1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compiler_globals.hpp" 27 #include "interp_masm_x86.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "logging/log.hpp" 31 #include "oops/arrayOop.hpp" 32 #include "oops/markWord.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/method.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "prims/jvmtiThreadState.hpp" 37 #include "runtime/basicLock.hpp" 38 #include "runtime/biasedLocking.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/safepointMechanism.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/thread.inline.hpp" 43 #include "utilities/powerOfTwo.hpp" 44 45 // Implementation of InterpreterMacroAssembler 46 47 void InterpreterMacroAssembler::jump_to_entry(address entry) { 48 assert(entry, "Entry must have been generated by now"); 49 jump(RuntimeAddress(entry)); 50 } 51 52 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 53 Label update, next, none; 54 55 interp_verify_oop(obj, atos); 56 57 testptr(obj, obj); 58 jccb(Assembler::notZero, update); 59 orptr(mdo_addr, TypeEntries::null_seen); 60 jmpb(next); 61 62 bind(update); 63 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 64 load_klass(obj, obj, tmp_load_klass); 65 66 xorptr(obj, mdo_addr); 67 testptr(obj, TypeEntries::type_klass_mask); 68 jccb(Assembler::zero, next); // klass seen before, nothing to 69 // do. The unknown bit may have been 70 // set already but no need to check. 71 72 testptr(obj, TypeEntries::type_unknown); 73 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 74 75 cmpptr(mdo_addr, 0); 76 jccb(Assembler::equal, none); 77 cmpptr(mdo_addr, TypeEntries::null_seen); 78 jccb(Assembler::equal, none); 79 // There is a chance that the checks above (re-reading profiling 80 // data from memory) fail if another thread has just set the 81 // profiling to this obj's klass 82 xorptr(obj, mdo_addr); 83 testptr(obj, TypeEntries::type_klass_mask); 84 jccb(Assembler::zero, next); 85 86 // different than before. Cannot keep accurate profile. 87 orptr(mdo_addr, TypeEntries::type_unknown); 88 jmpb(next); 89 90 bind(none); 91 // first time here. Set profile type. 92 movptr(mdo_addr, obj); 93 94 bind(next); 95 } 96 97 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 98 if (!ProfileInterpreter) { 99 return; 100 } 101 102 if (MethodData::profile_arguments() || MethodData::profile_return()) { 103 Label profile_continue; 104 105 test_method_data_pointer(mdp, profile_continue); 106 107 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 108 109 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 110 jcc(Assembler::notEqual, profile_continue); 111 112 if (MethodData::profile_arguments()) { 113 Label done; 114 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 115 addptr(mdp, off_to_args); 116 117 for (int i = 0; i < TypeProfileArgsLimit; i++) { 118 if (i > 0 || MethodData::profile_return()) { 119 // If return value type is profiled we may have no argument to profile 120 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 121 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 122 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 123 jcc(Assembler::less, done); 124 } 125 movptr(tmp, Address(callee, Method::const_offset())); 126 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 127 // stack offset o (zero based) from the start of the argument 128 // list, for n arguments translates into offset n - o - 1 from 129 // the end of the argument list 130 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 131 subl(tmp, 1); 132 Address arg_addr = argument_address(tmp); 133 movptr(tmp, arg_addr); 134 135 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 136 profile_obj_type(tmp, mdo_arg_addr); 137 138 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 139 addptr(mdp, to_add); 140 off_to_args += to_add; 141 } 142 143 if (MethodData::profile_return()) { 144 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 145 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 146 } 147 148 bind(done); 149 150 if (MethodData::profile_return()) { 151 // We're right after the type profile for the last 152 // argument. tmp is the number of cells left in the 153 // CallTypeData/VirtualCallTypeData to reach its end. Non null 154 // if there's a return to profile. 155 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 156 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 157 addptr(mdp, tmp); 158 } 159 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 160 } else { 161 assert(MethodData::profile_return(), "either profile call args or call ret"); 162 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 163 } 164 165 // mdp points right after the end of the 166 // CallTypeData/VirtualCallTypeData, right after the cells for the 167 // return value type if there's one 168 169 bind(profile_continue); 170 } 171 } 172 173 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 174 assert_different_registers(mdp, ret, tmp, _bcp_register); 175 if (ProfileInterpreter && MethodData::profile_return()) { 176 Label profile_continue; 177 178 test_method_data_pointer(mdp, profile_continue); 179 180 if (MethodData::profile_return_jsr292_only()) { 181 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 182 183 // If we don't profile all invoke bytecodes we must make sure 184 // it's a bytecode we indeed profile. We can't go back to the 185 // begining of the ProfileData we intend to update to check its 186 // type because we're right after it and we don't known its 187 // length 188 Label do_profile; 189 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 190 jcc(Assembler::equal, do_profile); 191 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 192 jcc(Assembler::equal, do_profile); 193 get_method(tmp); 194 cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 195 jcc(Assembler::notEqual, profile_continue); 196 197 bind(do_profile); 198 } 199 200 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 201 mov(tmp, ret); 202 profile_obj_type(tmp, mdo_ret_addr); 203 204 bind(profile_continue); 205 } 206 } 207 208 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 209 if (ProfileInterpreter && MethodData::profile_parameters()) { 210 Label profile_continue; 211 212 test_method_data_pointer(mdp, profile_continue); 213 214 // Load the offset of the area within the MDO used for 215 // parameters. If it's negative we're not profiling any parameters 216 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 217 testl(tmp1, tmp1); 218 jcc(Assembler::negative, profile_continue); 219 220 // Compute a pointer to the area for parameters from the offset 221 // and move the pointer to the slot for the last 222 // parameters. Collect profiling from last parameter down. 223 // mdo start + parameters offset + array length - 1 224 addptr(mdp, tmp1); 225 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 226 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 227 228 Label loop; 229 bind(loop); 230 231 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 232 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 233 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 234 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 235 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 236 237 // load offset on the stack from the slot for this parameter 238 movptr(tmp2, arg_off); 239 negptr(tmp2); 240 // read the parameter from the local area 241 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 242 243 // profile the parameter 244 profile_obj_type(tmp2, arg_type); 245 246 // go to next parameter 247 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 248 jcc(Assembler::positive, loop); 249 250 bind(profile_continue); 251 } 252 } 253 254 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 255 int number_of_arguments) { 256 // interpreter specific 257 // 258 // Note: No need to save/restore bcp & locals registers 259 // since these are callee saved registers and no blocking/ 260 // GC can happen in leaf calls. 261 // Further Note: DO NOT save/restore bcp/locals. If a caller has 262 // already saved them so that it can use rsi/rdi as temporaries 263 // then a save/restore here will DESTROY the copy the caller 264 // saved! There used to be a save_bcp() that only happened in 265 // the ASSERT path (no restore_bcp). Which caused bizarre failures 266 // when jvm built with ASSERTs. 267 #ifdef ASSERT 268 { 269 Label L; 270 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 271 jcc(Assembler::equal, L); 272 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 273 " last_sp != NULL"); 274 bind(L); 275 } 276 #endif 277 // super call 278 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 279 // interpreter specific 280 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 281 // but since they may not have been saved (and we don't want to 282 // save them here (see note above) the assert is invalid. 283 } 284 285 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 286 Register java_thread, 287 Register last_java_sp, 288 address entry_point, 289 int number_of_arguments, 290 bool check_exceptions) { 291 // interpreter specific 292 // 293 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 294 // really make a difference for these runtime calls, since they are 295 // slow anyway. Btw., bcp must be saved/restored since it may change 296 // due to GC. 297 NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) 298 save_bcp(); 299 #ifdef ASSERT 300 { 301 Label L; 302 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); 303 jcc(Assembler::equal, L); 304 stop("InterpreterMacroAssembler::call_VM_base:" 305 " last_sp != NULL"); 306 bind(L); 307 } 308 #endif /* ASSERT */ 309 // super call 310 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 311 entry_point, number_of_arguments, 312 check_exceptions); 313 // interpreter specific 314 restore_bcp(); 315 restore_locals(); 316 } 317 318 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 319 if (JvmtiExport::can_pop_frame()) { 320 Label L; 321 // Initiate popframe handling only if it is not already being 322 // processed. If the flag has the popframe_processing bit set, it 323 // means that this code is called *during* popframe handling - we 324 // don't want to reenter. 325 // This method is only called just after the call into the vm in 326 // call_VM_base, so the arg registers are available. 327 Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit 328 LP64_ONLY(c_rarg0); 329 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); 330 testl(pop_cond, JavaThread::popframe_pending_bit); 331 jcc(Assembler::zero, L); 332 testl(pop_cond, JavaThread::popframe_processing_bit); 333 jcc(Assembler::notZero, L); 334 // Call Interpreter::remove_activation_preserving_args_entry() to get the 335 // address of the same-named entrypoint in the generated interpreter code. 336 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 337 jmp(rax); 338 bind(L); 339 NOT_LP64(get_thread(java_thread);) 340 } 341 } 342 343 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 344 Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 345 NOT_LP64(get_thread(thread);) 346 movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); 347 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 348 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 349 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 350 #ifdef _LP64 351 switch (state) { 352 case atos: movptr(rax, oop_addr); 353 movptr(oop_addr, (int32_t)NULL_WORD); 354 interp_verify_oop(rax, state); break; 355 case ltos: movptr(rax, val_addr); break; 356 case btos: // fall through 357 case ztos: // fall through 358 case ctos: // fall through 359 case stos: // fall through 360 case itos: movl(rax, val_addr); break; 361 case ftos: load_float(val_addr); break; 362 case dtos: load_double(val_addr); break; 363 case vtos: /* nothing to do */ break; 364 default : ShouldNotReachHere(); 365 } 366 // Clean up tos value in the thread object 367 movl(tos_addr, (int) ilgl); 368 movl(val_addr, (int32_t) NULL_WORD); 369 #else 370 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() 371 + in_ByteSize(wordSize)); 372 switch (state) { 373 case atos: movptr(rax, oop_addr); 374 movptr(oop_addr, NULL_WORD); 375 interp_verify_oop(rax, state); break; 376 case ltos: 377 movl(rdx, val_addr1); // fall through 378 case btos: // fall through 379 case ztos: // fall through 380 case ctos: // fall through 381 case stos: // fall through 382 case itos: movl(rax, val_addr); break; 383 case ftos: load_float(val_addr); break; 384 case dtos: load_double(val_addr); break; 385 case vtos: /* nothing to do */ break; 386 default : ShouldNotReachHere(); 387 } 388 #endif // _LP64 389 // Clean up tos value in the thread object 390 movl(tos_addr, (int32_t) ilgl); 391 movptr(val_addr, NULL_WORD); 392 NOT_LP64(movptr(val_addr1, NULL_WORD);) 393 } 394 395 396 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 397 if (JvmtiExport::can_force_early_return()) { 398 Label L; 399 Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); 400 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); 401 402 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 403 testptr(tmp, tmp); 404 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; 405 406 // Initiate earlyret handling only if it is not already being processed. 407 // If the flag has the earlyret_processing bit set, it means that this code 408 // is called *during* earlyret handling - we don't want to reenter. 409 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 410 cmpl(tmp, JvmtiThreadState::earlyret_pending); 411 jcc(Assembler::notEqual, L); 412 413 // Call Interpreter::remove_activation_early_entry() to get the address of the 414 // same-named entrypoint in the generated interpreter code. 415 NOT_LP64(get_thread(java_thread);) 416 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 417 #ifdef _LP64 418 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 419 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 420 #else 421 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 422 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); 423 #endif // _LP64 424 jmp(rax); 425 bind(L); 426 NOT_LP64(get_thread(java_thread);) 427 } 428 } 429 430 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 431 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 432 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 433 bswapl(reg); 434 shrl(reg, 16); 435 } 436 437 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 438 int bcp_offset, 439 size_t index_size) { 440 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 441 if (index_size == sizeof(u2)) { 442 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 443 } else if (index_size == sizeof(u4)) { 444 movl(index, Address(_bcp_register, bcp_offset)); 445 // Check if the secondary index definition is still ~x, otherwise 446 // we have to change the following assembler code to calculate the 447 // plain index. 448 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 449 notl(index); // convert to plain index 450 } else if (index_size == sizeof(u1)) { 451 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 452 } else { 453 ShouldNotReachHere(); 454 } 455 } 456 457 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 458 Register index, 459 int bcp_offset, 460 size_t index_size) { 461 assert_different_registers(cache, index); 462 get_cache_index_at_bcp(index, bcp_offset, index_size); 463 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 464 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 465 // convert from field index to ConstantPoolCacheEntry index 466 assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); 467 shll(index, 2); 468 } 469 470 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 471 Register index, 472 Register bytecode, 473 int byte_no, 474 int bcp_offset, 475 size_t index_size) { 476 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 477 // We use a 32-bit load here since the layout of 64-bit words on 478 // little-endian machines allow us that. 479 movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); 480 const int shift_count = (1 + byte_no) * BitsPerByte; 481 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || 482 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), 483 "correct shift count"); 484 shrl(bytecode, shift_count); 485 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); 486 andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); 487 } 488 489 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 490 Register tmp, 491 int bcp_offset, 492 size_t index_size) { 493 assert_different_registers(cache, tmp); 494 495 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 496 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 497 // convert from field index to ConstantPoolCacheEntry index 498 // and from word offset to byte offset 499 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 500 shll(tmp, 2 + LogBytesPerWord); 501 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 502 // skip past the header 503 addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 504 addptr(cache, tmp); // construct pointer to cache entry 505 } 506 507 // Load object from cpool->resolved_references(index) 508 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 509 Register index, 510 Register tmp) { 511 assert_different_registers(result, index); 512 513 get_constant_pool(result); 514 // load pointer for resolved_references[] objArray 515 movptr(result, Address(result, ConstantPool::cache_offset_in_bytes())); 516 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 517 resolve_oop_handle(result, tmp); 518 load_heap_oop(result, Address(result, index, 519 UseCompressedOops ? Address::times_4 : Address::times_ptr, 520 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 521 } 522 523 // load cpool->resolved_klass_at(index) 524 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 525 Register cpool, 526 Register index) { 527 assert_different_registers(cpool, index); 528 529 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 530 Register resolved_klasses = cpool; 531 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); 532 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 533 } 534 535 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 536 Register method, 537 Register cache, 538 Register index) { 539 assert_different_registers(cache, index); 540 541 const int method_offset = in_bytes( 542 ConstantPoolCache::base_offset() + 543 ((byte_no == TemplateTable::f2_byte) 544 ? ConstantPoolCacheEntry::f2_offset() 545 : ConstantPoolCacheEntry::f1_offset())); 546 547 movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method* 548 } 549 550 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 551 // subtype of super_klass. 552 // 553 // Args: 554 // rax: superklass 555 // Rsub_klass: subklass 556 // 557 // Kills: 558 // rcx, rdi 559 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 560 Label& ok_is_subtype) { 561 assert(Rsub_klass != rax, "rax holds superklass"); 562 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 563 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 564 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 565 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 566 567 // Profile the not-null value's klass. 568 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 569 570 // Do the check. 571 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 572 573 // Profile the failure of the check. 574 profile_typecheck_failed(rcx); // blows rcx 575 } 576 577 578 #ifndef _LP64 579 void InterpreterMacroAssembler::f2ieee() { 580 if (IEEEPrecision) { 581 fstp_s(Address(rsp, 0)); 582 fld_s(Address(rsp, 0)); 583 } 584 } 585 586 587 void InterpreterMacroAssembler::d2ieee() { 588 if (IEEEPrecision) { 589 fstp_d(Address(rsp, 0)); 590 fld_d(Address(rsp, 0)); 591 } 592 } 593 #endif // _LP64 594 595 // Java Expression Stack 596 597 void InterpreterMacroAssembler::pop_ptr(Register r) { 598 pop(r); 599 } 600 601 void InterpreterMacroAssembler::push_ptr(Register r) { 602 push(r); 603 } 604 605 void InterpreterMacroAssembler::push_i(Register r) { 606 push(r); 607 } 608 609 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 610 push(r); 611 } 612 613 void InterpreterMacroAssembler::push_f(XMMRegister r) { 614 subptr(rsp, wordSize); 615 movflt(Address(rsp, 0), r); 616 } 617 618 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 619 movflt(r, Address(rsp, 0)); 620 addptr(rsp, wordSize); 621 } 622 623 void InterpreterMacroAssembler::push_d(XMMRegister r) { 624 subptr(rsp, 2 * wordSize); 625 movdbl(Address(rsp, 0), r); 626 } 627 628 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 629 movdbl(r, Address(rsp, 0)); 630 addptr(rsp, 2 * Interpreter::stackElementSize); 631 } 632 633 #ifdef _LP64 634 void InterpreterMacroAssembler::pop_i(Register r) { 635 // XXX can't use pop currently, upper half non clean 636 movl(r, Address(rsp, 0)); 637 addptr(rsp, wordSize); 638 } 639 640 void InterpreterMacroAssembler::pop_l(Register r) { 641 movq(r, Address(rsp, 0)); 642 addptr(rsp, 2 * Interpreter::stackElementSize); 643 } 644 645 void InterpreterMacroAssembler::push_l(Register r) { 646 subptr(rsp, 2 * wordSize); 647 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 648 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 649 } 650 651 void InterpreterMacroAssembler::pop(TosState state) { 652 switch (state) { 653 case atos: pop_ptr(); break; 654 case btos: 655 case ztos: 656 case ctos: 657 case stos: 658 case itos: pop_i(); break; 659 case ltos: pop_l(); break; 660 case ftos: pop_f(xmm0); break; 661 case dtos: pop_d(xmm0); break; 662 case vtos: /* nothing to do */ break; 663 default: ShouldNotReachHere(); 664 } 665 interp_verify_oop(rax, state); 666 } 667 668 void InterpreterMacroAssembler::push(TosState state) { 669 interp_verify_oop(rax, state); 670 switch (state) { 671 case atos: push_ptr(); break; 672 case btos: 673 case ztos: 674 case ctos: 675 case stos: 676 case itos: push_i(); break; 677 case ltos: push_l(); break; 678 case ftos: push_f(xmm0); break; 679 case dtos: push_d(xmm0); break; 680 case vtos: /* nothing to do */ break; 681 default : ShouldNotReachHere(); 682 } 683 } 684 #else 685 void InterpreterMacroAssembler::pop_i(Register r) { 686 pop(r); 687 } 688 689 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { 690 pop(lo); 691 pop(hi); 692 } 693 694 void InterpreterMacroAssembler::pop_f() { 695 fld_s(Address(rsp, 0)); 696 addptr(rsp, 1 * wordSize); 697 } 698 699 void InterpreterMacroAssembler::pop_d() { 700 fld_d(Address(rsp, 0)); 701 addptr(rsp, 2 * wordSize); 702 } 703 704 705 void InterpreterMacroAssembler::pop(TosState state) { 706 switch (state) { 707 case atos: pop_ptr(rax); break; 708 case btos: // fall through 709 case ztos: // fall through 710 case ctos: // fall through 711 case stos: // fall through 712 case itos: pop_i(rax); break; 713 case ltos: pop_l(rax, rdx); break; 714 case ftos: 715 if (UseSSE >= 1) { 716 pop_f(xmm0); 717 } else { 718 pop_f(); 719 } 720 break; 721 case dtos: 722 if (UseSSE >= 2) { 723 pop_d(xmm0); 724 } else { 725 pop_d(); 726 } 727 break; 728 case vtos: /* nothing to do */ break; 729 default : ShouldNotReachHere(); 730 } 731 interp_verify_oop(rax, state); 732 } 733 734 735 void InterpreterMacroAssembler::push_l(Register lo, Register hi) { 736 push(hi); 737 push(lo); 738 } 739 740 void InterpreterMacroAssembler::push_f() { 741 // Do not schedule for no AGI! Never write beyond rsp! 742 subptr(rsp, 1 * wordSize); 743 fstp_s(Address(rsp, 0)); 744 } 745 746 void InterpreterMacroAssembler::push_d() { 747 // Do not schedule for no AGI! Never write beyond rsp! 748 subptr(rsp, 2 * wordSize); 749 fstp_d(Address(rsp, 0)); 750 } 751 752 753 void InterpreterMacroAssembler::push(TosState state) { 754 interp_verify_oop(rax, state); 755 switch (state) { 756 case atos: push_ptr(rax); break; 757 case btos: // fall through 758 case ztos: // fall through 759 case ctos: // fall through 760 case stos: // fall through 761 case itos: push_i(rax); break; 762 case ltos: push_l(rax, rdx); break; 763 case ftos: 764 if (UseSSE >= 1) { 765 push_f(xmm0); 766 } else { 767 push_f(); 768 } 769 break; 770 case dtos: 771 if (UseSSE >= 2) { 772 push_d(xmm0); 773 } else { 774 push_d(); 775 } 776 break; 777 case vtos: /* nothing to do */ break; 778 default : ShouldNotReachHere(); 779 } 780 } 781 #endif // _LP64 782 783 784 // Helpers for swap and dup 785 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 786 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 787 } 788 789 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 790 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 791 } 792 793 794 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 795 // set sender sp 796 lea(_bcp_register, Address(rsp, wordSize)); 797 // record last_sp 798 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register); 799 } 800 801 802 // Jump to from_interpreted entry of a call unless single stepping is possible 803 // in this thread in which case we must call the i2i entry 804 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 805 prepare_to_jump_from_interpreted(); 806 807 if (JvmtiExport::can_post_interpreter_events()) { 808 Label run_compiled_code; 809 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 810 // compiled code in threads for which the event is enabled. Check here for 811 // interp_only_mode if these events CAN be enabled. 812 // interp_only is an int, on little endian it is sufficient to test the byte only 813 // Is a cmpl faster? 814 LP64_ONLY(temp = r15_thread;) 815 NOT_LP64(get_thread(temp);) 816 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); 817 jccb(Assembler::zero, run_compiled_code); 818 jmp(Address(method, Method::interpreter_entry_offset())); 819 bind(run_compiled_code); 820 } 821 822 jmp(Address(method, Method::from_interpreted_offset())); 823 } 824 825 // The following two routines provide a hook so that an implementation 826 // can schedule the dispatch in two parts. x86 does not do this. 827 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 828 // Nothing x86 specific to be done here 829 } 830 831 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 832 dispatch_next(state, step); 833 } 834 835 void InterpreterMacroAssembler::dispatch_base(TosState state, 836 address* table, 837 bool verifyoop, 838 bool generate_poll) { 839 verify_FPU(1, state); 840 if (VerifyActivationFrameSize) { 841 Label L; 842 mov(rcx, rbp); 843 subptr(rcx, rsp); 844 int32_t min_frame_size = 845 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 846 wordSize; 847 cmpptr(rcx, (int32_t)min_frame_size); 848 jcc(Assembler::greaterEqual, L); 849 stop("broken stack frame"); 850 bind(L); 851 } 852 if (verifyoop) { 853 interp_verify_oop(rax, state); 854 } 855 856 address* const safepoint_table = Interpreter::safept_table(state); 857 #ifdef _LP64 858 Label no_safepoint, dispatch; 859 if (table != safepoint_table && generate_poll) { 860 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 861 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 862 863 jccb(Assembler::zero, no_safepoint); 864 lea(rscratch1, ExternalAddress((address)safepoint_table)); 865 jmpb(dispatch); 866 } 867 868 bind(no_safepoint); 869 lea(rscratch1, ExternalAddress((address)table)); 870 bind(dispatch); 871 jmp(Address(rscratch1, rbx, Address::times_8)); 872 873 #else 874 Address index(noreg, rbx, Address::times_ptr); 875 if (table != safepoint_table && generate_poll) { 876 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 877 Label no_safepoint; 878 const Register thread = rcx; 879 get_thread(thread); 880 testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 881 882 jccb(Assembler::zero, no_safepoint); 883 ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index); 884 jump(dispatch_addr); 885 bind(no_safepoint); 886 } 887 888 { 889 ArrayAddress dispatch_addr(ExternalAddress((address)table), index); 890 jump(dispatch_addr); 891 } 892 #endif // _LP64 893 } 894 895 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 896 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 897 } 898 899 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 900 dispatch_base(state, Interpreter::normal_table(state)); 901 } 902 903 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 904 dispatch_base(state, Interpreter::normal_table(state), false); 905 } 906 907 908 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 909 // load next bytecode (load before advancing _bcp_register to prevent AGI) 910 load_unsigned_byte(rbx, Address(_bcp_register, step)); 911 // advance _bcp_register 912 increment(_bcp_register, step); 913 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 914 } 915 916 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 917 // load current bytecode 918 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 919 dispatch_base(state, table); 920 } 921 922 void InterpreterMacroAssembler::narrow(Register result) { 923 924 // Get method->_constMethod->_result_type 925 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 926 movptr(rcx, Address(rcx, Method::const_offset())); 927 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 928 929 Label done, notBool, notByte, notChar; 930 931 // common case first 932 cmpl(rcx, T_INT); 933 jcc(Assembler::equal, done); 934 935 // mask integer result to narrower return type. 936 cmpl(rcx, T_BOOLEAN); 937 jcc(Assembler::notEqual, notBool); 938 andl(result, 0x1); 939 jmp(done); 940 941 bind(notBool); 942 cmpl(rcx, T_BYTE); 943 jcc(Assembler::notEqual, notByte); 944 LP64_ONLY(movsbl(result, result);) 945 NOT_LP64(shll(result, 24);) // truncate upper 24 bits 946 NOT_LP64(sarl(result, 24);) // and sign-extend byte 947 jmp(done); 948 949 bind(notByte); 950 cmpl(rcx, T_CHAR); 951 jcc(Assembler::notEqual, notChar); 952 LP64_ONLY(movzwl(result, result);) 953 NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits 954 jmp(done); 955 956 bind(notChar); 957 // cmpl(rcx, T_SHORT); // all that's left 958 // jcc(Assembler::notEqual, done); 959 LP64_ONLY(movswl(result, result);) 960 NOT_LP64(shll(result, 16);) // truncate upper 16 bits 961 NOT_LP64(sarl(result, 16);) // and sign-extend short 962 963 // Nothing to do for T_INT 964 bind(done); 965 } 966 967 // remove activation 968 // 969 // Apply stack watermark barrier. 970 // Unlock the receiver if this is a synchronized method. 971 // Unlock any Java monitors from syncronized blocks. 972 // Remove the activation from the stack. 973 // 974 // If there are locked Java monitors 975 // If throw_monitor_exception 976 // throws IllegalMonitorStateException 977 // Else if install_monitor_exception 978 // installs IllegalMonitorStateException 979 // Else 980 // no error processing 981 void InterpreterMacroAssembler::remove_activation( 982 TosState state, 983 Register ret_addr, 984 bool throw_monitor_exception, 985 bool install_monitor_exception, 986 bool notify_jvmdi) { 987 // Note: Registers rdx xmm0 may be in use for the 988 // result check if synchronized method 989 Label unlocked, unlock, no_unlock; 990 991 const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 992 const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 993 const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 994 // monitor pointers need different register 995 // because rdx may have the result in it 996 NOT_LP64(get_thread(rthread);) 997 998 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 999 // that would normally not be safe to use. Such bad returns into unsafe territory of 1000 // the stack, will call InterpreterRuntime::at_unwind. 1001 Label slow_path; 1002 Label fast_path; 1003 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */); 1004 jmp(fast_path); 1005 bind(slow_path); 1006 push(state); 1007 set_last_Java_frame(rthread, noreg, rbp, (address)pc()); 1008 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 1009 NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore 1010 reset_last_Java_frame(rthread, true); 1011 pop(state); 1012 bind(fast_path); 1013 1014 // get the value of _do_not_unlock_if_synchronized into rdx 1015 const Address do_not_unlock_if_synchronized(rthread, 1016 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1017 movbool(rbx, do_not_unlock_if_synchronized); 1018 movbool(do_not_unlock_if_synchronized, false); // reset the flag 1019 1020 // get method access flags 1021 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1022 movl(rcx, Address(rcx, Method::access_flags_offset())); 1023 testl(rcx, JVM_ACC_SYNCHRONIZED); 1024 jcc(Assembler::zero, unlocked); 1025 1026 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 1027 // is set. 1028 testbool(rbx); 1029 jcc(Assembler::notZero, no_unlock); 1030 1031 // unlock monitor 1032 push(state); // save result 1033 1034 // BasicObjectLock will be first in list, since this is a 1035 // synchronized method. However, need to check that the object has 1036 // not been unlocked by an explicit monitorexit bytecode. 1037 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 1038 wordSize - (int) sizeof(BasicObjectLock)); 1039 // We use c_rarg1/rdx so that if we go slow path it will be the correct 1040 // register for unlock_object to pass to VM directly 1041 lea(robj, monitor); // address of first monitor 1042 1043 movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes())); 1044 testptr(rax, rax); 1045 jcc(Assembler::notZero, unlock); 1046 1047 pop(state); 1048 if (throw_monitor_exception) { 1049 // Entry already unlocked, need to throw exception 1050 NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow 1051 call_VM(noreg, CAST_FROM_FN_PTR(address, 1052 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1053 should_not_reach_here(); 1054 } else { 1055 // Monitor already unlocked during a stack unroll. If requested, 1056 // install an illegal_monitor_state_exception. Continue with 1057 // stack unrolling. 1058 if (install_monitor_exception) { 1059 NOT_LP64(empty_FPU_stack();) 1060 call_VM(noreg, CAST_FROM_FN_PTR(address, 1061 InterpreterRuntime::new_illegal_monitor_state_exception)); 1062 } 1063 jmp(unlocked); 1064 } 1065 1066 bind(unlock); 1067 unlock_object(robj); 1068 pop(state); 1069 1070 // Check that for block-structured locking (i.e., that all locked 1071 // objects has been unlocked) 1072 bind(unlocked); 1073 1074 // rax, rdx: Might contain return value 1075 1076 // Check that all monitors are unlocked 1077 { 1078 Label loop, exception, entry, restart; 1079 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 1080 const Address monitor_block_top( 1081 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1082 const Address monitor_block_bot( 1083 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 1084 1085 bind(restart); 1086 // We use c_rarg1 so that if we go slow path it will be the correct 1087 // register for unlock_object to pass to VM directly 1088 movptr(rmon, monitor_block_top); // points to current entry, starting 1089 // with top-most entry 1090 lea(rbx, monitor_block_bot); // points to word before bottom of 1091 // monitor block 1092 jmp(entry); 1093 1094 // Entry already locked, need to throw exception 1095 bind(exception); 1096 1097 if (throw_monitor_exception) { 1098 // Throw exception 1099 NOT_LP64(empty_FPU_stack();) 1100 MacroAssembler::call_VM(noreg, 1101 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 1102 throw_illegal_monitor_state_exception)); 1103 should_not_reach_here(); 1104 } else { 1105 // Stack unrolling. Unlock object and install illegal_monitor_exception. 1106 // Unlock does not block, so don't have to worry about the frame. 1107 // We don't have to preserve c_rarg1 since we are going to throw an exception. 1108 1109 push(state); 1110 mov(robj, rmon); // nop if robj and rmon are the same 1111 unlock_object(robj); 1112 pop(state); 1113 1114 if (install_monitor_exception) { 1115 NOT_LP64(empty_FPU_stack();) 1116 call_VM(noreg, CAST_FROM_FN_PTR(address, 1117 InterpreterRuntime:: 1118 new_illegal_monitor_state_exception)); 1119 } 1120 1121 jmp(restart); 1122 } 1123 1124 bind(loop); 1125 // check if current entry is used 1126 cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 1127 jcc(Assembler::notEqual, exception); 1128 1129 addptr(rmon, entry_size); // otherwise advance to next entry 1130 bind(entry); 1131 cmpptr(rmon, rbx); // check if bottom reached 1132 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 1133 } 1134 1135 bind(no_unlock); 1136 1137 // jvmti support 1138 if (notify_jvmdi) { 1139 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 1140 } else { 1141 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 1142 } 1143 1144 // remove activation 1145 // get sender sp 1146 movptr(rbx, 1147 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1148 if (StackReservedPages > 0) { 1149 // testing if reserved zone needs to be re-enabled 1150 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1151 Label no_reserved_zone_enabling; 1152 1153 NOT_LP64(get_thread(rthread);) 1154 1155 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1156 jcc(Assembler::equal, no_reserved_zone_enabling); 1157 1158 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1159 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1160 1161 call_VM_leaf( 1162 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1163 call_VM(noreg, CAST_FROM_FN_PTR(address, 1164 InterpreterRuntime::throw_delayed_StackOverflowError)); 1165 should_not_reach_here(); 1166 1167 bind(no_reserved_zone_enabling); 1168 } 1169 leave(); // remove frame anchor 1170 pop(ret_addr); // get return address 1171 mov(rsp, rbx); // set sp to sender sp 1172 } 1173 1174 void InterpreterMacroAssembler::get_method_counters(Register method, 1175 Register mcs, Label& skip) { 1176 Label has_counters; 1177 movptr(mcs, Address(method, Method::method_counters_offset())); 1178 testptr(mcs, mcs); 1179 jcc(Assembler::notZero, has_counters); 1180 call_VM(noreg, CAST_FROM_FN_PTR(address, 1181 InterpreterRuntime::build_method_counters), method); 1182 movptr(mcs, Address(method,Method::method_counters_offset())); 1183 testptr(mcs, mcs); 1184 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1185 bind(has_counters); 1186 } 1187 1188 1189 // Lock object 1190 // 1191 // Args: 1192 // rdx, c_rarg1: BasicObjectLock to be used for locking 1193 // 1194 // Kills: 1195 // rax, rbx 1196 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1197 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1198 "The argument is only for looks. It must be c_rarg1"); 1199 1200 if (UseHeavyMonitors) { 1201 call_VM(noreg, 1202 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1203 lock_reg); 1204 } else { 1205 Label done; 1206 1207 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1208 const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a 1209 // problematic case where tmp_reg = no_reg. 1210 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1211 const Register rklass_decode_tmp = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1212 1213 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 1214 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 1215 const int mark_offset = lock_offset + 1216 BasicLock::displaced_header_offset_in_bytes(); 1217 1218 Label slow_case; 1219 1220 // Load object pointer into obj_reg 1221 movptr(obj_reg, Address(lock_reg, obj_offset)); 1222 1223 if (DiagnoseSyncOnValueBasedClasses != 0) { 1224 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1225 movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset())); 1226 testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS); 1227 jcc(Assembler::notZero, slow_case); 1228 } 1229 1230 if (UseBiasedLocking) { 1231 biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, rklass_decode_tmp, false, done, &slow_case); 1232 } 1233 1234 // Load immediate 1 into swap_reg %rax 1235 movl(swap_reg, (int32_t)1); 1236 1237 // Load (object->mark() | 1) into swap_reg %rax 1238 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1239 1240 // Save (object->mark() | 1) into BasicLock's displaced header 1241 movptr(Address(lock_reg, mark_offset), swap_reg); 1242 1243 assert(lock_offset == 0, 1244 "displaced header must be first word in BasicObjectLock"); 1245 1246 lock(); 1247 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1248 if (PrintBiasedLockingStatistics) { 1249 cond_inc32(Assembler::zero, 1250 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); 1251 } 1252 jcc(Assembler::zero, done); 1253 1254 const int zero_bits = LP64_ONLY(7) NOT_LP64(3); 1255 1256 // Fast check for recursive lock. 1257 // 1258 // Can apply the optimization only if this is a stack lock 1259 // allocated in this thread. For efficiency, we can focus on 1260 // recently allocated stack locks (instead of reading the stack 1261 // base and checking whether 'mark' points inside the current 1262 // thread stack): 1263 // 1) (mark & zero_bits) == 0, and 1264 // 2) rsp <= mark < mark + os::pagesize() 1265 // 1266 // Warning: rsp + os::pagesize can overflow the stack base. We must 1267 // neither apply the optimization for an inflated lock allocated 1268 // just above the thread stack (this is why condition 1 matters) 1269 // nor apply the optimization if the stack lock is inside the stack 1270 // of another thread. The latter is avoided even in case of overflow 1271 // because we have guard pages at the end of all stacks. Hence, if 1272 // we go over the stack base and hit the stack of another thread, 1273 // this should not be in a writeable area that could contain a 1274 // stack lock allocated by that thread. As a consequence, a stack 1275 // lock less than page size away from rsp is guaranteed to be 1276 // owned by the current thread. 1277 // 1278 // These 3 tests can be done by evaluating the following 1279 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1280 // assuming both stack pointer and pagesize have their 1281 // least significant bits clear. 1282 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1283 subptr(swap_reg, rsp); 1284 andptr(swap_reg, zero_bits - os::vm_page_size()); 1285 1286 // Save the test result, for recursive case, the result is zero 1287 movptr(Address(lock_reg, mark_offset), swap_reg); 1288 1289 if (PrintBiasedLockingStatistics) { 1290 cond_inc32(Assembler::zero, 1291 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); 1292 } 1293 jcc(Assembler::zero, done); 1294 1295 bind(slow_case); 1296 1297 // Call the runtime routine for slow case 1298 call_VM(noreg, 1299 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1300 lock_reg); 1301 1302 bind(done); 1303 } 1304 } 1305 1306 1307 // Unlocks an object. Used in monitorexit bytecode and 1308 // remove_activation. Throws an IllegalMonitorException if object is 1309 // not locked by current thread. 1310 // 1311 // Args: 1312 // rdx, c_rarg1: BasicObjectLock for lock 1313 // 1314 // Kills: 1315 // rax 1316 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1317 // rscratch1 (scratch reg) 1318 // rax, rbx, rcx, rdx 1319 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1320 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1321 "The argument is only for looks. It must be c_rarg1"); 1322 1323 if (UseHeavyMonitors) { 1324 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1325 } else { 1326 Label done; 1327 1328 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1329 const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark 1330 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1331 1332 save_bcp(); // Save in case of exception 1333 1334 // Convert from BasicObjectLock structure to object and BasicLock 1335 // structure Store the BasicLock address into %rax 1336 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 1337 1338 // Load oop into obj_reg(%c_rarg3) 1339 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 1340 1341 // Free entry 1342 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); 1343 1344 if (UseBiasedLocking) { 1345 biased_locking_exit(obj_reg, header_reg, done); 1346 } 1347 1348 // Load the old header from BasicLock structure 1349 movptr(header_reg, Address(swap_reg, 1350 BasicLock::displaced_header_offset_in_bytes())); 1351 1352 // Test for recursion 1353 testptr(header_reg, header_reg); 1354 1355 // zero for recursive case 1356 jcc(Assembler::zero, done); 1357 1358 // Atomic swap back the old header 1359 lock(); 1360 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1361 1362 // zero for simple unlock of a stack-lock case 1363 jcc(Assembler::zero, done); 1364 1365 1366 // Call the runtime routine for slow case. 1367 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj 1368 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1369 1370 bind(done); 1371 1372 restore_bcp(); 1373 } 1374 } 1375 1376 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1377 Label& zero_continue) { 1378 assert(ProfileInterpreter, "must be profiling interpreter"); 1379 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1380 testptr(mdp, mdp); 1381 jcc(Assembler::zero, zero_continue); 1382 } 1383 1384 1385 // Set the method data pointer for the current bcp. 1386 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1387 assert(ProfileInterpreter, "must be profiling interpreter"); 1388 Label set_mdp; 1389 push(rax); 1390 push(rbx); 1391 1392 get_method(rbx); 1393 // Test MDO to avoid the call if it is NULL. 1394 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1395 testptr(rax, rax); 1396 jcc(Assembler::zero, set_mdp); 1397 // rbx: method 1398 // _bcp_register: bcp 1399 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1400 // rax: mdi 1401 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1402 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1403 addptr(rbx, in_bytes(MethodData::data_offset())); 1404 addptr(rax, rbx); 1405 bind(set_mdp); 1406 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1407 pop(rbx); 1408 pop(rax); 1409 } 1410 1411 void InterpreterMacroAssembler::verify_method_data_pointer() { 1412 assert(ProfileInterpreter, "must be profiling interpreter"); 1413 #ifdef ASSERT 1414 Label verify_continue; 1415 push(rax); 1416 push(rbx); 1417 Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 1418 Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 1419 push(arg3_reg); 1420 push(arg2_reg); 1421 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1422 get_method(rbx); 1423 1424 // If the mdp is valid, it will point to a DataLayout header which is 1425 // consistent with the bcp. The converse is highly probable also. 1426 load_unsigned_short(arg2_reg, 1427 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1428 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1429 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1430 cmpptr(arg2_reg, _bcp_register); 1431 jcc(Assembler::equal, verify_continue); 1432 // rbx: method 1433 // _bcp_register: bcp 1434 // c_rarg3: mdp 1435 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1436 rbx, _bcp_register, arg3_reg); 1437 bind(verify_continue); 1438 pop(arg2_reg); 1439 pop(arg3_reg); 1440 pop(rbx); 1441 pop(rax); 1442 #endif // ASSERT 1443 } 1444 1445 1446 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1447 int constant, 1448 Register value) { 1449 assert(ProfileInterpreter, "must be profiling interpreter"); 1450 Address data(mdp_in, constant); 1451 movptr(data, value); 1452 } 1453 1454 1455 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1456 int constant, 1457 bool decrement) { 1458 // Counter address 1459 Address data(mdp_in, constant); 1460 1461 increment_mdp_data_at(data, decrement); 1462 } 1463 1464 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1465 bool decrement) { 1466 assert(ProfileInterpreter, "must be profiling interpreter"); 1467 // %%% this does 64bit counters at best it is wasting space 1468 // at worst it is a rare bug when counters overflow 1469 1470 if (decrement) { 1471 // Decrement the register. Set condition codes. 1472 addptr(data, (int32_t) -DataLayout::counter_increment); 1473 // If the decrement causes the counter to overflow, stay negative 1474 Label L; 1475 jcc(Assembler::negative, L); 1476 addptr(data, (int32_t) DataLayout::counter_increment); 1477 bind(L); 1478 } else { 1479 assert(DataLayout::counter_increment == 1, 1480 "flow-free idiom only works with 1"); 1481 // Increment the register. Set carry flag. 1482 addptr(data, DataLayout::counter_increment); 1483 // If the increment causes the counter to overflow, pull back by 1. 1484 sbbptr(data, (int32_t)0); 1485 } 1486 } 1487 1488 1489 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1490 Register reg, 1491 int constant, 1492 bool decrement) { 1493 Address data(mdp_in, reg, Address::times_1, constant); 1494 1495 increment_mdp_data_at(data, decrement); 1496 } 1497 1498 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1499 int flag_byte_constant) { 1500 assert(ProfileInterpreter, "must be profiling interpreter"); 1501 int header_offset = in_bytes(DataLayout::flags_offset()); 1502 int header_bits = flag_byte_constant; 1503 // Set the flag 1504 orb(Address(mdp_in, header_offset), header_bits); 1505 } 1506 1507 1508 1509 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1510 int offset, 1511 Register value, 1512 Register test_value_out, 1513 Label& not_equal_continue) { 1514 assert(ProfileInterpreter, "must be profiling interpreter"); 1515 if (test_value_out == noreg) { 1516 cmpptr(value, Address(mdp_in, offset)); 1517 } else { 1518 // Put the test value into a register, so caller can use it: 1519 movptr(test_value_out, Address(mdp_in, offset)); 1520 cmpptr(test_value_out, value); 1521 } 1522 jcc(Assembler::notEqual, not_equal_continue); 1523 } 1524 1525 1526 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1527 int offset_of_disp) { 1528 assert(ProfileInterpreter, "must be profiling interpreter"); 1529 Address disp_address(mdp_in, offset_of_disp); 1530 addptr(mdp_in, disp_address); 1531 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1532 } 1533 1534 1535 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1536 Register reg, 1537 int offset_of_disp) { 1538 assert(ProfileInterpreter, "must be profiling interpreter"); 1539 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1540 addptr(mdp_in, disp_address); 1541 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1542 } 1543 1544 1545 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1546 int constant) { 1547 assert(ProfileInterpreter, "must be profiling interpreter"); 1548 addptr(mdp_in, constant); 1549 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1550 } 1551 1552 1553 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1554 assert(ProfileInterpreter, "must be profiling interpreter"); 1555 push(return_bci); // save/restore across call_VM 1556 call_VM(noreg, 1557 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1558 return_bci); 1559 pop(return_bci); 1560 } 1561 1562 1563 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1564 Register bumped_count) { 1565 if (ProfileInterpreter) { 1566 Label profile_continue; 1567 1568 // If no method data exists, go to profile_continue. 1569 // Otherwise, assign to mdp 1570 test_method_data_pointer(mdp, profile_continue); 1571 1572 // We are taking a branch. Increment the taken count. 1573 // We inline increment_mdp_data_at to return bumped_count in a register 1574 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1575 Address data(mdp, in_bytes(JumpData::taken_offset())); 1576 movptr(bumped_count, data); 1577 assert(DataLayout::counter_increment == 1, 1578 "flow-free idiom only works with 1"); 1579 addptr(bumped_count, DataLayout::counter_increment); 1580 sbbptr(bumped_count, 0); 1581 movptr(data, bumped_count); // Store back out 1582 1583 // The method data pointer needs to be updated to reflect the new target. 1584 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1585 bind(profile_continue); 1586 } 1587 } 1588 1589 1590 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1591 if (ProfileInterpreter) { 1592 Label profile_continue; 1593 1594 // If no method data exists, go to profile_continue. 1595 test_method_data_pointer(mdp, profile_continue); 1596 1597 // We are taking a branch. Increment the not taken count. 1598 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1599 1600 // The method data pointer needs to be updated to correspond to 1601 // the next bytecode 1602 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1603 bind(profile_continue); 1604 } 1605 } 1606 1607 void InterpreterMacroAssembler::profile_call(Register mdp) { 1608 if (ProfileInterpreter) { 1609 Label profile_continue; 1610 1611 // If no method data exists, go to profile_continue. 1612 test_method_data_pointer(mdp, profile_continue); 1613 1614 // We are making a call. Increment the count. 1615 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1616 1617 // The method data pointer needs to be updated to reflect the new target. 1618 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1619 bind(profile_continue); 1620 } 1621 } 1622 1623 1624 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1625 if (ProfileInterpreter) { 1626 Label profile_continue; 1627 1628 // If no method data exists, go to profile_continue. 1629 test_method_data_pointer(mdp, profile_continue); 1630 1631 // We are making a call. Increment the count. 1632 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1633 1634 // The method data pointer needs to be updated to reflect the new target. 1635 update_mdp_by_constant(mdp, 1636 in_bytes(VirtualCallData:: 1637 virtual_call_data_size())); 1638 bind(profile_continue); 1639 } 1640 } 1641 1642 1643 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1644 Register mdp, 1645 Register reg2, 1646 bool receiver_can_be_null) { 1647 if (ProfileInterpreter) { 1648 Label profile_continue; 1649 1650 // If no method data exists, go to profile_continue. 1651 test_method_data_pointer(mdp, profile_continue); 1652 1653 Label skip_receiver_profile; 1654 if (receiver_can_be_null) { 1655 Label not_null; 1656 testptr(receiver, receiver); 1657 jccb(Assembler::notZero, not_null); 1658 // We are making a call. Increment the count for null receiver. 1659 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1660 jmp(skip_receiver_profile); 1661 bind(not_null); 1662 } 1663 1664 // Record the receiver type. 1665 record_klass_in_profile(receiver, mdp, reg2, true); 1666 bind(skip_receiver_profile); 1667 1668 // The method data pointer needs to be updated to reflect the new target. 1669 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1670 bind(profile_continue); 1671 } 1672 } 1673 1674 // This routine creates a state machine for updating the multi-row 1675 // type profile at a virtual call site (or other type-sensitive bytecode). 1676 // The machine visits each row (of receiver/count) until the receiver type 1677 // is found, or until it runs out of rows. At the same time, it remembers 1678 // the location of the first empty row. (An empty row records null for its 1679 // receiver, and can be allocated for a newly-observed receiver type.) 1680 // Because there are two degrees of freedom in the state, a simple linear 1681 // search will not work; it must be a decision tree. Hence this helper 1682 // function is recursive, to generate the required tree structured code. 1683 // It's the interpreter, so we are trading off code space for speed. 1684 // See below for example code. 1685 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1686 Register receiver, Register mdp, 1687 Register reg2, int start_row, 1688 Label& done, bool is_virtual_call) { 1689 if (TypeProfileWidth == 0) { 1690 if (is_virtual_call) { 1691 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1692 } 1693 #if INCLUDE_JVMCI 1694 else if (EnableJVMCI) { 1695 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1696 } 1697 #endif // INCLUDE_JVMCI 1698 } else { 1699 int non_profiled_offset = -1; 1700 if (is_virtual_call) { 1701 non_profiled_offset = in_bytes(CounterData::count_offset()); 1702 } 1703 #if INCLUDE_JVMCI 1704 else if (EnableJVMCI) { 1705 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1706 } 1707 #endif // INCLUDE_JVMCI 1708 1709 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1710 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1711 } 1712 } 1713 1714 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1715 Register reg2, int start_row, Label& done, int total_rows, 1716 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1717 int non_profiled_offset) { 1718 int last_row = total_rows - 1; 1719 assert(start_row <= last_row, "must be work left to do"); 1720 // Test this row for both the item and for null. 1721 // Take any of three different outcomes: 1722 // 1. found item => increment count and goto done 1723 // 2. found null => keep looking for case 1, maybe allocate this cell 1724 // 3. found something else => keep looking for cases 1 and 2 1725 // Case 3 is handled by a recursive call. 1726 for (int row = start_row; row <= last_row; row++) { 1727 Label next_test; 1728 bool test_for_null_also = (row == start_row); 1729 1730 // See if the item is item[n]. 1731 int item_offset = in_bytes(item_offset_fn(row)); 1732 test_mdp_data_at(mdp, item_offset, item, 1733 (test_for_null_also ? reg2 : noreg), 1734 next_test); 1735 // (Reg2 now contains the item from the CallData.) 1736 1737 // The item is item[n]. Increment count[n]. 1738 int count_offset = in_bytes(item_count_offset_fn(row)); 1739 increment_mdp_data_at(mdp, count_offset); 1740 jmp(done); 1741 bind(next_test); 1742 1743 if (test_for_null_also) { 1744 // Failed the equality check on item[n]... Test for null. 1745 testptr(reg2, reg2); 1746 if (start_row == last_row) { 1747 // The only thing left to do is handle the null case. 1748 if (non_profiled_offset >= 0) { 1749 Label found_null; 1750 jccb(Assembler::zero, found_null); 1751 // Item did not match any saved item and there is no empty row for it. 1752 // Increment total counter to indicate polymorphic case. 1753 increment_mdp_data_at(mdp, non_profiled_offset); 1754 jmp(done); 1755 bind(found_null); 1756 } else { 1757 jcc(Assembler::notZero, done); 1758 } 1759 break; 1760 } 1761 Label found_null; 1762 // Since null is rare, make it be the branch-taken case. 1763 jcc(Assembler::zero, found_null); 1764 1765 // Put all the "Case 3" tests here. 1766 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1767 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1768 1769 // Found a null. Keep searching for a matching item, 1770 // but remember that this is an empty (unused) slot. 1771 bind(found_null); 1772 } 1773 } 1774 1775 // In the fall-through case, we found no matching item, but we 1776 // observed the item[start_row] is NULL. 1777 1778 // Fill in the item field and increment the count. 1779 int item_offset = in_bytes(item_offset_fn(start_row)); 1780 set_mdp_data_at(mdp, item_offset, item); 1781 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1782 movl(reg2, DataLayout::counter_increment); 1783 set_mdp_data_at(mdp, count_offset, reg2); 1784 if (start_row > 0) { 1785 jmp(done); 1786 } 1787 } 1788 1789 // Example state machine code for three profile rows: 1790 // // main copy of decision tree, rooted at row[1] 1791 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1792 // if (row[0].rec != NULL) { 1793 // // inner copy of decision tree, rooted at row[1] 1794 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1795 // if (row[1].rec != NULL) { 1796 // // degenerate decision tree, rooted at row[2] 1797 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1798 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow 1799 // row[2].init(rec); goto done; 1800 // } else { 1801 // // remember row[1] is empty 1802 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1803 // row[1].init(rec); goto done; 1804 // } 1805 // } else { 1806 // // remember row[0] is empty 1807 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1808 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1809 // row[0].init(rec); goto done; 1810 // } 1811 // done: 1812 1813 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1814 Register mdp, Register reg2, 1815 bool is_virtual_call) { 1816 assert(ProfileInterpreter, "must be profiling"); 1817 Label done; 1818 1819 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1820 1821 bind (done); 1822 } 1823 1824 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1825 Register mdp) { 1826 if (ProfileInterpreter) { 1827 Label profile_continue; 1828 uint row; 1829 1830 // If no method data exists, go to profile_continue. 1831 test_method_data_pointer(mdp, profile_continue); 1832 1833 // Update the total ret count. 1834 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1835 1836 for (row = 0; row < RetData::row_limit(); row++) { 1837 Label next_test; 1838 1839 // See if return_bci is equal to bci[n]: 1840 test_mdp_data_at(mdp, 1841 in_bytes(RetData::bci_offset(row)), 1842 return_bci, noreg, 1843 next_test); 1844 1845 // return_bci is equal to bci[n]. Increment the count. 1846 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1847 1848 // The method data pointer needs to be updated to reflect the new target. 1849 update_mdp_by_offset(mdp, 1850 in_bytes(RetData::bci_displacement_offset(row))); 1851 jmp(profile_continue); 1852 bind(next_test); 1853 } 1854 1855 update_mdp_for_ret(return_bci); 1856 1857 bind(profile_continue); 1858 } 1859 } 1860 1861 1862 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1863 if (ProfileInterpreter) { 1864 Label profile_continue; 1865 1866 // If no method data exists, go to profile_continue. 1867 test_method_data_pointer(mdp, profile_continue); 1868 1869 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1870 1871 // The method data pointer needs to be updated. 1872 int mdp_delta = in_bytes(BitData::bit_data_size()); 1873 if (TypeProfileCasts) { 1874 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1875 } 1876 update_mdp_by_constant(mdp, mdp_delta); 1877 1878 bind(profile_continue); 1879 } 1880 } 1881 1882 1883 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1884 if (ProfileInterpreter && TypeProfileCasts) { 1885 Label profile_continue; 1886 1887 // If no method data exists, go to profile_continue. 1888 test_method_data_pointer(mdp, profile_continue); 1889 1890 int count_offset = in_bytes(CounterData::count_offset()); 1891 // Back up the address, since we have already bumped the mdp. 1892 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1893 1894 // *Decrement* the counter. We expect to see zero or small negatives. 1895 increment_mdp_data_at(mdp, count_offset, true); 1896 1897 bind (profile_continue); 1898 } 1899 } 1900 1901 1902 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1903 if (ProfileInterpreter) { 1904 Label profile_continue; 1905 1906 // If no method data exists, go to profile_continue. 1907 test_method_data_pointer(mdp, profile_continue); 1908 1909 // The method data pointer needs to be updated. 1910 int mdp_delta = in_bytes(BitData::bit_data_size()); 1911 if (TypeProfileCasts) { 1912 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1913 1914 // Record the object type. 1915 record_klass_in_profile(klass, mdp, reg2, false); 1916 NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) 1917 NOT_LP64(restore_locals();) // Restore EDI 1918 } 1919 update_mdp_by_constant(mdp, mdp_delta); 1920 1921 bind(profile_continue); 1922 } 1923 } 1924 1925 1926 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1927 if (ProfileInterpreter) { 1928 Label profile_continue; 1929 1930 // If no method data exists, go to profile_continue. 1931 test_method_data_pointer(mdp, profile_continue); 1932 1933 // Update the default case count 1934 increment_mdp_data_at(mdp, 1935 in_bytes(MultiBranchData::default_count_offset())); 1936 1937 // The method data pointer needs to be updated. 1938 update_mdp_by_offset(mdp, 1939 in_bytes(MultiBranchData:: 1940 default_displacement_offset())); 1941 1942 bind(profile_continue); 1943 } 1944 } 1945 1946 1947 void InterpreterMacroAssembler::profile_switch_case(Register index, 1948 Register mdp, 1949 Register reg2) { 1950 if (ProfileInterpreter) { 1951 Label profile_continue; 1952 1953 // If no method data exists, go to profile_continue. 1954 test_method_data_pointer(mdp, profile_continue); 1955 1956 // Build the base (index * per_case_size_in_bytes()) + 1957 // case_array_offset_in_bytes() 1958 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1959 imulptr(index, reg2); // XXX l ? 1960 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1961 1962 // Update the case count 1963 increment_mdp_data_at(mdp, 1964 index, 1965 in_bytes(MultiBranchData::relative_count_offset())); 1966 1967 // The method data pointer needs to be updated. 1968 update_mdp_by_offset(mdp, 1969 index, 1970 in_bytes(MultiBranchData:: 1971 relative_displacement_offset())); 1972 1973 bind(profile_continue); 1974 } 1975 } 1976 1977 1978 1979 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1980 if (state == atos) { 1981 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1982 } 1983 } 1984 1985 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 1986 #ifndef _LP64 1987 if ((state == ftos && UseSSE < 1) || 1988 (state == dtos && UseSSE < 2)) { 1989 MacroAssembler::verify_FPU(stack_depth); 1990 } 1991 #endif 1992 } 1993 1994 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1995 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1996 int increment, Address mask, 1997 Register scratch, bool preloaded, 1998 Condition cond, Label* where) { 1999 if (!preloaded) { 2000 movl(scratch, counter_addr); 2001 } 2002 incrementl(scratch, increment); 2003 movl(counter_addr, scratch); 2004 andl(scratch, mask); 2005 if (where != NULL) { 2006 jcc(cond, *where); 2007 } 2008 } 2009 2010 void InterpreterMacroAssembler::notify_method_entry() { 2011 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2012 // track stack depth. If it is possible to enter interp_only_mode we add 2013 // the code to check if the event should be sent. 2014 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2015 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2016 if (JvmtiExport::can_post_interpreter_events()) { 2017 Label L; 2018 NOT_LP64(get_thread(rthread);) 2019 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2020 testl(rdx, rdx); 2021 jcc(Assembler::zero, L); 2022 call_VM(noreg, CAST_FROM_FN_PTR(address, 2023 InterpreterRuntime::post_method_entry)); 2024 bind(L); 2025 } 2026 2027 { 2028 SkipIfEqual skip(this, &DTraceMethodProbes, false); 2029 NOT_LP64(get_thread(rthread);) 2030 get_method(rarg); 2031 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2032 rthread, rarg); 2033 } 2034 2035 // RedefineClasses() tracing support for obsolete method entry 2036 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2037 NOT_LP64(get_thread(rthread);) 2038 get_method(rarg); 2039 call_VM_leaf( 2040 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2041 rthread, rarg); 2042 } 2043 } 2044 2045 2046 void InterpreterMacroAssembler::notify_method_exit( 2047 TosState state, NotifyMethodExitMode mode) { 2048 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2049 // track stack depth. If it is possible to enter interp_only_mode we add 2050 // the code to check if the event should be sent. 2051 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2052 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2053 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2054 Label L; 2055 // Note: frame::interpreter_frame_result has a dependency on how the 2056 // method result is saved across the call to post_method_exit. If this 2057 // is changed then the interpreter_frame_result implementation will 2058 // need to be updated too. 2059 2060 // template interpreter will leave the result on the top of the stack. 2061 push(state); 2062 NOT_LP64(get_thread(rthread);) 2063 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2064 testl(rdx, rdx); 2065 jcc(Assembler::zero, L); 2066 call_VM(noreg, 2067 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2068 bind(L); 2069 pop(state); 2070 } 2071 2072 { 2073 SkipIfEqual skip(this, &DTraceMethodProbes, false); 2074 push(state); 2075 NOT_LP64(get_thread(rthread);) 2076 get_method(rarg); 2077 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2078 rthread, rarg); 2079 pop(state); 2080 } 2081 }