1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "code/vmreg.inline.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "utilities/macros.hpp"
  32 #include "runtime/rtmLocking.hpp"
  33 #include "runtime/vm_version.hpp"
  34 
  35 // MacroAssembler extends Assembler by frequently used macros.
  36 //
  37 // Instructions for which a 'better' code sequence exists depending
  38 // on arguments should also go in here.
  39 
  40 class MacroAssembler: public Assembler {
  41   friend class LIR_Assembler;
  42   friend class Runtime1;      // as_Address()
  43 
  44  public:
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments        // the number of arguments to pop after the call
  54   );
  55 
  56  protected:
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   Address as_Address(AddressLiteral adr);
  91   Address as_Address(ArrayAddress adr);
  92 
  93   // Support for NULL-checks
  94   //
  95   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  96   // If the accessed location is M[reg + offset] and the offset is known, provide the
  97   // offset. No explicit code generation is needed if the offset is within a certain
  98   // range (0 <= offset <= page_size).
  99 
 100   void null_check(Register reg, int offset = -1);
 101   static bool needs_explicit_null_check(intptr_t offset);
 102   static bool uses_implicit_null_check(void* address);
 103 
 104   // Required platform-specific helpers for Label::patch_instructions.
 105   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 106   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 107     unsigned char op = branch[0];
 108     assert(op == 0xE8 /* call */ ||
 109         op == 0xE9 /* jmp */ ||
 110         op == 0xEB /* short jmp */ ||
 111         (op & 0xF0) == 0x70 /* short jcc */ ||
 112         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 113         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 114         "Invalid opcode at patch point");
 115 
 116     if (op == 0xEB || (op & 0xF0) == 0x70) {
 117       // short offset operators (jmp and jcc)
 118       char* disp = (char*) &branch[1];
 119       int imm8 = target - (address) &disp[1];
 120       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 121                 file == NULL ? "<NULL>" : file, line);
 122       *disp = imm8;
 123     } else {
 124       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 125       int imm32 = target - (address) &disp[1];
 126       *disp = imm32;
 127     }
 128   }
 129 
 130   // The following 4 methods return the offset of the appropriate move instruction
 131 
 132   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 133   int load_unsigned_byte(Register dst, Address src);
 134   int load_unsigned_short(Register dst, Address src);
 135 
 136   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 137   int load_signed_byte(Register dst, Address src);
 138   int load_signed_short(Register dst, Address src);
 139 
 140   // Support for sign-extension (hi:lo = extend_sign(lo))
 141   void extend_sign(Register hi, Register lo);
 142 
 143   // Load and store values by size and signed-ness
 144   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 145   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 146 
 147   // Support for inc/dec with optimal instruction selection depending on value
 148 
 149   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 150   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 151   void increment(Address dst, int value = 1)  { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; }
 152   void decrement(Address dst, int value = 1)  { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; }
 153 
 154   void decrementl(Address dst, int value = 1);
 155   void decrementl(Register reg, int value = 1);
 156 
 157   void decrementq(Register reg, int value = 1);
 158   void decrementq(Address dst, int value = 1);
 159 
 160   void incrementl(Address dst, int value = 1);
 161   void incrementl(Register reg, int value = 1);
 162 
 163   void incrementq(Register reg, int value = 1);
 164   void incrementq(Address dst, int value = 1);
 165 
 166   // Support optimal SSE move instructions.
 167   void movflt(XMMRegister dst, XMMRegister src) {
 168     if (dst-> encoding() == src->encoding()) return;
 169     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 170     else                       { movss (dst, src); return; }
 171   }
 172   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 173   void movflt(XMMRegister dst, AddressLiteral src);
 174   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 175 
 176   // Move with zero extension
 177   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 178 
 179   void movdbl(XMMRegister dst, XMMRegister src) {
 180     if (dst-> encoding() == src->encoding()) return;
 181     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 182     else                       { movsd (dst, src); return; }
 183   }
 184 
 185   void movdbl(XMMRegister dst, AddressLiteral src);
 186 
 187   void movdbl(XMMRegister dst, Address src) {
 188     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 189     else                         { movlpd(dst, src); return; }
 190   }
 191   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 192 
 193   void incrementl(AddressLiteral dst);
 194   void incrementl(ArrayAddress dst);
 195 
 196   void incrementq(AddressLiteral dst);
 197 
 198   // Alignment
 199   void align32();
 200   void align64();
 201   void align(int modulus);
 202   void align(int modulus, int target);
 203 
 204   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 205   void fat_nop();
 206 
 207   // Stack frame creation/removal
 208   void enter();
 209   void leave();
 210 
 211   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 212   // The pointer will be loaded into the thread register.
 213   void get_thread(Register thread);
 214 
 215 #ifdef _LP64
 216   // Support for argument shuffling
 217 
 218   void move32_64(VMRegPair src, VMRegPair dst);
 219   void long_move(VMRegPair src, VMRegPair dst);
 220   void float_move(VMRegPair src, VMRegPair dst);
 221   void double_move(VMRegPair src, VMRegPair dst);
 222   void move_ptr(VMRegPair src, VMRegPair dst);
 223   void object_move(OopMap* map,
 224                    int oop_handle_offset,
 225                    int framesize_in_slots,
 226                    VMRegPair src,
 227                    VMRegPair dst,
 228                    bool is_receiver,
 229                    int* receiver_offset);
 230 #endif // _LP64
 231 
 232   // Support for VM calls
 233   //
 234   // It is imperative that all calls into the VM are handled via the call_VM macros.
 235   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 236   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 237 
 238 
 239   void call_VM(Register oop_result,
 240                address entry_point,
 241                bool check_exceptions = true);
 242   void call_VM(Register oop_result,
 243                address entry_point,
 244                Register arg_1,
 245                bool check_exceptions = true);
 246   void call_VM(Register oop_result,
 247                address entry_point,
 248                Register arg_1, Register arg_2,
 249                bool check_exceptions = true);
 250   void call_VM(Register oop_result,
 251                address entry_point,
 252                Register arg_1, Register arg_2, Register arg_3,
 253                bool check_exceptions = true);
 254 
 255   // Overloadings with last_Java_sp
 256   void call_VM(Register oop_result,
 257                Register last_java_sp,
 258                address entry_point,
 259                int number_of_arguments = 0,
 260                bool check_exceptions = true);
 261   void call_VM(Register oop_result,
 262                Register last_java_sp,
 263                address entry_point,
 264                Register arg_1, bool
 265                check_exceptions = true);
 266   void call_VM(Register oop_result,
 267                Register last_java_sp,
 268                address entry_point,
 269                Register arg_1, Register arg_2,
 270                bool check_exceptions = true);
 271   void call_VM(Register oop_result,
 272                Register last_java_sp,
 273                address entry_point,
 274                Register arg_1, Register arg_2, Register arg_3,
 275                bool check_exceptions = true);
 276 
 277   void get_vm_result  (Register oop_result, Register thread);
 278   void get_vm_result_2(Register metadata_result, Register thread);
 279 
 280   // These always tightly bind to MacroAssembler::call_VM_base
 281   // bypassing the virtual implementation
 282   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 283   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 284   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 285   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 286   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 287 
 288   void call_VM_leaf0(address entry_point);
 289   void call_VM_leaf(address entry_point,
 290                     int number_of_arguments = 0);
 291   void call_VM_leaf(address entry_point,
 292                     Register arg_1);
 293   void call_VM_leaf(address entry_point,
 294                     Register arg_1, Register arg_2);
 295   void call_VM_leaf(address entry_point,
 296                     Register arg_1, Register arg_2, Register arg_3);
 297 
 298   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 299   // bypassing the virtual implementation
 300   void super_call_VM_leaf(address entry_point);
 301   void super_call_VM_leaf(address entry_point, Register arg_1);
 302   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 303   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 304   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 305 
 306   // last Java Frame (fills frame anchor)
 307   void set_last_Java_frame(Register thread,
 308                            Register last_java_sp,
 309                            Register last_java_fp,
 310                            address last_java_pc);
 311 
 312   // thread in the default location (r15_thread on 64bit)
 313   void set_last_Java_frame(Register last_java_sp,
 314                            Register last_java_fp,
 315                            address last_java_pc);
 316 
 317   void reset_last_Java_frame(Register thread, bool clear_fp);
 318 
 319   // thread in the default location (r15_thread on 64bit)
 320   void reset_last_Java_frame(bool clear_fp);
 321 
 322   // jobjects
 323   void clear_jweak_tag(Register possibly_jweak);
 324   void resolve_jobject(Register value, Register thread, Register tmp);
 325 
 326   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 327   void c2bool(Register x);
 328 
 329   // C++ bool manipulation
 330 
 331   void movbool(Register dst, Address src);
 332   void movbool(Address dst, bool boolconst);
 333   void movbool(Address dst, Register src);
 334   void testbool(Register dst);
 335 
 336   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 337   void resolve_weak_handle(Register result, Register tmp);
 338   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 339   void load_method_holder_cld(Register rresult, Register rmethod);
 340 
 341   void load_method_holder(Register holder, Register method);
 342 
 343   // oop manipulations
 344   void load_klass(Register dst, Register src, Register tmp, bool null_check_src = false);
 345 #ifdef _LP64
 346   void load_nklass(Register dst, Register src);
 347 #endif
 348   void store_klass(Register dst, Register src, Register tmp);
 349 
 350   // Compares the Klass pointer of an object to a given Klass (which might be narrow,
 351   // depending on UseCompressedClassPointers).
 352   void cmp_klass(Register klass, Register dst, Register tmp);
 353 
 354   // Compares the Klass pointer of two objects o1 and o2. Result is in the condition flags.
 355   // Uses t1 and t2 as temporary registers.
 356   void cmp_klass(Register src, Register dst, Register tmp1, Register tmp2);
 357 
 358   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 359                       Register tmp1, Register thread_tmp);
 360   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 361                        Register tmp1, Register tmp2);
 362 
 363   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 364                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 365   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 366                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 367   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 368                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 369 
 370   // Used for storing NULL. All other oop constants should be
 371   // stored using routines that take a jobject.
 372   void store_heap_oop_null(Address dst);
 373 
 374   void load_prototype_header(Register dst, Register src, Register tmp);
 375 
 376 #ifdef _LP64
 377   void store_klass_gap(Register dst, Register src);
 378 
 379   // This dummy is to prevent a call to store_heap_oop from
 380   // converting a zero (like NULL) into a Register by giving
 381   // the compiler two choices it can't resolve
 382 
 383   void store_heap_oop(Address dst, void* dummy);
 384 
 385   void encode_heap_oop(Register r);
 386   void decode_heap_oop(Register r);
 387   void encode_heap_oop_not_null(Register r);
 388   void decode_heap_oop_not_null(Register r);
 389   void encode_heap_oop_not_null(Register dst, Register src);
 390   void decode_heap_oop_not_null(Register dst, Register src);
 391 
 392   void set_narrow_oop(Register dst, jobject obj);
 393   void set_narrow_oop(Address dst, jobject obj);
 394   void cmp_narrow_oop(Register dst, jobject obj);
 395   void cmp_narrow_oop(Address dst, jobject obj);
 396 
 397   void encode_klass_not_null(Register r, Register tmp);
 398   void decode_klass_not_null(Register r, Register tmp);
 399   void encode_and_move_klass_not_null(Register dst, Register src);
 400   void decode_and_move_klass_not_null(Register dst, Register src);
 401   void set_narrow_klass(Register dst, Klass* k);
 402   void set_narrow_klass(Address dst, Klass* k);
 403   void cmp_narrow_klass(Register dst, Klass* k);
 404   void cmp_narrow_klass(Address dst, Klass* k);
 405 
 406   // if heap base register is used - reinit it with the correct value
 407   void reinit_heapbase();
 408 
 409   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 410 
 411 #endif // _LP64
 412 
 413   // Int division/remainder for Java
 414   // (as idivl, but checks for special case as described in JVM spec.)
 415   // returns idivl instruction offset for implicit exception handling
 416   int corrected_idivl(Register reg);
 417 
 418   // Long division/remainder for Java
 419   // (as idivq, but checks for special case as described in JVM spec.)
 420   // returns idivq instruction offset for implicit exception handling
 421   int corrected_idivq(Register reg);
 422 
 423   void int3();
 424 
 425   // Long operation macros for a 32bit cpu
 426   // Long negation for Java
 427   void lneg(Register hi, Register lo);
 428 
 429   // Long multiplication for Java
 430   // (destroys contents of eax, ebx, ecx and edx)
 431   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 432 
 433   // Long shifts for Java
 434   // (semantics as described in JVM spec.)
 435   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 436   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 437 
 438   // Long compare for Java
 439   // (semantics as described in JVM spec.)
 440   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 441 
 442 
 443   // misc
 444 
 445   // Sign extension
 446   void sign_extend_short(Register reg);
 447   void sign_extend_byte(Register reg);
 448 
 449   // Division by power of 2, rounding towards 0
 450   void division_with_shift(Register reg, int shift_value);
 451 
 452 #ifndef _LP64
 453   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 454   //
 455   // CF (corresponds to C0) if x < y
 456   // PF (corresponds to C2) if unordered
 457   // ZF (corresponds to C3) if x = y
 458   //
 459   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 460   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 461   void fcmp(Register tmp);
 462   // Variant of the above which allows y to be further down the stack
 463   // and which only pops x and y if specified. If pop_right is
 464   // specified then pop_left must also be specified.
 465   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 466 
 467   // Floating-point comparison for Java
 468   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 469   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 470   // (semantics as described in JVM spec.)
 471   void fcmp2int(Register dst, bool unordered_is_less);
 472   // Variant of the above which allows y to be further down the stack
 473   // and which only pops x and y if specified. If pop_right is
 474   // specified then pop_left must also be specified.
 475   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 476 
 477   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 478   // tmp is a temporary register, if none is available use noreg
 479   void fremr(Register tmp);
 480 
 481   // only if +VerifyFPU
 482   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 483 #endif // !LP64
 484 
 485   // dst = c = a * b + c
 486   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 487   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 488 
 489   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 490   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 491   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 492   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 493 
 494 
 495   // same as fcmp2int, but using SSE2
 496   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 497   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 498 
 499   // branch to L if FPU flag C2 is set/not set
 500   // tmp is a temporary register, if none is available use noreg
 501   void jC2 (Register tmp, Label& L);
 502   void jnC2(Register tmp, Label& L);
 503 
 504   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 505   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 506   void load_float(Address src);
 507 
 508   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 509   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 510   void store_float(Address dst);
 511 
 512   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 513   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 514   void load_double(Address src);
 515 
 516   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 517   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 518   void store_double(Address dst);
 519 
 520 #ifndef _LP64
 521   // Pop ST (ffree & fincstp combined)
 522   void fpop();
 523 
 524   void empty_FPU_stack();
 525 #endif // !_LP64
 526 
 527   void push_IU_state();
 528   void pop_IU_state();
 529 
 530   void push_FPU_state();
 531   void pop_FPU_state();
 532 
 533   void push_CPU_state();
 534   void pop_CPU_state();
 535 
 536   // Round up to a power of two
 537   void round_to(Register reg, int modulus);
 538 
 539   // Callee saved registers handling
 540   void push_callee_saved_registers();
 541   void pop_callee_saved_registers();
 542 
 543   // allocation
 544   void eden_allocate(
 545     Register thread,                   // Current thread
 546     Register obj,                      // result: pointer to object after successful allocation
 547     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 548     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 549     Register t1,                       // temp register
 550     Label&   slow_case                 // continuation point if fast allocation fails
 551   );
 552   void tlab_allocate(
 553     Register thread,                   // Current thread
 554     Register obj,                      // result: pointer to object after successful allocation
 555     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 556     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 557     Register t1,                       // temp register
 558     Register t2,                       // temp register
 559     Label&   slow_case                 // continuation point if fast allocation fails
 560   );
 561   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 562 
 563   // interface method calling
 564   void lookup_interface_method(Register recv_klass,
 565                                Register intf_klass,
 566                                RegisterOrConstant itable_index,
 567                                Register method_result,
 568                                Register scan_temp,
 569                                Label& no_such_interface,
 570                                bool return_method = true);
 571 
 572   // virtual method calling
 573   void lookup_virtual_method(Register recv_klass,
 574                              RegisterOrConstant vtable_index,
 575                              Register method_result);
 576 
 577   // Test sub_klass against super_klass, with fast and slow paths.
 578 
 579   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 580   // One of the three labels can be NULL, meaning take the fall-through.
 581   // If super_check_offset is -1, the value is loaded up from super_klass.
 582   // No registers are killed, except temp_reg.
 583   void check_klass_subtype_fast_path(Register sub_klass,
 584                                      Register super_klass,
 585                                      Register temp_reg,
 586                                      Label* L_success,
 587                                      Label* L_failure,
 588                                      Label* L_slow_path,
 589                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 590 
 591   // The rest of the type check; must be wired to a corresponding fast path.
 592   // It does not repeat the fast path logic, so don't use it standalone.
 593   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 594   // Updates the sub's secondary super cache as necessary.
 595   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 596   void check_klass_subtype_slow_path(Register sub_klass,
 597                                      Register super_klass,
 598                                      Register temp_reg,
 599                                      Register temp2_reg,
 600                                      Label* L_success,
 601                                      Label* L_failure,
 602                                      bool set_cond_codes = false);
 603 
 604   // Simplified, combined version, good for typical uses.
 605   // Falls through on failure.
 606   void check_klass_subtype(Register sub_klass,
 607                            Register super_klass,
 608                            Register temp_reg,
 609                            Label& L_success);
 610 
 611   void clinit_barrier(Register klass,
 612                       Register thread,
 613                       Label* L_fast_path = NULL,
 614                       Label* L_slow_path = NULL);
 615 
 616   // method handles (JSR 292)
 617   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 618 
 619   // Debugging
 620 
 621   // only if +VerifyOops
 622   void _verify_oop(Register reg, const char* s, const char* file, int line);
 623   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 624 
 625   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 626     if (VerifyOops) {
 627       _verify_oop(reg, s, file, line);
 628     }
 629   }
 630   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 631     if (VerifyOops) {
 632       _verify_oop_addr(reg, s, file, line);
 633     }
 634   }
 635 
 636   // TODO: verify method and klass metadata (compare against vptr?)
 637   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 638   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 639 
 640 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 641 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 642 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 643 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 644 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 645 
 646   // Verify or restore cpu control state after JNI call
 647   void restore_cpu_control_state_after_jni();
 648 
 649   // prints msg, dumps registers and stops execution
 650   void stop(const char* msg);
 651 
 652   // prints msg and continues
 653   void warn(const char* msg);
 654 
 655   // dumps registers and other state
 656   void print_state();
 657 
 658   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 659   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 660   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 661   static void print_state64(int64_t pc, int64_t regs[]);
 662 
 663   void os_breakpoint();
 664 
 665   void untested()                                { stop("untested"); }
 666 
 667   void unimplemented(const char* what = "");
 668 
 669   void should_not_reach_here()                   { stop("should not reach here"); }
 670 
 671   void print_CPU_state();
 672 
 673   // Stack overflow checking
 674   void bang_stack_with_offset(int offset) {
 675     // stack grows down, caller passes positive offset
 676     assert(offset > 0, "must bang with negative offset");
 677     movl(Address(rsp, (-offset)), rax);
 678   }
 679 
 680   // Writes to stack successive pages until offset reached to check for
 681   // stack overflow + shadow pages.  Also, clobbers tmp
 682   void bang_stack_size(Register size, Register tmp);
 683 
 684   // Check for reserved stack access in method being exited (for JIT)
 685   void reserved_stack_check();
 686 
 687   void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
 688 
 689   void verify_tlab();
 690 
 691   // Biased locking support
 692   // lock_reg and obj_reg must be loaded up with the appropriate values.
 693   // swap_reg must be rax, and is killed.
 694   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 695   // be killed; if not supplied, push/pop will be used internally to
 696   // allocate a temporary (inefficient, avoid if possible).
 697   // Optional slow case is for implementations (interpreter and C1) which branch to
 698   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 699   void biased_locking_enter(Register lock_reg, Register obj_reg,
 700                             Register swap_reg, Register tmp_reg,
 701                             Register tmp_reg2, bool swap_reg_contains_mark,
 702                             Label& done, Label* slow_case = NULL,
 703                             BiasedLockingCounters* counters = NULL);
 704   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 705 
 706   Condition negate_condition(Condition cond);
 707 
 708   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 709   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 710   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 711   // here in MacroAssembler. The major exception to this rule is call
 712 
 713   // Arithmetics
 714 
 715 
 716   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 717   void addptr(Address dst, Register src);
 718 
 719   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 720   void addptr(Register dst, int32_t src);
 721   void addptr(Register dst, Register src);
 722   void addptr(Register dst, RegisterOrConstant src) {
 723     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 724     else                   addptr(dst,       src.as_register());
 725   }
 726 
 727   void andptr(Register dst, int32_t src);
 728   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 729 
 730   void cmp8(AddressLiteral src1, int imm);
 731 
 732   // renamed to drag out the casting of address to int32_t/intptr_t
 733   void cmp32(Register src1, int32_t imm);
 734 
 735   void cmp32(AddressLiteral src1, int32_t imm);
 736   // compare reg - mem, or reg - &mem
 737   void cmp32(Register src1, AddressLiteral src2);
 738 
 739   void cmp32(Register src1, Address src2);
 740 
 741 #ifndef _LP64
 742   void cmpklass(Address dst, Metadata* obj);
 743   void cmpklass(Register dst, Metadata* obj);
 744   void cmpoop(Address dst, jobject obj);
 745 #endif // _LP64
 746 
 747   void cmpoop(Register src1, Register src2);
 748   void cmpoop(Register src1, Address src2);
 749   void cmpoop(Register dst, jobject obj);
 750 
 751   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 752   void cmpptr(Address src1, AddressLiteral src2);
 753 
 754   void cmpptr(Register src1, AddressLiteral src2);
 755 
 756   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 758   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 759 
 760   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 761   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 762 
 763   // cmp64 to avoild hiding cmpq
 764   void cmp64(Register src1, AddressLiteral src);
 765 
 766   void cmpxchgptr(Register reg, Address adr);
 767 
 768   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 769 
 770 
 771   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 772   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 773 
 774 
 775   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 776 
 777   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 778 
 779   void shlptr(Register dst, int32_t shift);
 780   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 781 
 782   void shrptr(Register dst, int32_t shift);
 783   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 784 
 785   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 786   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 787 
 788   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 789 
 790   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 791   void subptr(Register dst, int32_t src);
 792   // Force generation of a 4 byte immediate value even if it fits into 8bit
 793   void subptr_imm32(Register dst, int32_t src);
 794   void subptr(Register dst, Register src);
 795   void subptr(Register dst, RegisterOrConstant src) {
 796     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 797     else                   subptr(dst,       src.as_register());
 798   }
 799 
 800   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 801   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 802 
 803   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 804   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 805 
 806   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 807 
 808 
 809 
 810   // Helper functions for statistics gathering.
 811   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 812   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 813   // Unconditional atomic increment.
 814   void atomic_incl(Address counter_addr);
 815   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 816 #ifdef _LP64
 817   void atomic_incq(Address counter_addr);
 818   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 819 #endif
 820   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 821   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 822 
 823   void lea(Register dst, AddressLiteral adr);
 824   void lea(Address dst, AddressLiteral adr);
 825   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 826 
 827   void leal32(Register dst, Address src) { leal(dst, src); }
 828 
 829   // Import other testl() methods from the parent class or else
 830   // they will be hidden by the following overriding declaration.
 831   using Assembler::testl;
 832   void testl(Register dst, AddressLiteral src);
 833 
 834   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 835   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 836   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 837   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 838 
 839   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 840   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 841   void testptr(Address src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 842   void testptr(Register src1, Register src2);
 843 
 844   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 845   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 846 
 847   // Calls
 848 
 849   void call(Label& L, relocInfo::relocType rtype);
 850   void call(Register entry);
 851   void call(Address addr) { Assembler::call(addr); }
 852 
 853   // NOTE: this call transfers to the effective address of entry NOT
 854   // the address contained by entry. This is because this is more natural
 855   // for jumps/calls.
 856   void call(AddressLiteral entry);
 857 
 858   // Emit the CompiledIC call idiom
 859   void ic_call(address entry, jint method_index = 0);
 860 
 861   // Jumps
 862 
 863   // NOTE: these jumps tranfer to the effective address of dst NOT
 864   // the address contained by dst. This is because this is more natural
 865   // for jumps/calls.
 866   void jump(AddressLiteral dst);
 867   void jump_cc(Condition cc, AddressLiteral dst);
 868 
 869   // 32bit can do a case table jump in one instruction but we no longer allow the base
 870   // to be installed in the Address class. This jump will tranfers to the address
 871   // contained in the location described by entry (not the address of entry)
 872   void jump(ArrayAddress entry);
 873 
 874   // Floating
 875 
 876   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 877   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 878   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 879 
 880   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 881   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 882   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 883 
 884   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 885   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 886   void comiss(XMMRegister dst, AddressLiteral src);
 887 
 888   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 889   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 890   void comisd(XMMRegister dst, AddressLiteral src);
 891 
 892 #ifndef _LP64
 893   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 894   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 895 
 896   void fldcw(Address src) { Assembler::fldcw(src); }
 897   void fldcw(AddressLiteral src);
 898 
 899   void fld_s(int index)   { Assembler::fld_s(index); }
 900   void fld_s(Address src) { Assembler::fld_s(src); }
 901   void fld_s(AddressLiteral src);
 902 
 903   void fld_d(Address src) { Assembler::fld_d(src); }
 904   void fld_d(AddressLiteral src);
 905 
 906   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 907   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 908 #endif // _LP64
 909 
 910   void fld_x(Address src) { Assembler::fld_x(src); }
 911   void fld_x(AddressLiteral src);
 912 
 913   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 914   void ldmxcsr(AddressLiteral src);
 915 
 916 #ifdef _LP64
 917  private:
 918   void sha256_AVX2_one_round_compute(
 919     Register  reg_old_h,
 920     Register  reg_a,
 921     Register  reg_b,
 922     Register  reg_c,
 923     Register  reg_d,
 924     Register  reg_e,
 925     Register  reg_f,
 926     Register  reg_g,
 927     Register  reg_h,
 928     int iter);
 929   void sha256_AVX2_four_rounds_compute_first(int start);
 930   void sha256_AVX2_four_rounds_compute_last(int start);
 931   void sha256_AVX2_one_round_and_sched(
 932         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 933         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 934         XMMRegister xmm_2,     /* ymm6 */
 935         XMMRegister xmm_3,     /* ymm7 */
 936         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 937         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 938         Register    reg_c,      /* edi */
 939         Register    reg_d,      /* esi */
 940         Register    reg_e,      /* r8d */
 941         Register    reg_f,      /* r9d */
 942         Register    reg_g,      /* r10d */
 943         Register    reg_h,      /* r11d */
 944         int iter);
 945 
 946   void addm(int disp, Register r1, Register r2);
 947   void gfmul(XMMRegister tmp0, XMMRegister t);
 948   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 949                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 950   void generateHtbl_one_block(Register htbl);
 951   void generateHtbl_eight_blocks(Register htbl);
 952  public:
 953   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 954                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 955                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 956                    bool multi_block, XMMRegister shuf_mask);
 957   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 958 #endif
 959 
 960 #ifdef _LP64
 961  private:
 962   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 963                                      Register e, Register f, Register g, Register h, int iteration);
 964 
 965   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 966                                           Register a, Register b, Register c, Register d, Register e, Register f,
 967                                           Register g, Register h, int iteration);
 968 
 969   void addmq(int disp, Register r1, Register r2);
 970  public:
 971   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 972                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 973                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 974                    XMMRegister shuf_mask);
 975 private:
 976   void roundEnc(XMMRegister key, int rnum);
 977   void lastroundEnc(XMMRegister key, int rnum);
 978   void roundDec(XMMRegister key, int rnum);
 979   void lastroundDec(XMMRegister key, int rnum);
 980   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
 981   void ev_add128(XMMRegister xmmdst, XMMRegister xmmsrc1, XMMRegister xmmsrc2,
 982                  int vector_len, KRegister ktmp, Register rscratch = noreg);
 983 
 984 public:
 985   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
 986   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
 987   void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
 988                       Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);
 989 
 990 #endif
 991 
 992   void fast_md5(Register buf, Address state, Address ofs, Address limit,
 993                 bool multi_block);
 994 
 995   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 996                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 997                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 998                  bool multi_block);
 999 
1000 #ifdef _LP64
1001   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1002                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1003                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1004                    bool multi_block, XMMRegister shuf_mask);
1005 #else
1006   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1007                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1008                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1009                    bool multi_block);
1010 #endif
1011 
1012   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1013                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1014                 Register rax, Register rcx, Register rdx, Register tmp);
1015 
1016 #ifdef _LP64
1017   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1018                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1019                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1020 
1021   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1022                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1023                   Register rax, Register rcx, Register rdx, Register r11);
1024 
1025   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1026                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1027                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1028 
1029   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1030                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1031                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1032                 Register tmp3, Register tmp4);
1033 
1034   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1035                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1036                 Register rax, Register rcx, Register rdx, Register tmp1,
1037                 Register tmp2, Register tmp3, Register tmp4);
1038   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1039                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1040                 Register rax, Register rcx, Register rdx, Register tmp1,
1041                 Register tmp2, Register tmp3, Register tmp4);
1042 #else
1043   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1044                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1045                 Register rax, Register rcx, Register rdx, Register tmp1);
1046 
1047   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1048                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1049                 Register rax, Register rcx, Register rdx, Register tmp);
1050 
1051   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1052                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1053                 Register rdx, Register tmp);
1054 
1055   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1056                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1057                 Register rax, Register rbx, Register rdx);
1058 
1059   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1060                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1061                 Register rax, Register rcx, Register rdx, Register tmp);
1062 
1063   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1064                         Register edx, Register ebx, Register esi, Register edi,
1065                         Register ebp, Register esp);
1066 
1067   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1068                          Register esi, Register edi, Register ebp, Register esp);
1069 
1070   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1071                         Register edx, Register ebx, Register esi, Register edi,
1072                         Register ebp, Register esp);
1073 
1074   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1075                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1076                 Register rax, Register rcx, Register rdx, Register tmp);
1077 #endif
1078 
1079 private:
1080 
1081   // these are private because users should be doing movflt/movdbl
1082 
1083   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1084   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1085   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1086   void movss(XMMRegister dst, AddressLiteral src);
1087 
1088   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1089   void movlpd(XMMRegister dst, AddressLiteral src);
1090 
1091 public:
1092 
1093   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1094   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1095   void addsd(XMMRegister dst, AddressLiteral src);
1096 
1097   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1098   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1099   void addss(XMMRegister dst, AddressLiteral src);
1100 
1101   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1102   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1103   void addpd(XMMRegister dst, AddressLiteral src);
1104 
1105   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1106   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1107   void divsd(XMMRegister dst, AddressLiteral src);
1108 
1109   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1110   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1111   void divss(XMMRegister dst, AddressLiteral src);
1112 
1113   // Move Unaligned Double Quadword
1114   void movdqu(Address     dst, XMMRegister src);
1115   void movdqu(XMMRegister dst, Address src);
1116   void movdqu(XMMRegister dst, XMMRegister src);
1117   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1118 
1119   void kmovwl(KRegister dst, Register src) { Assembler::kmovwl(dst, src); }
1120   void kmovwl(Register dst, KRegister src) { Assembler::kmovwl(dst, src); }
1121   void kmovwl(KRegister dst, Address src) { Assembler::kmovwl(dst, src); }
1122   void kmovwl(KRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1123   void kmovwl(Address dst,  KRegister src) { Assembler::kmovwl(dst, src); }
1124   void kmovwl(KRegister dst, KRegister src) { Assembler::kmovwl(dst, src); }
1125 
1126   void kmovql(KRegister dst, KRegister src) { Assembler::kmovql(dst, src); }
1127   void kmovql(KRegister dst, Register src) { Assembler::kmovql(dst, src); }
1128   void kmovql(Register dst, KRegister src) { Assembler::kmovql(dst, src); }
1129   void kmovql(KRegister dst, Address src) { Assembler::kmovql(dst, src); }
1130   void kmovql(Address  dst, KRegister src) { Assembler::kmovql(dst, src); }
1131   void kmovql(KRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1132 
1133   // Safe move operation, lowers down to 16bit moves for targets supporting
1134   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1135   void kmov(Address  dst, KRegister src);
1136   void kmov(KRegister dst, Address src);
1137   void kmov(KRegister dst, KRegister src);
1138   void kmov(Register dst, KRegister src);
1139   void kmov(KRegister dst, Register src);
1140 
1141   // AVX Unaligned forms
1142   void vmovdqu(Address     dst, XMMRegister src);
1143   void vmovdqu(XMMRegister dst, Address src);
1144   void vmovdqu(XMMRegister dst, XMMRegister src);
1145   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1146 
1147   // AVX512 Unaligned
1148   void evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, int vector_len);
1149   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, int vector_len);
1150 
1151   void evmovdqub(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1152   void evmovdqub(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1153   void evmovdqub(XMMRegister dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1154   void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1155   void evmovdqub(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1156   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1157 
1158   void evmovdquw(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
1159   void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1160   void evmovdquw(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
1161   void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1162   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1163 
1164   void evmovdqul(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1165   void evmovdqul(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1166   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1167      if (dst->encoding() == src->encoding()) return;
1168      Assembler::evmovdqul(dst, src, vector_len);
1169   }
1170   void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1171   void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1172   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1173     if (dst->encoding() == src->encoding() && mask == k0) return;
1174     Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1175    }
1176   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1177 
1178   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1179   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1180   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1181   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1182     if (dst->encoding() == src->encoding()) return;
1183     Assembler::evmovdquq(dst, src, vector_len);
1184   }
1185   void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1186   void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1187   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1188     if (dst->encoding() == src->encoding() && mask == k0) return;
1189     Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1190   }
1191   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1192 
1193   // Move Aligned Double Quadword
1194   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1195   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1196   void movdqa(XMMRegister dst, AddressLiteral src);
1197 
1198   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1199   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1200   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1201   void movsd(XMMRegister dst, AddressLiteral src);
1202 
1203   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1204   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1205   void mulpd(XMMRegister dst, AddressLiteral src);
1206 
1207   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1208   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1209   void mulsd(XMMRegister dst, AddressLiteral src);
1210 
1211   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1212   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1213   void mulss(XMMRegister dst, AddressLiteral src);
1214 
1215   // Carry-Less Multiplication Quadword
1216   void pclmulldq(XMMRegister dst, XMMRegister src) {
1217     // 0x00 - multiply lower 64 bits [0:63]
1218     Assembler::pclmulqdq(dst, src, 0x00);
1219   }
1220   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1221     // 0x11 - multiply upper 64 bits [64:127]
1222     Assembler::pclmulqdq(dst, src, 0x11);
1223   }
1224 
1225   void pcmpeqb(XMMRegister dst, XMMRegister src);
1226   void pcmpeqw(XMMRegister dst, XMMRegister src);
1227 
1228   void pcmpestri(XMMRegister dst, Address src, int imm8);
1229   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1230 
1231   void pmovzxbw(XMMRegister dst, XMMRegister src);
1232   void pmovzxbw(XMMRegister dst, Address src);
1233 
1234   void pmovmskb(Register dst, XMMRegister src);
1235 
1236   void ptest(XMMRegister dst, XMMRegister src);
1237 
1238   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1239   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1240   void sqrtsd(XMMRegister dst, AddressLiteral src);
1241 
1242   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1243   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1244   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1245 
1246   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1247   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1248   void sqrtss(XMMRegister dst, AddressLiteral src);
1249 
1250   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1251   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1252   void subsd(XMMRegister dst, AddressLiteral src);
1253 
1254   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1255   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1256   void subss(XMMRegister dst, AddressLiteral src);
1257 
1258   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1259   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1260   void ucomiss(XMMRegister dst, AddressLiteral src);
1261 
1262   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1263   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1264   void ucomisd(XMMRegister dst, AddressLiteral src);
1265 
1266   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1267   void xorpd(XMMRegister dst, XMMRegister src);
1268   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1269   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1270 
1271   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1272   void xorps(XMMRegister dst, XMMRegister src);
1273   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1274   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1275 
1276   // Shuffle Bytes
1277   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1278   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1279   void pshufb(XMMRegister dst, AddressLiteral src);
1280   // AVX 3-operands instructions
1281 
1282   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1283   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1284   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1285 
1286   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1287   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1288   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1289 
1290   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1291   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1292 
1293   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1294   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1295   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1296 
1297   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1298   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1299 
1300   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1301   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1302   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1303 
1304   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1305   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1306   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1307 
1308   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1309   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1310 
1311   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1312 
1313   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1314   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1315 
1316   // Vector compares
1317   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1318                int comparison, bool is_signed, int vector_len) { Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len); }
1319   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1320                int comparison, bool is_signed, int vector_len, Register scratch_reg);
1321   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1322                int comparison, bool is_signed, int vector_len) { Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len); }
1323   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1324                int comparison, bool is_signed, int vector_len, Register scratch_reg);
1325   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1326                int comparison, bool is_signed, int vector_len) { Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len); }
1327   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1328                int comparison, bool is_signed, int vector_len, Register scratch_reg);
1329   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1330                int comparison, bool is_signed, int vector_len) { Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len); }
1331   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1332                int comparison, bool is_signed, int vector_len, Register scratch_reg);
1333 
1334 
1335   // Emit comparison instruction for the specified comparison predicate.
1336   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, ComparisonPredicate cond, Width width, int vector_len, Register scratch_reg);
1337   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1338 
1339   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1340   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1341 
1342   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1343 
1344   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1345   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1346   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1347     Assembler::vpmulld(dst, nds, src, vector_len);
1348   };
1349   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1350     Assembler::vpmulld(dst, nds, src, vector_len);
1351   }
1352   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1353 
1354   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1355   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1356 
1357   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1358   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1359 
1360   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1361   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1362 
1363   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1364   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1365 
1366   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1367   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1368 
1369   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1370   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1371 
1372   void vptest(XMMRegister dst, XMMRegister src);
1373   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1374 
1375   void punpcklbw(XMMRegister dst, XMMRegister src);
1376   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1377 
1378   void pshufd(XMMRegister dst, Address src, int mode);
1379   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1380 
1381   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1382   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1383 
1384   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1385   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1386   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1387 
1388   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1389   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1390   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1391 
1392   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1393 
1394   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1395   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1396   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1397 
1398   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1399   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1400   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1401 
1402   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1403   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1404   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1405 
1406   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1407   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1408   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1409 
1410   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1411   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1412   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1413 
1414   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1415   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1416   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1417 
1418   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1419   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1420 
1421   // AVX Vector instructions
1422 
1423   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1424   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1425   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1426 
1427   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1428   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1429   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1430 
1431   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1432     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1433       Assembler::vpxor(dst, nds, src, vector_len);
1434     else
1435       Assembler::vxorpd(dst, nds, src, vector_len);
1436   }
1437   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1438     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1439       Assembler::vpxor(dst, nds, src, vector_len);
1440     else
1441       Assembler::vxorpd(dst, nds, src, vector_len);
1442   }
1443   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1444 
1445   // Simple version for AVX2 256bit vectors
1446   void vpxor(XMMRegister dst, XMMRegister src) {
1447     assert(UseAVX >= 2, "Should be at least AVX2");
1448     Assembler::vpxor(dst, dst, src, AVX_256bit);
1449   }
1450   void vpxor(XMMRegister dst, Address src) {
1451     assert(UseAVX >= 2, "Should be at least AVX2");
1452     Assembler::vpxor(dst, dst, src, AVX_256bit);
1453   }
1454 
1455   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1456   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1457 
1458   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1459     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1460       Assembler::vinserti32x4(dst, nds, src, imm8);
1461     } else if (UseAVX > 1) {
1462       // vinserti128 is available only in AVX2
1463       Assembler::vinserti128(dst, nds, src, imm8);
1464     } else {
1465       Assembler::vinsertf128(dst, nds, src, imm8);
1466     }
1467   }
1468 
1469   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1470     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1471       Assembler::vinserti32x4(dst, nds, src, imm8);
1472     } else if (UseAVX > 1) {
1473       // vinserti128 is available only in AVX2
1474       Assembler::vinserti128(dst, nds, src, imm8);
1475     } else {
1476       Assembler::vinsertf128(dst, nds, src, imm8);
1477     }
1478   }
1479 
1480   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1481     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1482       Assembler::vextracti32x4(dst, src, imm8);
1483     } else if (UseAVX > 1) {
1484       // vextracti128 is available only in AVX2
1485       Assembler::vextracti128(dst, src, imm8);
1486     } else {
1487       Assembler::vextractf128(dst, src, imm8);
1488     }
1489   }
1490 
1491   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1492     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1493       Assembler::vextracti32x4(dst, src, imm8);
1494     } else if (UseAVX > 1) {
1495       // vextracti128 is available only in AVX2
1496       Assembler::vextracti128(dst, src, imm8);
1497     } else {
1498       Assembler::vextractf128(dst, src, imm8);
1499     }
1500   }
1501 
1502   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1503   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1504     vinserti128(dst, dst, src, 1);
1505   }
1506   void vinserti128_high(XMMRegister dst, Address src) {
1507     vinserti128(dst, dst, src, 1);
1508   }
1509   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1510     vextracti128(dst, src, 1);
1511   }
1512   void vextracti128_high(Address dst, XMMRegister src) {
1513     vextracti128(dst, src, 1);
1514   }
1515 
1516   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1517     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1518       Assembler::vinsertf32x4(dst, dst, src, 1);
1519     } else {
1520       Assembler::vinsertf128(dst, dst, src, 1);
1521     }
1522   }
1523 
1524   void vinsertf128_high(XMMRegister dst, Address src) {
1525     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1526       Assembler::vinsertf32x4(dst, dst, src, 1);
1527     } else {
1528       Assembler::vinsertf128(dst, dst, src, 1);
1529     }
1530   }
1531 
1532   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1533     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1534       Assembler::vextractf32x4(dst, src, 1);
1535     } else {
1536       Assembler::vextractf128(dst, src, 1);
1537     }
1538   }
1539 
1540   void vextractf128_high(Address dst, XMMRegister src) {
1541     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1542       Assembler::vextractf32x4(dst, src, 1);
1543     } else {
1544       Assembler::vextractf128(dst, src, 1);
1545     }
1546   }
1547 
1548   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1549   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1550     Assembler::vinserti64x4(dst, dst, src, 1);
1551   }
1552   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1553     Assembler::vinsertf64x4(dst, dst, src, 1);
1554   }
1555   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1556     Assembler::vextracti64x4(dst, src, 1);
1557   }
1558   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1559     Assembler::vextractf64x4(dst, src, 1);
1560   }
1561   void vextractf64x4_high(Address dst, XMMRegister src) {
1562     Assembler::vextractf64x4(dst, src, 1);
1563   }
1564   void vinsertf64x4_high(XMMRegister dst, Address src) {
1565     Assembler::vinsertf64x4(dst, dst, src, 1);
1566   }
1567 
1568   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1569   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1570     vinserti128(dst, dst, src, 0);
1571   }
1572   void vinserti128_low(XMMRegister dst, Address src) {
1573     vinserti128(dst, dst, src, 0);
1574   }
1575   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1576     vextracti128(dst, src, 0);
1577   }
1578   void vextracti128_low(Address dst, XMMRegister src) {
1579     vextracti128(dst, src, 0);
1580   }
1581 
1582   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1583     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1584       Assembler::vinsertf32x4(dst, dst, src, 0);
1585     } else {
1586       Assembler::vinsertf128(dst, dst, src, 0);
1587     }
1588   }
1589 
1590   void vinsertf128_low(XMMRegister dst, Address src) {
1591     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1592       Assembler::vinsertf32x4(dst, dst, src, 0);
1593     } else {
1594       Assembler::vinsertf128(dst, dst, src, 0);
1595     }
1596   }
1597 
1598   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1599     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1600       Assembler::vextractf32x4(dst, src, 0);
1601     } else {
1602       Assembler::vextractf128(dst, src, 0);
1603     }
1604   }
1605 
1606   void vextractf128_low(Address dst, XMMRegister src) {
1607     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1608       Assembler::vextractf32x4(dst, src, 0);
1609     } else {
1610       Assembler::vextractf128(dst, src, 0);
1611     }
1612   }
1613 
1614   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1615   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1616     Assembler::vinserti64x4(dst, dst, src, 0);
1617   }
1618   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1619     Assembler::vinsertf64x4(dst, dst, src, 0);
1620   }
1621   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1622     Assembler::vextracti64x4(dst, src, 0);
1623   }
1624   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1625     Assembler::vextractf64x4(dst, src, 0);
1626   }
1627   void vextractf64x4_low(Address dst, XMMRegister src) {
1628     Assembler::vextractf64x4(dst, src, 0);
1629   }
1630   void vinsertf64x4_low(XMMRegister dst, Address src) {
1631     Assembler::vinsertf64x4(dst, dst, src, 0);
1632   }
1633 
1634   // Carry-Less Multiplication Quadword
1635   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1636     // 0x00 - multiply lower 64 bits [0:63]
1637     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1638   }
1639   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1640     // 0x11 - multiply upper 64 bits [64:127]
1641     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1642   }
1643   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1644     // 0x10 - multiply nds[0:63] and src[64:127]
1645     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1646   }
1647   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1648     //0x01 - multiply nds[64:127] and src[0:63]
1649     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1650   }
1651 
1652   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1653     // 0x00 - multiply lower 64 bits [0:63]
1654     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1655   }
1656   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1657     // 0x11 - multiply upper 64 bits [64:127]
1658     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1659   }
1660 
1661   // Data
1662 
1663   void cmov32( Condition cc, Register dst, Address  src);
1664   void cmov32( Condition cc, Register dst, Register src);
1665 
1666   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1667 
1668   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1669   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1670 
1671   void movoop(Register dst, jobject obj);
1672   void movoop(Address dst, jobject obj);
1673 
1674   void mov_metadata(Register dst, Metadata* obj);
1675   void mov_metadata(Address dst, Metadata* obj);
1676 
1677   void movptr(ArrayAddress dst, Register src);
1678   // can this do an lea?
1679   void movptr(Register dst, ArrayAddress src);
1680 
1681   void movptr(Register dst, Address src);
1682 
1683 #ifdef _LP64
1684   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1685 #else
1686   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1687 #endif
1688 
1689   void movptr(Register dst, intptr_t src);
1690   void movptr(Register dst, Register src);
1691   void movptr(Address dst, intptr_t src);
1692 
1693   void movptr(Address dst, Register src);
1694 
1695   void movptr(Register dst, RegisterOrConstant src) {
1696     if (src.is_constant()) movptr(dst, src.as_constant());
1697     else                   movptr(dst, src.as_register());
1698   }
1699 
1700 #ifdef _LP64
1701   // Generally the next two are only used for moving NULL
1702   // Although there are situations in initializing the mark word where
1703   // they could be used. They are dangerous.
1704 
1705   // They only exist on LP64 so that int32_t and intptr_t are not the same
1706   // and we have ambiguous declarations.
1707 
1708   void movptr(Address dst, int32_t imm32);
1709   void movptr(Register dst, int32_t imm32);
1710 #endif // _LP64
1711 
1712   // to avoid hiding movl
1713   void mov32(AddressLiteral dst, Register src);
1714   void mov32(Register dst, AddressLiteral src);
1715 
1716   // to avoid hiding movb
1717   void movbyte(ArrayAddress dst, int src);
1718 
1719   // Import other mov() methods from the parent class or else
1720   // they will be hidden by the following overriding declaration.
1721   using Assembler::movdl;
1722   using Assembler::movq;
1723   void movdl(XMMRegister dst, AddressLiteral src);
1724   void movq(XMMRegister dst, AddressLiteral src);
1725 
1726   // Can push value or effective address
1727   void pushptr(AddressLiteral src);
1728 
1729   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1730   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1731 
1732   void pushoop(jobject obj);
1733   void pushklass(Metadata* obj);
1734 
1735   // sign extend as need a l to ptr sized element
1736   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1737   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1738 
1739 
1740  public:
1741   // C2 compiled method's prolog code.
1742   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);
1743 
1744   // clear memory of size 'cnt' qwords, starting at 'base';
1745   // if 'is_large' is set, do not try to produce short loop
1746   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);
1747 
1748   // clear memory initialization sequence for constant size;
1749   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1750 
1751   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1752   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1753 
1754   // Fill primitive arrays
1755   void generate_fill(BasicType t, bool aligned,
1756                      Register to, Register value, Register count,
1757                      Register rtmp, XMMRegister xtmp);
1758 
1759   void encode_iso_array(Register src, Register dst, Register len,
1760                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1761                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
1762 
1763 #ifdef _LP64
1764   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1765   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1766                              Register y, Register y_idx, Register z,
1767                              Register carry, Register product,
1768                              Register idx, Register kdx);
1769   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1770                               Register yz_idx, Register idx,
1771                               Register carry, Register product, int offset);
1772   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1773                                     Register carry, Register carry2,
1774                                     Register idx, Register jdx,
1775                                     Register yz_idx1, Register yz_idx2,
1776                                     Register tmp, Register tmp3, Register tmp4);
1777   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1778                                Register yz_idx, Register idx, Register jdx,
1779                                Register carry, Register product,
1780                                Register carry2);
1781   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1782                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1783   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1784                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1785   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1786                             Register tmp2);
1787   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1788                        Register rdxReg, Register raxReg);
1789   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1790   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1791                        Register tmp3, Register tmp4);
1792   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1793                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1794 
1795   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1796                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1797                Register raxReg);
1798   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1799                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1800                Register raxReg);
1801   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1802                            Register result, Register tmp1, Register tmp2,
1803                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1804 #endif
1805 
1806   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1807   void update_byte_crc32(Register crc, Register val, Register table);
1808   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1809 
1810 
1811 #ifdef _LP64
1812   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
1813   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
1814                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
1815                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
1816   void updateBytesAdler32(Register adler32, Register buf, Register length, XMMRegister shuf0, XMMRegister shuf1, ExternalAddress scale);
1817 #endif // _LP64
1818 
1819   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1820   // Note on a naming convention:
1821   // Prefix w = register only used on a Westmere+ architecture
1822   // Prefix n = register only used on a Nehalem architecture
1823 #ifdef _LP64
1824   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1825                        Register tmp1, Register tmp2, Register tmp3);
1826 #else
1827   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1828                        Register tmp1, Register tmp2, Register tmp3,
1829                        XMMRegister xtmp1, XMMRegister xtmp2);
1830 #endif
1831   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1832                         Register in_out,
1833                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1834                         XMMRegister w_xtmp2,
1835                         Register tmp1,
1836                         Register n_tmp2, Register n_tmp3);
1837   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1838                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1839                        Register tmp1, Register tmp2,
1840                        Register n_tmp3);
1841   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1842                          Register in_out1, Register in_out2, Register in_out3,
1843                          Register tmp1, Register tmp2, Register tmp3,
1844                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1845                          Register tmp4, Register tmp5,
1846                          Register n_tmp6);
1847   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1848                             Register tmp1, Register tmp2, Register tmp3,
1849                             Register tmp4, Register tmp5, Register tmp6,
1850                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1851                             bool is_pclmulqdq_supported);
1852   // Fold 128-bit data chunk
1853   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1854   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1855 #ifdef _LP64
1856   // Fold 512-bit data chunk
1857   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
1858 #endif // _LP64
1859   // Fold 8-bit data
1860   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1861   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1862 
1863   // Compress char[] array to byte[].
1864   void char_array_compress(Register src, Register dst, Register len,
1865                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1866                            XMMRegister tmp4, Register tmp5, Register result,
1867                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
1868 
1869   // Inflate byte[] array to char[].
1870   void byte_array_inflate(Register src, Register dst, Register len,
1871                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
1872 
1873   void fill64_masked_avx(uint shift, Register dst, int disp,
1874                          XMMRegister xmm, KRegister mask, Register length,
1875                          Register temp, bool use64byteVector = false);
1876 
1877   void fill32_masked_avx(uint shift, Register dst, int disp,
1878                          XMMRegister xmm, KRegister mask, Register length,
1879                          Register temp);
1880 
1881   void fill32(Address dst, XMMRegister xmm);
1882 
1883   void fill32_avx(Register dst, int disp, XMMRegister xmm);
1884 
1885   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
1886 
1887   void fill64_avx(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
1888 
1889 #ifdef _LP64
1890   void convert_f2i(Register dst, XMMRegister src);
1891   void convert_d2i(Register dst, XMMRegister src);
1892   void convert_f2l(Register dst, XMMRegister src);
1893   void convert_d2l(Register dst, XMMRegister src);
1894 
1895   void cache_wb(Address line);
1896   void cache_wbsync(bool is_pre);
1897 
1898 #if COMPILER2_OR_JVMCI
1899   void arraycopy_avx3_special_cases(XMMRegister xmm, KRegister mask, Register from,
1900                                     Register to, Register count, int shift,
1901                                     Register index, Register temp,
1902                                     bool use64byteVector, Label& L_entry, Label& L_exit);
1903 
1904   void arraycopy_avx3_special_cases_conjoint(XMMRegister xmm, KRegister mask, Register from,
1905                                              Register to, Register start_index, Register end_index,
1906                                              Register count, int shift, Register temp,
1907                                              bool use64byteVector, Label& L_entry, Label& L_exit);
1908 
1909   void copy64_masked_avx(Register dst, Register src, XMMRegister xmm,
1910                          KRegister mask, Register length, Register index,
1911                          Register temp, int shift = Address::times_1, int offset = 0,
1912                          bool use64byteVector = false);
1913 
1914   void copy32_masked_avx(Register dst, Register src, XMMRegister xmm,
1915                          KRegister mask, Register length, Register index,
1916                          Register temp, int shift = Address::times_1, int offset = 0);
1917 
1918   void copy32_avx(Register dst, Register src, Register index, XMMRegister xmm,
1919                   int shift = Address::times_1, int offset = 0);
1920 
1921   void copy64_avx(Register dst, Register src, Register index, XMMRegister xmm,
1922                   bool conjoint, int shift = Address::times_1, int offset = 0,
1923                   bool use64byteVector = false);
1924 #endif // COMPILER2_OR_JVMCI
1925 
1926 #endif // _LP64
1927 
1928   void vallones(XMMRegister dst, int vector_len);
1929 
1930   void lightweight_lock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
1931   void lightweight_unlock(Register obj, Register reg_rax, Register thread, Register tmp, Label& slow);
1932 };
1933 
1934 /**
1935  * class SkipIfEqual:
1936  *
1937  * Instantiating this class will result in assembly code being output that will
1938  * jump around any code emitted between the creation of the instance and it's
1939  * automatic destruction at the end of a scope block, depending on the value of
1940  * the flag passed to the constructor, which will be checked at run-time.
1941  */
1942 class SkipIfEqual {
1943  private:
1944   MacroAssembler* _masm;
1945   Label _label;
1946 
1947  public:
1948    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1949    ~SkipIfEqual();
1950 };
1951 
1952 #endif // CPU_X86_MACROASSEMBLER_X86_HPP