1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/debugInfoRec.hpp" 29 #include "code/icBuffer.hpp" 30 #include "code/nativeInst.hpp" 31 #include "code/vtableStubs.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/gcLocker.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "logging/log.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/compiledICHolder.hpp" 40 #include "oops/klass.inline.hpp" 41 #include "prims/methodHandles.hpp" 42 #include "runtime/jniHandles.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/signature.hpp" 46 #include "runtime/stubRoutines.hpp" 47 #include "runtime/vframeArray.hpp" 48 #include "runtime/vm_version.hpp" 49 #include "utilities/align.hpp" 50 #include "vmreg_x86.inline.hpp" 51 #ifdef COMPILER1 52 #include "c1/c1_Runtime1.hpp" 53 #endif 54 #ifdef COMPILER2 55 #include "opto/runtime.hpp" 56 #endif 57 58 #define __ masm-> 59 60 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 61 62 class RegisterSaver { 63 // Capture info about frame layout 64 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off 65 enum layout { 66 fpu_state_off = 0, 67 fpu_state_end = fpu_state_off+FPUStateSizeInWords, 68 st0_off, st0H_off, 69 st1_off, st1H_off, 70 st2_off, st2H_off, 71 st3_off, st3H_off, 72 st4_off, st4H_off, 73 st5_off, st5H_off, 74 st6_off, st6H_off, 75 st7_off, st7H_off, 76 xmm_off, 77 DEF_XMM_OFFS(0), 78 DEF_XMM_OFFS(1), 79 DEF_XMM_OFFS(2), 80 DEF_XMM_OFFS(3), 81 DEF_XMM_OFFS(4), 82 DEF_XMM_OFFS(5), 83 DEF_XMM_OFFS(6), 84 DEF_XMM_OFFS(7), 85 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word 86 rdi_off, 87 rsi_off, 88 ignore_off, // extra copy of rbp, 89 rsp_off, 90 rbx_off, 91 rdx_off, 92 rcx_off, 93 rax_off, 94 // The frame sender code expects that rbp will be in the "natural" place and 95 // will override any oopMap setting for it. We must therefore force the layout 96 // so that it agrees with the frame sender code. 97 rbp_off, 98 return_off, // slot for return address 99 reg_save_size }; 100 enum { FPU_regs_live = flags_off - fpu_state_end }; 101 102 public: 103 104 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, 105 int* total_frame_words, bool verify_fpu = true, bool save_vectors = false); 106 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); 107 108 static int rax_offset() { return rax_off; } 109 static int rbx_offset() { return rbx_off; } 110 111 // Offsets into the register save area 112 // Used by deoptimization when it is managing result register 113 // values on its own 114 115 static int raxOffset(void) { return rax_off; } 116 static int rdxOffset(void) { return rdx_off; } 117 static int rbxOffset(void) { return rbx_off; } 118 static int xmm0Offset(void) { return xmm0_off; } 119 // This really returns a slot in the fp save area, which one is not important 120 static int fpResultOffset(void) { return st0_off; } 121 122 // During deoptimization only the result register need to be restored 123 // all the other values have already been extracted. 124 125 static void restore_result_registers(MacroAssembler* masm); 126 127 }; 128 129 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, 130 int* total_frame_words, bool verify_fpu, bool save_vectors) { 131 int num_xmm_regs = XMMRegisterImpl::number_of_registers; 132 int ymm_bytes = num_xmm_regs * 16; 133 int zmm_bytes = num_xmm_regs * 32; 134 #ifdef COMPILER2 135 int opmask_state_bytes = KRegisterImpl::number_of_registers * 8; 136 if (save_vectors) { 137 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 138 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 139 // Save upper half of YMM registers 140 int vect_bytes = ymm_bytes; 141 if (UseAVX > 2) { 142 // Save upper half of ZMM registers as well 143 vect_bytes += zmm_bytes; 144 additional_frame_words += opmask_state_bytes / wordSize; 145 } 146 additional_frame_words += vect_bytes / wordSize; 147 } 148 #else 149 assert(!save_vectors, "vectors are generated only by C2"); 150 #endif 151 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize; 152 int frame_words = frame_size_in_bytes / wordSize; 153 *total_frame_words = frame_words; 154 155 assert(FPUStateSizeInWords == 27, "update stack layout"); 156 157 // save registers, fpu state, and flags 158 // We assume caller has already has return address slot on the stack 159 // We push epb twice in this sequence because we want the real rbp, 160 // to be under the return like a normal enter and we want to use pusha 161 // We push by hand instead of using push. 162 __ enter(); 163 __ pusha(); 164 __ pushf(); 165 __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space 166 __ push_FPU_state(); // Save FPU state & init 167 168 if (verify_fpu) { 169 // Some stubs may have non standard FPU control word settings so 170 // only check and reset the value when it required to be the 171 // standard value. The safepoint blob in particular can be used 172 // in methods which are using the 24 bit control word for 173 // optimized float math. 174 175 #ifdef ASSERT 176 // Make sure the control word has the expected value 177 Label ok; 178 __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std()); 179 __ jccb(Assembler::equal, ok); 180 __ stop("corrupted control word detected"); 181 __ bind(ok); 182 #endif 183 184 // Reset the control word to guard against exceptions being unmasked 185 // since fstp_d can cause FPU stack underflow exceptions. Write it 186 // into the on stack copy and then reload that to make sure that the 187 // current and future values are correct. 188 __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std()); 189 } 190 191 __ frstor(Address(rsp, 0)); 192 if (!verify_fpu) { 193 // Set the control word so that exceptions are masked for the 194 // following code. 195 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 196 } 197 198 int off = st0_off; 199 int delta = st1_off - off; 200 201 // Save the FPU registers in de-opt-able form 202 for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) { 203 __ fstp_d(Address(rsp, off*wordSize)); 204 off += delta; 205 } 206 207 off = xmm0_off; 208 delta = xmm1_off - off; 209 if(UseSSE == 1) { 210 // Save the XMM state 211 for (int n = 0; n < num_xmm_regs; n++) { 212 __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n)); 213 off += delta; 214 } 215 } else if(UseSSE >= 2) { 216 // Save whole 128bit (16 bytes) XMM registers 217 for (int n = 0; n < num_xmm_regs; n++) { 218 __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n)); 219 off += delta; 220 } 221 } 222 223 #ifdef COMPILER2 224 if (save_vectors) { 225 __ subptr(rsp, ymm_bytes); 226 // Save upper half of YMM registers 227 for (int n = 0; n < num_xmm_regs; n++) { 228 __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n)); 229 } 230 if (UseAVX > 2) { 231 __ subptr(rsp, zmm_bytes); 232 // Save upper half of ZMM registers 233 for (int n = 0; n < num_xmm_regs; n++) { 234 __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n)); 235 } 236 __ subptr(rsp, opmask_state_bytes); 237 // Save opmask registers 238 for (int n = 0; n < KRegisterImpl::number_of_registers; n++) { 239 __ kmov(Address(rsp, n*8), as_KRegister(n)); 240 } 241 } 242 } 243 #else 244 assert(!save_vectors, "vectors are generated only by C2"); 245 #endif 246 247 __ vzeroupper(); 248 249 // Set an oopmap for the call site. This oopmap will map all 250 // oop-registers and debug-info registers as callee-saved. This 251 // will allow deoptimization at this safepoint to find all possible 252 // debug-info recordings, as well as let GC find all oops. 253 254 OopMapSet *oop_maps = new OopMapSet(); 255 OopMap* map = new OopMap( frame_words, 0 ); 256 257 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words) 258 #define NEXTREG(x) (x)->as_VMReg()->next() 259 260 map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg()); 261 map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg()); 262 map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg()); 263 map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg()); 264 // rbp, location is known implicitly, no oopMap 265 map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg()); 266 map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg()); 267 268 // %%% This is really a waste but we'll keep things as they were for now for the upper component 269 off = st0_off; 270 delta = st1_off - off; 271 for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) { 272 FloatRegister freg_name = as_FloatRegister(n); 273 map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg()); 274 map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name)); 275 off += delta; 276 } 277 off = xmm0_off; 278 delta = xmm1_off - off; 279 for (int n = 0; n < num_xmm_regs; n++) { 280 XMMRegister xmm_name = as_XMMRegister(n); 281 map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()); 282 map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name)); 283 off += delta; 284 } 285 #undef NEXTREG 286 #undef STACK_OFFSET 287 288 return map; 289 } 290 291 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { 292 int opmask_state_bytes = 0; 293 int additional_frame_bytes = 0; 294 int num_xmm_regs = XMMRegisterImpl::number_of_registers; 295 int ymm_bytes = num_xmm_regs * 16; 296 int zmm_bytes = num_xmm_regs * 32; 297 // Recover XMM & FPU state 298 #ifdef COMPILER2 299 if (restore_vectors) { 300 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 301 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 302 // Save upper half of YMM registers 303 additional_frame_bytes = ymm_bytes; 304 if (UseAVX > 2) { 305 // Save upper half of ZMM registers as well 306 additional_frame_bytes += zmm_bytes; 307 opmask_state_bytes = KRegisterImpl::number_of_registers * 8; 308 additional_frame_bytes += opmask_state_bytes; 309 } 310 } 311 #else 312 assert(!restore_vectors, "vectors are generated only by C2"); 313 #endif 314 315 int off = xmm0_off; 316 int delta = xmm1_off - off; 317 318 __ vzeroupper(); 319 320 if (UseSSE == 1) { 321 // Restore XMM registers 322 assert(additional_frame_bytes == 0, ""); 323 for (int n = 0; n < num_xmm_regs; n++) { 324 __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize)); 325 off += delta; 326 } 327 } else if (UseSSE >= 2) { 328 // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and 329 // ZMM because the movdqu instruction zeros the upper part of the XMM register. 330 for (int n = 0; n < num_xmm_regs; n++) { 331 __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes)); 332 off += delta; 333 } 334 } 335 336 if (restore_vectors) { 337 off = additional_frame_bytes - ymm_bytes; 338 // Restore upper half of YMM registers. 339 for (int n = 0; n < num_xmm_regs; n++) { 340 __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off)); 341 } 342 if (UseAVX > 2) { 343 // Restore upper half of ZMM registers. 344 off = opmask_state_bytes; 345 for (int n = 0; n < num_xmm_regs; n++) { 346 __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off)); 347 } 348 for (int n = 0; n < KRegisterImpl::number_of_registers; n++) { 349 __ kmov(as_KRegister(n), Address(rsp, n*8)); 350 } 351 } 352 __ addptr(rsp, additional_frame_bytes); 353 } 354 355 __ pop_FPU_state(); 356 __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers 357 358 __ popf(); 359 __ popa(); 360 // Get the rbp, described implicitly by the frame sender code (no oopMap) 361 __ pop(rbp); 362 } 363 364 void RegisterSaver::restore_result_registers(MacroAssembler* masm) { 365 366 // Just restore result register. Only used by deoptimization. By 367 // now any callee save register that needs to be restore to a c2 368 // caller of the deoptee has been extracted into the vframeArray 369 // and will be stuffed into the c2i adapter we create for later 370 // restoration so only result registers need to be restored here. 371 // 372 373 __ frstor(Address(rsp, 0)); // Restore fpu state 374 375 // Recover XMM & FPU state 376 if( UseSSE == 1 ) { 377 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize)); 378 } else if( UseSSE >= 2 ) { 379 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize)); 380 } 381 __ movptr(rax, Address(rsp, rax_off*wordSize)); 382 __ movptr(rdx, Address(rsp, rdx_off*wordSize)); 383 // Pop all of the register save are off the stack except the return address 384 __ addptr(rsp, return_off * wordSize); 385 } 386 387 // Is vector's size (in bytes) bigger than a size saved by default? 388 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions. 389 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated. 390 bool SharedRuntime::is_wide_vector(int size) { 391 return size > 16; 392 } 393 394 // The java_calling_convention describes stack locations as ideal slots on 395 // a frame with no abi restrictions. Since we must observe abi restrictions 396 // (like the placement of the register window) the slots must be biased by 397 // the following value. 398 static int reg2offset_in(VMReg r) { 399 // Account for saved rbp, and return address 400 // This should really be in_preserve_stack_slots 401 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size; 402 } 403 404 static int reg2offset_out(VMReg r) { 405 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 406 } 407 408 // --------------------------------------------------------------------------- 409 // Read the array of BasicTypes from a signature, and compute where the 410 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 411 // quantities. Values less than SharedInfo::stack0 are registers, those above 412 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 413 // as framesizes are fixed. 414 // VMRegImpl::stack0 refers to the first slot 0(sp). 415 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register 416 // up to RegisterImpl::number_of_registers) are the 32-bit 417 // integer registers. 418 419 // Pass first two oop/int args in registers ECX and EDX. 420 // Pass first two float/double args in registers XMM0 and XMM1. 421 // Doubles have precedence, so if you pass a mix of floats and doubles 422 // the doubles will grab the registers before the floats will. 423 424 // Note: the INPUTS in sig_bt are in units of Java argument words, which are 425 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit 426 // units regardless of build. Of course for i486 there is no 64 bit build 427 428 429 // --------------------------------------------------------------------------- 430 // The compiled Java calling convention. 431 // Pass first two oop/int args in registers ECX and EDX. 432 // Pass first two float/double args in registers XMM0 and XMM1. 433 // Doubles have precedence, so if you pass a mix of floats and doubles 434 // the doubles will grab the registers before the floats will. 435 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 436 VMRegPair *regs, 437 int total_args_passed) { 438 uint stack = 0; // Starting stack position for args on stack 439 440 441 // Pass first two oop/int args in registers ECX and EDX. 442 uint reg_arg0 = 9999; 443 uint reg_arg1 = 9999; 444 445 // Pass first two float/double args in registers XMM0 and XMM1. 446 // Doubles have precedence, so if you pass a mix of floats and doubles 447 // the doubles will grab the registers before the floats will. 448 // CNC - TURNED OFF FOR non-SSE. 449 // On Intel we have to round all doubles (and most floats) at 450 // call sites by storing to the stack in any case. 451 // UseSSE=0 ==> Don't Use ==> 9999+0 452 // UseSSE=1 ==> Floats only ==> 9999+1 453 // UseSSE>=2 ==> Floats or doubles ==> 9999+2 454 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 }; 455 uint fargs = (UseSSE>=2) ? 2 : UseSSE; 456 uint freg_arg0 = 9999+fargs; 457 uint freg_arg1 = 9999+fargs; 458 459 // Pass doubles & longs aligned on the stack. First count stack slots for doubles 460 int i; 461 for( i = 0; i < total_args_passed; i++) { 462 if( sig_bt[i] == T_DOUBLE ) { 463 // first 2 doubles go in registers 464 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i; 465 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i; 466 else // Else double is passed low on the stack to be aligned. 467 stack += 2; 468 } else if( sig_bt[i] == T_LONG ) { 469 stack += 2; 470 } 471 } 472 int dstack = 0; // Separate counter for placing doubles 473 474 // Now pick where all else goes. 475 for( i = 0; i < total_args_passed; i++) { 476 // From the type and the argument number (count) compute the location 477 switch( sig_bt[i] ) { 478 case T_SHORT: 479 case T_CHAR: 480 case T_BYTE: 481 case T_BOOLEAN: 482 case T_INT: 483 case T_ARRAY: 484 case T_OBJECT: 485 case T_ADDRESS: 486 if( reg_arg0 == 9999 ) { 487 reg_arg0 = i; 488 regs[i].set1(rcx->as_VMReg()); 489 } else if( reg_arg1 == 9999 ) { 490 reg_arg1 = i; 491 regs[i].set1(rdx->as_VMReg()); 492 } else { 493 regs[i].set1(VMRegImpl::stack2reg(stack++)); 494 } 495 break; 496 case T_FLOAT: 497 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) { 498 freg_arg0 = i; 499 regs[i].set1(xmm0->as_VMReg()); 500 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) { 501 freg_arg1 = i; 502 regs[i].set1(xmm1->as_VMReg()); 503 } else { 504 regs[i].set1(VMRegImpl::stack2reg(stack++)); 505 } 506 break; 507 case T_LONG: 508 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 509 regs[i].set2(VMRegImpl::stack2reg(dstack)); 510 dstack += 2; 511 break; 512 case T_DOUBLE: 513 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 514 if( freg_arg0 == (uint)i ) { 515 regs[i].set2(xmm0->as_VMReg()); 516 } else if( freg_arg1 == (uint)i ) { 517 regs[i].set2(xmm1->as_VMReg()); 518 } else { 519 regs[i].set2(VMRegImpl::stack2reg(dstack)); 520 dstack += 2; 521 } 522 break; 523 case T_VOID: regs[i].set_bad(); break; 524 break; 525 default: 526 ShouldNotReachHere(); 527 break; 528 } 529 } 530 531 // return value can be odd number of VMRegImpl stack slots make multiple of 2 532 return align_up(stack, 2); 533 } 534 535 // Patch the callers callsite with entry to compiled code if it exists. 536 static void patch_callers_callsite(MacroAssembler *masm) { 537 Label L; 538 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); 539 __ jcc(Assembler::equal, L); 540 // Schedule the branch target address early. 541 // Call into the VM to patch the caller, then jump to compiled callee 542 // rax, isn't live so capture return address while we easily can 543 __ movptr(rax, Address(rsp, 0)); 544 __ pusha(); 545 __ pushf(); 546 547 if (UseSSE == 1) { 548 __ subptr(rsp, 2*wordSize); 549 __ movflt(Address(rsp, 0), xmm0); 550 __ movflt(Address(rsp, wordSize), xmm1); 551 } 552 if (UseSSE >= 2) { 553 __ subptr(rsp, 4*wordSize); 554 __ movdbl(Address(rsp, 0), xmm0); 555 __ movdbl(Address(rsp, 2*wordSize), xmm1); 556 } 557 #ifdef COMPILER2 558 // C2 may leave the stack dirty if not in SSE2+ mode 559 if (UseSSE >= 2) { 560 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 561 } else { 562 __ empty_FPU_stack(); 563 } 564 #endif /* COMPILER2 */ 565 566 // VM needs caller's callsite 567 __ push(rax); 568 // VM needs target method 569 __ push(rbx); 570 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 571 __ addptr(rsp, 2*wordSize); 572 573 if (UseSSE == 1) { 574 __ movflt(xmm0, Address(rsp, 0)); 575 __ movflt(xmm1, Address(rsp, wordSize)); 576 __ addptr(rsp, 2*wordSize); 577 } 578 if (UseSSE >= 2) { 579 __ movdbl(xmm0, Address(rsp, 0)); 580 __ movdbl(xmm1, Address(rsp, 2*wordSize)); 581 __ addptr(rsp, 4*wordSize); 582 } 583 584 __ popf(); 585 __ popa(); 586 __ bind(L); 587 } 588 589 590 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) { 591 int next_off = st_off - Interpreter::stackElementSize; 592 __ movdbl(Address(rsp, next_off), r); 593 } 594 595 static void gen_c2i_adapter(MacroAssembler *masm, 596 int total_args_passed, 597 int comp_args_on_stack, 598 const BasicType *sig_bt, 599 const VMRegPair *regs, 600 Label& skip_fixup) { 601 // Before we get into the guts of the C2I adapter, see if we should be here 602 // at all. We've come from compiled code and are attempting to jump to the 603 // interpreter, which means the caller made a static call to get here 604 // (vcalls always get a compiled target if there is one). Check for a 605 // compiled target. If there is one, we need to patch the caller's call. 606 patch_callers_callsite(masm); 607 608 __ bind(skip_fixup); 609 610 #ifdef COMPILER2 611 // C2 may leave the stack dirty if not in SSE2+ mode 612 if (UseSSE >= 2) { 613 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 614 } else { 615 __ empty_FPU_stack(); 616 } 617 #endif /* COMPILER2 */ 618 619 // Since all args are passed on the stack, total_args_passed * interpreter_ 620 // stack_element_size is the 621 // space we need. 622 int extraspace = total_args_passed * Interpreter::stackElementSize; 623 624 // Get return address 625 __ pop(rax); 626 627 // set senderSP value 628 __ movptr(rsi, rsp); 629 630 __ subptr(rsp, extraspace); 631 632 // Now write the args into the outgoing interpreter space 633 for (int i = 0; i < total_args_passed; i++) { 634 if (sig_bt[i] == T_VOID) { 635 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 636 continue; 637 } 638 639 // st_off points to lowest address on stack. 640 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize; 641 int next_off = st_off - Interpreter::stackElementSize; 642 643 // Say 4 args: 644 // i st_off 645 // 0 12 T_LONG 646 // 1 8 T_VOID 647 // 2 4 T_OBJECT 648 // 3 0 T_BOOL 649 VMReg r_1 = regs[i].first(); 650 VMReg r_2 = regs[i].second(); 651 if (!r_1->is_valid()) { 652 assert(!r_2->is_valid(), ""); 653 continue; 654 } 655 656 if (r_1->is_stack()) { 657 // memory to memory use fpu stack top 658 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 659 660 if (!r_2->is_valid()) { 661 __ movl(rdi, Address(rsp, ld_off)); 662 __ movptr(Address(rsp, st_off), rdi); 663 } else { 664 665 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW 666 // st_off == MSW, st_off-wordSize == LSW 667 668 __ movptr(rdi, Address(rsp, ld_off)); 669 __ movptr(Address(rsp, next_off), rdi); 670 #ifndef _LP64 671 __ movptr(rdi, Address(rsp, ld_off + wordSize)); 672 __ movptr(Address(rsp, st_off), rdi); 673 #else 674 #ifdef ASSERT 675 // Overwrite the unused slot with known junk 676 __ mov64(rax, CONST64(0xdeadffffdeadaaaa)); 677 __ movptr(Address(rsp, st_off), rax); 678 #endif /* ASSERT */ 679 #endif // _LP64 680 } 681 } else if (r_1->is_Register()) { 682 Register r = r_1->as_Register(); 683 if (!r_2->is_valid()) { 684 __ movl(Address(rsp, st_off), r); 685 } else { 686 // long/double in gpr 687 NOT_LP64(ShouldNotReachHere()); 688 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 689 // T_DOUBLE and T_LONG use two slots in the interpreter 690 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 691 // long/double in gpr 692 #ifdef ASSERT 693 // Overwrite the unused slot with known junk 694 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab))); 695 __ movptr(Address(rsp, st_off), rax); 696 #endif /* ASSERT */ 697 __ movptr(Address(rsp, next_off), r); 698 } else { 699 __ movptr(Address(rsp, st_off), r); 700 } 701 } 702 } else { 703 assert(r_1->is_XMMRegister(), ""); 704 if (!r_2->is_valid()) { 705 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); 706 } else { 707 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type"); 708 move_c2i_double(masm, r_1->as_XMMRegister(), st_off); 709 } 710 } 711 } 712 713 // Schedule the branch target address early. 714 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); 715 // And repush original return address 716 __ push(rax); 717 __ jmp(rcx); 718 } 719 720 721 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) { 722 int next_val_off = ld_off - Interpreter::stackElementSize; 723 __ movdbl(r, Address(saved_sp, next_val_off)); 724 } 725 726 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, 727 address code_start, address code_end, 728 Label& L_ok) { 729 Label L_fail; 730 __ lea(temp_reg, ExternalAddress(code_start)); 731 __ cmpptr(pc_reg, temp_reg); 732 __ jcc(Assembler::belowEqual, L_fail); 733 __ lea(temp_reg, ExternalAddress(code_end)); 734 __ cmpptr(pc_reg, temp_reg); 735 __ jcc(Assembler::below, L_ok); 736 __ bind(L_fail); 737 } 738 739 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 740 int total_args_passed, 741 int comp_args_on_stack, 742 const BasicType *sig_bt, 743 const VMRegPair *regs) { 744 // Note: rsi contains the senderSP on entry. We must preserve it since 745 // we may do a i2c -> c2i transition if we lose a race where compiled 746 // code goes non-entrant while we get args ready. 747 748 // Adapters can be frameless because they do not require the caller 749 // to perform additional cleanup work, such as correcting the stack pointer. 750 // An i2c adapter is frameless because the *caller* frame, which is interpreted, 751 // routinely repairs its own stack pointer (from interpreter_frame_last_sp), 752 // even if a callee has modified the stack pointer. 753 // A c2i adapter is frameless because the *callee* frame, which is interpreted, 754 // routinely repairs its caller's stack pointer (from sender_sp, which is set 755 // up via the senderSP register). 756 // In other words, if *either* the caller or callee is interpreted, we can 757 // get the stack pointer repaired after a call. 758 // This is why c2i and i2c adapters cannot be indefinitely composed. 759 // In particular, if a c2i adapter were to somehow call an i2c adapter, 760 // both caller and callee would be compiled methods, and neither would 761 // clean up the stack pointer changes performed by the two adapters. 762 // If this happens, control eventually transfers back to the compiled 763 // caller, but with an uncorrected stack, causing delayed havoc. 764 765 // Pick up the return address 766 __ movptr(rax, Address(rsp, 0)); 767 768 if (VerifyAdapterCalls && 769 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { 770 // So, let's test for cascading c2i/i2c adapters right now. 771 // assert(Interpreter::contains($return_addr) || 772 // StubRoutines::contains($return_addr), 773 // "i2c adapter must return to an interpreter frame"); 774 __ block_comment("verify_i2c { "); 775 Label L_ok; 776 if (Interpreter::code() != NULL) 777 range_check(masm, rax, rdi, 778 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 779 L_ok); 780 if (StubRoutines::code1() != NULL) 781 range_check(masm, rax, rdi, 782 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), 783 L_ok); 784 if (StubRoutines::code2() != NULL) 785 range_check(masm, rax, rdi, 786 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), 787 L_ok); 788 const char* msg = "i2c adapter must return to an interpreter frame"; 789 __ block_comment(msg); 790 __ stop(msg); 791 __ bind(L_ok); 792 __ block_comment("} verify_i2ce "); 793 } 794 795 // Must preserve original SP for loading incoming arguments because 796 // we need to align the outgoing SP for compiled code. 797 __ movptr(rdi, rsp); 798 799 // Cut-out for having no stack args. Since up to 2 int/oop args are passed 800 // in registers, we will occasionally have no stack args. 801 int comp_words_on_stack = 0; 802 if (comp_args_on_stack) { 803 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in 804 // registers are below. By subtracting stack0, we either get a negative 805 // number (all values in registers) or the maximum stack slot accessed. 806 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg); 807 // Convert 4-byte stack slots to words. 808 comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord; 809 // Round up to miminum stack alignment, in wordSize 810 comp_words_on_stack = align_up(comp_words_on_stack, 2); 811 __ subptr(rsp, comp_words_on_stack * wordSize); 812 } 813 814 // Align the outgoing SP 815 __ andptr(rsp, -(StackAlignmentInBytes)); 816 817 // push the return address on the stack (note that pushing, rather 818 // than storing it, yields the correct frame alignment for the callee) 819 __ push(rax); 820 821 // Put saved SP in another register 822 const Register saved_sp = rax; 823 __ movptr(saved_sp, rdi); 824 825 826 // Will jump to the compiled code just as if compiled code was doing it. 827 // Pre-load the register-jump target early, to schedule it better. 828 __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset()))); 829 830 // Now generate the shuffle code. Pick up all register args and move the 831 // rest through the floating point stack top. 832 for (int i = 0; i < total_args_passed; i++) { 833 if (sig_bt[i] == T_VOID) { 834 // Longs and doubles are passed in native word order, but misaligned 835 // in the 32-bit build. 836 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 837 continue; 838 } 839 840 // Pick up 0, 1 or 2 words from SP+offset. 841 842 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 843 "scrambled load targets?"); 844 // Load in argument order going down. 845 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize; 846 // Point to interpreter value (vs. tag) 847 int next_off = ld_off - Interpreter::stackElementSize; 848 // 849 // 850 // 851 VMReg r_1 = regs[i].first(); 852 VMReg r_2 = regs[i].second(); 853 if (!r_1->is_valid()) { 854 assert(!r_2->is_valid(), ""); 855 continue; 856 } 857 if (r_1->is_stack()) { 858 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 859 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; 860 861 // We can use rsi as a temp here because compiled code doesn't need rsi as an input 862 // and if we end up going thru a c2i because of a miss a reasonable value of rsi 863 // we be generated. 864 if (!r_2->is_valid()) { 865 // __ fld_s(Address(saved_sp, ld_off)); 866 // __ fstp_s(Address(rsp, st_off)); 867 __ movl(rsi, Address(saved_sp, ld_off)); 868 __ movptr(Address(rsp, st_off), rsi); 869 } else { 870 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 871 // are accessed as negative so LSW is at LOW address 872 873 // ld_off is MSW so get LSW 874 // st_off is LSW (i.e. reg.first()) 875 // __ fld_d(Address(saved_sp, next_off)); 876 // __ fstp_d(Address(rsp, st_off)); 877 // 878 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 879 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 880 // So we must adjust where to pick up the data to match the interpreter. 881 // 882 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 883 // are accessed as negative so LSW is at LOW address 884 885 // ld_off is MSW so get LSW 886 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 887 next_off : ld_off; 888 __ movptr(rsi, Address(saved_sp, offset)); 889 __ movptr(Address(rsp, st_off), rsi); 890 #ifndef _LP64 891 __ movptr(rsi, Address(saved_sp, ld_off)); 892 __ movptr(Address(rsp, st_off + wordSize), rsi); 893 #endif // _LP64 894 } 895 } else if (r_1->is_Register()) { // Register argument 896 Register r = r_1->as_Register(); 897 assert(r != rax, "must be different"); 898 if (r_2->is_valid()) { 899 // 900 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 901 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 902 // So we must adjust where to pick up the data to match the interpreter. 903 904 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 905 next_off : ld_off; 906 907 // this can be a misaligned move 908 __ movptr(r, Address(saved_sp, offset)); 909 #ifndef _LP64 910 assert(r_2->as_Register() != rax, "need another temporary register"); 911 // Remember r_1 is low address (and LSB on x86) 912 // So r_2 gets loaded from high address regardless of the platform 913 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off)); 914 #endif // _LP64 915 } else { 916 __ movl(r, Address(saved_sp, ld_off)); 917 } 918 } else { 919 assert(r_1->is_XMMRegister(), ""); 920 if (!r_2->is_valid()) { 921 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); 922 } else { 923 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off); 924 } 925 } 926 } 927 928 // 6243940 We might end up in handle_wrong_method if 929 // the callee is deoptimized as we race thru here. If that 930 // happens we don't want to take a safepoint because the 931 // caller frame will look interpreted and arguments are now 932 // "compiled" so it is much better to make this transition 933 // invisible to the stack walking code. Unfortunately if 934 // we try and find the callee by normal means a safepoint 935 // is possible. So we stash the desired callee in the thread 936 // and the vm will find there should this case occur. 937 938 __ get_thread(rax); 939 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx); 940 941 // move Method* to rax, in case we end up in an c2i adapter. 942 // the c2i adapters expect Method* in rax, (c2) because c2's 943 // resolve stubs return the result (the method) in rax,. 944 // I'd love to fix this. 945 __ mov(rax, rbx); 946 947 __ jmp(rdi); 948 } 949 950 // --------------------------------------------------------------- 951 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 952 int total_args_passed, 953 int comp_args_on_stack, 954 const BasicType *sig_bt, 955 const VMRegPair *regs, 956 AdapterFingerPrint* fingerprint) { 957 address i2c_entry = __ pc(); 958 959 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 960 961 // ------------------------------------------------------------------------- 962 // Generate a C2I adapter. On entry we know rbx, holds the Method* during calls 963 // to the interpreter. The args start out packed in the compiled layout. They 964 // need to be unpacked into the interpreter layout. This will almost always 965 // require some stack space. We grow the current (compiled) stack, then repack 966 // the args. We finally end in a jump to the generic interpreter entry point. 967 // On exit from the interpreter, the interpreter will restore our SP (lest the 968 // compiled code, which relys solely on SP and not EBP, get sick). 969 970 address c2i_unverified_entry = __ pc(); 971 Label skip_fixup; 972 973 Register holder = rax; 974 Register receiver = rcx; 975 Register temp = rbx; 976 977 { 978 979 Label missed; 980 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 981 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset())); 982 __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset())); 983 __ jcc(Assembler::notEqual, missed); 984 // Method might have been compiled since the call site was patched to 985 // interpreted if that is the case treat it as a miss so we can get 986 // the call site corrected. 987 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); 988 __ jcc(Assembler::equal, skip_fixup); 989 990 __ bind(missed); 991 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 992 } 993 994 address c2i_entry = __ pc(); 995 996 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 997 bs->c2i_entry_barrier(masm); 998 999 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 1000 1001 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 1002 } 1003 1004 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 1005 VMRegPair *regs, 1006 VMRegPair *regs2, 1007 int total_args_passed) { 1008 assert(regs2 == NULL, "not needed on x86"); 1009 // We return the amount of VMRegImpl stack slots we need to reserve for all 1010 // the arguments NOT counting out_preserve_stack_slots. 1011 1012 uint stack = 0; // All arguments on stack 1013 1014 for( int i = 0; i < total_args_passed; i++) { 1015 // From the type and the argument number (count) compute the location 1016 switch( sig_bt[i] ) { 1017 case T_BOOLEAN: 1018 case T_CHAR: 1019 case T_FLOAT: 1020 case T_BYTE: 1021 case T_SHORT: 1022 case T_INT: 1023 case T_OBJECT: 1024 case T_ARRAY: 1025 case T_ADDRESS: 1026 case T_METADATA: 1027 regs[i].set1(VMRegImpl::stack2reg(stack++)); 1028 break; 1029 case T_LONG: 1030 case T_DOUBLE: // The stack numbering is reversed from Java 1031 // Since C arguments do not get reversed, the ordering for 1032 // doubles on the stack must be opposite the Java convention 1033 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" ); 1034 regs[i].set2(VMRegImpl::stack2reg(stack)); 1035 stack += 2; 1036 break; 1037 case T_VOID: regs[i].set_bad(); break; 1038 default: 1039 ShouldNotReachHere(); 1040 break; 1041 } 1042 } 1043 return stack; 1044 } 1045 1046 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 1047 uint num_bits, 1048 uint total_args_passed) { 1049 Unimplemented(); 1050 return 0; 1051 } 1052 1053 // A simple move of integer like type 1054 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1055 if (src.first()->is_stack()) { 1056 if (dst.first()->is_stack()) { 1057 // stack to stack 1058 // __ ld(FP, reg2offset(src.first()), L5); 1059 // __ st(L5, SP, reg2offset(dst.first())); 1060 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first()))); 1061 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1062 } else { 1063 // stack to reg 1064 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1065 } 1066 } else if (dst.first()->is_stack()) { 1067 // reg to stack 1068 // no need to sign extend on 64bit 1069 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1070 } else { 1071 if (dst.first() != src.first()) { 1072 __ mov(dst.first()->as_Register(), src.first()->as_Register()); 1073 } 1074 } 1075 } 1076 1077 // An oop arg. Must pass a handle not the oop itself 1078 static void object_move(MacroAssembler* masm, 1079 OopMap* map, 1080 int oop_handle_offset, 1081 int framesize_in_slots, 1082 VMRegPair src, 1083 VMRegPair dst, 1084 bool is_receiver, 1085 int* receiver_offset) { 1086 1087 // Because of the calling conventions we know that src can be a 1088 // register or a stack location. dst can only be a stack location. 1089 1090 assert(dst.first()->is_stack(), "must be stack"); 1091 // must pass a handle. First figure out the location we use as a handle 1092 1093 if (src.first()->is_stack()) { 1094 // Oop is already on the stack as an argument 1095 Register rHandle = rax; 1096 Label nil; 1097 __ xorptr(rHandle, rHandle); 1098 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD); 1099 __ jcc(Assembler::equal, nil); 1100 __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1101 __ bind(nil); 1102 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1103 1104 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1105 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1106 if (is_receiver) { 1107 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1108 } 1109 } else { 1110 // Oop is in an a register we must store it to the space we reserve 1111 // on the stack for oop_handles 1112 const Register rOop = src.first()->as_Register(); 1113 const Register rHandle = rax; 1114 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset; 1115 int offset = oop_slot*VMRegImpl::stack_slot_size; 1116 Label skip; 1117 __ movptr(Address(rsp, offset), rOop); 1118 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1119 __ xorptr(rHandle, rHandle); 1120 __ cmpptr(rOop, (int32_t)NULL_WORD); 1121 __ jcc(Assembler::equal, skip); 1122 __ lea(rHandle, Address(rsp, offset)); 1123 __ bind(skip); 1124 // Store the handle parameter 1125 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1126 if (is_receiver) { 1127 *receiver_offset = offset; 1128 } 1129 } 1130 } 1131 1132 // A float arg may have to do float reg int reg conversion 1133 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1134 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 1135 1136 // Because of the calling convention we know that src is either a stack location 1137 // or an xmm register. dst can only be a stack location. 1138 1139 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters"); 1140 1141 if (src.first()->is_stack()) { 1142 __ movl(rax, Address(rbp, reg2offset_in(src.first()))); 1143 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1144 } else { 1145 // reg to stack 1146 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1147 } 1148 } 1149 1150 // A long move 1151 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1152 1153 // The only legal possibility for a long_move VMRegPair is: 1154 // 1: two stack slots (possibly unaligned) 1155 // as neither the java or C calling convention will use registers 1156 // for longs. 1157 1158 if (src.first()->is_stack() && dst.first()->is_stack()) { 1159 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack"); 1160 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1161 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second())))); 1162 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1163 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx)); 1164 } else { 1165 ShouldNotReachHere(); 1166 } 1167 } 1168 1169 // A double move 1170 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1171 1172 // The only legal possibilities for a double_move VMRegPair are: 1173 // The painful thing here is that like long_move a VMRegPair might be 1174 1175 // Because of the calling convention we know that src is either 1176 // 1: a single physical register (xmm registers only) 1177 // 2: two stack slots (possibly unaligned) 1178 // dst can only be a pair of stack slots. 1179 1180 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args"); 1181 1182 if (src.first()->is_stack()) { 1183 // source is all stack 1184 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1185 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second())))); 1186 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1187 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx)); 1188 } else { 1189 // reg to stack 1190 // No worries about stack alignment 1191 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1192 } 1193 } 1194 1195 1196 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1197 // We always ignore the frame_slots arg and just use the space just below frame pointer 1198 // which by this time is free to use 1199 switch (ret_type) { 1200 case T_FLOAT: 1201 __ fstp_s(Address(rbp, -wordSize)); 1202 break; 1203 case T_DOUBLE: 1204 __ fstp_d(Address(rbp, -2*wordSize)); 1205 break; 1206 case T_VOID: break; 1207 case T_LONG: 1208 __ movptr(Address(rbp, -wordSize), rax); 1209 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx)); 1210 break; 1211 default: { 1212 __ movptr(Address(rbp, -wordSize), rax); 1213 } 1214 } 1215 } 1216 1217 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1218 // We always ignore the frame_slots arg and just use the space just below frame pointer 1219 // which by this time is free to use 1220 switch (ret_type) { 1221 case T_FLOAT: 1222 __ fld_s(Address(rbp, -wordSize)); 1223 break; 1224 case T_DOUBLE: 1225 __ fld_d(Address(rbp, -2*wordSize)); 1226 break; 1227 case T_LONG: 1228 __ movptr(rax, Address(rbp, -wordSize)); 1229 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize))); 1230 break; 1231 case T_VOID: break; 1232 default: { 1233 __ movptr(rax, Address(rbp, -wordSize)); 1234 } 1235 } 1236 } 1237 1238 // Unpack an array argument into a pointer to the body and the length 1239 // if the array is non-null, otherwise pass 0 for both. 1240 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { 1241 Register tmp_reg = rax; 1242 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg, 1243 "possible collision"); 1244 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg, 1245 "possible collision"); 1246 1247 // Pass the length, ptr pair 1248 Label is_null, done; 1249 VMRegPair tmp(tmp_reg->as_VMReg()); 1250 if (reg.first()->is_stack()) { 1251 // Load the arg up from the stack 1252 simple_move32(masm, reg, tmp); 1253 reg = tmp; 1254 } 1255 __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); 1256 __ jccb(Assembler::equal, is_null); 1257 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type))); 1258 simple_move32(masm, tmp, body_arg); 1259 // load the length relative to the body. 1260 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() - 1261 arrayOopDesc::base_offset_in_bytes(in_elem_type))); 1262 simple_move32(masm, tmp, length_arg); 1263 __ jmpb(done); 1264 __ bind(is_null); 1265 // Pass zeros 1266 __ xorptr(tmp_reg, tmp_reg); 1267 simple_move32(masm, tmp, body_arg); 1268 simple_move32(masm, tmp, length_arg); 1269 __ bind(done); 1270 } 1271 1272 static void verify_oop_args(MacroAssembler* masm, 1273 const methodHandle& method, 1274 const BasicType* sig_bt, 1275 const VMRegPair* regs) { 1276 Register temp_reg = rbx; // not part of any compiled calling seq 1277 if (VerifyOops) { 1278 for (int i = 0; i < method->size_of_parameters(); i++) { 1279 if (is_reference_type(sig_bt[i])) { 1280 VMReg r = regs[i].first(); 1281 assert(r->is_valid(), "bad oop arg"); 1282 if (r->is_stack()) { 1283 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1284 __ verify_oop(temp_reg); 1285 } else { 1286 __ verify_oop(r->as_Register()); 1287 } 1288 } 1289 } 1290 } 1291 } 1292 1293 static void gen_special_dispatch(MacroAssembler* masm, 1294 const methodHandle& method, 1295 const BasicType* sig_bt, 1296 const VMRegPair* regs) { 1297 verify_oop_args(masm, method, sig_bt, regs); 1298 vmIntrinsics::ID iid = method->intrinsic_id(); 1299 1300 // Now write the args into the outgoing interpreter space 1301 bool has_receiver = false; 1302 Register receiver_reg = noreg; 1303 int member_arg_pos = -1; 1304 Register member_reg = noreg; 1305 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1306 if (ref_kind != 0) { 1307 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1308 member_reg = rbx; // known to be free at this point 1309 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1310 } else if (iid == vmIntrinsics::_invokeBasic) { 1311 has_receiver = true; 1312 } else { 1313 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1314 } 1315 1316 if (member_reg != noreg) { 1317 // Load the member_arg into register, if necessary. 1318 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1319 VMReg r = regs[member_arg_pos].first(); 1320 if (r->is_stack()) { 1321 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1322 } else { 1323 // no data motion is needed 1324 member_reg = r->as_Register(); 1325 } 1326 } 1327 1328 if (has_receiver) { 1329 // Make sure the receiver is loaded into a register. 1330 assert(method->size_of_parameters() > 0, "oob"); 1331 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1332 VMReg r = regs[0].first(); 1333 assert(r->is_valid(), "bad receiver arg"); 1334 if (r->is_stack()) { 1335 // Porting note: This assumes that compiled calling conventions always 1336 // pass the receiver oop in a register. If this is not true on some 1337 // platform, pick a temp and load the receiver from stack. 1338 fatal("receiver always in a register"); 1339 receiver_reg = rcx; // known to be free at this point 1340 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1341 } else { 1342 // no data motion is needed 1343 receiver_reg = r->as_Register(); 1344 } 1345 } 1346 1347 // Figure out which address we are really jumping to: 1348 MethodHandles::generate_method_handle_dispatch(masm, iid, 1349 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1350 } 1351 1352 // --------------------------------------------------------------------------- 1353 // Generate a native wrapper for a given method. The method takes arguments 1354 // in the Java compiled code convention, marshals them to the native 1355 // convention (handlizes oops, etc), transitions to native, makes the call, 1356 // returns to java state (possibly blocking), unhandlizes any result and 1357 // returns. 1358 // 1359 // Critical native functions are a shorthand for the use of 1360 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1361 // functions. The wrapper is expected to unpack the arguments before 1362 // passing them to the callee. Critical native functions leave the state _in_Java, 1363 // since they cannot stop for GC. 1364 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1365 // block and the check for pending exceptions it's impossible for them 1366 // to be thrown. 1367 // 1368 // 1369 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1370 const methodHandle& method, 1371 int compile_id, 1372 BasicType* in_sig_bt, 1373 VMRegPair* in_regs, 1374 BasicType ret_type, 1375 address critical_entry) { 1376 if (method->is_method_handle_intrinsic()) { 1377 vmIntrinsics::ID iid = method->intrinsic_id(); 1378 intptr_t start = (intptr_t)__ pc(); 1379 int vep_offset = ((intptr_t)__ pc()) - start; 1380 gen_special_dispatch(masm, 1381 method, 1382 in_sig_bt, 1383 in_regs); 1384 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1385 __ flush(); 1386 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1387 return nmethod::new_native_nmethod(method, 1388 compile_id, 1389 masm->code(), 1390 vep_offset, 1391 frame_complete, 1392 stack_slots / VMRegImpl::slots_per_word, 1393 in_ByteSize(-1), 1394 in_ByteSize(-1), 1395 (OopMapSet*)NULL); 1396 } 1397 bool is_critical_native = true; 1398 address native_func = critical_entry; 1399 if (native_func == NULL) { 1400 native_func = method->native_function(); 1401 is_critical_native = false; 1402 } 1403 assert(native_func != NULL, "must have function"); 1404 1405 // An OopMap for lock (and class if static) 1406 OopMapSet *oop_maps = new OopMapSet(); 1407 1408 // We have received a description of where all the java arg are located 1409 // on entry to the wrapper. We need to convert these args to where 1410 // the jni function will expect them. To figure out where they go 1411 // we convert the java signature to a C signature by inserting 1412 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1413 1414 const int total_in_args = method->size_of_parameters(); 1415 int total_c_args = total_in_args; 1416 if (!is_critical_native) { 1417 total_c_args += 1; 1418 if (method->is_static()) { 1419 total_c_args++; 1420 } 1421 } else { 1422 for (int i = 0; i < total_in_args; i++) { 1423 if (in_sig_bt[i] == T_ARRAY) { 1424 total_c_args++; 1425 } 1426 } 1427 } 1428 1429 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1430 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1431 BasicType* in_elem_bt = NULL; 1432 1433 int argc = 0; 1434 if (!is_critical_native) { 1435 out_sig_bt[argc++] = T_ADDRESS; 1436 if (method->is_static()) { 1437 out_sig_bt[argc++] = T_OBJECT; 1438 } 1439 1440 for (int i = 0; i < total_in_args ; i++ ) { 1441 out_sig_bt[argc++] = in_sig_bt[i]; 1442 } 1443 } else { 1444 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); 1445 SignatureStream ss(method->signature()); 1446 for (int i = 0; i < total_in_args ; i++ ) { 1447 if (in_sig_bt[i] == T_ARRAY) { 1448 // Arrays are passed as int, elem* pair 1449 out_sig_bt[argc++] = T_INT; 1450 out_sig_bt[argc++] = T_ADDRESS; 1451 ss.skip_array_prefix(1); // skip one '[' 1452 assert(ss.is_primitive(), "primitive type expected"); 1453 in_elem_bt[i] = ss.type(); 1454 } else { 1455 out_sig_bt[argc++] = in_sig_bt[i]; 1456 in_elem_bt[i] = T_VOID; 1457 } 1458 if (in_sig_bt[i] != T_VOID) { 1459 assert(in_sig_bt[i] == ss.type() || 1460 in_sig_bt[i] == T_ARRAY, "must match"); 1461 ss.next(); 1462 } 1463 } 1464 } 1465 1466 // Now figure out where the args must be stored and how much stack space 1467 // they require. 1468 int out_arg_slots; 1469 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); 1470 1471 // Compute framesize for the wrapper. We need to handlize all oops in 1472 // registers a max of 2 on x86. 1473 1474 // Calculate the total number of stack slots we will need. 1475 1476 // First count the abi requirement plus all of the outgoing args 1477 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1478 1479 // Now the space for the inbound oop handle area 1480 int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers 1481 if (is_critical_native) { 1482 // Critical natives may have to call out so they need a save area 1483 // for register arguments. 1484 int double_slots = 0; 1485 int single_slots = 0; 1486 for ( int i = 0; i < total_in_args; i++) { 1487 if (in_regs[i].first()->is_Register()) { 1488 const Register reg = in_regs[i].first()->as_Register(); 1489 switch (in_sig_bt[i]) { 1490 case T_ARRAY: // critical array (uses 2 slots on LP64) 1491 case T_BOOLEAN: 1492 case T_BYTE: 1493 case T_SHORT: 1494 case T_CHAR: 1495 case T_INT: single_slots++; break; 1496 case T_LONG: double_slots++; break; 1497 default: ShouldNotReachHere(); 1498 } 1499 } else if (in_regs[i].first()->is_XMMRegister()) { 1500 switch (in_sig_bt[i]) { 1501 case T_FLOAT: single_slots++; break; 1502 case T_DOUBLE: double_slots++; break; 1503 default: ShouldNotReachHere(); 1504 } 1505 } else if (in_regs[i].first()->is_FloatRegister()) { 1506 ShouldNotReachHere(); 1507 } 1508 } 1509 total_save_slots = double_slots * 2 + single_slots; 1510 // align the save area 1511 if (double_slots != 0) { 1512 stack_slots = align_up(stack_slots, 2); 1513 } 1514 } 1515 1516 int oop_handle_offset = stack_slots; 1517 stack_slots += total_save_slots; 1518 1519 // Now any space we need for handlizing a klass if static method 1520 1521 int klass_slot_offset = 0; 1522 int klass_offset = -1; 1523 int lock_slot_offset = 0; 1524 bool is_static = false; 1525 1526 if (method->is_static()) { 1527 klass_slot_offset = stack_slots; 1528 stack_slots += VMRegImpl::slots_per_word; 1529 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1530 is_static = true; 1531 } 1532 1533 // Plus a lock if needed 1534 1535 if (method->is_synchronized()) { 1536 lock_slot_offset = stack_slots; 1537 stack_slots += VMRegImpl::slots_per_word; 1538 } 1539 1540 // Now a place (+2) to save return values or temp during shuffling 1541 // + 2 for return address (which we own) and saved rbp, 1542 stack_slots += 4; 1543 1544 // Ok The space we have allocated will look like: 1545 // 1546 // 1547 // FP-> | | 1548 // |---------------------| 1549 // | 2 slots for moves | 1550 // |---------------------| 1551 // | lock box (if sync) | 1552 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset) 1553 // | klass (if static) | 1554 // |---------------------| <- klass_slot_offset 1555 // | oopHandle area | 1556 // |---------------------| <- oop_handle_offset (a max of 2 registers) 1557 // | outbound memory | 1558 // | based arguments | 1559 // | | 1560 // |---------------------| 1561 // | | 1562 // SP-> | out_preserved_slots | 1563 // 1564 // 1565 // **************************************************************************** 1566 // WARNING - on Windows Java Natives use pascal calling convention and pop the 1567 // arguments off of the stack after the jni call. Before the call we can use 1568 // instructions that are SP relative. After the jni call we switch to FP 1569 // relative instructions instead of re-adjusting the stack on windows. 1570 // **************************************************************************** 1571 1572 1573 // Now compute actual number of stack words we need rounding to make 1574 // stack properly aligned. 1575 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1576 1577 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1578 1579 intptr_t start = (intptr_t)__ pc(); 1580 1581 // First thing make an ic check to see if we should even be here 1582 1583 // We are free to use all registers as temps without saving them and 1584 // restoring them except rbp. rbp is the only callee save register 1585 // as far as the interpreter and the compiler(s) are concerned. 1586 1587 1588 const Register ic_reg = rax; 1589 const Register receiver = rcx; 1590 Label hit; 1591 Label exception_pending; 1592 1593 __ verify_oop(receiver); 1594 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes())); 1595 __ jcc(Assembler::equal, hit); 1596 1597 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1598 1599 // verified entry must be aligned for code patching. 1600 // and the first 5 bytes must be in the same cache line 1601 // if we align at 8 then we will be sure 5 bytes are in the same line 1602 __ align(8); 1603 1604 __ bind(hit); 1605 1606 int vep_offset = ((intptr_t)__ pc()) - start; 1607 1608 #ifdef COMPILER1 1609 // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available. 1610 if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) { 1611 inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/); 1612 } 1613 #endif // COMPILER1 1614 1615 // The instruction at the verified entry point must be 5 bytes or longer 1616 // because it can be patched on the fly by make_non_entrant. The stack bang 1617 // instruction fits that requirement. 1618 1619 // Generate stack overflow check 1620 __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size()); 1621 1622 // Generate a new frame for the wrapper. 1623 __ enter(); 1624 // -2 because return address is already present and so is saved rbp 1625 __ subptr(rsp, stack_size - 2*wordSize); 1626 1627 1628 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1629 bs->nmethod_entry_barrier(masm); 1630 1631 // Frame is now completed as far as size and linkage. 1632 int frame_complete = ((intptr_t)__ pc()) - start; 1633 1634 if (UseRTMLocking) { 1635 // Abort RTM transaction before calling JNI 1636 // because critical section will be large and will be 1637 // aborted anyway. Also nmethod could be deoptimized. 1638 __ xabort(0); 1639 } 1640 1641 // Calculate the difference between rsp and rbp,. We need to know it 1642 // after the native call because on windows Java Natives will pop 1643 // the arguments and it is painful to do rsp relative addressing 1644 // in a platform independent way. So after the call we switch to 1645 // rbp, relative addressing. 1646 1647 int fp_adjustment = stack_size - 2*wordSize; 1648 1649 #ifdef COMPILER2 1650 // C2 may leave the stack dirty if not in SSE2+ mode 1651 if (UseSSE >= 2) { 1652 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 1653 } else { 1654 __ empty_FPU_stack(); 1655 } 1656 #endif /* COMPILER2 */ 1657 1658 // Compute the rbp, offset for any slots used after the jni call 1659 1660 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment; 1661 1662 // We use rdi as a thread pointer because it is callee save and 1663 // if we load it once it is usable thru the entire wrapper 1664 const Register thread = rdi; 1665 1666 // We use rsi as the oop handle for the receiver/klass 1667 // It is callee save so it survives the call to native 1668 1669 const Register oop_handle_reg = rsi; 1670 1671 __ get_thread(thread); 1672 1673 // 1674 // We immediately shuffle the arguments so that any vm call we have to 1675 // make from here on out (sync slow path, jvmti, etc.) we will have 1676 // captured the oops from our caller and have a valid oopMap for 1677 // them. 1678 1679 // ----------------- 1680 // The Grand Shuffle 1681 // 1682 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv* 1683 // and, if static, the class mirror instead of a receiver. This pretty much 1684 // guarantees that register layout will not match (and x86 doesn't use reg 1685 // parms though amd does). Since the native abi doesn't use register args 1686 // and the java conventions does we don't have to worry about collisions. 1687 // All of our moved are reg->stack or stack->stack. 1688 // We ignore the extra arguments during the shuffle and handle them at the 1689 // last moment. The shuffle is described by the two calling convention 1690 // vectors we have in our possession. We simply walk the java vector to 1691 // get the source locations and the c vector to get the destinations. 1692 1693 int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 ); 1694 1695 // Record rsp-based slot for receiver on stack for non-static methods 1696 int receiver_offset = -1; 1697 1698 // This is a trick. We double the stack slots so we can claim 1699 // the oops in the caller's frame. Since we are sure to have 1700 // more args than the caller doubling is enough to make 1701 // sure we can capture all the incoming oop args from the 1702 // caller. 1703 // 1704 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1705 1706 // Mark location of rbp, 1707 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg()); 1708 1709 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx 1710 // Are free to temporaries if we have to do stack to steck moves. 1711 // All inbound args are referenced based on rbp, and all outbound args via rsp. 1712 1713 for (int i = 0; i < total_in_args ; i++, c_arg++ ) { 1714 switch (in_sig_bt[i]) { 1715 case T_ARRAY: 1716 if (is_critical_native) { 1717 VMRegPair in_arg = in_regs[i]; 1718 unpack_array_argument(masm, in_arg, in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); 1719 c_arg++; 1720 break; 1721 } 1722 case T_OBJECT: 1723 assert(!is_critical_native, "no oop arguments"); 1724 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1725 ((i == 0) && (!is_static)), 1726 &receiver_offset); 1727 break; 1728 case T_VOID: 1729 break; 1730 1731 case T_FLOAT: 1732 float_move(masm, in_regs[i], out_regs[c_arg]); 1733 break; 1734 1735 case T_DOUBLE: 1736 assert( i + 1 < total_in_args && 1737 in_sig_bt[i + 1] == T_VOID && 1738 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1739 double_move(masm, in_regs[i], out_regs[c_arg]); 1740 break; 1741 1742 case T_LONG : 1743 long_move(masm, in_regs[i], out_regs[c_arg]); 1744 break; 1745 1746 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1747 1748 default: 1749 simple_move32(masm, in_regs[i], out_regs[c_arg]); 1750 } 1751 } 1752 1753 // Pre-load a static method's oop into rsi. Used both by locking code and 1754 // the normal JNI call code. 1755 if (method->is_static() && !is_critical_native) { 1756 1757 // load opp into a register 1758 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); 1759 1760 // Now handlize the static class mirror it's known not-null. 1761 __ movptr(Address(rsp, klass_offset), oop_handle_reg); 1762 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1763 1764 // Now get the handle 1765 __ lea(oop_handle_reg, Address(rsp, klass_offset)); 1766 // store the klass handle as second argument 1767 __ movptr(Address(rsp, wordSize), oop_handle_reg); 1768 } 1769 1770 // Change state to native (we save the return address in the thread, since it might not 1771 // be pushed on the stack when we do a a stack traversal). It is enough that the pc() 1772 // points into the right code segment. It does not have to be the correct return pc. 1773 // We use the same pc/oopMap repeatedly when we call out 1774 1775 intptr_t the_pc = (intptr_t) __ pc(); 1776 oop_maps->add_gc_map(the_pc - start, map); 1777 1778 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc); 1779 1780 1781 // We have all of the arguments setup at this point. We must not touch any register 1782 // argument registers at this point (what if we save/restore them there are no oop? 1783 1784 { 1785 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0); 1786 __ mov_metadata(rax, method()); 1787 __ call_VM_leaf( 1788 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1789 thread, rax); 1790 } 1791 1792 // RedefineClasses() tracing support for obsolete method entry 1793 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1794 __ mov_metadata(rax, method()); 1795 __ call_VM_leaf( 1796 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1797 thread, rax); 1798 } 1799 1800 // These are register definitions we need for locking/unlocking 1801 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction 1802 const Register obj_reg = rcx; // Will contain the oop 1803 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock) 1804 1805 Label slow_path_lock; 1806 Label lock_done; 1807 1808 // Lock a synchronized method 1809 if (method->is_synchronized()) { 1810 assert(!is_critical_native, "unhandled"); 1811 1812 1813 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1814 1815 // Get the handle (the 2nd argument) 1816 __ movptr(oop_handle_reg, Address(rsp, wordSize)); 1817 1818 // Get address of the box 1819 1820 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset)); 1821 1822 // Load the oop from the handle 1823 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 1824 1825 if (LockingMode == LM_MONITOR) { 1826 __ jmp(slow_path_lock); 1827 } else if (LockingMode == LM_LEGACY) { 1828 if (UseBiasedLocking) { 1829 // Note that oop_handle_reg is trashed during this call 1830 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, noreg, false, lock_done, &slow_path_lock); 1831 } 1832 1833 // Load immediate 1 into swap_reg %rax, 1834 __ movptr(swap_reg, 1); 1835 1836 // Load (object->mark() | 1) into swap_reg %rax, 1837 __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1838 1839 // Save (object->mark() | 1) into BasicLock's displaced header 1840 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 1841 1842 // src -> dest iff dest == rax, else rax, <- dest 1843 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg) 1844 __ lock(); 1845 __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1846 __ jcc(Assembler::equal, lock_done); 1847 1848 // Test if the oopMark is an obvious stack pointer, i.e., 1849 // 1) (mark & 3) == 0, and 1850 // 2) rsp <= mark < mark + os::pagesize() 1851 // These 3 tests can be done by evaluating the following 1852 // expression: ((mark - rsp) & (3 - os::vm_page_size())), 1853 // assuming both stack pointer and pagesize have their 1854 // least significant 2 bits clear. 1855 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg 1856 1857 __ subptr(swap_reg, rsp); 1858 __ andptr(swap_reg, 3 - os::vm_page_size()); 1859 1860 // Save the test result, for recursive case, the result is zero 1861 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 1862 __ jcc(Assembler::notEqual, slow_path_lock); 1863 } else { 1864 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1865 __ lightweight_lock(obj_reg, swap_reg, thread, lock_reg, slow_path_lock); 1866 } 1867 // Slow path will re-enter here 1868 __ bind(lock_done); 1869 1870 if (UseBiasedLocking) { 1871 // Re-fetch oop_handle_reg as we trashed it above 1872 __ movptr(oop_handle_reg, Address(rsp, wordSize)); 1873 } 1874 } 1875 1876 1877 // Finally just about ready to make the JNI call 1878 1879 // get JNIEnv* which is first argument to native 1880 if (!is_critical_native) { 1881 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset()))); 1882 __ movptr(Address(rsp, 0), rdx); 1883 1884 // Now set thread in native 1885 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native); 1886 } 1887 1888 __ call(RuntimeAddress(native_func)); 1889 1890 // Verify or restore cpu control state after JNI call 1891 __ restore_cpu_control_state_after_jni(); 1892 1893 // WARNING - on Windows Java Natives use pascal calling convention and pop the 1894 // arguments off of the stack. We could just re-adjust the stack pointer here 1895 // and continue to do SP relative addressing but we instead switch to FP 1896 // relative addressing. 1897 1898 // Unpack native results. 1899 switch (ret_type) { 1900 case T_BOOLEAN: __ c2bool(rax); break; 1901 case T_CHAR : __ andptr(rax, 0xFFFF); break; 1902 case T_BYTE : __ sign_extend_byte (rax); break; 1903 case T_SHORT : __ sign_extend_short(rax); break; 1904 case T_INT : /* nothing to do */ break; 1905 case T_DOUBLE : 1906 case T_FLOAT : 1907 // Result is in st0 we'll save as needed 1908 break; 1909 case T_ARRAY: // Really a handle 1910 case T_OBJECT: // Really a handle 1911 break; // can't de-handlize until after safepoint check 1912 case T_VOID: break; 1913 case T_LONG: break; 1914 default : ShouldNotReachHere(); 1915 } 1916 1917 Label after_transition; 1918 1919 // If this is a critical native, check for a safepoint or suspend request after the call. 1920 // If a safepoint is needed, transition to native, then to native_trans to handle 1921 // safepoints like the native methods that are not critical natives. 1922 if (is_critical_native) { 1923 Label needs_safepoint; 1924 __ safepoint_poll(needs_safepoint, thread, false /* at_return */, false /* in_nmethod */); 1925 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); 1926 __ jcc(Assembler::equal, after_transition); 1927 __ bind(needs_safepoint); 1928 } 1929 1930 // Switch thread to "native transition" state before reading the synchronization state. 1931 // This additional state is necessary because reading and testing the synchronization 1932 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1933 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1934 // VM thread changes sync state to synchronizing and suspends threads for GC. 1935 // Thread A is resumed to finish this native method, but doesn't block here since it 1936 // didn't see any synchronization is progress, and escapes. 1937 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans); 1938 1939 // Force this write out before the read below 1940 __ membar(Assembler::Membar_mask_bits( 1941 Assembler::LoadLoad | Assembler::LoadStore | 1942 Assembler::StoreLoad | Assembler::StoreStore)); 1943 1944 if (AlwaysRestoreFPU) { 1945 // Make sure the control word is correct. 1946 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 1947 } 1948 1949 // check for safepoint operation in progress and/or pending suspend requests 1950 { Label Continue, slow_path; 1951 1952 __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */); 1953 1954 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); 1955 __ jcc(Assembler::equal, Continue); 1956 __ bind(slow_path); 1957 1958 // Don't use call_VM as it will see a possible pending exception and forward it 1959 // and never return here preventing us from clearing _last_native_pc down below. 1960 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are 1961 // preserved and correspond to the bcp/locals pointers. So we do a runtime call 1962 // by hand. 1963 // 1964 __ vzeroupper(); 1965 1966 save_native_result(masm, ret_type, stack_slots); 1967 __ push(thread); 1968 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, 1969 JavaThread::check_special_condition_for_native_trans))); 1970 __ increment(rsp, wordSize); 1971 // Restore any method result value 1972 restore_native_result(masm, ret_type, stack_slots); 1973 __ bind(Continue); 1974 } 1975 1976 // change thread state 1977 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java); 1978 __ bind(after_transition); 1979 1980 Label reguard; 1981 Label reguard_done; 1982 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled); 1983 __ jcc(Assembler::equal, reguard); 1984 1985 // slow path reguard re-enters here 1986 __ bind(reguard_done); 1987 1988 // Handle possible exception (will unlock if necessary) 1989 1990 // native result if any is live 1991 1992 // Unlock 1993 Label slow_path_unlock; 1994 Label unlock_done; 1995 if (method->is_synchronized()) { 1996 1997 Label done; 1998 1999 // Get locked oop from the handle we passed to jni 2000 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 2001 2002 if (UseBiasedLocking) { 2003 __ biased_locking_exit(obj_reg, rbx, done); 2004 } 2005 2006 if (LockingMode == LM_LEGACY) { 2007 // Simple recursive lock? 2008 2009 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD); 2010 __ jcc(Assembler::equal, done); 2011 } 2012 2013 // Must save rax, if if it is live now because cmpxchg must use it 2014 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2015 save_native_result(masm, ret_type, stack_slots); 2016 } 2017 2018 if (LockingMode == LM_MONITOR) { 2019 __ jmp(slow_path_unlock); 2020 } else if (LockingMode == LM_LEGACY) { 2021 // get old displaced header 2022 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset)); 2023 2024 // get address of the stack lock 2025 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 2026 2027 // Atomic swap old header if oop still contains the stack lock 2028 // src -> dest iff dest == rax, else rax, <- dest 2029 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg) 2030 __ lock(); 2031 __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2032 __ jcc(Assembler::notEqual, slow_path_unlock); 2033 } else { 2034 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 2035 __ lightweight_unlock(obj_reg, swap_reg, thread, lock_reg, slow_path_unlock); 2036 } 2037 2038 // slow path re-enters here 2039 __ bind(unlock_done); 2040 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2041 restore_native_result(masm, ret_type, stack_slots); 2042 } 2043 2044 __ bind(done); 2045 2046 } 2047 2048 { 2049 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0); 2050 // Tell dtrace about this method exit 2051 save_native_result(masm, ret_type, stack_slots); 2052 __ mov_metadata(rax, method()); 2053 __ call_VM_leaf( 2054 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2055 thread, rax); 2056 restore_native_result(masm, ret_type, stack_slots); 2057 } 2058 2059 // We can finally stop using that last_Java_frame we setup ages ago 2060 2061 __ reset_last_Java_frame(thread, false); 2062 2063 // Unbox oop result, e.g. JNIHandles::resolve value. 2064 if (is_reference_type(ret_type)) { 2065 __ resolve_jobject(rax /* value */, 2066 thread /* thread */, 2067 rcx /* tmp */); 2068 } 2069 2070 if (CheckJNICalls) { 2071 // clear_pending_jni_exception_check 2072 __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD); 2073 } 2074 2075 if (!is_critical_native) { 2076 // reset handle block 2077 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset())); 2078 __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD); 2079 2080 // Any exception pending? 2081 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2082 __ jcc(Assembler::notEqual, exception_pending); 2083 } 2084 2085 // no exception, we're almost done 2086 2087 // check that only result value is on FPU stack 2088 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit"); 2089 2090 // Fixup floating pointer results so that result looks like a return from a compiled method 2091 if (ret_type == T_FLOAT) { 2092 if (UseSSE >= 1) { 2093 // Pop st0 and store as float and reload into xmm register 2094 __ fstp_s(Address(rbp, -4)); 2095 __ movflt(xmm0, Address(rbp, -4)); 2096 } 2097 } else if (ret_type == T_DOUBLE) { 2098 if (UseSSE >= 2) { 2099 // Pop st0 and store as double and reload into xmm register 2100 __ fstp_d(Address(rbp, -8)); 2101 __ movdbl(xmm0, Address(rbp, -8)); 2102 } 2103 } 2104 2105 // Return 2106 2107 __ leave(); 2108 __ ret(0); 2109 2110 // Unexpected paths are out of line and go here 2111 2112 // Slow path locking & unlocking 2113 if (method->is_synchronized()) { 2114 2115 // BEGIN Slow path lock 2116 2117 __ bind(slow_path_lock); 2118 2119 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2120 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2121 __ push(thread); 2122 __ push(lock_reg); 2123 __ push(obj_reg); 2124 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C))); 2125 __ addptr(rsp, 3*wordSize); 2126 2127 #ifdef ASSERT 2128 { Label L; 2129 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD); 2130 __ jcc(Assembler::equal, L); 2131 __ stop("no pending exception allowed on exit from monitorenter"); 2132 __ bind(L); 2133 } 2134 #endif 2135 __ jmp(lock_done); 2136 2137 // END Slow path lock 2138 2139 // BEGIN Slow path unlock 2140 __ bind(slow_path_unlock); 2141 __ vzeroupper(); 2142 // Slow path unlock 2143 2144 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2145 save_native_result(masm, ret_type, stack_slots); 2146 } 2147 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2148 2149 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 2150 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 2151 2152 2153 // should be a peal 2154 // +wordSize because of the push above 2155 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2156 __ push(thread); 2157 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 2158 __ push(rax); 2159 2160 __ push(obj_reg); 2161 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); 2162 __ addptr(rsp, 3*wordSize); 2163 #ifdef ASSERT 2164 { 2165 Label L; 2166 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2167 __ jcc(Assembler::equal, L); 2168 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2169 __ bind(L); 2170 } 2171 #endif /* ASSERT */ 2172 2173 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 2174 2175 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2176 restore_native_result(masm, ret_type, stack_slots); 2177 } 2178 __ jmp(unlock_done); 2179 // END Slow path unlock 2180 2181 } 2182 2183 // SLOW PATH Reguard the stack if needed 2184 2185 __ bind(reguard); 2186 __ vzeroupper(); 2187 save_native_result(masm, ret_type, stack_slots); 2188 { 2189 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 2190 } 2191 restore_native_result(masm, ret_type, stack_slots); 2192 __ jmp(reguard_done); 2193 2194 2195 // BEGIN EXCEPTION PROCESSING 2196 2197 if (!is_critical_native) { 2198 // Forward the exception 2199 __ bind(exception_pending); 2200 2201 // remove possible return value from FPU register stack 2202 __ empty_FPU_stack(); 2203 2204 // pop our frame 2205 __ leave(); 2206 // and forward the exception 2207 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2208 } 2209 2210 __ flush(); 2211 2212 nmethod *nm = nmethod::new_native_nmethod(method, 2213 compile_id, 2214 masm->code(), 2215 vep_offset, 2216 frame_complete, 2217 stack_slots / VMRegImpl::slots_per_word, 2218 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2219 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2220 oop_maps); 2221 2222 return nm; 2223 2224 } 2225 2226 // this function returns the adjust size (in number of words) to a c2i adapter 2227 // activation for use during deoptimization 2228 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { 2229 return (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2230 } 2231 2232 2233 // Number of stack slots between incoming argument block and the start of 2234 // a new frame. The PROLOG must add this many slots to the stack. The 2235 // EPILOG must remove this many slots. Intel needs one slot for 2236 // return address and one for rbp, (must save rbp) 2237 uint SharedRuntime::in_preserve_stack_slots() { 2238 return 2+VerifyStackAtCalls; 2239 } 2240 2241 uint SharedRuntime::out_preserve_stack_slots() { 2242 return 0; 2243 } 2244 2245 //------------------------------generate_deopt_blob---------------------------- 2246 void SharedRuntime::generate_deopt_blob() { 2247 // allocate space for the code 2248 ResourceMark rm; 2249 // setup code generation tools 2250 // note: the buffer code size must account for StackShadowPages=50 2251 CodeBuffer buffer("deopt_blob", 1536, 1024); 2252 MacroAssembler* masm = new MacroAssembler(&buffer); 2253 int frame_size_in_words; 2254 OopMap* map = NULL; 2255 // Account for the extra args we place on the stack 2256 // by the time we call fetch_unroll_info 2257 const int additional_words = 2; // deopt kind, thread 2258 2259 OopMapSet *oop_maps = new OopMapSet(); 2260 2261 // ------------- 2262 // This code enters when returning to a de-optimized nmethod. A return 2263 // address has been pushed on the the stack, and return values are in 2264 // registers. 2265 // If we are doing a normal deopt then we were called from the patched 2266 // nmethod from the point we returned to the nmethod. So the return 2267 // address on the stack is wrong by NativeCall::instruction_size 2268 // We will adjust the value to it looks like we have the original return 2269 // address on the stack (like when we eagerly deoptimized). 2270 // In the case of an exception pending with deoptimized then we enter 2271 // with a return address on the stack that points after the call we patched 2272 // into the exception handler. We have the following register state: 2273 // rax,: exception 2274 // rbx,: exception handler 2275 // rdx: throwing pc 2276 // So in this case we simply jam rdx into the useless return address and 2277 // the stack looks just like we want. 2278 // 2279 // At this point we need to de-opt. We save the argument return 2280 // registers. We call the first C routine, fetch_unroll_info(). This 2281 // routine captures the return values and returns a structure which 2282 // describes the current frame size and the sizes of all replacement frames. 2283 // The current frame is compiled code and may contain many inlined 2284 // functions, each with their own JVM state. We pop the current frame, then 2285 // push all the new frames. Then we call the C routine unpack_frames() to 2286 // populate these frames. Finally unpack_frames() returns us the new target 2287 // address. Notice that callee-save registers are BLOWN here; they have 2288 // already been captured in the vframeArray at the time the return PC was 2289 // patched. 2290 address start = __ pc(); 2291 Label cont; 2292 2293 // Prolog for non exception case! 2294 2295 // Save everything in sight. 2296 2297 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2298 // Normal deoptimization 2299 __ push(Deoptimization::Unpack_deopt); 2300 __ jmp(cont); 2301 2302 int reexecute_offset = __ pc() - start; 2303 2304 // Reexecute case 2305 // return address is the pc describes what bci to do re-execute at 2306 2307 // No need to update map as each call to save_live_registers will produce identical oopmap 2308 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2309 2310 __ push(Deoptimization::Unpack_reexecute); 2311 __ jmp(cont); 2312 2313 int exception_offset = __ pc() - start; 2314 2315 // Prolog for exception case 2316 2317 // all registers are dead at this entry point, except for rax, and 2318 // rdx which contain the exception oop and exception pc 2319 // respectively. Set them in TLS and fall thru to the 2320 // unpack_with_exception_in_tls entry point. 2321 2322 __ get_thread(rdi); 2323 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx); 2324 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax); 2325 2326 int exception_in_tls_offset = __ pc() - start; 2327 2328 // new implementation because exception oop is now passed in JavaThread 2329 2330 // Prolog for exception case 2331 // All registers must be preserved because they might be used by LinearScan 2332 // Exceptiop oop and throwing PC are passed in JavaThread 2333 // tos: stack at point of call to method that threw the exception (i.e. only 2334 // args are on the stack, no return address) 2335 2336 // make room on stack for the return address 2337 // It will be patched later with the throwing pc. The correct value is not 2338 // available now because loading it from memory would destroy registers. 2339 __ push(0); 2340 2341 // Save everything in sight. 2342 2343 // No need to update map as each call to save_live_registers will produce identical oopmap 2344 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2345 2346 // Now it is safe to overwrite any register 2347 2348 // store the correct deoptimization type 2349 __ push(Deoptimization::Unpack_exception); 2350 2351 // load throwing pc from JavaThread and patch it as the return address 2352 // of the current frame. Then clear the field in JavaThread 2353 __ get_thread(rdi); 2354 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset())); 2355 __ movptr(Address(rbp, wordSize), rdx); 2356 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD); 2357 2358 #ifdef ASSERT 2359 // verify that there is really an exception oop in JavaThread 2360 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset())); 2361 __ verify_oop(rax); 2362 2363 // verify that there is no pending exception 2364 Label no_pending_exception; 2365 __ movptr(rax, Address(rdi, Thread::pending_exception_offset())); 2366 __ testptr(rax, rax); 2367 __ jcc(Assembler::zero, no_pending_exception); 2368 __ stop("must not have pending exception here"); 2369 __ bind(no_pending_exception); 2370 #endif 2371 2372 __ bind(cont); 2373 2374 // Compiled code leaves the floating point stack dirty, empty it. 2375 __ empty_FPU_stack(); 2376 2377 2378 // Call C code. Need thread and this frame, but NOT official VM entry 2379 // crud. We cannot block on this call, no GC can happen. 2380 __ get_thread(rcx); 2381 __ push(rcx); 2382 // fetch_unroll_info needs to call last_java_frame() 2383 __ set_last_Java_frame(rcx, noreg, noreg, NULL); 2384 2385 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2386 2387 // Need to have an oopmap that tells fetch_unroll_info where to 2388 // find any register it might need. 2389 2390 oop_maps->add_gc_map( __ pc()-start, map); 2391 2392 // Discard args to fetch_unroll_info 2393 __ pop(rcx); 2394 __ pop(rcx); 2395 2396 __ get_thread(rcx); 2397 __ reset_last_Java_frame(rcx, false); 2398 2399 // Load UnrollBlock into EDI 2400 __ mov(rdi, rax); 2401 2402 // Move the unpack kind to a safe place in the UnrollBlock because 2403 // we are very short of registers 2404 2405 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()); 2406 // retrieve the deopt kind from the UnrollBlock. 2407 __ movl(rax, unpack_kind); 2408 2409 Label noException; 2410 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending? 2411 __ jcc(Assembler::notEqual, noException); 2412 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset())); 2413 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset())); 2414 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD); 2415 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD); 2416 2417 __ verify_oop(rax); 2418 2419 // Overwrite the result registers with the exception results. 2420 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 2421 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 2422 2423 __ bind(noException); 2424 2425 // Stack is back to only having register save data on the stack. 2426 // Now restore the result registers. Everything else is either dead or captured 2427 // in the vframeArray. 2428 2429 RegisterSaver::restore_result_registers(masm); 2430 2431 // Non standard control word may be leaked out through a safepoint blob, and we can 2432 // deopt at a poll point with the non standard control word. However, we should make 2433 // sure the control word is correct after restore_result_registers. 2434 __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std())); 2435 2436 // All of the register save area has been popped of the stack. Only the 2437 // return address remains. 2438 2439 // Pop all the frames we must move/replace. 2440 // 2441 // Frame picture (youngest to oldest) 2442 // 1: self-frame (no frame link) 2443 // 2: deopting frame (no frame link) 2444 // 3: caller of deopting frame (could be compiled/interpreted). 2445 // 2446 // Note: by leaving the return address of self-frame on the stack 2447 // and using the size of frame 2 to adjust the stack 2448 // when we are done the return to frame 3 will still be on the stack. 2449 2450 // Pop deoptimized frame 2451 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 2452 2453 // sp should be pointing at the return address to the caller (3) 2454 2455 // Pick up the initial fp we should save 2456 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 2457 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 2458 2459 #ifdef ASSERT 2460 // Compilers generate code that bang the stack by as much as the 2461 // interpreter would need. So this stack banging should never 2462 // trigger a fault. Verify that it does not on non product builds. 2463 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 2464 __ bang_stack_size(rbx, rcx); 2465 #endif 2466 2467 // Load array of frame pcs into ECX 2468 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2469 2470 __ pop(rsi); // trash the old pc 2471 2472 // Load array of frame sizes into ESI 2473 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 2474 2475 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes()); 2476 2477 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 2478 __ movl(counter, rbx); 2479 2480 // Now adjust the caller's stack to make up for the extra locals 2481 // but record the original sp so that we can save it in the skeletal interpreter 2482 // frame and the stack walking of interpreter_sender will get the unextended sp 2483 // value and not the "real" sp value. 2484 2485 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes()); 2486 __ movptr(sp_temp, rsp); 2487 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes())); 2488 __ subptr(rsp, rbx); 2489 2490 // Push interpreter frames in a loop 2491 Label loop; 2492 __ bind(loop); 2493 __ movptr(rbx, Address(rsi, 0)); // Load frame size 2494 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand 2495 __ pushptr(Address(rcx, 0)); // save return address 2496 __ enter(); // save old & set new rbp, 2497 __ subptr(rsp, rbx); // Prolog! 2498 __ movptr(rbx, sp_temp); // sender's sp 2499 // This value is corrected by layout_activation_impl 2500 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 2501 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable 2502 __ movptr(sp_temp, rsp); // pass to next frame 2503 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 2504 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 2505 __ decrementl(counter); // decrement counter 2506 __ jcc(Assembler::notZero, loop); 2507 __ pushptr(Address(rcx, 0)); // save final return address 2508 2509 // Re-push self-frame 2510 __ enter(); // save old & set new rbp, 2511 2512 // Return address and rbp, are in place 2513 // We'll push additional args later. Just allocate a full sized 2514 // register save area 2515 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize); 2516 2517 // Restore frame locals after moving the frame 2518 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 2519 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 2520 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local 2521 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 2522 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 2523 2524 // Set up the args to unpack_frame 2525 2526 __ pushl(unpack_kind); // get the unpack_kind value 2527 __ get_thread(rcx); 2528 __ push(rcx); 2529 2530 // set last_Java_sp, last_Java_fp 2531 __ set_last_Java_frame(rcx, noreg, rbp, NULL); 2532 2533 // Call C code. Need thread but NOT official VM entry 2534 // crud. We cannot block on this call, no GC can happen. Call should 2535 // restore return values to their stack-slots with the new SP. 2536 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2537 // Set an oopmap for the call site 2538 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 )); 2539 2540 // rax, contains the return result type 2541 __ push(rax); 2542 2543 __ get_thread(rcx); 2544 __ reset_last_Java_frame(rcx, false); 2545 2546 // Collect return values 2547 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize)); 2548 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize)); 2549 2550 // Clear floating point stack before returning to interpreter 2551 __ empty_FPU_stack(); 2552 2553 // Check if we should push the float or double return value. 2554 Label results_done, yes_double_value; 2555 __ cmpl(Address(rsp, 0), T_DOUBLE); 2556 __ jcc (Assembler::zero, yes_double_value); 2557 __ cmpl(Address(rsp, 0), T_FLOAT); 2558 __ jcc (Assembler::notZero, results_done); 2559 2560 // return float value as expected by interpreter 2561 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 2562 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 2563 __ jmp(results_done); 2564 2565 // return double value as expected by interpreter 2566 __ bind(yes_double_value); 2567 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 2568 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 2569 2570 __ bind(results_done); 2571 2572 // Pop self-frame. 2573 __ leave(); // Epilog! 2574 2575 // Jump to interpreter 2576 __ ret(0); 2577 2578 // ------------- 2579 // make sure all code is generated 2580 masm->flush(); 2581 2582 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2583 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2584 } 2585 2586 2587 #ifdef COMPILER2 2588 //------------------------------generate_uncommon_trap_blob-------------------- 2589 void SharedRuntime::generate_uncommon_trap_blob() { 2590 // allocate space for the code 2591 ResourceMark rm; 2592 // setup code generation tools 2593 CodeBuffer buffer("uncommon_trap_blob", 512, 512); 2594 MacroAssembler* masm = new MacroAssembler(&buffer); 2595 2596 enum frame_layout { 2597 arg0_off, // thread sp + 0 // Arg location for 2598 arg1_off, // unloaded_class_index sp + 1 // calling C 2599 arg2_off, // exec_mode sp + 2 2600 // The frame sender code expects that rbp will be in the "natural" place and 2601 // will override any oopMap setting for it. We must therefore force the layout 2602 // so that it agrees with the frame sender code. 2603 rbp_off, // callee saved register sp + 3 2604 return_off, // slot for return address sp + 4 2605 framesize 2606 }; 2607 2608 address start = __ pc(); 2609 2610 if (UseRTMLocking) { 2611 // Abort RTM transaction before possible nmethod deoptimization. 2612 __ xabort(0); 2613 } 2614 2615 // Push self-frame. 2616 __ subptr(rsp, return_off*wordSize); // Epilog! 2617 2618 // rbp, is an implicitly saved callee saved register (i.e. the calling 2619 // convention will save restore it in prolog/epilog) Other than that 2620 // there are no callee save registers no that adapter frames are gone. 2621 __ movptr(Address(rsp, rbp_off*wordSize), rbp); 2622 2623 // Clear the floating point exception stack 2624 __ empty_FPU_stack(); 2625 2626 // set last_Java_sp 2627 __ get_thread(rdx); 2628 __ set_last_Java_frame(rdx, noreg, noreg, NULL); 2629 2630 // Call C code. Need thread but NOT official VM entry 2631 // crud. We cannot block on this call, no GC can happen. Call should 2632 // capture callee-saved registers as well as return values. 2633 __ movptr(Address(rsp, arg0_off*wordSize), rdx); 2634 // argument already in ECX 2635 __ movl(Address(rsp, arg1_off*wordSize),rcx); 2636 __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap); 2637 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); 2638 2639 // Set an oopmap for the call site 2640 OopMapSet *oop_maps = new OopMapSet(); 2641 OopMap* map = new OopMap( framesize, 0 ); 2642 // No oopMap for rbp, it is known implicitly 2643 2644 oop_maps->add_gc_map( __ pc()-start, map); 2645 2646 __ get_thread(rcx); 2647 2648 __ reset_last_Java_frame(rcx, false); 2649 2650 // Load UnrollBlock into EDI 2651 __ movptr(rdi, rax); 2652 2653 #ifdef ASSERT 2654 { Label L; 2655 __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()), 2656 (int32_t)Deoptimization::Unpack_uncommon_trap); 2657 __ jcc(Assembler::equal, L); 2658 __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap"); 2659 __ bind(L); 2660 } 2661 #endif 2662 2663 // Pop all the frames we must move/replace. 2664 // 2665 // Frame picture (youngest to oldest) 2666 // 1: self-frame (no frame link) 2667 // 2: deopting frame (no frame link) 2668 // 3: caller of deopting frame (could be compiled/interpreted). 2669 2670 // Pop self-frame. We have no frame, and must rely only on EAX and ESP. 2671 __ addptr(rsp,(framesize-1)*wordSize); // Epilog! 2672 2673 // Pop deoptimized frame 2674 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 2675 __ addptr(rsp, rcx); 2676 2677 // sp should be pointing at the return address to the caller (3) 2678 2679 // Pick up the initial fp we should save 2680 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 2681 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 2682 2683 #ifdef ASSERT 2684 // Compilers generate code that bang the stack by as much as the 2685 // interpreter would need. So this stack banging should never 2686 // trigger a fault. Verify that it does not on non product builds. 2687 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 2688 __ bang_stack_size(rbx, rcx); 2689 #endif 2690 2691 // Load array of frame pcs into ECX 2692 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2693 2694 __ pop(rsi); // trash the pc 2695 2696 // Load array of frame sizes into ESI 2697 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 2698 2699 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes()); 2700 2701 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 2702 __ movl(counter, rbx); 2703 2704 // Now adjust the caller's stack to make up for the extra locals 2705 // but record the original sp so that we can save it in the skeletal interpreter 2706 // frame and the stack walking of interpreter_sender will get the unextended sp 2707 // value and not the "real" sp value. 2708 2709 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes()); 2710 __ movptr(sp_temp, rsp); 2711 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes())); 2712 __ subptr(rsp, rbx); 2713 2714 // Push interpreter frames in a loop 2715 Label loop; 2716 __ bind(loop); 2717 __ movptr(rbx, Address(rsi, 0)); // Load frame size 2718 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand 2719 __ pushptr(Address(rcx, 0)); // save return address 2720 __ enter(); // save old & set new rbp, 2721 __ subptr(rsp, rbx); // Prolog! 2722 __ movptr(rbx, sp_temp); // sender's sp 2723 // This value is corrected by layout_activation_impl 2724 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD ); 2725 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable 2726 __ movptr(sp_temp, rsp); // pass to next frame 2727 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 2728 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 2729 __ decrementl(counter); // decrement counter 2730 __ jcc(Assembler::notZero, loop); 2731 __ pushptr(Address(rcx, 0)); // save final return address 2732 2733 // Re-push self-frame 2734 __ enter(); // save old & set new rbp, 2735 __ subptr(rsp, (framesize-2) * wordSize); // Prolog! 2736 2737 2738 // set last_Java_sp, last_Java_fp 2739 __ get_thread(rdi); 2740 __ set_last_Java_frame(rdi, noreg, rbp, NULL); 2741 2742 // Call C code. Need thread but NOT official VM entry 2743 // crud. We cannot block on this call, no GC can happen. Call should 2744 // restore return values to their stack-slots with the new SP. 2745 __ movptr(Address(rsp,arg0_off*wordSize),rdi); 2746 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap); 2747 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2748 // Set an oopmap for the call site 2749 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) ); 2750 2751 __ get_thread(rdi); 2752 __ reset_last_Java_frame(rdi, true); 2753 2754 // Pop self-frame. 2755 __ leave(); // Epilog! 2756 2757 // Jump to interpreter 2758 __ ret(0); 2759 2760 // ------------- 2761 // make sure all code is generated 2762 masm->flush(); 2763 2764 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize); 2765 } 2766 #endif // COMPILER2 2767 2768 //------------------------------generate_handler_blob------ 2769 // 2770 // Generate a special Compile2Runtime blob that saves all registers, 2771 // setup oopmap, and calls safepoint code to stop the compiled code for 2772 // a safepoint. 2773 // 2774 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2775 2776 // Account for thread arg in our frame 2777 const int additional_words = 1; 2778 int frame_size_in_words; 2779 2780 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 2781 2782 ResourceMark rm; 2783 OopMapSet *oop_maps = new OopMapSet(); 2784 OopMap* map; 2785 2786 // allocate space for the code 2787 // setup code generation tools 2788 CodeBuffer buffer("handler_blob", 1024, 512); 2789 MacroAssembler* masm = new MacroAssembler(&buffer); 2790 2791 const Register java_thread = rdi; // callee-saved for VC++ 2792 address start = __ pc(); 2793 address call_pc = NULL; 2794 bool cause_return = (poll_type == POLL_AT_RETURN); 2795 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); 2796 2797 if (UseRTMLocking) { 2798 // Abort RTM transaction before calling runtime 2799 // because critical section will be large and will be 2800 // aborted anyway. Also nmethod could be deoptimized. 2801 __ xabort(0); 2802 } 2803 2804 // If cause_return is true we are at a poll_return and there is 2805 // the return address on the stack to the caller on the nmethod 2806 // that is safepoint. We can leave this return on the stack and 2807 // effectively complete the return and safepoint in the caller. 2808 // Otherwise we push space for a return address that the safepoint 2809 // handler will install later to make the stack walking sensible. 2810 if (!cause_return) 2811 __ push(rbx); // Make room for return address (or push it again) 2812 2813 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors); 2814 2815 // The following is basically a call_VM. However, we need the precise 2816 // address of the call in order to generate an oopmap. Hence, we do all the 2817 // work ourselves. 2818 2819 // Push thread argument and setup last_Java_sp 2820 __ get_thread(java_thread); 2821 __ push(java_thread); 2822 __ set_last_Java_frame(java_thread, noreg, noreg, NULL); 2823 2824 // if this was not a poll_return then we need to correct the return address now. 2825 if (!cause_return) { 2826 // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack. 2827 // Additionally, rbx is a callee saved register and we can look at it later to determine 2828 // if someone changed the return address for us! 2829 __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset())); 2830 __ movptr(Address(rbp, wordSize), rbx); 2831 } 2832 2833 // do the call 2834 __ call(RuntimeAddress(call_ptr)); 2835 2836 // Set an oopmap for the call site. This oopmap will map all 2837 // oop-registers and debug-info registers as callee-saved. This 2838 // will allow deoptimization at this safepoint to find all possible 2839 // debug-info recordings, as well as let GC find all oops. 2840 2841 oop_maps->add_gc_map( __ pc() - start, map); 2842 2843 // Discard arg 2844 __ pop(rcx); 2845 2846 Label noException; 2847 2848 // Clear last_Java_sp again 2849 __ get_thread(java_thread); 2850 __ reset_last_Java_frame(java_thread, false); 2851 2852 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 2853 __ jcc(Assembler::equal, noException); 2854 2855 // Exception pending 2856 RegisterSaver::restore_live_registers(masm, save_vectors); 2857 2858 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2859 2860 __ bind(noException); 2861 2862 Label no_adjust, bail, not_special; 2863 if (!cause_return) { 2864 // If our stashed return pc was modified by the runtime we avoid touching it 2865 __ cmpptr(rbx, Address(rbp, wordSize)); 2866 __ jccb(Assembler::notEqual, no_adjust); 2867 2868 // Skip over the poll instruction. 2869 // See NativeInstruction::is_safepoint_poll() 2870 // Possible encodings: 2871 // 85 00 test %eax,(%rax) 2872 // 85 01 test %eax,(%rcx) 2873 // 85 02 test %eax,(%rdx) 2874 // 85 03 test %eax,(%rbx) 2875 // 85 06 test %eax,(%rsi) 2876 // 85 07 test %eax,(%rdi) 2877 // 2878 // 85 04 24 test %eax,(%rsp) 2879 // 85 45 00 test %eax,0x0(%rbp) 2880 2881 #ifdef ASSERT 2882 __ movptr(rax, rbx); // remember where 0x85 should be, for verification below 2883 #endif 2884 // rsp/rbp base encoding takes 3 bytes with the following register values: 2885 // rsp 0x04 2886 // rbp 0x05 2887 __ movzbl(rcx, Address(rbx, 1)); 2888 __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05 2889 __ subptr(rcx, 4); // looking for 0x00 .. 0x01 2890 __ cmpptr(rcx, 1); 2891 __ jcc(Assembler::above, not_special); 2892 __ addptr(rbx, 1); 2893 __ bind(not_special); 2894 #ifdef ASSERT 2895 // Verify the correct encoding of the poll we're about to skip. 2896 __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl); 2897 __ jcc(Assembler::notEqual, bail); 2898 // Mask out the modrm bits 2899 __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask); 2900 // rax encodes to 0, so if the bits are nonzero it's incorrect 2901 __ jcc(Assembler::notZero, bail); 2902 #endif 2903 // Adjust return pc forward to step over the safepoint poll instruction 2904 __ addptr(rbx, 2); 2905 __ movptr(Address(rbp, wordSize), rbx); 2906 } 2907 2908 __ bind(no_adjust); 2909 // Normal exit, register restoring and exit 2910 RegisterSaver::restore_live_registers(masm, save_vectors); 2911 2912 __ ret(0); 2913 2914 #ifdef ASSERT 2915 __ bind(bail); 2916 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2917 #endif 2918 2919 // make sure all code is generated 2920 masm->flush(); 2921 2922 // Fill-out other meta info 2923 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2924 } 2925 2926 // 2927 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2928 // 2929 // Generate a stub that calls into vm to find out the proper destination 2930 // of a java call. All the argument registers are live at this point 2931 // but since this is generic code we don't know what they are and the caller 2932 // must do any gc of the args. 2933 // 2934 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2935 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 2936 2937 // allocate space for the code 2938 ResourceMark rm; 2939 2940 CodeBuffer buffer(name, 1000, 512); 2941 MacroAssembler* masm = new MacroAssembler(&buffer); 2942 2943 int frame_size_words; 2944 enum frame_layout { 2945 thread_off, 2946 extra_words }; 2947 2948 OopMapSet *oop_maps = new OopMapSet(); 2949 OopMap* map = NULL; 2950 2951 int start = __ offset(); 2952 2953 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words); 2954 2955 int frame_complete = __ offset(); 2956 2957 const Register thread = rdi; 2958 __ get_thread(rdi); 2959 2960 __ push(thread); 2961 __ set_last_Java_frame(thread, noreg, rbp, NULL); 2962 2963 __ call(RuntimeAddress(destination)); 2964 2965 2966 // Set an oopmap for the call site. 2967 // We need this not only for callee-saved registers, but also for volatile 2968 // registers that the compiler might be keeping live across a safepoint. 2969 2970 oop_maps->add_gc_map( __ offset() - start, map); 2971 2972 // rax, contains the address we are going to jump to assuming no exception got installed 2973 2974 __ addptr(rsp, wordSize); 2975 2976 // clear last_Java_sp 2977 __ reset_last_Java_frame(thread, true); 2978 // check for pending exceptions 2979 Label pending; 2980 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 2981 __ jcc(Assembler::notEqual, pending); 2982 2983 // get the returned Method* 2984 __ get_vm_result_2(rbx, thread); 2985 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx); 2986 2987 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax); 2988 2989 RegisterSaver::restore_live_registers(masm); 2990 2991 // We are back the the original state on entry and ready to go. 2992 2993 __ jmp(rax); 2994 2995 // Pending exception after the safepoint 2996 2997 __ bind(pending); 2998 2999 RegisterSaver::restore_live_registers(masm); 3000 3001 // exception pending => remove activation and forward to exception handler 3002 3003 __ get_thread(thread); 3004 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 3005 __ movptr(rax, Address(thread, Thread::pending_exception_offset())); 3006 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3007 3008 // ------------- 3009 // make sure all code is generated 3010 masm->flush(); 3011 3012 // return the blob 3013 // frame_size_words or bytes?? 3014 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true); 3015 } 3016 3017 #ifdef COMPILER2 3018 RuntimeStub* SharedRuntime::make_native_invoker(address call_target, 3019 int shadow_space_bytes, 3020 const GrowableArray<VMReg>& input_registers, 3021 const GrowableArray<VMReg>& output_registers) { 3022 ShouldNotCallThis(); 3023 return nullptr; 3024 } 3025 #endif