1 /*
   2  * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "code/vmreg.inline.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "utilities/macros.hpp"
  32 #include "runtime/rtmLocking.hpp"
  33 #include "runtime/vm_version.hpp"
  34 
  35 // MacroAssembler extends Assembler by frequently used macros.
  36 //
  37 // Instructions for which a 'better' code sequence exists depending
  38 // on arguments should also go in here.
  39 
  40 class MacroAssembler: public Assembler {
  41   friend class LIR_Assembler;
  42   friend class Runtime1;      // as_Address()
  43 
  44  public:
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments        // the number of arguments to pop after the call
  54   );
  55 
  56  protected:
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   Address as_Address(AddressLiteral adr);
  91   Address as_Address(ArrayAddress adr);
  92 
  93   // Support for NULL-checks
  94   //
  95   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  96   // If the accessed location is M[reg + offset] and the offset is known, provide the
  97   // offset. No explicit code generation is needed if the offset is within a certain
  98   // range (0 <= offset <= page_size).
  99 
 100   void null_check(Register reg, int offset = -1);
 101   static bool needs_explicit_null_check(intptr_t offset);
 102   static bool uses_implicit_null_check(void* address);
 103 
 104   // Required platform-specific helpers for Label::patch_instructions.
 105   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 106   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 107     unsigned char op = branch[0];
 108     assert(op == 0xE8 /* call */ ||
 109         op == 0xE9 /* jmp */ ||
 110         op == 0xEB /* short jmp */ ||
 111         (op & 0xF0) == 0x70 /* short jcc */ ||
 112         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 113         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 114         "Invalid opcode at patch point");
 115 
 116     if (op == 0xEB || (op & 0xF0) == 0x70) {
 117       // short offset operators (jmp and jcc)
 118       char* disp = (char*) &branch[1];
 119       int imm8 = target - (address) &disp[1];
 120       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 121                 file == NULL ? "<NULL>" : file, line);
 122       *disp = imm8;
 123     } else {
 124       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 125       int imm32 = target - (address) &disp[1];
 126       *disp = imm32;
 127     }
 128   }
 129 
 130   // The following 4 methods return the offset of the appropriate move instruction
 131 
 132   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 133   int load_unsigned_byte(Register dst, Address src);
 134   int load_unsigned_short(Register dst, Address src);
 135 
 136   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 137   int load_signed_byte(Register dst, Address src);
 138   int load_signed_short(Register dst, Address src);
 139 
 140   // Support for sign-extension (hi:lo = extend_sign(lo))
 141   void extend_sign(Register hi, Register lo);
 142 
 143   // Load and store values by size and signed-ness
 144   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 145   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 146 
 147   // Support for inc/dec with optimal instruction selection depending on value
 148 
 149   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 150   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 151 
 152   void decrementl(Address dst, int value = 1);
 153   void decrementl(Register reg, int value = 1);
 154 
 155   void decrementq(Register reg, int value = 1);
 156   void decrementq(Address dst, int value = 1);
 157 
 158   void incrementl(Address dst, int value = 1);
 159   void incrementl(Register reg, int value = 1);
 160 
 161   void incrementq(Register reg, int value = 1);
 162   void incrementq(Address dst, int value = 1);
 163 
 164   // Support optimal SSE move instructions.
 165   void movflt(XMMRegister dst, XMMRegister src) {
 166     if (dst-> encoding() == src->encoding()) return;
 167     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 168     else                       { movss (dst, src); return; }
 169   }
 170   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 171   void movflt(XMMRegister dst, AddressLiteral src);
 172   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 173 
 174   // Move with zero extension
 175   void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
 176 
 177   void movdbl(XMMRegister dst, XMMRegister src) {
 178     if (dst-> encoding() == src->encoding()) return;
 179     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 180     else                       { movsd (dst, src); return; }
 181   }
 182 
 183   void movdbl(XMMRegister dst, AddressLiteral src);
 184 
 185   void movdbl(XMMRegister dst, Address src) {
 186     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 187     else                         { movlpd(dst, src); return; }
 188   }
 189   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 190 
 191   void incrementl(AddressLiteral dst);
 192   void incrementl(ArrayAddress dst);
 193 
 194   void incrementq(AddressLiteral dst);
 195 
 196   // Alignment
 197   void align32();
 198   void align64();
 199   void align(int modulus);
 200   void align(int modulus, int target);
 201 
 202   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 203   void fat_nop();
 204 
 205   // Stack frame creation/removal
 206   void enter();
 207   void leave();
 208 
 209   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 210   // The pointer will be loaded into the thread register.
 211   void get_thread(Register thread);
 212 
 213 #ifdef _LP64
 214   // Support for argument shuffling
 215 
 216   void move32_64(VMRegPair src, VMRegPair dst);
 217   void long_move(VMRegPair src, VMRegPair dst);
 218   void float_move(VMRegPair src, VMRegPair dst);
 219   void double_move(VMRegPair src, VMRegPair dst);
 220   void move_ptr(VMRegPair src, VMRegPair dst);
 221   void object_move(OopMap* map,
 222                    int oop_handle_offset,
 223                    int framesize_in_slots,
 224                    VMRegPair src,
 225                    VMRegPair dst,
 226                    bool is_receiver,
 227                    int* receiver_offset);
 228 #endif // _LP64
 229 
 230   // Support for VM calls
 231   //
 232   // It is imperative that all calls into the VM are handled via the call_VM macros.
 233   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 234   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 235 
 236 
 237   void call_VM(Register oop_result,
 238                address entry_point,
 239                bool check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                address entry_point,
 242                Register arg_1,
 243                bool check_exceptions = true);
 244   void call_VM(Register oop_result,
 245                address entry_point,
 246                Register arg_1, Register arg_2,
 247                bool check_exceptions = true);
 248   void call_VM(Register oop_result,
 249                address entry_point,
 250                Register arg_1, Register arg_2, Register arg_3,
 251                bool check_exceptions = true);
 252 
 253   // Overloadings with last_Java_sp
 254   void call_VM(Register oop_result,
 255                Register last_java_sp,
 256                address entry_point,
 257                int number_of_arguments = 0,
 258                bool check_exceptions = true);
 259   void call_VM(Register oop_result,
 260                Register last_java_sp,
 261                address entry_point,
 262                Register arg_1, bool
 263                check_exceptions = true);
 264   void call_VM(Register oop_result,
 265                Register last_java_sp,
 266                address entry_point,
 267                Register arg_1, Register arg_2,
 268                bool check_exceptions = true);
 269   void call_VM(Register oop_result,
 270                Register last_java_sp,
 271                address entry_point,
 272                Register arg_1, Register arg_2, Register arg_3,
 273                bool check_exceptions = true);
 274 
 275   void get_vm_result  (Register oop_result, Register thread);
 276   void get_vm_result_2(Register metadata_result, Register thread);
 277 
 278   // These always tightly bind to MacroAssembler::call_VM_base
 279   // bypassing the virtual implementation
 280   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 281   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 282   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 283   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 284   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 285 
 286   void call_VM_leaf0(address entry_point);
 287   void call_VM_leaf(address entry_point,
 288                     int number_of_arguments = 0);
 289   void call_VM_leaf(address entry_point,
 290                     Register arg_1);
 291   void call_VM_leaf(address entry_point,
 292                     Register arg_1, Register arg_2);
 293   void call_VM_leaf(address entry_point,
 294                     Register arg_1, Register arg_2, Register arg_3);
 295 
 296   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 297   // bypassing the virtual implementation
 298   void super_call_VM_leaf(address entry_point);
 299   void super_call_VM_leaf(address entry_point, Register arg_1);
 300   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 301   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 302   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 303 
 304   // last Java Frame (fills frame anchor)
 305   void set_last_Java_frame(Register thread,
 306                            Register last_java_sp,
 307                            Register last_java_fp,
 308                            address last_java_pc);
 309 
 310   // thread in the default location (r15_thread on 64bit)
 311   void set_last_Java_frame(Register last_java_sp,
 312                            Register last_java_fp,
 313                            address last_java_pc);
 314 
 315   void reset_last_Java_frame(Register thread, bool clear_fp);
 316 
 317   // thread in the default location (r15_thread on 64bit)
 318   void reset_last_Java_frame(bool clear_fp);
 319 
 320   // jobjects
 321   void clear_jweak_tag(Register possibly_jweak);
 322   void resolve_jobject(Register value, Register thread, Register tmp);
 323 
 324   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 325   void c2bool(Register x);
 326 
 327   // C++ bool manipulation
 328 
 329   void movbool(Register dst, Address src);
 330   void movbool(Address dst, bool boolconst);
 331   void movbool(Address dst, Register src);
 332   void testbool(Register dst);
 333 
 334   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 335   void resolve_weak_handle(Register result, Register tmp);
 336   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 337   void load_method_holder_cld(Register rresult, Register rmethod);
 338 
 339   void load_method_holder(Register holder, Register method);
 340 
 341   // oop manipulations
 342   void load_klass(Register dst, Register src, Register tmp, bool null_check_src = false);
 343 #ifdef _LP64
 344   void load_nklass(Register dst, Register src);
 345 #endif
 346   void store_klass(Register dst, Register src, Register tmp);
 347 
 348   // Compares the Klass pointer of an object to a given Klass (which might be narrow,
 349   // depending on UseCompressedClassPointers).
 350   void cmp_klass(Register klass, Register dst, Register tmp);
 351 
 352   // Compares the Klass pointer of two objects o1 and o2. Result is in the condition flags.
 353   // Uses t1 and t2 as temporary registers.
 354   void cmp_klass(Register src, Register dst, Register tmp1, Register tmp2);
 355 
 356   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 357                       Register tmp1, Register thread_tmp);
 358   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 359                        Register tmp1, Register tmp2);
 360 
 361   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 362                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 363   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 364                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 365   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 366                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 367 
 368   // Used for storing NULL. All other oop constants should be
 369   // stored using routines that take a jobject.
 370   void store_heap_oop_null(Address dst);
 371 
 372   void load_prototype_header(Register dst, Register src, Register tmp);
 373 
 374 #ifdef _LP64
 375   void store_klass_gap(Register dst, Register src);
 376 
 377   // This dummy is to prevent a call to store_heap_oop from
 378   // converting a zero (like NULL) into a Register by giving
 379   // the compiler two choices it can't resolve
 380 
 381   void store_heap_oop(Address dst, void* dummy);
 382 
 383   void encode_heap_oop(Register r);
 384   void decode_heap_oop(Register r);
 385   void encode_heap_oop_not_null(Register r);
 386   void decode_heap_oop_not_null(Register r);
 387   void encode_heap_oop_not_null(Register dst, Register src);
 388   void decode_heap_oop_not_null(Register dst, Register src);
 389 
 390   void set_narrow_oop(Register dst, jobject obj);
 391   void set_narrow_oop(Address dst, jobject obj);
 392   void cmp_narrow_oop(Register dst, jobject obj);
 393   void cmp_narrow_oop(Address dst, jobject obj);
 394 
 395   void encode_klass_not_null(Register r, Register tmp);
 396   void decode_klass_not_null(Register r, Register tmp);
 397   void encode_and_move_klass_not_null(Register dst, Register src);
 398   void decode_and_move_klass_not_null(Register dst, Register src);
 399   void set_narrow_klass(Register dst, Klass* k);
 400   void set_narrow_klass(Address dst, Klass* k);
 401   void cmp_narrow_klass(Register dst, Klass* k);
 402   void cmp_narrow_klass(Address dst, Klass* k);
 403 
 404   // if heap base register is used - reinit it with the correct value
 405   void reinit_heapbase();
 406 
 407   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 408 
 409 #endif // _LP64
 410 
 411   // Int division/remainder for Java
 412   // (as idivl, but checks for special case as described in JVM spec.)
 413   // returns idivl instruction offset for implicit exception handling
 414   int corrected_idivl(Register reg);
 415 
 416   // Long division/remainder for Java
 417   // (as idivq, but checks for special case as described in JVM spec.)
 418   // returns idivq instruction offset for implicit exception handling
 419   int corrected_idivq(Register reg);
 420 
 421   void int3();
 422 
 423   // Long operation macros for a 32bit cpu
 424   // Long negation for Java
 425   void lneg(Register hi, Register lo);
 426 
 427   // Long multiplication for Java
 428   // (destroys contents of eax, ebx, ecx and edx)
 429   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 430 
 431   // Long shifts for Java
 432   // (semantics as described in JVM spec.)
 433   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 434   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 435 
 436   // Long compare for Java
 437   // (semantics as described in JVM spec.)
 438   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 439 
 440 
 441   // misc
 442 
 443   // Sign extension
 444   void sign_extend_short(Register reg);
 445   void sign_extend_byte(Register reg);
 446 
 447   // Division by power of 2, rounding towards 0
 448   void division_with_shift(Register reg, int shift_value);
 449 
 450 #ifndef _LP64
 451   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 452   //
 453   // CF (corresponds to C0) if x < y
 454   // PF (corresponds to C2) if unordered
 455   // ZF (corresponds to C3) if x = y
 456   //
 457   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 458   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 459   void fcmp(Register tmp);
 460   // Variant of the above which allows y to be further down the stack
 461   // and which only pops x and y if specified. If pop_right is
 462   // specified then pop_left must also be specified.
 463   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 464 
 465   // Floating-point comparison for Java
 466   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 467   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 468   // (semantics as described in JVM spec.)
 469   void fcmp2int(Register dst, bool unordered_is_less);
 470   // Variant of the above which allows y to be further down the stack
 471   // and which only pops x and y if specified. If pop_right is
 472   // specified then pop_left must also be specified.
 473   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 474 
 475   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 476   // tmp is a temporary register, if none is available use noreg
 477   void fremr(Register tmp);
 478 
 479   // only if +VerifyFPU
 480   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 481 #endif // !LP64
 482 
 483   // dst = c = a * b + c
 484   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 485   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 486 
 487   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 488   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 489   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 490   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 491 
 492 
 493   // same as fcmp2int, but using SSE2
 494   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 495   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 496 
 497   // branch to L if FPU flag C2 is set/not set
 498   // tmp is a temporary register, if none is available use noreg
 499   void jC2 (Register tmp, Label& L);
 500   void jnC2(Register tmp, Label& L);
 501 
 502   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 503   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 504   void load_float(Address src);
 505 
 506   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 507   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 508   void store_float(Address dst);
 509 
 510   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 511   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 512   void load_double(Address src);
 513 
 514   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 515   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 516   void store_double(Address dst);
 517 
 518 #ifndef _LP64
 519   // Pop ST (ffree & fincstp combined)
 520   void fpop();
 521 
 522   void empty_FPU_stack();
 523 #endif // !_LP64
 524 
 525   void push_IU_state();
 526   void pop_IU_state();
 527 
 528   void push_FPU_state();
 529   void pop_FPU_state();
 530 
 531   void push_CPU_state();
 532   void pop_CPU_state();
 533 
 534   // Round up to a power of two
 535   void round_to(Register reg, int modulus);
 536 
 537   // Callee saved registers handling
 538   void push_callee_saved_registers();
 539   void pop_callee_saved_registers();
 540 
 541   // allocation
 542   void eden_allocate(
 543     Register thread,                   // Current thread
 544     Register obj,                      // result: pointer to object after successful allocation
 545     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 546     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 547     Register t1,                       // temp register
 548     Label&   slow_case                 // continuation point if fast allocation fails
 549   );
 550   void tlab_allocate(
 551     Register thread,                   // Current thread
 552     Register obj,                      // result: pointer to object after successful allocation
 553     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 554     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 555     Register t1,                       // temp register
 556     Register t2,                       // temp register
 557     Label&   slow_case                 // continuation point if fast allocation fails
 558   );
 559   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 560 
 561   // interface method calling
 562   void lookup_interface_method(Register recv_klass,
 563                                Register intf_klass,
 564                                RegisterOrConstant itable_index,
 565                                Register method_result,
 566                                Register scan_temp,
 567                                Label& no_such_interface,
 568                                bool return_method = true);
 569 
 570   // virtual method calling
 571   void lookup_virtual_method(Register recv_klass,
 572                              RegisterOrConstant vtable_index,
 573                              Register method_result);
 574 
 575   // Test sub_klass against super_klass, with fast and slow paths.
 576 
 577   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 578   // One of the three labels can be NULL, meaning take the fall-through.
 579   // If super_check_offset is -1, the value is loaded up from super_klass.
 580   // No registers are killed, except temp_reg.
 581   void check_klass_subtype_fast_path(Register sub_klass,
 582                                      Register super_klass,
 583                                      Register temp_reg,
 584                                      Label* L_success,
 585                                      Label* L_failure,
 586                                      Label* L_slow_path,
 587                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 588 
 589   // The rest of the type check; must be wired to a corresponding fast path.
 590   // It does not repeat the fast path logic, so don't use it standalone.
 591   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 592   // Updates the sub's secondary super cache as necessary.
 593   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 594   void check_klass_subtype_slow_path(Register sub_klass,
 595                                      Register super_klass,
 596                                      Register temp_reg,
 597                                      Register temp2_reg,
 598                                      Label* L_success,
 599                                      Label* L_failure,
 600                                      bool set_cond_codes = false);
 601 
 602   // Simplified, combined version, good for typical uses.
 603   // Falls through on failure.
 604   void check_klass_subtype(Register sub_klass,
 605                            Register super_klass,
 606                            Register temp_reg,
 607                            Label& L_success);
 608 
 609   void clinit_barrier(Register klass,
 610                       Register thread,
 611                       Label* L_fast_path = NULL,
 612                       Label* L_slow_path = NULL);
 613 
 614   // method handles (JSR 292)
 615   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 616 
 617   // Debugging
 618 
 619   // only if +VerifyOops
 620   void _verify_oop(Register reg, const char* s, const char* file, int line);
 621   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 622 
 623   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
 624     if (VerifyOops) {
 625       _verify_oop(reg, s, file, line);
 626     }
 627   }
 628   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
 629     if (VerifyOops) {
 630       _verify_oop_addr(reg, s, file, line);
 631     }
 632   }
 633 
 634   // TODO: verify method and klass metadata (compare against vptr?)
 635   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 636   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 637 
 638 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
 639 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 640 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 641 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 642 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 643 
 644   // Verify or restore cpu control state after JNI call
 645   void restore_cpu_control_state_after_jni();
 646 
 647   // prints msg, dumps registers and stops execution
 648   void stop(const char* msg);
 649 
 650   // prints msg and continues
 651   void warn(const char* msg);
 652 
 653   // dumps registers and other state
 654   void print_state();
 655 
 656   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 657   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 658   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 659   static void print_state64(int64_t pc, int64_t regs[]);
 660 
 661   void os_breakpoint();
 662 
 663   void untested()                                { stop("untested"); }
 664 
 665   void unimplemented(const char* what = "");
 666 
 667   void should_not_reach_here()                   { stop("should not reach here"); }
 668 
 669   void print_CPU_state();
 670 
 671   // Stack overflow checking
 672   void bang_stack_with_offset(int offset) {
 673     // stack grows down, caller passes positive offset
 674     assert(offset > 0, "must bang with negative offset");
 675     movl(Address(rsp, (-offset)), rax);
 676   }
 677 
 678   // Writes to stack successive pages until offset reached to check for
 679   // stack overflow + shadow pages.  Also, clobbers tmp
 680   void bang_stack_size(Register size, Register tmp);
 681 
 682   // Check for reserved stack access in method being exited (for JIT)
 683   void reserved_stack_check();
 684 
 685   void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
 686 
 687   void verify_tlab();
 688 
 689   // Biased locking support
 690   // lock_reg and obj_reg must be loaded up with the appropriate values.
 691   // swap_reg must be rax, and is killed.
 692   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 693   // be killed; if not supplied, push/pop will be used internally to
 694   // allocate a temporary (inefficient, avoid if possible).
 695   // Optional slow case is for implementations (interpreter and C1) which branch to
 696   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 697   void biased_locking_enter(Register lock_reg, Register obj_reg,
 698                             Register swap_reg, Register tmp_reg,
 699                             Register tmp_reg2, bool swap_reg_contains_mark,
 700                             Label& done, Label* slow_case = NULL,
 701                             BiasedLockingCounters* counters = NULL);
 702   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 703 
 704   Condition negate_condition(Condition cond);
 705 
 706   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 707   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 708   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 709   // here in MacroAssembler. The major exception to this rule is call
 710 
 711   // Arithmetics
 712 
 713 
 714   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 715   void addptr(Address dst, Register src);
 716 
 717   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 718   void addptr(Register dst, int32_t src);
 719   void addptr(Register dst, Register src);
 720   void addptr(Register dst, RegisterOrConstant src) {
 721     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 722     else                   addptr(dst,       src.as_register());
 723   }
 724 
 725   void andptr(Register dst, int32_t src);
 726   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 727 
 728   void cmp8(AddressLiteral src1, int imm);
 729 
 730   // renamed to drag out the casting of address to int32_t/intptr_t
 731   void cmp32(Register src1, int32_t imm);
 732 
 733   void cmp32(AddressLiteral src1, int32_t imm);
 734   // compare reg - mem, or reg - &mem
 735   void cmp32(Register src1, AddressLiteral src2);
 736 
 737   void cmp32(Register src1, Address src2);
 738 
 739 #ifndef _LP64
 740   void cmpklass(Address dst, Metadata* obj);
 741   void cmpklass(Register dst, Metadata* obj);
 742   void cmpoop(Address dst, jobject obj);
 743 #endif // _LP64
 744 
 745   void cmpoop(Register src1, Register src2);
 746   void cmpoop(Register src1, Address src2);
 747   void cmpoop(Register dst, jobject obj);
 748 
 749   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 750   void cmpptr(Address src1, AddressLiteral src2);
 751 
 752   void cmpptr(Register src1, AddressLiteral src2);
 753 
 754   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 755   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 756   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757 
 758   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 759   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 760 
 761   // cmp64 to avoild hiding cmpq
 762   void cmp64(Register src1, AddressLiteral src);
 763 
 764   void cmpxchgptr(Register reg, Address adr);
 765 
 766   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 767 
 768 
 769   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 770   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 771 
 772 
 773   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 774 
 775   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 776 
 777   void shlptr(Register dst, int32_t shift);
 778   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 779 
 780   void shrptr(Register dst, int32_t shift);
 781   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 782 
 783   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 784   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 785 
 786   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 787 
 788   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 789   void subptr(Register dst, int32_t src);
 790   // Force generation of a 4 byte immediate value even if it fits into 8bit
 791   void subptr_imm32(Register dst, int32_t src);
 792   void subptr(Register dst, Register src);
 793   void subptr(Register dst, RegisterOrConstant src) {
 794     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 795     else                   subptr(dst,       src.as_register());
 796   }
 797 
 798   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 799   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 800 
 801   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 802   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 803 
 804   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 805 
 806 
 807 
 808   // Helper functions for statistics gathering.
 809   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 810   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 811   // Unconditional atomic increment.
 812   void atomic_incl(Address counter_addr);
 813   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 814 #ifdef _LP64
 815   void atomic_incq(Address counter_addr);
 816   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 817 #endif
 818   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 819   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 820 
 821   void lea(Register dst, AddressLiteral adr);
 822   void lea(Address dst, AddressLiteral adr);
 823   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 824 
 825   void leal32(Register dst, Address src) { leal(dst, src); }
 826 
 827   // Import other testl() methods from the parent class or else
 828   // they will be hidden by the following overriding declaration.
 829   using Assembler::testl;
 830   void testl(Register dst, AddressLiteral src);
 831 
 832   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 833   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 834   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 835   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 836 
 837   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 838   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 839   void testptr(Register src1, Register src2);
 840 
 841   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 842   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 843 
 844   // Calls
 845 
 846   void call(Label& L, relocInfo::relocType rtype);
 847   void call(Register entry);
 848   void call(Address addr) { Assembler::call(addr); }
 849 
 850   // NOTE: this call transfers to the effective address of entry NOT
 851   // the address contained by entry. This is because this is more natural
 852   // for jumps/calls.
 853   void call(AddressLiteral entry);
 854 
 855   // Emit the CompiledIC call idiom
 856   void ic_call(address entry, jint method_index = 0);
 857 
 858   // Jumps
 859 
 860   // NOTE: these jumps tranfer to the effective address of dst NOT
 861   // the address contained by dst. This is because this is more natural
 862   // for jumps/calls.
 863   void jump(AddressLiteral dst);
 864   void jump_cc(Condition cc, AddressLiteral dst);
 865 
 866   // 32bit can do a case table jump in one instruction but we no longer allow the base
 867   // to be installed in the Address class. This jump will tranfers to the address
 868   // contained in the location described by entry (not the address of entry)
 869   void jump(ArrayAddress entry);
 870 
 871   // Floating
 872 
 873   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 874   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 875   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 876 
 877   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 878   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 879   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 880 
 881   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 882   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 883   void comiss(XMMRegister dst, AddressLiteral src);
 884 
 885   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 886   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 887   void comisd(XMMRegister dst, AddressLiteral src);
 888 
 889 #ifndef _LP64
 890   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 891   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 892 
 893   void fldcw(Address src) { Assembler::fldcw(src); }
 894   void fldcw(AddressLiteral src);
 895 
 896   void fld_s(int index)   { Assembler::fld_s(index); }
 897   void fld_s(Address src) { Assembler::fld_s(src); }
 898   void fld_s(AddressLiteral src);
 899 
 900   void fld_d(Address src) { Assembler::fld_d(src); }
 901   void fld_d(AddressLiteral src);
 902 
 903   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 904   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 905 #endif // _LP64
 906 
 907   void fld_x(Address src) { Assembler::fld_x(src); }
 908   void fld_x(AddressLiteral src);
 909 
 910   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 911   void ldmxcsr(AddressLiteral src);
 912 
 913 #ifdef _LP64
 914  private:
 915   void sha256_AVX2_one_round_compute(
 916     Register  reg_old_h,
 917     Register  reg_a,
 918     Register  reg_b,
 919     Register  reg_c,
 920     Register  reg_d,
 921     Register  reg_e,
 922     Register  reg_f,
 923     Register  reg_g,
 924     Register  reg_h,
 925     int iter);
 926   void sha256_AVX2_four_rounds_compute_first(int start);
 927   void sha256_AVX2_four_rounds_compute_last(int start);
 928   void sha256_AVX2_one_round_and_sched(
 929         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 930         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 931         XMMRegister xmm_2,     /* ymm6 */
 932         XMMRegister xmm_3,     /* ymm7 */
 933         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 934         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 935         Register    reg_c,      /* edi */
 936         Register    reg_d,      /* esi */
 937         Register    reg_e,      /* r8d */
 938         Register    reg_f,      /* r9d */
 939         Register    reg_g,      /* r10d */
 940         Register    reg_h,      /* r11d */
 941         int iter);
 942 
 943   void addm(int disp, Register r1, Register r2);
 944   void gfmul(XMMRegister tmp0, XMMRegister t);
 945   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 946                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 947   void generateHtbl_one_block(Register htbl);
 948   void generateHtbl_eight_blocks(Register htbl);
 949  public:
 950   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 951                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 952                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 953                    bool multi_block, XMMRegister shuf_mask);
 954   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 955 #endif
 956 
 957 #ifdef _LP64
 958  private:
 959   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 960                                      Register e, Register f, Register g, Register h, int iteration);
 961 
 962   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 963                                           Register a, Register b, Register c, Register d, Register e, Register f,
 964                                           Register g, Register h, int iteration);
 965 
 966   void addmq(int disp, Register r1, Register r2);
 967  public:
 968   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 969                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 970                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 971                    XMMRegister shuf_mask);
 972 private:
 973   void roundEnc(XMMRegister key, int rnum);
 974   void lastroundEnc(XMMRegister key, int rnum);
 975   void roundDec(XMMRegister key, int rnum);
 976   void lastroundDec(XMMRegister key, int rnum);
 977   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
 978   void ev_add128(XMMRegister xmmdst, XMMRegister xmmsrc1, XMMRegister xmmsrc2,
 979                  int vector_len, KRegister ktmp, Register rscratch = noreg);
 980 
 981 public:
 982   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
 983   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
 984   void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
 985                       Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);
 986 
 987 #endif
 988 
 989   void fast_md5(Register buf, Address state, Address ofs, Address limit,
 990                 bool multi_block);
 991 
 992   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 993                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 994                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 995                  bool multi_block);
 996 
 997 #ifdef _LP64
 998   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 999                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1000                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1001                    bool multi_block, XMMRegister shuf_mask);
1002 #else
1003   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1004                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1005                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1006                    bool multi_block);
1007 #endif
1008 
1009   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1010                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1011                 Register rax, Register rcx, Register rdx, Register tmp);
1012 
1013 #ifdef _LP64
1014   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1017 
1018   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1019                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1020                   Register rax, Register rcx, Register rdx, Register r11);
1021 
1022   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1023                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1024                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1025 
1026   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1029                 Register tmp3, Register tmp4);
1030 
1031   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1032                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1033                 Register rax, Register rcx, Register rdx, Register tmp1,
1034                 Register tmp2, Register tmp3, Register tmp4);
1035   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037                 Register rax, Register rcx, Register rdx, Register tmp1,
1038                 Register tmp2, Register tmp3, Register tmp4);
1039 #else
1040   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1041                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1042                 Register rax, Register rcx, Register rdx, Register tmp1);
1043 
1044   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1045                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1046                 Register rax, Register rcx, Register rdx, Register tmp);
1047 
1048   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1049                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1050                 Register rdx, Register tmp);
1051 
1052   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1053                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1054                 Register rax, Register rbx, Register rdx);
1055 
1056   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1057                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1058                 Register rax, Register rcx, Register rdx, Register tmp);
1059 
1060   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1061                         Register edx, Register ebx, Register esi, Register edi,
1062                         Register ebp, Register esp);
1063 
1064   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1065                          Register esi, Register edi, Register ebp, Register esp);
1066 
1067   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1068                         Register edx, Register ebx, Register esi, Register edi,
1069                         Register ebp, Register esp);
1070 
1071   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1072                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1073                 Register rax, Register rcx, Register rdx, Register tmp);
1074 #endif
1075 
1076 private:
1077 
1078   // these are private because users should be doing movflt/movdbl
1079 
1080   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1081   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1082   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1083   void movss(XMMRegister dst, AddressLiteral src);
1084 
1085   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1086   void movlpd(XMMRegister dst, AddressLiteral src);
1087 
1088 public:
1089 
1090   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1091   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1092   void addsd(XMMRegister dst, AddressLiteral src);
1093 
1094   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1095   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1096   void addss(XMMRegister dst, AddressLiteral src);
1097 
1098   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1099   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1100   void addpd(XMMRegister dst, AddressLiteral src);
1101 
1102   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1103   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1104   void divsd(XMMRegister dst, AddressLiteral src);
1105 
1106   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1107   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1108   void divss(XMMRegister dst, AddressLiteral src);
1109 
1110   // Move Unaligned Double Quadword
1111   void movdqu(Address     dst, XMMRegister src);
1112   void movdqu(XMMRegister dst, Address src);
1113   void movdqu(XMMRegister dst, XMMRegister src);
1114   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1115 
1116   void kmovwl(KRegister dst, Register src) { Assembler::kmovwl(dst, src); }
1117   void kmovwl(Register dst, KRegister src) { Assembler::kmovwl(dst, src); }
1118   void kmovwl(KRegister dst, Address src) { Assembler::kmovwl(dst, src); }
1119   void kmovwl(KRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1120   void kmovwl(Address dst,  KRegister src) { Assembler::kmovwl(dst, src); }
1121   void kmovwl(KRegister dst, KRegister src) { Assembler::kmovwl(dst, src); }
1122 
1123   void kmovql(KRegister dst, KRegister src) { Assembler::kmovql(dst, src); }
1124   void kmovql(KRegister dst, Register src) { Assembler::kmovql(dst, src); }
1125   void kmovql(Register dst, KRegister src) { Assembler::kmovql(dst, src); }
1126   void kmovql(KRegister dst, Address src) { Assembler::kmovql(dst, src); }
1127   void kmovql(Address  dst, KRegister src) { Assembler::kmovql(dst, src); }
1128   void kmovql(KRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1129 
1130   // Safe move operation, lowers down to 16bit moves for targets supporting
1131   // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
1132   void kmov(Address  dst, KRegister src);
1133   void kmov(KRegister dst, Address src);
1134   void kmov(KRegister dst, KRegister src);
1135   void kmov(Register dst, KRegister src);
1136   void kmov(KRegister dst, Register src);
1137 
1138   // AVX Unaligned forms
1139   void vmovdqu(Address     dst, XMMRegister src);
1140   void vmovdqu(XMMRegister dst, Address src);
1141   void vmovdqu(XMMRegister dst, XMMRegister src);
1142   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1143 
1144   // AVX512 Unaligned
1145   void evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, int vector_len);
1146   void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, int vector_len);
1147 
1148   void evmovdqub(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1149   void evmovdqub(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1150   void evmovdqub(XMMRegister dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
1151   void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1152   void evmovdqub(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
1153   void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1154 
1155   void evmovdquw(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
1156   void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1157   void evmovdquw(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
1158   void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
1159   void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1160 
1161   void evmovdqul(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1162   void evmovdqul(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
1163   void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
1164      if (dst->encoding() == src->encoding()) return;
1165      Assembler::evmovdqul(dst, src, vector_len);
1166   }
1167   void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1168   void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
1169   void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1170     if (dst->encoding() == src->encoding() && mask == k0) return;
1171     Assembler::evmovdqul(dst, mask, src, merge, vector_len);
1172    }
1173   void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1174 
1175   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1176   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1177   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1178   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
1179     if (dst->encoding() == src->encoding()) return;
1180     Assembler::evmovdquq(dst, src, vector_len);
1181   }
1182   void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1183   void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
1184   void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
1185     if (dst->encoding() == src->encoding() && mask == k0) return;
1186     Assembler::evmovdquq(dst, mask, src, merge, vector_len);
1187   }
1188   void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1189 
1190   // Move Aligned Double Quadword
1191   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1192   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1193   void movdqa(XMMRegister dst, AddressLiteral src);
1194 
1195   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1196   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1197   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1198   void movsd(XMMRegister dst, AddressLiteral src);
1199 
1200   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1201   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1202   void mulpd(XMMRegister dst, AddressLiteral src);
1203 
1204   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1205   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1206   void mulsd(XMMRegister dst, AddressLiteral src);
1207 
1208   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1209   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1210   void mulss(XMMRegister dst, AddressLiteral src);
1211 
1212   // Carry-Less Multiplication Quadword
1213   void pclmulldq(XMMRegister dst, XMMRegister src) {
1214     // 0x00 - multiply lower 64 bits [0:63]
1215     Assembler::pclmulqdq(dst, src, 0x00);
1216   }
1217   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1218     // 0x11 - multiply upper 64 bits [64:127]
1219     Assembler::pclmulqdq(dst, src, 0x11);
1220   }
1221 
1222   void pcmpeqb(XMMRegister dst, XMMRegister src);
1223   void pcmpeqw(XMMRegister dst, XMMRegister src);
1224 
1225   void pcmpestri(XMMRegister dst, Address src, int imm8);
1226   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1227 
1228   void pmovzxbw(XMMRegister dst, XMMRegister src);
1229   void pmovzxbw(XMMRegister dst, Address src);
1230 
1231   void pmovmskb(Register dst, XMMRegister src);
1232 
1233   void ptest(XMMRegister dst, XMMRegister src);
1234 
1235   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1236   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1237   void sqrtsd(XMMRegister dst, AddressLiteral src);
1238 
1239   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1240   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1241   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1242 
1243   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1244   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1245   void sqrtss(XMMRegister dst, AddressLiteral src);
1246 
1247   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1248   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1249   void subsd(XMMRegister dst, AddressLiteral src);
1250 
1251   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1252   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1253   void subss(XMMRegister dst, AddressLiteral src);
1254 
1255   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1256   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1257   void ucomiss(XMMRegister dst, AddressLiteral src);
1258 
1259   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1260   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1261   void ucomisd(XMMRegister dst, AddressLiteral src);
1262 
1263   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1264   void xorpd(XMMRegister dst, XMMRegister src);
1265   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1266   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1267 
1268   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1269   void xorps(XMMRegister dst, XMMRegister src);
1270   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1271   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1272 
1273   // Shuffle Bytes
1274   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1275   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1276   void pshufb(XMMRegister dst, AddressLiteral src);
1277   // AVX 3-operands instructions
1278 
1279   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1280   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1281   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1282 
1283   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1284   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1285   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1286 
1287   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1288   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1289 
1290   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1291   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1292   void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1293 
1294   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1295   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1296 
1297   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1298   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1299   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1300 
1301   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1302   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1303   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1304 
1305   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1306   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1307 
1308   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1309 
1310   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1311   void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1312 
1313   // Vector compares
1314   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1315                int comparison, bool is_signed, int vector_len) { Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len); }
1316   void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1317                int comparison, bool is_signed, int vector_len, Register scratch_reg);
1318   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1319                int comparison, bool is_signed, int vector_len) { Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len); }
1320   void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1321                int comparison, bool is_signed, int vector_len, Register scratch_reg);
1322   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1323                int comparison, bool is_signed, int vector_len) { Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len); }
1324   void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1325                int comparison, bool is_signed, int vector_len, Register scratch_reg);
1326   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
1327                int comparison, bool is_signed, int vector_len) { Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len); }
1328   void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
1329                int comparison, bool is_signed, int vector_len, Register scratch_reg);
1330 
1331 
1332   // Emit comparison instruction for the specified comparison predicate.
1333   void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, ComparisonPredicate cond, Width width, int vector_len, Register scratch_reg);
1334   void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
1335 
1336   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1337   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1338 
1339   void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
1340 
1341   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1342   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1343   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1344     Assembler::vpmulld(dst, nds, src, vector_len);
1345   };
1346   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1347     Assembler::vpmulld(dst, nds, src, vector_len);
1348   }
1349   void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1350 
1351   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1352   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1353 
1354   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1355   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1356 
1357   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1358   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1359 
1360   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1361   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1362 
1363   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1364   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1365 
1366   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1367   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1368 
1369   void vptest(XMMRegister dst, XMMRegister src);
1370   void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
1371 
1372   void punpcklbw(XMMRegister dst, XMMRegister src);
1373   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1374 
1375   void pshufd(XMMRegister dst, Address src, int mode);
1376   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1377 
1378   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1379   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1380 
1381   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1382   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1383   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1384 
1385   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1386   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1387   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1388 
1389   void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);
1390 
1391   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1392   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1393   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1394 
1395   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1396   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1397   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1398 
1399   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1400   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1401   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1402 
1403   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1404   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1405   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1406 
1407   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1408   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1409   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1410 
1411   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1412   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1413   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1414 
1415   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1416   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1417 
1418   // AVX Vector instructions
1419 
1420   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1421   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1422   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1423 
1424   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1425   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1426   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1427 
1428   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1429     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1430       Assembler::vpxor(dst, nds, src, vector_len);
1431     else
1432       Assembler::vxorpd(dst, nds, src, vector_len);
1433   }
1434   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1435     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1436       Assembler::vpxor(dst, nds, src, vector_len);
1437     else
1438       Assembler::vxorpd(dst, nds, src, vector_len);
1439   }
1440   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1441 
1442   // Simple version for AVX2 256bit vectors
1443   void vpxor(XMMRegister dst, XMMRegister src) {
1444     assert(UseAVX >= 2, "Should be at least AVX2");
1445     Assembler::vpxor(dst, dst, src, AVX_256bit);
1446   }
1447   void vpxor(XMMRegister dst, Address src) {
1448     assert(UseAVX >= 2, "Should be at least AVX2");
1449     Assembler::vpxor(dst, dst, src, AVX_256bit);
1450   }
1451 
1452   void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
1453   void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);
1454 
1455   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1456     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1457       Assembler::vinserti32x4(dst, nds, src, imm8);
1458     } else if (UseAVX > 1) {
1459       // vinserti128 is available only in AVX2
1460       Assembler::vinserti128(dst, nds, src, imm8);
1461     } else {
1462       Assembler::vinsertf128(dst, nds, src, imm8);
1463     }
1464   }
1465 
1466   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1467     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1468       Assembler::vinserti32x4(dst, nds, src, imm8);
1469     } else if (UseAVX > 1) {
1470       // vinserti128 is available only in AVX2
1471       Assembler::vinserti128(dst, nds, src, imm8);
1472     } else {
1473       Assembler::vinsertf128(dst, nds, src, imm8);
1474     }
1475   }
1476 
1477   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1478     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1479       Assembler::vextracti32x4(dst, src, imm8);
1480     } else if (UseAVX > 1) {
1481       // vextracti128 is available only in AVX2
1482       Assembler::vextracti128(dst, src, imm8);
1483     } else {
1484       Assembler::vextractf128(dst, src, imm8);
1485     }
1486   }
1487 
1488   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1489     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1490       Assembler::vextracti32x4(dst, src, imm8);
1491     } else if (UseAVX > 1) {
1492       // vextracti128 is available only in AVX2
1493       Assembler::vextracti128(dst, src, imm8);
1494     } else {
1495       Assembler::vextractf128(dst, src, imm8);
1496     }
1497   }
1498 
1499   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1500   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1501     vinserti128(dst, dst, src, 1);
1502   }
1503   void vinserti128_high(XMMRegister dst, Address src) {
1504     vinserti128(dst, dst, src, 1);
1505   }
1506   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1507     vextracti128(dst, src, 1);
1508   }
1509   void vextracti128_high(Address dst, XMMRegister src) {
1510     vextracti128(dst, src, 1);
1511   }
1512 
1513   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1514     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1515       Assembler::vinsertf32x4(dst, dst, src, 1);
1516     } else {
1517       Assembler::vinsertf128(dst, dst, src, 1);
1518     }
1519   }
1520 
1521   void vinsertf128_high(XMMRegister dst, Address src) {
1522     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1523       Assembler::vinsertf32x4(dst, dst, src, 1);
1524     } else {
1525       Assembler::vinsertf128(dst, dst, src, 1);
1526     }
1527   }
1528 
1529   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1530     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1531       Assembler::vextractf32x4(dst, src, 1);
1532     } else {
1533       Assembler::vextractf128(dst, src, 1);
1534     }
1535   }
1536 
1537   void vextractf128_high(Address dst, XMMRegister src) {
1538     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1539       Assembler::vextractf32x4(dst, src, 1);
1540     } else {
1541       Assembler::vextractf128(dst, src, 1);
1542     }
1543   }
1544 
1545   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1546   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1547     Assembler::vinserti64x4(dst, dst, src, 1);
1548   }
1549   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1550     Assembler::vinsertf64x4(dst, dst, src, 1);
1551   }
1552   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1553     Assembler::vextracti64x4(dst, src, 1);
1554   }
1555   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1556     Assembler::vextractf64x4(dst, src, 1);
1557   }
1558   void vextractf64x4_high(Address dst, XMMRegister src) {
1559     Assembler::vextractf64x4(dst, src, 1);
1560   }
1561   void vinsertf64x4_high(XMMRegister dst, Address src) {
1562     Assembler::vinsertf64x4(dst, dst, src, 1);
1563   }
1564 
1565   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1566   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1567     vinserti128(dst, dst, src, 0);
1568   }
1569   void vinserti128_low(XMMRegister dst, Address src) {
1570     vinserti128(dst, dst, src, 0);
1571   }
1572   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1573     vextracti128(dst, src, 0);
1574   }
1575   void vextracti128_low(Address dst, XMMRegister src) {
1576     vextracti128(dst, src, 0);
1577   }
1578 
1579   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1580     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1581       Assembler::vinsertf32x4(dst, dst, src, 0);
1582     } else {
1583       Assembler::vinsertf128(dst, dst, src, 0);
1584     }
1585   }
1586 
1587   void vinsertf128_low(XMMRegister dst, Address src) {
1588     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1589       Assembler::vinsertf32x4(dst, dst, src, 0);
1590     } else {
1591       Assembler::vinsertf128(dst, dst, src, 0);
1592     }
1593   }
1594 
1595   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1596     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1597       Assembler::vextractf32x4(dst, src, 0);
1598     } else {
1599       Assembler::vextractf128(dst, src, 0);
1600     }
1601   }
1602 
1603   void vextractf128_low(Address dst, XMMRegister src) {
1604     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1605       Assembler::vextractf32x4(dst, src, 0);
1606     } else {
1607       Assembler::vextractf128(dst, src, 0);
1608     }
1609   }
1610 
1611   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1612   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1613     Assembler::vinserti64x4(dst, dst, src, 0);
1614   }
1615   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1616     Assembler::vinsertf64x4(dst, dst, src, 0);
1617   }
1618   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1619     Assembler::vextracti64x4(dst, src, 0);
1620   }
1621   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1622     Assembler::vextractf64x4(dst, src, 0);
1623   }
1624   void vextractf64x4_low(Address dst, XMMRegister src) {
1625     Assembler::vextractf64x4(dst, src, 0);
1626   }
1627   void vinsertf64x4_low(XMMRegister dst, Address src) {
1628     Assembler::vinsertf64x4(dst, dst, src, 0);
1629   }
1630 
1631   // Carry-Less Multiplication Quadword
1632   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1633     // 0x00 - multiply lower 64 bits [0:63]
1634     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1635   }
1636   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1637     // 0x11 - multiply upper 64 bits [64:127]
1638     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1639   }
1640   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1641     // 0x10 - multiply nds[0:63] and src[64:127]
1642     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1643   }
1644   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1645     //0x01 - multiply nds[64:127] and src[0:63]
1646     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1647   }
1648 
1649   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1650     // 0x00 - multiply lower 64 bits [0:63]
1651     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1652   }
1653   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1654     // 0x11 - multiply upper 64 bits [64:127]
1655     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1656   }
1657 
1658   // Data
1659 
1660   void cmov32( Condition cc, Register dst, Address  src);
1661   void cmov32( Condition cc, Register dst, Register src);
1662 
1663   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1664 
1665   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1666   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1667 
1668   void movoop(Register dst, jobject obj);
1669   void movoop(Address dst, jobject obj);
1670 
1671   void mov_metadata(Register dst, Metadata* obj);
1672   void mov_metadata(Address dst, Metadata* obj);
1673 
1674   void movptr(ArrayAddress dst, Register src);
1675   // can this do an lea?
1676   void movptr(Register dst, ArrayAddress src);
1677 
1678   void movptr(Register dst, Address src);
1679 
1680 #ifdef _LP64
1681   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1682 #else
1683   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1684 #endif
1685 
1686   void movptr(Register dst, intptr_t src);
1687   void movptr(Register dst, Register src);
1688   void movptr(Address dst, intptr_t src);
1689 
1690   void movptr(Address dst, Register src);
1691 
1692   void movptr(Register dst, RegisterOrConstant src) {
1693     if (src.is_constant()) movptr(dst, src.as_constant());
1694     else                   movptr(dst, src.as_register());
1695   }
1696 
1697 #ifdef _LP64
1698   // Generally the next two are only used for moving NULL
1699   // Although there are situations in initializing the mark word where
1700   // they could be used. They are dangerous.
1701 
1702   // They only exist on LP64 so that int32_t and intptr_t are not the same
1703   // and we have ambiguous declarations.
1704 
1705   void movptr(Address dst, int32_t imm32);
1706   void movptr(Register dst, int32_t imm32);
1707 #endif // _LP64
1708 
1709   // to avoid hiding movl
1710   void mov32(AddressLiteral dst, Register src);
1711   void mov32(Register dst, AddressLiteral src);
1712 
1713   // to avoid hiding movb
1714   void movbyte(ArrayAddress dst, int src);
1715 
1716   // Import other mov() methods from the parent class or else
1717   // they will be hidden by the following overriding declaration.
1718   using Assembler::movdl;
1719   using Assembler::movq;
1720   void movdl(XMMRegister dst, AddressLiteral src);
1721   void movq(XMMRegister dst, AddressLiteral src);
1722 
1723   // Can push value or effective address
1724   void pushptr(AddressLiteral src);
1725 
1726   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1727   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1728 
1729   void pushoop(jobject obj);
1730   void pushklass(Metadata* obj);
1731 
1732   // sign extend as need a l to ptr sized element
1733   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1734   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1735 
1736 
1737  public:
1738   // C2 compiled method's prolog code.
1739   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);
1740 
1741   // clear memory of size 'cnt' qwords, starting at 'base';
1742   // if 'is_large' is set, do not try to produce short loop
1743   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);
1744 
1745   // clear memory initialization sequence for constant size;
1746   void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1747 
1748   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1749   void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
1750 
1751   // Fill primitive arrays
1752   void generate_fill(BasicType t, bool aligned,
1753                      Register to, Register value, Register count,
1754                      Register rtmp, XMMRegister xtmp);
1755 
1756   void encode_iso_array(Register src, Register dst, Register len,
1757                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1758                         XMMRegister tmp4, Register tmp5, Register result, bool ascii);
1759 
1760 #ifdef _LP64
1761   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1762   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1763                              Register y, Register y_idx, Register z,
1764                              Register carry, Register product,
1765                              Register idx, Register kdx);
1766   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1767                               Register yz_idx, Register idx,
1768                               Register carry, Register product, int offset);
1769   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1770                                     Register carry, Register carry2,
1771                                     Register idx, Register jdx,
1772                                     Register yz_idx1, Register yz_idx2,
1773                                     Register tmp, Register tmp3, Register tmp4);
1774   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1775                                Register yz_idx, Register idx, Register jdx,
1776                                Register carry, Register product,
1777                                Register carry2);
1778   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1779                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1780   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1781                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1782   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1783                             Register tmp2);
1784   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1785                        Register rdxReg, Register raxReg);
1786   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1787   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1788                        Register tmp3, Register tmp4);
1789   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1790                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1791 
1792   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1793                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1794                Register raxReg);
1795   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1796                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1797                Register raxReg);
1798   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1799                            Register result, Register tmp1, Register tmp2,
1800                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1801 #endif
1802 
1803   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1804   void update_byte_crc32(Register crc, Register val, Register table);
1805   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1806 
1807 
1808 #ifdef _LP64
1809   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
1810   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
1811                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
1812                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
1813   void updateBytesAdler32(Register adler32, Register buf, Register length, XMMRegister shuf0, XMMRegister shuf1, ExternalAddress scale);
1814 #endif // _LP64
1815 
1816   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1817   // Note on a naming convention:
1818   // Prefix w = register only used on a Westmere+ architecture
1819   // Prefix n = register only used on a Nehalem architecture
1820 #ifdef _LP64
1821   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1822                        Register tmp1, Register tmp2, Register tmp3);
1823 #else
1824   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1825                        Register tmp1, Register tmp2, Register tmp3,
1826                        XMMRegister xtmp1, XMMRegister xtmp2);
1827 #endif
1828   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1829                         Register in_out,
1830                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1831                         XMMRegister w_xtmp2,
1832                         Register tmp1,
1833                         Register n_tmp2, Register n_tmp3);
1834   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1835                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1836                        Register tmp1, Register tmp2,
1837                        Register n_tmp3);
1838   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1839                          Register in_out1, Register in_out2, Register in_out3,
1840                          Register tmp1, Register tmp2, Register tmp3,
1841                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1842                          Register tmp4, Register tmp5,
1843                          Register n_tmp6);
1844   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1845                             Register tmp1, Register tmp2, Register tmp3,
1846                             Register tmp4, Register tmp5, Register tmp6,
1847                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1848                             bool is_pclmulqdq_supported);
1849   // Fold 128-bit data chunk
1850   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1851   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1852 #ifdef _LP64
1853   // Fold 512-bit data chunk
1854   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
1855 #endif // _LP64
1856   // Fold 8-bit data
1857   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1858   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1859 
1860   // Compress char[] array to byte[].
1861   void char_array_compress(Register src, Register dst, Register len,
1862                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1863                            XMMRegister tmp4, Register tmp5, Register result,
1864                            KRegister mask1 = knoreg, KRegister mask2 = knoreg);
1865 
1866   // Inflate byte[] array to char[].
1867   void byte_array_inflate(Register src, Register dst, Register len,
1868                           XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
1869 
1870   void fill64_masked_avx(uint shift, Register dst, int disp,
1871                          XMMRegister xmm, KRegister mask, Register length,
1872                          Register temp, bool use64byteVector = false);
1873 
1874   void fill32_masked_avx(uint shift, Register dst, int disp,
1875                          XMMRegister xmm, KRegister mask, Register length,
1876                          Register temp);
1877 
1878   void fill32(Address dst, XMMRegister xmm);
1879 
1880   void fill32_avx(Register dst, int disp, XMMRegister xmm);
1881 
1882   void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
1883 
1884   void fill64_avx(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
1885 
1886 #ifdef _LP64
1887   void convert_f2i(Register dst, XMMRegister src);
1888   void convert_d2i(Register dst, XMMRegister src);
1889   void convert_f2l(Register dst, XMMRegister src);
1890   void convert_d2l(Register dst, XMMRegister src);
1891 
1892   void cache_wb(Address line);
1893   void cache_wbsync(bool is_pre);
1894 
1895 #if COMPILER2_OR_JVMCI
1896   void arraycopy_avx3_special_cases(XMMRegister xmm, KRegister mask, Register from,
1897                                     Register to, Register count, int shift,
1898                                     Register index, Register temp,
1899                                     bool use64byteVector, Label& L_entry, Label& L_exit);
1900 
1901   void arraycopy_avx3_special_cases_conjoint(XMMRegister xmm, KRegister mask, Register from,
1902                                              Register to, Register start_index, Register end_index,
1903                                              Register count, int shift, Register temp,
1904                                              bool use64byteVector, Label& L_entry, Label& L_exit);
1905 
1906   void copy64_masked_avx(Register dst, Register src, XMMRegister xmm,
1907                          KRegister mask, Register length, Register index,
1908                          Register temp, int shift = Address::times_1, int offset = 0,
1909                          bool use64byteVector = false);
1910 
1911   void copy32_masked_avx(Register dst, Register src, XMMRegister xmm,
1912                          KRegister mask, Register length, Register index,
1913                          Register temp, int shift = Address::times_1, int offset = 0);
1914 
1915   void copy32_avx(Register dst, Register src, Register index, XMMRegister xmm,
1916                   int shift = Address::times_1, int offset = 0);
1917 
1918   void copy64_avx(Register dst, Register src, Register index, XMMRegister xmm,
1919                   bool conjoint, int shift = Address::times_1, int offset = 0,
1920                   bool use64byteVector = false);
1921 #endif // COMPILER2_OR_JVMCI
1922 
1923 #endif // _LP64
1924 
1925   void vallones(XMMRegister dst, int vector_len);
1926 
1927   void fast_lock_impl(Register obj, Register hdr, Register thread, Register tmp, Label& slow);
1928   void fast_unlock_impl(Register obj, Register hdr, Register tmp, Label& slow);
1929 };
1930 
1931 /**
1932  * class SkipIfEqual:
1933  *
1934  * Instantiating this class will result in assembly code being output that will
1935  * jump around any code emitted between the creation of the instance and it's
1936  * automatic destruction at the end of a scope block, depending on the value of
1937  * the flag passed to the constructor, which will be checked at run-time.
1938  */
1939 class SkipIfEqual {
1940  private:
1941   MacroAssembler* _masm;
1942   Label _label;
1943 
1944  public:
1945    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1946    ~SkipIfEqual();
1947 };
1948 
1949 #endif // CPU_X86_MACROASSEMBLER_X86_HPP
--- EOF ---