1 /* 2 * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_CodeStubs.hpp" 29 #include "c1/c1_Compilation.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "ci/ciArrayKlass.hpp" 35 #include "ci/ciInstance.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/gc_globals.hpp" 39 #include "nativeInst_x86.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "runtime/frame.inline.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 #include "vmreg_x86.inline.hpp" 47 48 49 // These masks are used to provide 128-bit aligned bitmasks to the XMM 50 // instructions, to allow sign-masking or sign-bit flipping. They allow 51 // fast versions of NegF/NegD and AbsF/AbsD. 52 53 // Note: 'double' and 'long long' have 32-bits alignment on x86. 54 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 55 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 56 // of 128-bits operands for SSE instructions. 57 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 58 // Store the value to a 128-bits operand. 59 operand[0] = lo; 60 operand[1] = hi; 61 return operand; 62 } 63 64 // Buffer for 128-bits masks used by SSE instructions. 65 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 66 67 // Static initialization during VM startup. 68 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 69 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 70 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000)); 71 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000)); 72 73 74 NEEDS_CLEANUP // remove this definitions ? 75 const Register IC_Klass = rax; // where the IC klass is cached 76 const Register SYNC_header = rax; // synchronization header 77 const Register SHIFT_count = rcx; // where count for shift operations must be 78 79 #define __ _masm-> 80 81 82 static void select_different_registers(Register preserve, 83 Register extra, 84 Register &tmp1, 85 Register &tmp2) { 86 if (tmp1 == preserve) { 87 assert_different_registers(tmp1, tmp2, extra); 88 tmp1 = extra; 89 } else if (tmp2 == preserve) { 90 assert_different_registers(tmp1, tmp2, extra); 91 tmp2 = extra; 92 } 93 assert_different_registers(preserve, tmp1, tmp2); 94 } 95 96 97 98 static void select_different_registers(Register preserve, 99 Register extra, 100 Register &tmp1, 101 Register &tmp2, 102 Register &tmp3) { 103 if (tmp1 == preserve) { 104 assert_different_registers(tmp1, tmp2, tmp3, extra); 105 tmp1 = extra; 106 } else if (tmp2 == preserve) { 107 assert_different_registers(tmp1, tmp2, tmp3, extra); 108 tmp2 = extra; 109 } else if (tmp3 == preserve) { 110 assert_different_registers(tmp1, tmp2, tmp3, extra); 111 tmp3 = extra; 112 } 113 assert_different_registers(preserve, tmp1, tmp2, tmp3); 114 } 115 116 117 118 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 119 if (opr->is_constant()) { 120 LIR_Const* constant = opr->as_constant_ptr(); 121 switch (constant->type()) { 122 case T_INT: { 123 return true; 124 } 125 126 default: 127 return false; 128 } 129 } 130 return false; 131 } 132 133 134 LIR_Opr LIR_Assembler::receiverOpr() { 135 return FrameMap::receiver_opr; 136 } 137 138 LIR_Opr LIR_Assembler::osrBufferPointer() { 139 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 140 } 141 142 //--------------fpu register translations----------------------- 143 144 145 address LIR_Assembler::float_constant(float f) { 146 address const_addr = __ float_constant(f); 147 if (const_addr == NULL) { 148 bailout("const section overflow"); 149 return __ code()->consts()->start(); 150 } else { 151 return const_addr; 152 } 153 } 154 155 156 address LIR_Assembler::double_constant(double d) { 157 address const_addr = __ double_constant(d); 158 if (const_addr == NULL) { 159 bailout("const section overflow"); 160 return __ code()->consts()->start(); 161 } else { 162 return const_addr; 163 } 164 } 165 166 #ifndef _LP64 167 void LIR_Assembler::fpop() { 168 __ fpop(); 169 } 170 171 void LIR_Assembler::fxch(int i) { 172 __ fxch(i); 173 } 174 175 void LIR_Assembler::fld(int i) { 176 __ fld_s(i); 177 } 178 179 void LIR_Assembler::ffree(int i) { 180 __ ffree(i); 181 } 182 #endif // !_LP64 183 184 void LIR_Assembler::breakpoint() { 185 __ int3(); 186 } 187 188 void LIR_Assembler::push(LIR_Opr opr) { 189 if (opr->is_single_cpu()) { 190 __ push_reg(opr->as_register()); 191 } else if (opr->is_double_cpu()) { 192 NOT_LP64(__ push_reg(opr->as_register_hi())); 193 __ push_reg(opr->as_register_lo()); 194 } else if (opr->is_stack()) { 195 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 196 } else if (opr->is_constant()) { 197 LIR_Const* const_opr = opr->as_constant_ptr(); 198 if (const_opr->type() == T_OBJECT) { 199 __ push_oop(const_opr->as_jobject()); 200 } else if (const_opr->type() == T_INT) { 201 __ push_jint(const_opr->as_jint()); 202 } else { 203 ShouldNotReachHere(); 204 } 205 206 } else { 207 ShouldNotReachHere(); 208 } 209 } 210 211 void LIR_Assembler::pop(LIR_Opr opr) { 212 if (opr->is_single_cpu()) { 213 __ pop_reg(opr->as_register()); 214 } else { 215 ShouldNotReachHere(); 216 } 217 } 218 219 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 220 return addr->base()->is_illegal() && addr->index()->is_illegal(); 221 } 222 223 //------------------------------------------- 224 225 Address LIR_Assembler::as_Address(LIR_Address* addr) { 226 return as_Address(addr, rscratch1); 227 } 228 229 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 230 if (addr->base()->is_illegal()) { 231 assert(addr->index()->is_illegal(), "must be illegal too"); 232 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 233 if (! __ reachable(laddr)) { 234 __ movptr(tmp, laddr.addr()); 235 Address res(tmp, 0); 236 return res; 237 } else { 238 return __ as_Address(laddr); 239 } 240 } 241 242 Register base = addr->base()->as_pointer_register(); 243 244 if (addr->index()->is_illegal()) { 245 return Address( base, addr->disp()); 246 } else if (addr->index()->is_cpu_register()) { 247 Register index = addr->index()->as_pointer_register(); 248 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 249 } else if (addr->index()->is_constant()) { 250 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 251 assert(Assembler::is_simm32(addr_offset), "must be"); 252 253 return Address(base, addr_offset); 254 } else { 255 Unimplemented(); 256 return Address(); 257 } 258 } 259 260 261 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 262 Address base = as_Address(addr); 263 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 264 } 265 266 267 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 268 return as_Address(addr); 269 } 270 271 272 void LIR_Assembler::osr_entry() { 273 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 274 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 275 ValueStack* entry_state = osr_entry->state(); 276 int number_of_locks = entry_state->locks_size(); 277 278 // we jump here if osr happens with the interpreter 279 // state set up to continue at the beginning of the 280 // loop that triggered osr - in particular, we have 281 // the following registers setup: 282 // 283 // rcx: osr buffer 284 // 285 286 // build frame 287 ciMethod* m = compilation()->method(); 288 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 289 290 // OSR buffer is 291 // 292 // locals[nlocals-1..0] 293 // monitors[0..number_of_locks] 294 // 295 // locals is a direct copy of the interpreter frame so in the osr buffer 296 // so first slot in the local array is the last local from the interpreter 297 // and last slot is local[0] (receiver) from the interpreter 298 // 299 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 300 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 301 // in the interpreter frame (the method lock if a sync method) 302 303 // Initialize monitors in the compiled activation. 304 // rcx: pointer to osr buffer 305 // 306 // All other registers are dead at this point and the locals will be 307 // copied into place by code emitted in the IR. 308 309 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 310 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 311 int monitor_offset = BytesPerWord * method()->max_locals() + 312 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1); 313 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 314 // the OSR buffer using 2 word entries: first the lock and then 315 // the oop. 316 for (int i = 0; i < number_of_locks; i++) { 317 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 318 #ifdef ASSERT 319 // verify the interpreter's monitor has a non-null object 320 { 321 Label L; 322 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD); 323 __ jcc(Assembler::notZero, L); 324 __ stop("locked object is NULL"); 325 __ bind(L); 326 } 327 #endif 328 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 329 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 330 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 331 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 332 } 333 } 334 } 335 336 337 // inline cache check; done before the frame is built. 338 int LIR_Assembler::check_icache() { 339 Register receiver = FrameMap::receiver_opr->as_register(); 340 Register ic_klass = IC_Klass; 341 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9); 342 const bool do_post_padding = VerifyOops || UseCompressedClassPointers; 343 if (!do_post_padding) { 344 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment 345 __ align(CodeEntryAlignment, __ offset() + ic_cmp_size); 346 } 347 int offset = __ offset(); 348 __ inline_cache_check(receiver, IC_Klass); 349 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct"); 350 if (do_post_padding) { 351 // force alignment after the cache check. 352 // It's been verified to be aligned if !VerifyOops 353 __ align(CodeEntryAlignment); 354 } 355 return offset; 356 } 357 358 void LIR_Assembler::clinit_barrier(ciMethod* method) { 359 assert(VM_Version::supports_fast_class_init_checks(), "sanity"); 360 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 361 362 Label L_skip_barrier; 363 Register klass = rscratch1; 364 Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg ); 365 assert(thread != noreg, "x86_32 not implemented"); 366 367 __ mov_metadata(klass, method->holder()->constant_encoding()); 368 __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/); 369 370 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 371 372 __ bind(L_skip_barrier); 373 } 374 375 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 376 jobject o = NULL; 377 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 378 __ movoop(reg, o); 379 patching_epilog(patch, lir_patch_normal, reg, info); 380 } 381 382 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 383 Metadata* o = NULL; 384 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 385 __ mov_metadata(reg, o); 386 patching_epilog(patch, lir_patch_normal, reg, info); 387 } 388 389 // This specifies the rsp decrement needed to build the frame 390 int LIR_Assembler::initial_frame_size_in_bytes() const { 391 // if rounding, must let FrameMap know! 392 393 // The frame_map records size in slots (32bit word) 394 395 // subtract two words to account for return address and link 396 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 397 } 398 399 400 int LIR_Assembler::emit_exception_handler() { 401 // if the last instruction is a call (typically to do a throw which 402 // is coming at the end after block reordering) the return address 403 // must still point into the code area in order to avoid assertion 404 // failures when searching for the corresponding bci => add a nop 405 // (was bug 5/14/1999 - gri) 406 __ nop(); 407 408 // generate code for exception handler 409 address handler_base = __ start_a_stub(exception_handler_size()); 410 if (handler_base == NULL) { 411 // not enough space left for the handler 412 bailout("exception handler overflow"); 413 return -1; 414 } 415 416 int offset = code_offset(); 417 418 // the exception oop and pc are in rax, and rdx 419 // no other registers need to be preserved, so invalidate them 420 __ invalidate_registers(false, true, true, false, true, true); 421 422 // check that there is really an exception 423 __ verify_not_null_oop(rax); 424 425 // search an exception handler (rax: exception oop, rdx: throwing pc) 426 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); 427 __ should_not_reach_here(); 428 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 429 __ end_a_stub(); 430 431 return offset; 432 } 433 434 435 // Emit the code to remove the frame from the stack in the exception 436 // unwind path. 437 int LIR_Assembler::emit_unwind_handler() { 438 #ifndef PRODUCT 439 if (CommentedAssembly) { 440 _masm->block_comment("Unwind handler"); 441 } 442 #endif 443 444 int offset = code_offset(); 445 446 // Fetch the exception from TLS and clear out exception related thread state 447 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 448 NOT_LP64(__ get_thread(rsi)); 449 __ movptr(rax, Address(thread, JavaThread::exception_oop_offset())); 450 __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD); 451 __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD); 452 453 __ bind(_unwind_handler_entry); 454 __ verify_not_null_oop(rax); 455 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 456 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 457 } 458 459 // Preform needed unlocking 460 MonitorExitStub* stub = NULL; 461 if (method()->is_synchronized()) { 462 monitor_address(0, FrameMap::rax_opr); 463 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 464 __ unlock_object(rdi, rsi, rax, *stub->entry()); 465 __ bind(*stub->continuation()); 466 } 467 468 if (compilation()->env()->dtrace_method_probes()) { 469 #ifdef _LP64 470 __ mov(rdi, r15_thread); 471 __ mov_metadata(rsi, method()->constant_encoding()); 472 #else 473 __ get_thread(rax); 474 __ movptr(Address(rsp, 0), rax); 475 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding()); 476 #endif 477 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 478 } 479 480 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 481 __ mov(rax, rbx); // Restore the exception 482 } 483 484 // remove the activation and dispatch to the unwind handler 485 __ remove_frame(initial_frame_size_in_bytes()); 486 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id))); 487 488 // Emit the slow path assembly 489 if (stub != NULL) { 490 stub->emit_code(this); 491 } 492 493 return offset; 494 } 495 496 497 int LIR_Assembler::emit_deopt_handler() { 498 // if the last instruction is a call (typically to do a throw which 499 // is coming at the end after block reordering) the return address 500 // must still point into the code area in order to avoid assertion 501 // failures when searching for the corresponding bci => add a nop 502 // (was bug 5/14/1999 - gri) 503 __ nop(); 504 505 // generate code for exception handler 506 address handler_base = __ start_a_stub(deopt_handler_size()); 507 if (handler_base == NULL) { 508 // not enough space left for the handler 509 bailout("deopt handler overflow"); 510 return -1; 511 } 512 513 int offset = code_offset(); 514 InternalAddress here(__ pc()); 515 516 __ pushptr(here.addr()); 517 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 518 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 519 __ end_a_stub(); 520 521 return offset; 522 } 523 524 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 525 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 526 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 527 assert(result->fpu() == 0, "result must already be on TOS"); 528 } 529 530 // Pop the stack before the safepoint code 531 __ remove_frame(initial_frame_size_in_bytes()); 532 533 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 534 __ reserved_stack_check(); 535 } 536 537 // Note: we do not need to round double result; float result has the right precision 538 // the poll sets the condition code, but no data registers 539 540 #ifdef _LP64 541 const Register thread = r15_thread; 542 #else 543 const Register thread = rbx; 544 __ get_thread(thread); 545 #endif 546 code_stub->set_safepoint_offset(__ offset()); 547 __ relocate(relocInfo::poll_return_type); 548 __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */); 549 __ ret(0); 550 } 551 552 553 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 554 guarantee(info != NULL, "Shouldn't be NULL"); 555 int offset = __ offset(); 556 #ifdef _LP64 557 const Register poll_addr = rscratch1; 558 __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset())); 559 #else 560 assert(tmp->is_cpu_register(), "needed"); 561 const Register poll_addr = tmp->as_register(); 562 __ get_thread(poll_addr); 563 __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset()))); 564 #endif 565 add_debug_info_for_branch(info); 566 __ relocate(relocInfo::poll_type); 567 address pre_pc = __ pc(); 568 __ testl(rax, Address(poll_addr, 0)); 569 address post_pc = __ pc(); 570 guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length"); 571 return offset; 572 } 573 574 575 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 576 if (from_reg != to_reg) __ mov(to_reg, from_reg); 577 } 578 579 void LIR_Assembler::swap_reg(Register a, Register b) { 580 __ xchgptr(a, b); 581 } 582 583 584 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 585 assert(src->is_constant(), "should not call otherwise"); 586 assert(dest->is_register(), "should not call otherwise"); 587 LIR_Const* c = src->as_constant_ptr(); 588 589 switch (c->type()) { 590 case T_INT: { 591 assert(patch_code == lir_patch_none, "no patching handled here"); 592 __ movl(dest->as_register(), c->as_jint()); 593 break; 594 } 595 596 case T_ADDRESS: { 597 assert(patch_code == lir_patch_none, "no patching handled here"); 598 __ movptr(dest->as_register(), c->as_jint()); 599 break; 600 } 601 602 case T_LONG: { 603 assert(patch_code == lir_patch_none, "no patching handled here"); 604 #ifdef _LP64 605 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 606 #else 607 __ movptr(dest->as_register_lo(), c->as_jint_lo()); 608 __ movptr(dest->as_register_hi(), c->as_jint_hi()); 609 #endif // _LP64 610 break; 611 } 612 613 case T_OBJECT: { 614 if (patch_code != lir_patch_none) { 615 jobject2reg_with_patching(dest->as_register(), info); 616 } else { 617 __ movoop(dest->as_register(), c->as_jobject()); 618 } 619 break; 620 } 621 622 case T_METADATA: { 623 if (patch_code != lir_patch_none) { 624 klass2reg_with_patching(dest->as_register(), info); 625 } else { 626 __ mov_metadata(dest->as_register(), c->as_metadata()); 627 } 628 break; 629 } 630 631 case T_FLOAT: { 632 if (dest->is_single_xmm()) { 633 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) { 634 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 635 } else { 636 __ movflt(dest->as_xmm_float_reg(), 637 InternalAddress(float_constant(c->as_jfloat()))); 638 } 639 } else { 640 #ifndef _LP64 641 assert(dest->is_single_fpu(), "must be"); 642 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 643 if (c->is_zero_float()) { 644 __ fldz(); 645 } else if (c->is_one_float()) { 646 __ fld1(); 647 } else { 648 __ fld_s (InternalAddress(float_constant(c->as_jfloat()))); 649 } 650 #else 651 ShouldNotReachHere(); 652 #endif // !_LP64 653 } 654 break; 655 } 656 657 case T_DOUBLE: { 658 if (dest->is_double_xmm()) { 659 if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) { 660 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 661 } else { 662 __ movdbl(dest->as_xmm_double_reg(), 663 InternalAddress(double_constant(c->as_jdouble()))); 664 } 665 } else { 666 #ifndef _LP64 667 assert(dest->is_double_fpu(), "must be"); 668 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 669 if (c->is_zero_double()) { 670 __ fldz(); 671 } else if (c->is_one_double()) { 672 __ fld1(); 673 } else { 674 __ fld_d (InternalAddress(double_constant(c->as_jdouble()))); 675 } 676 #else 677 ShouldNotReachHere(); 678 #endif // !_LP64 679 } 680 break; 681 } 682 683 default: 684 ShouldNotReachHere(); 685 } 686 } 687 688 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 689 assert(src->is_constant(), "should not call otherwise"); 690 assert(dest->is_stack(), "should not call otherwise"); 691 LIR_Const* c = src->as_constant_ptr(); 692 693 switch (c->type()) { 694 case T_INT: // fall through 695 case T_FLOAT: 696 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 697 break; 698 699 case T_ADDRESS: 700 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 701 break; 702 703 case T_OBJECT: 704 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject()); 705 break; 706 707 case T_LONG: // fall through 708 case T_DOUBLE: 709 #ifdef _LP64 710 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 711 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits()); 712 #else 713 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 714 lo_word_offset_in_bytes), c->as_jint_lo_bits()); 715 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 716 hi_word_offset_in_bytes), c->as_jint_hi_bits()); 717 #endif // _LP64 718 break; 719 720 default: 721 ShouldNotReachHere(); 722 } 723 } 724 725 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 726 assert(src->is_constant(), "should not call otherwise"); 727 assert(dest->is_address(), "should not call otherwise"); 728 LIR_Const* c = src->as_constant_ptr(); 729 LIR_Address* addr = dest->as_address_ptr(); 730 731 int null_check_here = code_offset(); 732 switch (type) { 733 case T_INT: // fall through 734 case T_FLOAT: 735 __ movl(as_Address(addr), c->as_jint_bits()); 736 break; 737 738 case T_ADDRESS: 739 __ movptr(as_Address(addr), c->as_jint_bits()); 740 break; 741 742 case T_OBJECT: // fall through 743 case T_ARRAY: 744 if (c->as_jobject() == NULL) { 745 if (UseCompressedOops && !wide) { 746 __ movl(as_Address(addr), (int32_t)NULL_WORD); 747 } else { 748 #ifdef _LP64 749 __ xorptr(rscratch1, rscratch1); 750 null_check_here = code_offset(); 751 __ movptr(as_Address(addr), rscratch1); 752 #else 753 __ movptr(as_Address(addr), NULL_WORD); 754 #endif 755 } 756 } else { 757 if (is_literal_address(addr)) { 758 ShouldNotReachHere(); 759 __ movoop(as_Address(addr, noreg), c->as_jobject()); 760 } else { 761 #ifdef _LP64 762 __ movoop(rscratch1, c->as_jobject()); 763 if (UseCompressedOops && !wide) { 764 __ encode_heap_oop(rscratch1); 765 null_check_here = code_offset(); 766 __ movl(as_Address_lo(addr), rscratch1); 767 } else { 768 null_check_here = code_offset(); 769 __ movptr(as_Address_lo(addr), rscratch1); 770 } 771 #else 772 __ movoop(as_Address(addr), c->as_jobject()); 773 #endif 774 } 775 } 776 break; 777 778 case T_LONG: // fall through 779 case T_DOUBLE: 780 #ifdef _LP64 781 if (is_literal_address(addr)) { 782 ShouldNotReachHere(); 783 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 784 } else { 785 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 786 null_check_here = code_offset(); 787 __ movptr(as_Address_lo(addr), r10); 788 } 789 #else 790 // Always reachable in 32bit so this doesn't produce useless move literal 791 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits()); 792 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits()); 793 #endif // _LP64 794 break; 795 796 case T_BOOLEAN: // fall through 797 case T_BYTE: 798 __ movb(as_Address(addr), c->as_jint() & 0xFF); 799 break; 800 801 case T_CHAR: // fall through 802 case T_SHORT: 803 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 804 break; 805 806 default: 807 ShouldNotReachHere(); 808 }; 809 810 if (info != NULL) { 811 add_debug_info_for_null_check(null_check_here, info); 812 } 813 } 814 815 816 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 817 assert(src->is_register(), "should not call otherwise"); 818 assert(dest->is_register(), "should not call otherwise"); 819 820 // move between cpu-registers 821 if (dest->is_single_cpu()) { 822 #ifdef _LP64 823 if (src->type() == T_LONG) { 824 // Can do LONG -> OBJECT 825 move_regs(src->as_register_lo(), dest->as_register()); 826 return; 827 } 828 #endif 829 assert(src->is_single_cpu(), "must match"); 830 if (src->type() == T_OBJECT) { 831 __ verify_oop(src->as_register()); 832 } 833 move_regs(src->as_register(), dest->as_register()); 834 835 } else if (dest->is_double_cpu()) { 836 #ifdef _LP64 837 if (is_reference_type(src->type())) { 838 // Surprising to me but we can see move of a long to t_object 839 __ verify_oop(src->as_register()); 840 move_regs(src->as_register(), dest->as_register_lo()); 841 return; 842 } 843 #endif 844 assert(src->is_double_cpu(), "must match"); 845 Register f_lo = src->as_register_lo(); 846 Register f_hi = src->as_register_hi(); 847 Register t_lo = dest->as_register_lo(); 848 Register t_hi = dest->as_register_hi(); 849 #ifdef _LP64 850 assert(f_hi == f_lo, "must be same"); 851 assert(t_hi == t_lo, "must be same"); 852 move_regs(f_lo, t_lo); 853 #else 854 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation"); 855 856 857 if (f_lo == t_hi && f_hi == t_lo) { 858 swap_reg(f_lo, f_hi); 859 } else if (f_hi == t_lo) { 860 assert(f_lo != t_hi, "overwriting register"); 861 move_regs(f_hi, t_hi); 862 move_regs(f_lo, t_lo); 863 } else { 864 assert(f_hi != t_lo, "overwriting register"); 865 move_regs(f_lo, t_lo); 866 move_regs(f_hi, t_hi); 867 } 868 #endif // LP64 869 870 #ifndef _LP64 871 // special moves from fpu-register to xmm-register 872 // necessary for method results 873 } else if (src->is_single_xmm() && !dest->is_single_xmm()) { 874 __ movflt(Address(rsp, 0), src->as_xmm_float_reg()); 875 __ fld_s(Address(rsp, 0)); 876 } else if (src->is_double_xmm() && !dest->is_double_xmm()) { 877 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg()); 878 __ fld_d(Address(rsp, 0)); 879 } else if (dest->is_single_xmm() && !src->is_single_xmm()) { 880 __ fstp_s(Address(rsp, 0)); 881 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0)); 882 } else if (dest->is_double_xmm() && !src->is_double_xmm()) { 883 __ fstp_d(Address(rsp, 0)); 884 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0)); 885 #endif // !_LP64 886 887 // move between xmm-registers 888 } else if (dest->is_single_xmm()) { 889 assert(src->is_single_xmm(), "must match"); 890 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 891 } else if (dest->is_double_xmm()) { 892 assert(src->is_double_xmm(), "must match"); 893 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 894 895 #ifndef _LP64 896 // move between fpu-registers (no instruction necessary because of fpu-stack) 897 } else if (dest->is_single_fpu() || dest->is_double_fpu()) { 898 assert(src->is_single_fpu() || src->is_double_fpu(), "must match"); 899 assert(src->fpu() == dest->fpu(), "currently should be nothing to do"); 900 #endif // !_LP64 901 902 } else { 903 ShouldNotReachHere(); 904 } 905 } 906 907 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 908 assert(src->is_register(), "should not call otherwise"); 909 assert(dest->is_stack(), "should not call otherwise"); 910 911 if (src->is_single_cpu()) { 912 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 913 if (is_reference_type(type)) { 914 __ verify_oop(src->as_register()); 915 __ movptr (dst, src->as_register()); 916 } else if (type == T_METADATA || type == T_ADDRESS) { 917 __ movptr (dst, src->as_register()); 918 } else { 919 __ movl (dst, src->as_register()); 920 } 921 922 } else if (src->is_double_cpu()) { 923 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 924 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 925 __ movptr (dstLO, src->as_register_lo()); 926 NOT_LP64(__ movptr (dstHI, src->as_register_hi())); 927 928 } else if (src->is_single_xmm()) { 929 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 930 __ movflt(dst_addr, src->as_xmm_float_reg()); 931 932 } else if (src->is_double_xmm()) { 933 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 934 __ movdbl(dst_addr, src->as_xmm_double_reg()); 935 936 #ifndef _LP64 937 } else if (src->is_single_fpu()) { 938 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 939 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 940 if (pop_fpu_stack) __ fstp_s (dst_addr); 941 else __ fst_s (dst_addr); 942 943 } else if (src->is_double_fpu()) { 944 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 945 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 946 if (pop_fpu_stack) __ fstp_d (dst_addr); 947 else __ fst_d (dst_addr); 948 #endif // !_LP64 949 950 } else { 951 ShouldNotReachHere(); 952 } 953 } 954 955 956 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) { 957 LIR_Address* to_addr = dest->as_address_ptr(); 958 PatchingStub* patch = NULL; 959 Register compressed_src = rscratch1; 960 961 if (is_reference_type(type)) { 962 __ verify_oop(src->as_register()); 963 #ifdef _LP64 964 if (UseCompressedOops && !wide) { 965 __ movptr(compressed_src, src->as_register()); 966 __ encode_heap_oop(compressed_src); 967 if (patch_code != lir_patch_none) { 968 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 969 } 970 } 971 #endif 972 } 973 974 if (patch_code != lir_patch_none) { 975 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 976 Address toa = as_Address(to_addr); 977 assert(toa.disp() != 0, "must have"); 978 } 979 980 int null_check_here = code_offset(); 981 switch (type) { 982 case T_FLOAT: { 983 #ifdef _LP64 984 assert(src->is_single_xmm(), "not a float"); 985 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 986 #else 987 if (src->is_single_xmm()) { 988 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 989 } else { 990 assert(src->is_single_fpu(), "must be"); 991 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 992 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr)); 993 else __ fst_s (as_Address(to_addr)); 994 } 995 #endif // _LP64 996 break; 997 } 998 999 case T_DOUBLE: { 1000 #ifdef _LP64 1001 assert(src->is_double_xmm(), "not a double"); 1002 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 1003 #else 1004 if (src->is_double_xmm()) { 1005 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 1006 } else { 1007 assert(src->is_double_fpu(), "must be"); 1008 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 1009 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr)); 1010 else __ fst_d (as_Address(to_addr)); 1011 } 1012 #endif // _LP64 1013 break; 1014 } 1015 1016 case T_ARRAY: // fall through 1017 case T_OBJECT: // fall through 1018 if (UseCompressedOops && !wide) { 1019 __ movl(as_Address(to_addr), compressed_src); 1020 } else { 1021 __ movptr(as_Address(to_addr), src->as_register()); 1022 } 1023 break; 1024 case T_METADATA: 1025 // We get here to store a method pointer to the stack to pass to 1026 // a dtrace runtime call. This can't work on 64 bit with 1027 // compressed klass ptrs: T_METADATA can be a compressed klass 1028 // ptr or a 64 bit method pointer. 1029 LP64_ONLY(ShouldNotReachHere()); 1030 __ movptr(as_Address(to_addr), src->as_register()); 1031 break; 1032 case T_ADDRESS: 1033 __ movptr(as_Address(to_addr), src->as_register()); 1034 break; 1035 case T_INT: 1036 __ movl(as_Address(to_addr), src->as_register()); 1037 break; 1038 1039 case T_LONG: { 1040 Register from_lo = src->as_register_lo(); 1041 Register from_hi = src->as_register_hi(); 1042 #ifdef _LP64 1043 __ movptr(as_Address_lo(to_addr), from_lo); 1044 #else 1045 Register base = to_addr->base()->as_register(); 1046 Register index = noreg; 1047 if (to_addr->index()->is_register()) { 1048 index = to_addr->index()->as_register(); 1049 } 1050 if (base == from_lo || index == from_lo) { 1051 assert(base != from_hi, "can't be"); 1052 assert(index == noreg || (index != base && index != from_hi), "can't handle this"); 1053 __ movl(as_Address_hi(to_addr), from_hi); 1054 if (patch != NULL) { 1055 patching_epilog(patch, lir_patch_high, base, info); 1056 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1057 patch_code = lir_patch_low; 1058 } 1059 __ movl(as_Address_lo(to_addr), from_lo); 1060 } else { 1061 assert(index == noreg || (index != base && index != from_lo), "can't handle this"); 1062 __ movl(as_Address_lo(to_addr), from_lo); 1063 if (patch != NULL) { 1064 patching_epilog(patch, lir_patch_low, base, info); 1065 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1066 patch_code = lir_patch_high; 1067 } 1068 __ movl(as_Address_hi(to_addr), from_hi); 1069 } 1070 #endif // _LP64 1071 break; 1072 } 1073 1074 case T_BYTE: // fall through 1075 case T_BOOLEAN: { 1076 Register src_reg = src->as_register(); 1077 Address dst_addr = as_Address(to_addr); 1078 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 1079 __ movb(dst_addr, src_reg); 1080 break; 1081 } 1082 1083 case T_CHAR: // fall through 1084 case T_SHORT: 1085 __ movw(as_Address(to_addr), src->as_register()); 1086 break; 1087 1088 default: 1089 ShouldNotReachHere(); 1090 } 1091 if (info != NULL) { 1092 add_debug_info_for_null_check(null_check_here, info); 1093 } 1094 1095 if (patch_code != lir_patch_none) { 1096 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 1097 } 1098 } 1099 1100 1101 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1102 assert(src->is_stack(), "should not call otherwise"); 1103 assert(dest->is_register(), "should not call otherwise"); 1104 1105 if (dest->is_single_cpu()) { 1106 if (is_reference_type(type)) { 1107 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1108 __ verify_oop(dest->as_register()); 1109 } else if (type == T_METADATA || type == T_ADDRESS) { 1110 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1111 } else { 1112 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1113 } 1114 1115 } else if (dest->is_double_cpu()) { 1116 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 1117 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 1118 __ movptr(dest->as_register_lo(), src_addr_LO); 1119 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI)); 1120 1121 } else if (dest->is_single_xmm()) { 1122 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1123 __ movflt(dest->as_xmm_float_reg(), src_addr); 1124 1125 } else if (dest->is_double_xmm()) { 1126 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1127 __ movdbl(dest->as_xmm_double_reg(), src_addr); 1128 1129 #ifndef _LP64 1130 } else if (dest->is_single_fpu()) { 1131 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1132 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1133 __ fld_s(src_addr); 1134 1135 } else if (dest->is_double_fpu()) { 1136 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1137 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1138 __ fld_d(src_addr); 1139 #endif // _LP64 1140 1141 } else { 1142 ShouldNotReachHere(); 1143 } 1144 } 1145 1146 1147 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1148 if (src->is_single_stack()) { 1149 if (is_reference_type(type)) { 1150 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 1151 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 1152 } else { 1153 #ifndef _LP64 1154 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix())); 1155 __ popl (frame_map()->address_for_slot(dest->single_stack_ix())); 1156 #else 1157 //no pushl on 64bits 1158 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 1159 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 1160 #endif 1161 } 1162 1163 } else if (src->is_double_stack()) { 1164 #ifdef _LP64 1165 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 1166 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 1167 #else 1168 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0)); 1169 // push and pop the part at src + wordSize, adding wordSize for the previous push 1170 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize)); 1171 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize)); 1172 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0)); 1173 #endif // _LP64 1174 1175 } else { 1176 ShouldNotReachHere(); 1177 } 1178 } 1179 1180 1181 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) { 1182 assert(src->is_address(), "should not call otherwise"); 1183 assert(dest->is_register(), "should not call otherwise"); 1184 1185 LIR_Address* addr = src->as_address_ptr(); 1186 Address from_addr = as_Address(addr); 1187 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1188 1189 if (addr->base()->type() == T_OBJECT) { 1190 __ verify_oop(addr->base()->as_pointer_register()); 1191 } 1192 1193 switch (type) { 1194 case T_BOOLEAN: // fall through 1195 case T_BYTE: // fall through 1196 case T_CHAR: // fall through 1197 case T_SHORT: 1198 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 1199 // on pre P6 processors we may get partial register stalls 1200 // so blow away the value of to_rinfo before loading a 1201 // partial word into it. Do it here so that it precedes 1202 // the potential patch point below. 1203 __ xorptr(dest->as_register(), dest->as_register()); 1204 } 1205 break; 1206 default: 1207 break; 1208 } 1209 1210 PatchingStub* patch = NULL; 1211 if (patch_code != lir_patch_none) { 1212 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1213 assert(from_addr.disp() != 0, "must have"); 1214 } 1215 if (info != NULL) { 1216 add_debug_info_for_null_check_here(info); 1217 } 1218 1219 switch (type) { 1220 case T_FLOAT: { 1221 if (dest->is_single_xmm()) { 1222 __ movflt(dest->as_xmm_float_reg(), from_addr); 1223 } else { 1224 #ifndef _LP64 1225 assert(dest->is_single_fpu(), "must be"); 1226 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1227 __ fld_s(from_addr); 1228 #else 1229 ShouldNotReachHere(); 1230 #endif // !LP64 1231 } 1232 break; 1233 } 1234 1235 case T_DOUBLE: { 1236 if (dest->is_double_xmm()) { 1237 __ movdbl(dest->as_xmm_double_reg(), from_addr); 1238 } else { 1239 #ifndef _LP64 1240 assert(dest->is_double_fpu(), "must be"); 1241 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1242 __ fld_d(from_addr); 1243 #else 1244 ShouldNotReachHere(); 1245 #endif // !LP64 1246 } 1247 break; 1248 } 1249 1250 case T_OBJECT: // fall through 1251 case T_ARRAY: // fall through 1252 if (UseCompressedOops && !wide) { 1253 __ movl(dest->as_register(), from_addr); 1254 } else { 1255 __ movptr(dest->as_register(), from_addr); 1256 } 1257 break; 1258 1259 case T_ADDRESS: 1260 if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) { 1261 __ movl(dest->as_register(), from_addr); 1262 } else { 1263 __ movptr(dest->as_register(), from_addr); 1264 } 1265 break; 1266 case T_INT: 1267 __ movl(dest->as_register(), from_addr); 1268 break; 1269 1270 case T_LONG: { 1271 Register to_lo = dest->as_register_lo(); 1272 Register to_hi = dest->as_register_hi(); 1273 #ifdef _LP64 1274 __ movptr(to_lo, as_Address_lo(addr)); 1275 #else 1276 Register base = addr->base()->as_register(); 1277 Register index = noreg; 1278 if (addr->index()->is_register()) { 1279 index = addr->index()->as_register(); 1280 } 1281 if ((base == to_lo && index == to_hi) || 1282 (base == to_hi && index == to_lo)) { 1283 // addresses with 2 registers are only formed as a result of 1284 // array access so this code will never have to deal with 1285 // patches or null checks. 1286 assert(info == NULL && patch == NULL, "must be"); 1287 __ lea(to_hi, as_Address(addr)); 1288 __ movl(to_lo, Address(to_hi, 0)); 1289 __ movl(to_hi, Address(to_hi, BytesPerWord)); 1290 } else if (base == to_lo || index == to_lo) { 1291 assert(base != to_hi, "can't be"); 1292 assert(index == noreg || (index != base && index != to_hi), "can't handle this"); 1293 __ movl(to_hi, as_Address_hi(addr)); 1294 if (patch != NULL) { 1295 patching_epilog(patch, lir_patch_high, base, info); 1296 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1297 patch_code = lir_patch_low; 1298 } 1299 __ movl(to_lo, as_Address_lo(addr)); 1300 } else { 1301 assert(index == noreg || (index != base && index != to_lo), "can't handle this"); 1302 __ movl(to_lo, as_Address_lo(addr)); 1303 if (patch != NULL) { 1304 patching_epilog(patch, lir_patch_low, base, info); 1305 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1306 patch_code = lir_patch_high; 1307 } 1308 __ movl(to_hi, as_Address_hi(addr)); 1309 } 1310 #endif // _LP64 1311 break; 1312 } 1313 1314 case T_BOOLEAN: // fall through 1315 case T_BYTE: { 1316 Register dest_reg = dest->as_register(); 1317 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1318 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1319 __ movsbl(dest_reg, from_addr); 1320 } else { 1321 __ movb(dest_reg, from_addr); 1322 __ shll(dest_reg, 24); 1323 __ sarl(dest_reg, 24); 1324 } 1325 break; 1326 } 1327 1328 case T_CHAR: { 1329 Register dest_reg = dest->as_register(); 1330 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1331 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1332 __ movzwl(dest_reg, from_addr); 1333 } else { 1334 __ movw(dest_reg, from_addr); 1335 } 1336 break; 1337 } 1338 1339 case T_SHORT: { 1340 Register dest_reg = dest->as_register(); 1341 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1342 __ movswl(dest_reg, from_addr); 1343 } else { 1344 __ movw(dest_reg, from_addr); 1345 __ shll(dest_reg, 16); 1346 __ sarl(dest_reg, 16); 1347 } 1348 break; 1349 } 1350 1351 default: 1352 ShouldNotReachHere(); 1353 } 1354 1355 if (patch != NULL) { 1356 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1357 } 1358 1359 if (is_reference_type(type)) { 1360 #ifdef _LP64 1361 if (UseCompressedOops && !wide) { 1362 __ decode_heap_oop(dest->as_register()); 1363 } 1364 #endif 1365 1366 // Load barrier has not yet been applied, so ZGC can't verify the oop here 1367 if (!UseZGC) { 1368 __ verify_oop(dest->as_register()); 1369 } 1370 } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) { 1371 #ifdef _LP64 1372 if (UseCompressedClassPointers) { 1373 __ decode_klass_not_null(dest->as_register(), tmp_load_klass); 1374 } 1375 #endif 1376 } 1377 } 1378 1379 1380 NEEDS_CLEANUP; // This could be static? 1381 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1382 int elem_size = type2aelembytes(type); 1383 switch (elem_size) { 1384 case 1: return Address::times_1; 1385 case 2: return Address::times_2; 1386 case 4: return Address::times_4; 1387 case 8: return Address::times_8; 1388 } 1389 ShouldNotReachHere(); 1390 return Address::no_scale; 1391 } 1392 1393 1394 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1395 switch (op->code()) { 1396 case lir_idiv: 1397 case lir_irem: 1398 arithmetic_idiv(op->code(), 1399 op->in_opr1(), 1400 op->in_opr2(), 1401 op->in_opr3(), 1402 op->result_opr(), 1403 op->info()); 1404 break; 1405 case lir_fmad: 1406 __ fmad(op->result_opr()->as_xmm_double_reg(), 1407 op->in_opr1()->as_xmm_double_reg(), 1408 op->in_opr2()->as_xmm_double_reg(), 1409 op->in_opr3()->as_xmm_double_reg()); 1410 break; 1411 case lir_fmaf: 1412 __ fmaf(op->result_opr()->as_xmm_float_reg(), 1413 op->in_opr1()->as_xmm_float_reg(), 1414 op->in_opr2()->as_xmm_float_reg(), 1415 op->in_opr3()->as_xmm_float_reg()); 1416 break; 1417 default: ShouldNotReachHere(); break; 1418 } 1419 } 1420 1421 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1422 #ifdef ASSERT 1423 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); 1424 if (op->block() != NULL) _branch_target_blocks.append(op->block()); 1425 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); 1426 #endif 1427 1428 if (op->cond() == lir_cond_always) { 1429 if (op->info() != NULL) add_debug_info_for_branch(op->info()); 1430 __ jmp (*(op->label())); 1431 } else { 1432 Assembler::Condition acond = Assembler::zero; 1433 if (op->code() == lir_cond_float_branch) { 1434 assert(op->ublock() != NULL, "must have unordered successor"); 1435 __ jcc(Assembler::parity, *(op->ublock()->label())); 1436 switch(op->cond()) { 1437 case lir_cond_equal: acond = Assembler::equal; break; 1438 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1439 case lir_cond_less: acond = Assembler::below; break; 1440 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1441 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1442 case lir_cond_greater: acond = Assembler::above; break; 1443 default: ShouldNotReachHere(); 1444 } 1445 } else { 1446 switch (op->cond()) { 1447 case lir_cond_equal: acond = Assembler::equal; break; 1448 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1449 case lir_cond_less: acond = Assembler::less; break; 1450 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1451 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1452 case lir_cond_greater: acond = Assembler::greater; break; 1453 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1454 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1455 default: ShouldNotReachHere(); 1456 } 1457 } 1458 __ jcc(acond,*(op->label())); 1459 } 1460 } 1461 1462 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1463 LIR_Opr src = op->in_opr(); 1464 LIR_Opr dest = op->result_opr(); 1465 1466 switch (op->bytecode()) { 1467 case Bytecodes::_i2l: 1468 #ifdef _LP64 1469 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1470 #else 1471 move_regs(src->as_register(), dest->as_register_lo()); 1472 move_regs(src->as_register(), dest->as_register_hi()); 1473 __ sarl(dest->as_register_hi(), 31); 1474 #endif // LP64 1475 break; 1476 1477 case Bytecodes::_l2i: 1478 #ifdef _LP64 1479 __ movl(dest->as_register(), src->as_register_lo()); 1480 #else 1481 move_regs(src->as_register_lo(), dest->as_register()); 1482 #endif 1483 break; 1484 1485 case Bytecodes::_i2b: 1486 move_regs(src->as_register(), dest->as_register()); 1487 __ sign_extend_byte(dest->as_register()); 1488 break; 1489 1490 case Bytecodes::_i2c: 1491 move_regs(src->as_register(), dest->as_register()); 1492 __ andl(dest->as_register(), 0xFFFF); 1493 break; 1494 1495 case Bytecodes::_i2s: 1496 move_regs(src->as_register(), dest->as_register()); 1497 __ sign_extend_short(dest->as_register()); 1498 break; 1499 1500 1501 #ifdef _LP64 1502 case Bytecodes::_f2d: 1503 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1504 break; 1505 1506 case Bytecodes::_d2f: 1507 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1508 break; 1509 1510 case Bytecodes::_i2f: 1511 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1512 break; 1513 1514 case Bytecodes::_i2d: 1515 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1516 break; 1517 1518 case Bytecodes::_l2f: 1519 __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo()); 1520 break; 1521 1522 case Bytecodes::_l2d: 1523 __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo()); 1524 break; 1525 1526 case Bytecodes::_f2i: 1527 __ convert_f2i(dest->as_register(), src->as_xmm_float_reg()); 1528 break; 1529 1530 case Bytecodes::_d2i: 1531 __ convert_d2i(dest->as_register(), src->as_xmm_double_reg()); 1532 break; 1533 1534 case Bytecodes::_f2l: 1535 __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg()); 1536 break; 1537 1538 case Bytecodes::_d2l: 1539 __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg()); 1540 break; 1541 #else 1542 case Bytecodes::_f2d: 1543 case Bytecodes::_d2f: 1544 if (dest->is_single_xmm()) { 1545 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1546 } else if (dest->is_double_xmm()) { 1547 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1548 } else { 1549 assert(src->fpu() == dest->fpu(), "register must be equal"); 1550 // do nothing (float result is rounded later through spilling) 1551 } 1552 break; 1553 1554 case Bytecodes::_i2f: 1555 case Bytecodes::_i2d: 1556 if (dest->is_single_xmm()) { 1557 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1558 } else if (dest->is_double_xmm()) { 1559 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1560 } else { 1561 assert(dest->fpu() == 0, "result must be on TOS"); 1562 __ movl(Address(rsp, 0), src->as_register()); 1563 __ fild_s(Address(rsp, 0)); 1564 } 1565 break; 1566 1567 case Bytecodes::_l2f: 1568 case Bytecodes::_l2d: 1569 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)"); 1570 assert(dest->fpu() == 0, "result must be on TOS"); 1571 __ movptr(Address(rsp, 0), src->as_register_lo()); 1572 __ movl(Address(rsp, BytesPerWord), src->as_register_hi()); 1573 __ fild_d(Address(rsp, 0)); 1574 // float result is rounded later through spilling 1575 break; 1576 1577 case Bytecodes::_f2i: 1578 case Bytecodes::_d2i: 1579 if (src->is_single_xmm()) { 1580 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg()); 1581 } else if (src->is_double_xmm()) { 1582 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg()); 1583 } else { 1584 assert(src->fpu() == 0, "input must be on TOS"); 1585 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc())); 1586 __ fist_s(Address(rsp, 0)); 1587 __ movl(dest->as_register(), Address(rsp, 0)); 1588 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 1589 } 1590 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 1591 assert(op->stub() != NULL, "stub required"); 1592 __ cmpl(dest->as_register(), 0x80000000); 1593 __ jcc(Assembler::equal, *op->stub()->entry()); 1594 __ bind(*op->stub()->continuation()); 1595 break; 1596 1597 case Bytecodes::_f2l: 1598 case Bytecodes::_d2l: 1599 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)"); 1600 assert(src->fpu() == 0, "input must be on TOS"); 1601 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers"); 1602 1603 // instruction sequence too long to inline it here 1604 { 1605 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id))); 1606 } 1607 break; 1608 #endif // _LP64 1609 1610 default: ShouldNotReachHere(); 1611 } 1612 } 1613 1614 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1615 if (op->init_check()) { 1616 add_debug_info_for_null_check_here(op->stub()->info()); 1617 __ cmpb(Address(op->klass()->as_register(), 1618 InstanceKlass::init_state_offset()), 1619 InstanceKlass::fully_initialized); 1620 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1621 } 1622 __ allocate_object(op->obj()->as_register(), 1623 op->tmp1()->as_register(), 1624 op->tmp2()->as_register(), 1625 op->header_size(), 1626 op->object_size(), 1627 op->klass()->as_register(), 1628 *op->stub()->entry()); 1629 __ bind(*op->stub()->continuation()); 1630 } 1631 1632 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1633 Register len = op->len()->as_register(); 1634 LP64_ONLY( __ movslq(len, len); ) 1635 1636 if (UseSlowPath || 1637 (!UseFastNewObjectArray && is_reference_type(op->type())) || 1638 (!UseFastNewTypeArray && !is_reference_type(op->type()))) { 1639 __ jmp(*op->stub()->entry()); 1640 } else { 1641 Register tmp1 = op->tmp1()->as_register(); 1642 Register tmp2 = op->tmp2()->as_register(); 1643 Register tmp3 = op->tmp3()->as_register(); 1644 if (len == tmp1) { 1645 tmp1 = tmp3; 1646 } else if (len == tmp2) { 1647 tmp2 = tmp3; 1648 } else if (len == tmp3) { 1649 // everything is ok 1650 } else { 1651 __ mov(tmp3, len); 1652 } 1653 __ allocate_array(op->obj()->as_register(), 1654 len, 1655 tmp1, 1656 tmp2, 1657 arrayOopDesc::header_size(op->type()), 1658 array_element_size(op->type()), 1659 op->klass()->as_register(), 1660 *op->stub()->entry()); 1661 } 1662 __ bind(*op->stub()->continuation()); 1663 } 1664 1665 void LIR_Assembler::type_profile_helper(Register mdo, 1666 ciMethodData *md, ciProfileData *data, 1667 Register recv, Label* update_done) { 1668 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1669 Label next_test; 1670 // See if the receiver is receiver[n]. 1671 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1672 __ jccb(Assembler::notEqual, next_test); 1673 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1674 __ addptr(data_addr, DataLayout::counter_increment); 1675 __ jmp(*update_done); 1676 __ bind(next_test); 1677 } 1678 1679 // Didn't find receiver; find next empty slot and fill it in 1680 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1681 Label next_test; 1682 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1683 __ cmpptr(recv_addr, (intptr_t)NULL_WORD); 1684 __ jccb(Assembler::notEqual, next_test); 1685 __ movptr(recv_addr, recv); 1686 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1687 __ jmp(*update_done); 1688 __ bind(next_test); 1689 } 1690 } 1691 1692 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1693 // we always need a stub for the failure case. 1694 CodeStub* stub = op->stub(); 1695 Register obj = op->object()->as_register(); 1696 Register k_RInfo = op->tmp1()->as_register(); 1697 Register klass_RInfo = op->tmp2()->as_register(); 1698 Register dst = op->result_opr()->as_register(); 1699 ciKlass* k = op->klass(); 1700 Register Rtmp1 = noreg; 1701 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1702 1703 // check if it needs to be profiled 1704 ciMethodData* md = NULL; 1705 ciProfileData* data = NULL; 1706 1707 if (op->should_profile()) { 1708 ciMethod* method = op->profiled_method(); 1709 assert(method != NULL, "Should have method"); 1710 int bci = op->profiled_bci(); 1711 md = method->method_data_or_null(); 1712 assert(md != NULL, "Sanity"); 1713 data = md->bci_to_data(bci); 1714 assert(data != NULL, "need data for type check"); 1715 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1716 } 1717 Label profile_cast_success, profile_cast_failure; 1718 Label *success_target = op->should_profile() ? &profile_cast_success : success; 1719 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure; 1720 1721 if (obj == k_RInfo) { 1722 k_RInfo = dst; 1723 } else if (obj == klass_RInfo) { 1724 klass_RInfo = dst; 1725 } 1726 if (k->is_loaded() && !UseCompressedClassPointers) { 1727 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1728 } else { 1729 Rtmp1 = op->tmp3()->as_register(); 1730 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1731 } 1732 1733 assert_different_registers(obj, k_RInfo, klass_RInfo); 1734 1735 __ cmpptr(obj, (int32_t)NULL_WORD); 1736 if (op->should_profile()) { 1737 Label not_null; 1738 __ jccb(Assembler::notEqual, not_null); 1739 // Object is null; update MDO and exit 1740 Register mdo = klass_RInfo; 1741 __ mov_metadata(mdo, md->constant_encoding()); 1742 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1743 int header_bits = BitData::null_seen_byte_constant(); 1744 __ orb(data_addr, header_bits); 1745 __ jmp(*obj_is_null); 1746 __ bind(not_null); 1747 } else { 1748 __ jcc(Assembler::equal, *obj_is_null); 1749 } 1750 1751 if (!k->is_loaded()) { 1752 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1753 } else { 1754 #ifdef _LP64 1755 __ mov_metadata(k_RInfo, k->constant_encoding()); 1756 #endif // _LP64 1757 } 1758 __ verify_oop(obj); 1759 1760 if (op->fast_check()) { 1761 // get object class 1762 // not a safepoint as obj null check happens earlier 1763 #ifdef _LP64 1764 if (UseCompressedClassPointers) { 1765 __ load_klass(Rtmp1, obj, tmp_load_klass); 1766 __ cmpptr(k_RInfo, Rtmp1); 1767 } else { 1768 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1769 } 1770 #else 1771 if (k->is_loaded()) { 1772 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()); 1773 } else { 1774 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1775 } 1776 #endif 1777 __ jcc(Assembler::notEqual, *failure_target); 1778 // successful cast, fall through to profile or jump 1779 } else { 1780 // get object class 1781 // not a safepoint as obj null check happens earlier 1782 __ load_klass(klass_RInfo, obj, tmp_load_klass); 1783 if (k->is_loaded()) { 1784 // See if we get an immediate positive hit 1785 #ifdef _LP64 1786 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1787 #else 1788 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding()); 1789 #endif // _LP64 1790 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1791 __ jcc(Assembler::notEqual, *failure_target); 1792 // successful cast, fall through to profile or jump 1793 } else { 1794 // See if we get an immediate positive hit 1795 __ jcc(Assembler::equal, *success_target); 1796 // check for self 1797 #ifdef _LP64 1798 __ cmpptr(klass_RInfo, k_RInfo); 1799 #else 1800 __ cmpklass(klass_RInfo, k->constant_encoding()); 1801 #endif // _LP64 1802 __ jcc(Assembler::equal, *success_target); 1803 1804 __ push(klass_RInfo); 1805 #ifdef _LP64 1806 __ push(k_RInfo); 1807 #else 1808 __ pushklass(k->constant_encoding()); 1809 #endif // _LP64 1810 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1811 __ pop(klass_RInfo); 1812 __ pop(klass_RInfo); 1813 // result is a boolean 1814 __ cmpl(klass_RInfo, 0); 1815 __ jcc(Assembler::equal, *failure_target); 1816 // successful cast, fall through to profile or jump 1817 } 1818 } else { 1819 // perform the fast part of the checking logic 1820 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1821 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1822 __ push(klass_RInfo); 1823 __ push(k_RInfo); 1824 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1825 __ pop(klass_RInfo); 1826 __ pop(k_RInfo); 1827 // result is a boolean 1828 __ cmpl(k_RInfo, 0); 1829 __ jcc(Assembler::equal, *failure_target); 1830 // successful cast, fall through to profile or jump 1831 } 1832 } 1833 if (op->should_profile()) { 1834 Register mdo = klass_RInfo, recv = k_RInfo; 1835 __ bind(profile_cast_success); 1836 __ mov_metadata(mdo, md->constant_encoding()); 1837 __ load_klass(recv, obj, tmp_load_klass); 1838 type_profile_helper(mdo, md, data, recv, success); 1839 __ jmp(*success); 1840 1841 __ bind(profile_cast_failure); 1842 __ mov_metadata(mdo, md->constant_encoding()); 1843 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1844 __ subptr(counter_addr, DataLayout::counter_increment); 1845 __ jmp(*failure); 1846 } 1847 __ jmp(*success); 1848 } 1849 1850 1851 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1852 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1853 LIR_Code code = op->code(); 1854 if (code == lir_store_check) { 1855 Register value = op->object()->as_register(); 1856 Register array = op->array()->as_register(); 1857 Register k_RInfo = op->tmp1()->as_register(); 1858 Register klass_RInfo = op->tmp2()->as_register(); 1859 Register Rtmp1 = op->tmp3()->as_register(); 1860 1861 CodeStub* stub = op->stub(); 1862 1863 // check if it needs to be profiled 1864 ciMethodData* md = NULL; 1865 ciProfileData* data = NULL; 1866 1867 if (op->should_profile()) { 1868 ciMethod* method = op->profiled_method(); 1869 assert(method != NULL, "Should have method"); 1870 int bci = op->profiled_bci(); 1871 md = method->method_data_or_null(); 1872 assert(md != NULL, "Sanity"); 1873 data = md->bci_to_data(bci); 1874 assert(data != NULL, "need data for type check"); 1875 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1876 } 1877 Label profile_cast_success, profile_cast_failure, done; 1878 Label *success_target = op->should_profile() ? &profile_cast_success : &done; 1879 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry(); 1880 1881 __ cmpptr(value, (int32_t)NULL_WORD); 1882 if (op->should_profile()) { 1883 Label not_null; 1884 __ jccb(Assembler::notEqual, not_null); 1885 // Object is null; update MDO and exit 1886 Register mdo = klass_RInfo; 1887 __ mov_metadata(mdo, md->constant_encoding()); 1888 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset())); 1889 int header_bits = BitData::null_seen_byte_constant(); 1890 __ orb(data_addr, header_bits); 1891 __ jmp(done); 1892 __ bind(not_null); 1893 } else { 1894 __ jcc(Assembler::equal, done); 1895 } 1896 1897 add_debug_info_for_null_check_here(op->info_for_exception()); 1898 __ load_klass(k_RInfo, array, tmp_load_klass); 1899 __ load_klass(klass_RInfo, value, tmp_load_klass); 1900 1901 // get instance klass (it's already uncompressed) 1902 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1903 // perform the fast part of the checking logic 1904 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1905 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1906 __ push(klass_RInfo); 1907 __ push(k_RInfo); 1908 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1909 __ pop(klass_RInfo); 1910 __ pop(k_RInfo); 1911 // result is a boolean 1912 __ cmpl(k_RInfo, 0); 1913 __ jcc(Assembler::equal, *failure_target); 1914 // fall through to the success case 1915 1916 if (op->should_profile()) { 1917 Register mdo = klass_RInfo, recv = k_RInfo; 1918 __ bind(profile_cast_success); 1919 __ mov_metadata(mdo, md->constant_encoding()); 1920 __ load_klass(recv, value, tmp_load_klass); 1921 type_profile_helper(mdo, md, data, recv, &done); 1922 __ jmpb(done); 1923 1924 __ bind(profile_cast_failure); 1925 __ mov_metadata(mdo, md->constant_encoding()); 1926 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1927 __ subptr(counter_addr, DataLayout::counter_increment); 1928 __ jmp(*stub->entry()); 1929 } 1930 1931 __ bind(done); 1932 } else 1933 if (code == lir_checkcast) { 1934 Register obj = op->object()->as_register(); 1935 Register dst = op->result_opr()->as_register(); 1936 Label success; 1937 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1938 __ bind(success); 1939 if (dst != obj) { 1940 __ mov(dst, obj); 1941 } 1942 } else 1943 if (code == lir_instanceof) { 1944 Register obj = op->object()->as_register(); 1945 Register dst = op->result_opr()->as_register(); 1946 Label success, failure, done; 1947 emit_typecheck_helper(op, &success, &failure, &failure); 1948 __ bind(failure); 1949 __ xorptr(dst, dst); 1950 __ jmpb(done); 1951 __ bind(success); 1952 __ movptr(dst, 1); 1953 __ bind(done); 1954 } else { 1955 ShouldNotReachHere(); 1956 } 1957 1958 } 1959 1960 1961 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1962 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) { 1963 assert(op->cmp_value()->as_register_lo() == rax, "wrong register"); 1964 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register"); 1965 assert(op->new_value()->as_register_lo() == rbx, "wrong register"); 1966 assert(op->new_value()->as_register_hi() == rcx, "wrong register"); 1967 Register addr = op->addr()->as_register(); 1968 __ lock(); 1969 NOT_LP64(__ cmpxchg8(Address(addr, 0))); 1970 1971 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) { 1972 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");) 1973 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1974 Register newval = op->new_value()->as_register(); 1975 Register cmpval = op->cmp_value()->as_register(); 1976 assert(cmpval == rax, "wrong register"); 1977 assert(newval != NULL, "new val must be register"); 1978 assert(cmpval != newval, "cmp and new values must be in different registers"); 1979 assert(cmpval != addr, "cmp and addr must be in different registers"); 1980 assert(newval != addr, "new value and addr must be in different registers"); 1981 1982 if ( op->code() == lir_cas_obj) { 1983 #ifdef _LP64 1984 if (UseCompressedOops) { 1985 __ encode_heap_oop(cmpval); 1986 __ mov(rscratch1, newval); 1987 __ encode_heap_oop(rscratch1); 1988 __ lock(); 1989 // cmpval (rax) is implicitly used by this instruction 1990 __ cmpxchgl(rscratch1, Address(addr, 0)); 1991 } else 1992 #endif 1993 { 1994 __ lock(); 1995 __ cmpxchgptr(newval, Address(addr, 0)); 1996 } 1997 } else { 1998 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 1999 __ lock(); 2000 __ cmpxchgl(newval, Address(addr, 0)); 2001 } 2002 #ifdef _LP64 2003 } else if (op->code() == lir_cas_long) { 2004 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 2005 Register newval = op->new_value()->as_register_lo(); 2006 Register cmpval = op->cmp_value()->as_register_lo(); 2007 assert(cmpval == rax, "wrong register"); 2008 assert(newval != NULL, "new val must be register"); 2009 assert(cmpval != newval, "cmp and new values must be in different registers"); 2010 assert(cmpval != addr, "cmp and addr must be in different registers"); 2011 assert(newval != addr, "new value and addr must be in different registers"); 2012 __ lock(); 2013 __ cmpxchgq(newval, Address(addr, 0)); 2014 #endif // _LP64 2015 } else { 2016 Unimplemented(); 2017 } 2018 } 2019 2020 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { 2021 Assembler::Condition acond, ncond; 2022 switch (condition) { 2023 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 2024 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 2025 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 2026 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 2027 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 2028 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 2029 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 2030 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 2031 default: acond = Assembler::equal; ncond = Assembler::notEqual; 2032 ShouldNotReachHere(); 2033 } 2034 2035 if (opr1->is_cpu_register()) { 2036 reg2reg(opr1, result); 2037 } else if (opr1->is_stack()) { 2038 stack2reg(opr1, result, result->type()); 2039 } else if (opr1->is_constant()) { 2040 const2reg(opr1, result, lir_patch_none, NULL); 2041 } else { 2042 ShouldNotReachHere(); 2043 } 2044 2045 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 2046 // optimized version that does not require a branch 2047 if (opr2->is_single_cpu()) { 2048 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 2049 __ cmov(ncond, result->as_register(), opr2->as_register()); 2050 } else if (opr2->is_double_cpu()) { 2051 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2052 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2053 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 2054 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());) 2055 } else if (opr2->is_single_stack()) { 2056 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 2057 } else if (opr2->is_double_stack()) { 2058 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 2059 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));) 2060 } else { 2061 ShouldNotReachHere(); 2062 } 2063 2064 } else { 2065 Label skip; 2066 __ jcc (acond, skip); 2067 if (opr2->is_cpu_register()) { 2068 reg2reg(opr2, result); 2069 } else if (opr2->is_stack()) { 2070 stack2reg(opr2, result, result->type()); 2071 } else if (opr2->is_constant()) { 2072 const2reg(opr2, result, lir_patch_none, NULL); 2073 } else { 2074 ShouldNotReachHere(); 2075 } 2076 __ bind(skip); 2077 } 2078 } 2079 2080 2081 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 2082 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 2083 2084 if (left->is_single_cpu()) { 2085 assert(left == dest, "left and dest must be equal"); 2086 Register lreg = left->as_register(); 2087 2088 if (right->is_single_cpu()) { 2089 // cpu register - cpu register 2090 Register rreg = right->as_register(); 2091 switch (code) { 2092 case lir_add: __ addl (lreg, rreg); break; 2093 case lir_sub: __ subl (lreg, rreg); break; 2094 case lir_mul: __ imull(lreg, rreg); break; 2095 default: ShouldNotReachHere(); 2096 } 2097 2098 } else if (right->is_stack()) { 2099 // cpu register - stack 2100 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2101 switch (code) { 2102 case lir_add: __ addl(lreg, raddr); break; 2103 case lir_sub: __ subl(lreg, raddr); break; 2104 default: ShouldNotReachHere(); 2105 } 2106 2107 } else if (right->is_constant()) { 2108 // cpu register - constant 2109 jint c = right->as_constant_ptr()->as_jint(); 2110 switch (code) { 2111 case lir_add: { 2112 __ incrementl(lreg, c); 2113 break; 2114 } 2115 case lir_sub: { 2116 __ decrementl(lreg, c); 2117 break; 2118 } 2119 default: ShouldNotReachHere(); 2120 } 2121 2122 } else { 2123 ShouldNotReachHere(); 2124 } 2125 2126 } else if (left->is_double_cpu()) { 2127 assert(left == dest, "left and dest must be equal"); 2128 Register lreg_lo = left->as_register_lo(); 2129 Register lreg_hi = left->as_register_hi(); 2130 2131 if (right->is_double_cpu()) { 2132 // cpu register - cpu register 2133 Register rreg_lo = right->as_register_lo(); 2134 Register rreg_hi = right->as_register_hi(); 2135 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi)); 2136 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo)); 2137 switch (code) { 2138 case lir_add: 2139 __ addptr(lreg_lo, rreg_lo); 2140 NOT_LP64(__ adcl(lreg_hi, rreg_hi)); 2141 break; 2142 case lir_sub: 2143 __ subptr(lreg_lo, rreg_lo); 2144 NOT_LP64(__ sbbl(lreg_hi, rreg_hi)); 2145 break; 2146 case lir_mul: 2147 #ifdef _LP64 2148 __ imulq(lreg_lo, rreg_lo); 2149 #else 2150 assert(lreg_lo == rax && lreg_hi == rdx, "must be"); 2151 __ imull(lreg_hi, rreg_lo); 2152 __ imull(rreg_hi, lreg_lo); 2153 __ addl (rreg_hi, lreg_hi); 2154 __ mull (rreg_lo); 2155 __ addl (lreg_hi, rreg_hi); 2156 #endif // _LP64 2157 break; 2158 default: 2159 ShouldNotReachHere(); 2160 } 2161 2162 } else if (right->is_constant()) { 2163 // cpu register - constant 2164 #ifdef _LP64 2165 jlong c = right->as_constant_ptr()->as_jlong_bits(); 2166 __ movptr(r10, (intptr_t) c); 2167 switch (code) { 2168 case lir_add: 2169 __ addptr(lreg_lo, r10); 2170 break; 2171 case lir_sub: 2172 __ subptr(lreg_lo, r10); 2173 break; 2174 default: 2175 ShouldNotReachHere(); 2176 } 2177 #else 2178 jint c_lo = right->as_constant_ptr()->as_jint_lo(); 2179 jint c_hi = right->as_constant_ptr()->as_jint_hi(); 2180 switch (code) { 2181 case lir_add: 2182 __ addptr(lreg_lo, c_lo); 2183 __ adcl(lreg_hi, c_hi); 2184 break; 2185 case lir_sub: 2186 __ subptr(lreg_lo, c_lo); 2187 __ sbbl(lreg_hi, c_hi); 2188 break; 2189 default: 2190 ShouldNotReachHere(); 2191 } 2192 #endif // _LP64 2193 2194 } else { 2195 ShouldNotReachHere(); 2196 } 2197 2198 } else if (left->is_single_xmm()) { 2199 assert(left == dest, "left and dest must be equal"); 2200 XMMRegister lreg = left->as_xmm_float_reg(); 2201 2202 if (right->is_single_xmm()) { 2203 XMMRegister rreg = right->as_xmm_float_reg(); 2204 switch (code) { 2205 case lir_add: __ addss(lreg, rreg); break; 2206 case lir_sub: __ subss(lreg, rreg); break; 2207 case lir_mul: __ mulss(lreg, rreg); break; 2208 case lir_div: __ divss(lreg, rreg); break; 2209 default: ShouldNotReachHere(); 2210 } 2211 } else { 2212 Address raddr; 2213 if (right->is_single_stack()) { 2214 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2215 } else if (right->is_constant()) { 2216 // hack for now 2217 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 2218 } else { 2219 ShouldNotReachHere(); 2220 } 2221 switch (code) { 2222 case lir_add: __ addss(lreg, raddr); break; 2223 case lir_sub: __ subss(lreg, raddr); break; 2224 case lir_mul: __ mulss(lreg, raddr); break; 2225 case lir_div: __ divss(lreg, raddr); break; 2226 default: ShouldNotReachHere(); 2227 } 2228 } 2229 2230 } else if (left->is_double_xmm()) { 2231 assert(left == dest, "left and dest must be equal"); 2232 2233 XMMRegister lreg = left->as_xmm_double_reg(); 2234 if (right->is_double_xmm()) { 2235 XMMRegister rreg = right->as_xmm_double_reg(); 2236 switch (code) { 2237 case lir_add: __ addsd(lreg, rreg); break; 2238 case lir_sub: __ subsd(lreg, rreg); break; 2239 case lir_mul: __ mulsd(lreg, rreg); break; 2240 case lir_div: __ divsd(lreg, rreg); break; 2241 default: ShouldNotReachHere(); 2242 } 2243 } else { 2244 Address raddr; 2245 if (right->is_double_stack()) { 2246 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2247 } else if (right->is_constant()) { 2248 // hack for now 2249 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2250 } else { 2251 ShouldNotReachHere(); 2252 } 2253 switch (code) { 2254 case lir_add: __ addsd(lreg, raddr); break; 2255 case lir_sub: __ subsd(lreg, raddr); break; 2256 case lir_mul: __ mulsd(lreg, raddr); break; 2257 case lir_div: __ divsd(lreg, raddr); break; 2258 default: ShouldNotReachHere(); 2259 } 2260 } 2261 2262 #ifndef _LP64 2263 } else if (left->is_single_fpu()) { 2264 assert(dest->is_single_fpu(), "fpu stack allocation required"); 2265 2266 if (right->is_single_fpu()) { 2267 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack); 2268 2269 } else { 2270 assert(left->fpu_regnr() == 0, "left must be on TOS"); 2271 assert(dest->fpu_regnr() == 0, "dest must be on TOS"); 2272 2273 Address raddr; 2274 if (right->is_single_stack()) { 2275 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2276 } else if (right->is_constant()) { 2277 address const_addr = float_constant(right->as_jfloat()); 2278 assert(const_addr != NULL, "incorrect float/double constant maintainance"); 2279 // hack for now 2280 raddr = __ as_Address(InternalAddress(const_addr)); 2281 } else { 2282 ShouldNotReachHere(); 2283 } 2284 2285 switch (code) { 2286 case lir_add: __ fadd_s(raddr); break; 2287 case lir_sub: __ fsub_s(raddr); break; 2288 case lir_mul: __ fmul_s(raddr); break; 2289 case lir_div: __ fdiv_s(raddr); break; 2290 default: ShouldNotReachHere(); 2291 } 2292 } 2293 2294 } else if (left->is_double_fpu()) { 2295 assert(dest->is_double_fpu(), "fpu stack allocation required"); 2296 2297 if (code == lir_mul || code == lir_div) { 2298 // Double values require special handling for strictfp mul/div on x86 2299 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 2300 __ fmulp(left->fpu_regnrLo() + 1); 2301 } 2302 2303 if (right->is_double_fpu()) { 2304 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack); 2305 2306 } else { 2307 assert(left->fpu_regnrLo() == 0, "left must be on TOS"); 2308 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS"); 2309 2310 Address raddr; 2311 if (right->is_double_stack()) { 2312 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2313 } else if (right->is_constant()) { 2314 // hack for now 2315 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2316 } else { 2317 ShouldNotReachHere(); 2318 } 2319 2320 switch (code) { 2321 case lir_add: __ fadd_d(raddr); break; 2322 case lir_sub: __ fsub_d(raddr); break; 2323 case lir_mul: __ fmul_d(raddr); break; 2324 case lir_div: __ fdiv_d(raddr); break; 2325 default: ShouldNotReachHere(); 2326 } 2327 } 2328 2329 if (code == lir_mul || code == lir_div) { 2330 // Double values require special handling for strictfp mul/div on x86 2331 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 2332 __ fmulp(dest->fpu_regnrLo() + 1); 2333 } 2334 #endif // !_LP64 2335 2336 } else if (left->is_single_stack() || left->is_address()) { 2337 assert(left == dest, "left and dest must be equal"); 2338 2339 Address laddr; 2340 if (left->is_single_stack()) { 2341 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 2342 } else if (left->is_address()) { 2343 laddr = as_Address(left->as_address_ptr()); 2344 } else { 2345 ShouldNotReachHere(); 2346 } 2347 2348 if (right->is_single_cpu()) { 2349 Register rreg = right->as_register(); 2350 switch (code) { 2351 case lir_add: __ addl(laddr, rreg); break; 2352 case lir_sub: __ subl(laddr, rreg); break; 2353 default: ShouldNotReachHere(); 2354 } 2355 } else if (right->is_constant()) { 2356 jint c = right->as_constant_ptr()->as_jint(); 2357 switch (code) { 2358 case lir_add: { 2359 __ incrementl(laddr, c); 2360 break; 2361 } 2362 case lir_sub: { 2363 __ decrementl(laddr, c); 2364 break; 2365 } 2366 default: ShouldNotReachHere(); 2367 } 2368 } else { 2369 ShouldNotReachHere(); 2370 } 2371 2372 } else { 2373 ShouldNotReachHere(); 2374 } 2375 } 2376 2377 #ifndef _LP64 2378 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { 2379 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR"); 2380 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR"); 2381 assert(left_index == 0 || right_index == 0, "either must be on top of stack"); 2382 2383 bool left_is_tos = (left_index == 0); 2384 bool dest_is_tos = (dest_index == 0); 2385 int non_tos_index = (left_is_tos ? right_index : left_index); 2386 2387 switch (code) { 2388 case lir_add: 2389 if (pop_fpu_stack) __ faddp(non_tos_index); 2390 else if (dest_is_tos) __ fadd (non_tos_index); 2391 else __ fadda(non_tos_index); 2392 break; 2393 2394 case lir_sub: 2395 if (left_is_tos) { 2396 if (pop_fpu_stack) __ fsubrp(non_tos_index); 2397 else if (dest_is_tos) __ fsub (non_tos_index); 2398 else __ fsubra(non_tos_index); 2399 } else { 2400 if (pop_fpu_stack) __ fsubp (non_tos_index); 2401 else if (dest_is_tos) __ fsubr (non_tos_index); 2402 else __ fsuba (non_tos_index); 2403 } 2404 break; 2405 2406 case lir_mul: 2407 if (pop_fpu_stack) __ fmulp(non_tos_index); 2408 else if (dest_is_tos) __ fmul (non_tos_index); 2409 else __ fmula(non_tos_index); 2410 break; 2411 2412 case lir_div: 2413 if (left_is_tos) { 2414 if (pop_fpu_stack) __ fdivrp(non_tos_index); 2415 else if (dest_is_tos) __ fdiv (non_tos_index); 2416 else __ fdivra(non_tos_index); 2417 } else { 2418 if (pop_fpu_stack) __ fdivp (non_tos_index); 2419 else if (dest_is_tos) __ fdivr (non_tos_index); 2420 else __ fdiva (non_tos_index); 2421 } 2422 break; 2423 2424 case lir_rem: 2425 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation"); 2426 __ fremr(noreg); 2427 break; 2428 2429 default: 2430 ShouldNotReachHere(); 2431 } 2432 } 2433 #endif // _LP64 2434 2435 2436 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) { 2437 if (value->is_double_xmm()) { 2438 switch(code) { 2439 case lir_abs : 2440 { 2441 #ifdef _LP64 2442 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 2443 assert(tmp->is_valid(), "need temporary"); 2444 __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2); 2445 } else 2446 #endif 2447 { 2448 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 2449 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 2450 } 2451 assert(!tmp->is_valid(), "do not need temporary"); 2452 __ andpd(dest->as_xmm_double_reg(), 2453 ExternalAddress((address)double_signmask_pool)); 2454 } 2455 } 2456 break; 2457 2458 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 2459 // all other intrinsics are not available in the SSE instruction set, so FPU is used 2460 default : ShouldNotReachHere(); 2461 } 2462 2463 #ifndef _LP64 2464 } else if (value->is_double_fpu()) { 2465 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS"); 2466 switch(code) { 2467 case lir_abs : __ fabs() ; break; 2468 case lir_sqrt : __ fsqrt(); break; 2469 default : ShouldNotReachHere(); 2470 } 2471 #endif // !_LP64 2472 } else { 2473 Unimplemented(); 2474 } 2475 } 2476 2477 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 2478 // assert(left->destroys_register(), "check"); 2479 if (left->is_single_cpu()) { 2480 Register reg = left->as_register(); 2481 if (right->is_constant()) { 2482 int val = right->as_constant_ptr()->as_jint(); 2483 switch (code) { 2484 case lir_logic_and: __ andl (reg, val); break; 2485 case lir_logic_or: __ orl (reg, val); break; 2486 case lir_logic_xor: __ xorl (reg, val); break; 2487 default: ShouldNotReachHere(); 2488 } 2489 } else if (right->is_stack()) { 2490 // added support for stack operands 2491 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2492 switch (code) { 2493 case lir_logic_and: __ andl (reg, raddr); break; 2494 case lir_logic_or: __ orl (reg, raddr); break; 2495 case lir_logic_xor: __ xorl (reg, raddr); break; 2496 default: ShouldNotReachHere(); 2497 } 2498 } else { 2499 Register rright = right->as_register(); 2500 switch (code) { 2501 case lir_logic_and: __ andptr (reg, rright); break; 2502 case lir_logic_or : __ orptr (reg, rright); break; 2503 case lir_logic_xor: __ xorptr (reg, rright); break; 2504 default: ShouldNotReachHere(); 2505 } 2506 } 2507 move_regs(reg, dst->as_register()); 2508 } else { 2509 Register l_lo = left->as_register_lo(); 2510 Register l_hi = left->as_register_hi(); 2511 if (right->is_constant()) { 2512 #ifdef _LP64 2513 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 2514 switch (code) { 2515 case lir_logic_and: 2516 __ andq(l_lo, rscratch1); 2517 break; 2518 case lir_logic_or: 2519 __ orq(l_lo, rscratch1); 2520 break; 2521 case lir_logic_xor: 2522 __ xorq(l_lo, rscratch1); 2523 break; 2524 default: ShouldNotReachHere(); 2525 } 2526 #else 2527 int r_lo = right->as_constant_ptr()->as_jint_lo(); 2528 int r_hi = right->as_constant_ptr()->as_jint_hi(); 2529 switch (code) { 2530 case lir_logic_and: 2531 __ andl(l_lo, r_lo); 2532 __ andl(l_hi, r_hi); 2533 break; 2534 case lir_logic_or: 2535 __ orl(l_lo, r_lo); 2536 __ orl(l_hi, r_hi); 2537 break; 2538 case lir_logic_xor: 2539 __ xorl(l_lo, r_lo); 2540 __ xorl(l_hi, r_hi); 2541 break; 2542 default: ShouldNotReachHere(); 2543 } 2544 #endif // _LP64 2545 } else { 2546 #ifdef _LP64 2547 Register r_lo; 2548 if (is_reference_type(right->type())) { 2549 r_lo = right->as_register(); 2550 } else { 2551 r_lo = right->as_register_lo(); 2552 } 2553 #else 2554 Register r_lo = right->as_register_lo(); 2555 Register r_hi = right->as_register_hi(); 2556 assert(l_lo != r_hi, "overwriting registers"); 2557 #endif 2558 switch (code) { 2559 case lir_logic_and: 2560 __ andptr(l_lo, r_lo); 2561 NOT_LP64(__ andptr(l_hi, r_hi);) 2562 break; 2563 case lir_logic_or: 2564 __ orptr(l_lo, r_lo); 2565 NOT_LP64(__ orptr(l_hi, r_hi);) 2566 break; 2567 case lir_logic_xor: 2568 __ xorptr(l_lo, r_lo); 2569 NOT_LP64(__ xorptr(l_hi, r_hi);) 2570 break; 2571 default: ShouldNotReachHere(); 2572 } 2573 } 2574 2575 Register dst_lo = dst->as_register_lo(); 2576 Register dst_hi = dst->as_register_hi(); 2577 2578 #ifdef _LP64 2579 move_regs(l_lo, dst_lo); 2580 #else 2581 if (dst_lo == l_hi) { 2582 assert(dst_hi != l_lo, "overwriting registers"); 2583 move_regs(l_hi, dst_hi); 2584 move_regs(l_lo, dst_lo); 2585 } else { 2586 assert(dst_lo != l_hi, "overwriting registers"); 2587 move_regs(l_lo, dst_lo); 2588 move_regs(l_hi, dst_hi); 2589 } 2590 #endif // _LP64 2591 } 2592 } 2593 2594 2595 // we assume that rax, and rdx can be overwritten 2596 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 2597 2598 assert(left->is_single_cpu(), "left must be register"); 2599 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 2600 assert(result->is_single_cpu(), "result must be register"); 2601 2602 // assert(left->destroys_register(), "check"); 2603 // assert(right->destroys_register(), "check"); 2604 2605 Register lreg = left->as_register(); 2606 Register dreg = result->as_register(); 2607 2608 if (right->is_constant()) { 2609 jint divisor = right->as_constant_ptr()->as_jint(); 2610 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 2611 if (code == lir_idiv) { 2612 assert(lreg == rax, "must be rax,"); 2613 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2614 __ cdql(); // sign extend into rdx:rax 2615 if (divisor == 2) { 2616 __ subl(lreg, rdx); 2617 } else { 2618 __ andl(rdx, divisor - 1); 2619 __ addl(lreg, rdx); 2620 } 2621 __ sarl(lreg, log2i_exact(divisor)); 2622 move_regs(lreg, dreg); 2623 } else if (code == lir_irem) { 2624 Label done; 2625 __ mov(dreg, lreg); 2626 __ andl(dreg, 0x80000000 | (divisor - 1)); 2627 __ jcc(Assembler::positive, done); 2628 __ decrement(dreg); 2629 __ orl(dreg, ~(divisor - 1)); 2630 __ increment(dreg); 2631 __ bind(done); 2632 } else { 2633 ShouldNotReachHere(); 2634 } 2635 } else { 2636 Register rreg = right->as_register(); 2637 assert(lreg == rax, "left register must be rax,"); 2638 assert(rreg != rdx, "right register must not be rdx"); 2639 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2640 2641 move_regs(lreg, rax); 2642 2643 int idivl_offset = __ corrected_idivl(rreg); 2644 if (ImplicitDiv0Checks) { 2645 add_debug_info_for_div0(idivl_offset, info); 2646 } 2647 if (code == lir_irem) { 2648 move_regs(rdx, dreg); // result is in rdx 2649 } else { 2650 move_regs(rax, dreg); 2651 } 2652 } 2653 } 2654 2655 2656 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2657 if (opr1->is_single_cpu()) { 2658 Register reg1 = opr1->as_register(); 2659 if (opr2->is_single_cpu()) { 2660 // cpu register - cpu register 2661 if (is_reference_type(opr1->type())) { 2662 __ cmpoop(reg1, opr2->as_register()); 2663 } else { 2664 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 2665 __ cmpl(reg1, opr2->as_register()); 2666 } 2667 } else if (opr2->is_stack()) { 2668 // cpu register - stack 2669 if (is_reference_type(opr1->type())) { 2670 __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2671 } else { 2672 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2673 } 2674 } else if (opr2->is_constant()) { 2675 // cpu register - constant 2676 LIR_Const* c = opr2->as_constant_ptr(); 2677 if (c->type() == T_INT) { 2678 __ cmpl(reg1, c->as_jint()); 2679 } else if (c->type() == T_METADATA) { 2680 // All we need for now is a comparison with NULL for equality. 2681 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 2682 Metadata* m = c->as_metadata(); 2683 if (m == NULL) { 2684 __ cmpptr(reg1, (int32_t)0); 2685 } else { 2686 ShouldNotReachHere(); 2687 } 2688 } else if (is_reference_type(c->type())) { 2689 // In 64bit oops are single register 2690 jobject o = c->as_jobject(); 2691 if (o == NULL) { 2692 __ cmpptr(reg1, (int32_t)NULL_WORD); 2693 } else { 2694 __ cmpoop(reg1, o); 2695 } 2696 } else { 2697 fatal("unexpected type: %s", basictype_to_str(c->type())); 2698 } 2699 // cpu register - address 2700 } else if (opr2->is_address()) { 2701 if (op->info() != NULL) { 2702 add_debug_info_for_null_check_here(op->info()); 2703 } 2704 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2705 } else { 2706 ShouldNotReachHere(); 2707 } 2708 2709 } else if(opr1->is_double_cpu()) { 2710 Register xlo = opr1->as_register_lo(); 2711 Register xhi = opr1->as_register_hi(); 2712 if (opr2->is_double_cpu()) { 2713 #ifdef _LP64 2714 __ cmpptr(xlo, opr2->as_register_lo()); 2715 #else 2716 // cpu register - cpu register 2717 Register ylo = opr2->as_register_lo(); 2718 Register yhi = opr2->as_register_hi(); 2719 __ subl(xlo, ylo); 2720 __ sbbl(xhi, yhi); 2721 if (condition == lir_cond_equal || condition == lir_cond_notEqual) { 2722 __ orl(xhi, xlo); 2723 } 2724 #endif // _LP64 2725 } else if (opr2->is_constant()) { 2726 // cpu register - constant 0 2727 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2728 #ifdef _LP64 2729 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2730 #else 2731 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case"); 2732 __ orl(xhi, xlo); 2733 #endif // _LP64 2734 } else { 2735 ShouldNotReachHere(); 2736 } 2737 2738 } else if (opr1->is_single_xmm()) { 2739 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2740 if (opr2->is_single_xmm()) { 2741 // xmm register - xmm register 2742 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2743 } else if (opr2->is_stack()) { 2744 // xmm register - stack 2745 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2746 } else if (opr2->is_constant()) { 2747 // xmm register - constant 2748 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2749 } else if (opr2->is_address()) { 2750 // xmm register - address 2751 if (op->info() != NULL) { 2752 add_debug_info_for_null_check_here(op->info()); 2753 } 2754 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2755 } else { 2756 ShouldNotReachHere(); 2757 } 2758 2759 } else if (opr1->is_double_xmm()) { 2760 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2761 if (opr2->is_double_xmm()) { 2762 // xmm register - xmm register 2763 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2764 } else if (opr2->is_stack()) { 2765 // xmm register - stack 2766 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2767 } else if (opr2->is_constant()) { 2768 // xmm register - constant 2769 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2770 } else if (opr2->is_address()) { 2771 // xmm register - address 2772 if (op->info() != NULL) { 2773 add_debug_info_for_null_check_here(op->info()); 2774 } 2775 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2776 } else { 2777 ShouldNotReachHere(); 2778 } 2779 2780 #ifndef _LP64 2781 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) { 2782 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)"); 2783 assert(opr2->is_fpu_register(), "both must be registers"); 2784 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 2785 #endif // LP64 2786 2787 } else if (opr1->is_address() && opr2->is_constant()) { 2788 LIR_Const* c = opr2->as_constant_ptr(); 2789 #ifdef _LP64 2790 if (is_reference_type(c->type())) { 2791 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2792 __ movoop(rscratch1, c->as_jobject()); 2793 } 2794 #endif // LP64 2795 if (op->info() != NULL) { 2796 add_debug_info_for_null_check_here(op->info()); 2797 } 2798 // special case: address - constant 2799 LIR_Address* addr = opr1->as_address_ptr(); 2800 if (c->type() == T_INT) { 2801 __ cmpl(as_Address(addr), c->as_jint()); 2802 } else if (is_reference_type(c->type())) { 2803 #ifdef _LP64 2804 // %%% Make this explode if addr isn't reachable until we figure out a 2805 // better strategy by giving noreg as the temp for as_Address 2806 __ cmpoop(rscratch1, as_Address(addr, noreg)); 2807 #else 2808 __ cmpoop(as_Address(addr), c->as_jobject()); 2809 #endif // _LP64 2810 } else { 2811 ShouldNotReachHere(); 2812 } 2813 2814 } else { 2815 ShouldNotReachHere(); 2816 } 2817 } 2818 2819 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2820 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2821 if (left->is_single_xmm()) { 2822 assert(right->is_single_xmm(), "must match"); 2823 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2824 } else if (left->is_double_xmm()) { 2825 assert(right->is_double_xmm(), "must match"); 2826 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2827 2828 } else { 2829 #ifdef _LP64 2830 ShouldNotReachHere(); 2831 #else 2832 assert(left->is_single_fpu() || left->is_double_fpu(), "must be"); 2833 assert(right->is_single_fpu() || right->is_double_fpu(), "must match"); 2834 2835 assert(left->fpu() == 0, "left must be on TOS"); 2836 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(), 2837 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 2838 #endif // LP64 2839 } 2840 } else { 2841 assert(code == lir_cmp_l2i, "check"); 2842 #ifdef _LP64 2843 Label done; 2844 Register dest = dst->as_register(); 2845 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2846 __ movl(dest, -1); 2847 __ jccb(Assembler::less, done); 2848 __ set_byte_if_not_zero(dest); 2849 __ movzbl(dest, dest); 2850 __ bind(done); 2851 #else 2852 __ lcmp2int(left->as_register_hi(), 2853 left->as_register_lo(), 2854 right->as_register_hi(), 2855 right->as_register_lo()); 2856 move_regs(left->as_register_hi(), dst->as_register()); 2857 #endif // _LP64 2858 } 2859 } 2860 2861 2862 void LIR_Assembler::align_call(LIR_Code code) { 2863 // make sure that the displacement word of the call ends up word aligned 2864 int offset = __ offset(); 2865 switch (code) { 2866 case lir_static_call: 2867 case lir_optvirtual_call: 2868 case lir_dynamic_call: 2869 offset += NativeCall::displacement_offset; 2870 break; 2871 case lir_icvirtual_call: 2872 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size; 2873 break; 2874 default: ShouldNotReachHere(); 2875 } 2876 __ align(BytesPerWord, offset); 2877 } 2878 2879 2880 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2881 assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2882 "must be aligned"); 2883 __ call(AddressLiteral(op->addr(), rtype)); 2884 add_call_info(code_offset(), op->info()); 2885 } 2886 2887 2888 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2889 __ ic_call(op->addr()); 2890 add_call_info(code_offset(), op->info()); 2891 assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2892 "must be aligned"); 2893 } 2894 2895 2896 void LIR_Assembler::emit_static_call_stub() { 2897 address call_pc = __ pc(); 2898 address stub = __ start_a_stub(call_stub_size()); 2899 if (stub == NULL) { 2900 bailout("static call stub overflow"); 2901 return; 2902 } 2903 2904 int start = __ offset(); 2905 2906 // make sure that the displacement word of the call ends up word aligned 2907 __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset); 2908 __ relocate(static_stub_Relocation::spec(call_pc)); 2909 __ mov_metadata(rbx, (Metadata*)NULL); 2910 // must be set to -1 at code generation time 2911 assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned"); 2912 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2913 __ jump(RuntimeAddress(__ pc())); 2914 2915 assert(__ offset() - start <= call_stub_size(), "stub too big"); 2916 __ end_a_stub(); 2917 } 2918 2919 2920 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2921 assert(exceptionOop->as_register() == rax, "must match"); 2922 assert(exceptionPC->as_register() == rdx, "must match"); 2923 2924 // exception object is not added to oop map by LinearScan 2925 // (LinearScan assumes that no oops are in fixed registers) 2926 info->add_register_oop(exceptionOop); 2927 Runtime1::StubID unwind_id; 2928 2929 // get current pc information 2930 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2931 int pc_for_athrow_offset = __ offset(); 2932 InternalAddress pc_for_athrow(__ pc()); 2933 __ lea(exceptionPC->as_register(), pc_for_athrow); 2934 add_call_info(pc_for_athrow_offset, info); // for exception handler 2935 2936 __ verify_not_null_oop(rax); 2937 // search an exception handler (rax: exception oop, rdx: throwing pc) 2938 if (compilation()->has_fpu_code()) { 2939 unwind_id = Runtime1::handle_exception_id; 2940 } else { 2941 unwind_id = Runtime1::handle_exception_nofpu_id; 2942 } 2943 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2944 2945 // enough room for two byte trap 2946 __ nop(); 2947 } 2948 2949 2950 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2951 assert(exceptionOop->as_register() == rax, "must match"); 2952 2953 __ jmp(_unwind_handler_entry); 2954 } 2955 2956 2957 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2958 2959 // optimized version for linear scan: 2960 // * count must be already in ECX (guaranteed by LinearScan) 2961 // * left and dest must be equal 2962 // * tmp must be unused 2963 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 2964 assert(left == dest, "left and dest must be equal"); 2965 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2966 2967 if (left->is_single_cpu()) { 2968 Register value = left->as_register(); 2969 assert(value != SHIFT_count, "left cannot be ECX"); 2970 2971 switch (code) { 2972 case lir_shl: __ shll(value); break; 2973 case lir_shr: __ sarl(value); break; 2974 case lir_ushr: __ shrl(value); break; 2975 default: ShouldNotReachHere(); 2976 } 2977 } else if (left->is_double_cpu()) { 2978 Register lo = left->as_register_lo(); 2979 Register hi = left->as_register_hi(); 2980 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 2981 #ifdef _LP64 2982 switch (code) { 2983 case lir_shl: __ shlptr(lo); break; 2984 case lir_shr: __ sarptr(lo); break; 2985 case lir_ushr: __ shrptr(lo); break; 2986 default: ShouldNotReachHere(); 2987 } 2988 #else 2989 2990 switch (code) { 2991 case lir_shl: __ lshl(hi, lo); break; 2992 case lir_shr: __ lshr(hi, lo, true); break; 2993 case lir_ushr: __ lshr(hi, lo, false); break; 2994 default: ShouldNotReachHere(); 2995 } 2996 #endif // LP64 2997 } else { 2998 ShouldNotReachHere(); 2999 } 3000 } 3001 3002 3003 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 3004 if (dest->is_single_cpu()) { 3005 // first move left into dest so that left is not destroyed by the shift 3006 Register value = dest->as_register(); 3007 count = count & 0x1F; // Java spec 3008 3009 move_regs(left->as_register(), value); 3010 switch (code) { 3011 case lir_shl: __ shll(value, count); break; 3012 case lir_shr: __ sarl(value, count); break; 3013 case lir_ushr: __ shrl(value, count); break; 3014 default: ShouldNotReachHere(); 3015 } 3016 } else if (dest->is_double_cpu()) { 3017 #ifndef _LP64 3018 Unimplemented(); 3019 #else 3020 // first move left into dest so that left is not destroyed by the shift 3021 Register value = dest->as_register_lo(); 3022 count = count & 0x1F; // Java spec 3023 3024 move_regs(left->as_register_lo(), value); 3025 switch (code) { 3026 case lir_shl: __ shlptr(value, count); break; 3027 case lir_shr: __ sarptr(value, count); break; 3028 case lir_ushr: __ shrptr(value, count); break; 3029 default: ShouldNotReachHere(); 3030 } 3031 #endif // _LP64 3032 } else { 3033 ShouldNotReachHere(); 3034 } 3035 } 3036 3037 3038 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 3039 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3040 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3041 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3042 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 3043 } 3044 3045 3046 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 3047 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3048 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3049 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3050 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 3051 } 3052 3053 3054 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 3055 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3056 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3057 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3058 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o); 3059 } 3060 3061 3062 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) { 3063 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3064 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3065 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3066 __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m); 3067 } 3068 3069 3070 // This code replaces a call to arraycopy; no exception may 3071 // be thrown in this code, they must be thrown in the System.arraycopy 3072 // activation frame; we could save some checks if this would not be the case 3073 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 3074 ciArrayKlass* default_type = op->expected_type(); 3075 Register src = op->src()->as_register(); 3076 Register dst = op->dst()->as_register(); 3077 Register src_pos = op->src_pos()->as_register(); 3078 Register dst_pos = op->dst_pos()->as_register(); 3079 Register length = op->length()->as_register(); 3080 Register tmp = op->tmp()->as_register(); 3081 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3082 3083 CodeStub* stub = op->stub(); 3084 int flags = op->flags(); 3085 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; 3086 if (is_reference_type(basic_type)) basic_type = T_OBJECT; 3087 3088 // if we don't know anything, just go through the generic arraycopy 3089 if (default_type == NULL) { 3090 // save outgoing arguments on stack in case call to System.arraycopy is needed 3091 // HACK ALERT. This code used to push the parameters in a hardwired fashion 3092 // for interpreter calling conventions. Now we have to do it in new style conventions. 3093 // For the moment until C1 gets the new register allocator I just force all the 3094 // args to the right place (except the register args) and then on the back side 3095 // reload the register args properly if we go slow path. Yuck 3096 3097 // These are proper for the calling convention 3098 store_parameter(length, 2); 3099 store_parameter(dst_pos, 1); 3100 store_parameter(dst, 0); 3101 3102 // these are just temporary placements until we need to reload 3103 store_parameter(src_pos, 3); 3104 store_parameter(src, 4); 3105 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");) 3106 3107 address copyfunc_addr = StubRoutines::generic_arraycopy(); 3108 assert(copyfunc_addr != NULL, "generic arraycopy stub required"); 3109 3110 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 3111 #ifdef _LP64 3112 // The arguments are in java calling convention so we can trivially shift them to C 3113 // convention 3114 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 3115 __ mov(c_rarg0, j_rarg0); 3116 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 3117 __ mov(c_rarg1, j_rarg1); 3118 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 3119 __ mov(c_rarg2, j_rarg2); 3120 assert_different_registers(c_rarg3, j_rarg4); 3121 __ mov(c_rarg3, j_rarg3); 3122 #ifdef _WIN64 3123 // Allocate abi space for args but be sure to keep stack aligned 3124 __ subptr(rsp, 6*wordSize); 3125 store_parameter(j_rarg4, 4); 3126 #ifndef PRODUCT 3127 if (PrintC1Statistics) { 3128 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 3129 } 3130 #endif 3131 __ call(RuntimeAddress(copyfunc_addr)); 3132 __ addptr(rsp, 6*wordSize); 3133 #else 3134 __ mov(c_rarg4, j_rarg4); 3135 #ifndef PRODUCT 3136 if (PrintC1Statistics) { 3137 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 3138 } 3139 #endif 3140 __ call(RuntimeAddress(copyfunc_addr)); 3141 #endif // _WIN64 3142 #else 3143 __ push(length); 3144 __ push(dst_pos); 3145 __ push(dst); 3146 __ push(src_pos); 3147 __ push(src); 3148 3149 #ifndef PRODUCT 3150 if (PrintC1Statistics) { 3151 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 3152 } 3153 #endif 3154 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack 3155 3156 #endif // _LP64 3157 3158 __ cmpl(rax, 0); 3159 __ jcc(Assembler::equal, *stub->continuation()); 3160 3161 __ mov(tmp, rax); 3162 __ xorl(tmp, -1); 3163 3164 // Reload values from the stack so they are where the stub 3165 // expects them. 3166 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3167 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3168 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3169 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3170 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3171 3172 __ subl(length, tmp); 3173 __ addl(src_pos, tmp); 3174 __ addl(dst_pos, tmp); 3175 __ jmp(*stub->entry()); 3176 3177 __ bind(*stub->continuation()); 3178 return; 3179 } 3180 3181 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 3182 3183 int elem_size = type2aelembytes(basic_type); 3184 Address::ScaleFactor scale; 3185 3186 switch (elem_size) { 3187 case 1 : 3188 scale = Address::times_1; 3189 break; 3190 case 2 : 3191 scale = Address::times_2; 3192 break; 3193 case 4 : 3194 scale = Address::times_4; 3195 break; 3196 case 8 : 3197 scale = Address::times_8; 3198 break; 3199 default: 3200 scale = Address::no_scale; 3201 ShouldNotReachHere(); 3202 } 3203 3204 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 3205 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 3206 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 3207 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 3208 3209 // length and pos's are all sign extended at this point on 64bit 3210 3211 // test for NULL 3212 if (flags & LIR_OpArrayCopy::src_null_check) { 3213 __ testptr(src, src); 3214 __ jcc(Assembler::zero, *stub->entry()); 3215 } 3216 if (flags & LIR_OpArrayCopy::dst_null_check) { 3217 __ testptr(dst, dst); 3218 __ jcc(Assembler::zero, *stub->entry()); 3219 } 3220 3221 // If the compiler was not able to prove that exact type of the source or the destination 3222 // of the arraycopy is an array type, check at runtime if the source or the destination is 3223 // an instance type. 3224 if (flags & LIR_OpArrayCopy::type_check) { 3225 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3226 __ load_klass(tmp, dst, tmp_load_klass); 3227 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3228 __ jcc(Assembler::greaterEqual, *stub->entry()); 3229 } 3230 3231 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3232 __ load_klass(tmp, src, tmp_load_klass); 3233 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3234 __ jcc(Assembler::greaterEqual, *stub->entry()); 3235 } 3236 } 3237 3238 // check if negative 3239 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 3240 __ testl(src_pos, src_pos); 3241 __ jcc(Assembler::less, *stub->entry()); 3242 } 3243 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 3244 __ testl(dst_pos, dst_pos); 3245 __ jcc(Assembler::less, *stub->entry()); 3246 } 3247 3248 if (flags & LIR_OpArrayCopy::src_range_check) { 3249 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 3250 __ cmpl(tmp, src_length_addr); 3251 __ jcc(Assembler::above, *stub->entry()); 3252 } 3253 if (flags & LIR_OpArrayCopy::dst_range_check) { 3254 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 3255 __ cmpl(tmp, dst_length_addr); 3256 __ jcc(Assembler::above, *stub->entry()); 3257 } 3258 3259 if (flags & LIR_OpArrayCopy::length_positive_check) { 3260 __ testl(length, length); 3261 __ jcc(Assembler::less, *stub->entry()); 3262 } 3263 3264 #ifdef _LP64 3265 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 3266 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 3267 #endif 3268 3269 if (flags & LIR_OpArrayCopy::type_check) { 3270 // We don't know the array types are compatible 3271 if (basic_type != T_OBJECT) { 3272 // Simple test for basic type arrays 3273 if (UseCompressedClassPointers) { 3274 __ movl(tmp, src_klass_addr); 3275 __ cmpl(tmp, dst_klass_addr); 3276 } else { 3277 __ movptr(tmp, src_klass_addr); 3278 __ cmpptr(tmp, dst_klass_addr); 3279 } 3280 __ jcc(Assembler::notEqual, *stub->entry()); 3281 } else { 3282 // For object arrays, if src is a sub class of dst then we can 3283 // safely do the copy. 3284 Label cont, slow; 3285 3286 __ push(src); 3287 __ push(dst); 3288 3289 __ load_klass(src, src, tmp_load_klass); 3290 __ load_klass(dst, dst, tmp_load_klass); 3291 3292 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL); 3293 3294 __ push(src); 3295 __ push(dst); 3296 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 3297 __ pop(dst); 3298 __ pop(src); 3299 3300 __ cmpl(src, 0); 3301 __ jcc(Assembler::notEqual, cont); 3302 3303 __ bind(slow); 3304 __ pop(dst); 3305 __ pop(src); 3306 3307 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 3308 if (copyfunc_addr != NULL) { // use stub if available 3309 // src is not a sub class of dst so we have to do a 3310 // per-element check. 3311 3312 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 3313 if ((flags & mask) != mask) { 3314 // Check that at least both of them object arrays. 3315 assert(flags & mask, "one of the two should be known to be an object array"); 3316 3317 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3318 __ load_klass(tmp, src, tmp_load_klass); 3319 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3320 __ load_klass(tmp, dst, tmp_load_klass); 3321 } 3322 int lh_offset = in_bytes(Klass::layout_helper_offset()); 3323 Address klass_lh_addr(tmp, lh_offset); 3324 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 3325 __ cmpl(klass_lh_addr, objArray_lh); 3326 __ jcc(Assembler::notEqual, *stub->entry()); 3327 } 3328 3329 // Spill because stubs can use any register they like and it's 3330 // easier to restore just those that we care about. 3331 store_parameter(dst, 0); 3332 store_parameter(dst_pos, 1); 3333 store_parameter(length, 2); 3334 store_parameter(src_pos, 3); 3335 store_parameter(src, 4); 3336 3337 #ifndef _LP64 3338 __ movptr(tmp, dst_klass_addr); 3339 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset())); 3340 __ push(tmp); 3341 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset())); 3342 __ push(tmp); 3343 __ push(length); 3344 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3345 __ push(tmp); 3346 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3347 __ push(tmp); 3348 3349 __ call_VM_leaf(copyfunc_addr, 5); 3350 #else 3351 __ movl2ptr(length, length); //higher 32bits must be null 3352 3353 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3354 assert_different_registers(c_rarg0, dst, dst_pos, length); 3355 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3356 assert_different_registers(c_rarg1, dst, length); 3357 3358 __ mov(c_rarg2, length); 3359 assert_different_registers(c_rarg2, dst); 3360 3361 #ifdef _WIN64 3362 // Allocate abi space for args but be sure to keep stack aligned 3363 __ subptr(rsp, 6*wordSize); 3364 __ load_klass(c_rarg3, dst, tmp_load_klass); 3365 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 3366 store_parameter(c_rarg3, 4); 3367 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 3368 __ call(RuntimeAddress(copyfunc_addr)); 3369 __ addptr(rsp, 6*wordSize); 3370 #else 3371 __ load_klass(c_rarg4, dst, tmp_load_klass); 3372 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 3373 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 3374 __ call(RuntimeAddress(copyfunc_addr)); 3375 #endif 3376 3377 #endif 3378 3379 #ifndef PRODUCT 3380 if (PrintC1Statistics) { 3381 Label failed; 3382 __ testl(rax, rax); 3383 __ jcc(Assembler::notZero, failed); 3384 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 3385 __ bind(failed); 3386 } 3387 #endif 3388 3389 __ testl(rax, rax); 3390 __ jcc(Assembler::zero, *stub->continuation()); 3391 3392 #ifndef PRODUCT 3393 if (PrintC1Statistics) { 3394 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 3395 } 3396 #endif 3397 3398 __ mov(tmp, rax); 3399 3400 __ xorl(tmp, -1); 3401 3402 // Restore previously spilled arguments 3403 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3404 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3405 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3406 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3407 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3408 3409 3410 __ subl(length, tmp); 3411 __ addl(src_pos, tmp); 3412 __ addl(dst_pos, tmp); 3413 } 3414 3415 __ jmp(*stub->entry()); 3416 3417 __ bind(cont); 3418 __ pop(dst); 3419 __ pop(src); 3420 } 3421 } 3422 3423 #ifdef ASSERT 3424 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 3425 // Sanity check the known type with the incoming class. For the 3426 // primitive case the types must match exactly with src.klass and 3427 // dst.klass each exactly matching the default type. For the 3428 // object array case, if no type check is needed then either the 3429 // dst type is exactly the expected type and the src type is a 3430 // subtype which we can't check or src is the same array as dst 3431 // but not necessarily exactly of type default_type. 3432 Label known_ok, halt; 3433 __ mov_metadata(tmp, default_type->constant_encoding()); 3434 #ifdef _LP64 3435 if (UseCompressedClassPointers) { 3436 __ encode_klass_not_null(tmp, rscratch1); 3437 } 3438 #endif 3439 3440 if (basic_type != T_OBJECT) { 3441 3442 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr); 3443 else __ cmpptr(tmp, dst_klass_addr); 3444 __ jcc(Assembler::notEqual, halt); 3445 if (UseCompressedClassPointers) __ cmpl(tmp, src_klass_addr); 3446 else __ cmpptr(tmp, src_klass_addr); 3447 __ jcc(Assembler::equal, known_ok); 3448 } else { 3449 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr); 3450 else __ cmpptr(tmp, dst_klass_addr); 3451 __ jcc(Assembler::equal, known_ok); 3452 __ cmpptr(src, dst); 3453 __ jcc(Assembler::equal, known_ok); 3454 } 3455 __ bind(halt); 3456 __ stop("incorrect type information in arraycopy"); 3457 __ bind(known_ok); 3458 } 3459 #endif 3460 3461 #ifndef PRODUCT 3462 if (PrintC1Statistics) { 3463 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 3464 } 3465 #endif 3466 3467 #ifdef _LP64 3468 assert_different_registers(c_rarg0, dst, dst_pos, length); 3469 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3470 assert_different_registers(c_rarg1, length); 3471 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3472 __ mov(c_rarg2, length); 3473 3474 #else 3475 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3476 store_parameter(tmp, 0); 3477 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3478 store_parameter(tmp, 1); 3479 store_parameter(length, 2); 3480 #endif // _LP64 3481 3482 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 3483 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 3484 const char *name; 3485 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 3486 __ call_VM_leaf(entry, 0); 3487 3488 __ bind(*stub->continuation()); 3489 } 3490 3491 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3492 assert(op->crc()->is_single_cpu(), "crc must be register"); 3493 assert(op->val()->is_single_cpu(), "byte value must be register"); 3494 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3495 Register crc = op->crc()->as_register(); 3496 Register val = op->val()->as_register(); 3497 Register res = op->result_opr()->as_register(); 3498 3499 assert_different_registers(val, crc, res); 3500 3501 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 3502 __ notl(crc); // ~crc 3503 __ update_byte_crc32(crc, val, res); 3504 __ notl(crc); // ~crc 3505 __ mov(res, crc); 3506 } 3507 3508 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 3509 Register obj = op->obj_opr()->as_register(); // may not be an oop 3510 Register hdr = op->hdr_opr()->as_register(); 3511 Register lock = op->lock_opr()->as_register(); 3512 if (!UseFastLocking) { 3513 __ jmp(*op->stub()->entry()); 3514 } else if (op->code() == lir_lock) { 3515 Register scratch = noreg; 3516 if (UseBiasedLocking) { 3517 scratch = op->scratch_opr()->as_register(); 3518 } 3519 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3520 // add debug info for NullPointerException only if one is possible 3521 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry()); 3522 if (op->info() != NULL) { 3523 add_debug_info_for_null_check(null_check_offset, op->info()); 3524 } 3525 // done 3526 } else if (op->code() == lir_unlock) { 3527 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3528 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 3529 } else { 3530 Unimplemented(); 3531 } 3532 __ bind(*op->stub()->continuation()); 3533 } 3534 3535 3536 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 3537 ciMethod* method = op->profiled_method(); 3538 int bci = op->profiled_bci(); 3539 ciMethod* callee = op->profiled_callee(); 3540 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3541 3542 // Update counter for all call types 3543 ciMethodData* md = method->method_data_or_null(); 3544 assert(md != NULL, "Sanity"); 3545 ciProfileData* data = md->bci_to_data(bci); 3546 assert(data != NULL && data->is_CounterData(), "need CounterData for calls"); 3547 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 3548 Register mdo = op->mdo()->as_register(); 3549 __ mov_metadata(mdo, md->constant_encoding()); 3550 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 3551 // Perform additional virtual call profiling for invokevirtual and 3552 // invokeinterface bytecodes 3553 if (op->should_profile_receiver_type()) { 3554 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 3555 Register recv = op->recv()->as_register(); 3556 assert_different_registers(mdo, recv); 3557 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 3558 ciKlass* known_klass = op->known_holder(); 3559 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { 3560 // We know the type that will be seen at this call site; we can 3561 // statically update the MethodData* rather than needing to do 3562 // dynamic tests on the receiver type 3563 3564 // NOTE: we should probably put a lock around this search to 3565 // avoid collisions by concurrent compilations 3566 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 3567 uint i; 3568 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3569 ciKlass* receiver = vc_data->receiver(i); 3570 if (known_klass->equals(receiver)) { 3571 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3572 __ addptr(data_addr, DataLayout::counter_increment); 3573 return; 3574 } 3575 } 3576 3577 // Receiver type not found in profile data; select an empty slot 3578 3579 // Note that this is less efficient than it should be because it 3580 // always does a write to the receiver part of the 3581 // VirtualCallData rather than just the first time 3582 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3583 ciKlass* receiver = vc_data->receiver(i); 3584 if (receiver == NULL) { 3585 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 3586 __ mov_metadata(recv_addr, known_klass->constant_encoding()); 3587 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3588 __ addptr(data_addr, DataLayout::counter_increment); 3589 return; 3590 } 3591 } 3592 } else { 3593 __ load_klass(recv, recv, tmp_load_klass); 3594 Label update_done; 3595 type_profile_helper(mdo, md, data, recv, &update_done); 3596 // Receiver did not match any saved receiver and there is no empty row for it. 3597 // Increment total counter to indicate polymorphic case. 3598 __ addptr(counter_addr, DataLayout::counter_increment); 3599 3600 __ bind(update_done); 3601 } 3602 } else { 3603 // Static call 3604 __ addptr(counter_addr, DataLayout::counter_increment); 3605 } 3606 } 3607 3608 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3609 Register obj = op->obj()->as_register(); 3610 Register tmp = op->tmp()->as_pointer_register(); 3611 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3612 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 3613 ciKlass* exact_klass = op->exact_klass(); 3614 intptr_t current_klass = op->current_klass(); 3615 bool not_null = op->not_null(); 3616 bool no_conflict = op->no_conflict(); 3617 3618 Label update, next, none; 3619 3620 bool do_null = !not_null; 3621 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3622 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3623 3624 assert(do_null || do_update, "why are we here?"); 3625 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3626 3627 __ verify_oop(obj); 3628 3629 if (tmp != obj) { 3630 __ mov(tmp, obj); 3631 } 3632 if (do_null) { 3633 __ testptr(tmp, tmp); 3634 __ jccb(Assembler::notZero, update); 3635 if (!TypeEntries::was_null_seen(current_klass)) { 3636 __ orptr(mdo_addr, TypeEntries::null_seen); 3637 } 3638 if (do_update) { 3639 #ifndef ASSERT 3640 __ jmpb(next); 3641 } 3642 #else 3643 __ jmp(next); 3644 } 3645 } else { 3646 __ testptr(tmp, tmp); 3647 __ jcc(Assembler::notZero, update); 3648 __ stop("unexpect null obj"); 3649 #endif 3650 } 3651 3652 __ bind(update); 3653 3654 if (do_update) { 3655 #ifdef ASSERT 3656 if (exact_klass != NULL) { 3657 Label ok; 3658 __ load_klass(tmp, tmp, tmp_load_klass); 3659 __ push(tmp); 3660 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3661 __ cmpptr(tmp, Address(rsp, 0)); 3662 __ jcc(Assembler::equal, ok); 3663 __ stop("exact klass and actual klass differ"); 3664 __ bind(ok); 3665 __ pop(tmp); 3666 } 3667 #endif 3668 if (!no_conflict) { 3669 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { 3670 if (exact_klass != NULL) { 3671 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3672 } else { 3673 __ load_klass(tmp, tmp, tmp_load_klass); 3674 } 3675 3676 __ xorptr(tmp, mdo_addr); 3677 __ testptr(tmp, TypeEntries::type_klass_mask); 3678 // klass seen before, nothing to do. The unknown bit may have been 3679 // set already but no need to check. 3680 __ jccb(Assembler::zero, next); 3681 3682 __ testptr(tmp, TypeEntries::type_unknown); 3683 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3684 3685 if (TypeEntries::is_type_none(current_klass)) { 3686 __ cmpptr(mdo_addr, 0); 3687 __ jccb(Assembler::equal, none); 3688 __ cmpptr(mdo_addr, TypeEntries::null_seen); 3689 __ jccb(Assembler::equal, none); 3690 // There is a chance that the checks above (re-reading profiling 3691 // data from memory) fail if another thread has just set the 3692 // profiling to this obj's klass 3693 __ xorptr(tmp, mdo_addr); 3694 __ testptr(tmp, TypeEntries::type_klass_mask); 3695 __ jccb(Assembler::zero, next); 3696 } 3697 } else { 3698 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 3699 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3700 3701 __ movptr(tmp, mdo_addr); 3702 __ testptr(tmp, TypeEntries::type_unknown); 3703 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3704 } 3705 3706 // different than before. Cannot keep accurate profile. 3707 __ orptr(mdo_addr, TypeEntries::type_unknown); 3708 3709 if (TypeEntries::is_type_none(current_klass)) { 3710 __ jmpb(next); 3711 3712 __ bind(none); 3713 // first time here. Set profile type. 3714 __ movptr(mdo_addr, tmp); 3715 } 3716 } else { 3717 // There's a single possible klass at this profile point 3718 assert(exact_klass != NULL, "should be"); 3719 if (TypeEntries::is_type_none(current_klass)) { 3720 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3721 __ xorptr(tmp, mdo_addr); 3722 __ testptr(tmp, TypeEntries::type_klass_mask); 3723 #ifdef ASSERT 3724 __ jcc(Assembler::zero, next); 3725 3726 { 3727 Label ok; 3728 __ push(tmp); 3729 __ cmpptr(mdo_addr, 0); 3730 __ jcc(Assembler::equal, ok); 3731 __ cmpptr(mdo_addr, TypeEntries::null_seen); 3732 __ jcc(Assembler::equal, ok); 3733 // may have been set by another thread 3734 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3735 __ xorptr(tmp, mdo_addr); 3736 __ testptr(tmp, TypeEntries::type_mask); 3737 __ jcc(Assembler::zero, ok); 3738 3739 __ stop("unexpected profiling mismatch"); 3740 __ bind(ok); 3741 __ pop(tmp); 3742 } 3743 #else 3744 __ jccb(Assembler::zero, next); 3745 #endif 3746 // first time here. Set profile type. 3747 __ movptr(mdo_addr, tmp); 3748 } else { 3749 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 3750 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3751 3752 __ movptr(tmp, mdo_addr); 3753 __ testptr(tmp, TypeEntries::type_unknown); 3754 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3755 3756 __ orptr(mdo_addr, TypeEntries::type_unknown); 3757 } 3758 } 3759 3760 __ bind(next); 3761 } 3762 } 3763 3764 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3765 Unimplemented(); 3766 } 3767 3768 3769 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3770 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3771 } 3772 3773 3774 void LIR_Assembler::align_backward_branch_target() { 3775 __ align(BytesPerWord); 3776 } 3777 3778 3779 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 3780 if (left->is_single_cpu()) { 3781 __ negl(left->as_register()); 3782 move_regs(left->as_register(), dest->as_register()); 3783 3784 } else if (left->is_double_cpu()) { 3785 Register lo = left->as_register_lo(); 3786 #ifdef _LP64 3787 Register dst = dest->as_register_lo(); 3788 __ movptr(dst, lo); 3789 __ negptr(dst); 3790 #else 3791 Register hi = left->as_register_hi(); 3792 __ lneg(hi, lo); 3793 if (dest->as_register_lo() == hi) { 3794 assert(dest->as_register_hi() != lo, "destroying register"); 3795 move_regs(hi, dest->as_register_hi()); 3796 move_regs(lo, dest->as_register_lo()); 3797 } else { 3798 move_regs(lo, dest->as_register_lo()); 3799 move_regs(hi, dest->as_register_hi()); 3800 } 3801 #endif // _LP64 3802 3803 } else if (dest->is_single_xmm()) { 3804 #ifdef _LP64 3805 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 3806 assert(tmp->is_valid(), "need temporary"); 3807 assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg()); 3808 __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2); 3809 } 3810 else 3811 #endif 3812 { 3813 assert(!tmp->is_valid(), "do not need temporary"); 3814 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3815 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3816 } 3817 __ xorps(dest->as_xmm_float_reg(), 3818 ExternalAddress((address)float_signflip_pool)); 3819 } 3820 } else if (dest->is_double_xmm()) { 3821 #ifdef _LP64 3822 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 3823 assert(tmp->is_valid(), "need temporary"); 3824 assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg()); 3825 __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2); 3826 } 3827 else 3828 #endif 3829 { 3830 assert(!tmp->is_valid(), "do not need temporary"); 3831 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3832 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3833 } 3834 __ xorpd(dest->as_xmm_double_reg(), 3835 ExternalAddress((address)double_signflip_pool)); 3836 } 3837 #ifndef _LP64 3838 } else if (left->is_single_fpu() || left->is_double_fpu()) { 3839 assert(left->fpu() == 0, "arg must be on TOS"); 3840 assert(dest->fpu() == 0, "dest must be TOS"); 3841 __ fchs(); 3842 #endif // !_LP64 3843 3844 } else { 3845 ShouldNotReachHere(); 3846 } 3847 } 3848 3849 3850 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 3851 assert(src->is_address(), "must be an address"); 3852 assert(dest->is_register(), "must be a register"); 3853 3854 PatchingStub* patch = NULL; 3855 if (patch_code != lir_patch_none) { 3856 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 3857 } 3858 3859 Register reg = dest->as_pointer_register(); 3860 LIR_Address* addr = src->as_address_ptr(); 3861 __ lea(reg, as_Address(addr)); 3862 3863 if (patch != NULL) { 3864 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 3865 } 3866 } 3867 3868 3869 3870 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3871 assert(!tmp->is_valid(), "don't need temporary"); 3872 __ call(RuntimeAddress(dest)); 3873 if (info != NULL) { 3874 add_call_info_here(info); 3875 } 3876 } 3877 3878 3879 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3880 assert(type == T_LONG, "only for volatile long fields"); 3881 3882 if (info != NULL) { 3883 add_debug_info_for_null_check_here(info); 3884 } 3885 3886 if (src->is_double_xmm()) { 3887 if (dest->is_double_cpu()) { 3888 #ifdef _LP64 3889 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3890 #else 3891 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg()); 3892 __ psrlq(src->as_xmm_double_reg(), 32); 3893 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg()); 3894 #endif // _LP64 3895 } else if (dest->is_double_stack()) { 3896 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3897 } else if (dest->is_address()) { 3898 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3899 } else { 3900 ShouldNotReachHere(); 3901 } 3902 3903 } else if (dest->is_double_xmm()) { 3904 if (src->is_double_stack()) { 3905 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3906 } else if (src->is_address()) { 3907 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3908 } else { 3909 ShouldNotReachHere(); 3910 } 3911 3912 #ifndef _LP64 3913 } else if (src->is_double_fpu()) { 3914 assert(src->fpu_regnrLo() == 0, "must be TOS"); 3915 if (dest->is_double_stack()) { 3916 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix())); 3917 } else if (dest->is_address()) { 3918 __ fistp_d(as_Address(dest->as_address_ptr())); 3919 } else { 3920 ShouldNotReachHere(); 3921 } 3922 3923 } else if (dest->is_double_fpu()) { 3924 assert(dest->fpu_regnrLo() == 0, "must be TOS"); 3925 if (src->is_double_stack()) { 3926 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix())); 3927 } else if (src->is_address()) { 3928 __ fild_d(as_Address(src->as_address_ptr())); 3929 } else { 3930 ShouldNotReachHere(); 3931 } 3932 #endif // !_LP64 3933 3934 } else { 3935 ShouldNotReachHere(); 3936 } 3937 } 3938 3939 #ifdef ASSERT 3940 // emit run-time assertion 3941 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3942 assert(op->code() == lir_assert, "must be"); 3943 3944 if (op->in_opr1()->is_valid()) { 3945 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3946 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3947 } else { 3948 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3949 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3950 } 3951 3952 Label ok; 3953 if (op->condition() != lir_cond_always) { 3954 Assembler::Condition acond = Assembler::zero; 3955 switch (op->condition()) { 3956 case lir_cond_equal: acond = Assembler::equal; break; 3957 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3958 case lir_cond_less: acond = Assembler::less; break; 3959 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3960 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3961 case lir_cond_greater: acond = Assembler::greater; break; 3962 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3963 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3964 default: ShouldNotReachHere(); 3965 } 3966 __ jcc(acond, ok); 3967 } 3968 if (op->halt()) { 3969 const char* str = __ code_string(op->msg()); 3970 __ stop(str); 3971 } else { 3972 breakpoint(); 3973 } 3974 __ bind(ok); 3975 } 3976 #endif 3977 3978 void LIR_Assembler::membar() { 3979 // QQQ sparc TSO uses this, 3980 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 3981 } 3982 3983 void LIR_Assembler::membar_acquire() { 3984 // No x86 machines currently require load fences 3985 } 3986 3987 void LIR_Assembler::membar_release() { 3988 // No x86 machines currently require store fences 3989 } 3990 3991 void LIR_Assembler::membar_loadload() { 3992 // no-op 3993 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 3994 } 3995 3996 void LIR_Assembler::membar_storestore() { 3997 // no-op 3998 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 3999 } 4000 4001 void LIR_Assembler::membar_loadstore() { 4002 // no-op 4003 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 4004 } 4005 4006 void LIR_Assembler::membar_storeload() { 4007 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 4008 } 4009 4010 void LIR_Assembler::on_spin_wait() { 4011 __ pause (); 4012 } 4013 4014 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 4015 assert(result_reg->is_register(), "check"); 4016 #ifdef _LP64 4017 // __ get_thread(result_reg->as_register_lo()); 4018 __ mov(result_reg->as_register(), r15_thread); 4019 #else 4020 __ get_thread(result_reg->as_register()); 4021 #endif // _LP64 4022 } 4023 4024 4025 void LIR_Assembler::peephole(LIR_List*) { 4026 // do nothing for now 4027 } 4028 4029 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 4030 assert(data == dest, "xchg/xadd uses only 2 operands"); 4031 4032 if (data->type() == T_INT) { 4033 if (code == lir_xadd) { 4034 __ lock(); 4035 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 4036 } else { 4037 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 4038 } 4039 } else if (data->is_oop()) { 4040 assert (code == lir_xchg, "xadd for oops"); 4041 Register obj = data->as_register(); 4042 #ifdef _LP64 4043 if (UseCompressedOops) { 4044 __ encode_heap_oop(obj); 4045 __ xchgl(obj, as_Address(src->as_address_ptr())); 4046 __ decode_heap_oop(obj); 4047 } else { 4048 __ xchgptr(obj, as_Address(src->as_address_ptr())); 4049 } 4050 #else 4051 __ xchgl(obj, as_Address(src->as_address_ptr())); 4052 #endif 4053 } else if (data->type() == T_LONG) { 4054 #ifdef _LP64 4055 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 4056 if (code == lir_xadd) { 4057 __ lock(); 4058 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 4059 } else { 4060 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 4061 } 4062 #else 4063 ShouldNotReachHere(); 4064 #endif 4065 } else { 4066 ShouldNotReachHere(); 4067 } 4068 } 4069 4070 #undef __ --- EOF ---