319 __ call(copyfunc_addr, relocInfo::runtime_call_type); 2320 2321 #ifndef PRODUCT 2322 if (PrintC1Statistics) { 2323 Label failed; 2324 __ cbnz_32(R0, failed); 2325 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, tmp, tmp2); 2326 __ bind(failed); 2327 } 2328 #endif // PRODUCT 2329 2330 __ add(SP, SP, wordSize); // Drop super_k argument 2331 2332 __ cbz_32(R0, *stub->continuation()); 2333 __ mvn_32(tmp, R0); 2334 2335 // load saved arguments in slow case only 2336 restore_from_reserved_area(R0, R1, R2, R3); 2337 2338 __ sub_32(length, length, tmp); 2339 __ add_32(src_pos, src_pos, tmp); 2340 __ add_32(dst_pos, dst_pos, tmp); 2341 2342 #ifndef PRODUCT 2343 if (PrintC1Statistics) { 2344 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, tmp, tmp2); 2345 } 2346 #endif 2347 2348 __ b(*stub->entry()); 2349 2350 __ bind(cont); 2351 } else { 2352 __ b(*stub->entry(), eq); 2353 __ bind(cont); 2354 } 2355 } 2356 } 2357 2358 #ifndef PRODUCT 2359 if (PrintC1Statistics) { 2360 address counter = Runtime1::arraycopy_count_address(basic_type); 2361 __ inc_counter(counter, tmp, tmp2); 2362 } 2363 #endif // !PRODUCT 2364 2365 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2366 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2367 const char *name; 2368 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2369 2370 Register src_ptr = R0; 2371 Register dst_ptr = R1; 2372 Register len = R2; 2373 2374 __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2375 __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift); 2376 2377 __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2378 __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift); 2379 2380 __ mov(len, length); 2381 2382 __ call(entry, relocInfo::runtime_call_type); 2383 2384 __ bind(*stub->continuation()); 2385 } 2386 2387 #ifdef ASSERT 2388 // emit run-time assertion 2389 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2390 assert(op->code() == lir_assert, "must be"); 2391 2392 if (op->in_opr1()->is_valid()) { 2393 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 2394 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 2395 } else { 2396 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 2397 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 2398 } 2399 2400 Label ok; 2401 if (op->condition() != lir_cond_always) { 2402 AsmCondition acond = al; 2403 switch (op->condition()) { 2404 case lir_cond_equal: acond = eq; break; 2405 case lir_cond_notEqual: acond = ne; break; 2406 case lir_cond_less: acond = lt; break; 2407 case lir_cond_lessEqual: acond = le; break; 2408 case lir_cond_greaterEqual: acond = ge; break; 2409 case lir_cond_greater: acond = gt; break; 2410 case lir_cond_aboveEqual: acond = hs; break; 2411 case lir_cond_belowEqual: acond = ls; break; 2412 default: ShouldNotReachHere(); 2413 } 2414 __ b(ok, acond); 2415 } 2416 if (op->halt()) { 2417 const char* str = __ code_string(op->msg()); 2418 __ stop(str); 2419 } else { 2420 breakpoint(); 2421 } 2422 __ bind(ok); 2423 } 2424 #endif // ASSERT 2425 2426 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 2427 fatal("CRC32 intrinsic is not implemented on this platform"); 2428 } 2429 2430 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2431 Register obj = op->obj_opr()->as_pointer_register(); 2432 Register hdr = op->hdr_opr()->as_pointer_register(); 2433 Register lock = op->lock_opr()->as_pointer_register(); 2434 Register tmp = op->scratch_opr()->is_illegal() ? noreg : 2435 op->scratch_opr()->as_pointer_register(); 2436 2437 if (!UseFastLocking) { 2438 __ b(*op->stub()->entry()); 2439 } else if (op->code() == lir_lock) { 2440 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2441 int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 2442 if (op->info() != NULL) { 2443 add_debug_info_for_null_check(null_check_offset, op->info()); 2444 } 2445 } else if (op->code() == lir_unlock) { 2446 __ unlock_object(hdr, obj, lock, tmp, *op->stub()->entry()); 2447 } else { 2448 ShouldNotReachHere(); 2449 } 2450 __ bind(*op->stub()->continuation()); 2451 } 2452 2453 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2454 Register obj = op->obj()->as_pointer_register(); 2455 Register result = op->result_opr()->as_pointer_register(); 2456 2457 CodeEmitInfo* info = op->info(); 2458 if (info != NULL) { 2459 add_debug_info_for_null_check_here(info); 2460 } 2461 2462 if (UseCompressedClassPointers) { // On 32 bit arm?? 2463 __ ldr_u32(result, Address(obj, oopDesc::klass_offset_in_bytes())); 2464 } else { 2465 __ ldr(result, Address(obj, oopDesc::klass_offset_in_bytes())); 2466 } 2467 } 2468 2469 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2470 ciMethod* method = op->profiled_method(); 2471 int bci = op->profiled_bci(); 2472 ciMethod* callee = op->profiled_callee(); 2473 2474 // Update counter for all call types 2475 ciMethodData* md = method->method_data_or_null(); 2476 assert(md != NULL, "Sanity"); 2477 ciProfileData* data = md->bci_to_data(bci); 2478 assert(data != NULL && data->is_CounterData(), "need CounterData for calls"); 2479 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2480 Register mdo = op->mdo()->as_register(); 2481 assert(op->tmp1()->is_register(), "tmp1 must be allocated"); 2482 Register tmp1 = op->tmp1()->as_pointer_register(); 2483 assert_different_registers(mdo, tmp1); 2484 __ mov_metadata(mdo, md->constant_encoding()); 2485 int mdo_offset_bias = 0; 2486 int max_offset = 4096; 2487 if (md->byte_offset_of_slot(data, CounterData::count_offset()) + data->size_in_bytes() >= max_offset) { 2488 // The offset is large so bias the mdo by the base of the slot so 2489 // that the ldr can use an immediate offset to reference the slots of the data 2490 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset()); 2491 __ mov_slow(tmp1, mdo_offset_bias); 2492 __ add(mdo, mdo, tmp1); 2493 } 2494 2495 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); 2496 // Perform additional virtual call profiling for invokevirtual and 2497 // invokeinterface bytecodes 2498 if (op->should_profile_receiver_type()) { 2499 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2500 Register recv = op->recv()->as_register(); 2501 assert_different_registers(mdo, tmp1, recv); 2502 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2503 ciKlass* known_klass = op->known_holder(); 2504 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { 2505 // We know the type that will be seen at this call site; we can 2506 // statically update the MethodData* rather than needing to do 2507 // dynamic tests on the receiver type 2508 2509 // NOTE: we should probably put a lock around this search to 2510 // avoid collisions by concurrent compilations 2511 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2512 uint i; 2513 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2514 ciKlass* receiver = vc_data->receiver(i); 2515 if (known_klass->equals(receiver)) { 2516 Address data_addr(mdo, md->byte_offset_of_slot(data, 2517 VirtualCallData::receiver_count_offset(i)) - 2518 mdo_offset_bias); 2519 __ ldr(tmp1, data_addr); 2520 __ add(tmp1, tmp1, DataLayout::counter_increment); 2521 __ str(tmp1, data_addr); 2522 return; 2523 } 2524 } 2525 2526 // Receiver type not found in profile data; select an empty slot 2527 2528 // Note that this is less efficient than it should be because it 2529 // always does a write to the receiver part of the 2530 // VirtualCallData rather than just the first time 2531 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2532 ciKlass* receiver = vc_data->receiver(i); 2533 if (receiver == NULL) { 2534 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - 2535 mdo_offset_bias); 2536 __ mov_metadata(tmp1, known_klass->constant_encoding()); 2537 __ str(tmp1, recv_addr); 2538 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - 2539 mdo_offset_bias); 2540 __ ldr(tmp1, data_addr); 2541 __ add(tmp1, tmp1, DataLayout::counter_increment); 2542 __ str(tmp1, data_addr); 2543 return; 2544 } 2545 } 2546 } else { 2547 __ load_klass(recv, recv); 2548 Label update_done; 2549 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done); 2550 // Receiver did not match any saved receiver and there is no empty row for it. 2551 // Increment total counter to indicate polymorphic case. 2552 __ ldr(tmp1, counter_addr); 2553 __ add(tmp1, tmp1, DataLayout::counter_increment); 2554 __ str(tmp1, counter_addr); 2555 2556 __ bind(update_done); 2557 } 2558 } else { 2559 // Static call 2560 __ ldr(tmp1, counter_addr); 2561 __ add(tmp1, tmp1, DataLayout::counter_increment); 2562 __ str(tmp1, counter_addr); 2563 } 2564 } 2565 2566 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2567 fatal("Type profiling not implemented on this platform"); 2568 } 2569 2570 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 2571 Unimplemented(); 2572 } 2573 2574 2575 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 2576 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); 2577 __ add_slow(dst->as_pointer_register(), mon_addr.base(), mon_addr.disp()); 2578 } 2579 2580 2581 void LIR_Assembler::align_backward_branch_target() { 2582 // Some ARM processors do better with 8-byte branch target alignment 2583 __ align(8); 2584 } 2585 2586 2587 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2588 // tmp must be unused 2589 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2590 2591 if (left->is_single_cpu()) { 2592 assert (dest->type() == T_INT, "unexpected result type"); 2593 assert (left->type() == T_INT, "unexpected left type"); 2594 __ neg_32(dest->as_register(), left->as_register()); 2595 } else if (left->is_double_cpu()) { 2596 Register dest_lo = dest->as_register_lo(); 2597 Register dest_hi = dest->as_register_hi(); 2598 Register src_lo = left->as_register_lo(); 2599 Register src_hi = left->as_register_hi(); 2600 if (dest_lo == src_hi) { 2601 dest_lo = Rtemp; 2602 } 2603 __ rsbs(dest_lo, src_lo, 0); 2604 __ rsc(dest_hi, src_hi, 0); 2605 move_regs(dest_lo, dest->as_register_lo()); 2606 } else if (left->is_single_fpu()) { 2607 __ neg_float(dest->as_float_reg(), left->as_float_reg()); 2608 } else if (left->is_double_fpu()) { 2609 __ neg_double(dest->as_double_reg(), left->as_double_reg()); 2610 } else { 2611 ShouldNotReachHere(); 2612 } 2613 } 2614 2615 2616 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2617 assert(patch_code == lir_patch_none, "Patch code not supported"); 2618 LIR_Address* addr = addr_opr->as_address_ptr(); 2619 if (addr->index()->is_illegal()) { 2620 jint c = addr->disp(); 2621 if (!Assembler::is_arith_imm_in_range(c)) { 2622 BAILOUT("illegal arithmetic operand"); 2623 } 2624 __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), c); 2625 } else { 2626 assert(addr->disp() == 0, "cannot handle otherwise"); 2627 __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), 2628 AsmOperand(addr->index()->as_pointer_register(), lsl, addr->scale())); 2629 } 2630 } 2631 2632 2633 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2634 assert(!tmp->is_valid(), "don't need temporary"); 2635 __ call(dest); 2636 if (info != NULL) { 2637 add_call_info_here(info); 2638 } 2639 } 2640 2641 2642 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2643 assert(src->is_double_cpu() && dest->is_address() || 2644 src->is_address() && dest->is_double_cpu(), 2645 "Simple move_op is called for all other cases"); 2646 2647 int null_check_offset; 2648 if (dest->is_address()) { 2649 // Store 2650 const LIR_Address* addr = dest->as_address_ptr(); 2651 const Register src_lo = src->as_register_lo(); 2652 const Register src_hi = src->as_register_hi(); 2653 assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already"); 2654 2655 if (src_lo < src_hi) { 2656 null_check_offset = __ offset(); 2657 __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(src_hi)); 2658 } else { 2659 assert(src_lo < Rtemp, "Rtemp is higher than any allocatable register"); 2660 __ mov(Rtemp, src_hi); 2661 null_check_offset = __ offset(); 2662 __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(Rtemp)); 2663 } 2664 } else { 2665 // Load 2666 const LIR_Address* addr = src->as_address_ptr(); 2667 const Register dest_lo = dest->as_register_lo(); 2668 const Register dest_hi = dest->as_register_hi(); 2669 assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already"); 2670 2671 null_check_offset = __ offset(); 2672 if (dest_lo < dest_hi) { 2673 __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(dest_hi)); 2674 } else { 2675 assert(dest_lo < Rtemp, "Rtemp is higher than any allocatable register"); 2676 __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(Rtemp)); 2677 __ mov(dest_hi, Rtemp); 2678 } 2679 } 2680 2681 if (info != NULL) { 2682 add_debug_info_for_null_check(null_check_offset, info); 2683 } 2684 } 2685 2686 2687 void LIR_Assembler::membar() { 2688 __ membar(MacroAssembler::StoreLoad, Rtemp); 2689 } 2690 2691 void LIR_Assembler::membar_acquire() { 2692 __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp); 2693 } 2694 2695 void LIR_Assembler::membar_release() { 2696 __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp); 2697 } 2698 2699 void LIR_Assembler::membar_loadload() { 2700 __ membar(MacroAssembler::LoadLoad, Rtemp); 2701 } 2702 2703 void LIR_Assembler::membar_storestore() { 2704 __ membar(MacroAssembler::StoreStore, Rtemp); 2705 } 2706 2707 void LIR_Assembler::membar_loadstore() { 2708 __ membar(MacroAssembler::LoadStore, Rtemp); 2709 } 2710 2711 void LIR_Assembler::membar_storeload() { 2712 __ membar(MacroAssembler::StoreLoad, Rtemp); 2713 } 2714 2715 void LIR_Assembler::on_spin_wait() { 2716 Unimplemented(); 2717 } 2718 2719 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2720 // Not used on ARM 2721 Unimplemented(); 2722 } 2723 2724 void LIR_Assembler::peephole(LIR_List* lir) { 2725 LIR_OpList* inst = lir->instructions_list(); 2726 const int inst_length = inst->length(); 2727 for (int i = 0; i < inst_length; i++) { 2728 LIR_Op* op = inst->at(i); 2729 switch (op->code()) { 2730 case lir_cmp: { 2731 // Replace: 2732 // cmp rX, y 2733 // cmove [EQ] y, z, rX 2734 // with 2735 // cmp rX, y 2736 // cmove [EQ] illegalOpr, z, rX 2737 // 2738 // or 2739 // cmp rX, y 2740 // cmove [NE] z, y, rX 2741 // with 2742 // cmp rX, y 2743 // cmove [NE] z, illegalOpr, rX 2744 // 2745 // moves from illegalOpr should be removed when converting LIR to native assembly 2746 2747 LIR_Op2* cmp = op->as_Op2(); 2748 assert(cmp != NULL, "cmp LIR instruction is not an op2"); 2749 2750 if (i + 1 < inst_length) { 2751 LIR_Op2* cmove = inst->at(i + 1)->as_Op2(); 2752 if (cmove != NULL && cmove->code() == lir_cmove) { 2753 LIR_Opr cmove_res = cmove->result_opr(); 2754 bool res_is_op1 = cmove_res == cmp->in_opr1(); 2755 bool res_is_op2 = cmove_res == cmp->in_opr2(); 2756 LIR_Opr cmp_res, cmp_arg; 2757 if (res_is_op1) { 2758 cmp_res = cmp->in_opr1(); 2759 cmp_arg = cmp->in_opr2(); 2760 } else if (res_is_op2) { 2761 cmp_res = cmp->in_opr2(); 2762 cmp_arg = cmp->in_opr1(); 2763 } else { 2764 cmp_res = LIR_OprFact::illegalOpr; 2765 cmp_arg = LIR_OprFact::illegalOpr; 2766 } 2767 2768 if (cmp_res != LIR_OprFact::illegalOpr) { 2769 LIR_Condition cond = cmove->condition(); 2770 if (cond == lir_cond_equal && cmove->in_opr1() == cmp_arg) { 2771 cmove->set_in_opr1(LIR_OprFact::illegalOpr); 2772 } else if (cond == lir_cond_notEqual && cmove->in_opr2() == cmp_arg) { 2773 cmove->set_in_opr2(LIR_OprFact::illegalOpr); 2774 } 2775 } 2776 } 2777 } 2778 break; 2779 } 2780 2781 default: 2782 break; 2783 } 2784 } 2785 } 2786 2787 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 2788 assert(src->is_address(), "sanity"); 2789 Address addr = as_Address(src->as_address_ptr()); 2790 2791 if (code == lir_xchg) { 2792 } else { 2793 assert (!data->is_oop(), "xadd for oops"); 2794 } 2795 2796 __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp); 2797 2798 Label retry; 2799 __ bind(retry); 2800 2801 if (data->type() == T_INT || data->is_oop()) { 2802 Register dst = dest->as_register(); 2803 Register new_val = noreg; 2804 __ ldrex(dst, addr); 2805 if (code == lir_xadd) { 2806 Register tmp_reg = tmp->as_register(); 2807 if (data->is_constant()) { 2808 assert_different_registers(dst, tmp_reg); 2809 __ add_32(tmp_reg, dst, data->as_constant_ptr()->as_jint()); 2810 } else { 2811 assert_different_registers(dst, tmp_reg, data->as_register()); 2812 __ add_32(tmp_reg, dst, data->as_register()); 2813 } 2814 new_val = tmp_reg; 2815 } else { 2816 if (UseCompressedOops && data->is_oop()) { 2817 new_val = tmp->as_pointer_register(); 2818 } else { 2819 new_val = data->as_register(); 2820 } 2821 assert_different_registers(dst, new_val); 2822 } 2823 __ strex(Rtemp, new_val, addr); 2824 2825 } else if (data->type() == T_LONG) { 2826 Register dst_lo = dest->as_register_lo(); 2827 Register new_val_lo = noreg; 2828 Register dst_hi = dest->as_register_hi(); 2829 2830 assert(dst_hi->encoding() == dst_lo->encoding() + 1, "non aligned register pair"); 2831 assert((dst_lo->encoding() & 0x1) == 0, "misaligned register pair"); 2832 2833 __ bind(retry); 2834 __ ldrexd(dst_lo, addr); 2835 if (code == lir_xadd) { 2836 Register tmp_lo = tmp->as_register_lo(); 2837 Register tmp_hi = tmp->as_register_hi(); 2838 2839 assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair"); 2840 assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair"); 2841 2842 if (data->is_constant()) { 2843 jlong c = data->as_constant_ptr()->as_jlong(); 2844 assert((jlong)((jint)c) == c, "overflow"); 2845 assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi); 2846 __ adds(tmp_lo, dst_lo, (jint)c); 2847 __ adc(tmp_hi, dst_hi, 0); 2848 } else { 2849 Register new_val_lo = data->as_register_lo(); 2850 Register new_val_hi = data->as_register_hi(); 2851 __ adds(tmp_lo, dst_lo, new_val_lo); 2852 __ adc(tmp_hi, dst_hi, new_val_hi); 2853 assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi, new_val_lo, new_val_hi); 2854 } 2855 new_val_lo = tmp_lo; 2856 } else { 2857 new_val_lo = data->as_register_lo(); 2858 Register new_val_hi = data->as_register_hi(); 2859 2860 assert_different_registers(dst_lo, dst_hi, new_val_lo, new_val_hi); 2861 assert(new_val_hi->encoding() == new_val_lo->encoding() + 1, "non aligned register pair"); 2862 assert((new_val_lo->encoding() & 0x1) == 0, "misaligned register pair"); 2863 } 2864 __ strexd(Rtemp, new_val_lo, addr); 2865 } else { 2866 ShouldNotReachHere(); 2867 } 2868 2869 __ cbnz_32(Rtemp, retry); 2870 __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp); 2871 2872 } 2873 2874 #undef __