1 /* 2 * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArray.hpp" 34 #include "ci/ciObjArrayKlass.hpp" 35 #include "ci/ciTypeArrayKlass.hpp" 36 #include "gc/shared/c1/barrierSetC1.hpp" 37 #include "runtime/sharedRuntime.hpp" 38 #include "runtime/stubRoutines.hpp" 39 #include "utilities/powerOfTwo.hpp" 40 #include "vmreg_x86.inline.hpp" 41 42 #ifdef ASSERT 43 #define __ gen()->lir(__FILE__, __LINE__)-> 44 #else 45 #define __ gen()->lir()-> 46 #endif 47 48 // Item will be loaded into a byte register; Intel only 49 void LIRItem::load_byte_item() { 50 load_item(); 51 LIR_Opr res = result(); 52 53 if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) { 54 // make sure that it is a byte register 55 assert(!value()->type()->is_float() && !value()->type()->is_double(), 56 "can't load floats in byte register"); 57 LIR_Opr reg = _gen->rlock_byte(T_BYTE); 58 __ move(res, reg); 59 60 _result = reg; 61 } 62 } 63 64 65 void LIRItem::load_nonconstant() { 66 LIR_Opr r = value()->operand(); 67 if (r->is_constant()) { 68 _result = r; 69 } else { 70 load_item(); 71 } 72 } 73 74 //-------------------------------------------------------------- 75 // LIRGenerator 76 //-------------------------------------------------------------- 77 78 79 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; } 80 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; } 81 LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; } 82 LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; } 83 LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; } 84 LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; } 85 LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } 86 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; } 87 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } 88 89 90 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { 91 LIR_Opr opr; 92 switch (type->tag()) { 93 case intTag: opr = FrameMap::rax_opr; break; 94 case objectTag: opr = FrameMap::rax_oop_opr; break; 95 case longTag: opr = FrameMap::long0_opr; break; 96 #ifdef _LP64 97 case floatTag: opr = FrameMap::xmm0_float_opr; break; 98 case doubleTag: opr = FrameMap::xmm0_double_opr; break; 99 #else 100 case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break; 101 case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break; 102 #endif // _LP64 103 case addressTag: 104 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 105 } 106 107 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); 108 return opr; 109 } 110 111 112 LIR_Opr LIRGenerator::rlock_byte(BasicType type) { 113 LIR_Opr reg = new_register(T_INT); 114 set_vreg_flag(reg, LIRGenerator::byte_reg); 115 return reg; 116 } 117 118 119 //--------- loading items into registers -------------------------------- 120 121 122 // i486 instructions can inline constants 123 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { 124 if (type == T_SHORT || type == T_CHAR) { 125 // there is no immediate move of word values in asembler_i486.?pp 126 return false; 127 } 128 Constant* c = v->as_Constant(); 129 if (c && c->state_before() == NULL) { 130 // constants of any type can be stored directly, except for 131 // unloaded object constants. 132 return true; 133 } 134 return false; 135 } 136 137 138 bool LIRGenerator::can_inline_as_constant(Value v) const { 139 if (v->type()->tag() == longTag) return false; 140 return v->type()->tag() != objectTag || 141 (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object()); 142 } 143 144 145 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { 146 if (c->type() == T_LONG) return false; 147 return c->type() != T_OBJECT || c->as_jobject() == NULL; 148 } 149 150 151 LIR_Opr LIRGenerator::safepoint_poll_register() { 152 NOT_LP64( return new_register(T_ADDRESS); ) 153 return LIR_OprFact::illegalOpr; 154 } 155 156 157 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, 158 int shift, int disp, BasicType type) { 159 assert(base->is_register(), "must be"); 160 if (index->is_constant()) { 161 LIR_Const *constant = index->as_constant_ptr(); 162 #ifdef _LP64 163 jlong c; 164 if (constant->type() == T_INT) { 165 c = (jlong(index->as_jint()) << shift) + disp; 166 } else { 167 assert(constant->type() == T_LONG, "should be"); 168 c = (index->as_jlong() << shift) + disp; 169 } 170 if ((jlong)((jint)c) == c) { 171 return new LIR_Address(base, (jint)c, type); 172 } else { 173 LIR_Opr tmp = new_register(T_LONG); 174 __ move(index, tmp); 175 return new LIR_Address(base, tmp, type); 176 } 177 #else 178 return new LIR_Address(base, 179 ((intx)(constant->as_jint()) << shift) + disp, 180 type); 181 #endif 182 } else { 183 return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type); 184 } 185 } 186 187 188 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, 189 BasicType type) { 190 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); 191 192 LIR_Address* addr; 193 if (index_opr->is_constant()) { 194 int elem_size = type2aelembytes(type); 195 #ifdef _LP64 196 jint index = index_opr->as_jint(); 197 jlong disp = offset_in_bytes + (jlong)(index) * elem_size; 198 if (disp > max_jint) { 199 // Displacement overflow. Cannot directly use instruction with 32-bit displacement for 64-bit addresses. 200 // Convert array index to long to do array offset computation with 64-bit values. 201 index_opr = new_register(T_LONG); 202 __ move(LIR_OprFact::longConst(index), index_opr); 203 addr = new LIR_Address(array_opr, index_opr, LIR_Address::scale(type), offset_in_bytes, type); 204 } else { 205 addr = new LIR_Address(array_opr, (intx)disp, type); 206 } 207 #else 208 // A displacement overflow can also occur for x86 but that is not a problem due to the 32-bit address range! 209 // Let's assume an array 'a' and an access with displacement 'disp'. When disp overflows, then "a + disp" will 210 // always be negative (i.e. underflows the 32-bit address range): 211 // Let N = 2^32: a + signed_overflow(disp) = a + disp - N. 212 // "a + disp" is always smaller than N. If an index was chosen which would point to an address beyond N, then 213 // range checks would catch that and throw an exception. Thus, a + disp < 0 holds which means that it always 214 // underflows the 32-bit address range: 215 // unsigned_underflow(a + signed_overflow(disp)) = unsigned_underflow(a + disp - N) 216 // = (a + disp - N) + N = a + disp 217 // This shows that we still end up at the correct address with a displacement overflow due to the 32-bit address 218 // range limitation. This overflow only needs to be handled if addresses can be larger as on 64-bit platforms. 219 addr = new LIR_Address(array_opr, offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type); 220 #endif // _LP64 221 } else { 222 #ifdef _LP64 223 if (index_opr->type() == T_INT) { 224 LIR_Opr tmp = new_register(T_LONG); 225 __ convert(Bytecodes::_i2l, index_opr, tmp); 226 index_opr = tmp; 227 } 228 #endif // _LP64 229 addr = new LIR_Address(array_opr, 230 index_opr, 231 LIR_Address::scale(type), 232 offset_in_bytes, type); 233 } 234 return addr; 235 } 236 237 238 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { 239 LIR_Opr r = NULL; 240 if (type == T_LONG) { 241 r = LIR_OprFact::longConst(x); 242 } else if (type == T_INT) { 243 r = LIR_OprFact::intConst(x); 244 } else { 245 ShouldNotReachHere(); 246 } 247 return r; 248 } 249 250 void LIRGenerator::increment_counter(address counter, BasicType type, int step) { 251 LIR_Opr pointer = new_pointer_register(); 252 __ move(LIR_OprFact::intptrConst(counter), pointer); 253 LIR_Address* addr = new LIR_Address(pointer, type); 254 increment_counter(addr, step); 255 } 256 257 258 void LIRGenerator::increment_counter(LIR_Address* addr, int step) { 259 __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr); 260 } 261 262 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 263 __ cmp_mem_int(condition, base, disp, c, info); 264 } 265 266 267 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { 268 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); 269 } 270 271 272 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { 273 if (tmp->is_valid() && c > 0 && c < max_jint) { 274 if (is_power_of_2(c + 1)) { 275 __ move(left, tmp); 276 __ shift_left(left, log2i_exact(c + 1), left); 277 __ sub(left, tmp, result); 278 return true; 279 } else if (is_power_of_2(c - 1)) { 280 __ move(left, tmp); 281 __ shift_left(left, log2i_exact(c - 1), left); 282 __ add(left, tmp, result); 283 return true; 284 } 285 } 286 return false; 287 } 288 289 290 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { 291 BasicType type = item->type(); 292 __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type)); 293 } 294 295 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { 296 LIR_Opr tmp1 = new_register(objectType); 297 LIR_Opr tmp2 = new_register(objectType); 298 LIR_Opr tmp3 = new_register(objectType); 299 __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); 300 } 301 302 //---------------------------------------------------------------------- 303 // visitor functions 304 //---------------------------------------------------------------------- 305 306 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { 307 assert(x->is_pinned(),""); 308 LIRItem obj(x->obj(), this); 309 obj.load_item(); 310 311 set_no_result(x); 312 313 // "lock" stores the address of the monitor stack slot, so this is not an oop 314 LIR_Opr lock = new_register(T_INT); 315 // Need a scratch register for biased locking on x86 316 LIR_Opr scratch = LIR_OprFact::illegalOpr; 317 if (UseBiasedLocking) { 318 scratch = new_register(T_INT); 319 } 320 321 CodeEmitInfo* info_for_exception = NULL; 322 if (x->needs_null_check()) { 323 info_for_exception = state_for(x); 324 } 325 // this CodeEmitInfo must not have the xhandlers because here the 326 // object is already locked (xhandlers expect object to be unlocked) 327 CodeEmitInfo* info = state_for(x, x->state(), true); 328 monitor_enter(obj.result(), lock, syncTempOpr(), scratch, 329 x->monitor_no(), info_for_exception, info); 330 } 331 332 333 void LIRGenerator::do_MonitorExit(MonitorExit* x) { 334 assert(x->is_pinned(),""); 335 336 LIRItem obj(x->obj(), this); 337 obj.dont_load_item(); 338 339 LIR_Opr lock = new_register(T_INT); 340 LIR_Opr obj_temp = new_register(T_INT); 341 set_no_result(x); 342 monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no()); 343 } 344 345 346 // _ineg, _lneg, _fneg, _dneg 347 void LIRGenerator::do_NegateOp(NegateOp* x) { 348 LIRItem value(x->x(), this); 349 value.set_destroys_register(); 350 value.load_item(); 351 LIR_Opr reg = rlock(x); 352 353 LIR_Opr tmp = LIR_OprFact::illegalOpr; 354 #ifdef _LP64 355 if (UseAVX > 2 && !VM_Version::supports_avx512vl()) { 356 if (x->type()->tag() == doubleTag) { 357 tmp = new_register(T_DOUBLE); 358 __ move(LIR_OprFact::doubleConst(-0.0), tmp); 359 } 360 else if (x->type()->tag() == floatTag) { 361 tmp = new_register(T_FLOAT); 362 __ move(LIR_OprFact::floatConst(-0.0), tmp); 363 } 364 } 365 #endif 366 __ negate(value.result(), reg, tmp); 367 368 set_result(x, round_item(reg)); 369 } 370 371 372 // for _fadd, _fmul, _fsub, _fdiv, _frem 373 // _dadd, _dmul, _dsub, _ddiv, _drem 374 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { 375 LIRItem left(x->x(), this); 376 LIRItem right(x->y(), this); 377 LIRItem* left_arg = &left; 378 LIRItem* right_arg = &right; 379 assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands"); 380 bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem); 381 if (left.is_register() || x->x()->type()->is_constant() || must_load_both) { 382 left.load_item(); 383 } else { 384 left.dont_load_item(); 385 } 386 387 #ifndef _LP64 388 // do not load right operand if it is a constant. only 0 and 1 are 389 // loaded because there are special instructions for loading them 390 // without memory access (not needed for SSE2 instructions) 391 bool must_load_right = false; 392 if (right.is_constant()) { 393 LIR_Const* c = right.result()->as_constant_ptr(); 394 assert(c != NULL, "invalid constant"); 395 assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type"); 396 397 if (c->type() == T_FLOAT) { 398 must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float()); 399 } else { 400 must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double()); 401 } 402 } 403 #endif // !LP64 404 405 if (must_load_both) { 406 // frem and drem destroy also right operand, so move it to a new register 407 right.set_destroys_register(); 408 right.load_item(); 409 } else if (right.is_register()) { 410 right.load_item(); 411 #ifndef _LP64 412 } else if (must_load_right) { 413 right.load_item(); 414 #endif // !LP64 415 } else { 416 right.dont_load_item(); 417 } 418 LIR_Opr reg = rlock(x); 419 LIR_Opr tmp = LIR_OprFact::illegalOpr; 420 if (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv) { 421 tmp = new_register(T_DOUBLE); 422 } 423 424 #ifdef _LP64 425 if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) { 426 // frem and drem are implemented as a direct call into the runtime. 427 LIRItem left(x->x(), this); 428 LIRItem right(x->y(), this); 429 430 BasicType bt = as_BasicType(x->type()); 431 BasicTypeList signature(2); 432 signature.append(bt); 433 signature.append(bt); 434 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 435 436 const LIR_Opr result_reg = result_register_for(x->type()); 437 left.load_item_force(cc->at(0)); 438 right.load_item_force(cc->at(1)); 439 440 address entry = NULL; 441 switch (x->op()) { 442 case Bytecodes::_frem: 443 entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem); 444 break; 445 case Bytecodes::_drem: 446 entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem); 447 break; 448 default: 449 ShouldNotReachHere(); 450 } 451 452 LIR_Opr result = rlock_result(x); 453 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); 454 __ move(result_reg, result); 455 } else { 456 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), tmp); 457 set_result(x, round_item(reg)); 458 } 459 #else 460 if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) { 461 // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots 462 LIR_Opr fpu0, fpu1; 463 if (x->op() == Bytecodes::_frem) { 464 fpu0 = LIR_OprFact::single_fpu(0); 465 fpu1 = LIR_OprFact::single_fpu(1); 466 } else { 467 fpu0 = LIR_OprFact::double_fpu(0); 468 fpu1 = LIR_OprFact::double_fpu(1); 469 } 470 __ move(right.result(), fpu1); // order of left and right operand is important! 471 __ move(left.result(), fpu0); 472 __ rem (fpu0, fpu1, fpu0); 473 __ move(fpu0, reg); 474 475 } else { 476 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), tmp); 477 } 478 set_result(x, round_item(reg)); 479 #endif // _LP64 480 } 481 482 483 // for _ladd, _lmul, _lsub, _ldiv, _lrem 484 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { 485 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) { 486 // long division is implemented as a direct call into the runtime 487 LIRItem left(x->x(), this); 488 LIRItem right(x->y(), this); 489 490 // the check for division by zero destroys the right operand 491 right.set_destroys_register(); 492 493 BasicTypeList signature(2); 494 signature.append(T_LONG); 495 signature.append(T_LONG); 496 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 497 498 // check for division by zero (destroys registers of right operand!) 499 CodeEmitInfo* info = state_for(x); 500 501 const LIR_Opr result_reg = result_register_for(x->type()); 502 left.load_item_force(cc->at(1)); 503 right.load_item(); 504 505 __ move(right.result(), cc->at(0)); 506 507 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); 508 __ branch(lir_cond_equal, new DivByZeroStub(info)); 509 510 address entry = NULL; 511 switch (x->op()) { 512 case Bytecodes::_lrem: 513 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem); 514 break; // check if dividend is 0 is done elsewhere 515 case Bytecodes::_ldiv: 516 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv); 517 break; // check if dividend is 0 is done elsewhere 518 default: 519 ShouldNotReachHere(); 520 } 521 522 LIR_Opr result = rlock_result(x); 523 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); 524 __ move(result_reg, result); 525 } else if (x->op() == Bytecodes::_lmul) { 526 // missing test if instr is commutative and if we should swap 527 LIRItem left(x->x(), this); 528 LIRItem right(x->y(), this); 529 530 // right register is destroyed by the long mul, so it must be 531 // copied to a new register. 532 right.set_destroys_register(); 533 534 left.load_item(); 535 right.load_item(); 536 537 LIR_Opr reg = FrameMap::long0_opr; 538 arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL); 539 LIR_Opr result = rlock_result(x); 540 __ move(reg, result); 541 } else { 542 // missing test if instr is commutative and if we should swap 543 LIRItem left(x->x(), this); 544 LIRItem right(x->y(), this); 545 546 left.load_item(); 547 // don't load constants to save register 548 right.load_nonconstant(); 549 rlock_result(x); 550 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); 551 } 552 } 553 554 555 556 // for: _iadd, _imul, _isub, _idiv, _irem 557 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { 558 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { 559 // The requirements for division and modulo 560 // input : rax,: dividend min_int 561 // reg: divisor (may not be rax,/rdx) -1 562 // 563 // output: rax,: quotient (= rax, idiv reg) min_int 564 // rdx: remainder (= rax, irem reg) 0 565 566 // rax, and rdx will be destroyed 567 568 // Note: does this invalidate the spec ??? 569 LIRItem right(x->y(), this); 570 LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid 571 572 // call state_for before load_item_force because state_for may 573 // force the evaluation of other instructions that are needed for 574 // correct debug info. Otherwise the live range of the fix 575 // register might be too long. 576 CodeEmitInfo* info = state_for(x); 577 578 left.load_item_force(divInOpr()); 579 580 right.load_item(); 581 582 LIR_Opr result = rlock_result(x); 583 LIR_Opr result_reg; 584 if (x->op() == Bytecodes::_idiv) { 585 result_reg = divOutOpr(); 586 } else { 587 result_reg = remOutOpr(); 588 } 589 590 if (!ImplicitDiv0Checks) { 591 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0)); 592 __ branch(lir_cond_equal, new DivByZeroStub(info)); 593 // Idiv/irem cannot trap (passing info would generate an assertion). 594 info = NULL; 595 } 596 LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation 597 if (x->op() == Bytecodes::_irem) { 598 __ irem(left.result(), right.result(), result_reg, tmp, info); 599 } else if (x->op() == Bytecodes::_idiv) { 600 __ idiv(left.result(), right.result(), result_reg, tmp, info); 601 } else { 602 ShouldNotReachHere(); 603 } 604 605 __ move(result_reg, result); 606 } else { 607 // missing test if instr is commutative and if we should swap 608 LIRItem left(x->x(), this); 609 LIRItem right(x->y(), this); 610 LIRItem* left_arg = &left; 611 LIRItem* right_arg = &right; 612 if (x->is_commutative() && left.is_stack() && right.is_register()) { 613 // swap them if left is real stack (or cached) and right is real register(not cached) 614 left_arg = &right; 615 right_arg = &left; 616 } 617 618 left_arg->load_item(); 619 620 // do not need to load right, as we can handle stack and constants 621 if (x->op() == Bytecodes::_imul ) { 622 // check if we can use shift instead 623 bool use_constant = false; 624 bool use_tmp = false; 625 if (right_arg->is_constant()) { 626 jint iconst = right_arg->get_jint_constant(); 627 if (iconst > 0 && iconst < max_jint) { 628 if (is_power_of_2(iconst)) { 629 use_constant = true; 630 } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) { 631 use_constant = true; 632 use_tmp = true; 633 } 634 } 635 } 636 if (use_constant) { 637 right_arg->dont_load_item(); 638 } else { 639 right_arg->load_item(); 640 } 641 LIR_Opr tmp = LIR_OprFact::illegalOpr; 642 if (use_tmp) { 643 tmp = new_register(T_INT); 644 } 645 rlock_result(x); 646 647 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); 648 } else { 649 right_arg->dont_load_item(); 650 rlock_result(x); 651 LIR_Opr tmp = LIR_OprFact::illegalOpr; 652 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); 653 } 654 } 655 } 656 657 658 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { 659 // when an operand with use count 1 is the left operand, then it is 660 // likely that no move for 2-operand-LIR-form is necessary 661 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { 662 x->swap_operands(); 663 } 664 665 ValueTag tag = x->type()->tag(); 666 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); 667 switch (tag) { 668 case floatTag: 669 case doubleTag: do_ArithmeticOp_FPU(x); return; 670 case longTag: do_ArithmeticOp_Long(x); return; 671 case intTag: do_ArithmeticOp_Int(x); return; 672 default: ShouldNotReachHere(); return; 673 } 674 } 675 676 677 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr 678 void LIRGenerator::do_ShiftOp(ShiftOp* x) { 679 // count must always be in rcx 680 LIRItem value(x->x(), this); 681 LIRItem count(x->y(), this); 682 683 ValueTag elemType = x->type()->tag(); 684 bool must_load_count = !count.is_constant() || elemType == longTag; 685 if (must_load_count) { 686 // count for long must be in register 687 count.load_item_force(shiftCountOpr()); 688 } else { 689 count.dont_load_item(); 690 } 691 value.load_item(); 692 LIR_Opr reg = rlock_result(x); 693 694 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); 695 } 696 697 698 // _iand, _land, _ior, _lor, _ixor, _lxor 699 void LIRGenerator::do_LogicOp(LogicOp* x) { 700 // when an operand with use count 1 is the left operand, then it is 701 // likely that no move for 2-operand-LIR-form is necessary 702 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { 703 x->swap_operands(); 704 } 705 706 LIRItem left(x->x(), this); 707 LIRItem right(x->y(), this); 708 709 left.load_item(); 710 right.load_nonconstant(); 711 LIR_Opr reg = rlock_result(x); 712 713 logic_op(x->op(), reg, left.result(), right.result()); 714 } 715 716 717 718 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg 719 void LIRGenerator::do_CompareOp(CompareOp* x) { 720 LIRItem left(x->x(), this); 721 LIRItem right(x->y(), this); 722 ValueTag tag = x->x()->type()->tag(); 723 if (tag == longTag) { 724 left.set_destroys_register(); 725 } 726 left.load_item(); 727 right.load_item(); 728 LIR_Opr reg = rlock_result(x); 729 730 if (x->x()->type()->is_float_kind()) { 731 Bytecodes::Code code = x->op(); 732 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); 733 } else if (x->x()->type()->tag() == longTag) { 734 __ lcmp2int(left.result(), right.result(), reg); 735 } else { 736 Unimplemented(); 737 } 738 } 739 740 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { 741 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience 742 if (is_reference_type(type)) { 743 cmp_value.load_item_force(FrameMap::rax_oop_opr); 744 new_value.load_item(); 745 __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 746 } else if (type == T_INT) { 747 cmp_value.load_item_force(FrameMap::rax_opr); 748 new_value.load_item(); 749 __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 750 } else if (type == T_LONG) { 751 cmp_value.load_item_force(FrameMap::long0_opr); 752 new_value.load_item_force(FrameMap::long1_opr); 753 __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill); 754 } else { 755 Unimplemented(); 756 } 757 LIR_Opr result = new_register(T_INT); 758 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), 759 result, T_INT); 760 return result; 761 } 762 763 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { 764 bool is_oop = is_reference_type(type); 765 LIR_Opr result = new_register(type); 766 value.load_item(); 767 // Because we want a 2-arg form of xchg and xadd 768 __ move(value.result(), result); 769 assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type"); 770 __ xchg(addr, result, result, LIR_OprFact::illegalOpr); 771 return result; 772 } 773 774 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { 775 LIR_Opr result = new_register(type); 776 value.load_item(); 777 // Because we want a 2-arg form of xchg and xadd 778 __ move(value.result(), result); 779 assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type"); 780 __ xadd(addr, result, result, LIR_OprFact::illegalOpr); 781 return result; 782 } 783 784 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { 785 assert(x->number_of_arguments() == 3, "wrong type"); 786 assert(UseFMA, "Needs FMA instructions support."); 787 LIRItem value(x->argument_at(0), this); 788 LIRItem value1(x->argument_at(1), this); 789 LIRItem value2(x->argument_at(2), this); 790 791 value2.set_destroys_register(); 792 793 value.load_item(); 794 value1.load_item(); 795 value2.load_item(); 796 797 LIR_Opr calc_input = value.result(); 798 LIR_Opr calc_input1 = value1.result(); 799 LIR_Opr calc_input2 = value2.result(); 800 LIR_Opr calc_result = rlock_result(x); 801 802 switch (x->id()) { 803 case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; 804 case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; 805 default: ShouldNotReachHere(); 806 } 807 808 } 809 810 811 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { 812 assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type"); 813 814 if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog || 815 x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos || 816 x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan || 817 x->id() == vmIntrinsics::_dlog10) { 818 do_LibmIntrinsic(x); 819 return; 820 } 821 822 LIRItem value(x->argument_at(0), this); 823 824 bool use_fpu = false; 825 #ifndef _LP64 826 if (UseSSE < 2) { 827 value.set_destroys_register(); 828 } 829 #endif // !LP64 830 value.load_item(); 831 832 LIR_Opr calc_input = value.result(); 833 LIR_Opr calc_result = rlock_result(x); 834 835 LIR_Opr tmp = LIR_OprFact::illegalOpr; 836 #ifdef _LP64 837 if (UseAVX > 2 && (!VM_Version::supports_avx512vl()) && 838 (x->id() == vmIntrinsics::_dabs)) { 839 tmp = new_register(T_DOUBLE); 840 __ move(LIR_OprFact::doubleConst(-0.0), tmp); 841 } 842 #endif 843 844 switch(x->id()) { 845 case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, tmp); break; 846 case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break; 847 default: ShouldNotReachHere(); 848 } 849 850 if (use_fpu) { 851 __ move(calc_result, x->operand()); 852 } 853 } 854 855 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) { 856 LIRItem value(x->argument_at(0), this); 857 value.set_destroys_register(); 858 859 LIR_Opr calc_result = rlock_result(x); 860 LIR_Opr result_reg = result_register_for(x->type()); 861 862 CallingConvention* cc = NULL; 863 864 if (x->id() == vmIntrinsics::_dpow) { 865 LIRItem value1(x->argument_at(1), this); 866 867 value1.set_destroys_register(); 868 869 BasicTypeList signature(2); 870 signature.append(T_DOUBLE); 871 signature.append(T_DOUBLE); 872 cc = frame_map()->c_calling_convention(&signature); 873 value.load_item_force(cc->at(0)); 874 value1.load_item_force(cc->at(1)); 875 } else { 876 BasicTypeList signature(1); 877 signature.append(T_DOUBLE); 878 cc = frame_map()->c_calling_convention(&signature); 879 value.load_item_force(cc->at(0)); 880 } 881 882 #ifndef _LP64 883 LIR_Opr tmp = FrameMap::fpu0_double_opr; 884 result_reg = tmp; 885 switch(x->id()) { 886 case vmIntrinsics::_dexp: 887 if (StubRoutines::dexp() != NULL) { 888 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); 889 } else { 890 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); 891 } 892 break; 893 case vmIntrinsics::_dlog: 894 if (StubRoutines::dlog() != NULL) { 895 __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); 896 } else { 897 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); 898 } 899 break; 900 case vmIntrinsics::_dlog10: 901 if (StubRoutines::dlog10() != NULL) { 902 __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); 903 } else { 904 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); 905 } 906 break; 907 case vmIntrinsics::_dpow: 908 if (StubRoutines::dpow() != NULL) { 909 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); 910 } else { 911 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); 912 } 913 break; 914 case vmIntrinsics::_dsin: 915 if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) { 916 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); 917 } else { 918 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); 919 } 920 break; 921 case vmIntrinsics::_dcos: 922 if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) { 923 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); 924 } else { 925 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); 926 } 927 break; 928 case vmIntrinsics::_dtan: 929 if (StubRoutines::dtan() != NULL) { 930 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); 931 } else { 932 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); 933 } 934 break; 935 default: ShouldNotReachHere(); 936 } 937 #else 938 switch (x->id()) { 939 case vmIntrinsics::_dexp: 940 if (StubRoutines::dexp() != NULL) { 941 __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); 942 } else { 943 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); 944 } 945 break; 946 case vmIntrinsics::_dlog: 947 if (StubRoutines::dlog() != NULL) { 948 __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); 949 } else { 950 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); 951 } 952 break; 953 case vmIntrinsics::_dlog10: 954 if (StubRoutines::dlog10() != NULL) { 955 __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); 956 } else { 957 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); 958 } 959 break; 960 case vmIntrinsics::_dpow: 961 if (StubRoutines::dpow() != NULL) { 962 __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); 963 } else { 964 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); 965 } 966 break; 967 case vmIntrinsics::_dsin: 968 if (StubRoutines::dsin() != NULL) { 969 __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); 970 } else { 971 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); 972 } 973 break; 974 case vmIntrinsics::_dcos: 975 if (StubRoutines::dcos() != NULL) { 976 __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); 977 } else { 978 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); 979 } 980 break; 981 case vmIntrinsics::_dtan: 982 if (StubRoutines::dtan() != NULL) { 983 __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); 984 } else { 985 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); 986 } 987 break; 988 default: ShouldNotReachHere(); 989 } 990 #endif // _LP64 991 __ move(result_reg, calc_result); 992 } 993 994 void LIRGenerator::do_ArrayCopy(Intrinsic* x) { 995 assert(x->number_of_arguments() == 5, "wrong type"); 996 997 // Make all state_for calls early since they can emit code 998 CodeEmitInfo* info = state_for(x, x->state()); 999 1000 LIRItem src(x->argument_at(0), this); 1001 LIRItem src_pos(x->argument_at(1), this); 1002 LIRItem dst(x->argument_at(2), this); 1003 LIRItem dst_pos(x->argument_at(3), this); 1004 LIRItem length(x->argument_at(4), this); 1005 1006 // operands for arraycopy must use fixed registers, otherwise 1007 // LinearScan will fail allocation (because arraycopy always needs a 1008 // call) 1009 1010 #ifndef _LP64 1011 src.load_item_force (FrameMap::rcx_oop_opr); 1012 src_pos.load_item_force (FrameMap::rdx_opr); 1013 dst.load_item_force (FrameMap::rax_oop_opr); 1014 dst_pos.load_item_force (FrameMap::rbx_opr); 1015 length.load_item_force (FrameMap::rdi_opr); 1016 LIR_Opr tmp = (FrameMap::rsi_opr); 1017 #else 1018 1019 // The java calling convention will give us enough registers 1020 // so that on the stub side the args will be perfect already. 1021 // On the other slow/special case side we call C and the arg 1022 // positions are not similar enough to pick one as the best. 1023 // Also because the java calling convention is a "shifted" version 1024 // of the C convention we can process the java args trivially into C 1025 // args without worry of overwriting during the xfer 1026 1027 src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); 1028 src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); 1029 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); 1030 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); 1031 length.load_item_force (FrameMap::as_opr(j_rarg4)); 1032 1033 LIR_Opr tmp = FrameMap::as_opr(j_rarg5); 1034 #endif // LP64 1035 1036 set_no_result(x); 1037 1038 int flags; 1039 ciArrayKlass* expected_type; 1040 arraycopy_helper(x, &flags, &expected_type); 1041 1042 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint 1043 } 1044 1045 void LIRGenerator::do_update_CRC32(Intrinsic* x) { 1046 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 1047 // Make all state_for calls early since they can emit code 1048 LIR_Opr result = rlock_result(x); 1049 int flags = 0; 1050 switch (x->id()) { 1051 case vmIntrinsics::_updateCRC32: { 1052 LIRItem crc(x->argument_at(0), this); 1053 LIRItem val(x->argument_at(1), this); 1054 // val is destroyed by update_crc32 1055 val.set_destroys_register(); 1056 crc.load_item(); 1057 val.load_item(); 1058 __ update_crc32(crc.result(), val.result(), result); 1059 break; 1060 } 1061 case vmIntrinsics::_updateBytesCRC32: 1062 case vmIntrinsics::_updateByteBufferCRC32: { 1063 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); 1064 1065 LIRItem crc(x->argument_at(0), this); 1066 LIRItem buf(x->argument_at(1), this); 1067 LIRItem off(x->argument_at(2), this); 1068 LIRItem len(x->argument_at(3), this); 1069 buf.load_item(); 1070 off.load_nonconstant(); 1071 1072 LIR_Opr index = off.result(); 1073 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 1074 if(off.result()->is_constant()) { 1075 index = LIR_OprFact::illegalOpr; 1076 offset += off.result()->as_jint(); 1077 } 1078 LIR_Opr base_op = buf.result(); 1079 1080 #ifndef _LP64 1081 if (!is_updateBytes) { // long b raw address 1082 base_op = new_register(T_INT); 1083 __ convert(Bytecodes::_l2i, buf.result(), base_op); 1084 } 1085 #else 1086 if (index->is_valid()) { 1087 LIR_Opr tmp = new_register(T_LONG); 1088 __ convert(Bytecodes::_i2l, index, tmp); 1089 index = tmp; 1090 } 1091 #endif 1092 1093 LIR_Address* a = new LIR_Address(base_op, 1094 index, 1095 offset, 1096 T_BYTE); 1097 BasicTypeList signature(3); 1098 signature.append(T_INT); 1099 signature.append(T_ADDRESS); 1100 signature.append(T_INT); 1101 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1102 const LIR_Opr result_reg = result_register_for(x->type()); 1103 1104 LIR_Opr addr = new_pointer_register(); 1105 __ leal(LIR_OprFact::address(a), addr); 1106 1107 crc.load_item_force(cc->at(0)); 1108 __ move(addr, cc->at(1)); 1109 len.load_item_force(cc->at(2)); 1110 1111 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); 1112 __ move(result_reg, result); 1113 1114 break; 1115 } 1116 default: { 1117 ShouldNotReachHere(); 1118 } 1119 } 1120 } 1121 1122 void LIRGenerator::do_update_CRC32C(Intrinsic* x) { 1123 Unimplemented(); 1124 } 1125 1126 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { 1127 assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support"); 1128 1129 // Make all state_for calls early since they can emit code 1130 LIR_Opr result = rlock_result(x); 1131 1132 LIRItem a(x->argument_at(0), this); // Object 1133 LIRItem aOffset(x->argument_at(1), this); // long 1134 LIRItem b(x->argument_at(2), this); // Object 1135 LIRItem bOffset(x->argument_at(3), this); // long 1136 LIRItem length(x->argument_at(4), this); // int 1137 LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int 1138 1139 a.load_item(); 1140 aOffset.load_nonconstant(); 1141 b.load_item(); 1142 bOffset.load_nonconstant(); 1143 1144 long constant_aOffset = 0; 1145 LIR_Opr result_aOffset = aOffset.result(); 1146 if (result_aOffset->is_constant()) { 1147 constant_aOffset = result_aOffset->as_jlong(); 1148 result_aOffset = LIR_OprFact::illegalOpr; 1149 } 1150 LIR_Opr result_a = a.result(); 1151 1152 long constant_bOffset = 0; 1153 LIR_Opr result_bOffset = bOffset.result(); 1154 if (result_bOffset->is_constant()) { 1155 constant_bOffset = result_bOffset->as_jlong(); 1156 result_bOffset = LIR_OprFact::illegalOpr; 1157 } 1158 LIR_Opr result_b = b.result(); 1159 1160 #ifndef _LP64 1161 result_a = new_register(T_INT); 1162 __ convert(Bytecodes::_l2i, a.result(), result_a); 1163 result_b = new_register(T_INT); 1164 __ convert(Bytecodes::_l2i, b.result(), result_b); 1165 #endif 1166 1167 1168 LIR_Address* addr_a = new LIR_Address(result_a, 1169 result_aOffset, 1170 constant_aOffset, 1171 T_BYTE); 1172 1173 LIR_Address* addr_b = new LIR_Address(result_b, 1174 result_bOffset, 1175 constant_bOffset, 1176 T_BYTE); 1177 1178 BasicTypeList signature(4); 1179 signature.append(T_ADDRESS); 1180 signature.append(T_ADDRESS); 1181 signature.append(T_INT); 1182 signature.append(T_INT); 1183 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 1184 const LIR_Opr result_reg = result_register_for(x->type()); 1185 1186 LIR_Opr ptr_addr_a = new_pointer_register(); 1187 __ leal(LIR_OprFact::address(addr_a), ptr_addr_a); 1188 1189 LIR_Opr ptr_addr_b = new_pointer_register(); 1190 __ leal(LIR_OprFact::address(addr_b), ptr_addr_b); 1191 1192 __ move(ptr_addr_a, cc->at(0)); 1193 __ move(ptr_addr_b, cc->at(1)); 1194 length.load_item_force(cc->at(2)); 1195 log2ArrayIndexScale.load_item_force(cc->at(3)); 1196 1197 __ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args()); 1198 __ move(result_reg, result); 1199 } 1200 1201 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f 1202 // _i2b, _i2c, _i2s 1203 LIR_Opr fixed_register_for(BasicType type) { 1204 switch (type) { 1205 case T_FLOAT: return FrameMap::fpu0_float_opr; 1206 case T_DOUBLE: return FrameMap::fpu0_double_opr; 1207 case T_INT: return FrameMap::rax_opr; 1208 case T_LONG: return FrameMap::long0_opr; 1209 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 1210 } 1211 } 1212 1213 void LIRGenerator::do_Convert(Convert* x) { 1214 #ifdef _LP64 1215 LIRItem value(x->value(), this); 1216 value.load_item(); 1217 LIR_Opr input = value.result(); 1218 LIR_Opr result = rlock(x); 1219 __ convert(x->op(), input, result); 1220 assert(result->is_virtual(), "result must be virtual register"); 1221 set_result(x, result); 1222 #else 1223 // flags that vary for the different operations and different SSE-settings 1224 bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false; 1225 1226 switch (x->op()) { 1227 case Bytecodes::_i2l: // fall through 1228 case Bytecodes::_l2i: // fall through 1229 case Bytecodes::_i2b: // fall through 1230 case Bytecodes::_i2c: // fall through 1231 case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; 1232 1233 case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break; 1234 case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break; 1235 case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break; 1236 case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; 1237 case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; 1238 case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; 1239 case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break; 1240 case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break; 1241 case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; 1242 case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; 1243 default: ShouldNotReachHere(); 1244 } 1245 1246 LIRItem value(x->value(), this); 1247 value.load_item(); 1248 LIR_Opr input = value.result(); 1249 LIR_Opr result = rlock(x); 1250 1251 // arguments of lir_convert 1252 LIR_Opr conv_input = input; 1253 LIR_Opr conv_result = result; 1254 ConversionStub* stub = NULL; 1255 1256 if (fixed_input) { 1257 conv_input = fixed_register_for(input->type()); 1258 __ move(input, conv_input); 1259 } 1260 1261 assert(fixed_result == false || round_result == false, "cannot set both"); 1262 if (fixed_result) { 1263 conv_result = fixed_register_for(result->type()); 1264 } else if (round_result) { 1265 result = new_register(result->type()); 1266 set_vreg_flag(result, must_start_in_memory); 1267 } 1268 1269 if (needs_stub) { 1270 stub = new ConversionStub(x->op(), conv_input, conv_result); 1271 } 1272 1273 __ convert(x->op(), conv_input, conv_result, stub); 1274 1275 if (result != conv_result) { 1276 __ move(conv_result, result); 1277 } 1278 1279 assert(result->is_virtual(), "result must be virtual register"); 1280 set_result(x, result); 1281 #endif // _LP64 1282 } 1283 1284 1285 void LIRGenerator::do_NewInstance(NewInstance* x) { 1286 print_if_not_loaded(x); 1287 1288 CodeEmitInfo* info = state_for(x, x->state()); 1289 LIR_Opr reg = result_register_for(x->type()); 1290 new_instance(reg, x->klass(), x->is_unresolved(), 1291 FrameMap::rcx_oop_opr, 1292 FrameMap::rdi_oop_opr, 1293 FrameMap::rsi_oop_opr, 1294 LIR_OprFact::illegalOpr, 1295 FrameMap::rdx_metadata_opr, info); 1296 LIR_Opr result = rlock_result(x); 1297 __ move(reg, result); 1298 } 1299 1300 1301 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { 1302 CodeEmitInfo* info = state_for(x, x->state()); 1303 1304 LIRItem length(x->length(), this); 1305 length.load_item_force(FrameMap::rbx_opr); 1306 1307 LIR_Opr reg = result_register_for(x->type()); 1308 LIR_Opr tmp1 = FrameMap::rcx_oop_opr; 1309 LIR_Opr tmp2 = FrameMap::rsi_oop_opr; 1310 LIR_Opr tmp3 = FrameMap::rdi_oop_opr; 1311 LIR_Opr tmp4 = reg; 1312 LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; 1313 LIR_Opr len = length.result(); 1314 BasicType elem_type = x->elt_type(); 1315 1316 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); 1317 1318 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); 1319 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); 1320 1321 LIR_Opr result = rlock_result(x); 1322 __ move(reg, result); 1323 } 1324 1325 1326 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { 1327 LIRItem length(x->length(), this); 1328 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction 1329 // and therefore provide the state before the parameters have been consumed 1330 CodeEmitInfo* patching_info = NULL; 1331 if (!x->klass()->is_loaded() || PatchALot) { 1332 patching_info = state_for(x, x->state_before()); 1333 } 1334 1335 CodeEmitInfo* info = state_for(x, x->state()); 1336 1337 const LIR_Opr reg = result_register_for(x->type()); 1338 LIR_Opr tmp1 = FrameMap::rcx_oop_opr; 1339 LIR_Opr tmp2 = FrameMap::rsi_oop_opr; 1340 LIR_Opr tmp3 = FrameMap::rdi_oop_opr; 1341 LIR_Opr tmp4 = reg; 1342 LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; 1343 1344 length.load_item_force(FrameMap::rbx_opr); 1345 LIR_Opr len = length.result(); 1346 1347 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); 1348 ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); 1349 if (obj == ciEnv::unloaded_ciobjarrayklass()) { 1350 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); 1351 } 1352 klass2reg_with_patching(klass_reg, obj, patching_info); 1353 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); 1354 1355 LIR_Opr result = rlock_result(x); 1356 __ move(reg, result); 1357 } 1358 1359 1360 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { 1361 Values* dims = x->dims(); 1362 int i = dims->length(); 1363 LIRItemList* items = new LIRItemList(i, i, NULL); 1364 while (i-- > 0) { 1365 LIRItem* size = new LIRItem(dims->at(i), this); 1366 items->at_put(i, size); 1367 } 1368 1369 // Evaluate state_for early since it may emit code. 1370 CodeEmitInfo* patching_info = NULL; 1371 if (!x->klass()->is_loaded() || PatchALot) { 1372 patching_info = state_for(x, x->state_before()); 1373 1374 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so 1375 // clone all handlers (NOTE: Usually this is handled transparently 1376 // by the CodeEmitInfo cloning logic in CodeStub constructors but 1377 // is done explicitly here because a stub isn't being used). 1378 x->set_exception_handlers(new XHandlers(x->exception_handlers())); 1379 } 1380 CodeEmitInfo* info = state_for(x, x->state()); 1381 1382 i = dims->length(); 1383 while (i-- > 0) { 1384 LIRItem* size = items->at(i); 1385 size->load_nonconstant(); 1386 1387 store_stack_parameter(size->result(), in_ByteSize(i*4)); 1388 } 1389 1390 LIR_Opr klass_reg = FrameMap::rax_metadata_opr; 1391 klass2reg_with_patching(klass_reg, x->klass(), patching_info); 1392 1393 LIR_Opr rank = FrameMap::rbx_opr; 1394 __ move(LIR_OprFact::intConst(x->rank()), rank); 1395 LIR_Opr varargs = FrameMap::rcx_opr; 1396 __ move(FrameMap::rsp_opr, varargs); 1397 LIR_OprList* args = new LIR_OprList(3); 1398 args->append(klass_reg); 1399 args->append(rank); 1400 args->append(varargs); 1401 LIR_Opr reg = result_register_for(x->type()); 1402 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), 1403 LIR_OprFact::illegalOpr, 1404 reg, args, info); 1405 1406 LIR_Opr result = rlock_result(x); 1407 __ move(reg, result); 1408 } 1409 1410 1411 void LIRGenerator::do_BlockBegin(BlockBegin* x) { 1412 // nothing to do for now 1413 } 1414 1415 1416 void LIRGenerator::do_CheckCast(CheckCast* x) { 1417 LIRItem obj(x->obj(), this); 1418 1419 CodeEmitInfo* patching_info = NULL; 1420 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) { 1421 // must do this before locking the destination register as an oop register, 1422 // and before the obj is loaded (the latter is for deoptimization) 1423 patching_info = state_for(x, x->state_before()); 1424 } 1425 obj.load_item(); 1426 1427 // info for exceptions 1428 CodeEmitInfo* info_for_exception = 1429 (x->needs_exception_state() ? state_for(x) : 1430 state_for(x, x->state_before(), true /*ignore_xhandler*/)); 1431 1432 CodeStub* stub; 1433 if (x->is_incompatible_class_change_check()) { 1434 assert(patching_info == NULL, "can't patch this"); 1435 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); 1436 } else if (x->is_invokespecial_receiver_check()) { 1437 assert(patching_info == NULL, "can't patch this"); 1438 stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none); 1439 } else { 1440 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); 1441 } 1442 LIR_Opr reg = rlock_result(x); 1443 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1444 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1445 tmp3 = new_register(objectType); 1446 } 1447 __ checkcast(reg, obj.result(), x->klass(), 1448 new_register(objectType), new_register(objectType), tmp3, 1449 x->direct_compare(), info_for_exception, patching_info, stub, 1450 x->profiled_method(), x->profiled_bci()); 1451 } 1452 1453 1454 void LIRGenerator::do_InstanceOf(InstanceOf* x) { 1455 LIRItem obj(x->obj(), this); 1456 1457 // result and test object may not be in same register 1458 LIR_Opr reg = rlock_result(x); 1459 CodeEmitInfo* patching_info = NULL; 1460 if ((!x->klass()->is_loaded() || PatchALot)) { 1461 // must do this before locking the destination register as an oop register 1462 patching_info = state_for(x, x->state_before()); 1463 } 1464 obj.load_item(); 1465 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1466 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1467 tmp3 = new_register(objectType); 1468 } 1469 __ instanceof(reg, obj.result(), x->klass(), 1470 new_register(objectType), new_register(objectType), tmp3, 1471 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); 1472 } 1473 1474 1475 void LIRGenerator::do_If(If* x) { 1476 assert(x->number_of_sux() == 2, "inconsistency"); 1477 ValueTag tag = x->x()->type()->tag(); 1478 bool is_safepoint = x->is_safepoint(); 1479 1480 If::Condition cond = x->cond(); 1481 1482 LIRItem xitem(x->x(), this); 1483 LIRItem yitem(x->y(), this); 1484 LIRItem* xin = &xitem; 1485 LIRItem* yin = &yitem; 1486 1487 if (tag == longTag) { 1488 // for longs, only conditions "eql", "neq", "lss", "geq" are valid; 1489 // mirror for other conditions 1490 if (cond == If::gtr || cond == If::leq) { 1491 cond = Instruction::mirror(cond); 1492 xin = &yitem; 1493 yin = &xitem; 1494 } 1495 xin->set_destroys_register(); 1496 } 1497 xin->load_item(); 1498 if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { 1499 // inline long zero 1500 yin->dont_load_item(); 1501 } else if (tag == longTag || tag == floatTag || tag == doubleTag) { 1502 // longs cannot handle constants at right side 1503 yin->load_item(); 1504 } else { 1505 yin->dont_load_item(); 1506 } 1507 1508 LIR_Opr left = xin->result(); 1509 LIR_Opr right = yin->result(); 1510 1511 set_no_result(x); 1512 1513 // add safepoint before generating condition code so it can be recomputed 1514 if (x->is_safepoint()) { 1515 // increment backedge counter if needed 1516 increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()), 1517 x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci()); 1518 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 1519 } 1520 1521 __ cmp(lir_cond(cond), left, right); 1522 // Generate branch profiling. Profiling code doesn't kill flags. 1523 profile_branch(x, cond); 1524 move_to_phi(x->state()); 1525 if (x->x()->type()->is_float_kind()) { 1526 __ branch(lir_cond(cond), x->tsux(), x->usux()); 1527 } else { 1528 __ branch(lir_cond(cond), x->tsux()); 1529 } 1530 assert(x->default_sux() == x->fsux(), "wrong destination above"); 1531 __ jump(x->default_sux()); 1532 } 1533 1534 1535 LIR_Opr LIRGenerator::getThreadPointer() { 1536 #ifdef _LP64 1537 return FrameMap::as_pointer_opr(r15_thread); 1538 #else 1539 LIR_Opr result = new_register(T_INT); 1540 __ get_thread(result); 1541 return result; 1542 #endif // 1543 } 1544 1545 void LIRGenerator::trace_block_entry(BlockBegin* block) { 1546 store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0)); 1547 LIR_OprList* args = new LIR_OprList(); 1548 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); 1549 __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args); 1550 } 1551 1552 1553 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, 1554 CodeEmitInfo* info) { 1555 if (address->type() == T_LONG) { 1556 address = new LIR_Address(address->base(), 1557 address->index(), address->scale(), 1558 address->disp(), T_DOUBLE); 1559 // Transfer the value atomically by using FP moves. This means 1560 // the value has to be moved between CPU and FPU registers. It 1561 // always has to be moved through spill slot since there's no 1562 // quick way to pack the value into an SSE register. 1563 LIR_Opr temp_double = new_register(T_DOUBLE); 1564 LIR_Opr spill = new_register(T_LONG); 1565 set_vreg_flag(spill, must_start_in_memory); 1566 __ move(value, spill); 1567 __ volatile_move(spill, temp_double, T_LONG); 1568 __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info); 1569 } else { 1570 __ store(value, address, info); 1571 } 1572 } 1573 1574 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, 1575 CodeEmitInfo* info) { 1576 if (address->type() == T_LONG) { 1577 address = new LIR_Address(address->base(), 1578 address->index(), address->scale(), 1579 address->disp(), T_DOUBLE); 1580 // Transfer the value atomically by using FP moves. This means 1581 // the value has to be moved between CPU and FPU registers. In 1582 // SSE0 and SSE1 mode it has to be moved through spill slot but in 1583 // SSE2+ mode it can be moved directly. 1584 LIR_Opr temp_double = new_register(T_DOUBLE); 1585 __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info); 1586 __ volatile_move(temp_double, result, T_LONG); 1587 #ifndef _LP64 1588 if (UseSSE < 2) { 1589 // no spill slot needed in SSE2 mode because xmm->cpu register move is possible 1590 set_vreg_flag(result, must_start_in_memory); 1591 } 1592 #endif // !LP64 1593 } else { 1594 __ load(address, result, info); 1595 } 1596 }