1 /*
   2  * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nativeInst.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/barrierSetAssembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/compiledICHolder.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "prims/methodHandles.hpp"
  42 #include "runtime/jniHandles.hpp"
  43 #include "runtime/safepointMechanism.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "runtime/vm_version.hpp"
  49 #include "utilities/align.hpp"
  50 #include "vmreg_x86.inline.hpp"
  51 #ifdef COMPILER1
  52 #include "c1/c1_Runtime1.hpp"
  53 #endif
  54 #ifdef COMPILER2
  55 #include "opto/runtime.hpp"
  56 #endif
  57 
  58 #define __ masm->
  59 
  60 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  61 
  62 class RegisterSaver {
  63   // Capture info about frame layout
  64 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  65   enum layout {
  66                 fpu_state_off = 0,
  67                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  68                 st0_off, st0H_off,
  69                 st1_off, st1H_off,
  70                 st2_off, st2H_off,
  71                 st3_off, st3H_off,
  72                 st4_off, st4H_off,
  73                 st5_off, st5H_off,
  74                 st6_off, st6H_off,
  75                 st7_off, st7H_off,
  76                 xmm_off,
  77                 DEF_XMM_OFFS(0),
  78                 DEF_XMM_OFFS(1),
  79                 DEF_XMM_OFFS(2),
  80                 DEF_XMM_OFFS(3),
  81                 DEF_XMM_OFFS(4),
  82                 DEF_XMM_OFFS(5),
  83                 DEF_XMM_OFFS(6),
  84                 DEF_XMM_OFFS(7),
  85                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  86                 rdi_off,
  87                 rsi_off,
  88                 ignore_off,  // extra copy of rbp,
  89                 rsp_off,
  90                 rbx_off,
  91                 rdx_off,
  92                 rcx_off,
  93                 rax_off,
  94                 // The frame sender code expects that rbp will be in the "natural" place and
  95                 // will override any oopMap setting for it. We must therefore force the layout
  96                 // so that it agrees with the frame sender code.
  97                 rbp_off,
  98                 return_off,      // slot for return address
  99                 reg_save_size };
 100   enum { FPU_regs_live = flags_off - fpu_state_end };
 101 
 102   public:
 103 
 104   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
 105                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
 106   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 107 
 108   static int rax_offset() { return rax_off; }
 109   static int rbx_offset() { return rbx_off; }
 110 
 111   // Offsets into the register save area
 112   // Used by deoptimization when it is managing result register
 113   // values on its own
 114 
 115   static int raxOffset(void) { return rax_off; }
 116   static int rdxOffset(void) { return rdx_off; }
 117   static int rbxOffset(void) { return rbx_off; }
 118   static int xmm0Offset(void) { return xmm0_off; }
 119   // This really returns a slot in the fp save area, which one is not important
 120   static int fpResultOffset(void) { return st0_off; }
 121 
 122   // During deoptimization only the result register need to be restored
 123   // all the other values have already been extracted.
 124 
 125   static void restore_result_registers(MacroAssembler* masm);
 126 
 127 };
 128 
 129 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 130                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 131   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 132   int ymm_bytes = num_xmm_regs * 16;
 133   int zmm_bytes = num_xmm_regs * 32;
 134 #ifdef COMPILER2
 135   int opmask_state_bytes = KRegisterImpl::number_of_registers * 8;
 136   if (save_vectors) {
 137     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 138     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 139     // Save upper half of YMM registers
 140     int vect_bytes = ymm_bytes;
 141     if (UseAVX > 2) {
 142       // Save upper half of ZMM registers as well
 143       vect_bytes += zmm_bytes;
 144       additional_frame_words += opmask_state_bytes / wordSize;
 145     }
 146     additional_frame_words += vect_bytes / wordSize;
 147   }
 148 #else
 149   assert(!save_vectors, "vectors are generated only by C2");
 150 #endif
 151   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 152   int frame_words = frame_size_in_bytes / wordSize;
 153   *total_frame_words = frame_words;
 154 
 155   assert(FPUStateSizeInWords == 27, "update stack layout");
 156 
 157   // save registers, fpu state, and flags
 158   // We assume caller has already has return address slot on the stack
 159   // We push epb twice in this sequence because we want the real rbp,
 160   // to be under the return like a normal enter and we want to use pusha
 161   // We push by hand instead of using push.
 162   __ enter();
 163   __ pusha();
 164   __ pushf();
 165   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 166   __ push_FPU_state();          // Save FPU state & init
 167 
 168   if (verify_fpu) {
 169     // Some stubs may have non standard FPU control word settings so
 170     // only check and reset the value when it required to be the
 171     // standard value.  The safepoint blob in particular can be used
 172     // in methods which are using the 24 bit control word for
 173     // optimized float math.
 174 
 175 #ifdef ASSERT
 176     // Make sure the control word has the expected value
 177     Label ok;
 178     __ cmpw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 179     __ jccb(Assembler::equal, ok);
 180     __ stop("corrupted control word detected");
 181     __ bind(ok);
 182 #endif
 183 
 184     // Reset the control word to guard against exceptions being unmasked
 185     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 186     // into the on stack copy and then reload that to make sure that the
 187     // current and future values are correct.
 188     __ movw(Address(rsp, 0), StubRoutines::x86::fpu_cntrl_wrd_std());
 189   }
 190 
 191   __ frstor(Address(rsp, 0));
 192   if (!verify_fpu) {
 193     // Set the control word so that exceptions are masked for the
 194     // following code.
 195     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
 196   }
 197 
 198   int off = st0_off;
 199   int delta = st1_off - off;
 200 
 201   // Save the FPU registers in de-opt-able form
 202   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 203     __ fstp_d(Address(rsp, off*wordSize));
 204     off += delta;
 205   }
 206 
 207   off = xmm0_off;
 208   delta = xmm1_off - off;
 209   if(UseSSE == 1) {
 210     // Save the XMM state
 211     for (int n = 0; n < num_xmm_regs; n++) {
 212       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 213       off += delta;
 214     }
 215   } else if(UseSSE >= 2) {
 216     // Save whole 128bit (16 bytes) XMM registers
 217     for (int n = 0; n < num_xmm_regs; n++) {
 218       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 219       off += delta;
 220     }
 221   }
 222 
 223 #ifdef COMPILER2
 224   if (save_vectors) {
 225     __ subptr(rsp, ymm_bytes);
 226     // Save upper half of YMM registers
 227     for (int n = 0; n < num_xmm_regs; n++) {
 228       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 229     }
 230     if (UseAVX > 2) {
 231       __ subptr(rsp, zmm_bytes);
 232       // Save upper half of ZMM registers
 233       for (int n = 0; n < num_xmm_regs; n++) {
 234         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 235       }
 236       __ subptr(rsp, opmask_state_bytes);
 237       // Save opmask registers
 238       for (int n = 0; n < KRegisterImpl::number_of_registers; n++) {
 239         __ kmov(Address(rsp, n*8), as_KRegister(n));
 240       }
 241     }
 242   }
 243 #else
 244   assert(!save_vectors, "vectors are generated only by C2");
 245 #endif
 246 
 247   __ vzeroupper();
 248 
 249   // Set an oopmap for the call site.  This oopmap will map all
 250   // oop-registers and debug-info registers as callee-saved.  This
 251   // will allow deoptimization at this safepoint to find all possible
 252   // debug-info recordings, as well as let GC find all oops.
 253 
 254   OopMapSet *oop_maps = new OopMapSet();
 255   OopMap* map =  new OopMap( frame_words, 0 );
 256 
 257 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 258 #define NEXTREG(x) (x)->as_VMReg()->next()
 259 
 260   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 261   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 262   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 263   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 264   // rbp, location is known implicitly, no oopMap
 265   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 266   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 267 
 268   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 269   off = st0_off;
 270   delta = st1_off - off;
 271   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 272     FloatRegister freg_name = as_FloatRegister(n);
 273     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 274     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 275     off += delta;
 276   }
 277   off = xmm0_off;
 278   delta = xmm1_off - off;
 279   for (int n = 0; n < num_xmm_regs; n++) {
 280     XMMRegister xmm_name = as_XMMRegister(n);
 281     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 282     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 283     off += delta;
 284   }
 285 #undef NEXTREG
 286 #undef STACK_OFFSET
 287 
 288   return map;
 289 }
 290 
 291 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 292   int opmask_state_bytes = 0;
 293   int additional_frame_bytes = 0;
 294   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 295   int ymm_bytes = num_xmm_regs * 16;
 296   int zmm_bytes = num_xmm_regs * 32;
 297   // Recover XMM & FPU state
 298 #ifdef COMPILER2
 299   if (restore_vectors) {
 300     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 301     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 302     // Save upper half of YMM registers
 303     additional_frame_bytes = ymm_bytes;
 304     if (UseAVX > 2) {
 305       // Save upper half of ZMM registers as well
 306       additional_frame_bytes += zmm_bytes;
 307       opmask_state_bytes = KRegisterImpl::number_of_registers * 8;
 308       additional_frame_bytes += opmask_state_bytes;
 309     }
 310   }
 311 #else
 312   assert(!restore_vectors, "vectors are generated only by C2");
 313 #endif
 314 
 315   int off = xmm0_off;
 316   int delta = xmm1_off - off;
 317 
 318   __ vzeroupper();
 319 
 320   if (UseSSE == 1) {
 321     // Restore XMM registers
 322     assert(additional_frame_bytes == 0, "");
 323     for (int n = 0; n < num_xmm_regs; n++) {
 324       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 325       off += delta;
 326     }
 327   } else if (UseSSE >= 2) {
 328     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 329     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 330     for (int n = 0; n < num_xmm_regs; n++) {
 331       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 332       off += delta;
 333     }
 334   }
 335 
 336   if (restore_vectors) {
 337     off = additional_frame_bytes - ymm_bytes;
 338     // Restore upper half of YMM registers.
 339     for (int n = 0; n < num_xmm_regs; n++) {
 340       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16+off));
 341     }
 342     if (UseAVX > 2) {
 343       // Restore upper half of ZMM registers.
 344       off = opmask_state_bytes;
 345       for (int n = 0; n < num_xmm_regs; n++) {
 346         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32+off));
 347       }
 348       for (int n = 0; n < KRegisterImpl::number_of_registers; n++) {
 349         __ kmov(as_KRegister(n), Address(rsp, n*8));
 350       }
 351     }
 352     __ addptr(rsp, additional_frame_bytes);
 353   }
 354 
 355   __ pop_FPU_state();
 356   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 357 
 358   __ popf();
 359   __ popa();
 360   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 361   __ pop(rbp);
 362 }
 363 
 364 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 365 
 366   // Just restore result register. Only used by deoptimization. By
 367   // now any callee save register that needs to be restore to a c2
 368   // caller of the deoptee has been extracted into the vframeArray
 369   // and will be stuffed into the c2i adapter we create for later
 370   // restoration so only result registers need to be restored here.
 371   //
 372 
 373   __ frstor(Address(rsp, 0));      // Restore fpu state
 374 
 375   // Recover XMM & FPU state
 376   if( UseSSE == 1 ) {
 377     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 378   } else if( UseSSE >= 2 ) {
 379     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 380   }
 381   __ movptr(rax, Address(rsp, rax_off*wordSize));
 382   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 383   // Pop all of the register save are off the stack except the return address
 384   __ addptr(rsp, return_off * wordSize);
 385 }
 386 
 387 // Is vector's size (in bytes) bigger than a size saved by default?
 388 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 389 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 390 bool SharedRuntime::is_wide_vector(int size) {
 391   return size > 16;
 392 }
 393 
 394 // The java_calling_convention describes stack locations as ideal slots on
 395 // a frame with no abi restrictions. Since we must observe abi restrictions
 396 // (like the placement of the register window) the slots must be biased by
 397 // the following value.
 398 static int reg2offset_in(VMReg r) {
 399   // Account for saved rbp, and return address
 400   // This should really be in_preserve_stack_slots
 401   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 402 }
 403 
 404 static int reg2offset_out(VMReg r) {
 405   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 406 }
 407 
 408 // ---------------------------------------------------------------------------
 409 // Read the array of BasicTypes from a signature, and compute where the
 410 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 411 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 412 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 413 // as framesizes are fixed.
 414 // VMRegImpl::stack0 refers to the first slot 0(sp).
 415 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 416 // up to RegisterImpl::number_of_registers) are the 32-bit
 417 // integer registers.
 418 
 419 // Pass first two oop/int args in registers ECX and EDX.
 420 // Pass first two float/double args in registers XMM0 and XMM1.
 421 // Doubles have precedence, so if you pass a mix of floats and doubles
 422 // the doubles will grab the registers before the floats will.
 423 
 424 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 425 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 426 // units regardless of build. Of course for i486 there is no 64 bit build
 427 
 428 
 429 // ---------------------------------------------------------------------------
 430 // The compiled Java calling convention.
 431 // Pass first two oop/int args in registers ECX and EDX.
 432 // Pass first two float/double args in registers XMM0 and XMM1.
 433 // Doubles have precedence, so if you pass a mix of floats and doubles
 434 // the doubles will grab the registers before the floats will.
 435 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 436                                            VMRegPair *regs,
 437                                            int total_args_passed) {
 438   uint    stack = 0;          // Starting stack position for args on stack
 439 
 440 
 441   // Pass first two oop/int args in registers ECX and EDX.
 442   uint reg_arg0 = 9999;
 443   uint reg_arg1 = 9999;
 444 
 445   // Pass first two float/double args in registers XMM0 and XMM1.
 446   // Doubles have precedence, so if you pass a mix of floats and doubles
 447   // the doubles will grab the registers before the floats will.
 448   // CNC - TURNED OFF FOR non-SSE.
 449   //       On Intel we have to round all doubles (and most floats) at
 450   //       call sites by storing to the stack in any case.
 451   // UseSSE=0 ==> Don't Use ==> 9999+0
 452   // UseSSE=1 ==> Floats only ==> 9999+1
 453   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 454   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 455   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 456   uint freg_arg0 = 9999+fargs;
 457   uint freg_arg1 = 9999+fargs;
 458 
 459   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 460   int i;
 461   for( i = 0; i < total_args_passed; i++) {
 462     if( sig_bt[i] == T_DOUBLE ) {
 463       // first 2 doubles go in registers
 464       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 465       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 466       else // Else double is passed low on the stack to be aligned.
 467         stack += 2;
 468     } else if( sig_bt[i] == T_LONG ) {
 469       stack += 2;
 470     }
 471   }
 472   int dstack = 0;             // Separate counter for placing doubles
 473 
 474   // Now pick where all else goes.
 475   for( i = 0; i < total_args_passed; i++) {
 476     // From the type and the argument number (count) compute the location
 477     switch( sig_bt[i] ) {
 478     case T_SHORT:
 479     case T_CHAR:
 480     case T_BYTE:
 481     case T_BOOLEAN:
 482     case T_INT:
 483     case T_ARRAY:
 484     case T_OBJECT:
 485     case T_ADDRESS:
 486       if( reg_arg0 == 9999 )  {
 487         reg_arg0 = i;
 488         regs[i].set1(rcx->as_VMReg());
 489       } else if( reg_arg1 == 9999 )  {
 490         reg_arg1 = i;
 491         regs[i].set1(rdx->as_VMReg());
 492       } else {
 493         regs[i].set1(VMRegImpl::stack2reg(stack++));
 494       }
 495       break;
 496     case T_FLOAT:
 497       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 498         freg_arg0 = i;
 499         regs[i].set1(xmm0->as_VMReg());
 500       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 501         freg_arg1 = i;
 502         regs[i].set1(xmm1->as_VMReg());
 503       } else {
 504         regs[i].set1(VMRegImpl::stack2reg(stack++));
 505       }
 506       break;
 507     case T_LONG:
 508       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 509       regs[i].set2(VMRegImpl::stack2reg(dstack));
 510       dstack += 2;
 511       break;
 512     case T_DOUBLE:
 513       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 514       if( freg_arg0 == (uint)i ) {
 515         regs[i].set2(xmm0->as_VMReg());
 516       } else if( freg_arg1 == (uint)i ) {
 517         regs[i].set2(xmm1->as_VMReg());
 518       } else {
 519         regs[i].set2(VMRegImpl::stack2reg(dstack));
 520         dstack += 2;
 521       }
 522       break;
 523     case T_VOID: regs[i].set_bad(); break;
 524       break;
 525     default:
 526       ShouldNotReachHere();
 527       break;
 528     }
 529   }
 530 
 531   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 532   return align_up(stack, 2);
 533 }
 534 
 535 // Patch the callers callsite with entry to compiled code if it exists.
 536 static void patch_callers_callsite(MacroAssembler *masm) {
 537   Label L;
 538   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 539   __ jcc(Assembler::equal, L);
 540   // Schedule the branch target address early.
 541   // Call into the VM to patch the caller, then jump to compiled callee
 542   // rax, isn't live so capture return address while we easily can
 543   __ movptr(rax, Address(rsp, 0));
 544   __ pusha();
 545   __ pushf();
 546 
 547   if (UseSSE == 1) {
 548     __ subptr(rsp, 2*wordSize);
 549     __ movflt(Address(rsp, 0), xmm0);
 550     __ movflt(Address(rsp, wordSize), xmm1);
 551   }
 552   if (UseSSE >= 2) {
 553     __ subptr(rsp, 4*wordSize);
 554     __ movdbl(Address(rsp, 0), xmm0);
 555     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 556   }
 557 #ifdef COMPILER2
 558   // C2 may leave the stack dirty if not in SSE2+ mode
 559   if (UseSSE >= 2) {
 560     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 561   } else {
 562     __ empty_FPU_stack();
 563   }
 564 #endif /* COMPILER2 */
 565 
 566   // VM needs caller's callsite
 567   __ push(rax);
 568   // VM needs target method
 569   __ push(rbx);
 570   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 571   __ addptr(rsp, 2*wordSize);
 572 
 573   if (UseSSE == 1) {
 574     __ movflt(xmm0, Address(rsp, 0));
 575     __ movflt(xmm1, Address(rsp, wordSize));
 576     __ addptr(rsp, 2*wordSize);
 577   }
 578   if (UseSSE >= 2) {
 579     __ movdbl(xmm0, Address(rsp, 0));
 580     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 581     __ addptr(rsp, 4*wordSize);
 582   }
 583 
 584   __ popf();
 585   __ popa();
 586   __ bind(L);
 587 }
 588 
 589 
 590 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 591   int next_off = st_off - Interpreter::stackElementSize;
 592   __ movdbl(Address(rsp, next_off), r);
 593 }
 594 
 595 static void gen_c2i_adapter(MacroAssembler *masm,
 596                             int total_args_passed,
 597                             int comp_args_on_stack,
 598                             const BasicType *sig_bt,
 599                             const VMRegPair *regs,
 600                             Label& skip_fixup) {
 601   // Before we get into the guts of the C2I adapter, see if we should be here
 602   // at all.  We've come from compiled code and are attempting to jump to the
 603   // interpreter, which means the caller made a static call to get here
 604   // (vcalls always get a compiled target if there is one).  Check for a
 605   // compiled target.  If there is one, we need to patch the caller's call.
 606   patch_callers_callsite(masm);
 607 
 608   __ bind(skip_fixup);
 609 
 610 #ifdef COMPILER2
 611   // C2 may leave the stack dirty if not in SSE2+ mode
 612   if (UseSSE >= 2) {
 613     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 614   } else {
 615     __ empty_FPU_stack();
 616   }
 617 #endif /* COMPILER2 */
 618 
 619   // Since all args are passed on the stack, total_args_passed * interpreter_
 620   // stack_element_size  is the
 621   // space we need.
 622   int extraspace = total_args_passed * Interpreter::stackElementSize;
 623 
 624   // Get return address
 625   __ pop(rax);
 626 
 627   // set senderSP value
 628   __ movptr(rsi, rsp);
 629 
 630   __ subptr(rsp, extraspace);
 631 
 632   // Now write the args into the outgoing interpreter space
 633   for (int i = 0; i < total_args_passed; i++) {
 634     if (sig_bt[i] == T_VOID) {
 635       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 636       continue;
 637     }
 638 
 639     // st_off points to lowest address on stack.
 640     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 641     int next_off = st_off - Interpreter::stackElementSize;
 642 
 643     // Say 4 args:
 644     // i   st_off
 645     // 0   12 T_LONG
 646     // 1    8 T_VOID
 647     // 2    4 T_OBJECT
 648     // 3    0 T_BOOL
 649     VMReg r_1 = regs[i].first();
 650     VMReg r_2 = regs[i].second();
 651     if (!r_1->is_valid()) {
 652       assert(!r_2->is_valid(), "");
 653       continue;
 654     }
 655 
 656     if (r_1->is_stack()) {
 657       // memory to memory use fpu stack top
 658       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 659 
 660       if (!r_2->is_valid()) {
 661         __ movl(rdi, Address(rsp, ld_off));
 662         __ movptr(Address(rsp, st_off), rdi);
 663       } else {
 664 
 665         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 666         // st_off == MSW, st_off-wordSize == LSW
 667 
 668         __ movptr(rdi, Address(rsp, ld_off));
 669         __ movptr(Address(rsp, next_off), rdi);
 670 #ifndef _LP64
 671         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 672         __ movptr(Address(rsp, st_off), rdi);
 673 #else
 674 #ifdef ASSERT
 675         // Overwrite the unused slot with known junk
 676         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 677         __ movptr(Address(rsp, st_off), rax);
 678 #endif /* ASSERT */
 679 #endif // _LP64
 680       }
 681     } else if (r_1->is_Register()) {
 682       Register r = r_1->as_Register();
 683       if (!r_2->is_valid()) {
 684         __ movl(Address(rsp, st_off), r);
 685       } else {
 686         // long/double in gpr
 687         NOT_LP64(ShouldNotReachHere());
 688         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 689         // T_DOUBLE and T_LONG use two slots in the interpreter
 690         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 691           // long/double in gpr
 692 #ifdef ASSERT
 693           // Overwrite the unused slot with known junk
 694           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 695           __ movptr(Address(rsp, st_off), rax);
 696 #endif /* ASSERT */
 697           __ movptr(Address(rsp, next_off), r);
 698         } else {
 699           __ movptr(Address(rsp, st_off), r);
 700         }
 701       }
 702     } else {
 703       assert(r_1->is_XMMRegister(), "");
 704       if (!r_2->is_valid()) {
 705         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 706       } else {
 707         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 708         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 709       }
 710     }
 711   }
 712 
 713   // Schedule the branch target address early.
 714   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 715   // And repush original return address
 716   __ push(rax);
 717   __ jmp(rcx);
 718 }
 719 
 720 
 721 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 722   int next_val_off = ld_off - Interpreter::stackElementSize;
 723   __ movdbl(r, Address(saved_sp, next_val_off));
 724 }
 725 
 726 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 727                         address code_start, address code_end,
 728                         Label& L_ok) {
 729   Label L_fail;
 730   __ lea(temp_reg, ExternalAddress(code_start));
 731   __ cmpptr(pc_reg, temp_reg);
 732   __ jcc(Assembler::belowEqual, L_fail);
 733   __ lea(temp_reg, ExternalAddress(code_end));
 734   __ cmpptr(pc_reg, temp_reg);
 735   __ jcc(Assembler::below, L_ok);
 736   __ bind(L_fail);
 737 }
 738 
 739 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 740                                     int total_args_passed,
 741                                     int comp_args_on_stack,
 742                                     const BasicType *sig_bt,
 743                                     const VMRegPair *regs) {
 744   // Note: rsi contains the senderSP on entry. We must preserve it since
 745   // we may do a i2c -> c2i transition if we lose a race where compiled
 746   // code goes non-entrant while we get args ready.
 747 
 748   // Adapters can be frameless because they do not require the caller
 749   // to perform additional cleanup work, such as correcting the stack pointer.
 750   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 751   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 752   // even if a callee has modified the stack pointer.
 753   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 754   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 755   // up via the senderSP register).
 756   // In other words, if *either* the caller or callee is interpreted, we can
 757   // get the stack pointer repaired after a call.
 758   // This is why c2i and i2c adapters cannot be indefinitely composed.
 759   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 760   // both caller and callee would be compiled methods, and neither would
 761   // clean up the stack pointer changes performed by the two adapters.
 762   // If this happens, control eventually transfers back to the compiled
 763   // caller, but with an uncorrected stack, causing delayed havoc.
 764 
 765   // Pick up the return address
 766   __ movptr(rax, Address(rsp, 0));
 767 
 768   if (VerifyAdapterCalls &&
 769       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 770     // So, let's test for cascading c2i/i2c adapters right now.
 771     //  assert(Interpreter::contains($return_addr) ||
 772     //         StubRoutines::contains($return_addr),
 773     //         "i2c adapter must return to an interpreter frame");
 774     __ block_comment("verify_i2c { ");
 775     Label L_ok;
 776     if (Interpreter::code() != NULL)
 777       range_check(masm, rax, rdi,
 778                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 779                   L_ok);
 780     if (StubRoutines::code1() != NULL)
 781       range_check(masm, rax, rdi,
 782                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 783                   L_ok);
 784     if (StubRoutines::code2() != NULL)
 785       range_check(masm, rax, rdi,
 786                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 787                   L_ok);
 788     const char* msg = "i2c adapter must return to an interpreter frame";
 789     __ block_comment(msg);
 790     __ stop(msg);
 791     __ bind(L_ok);
 792     __ block_comment("} verify_i2ce ");
 793   }
 794 
 795   // Must preserve original SP for loading incoming arguments because
 796   // we need to align the outgoing SP for compiled code.
 797   __ movptr(rdi, rsp);
 798 
 799   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 800   // in registers, we will occasionally have no stack args.
 801   int comp_words_on_stack = 0;
 802   if (comp_args_on_stack) {
 803     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 804     // registers are below.  By subtracting stack0, we either get a negative
 805     // number (all values in registers) or the maximum stack slot accessed.
 806     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 807     // Convert 4-byte stack slots to words.
 808     comp_words_on_stack = align_up(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 809     // Round up to miminum stack alignment, in wordSize
 810     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 811     __ subptr(rsp, comp_words_on_stack * wordSize);
 812   }
 813 
 814   // Align the outgoing SP
 815   __ andptr(rsp, -(StackAlignmentInBytes));
 816 
 817   // push the return address on the stack (note that pushing, rather
 818   // than storing it, yields the correct frame alignment for the callee)
 819   __ push(rax);
 820 
 821   // Put saved SP in another register
 822   const Register saved_sp = rax;
 823   __ movptr(saved_sp, rdi);
 824 
 825 
 826   // Will jump to the compiled code just as if compiled code was doing it.
 827   // Pre-load the register-jump target early, to schedule it better.
 828   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 829 
 830   // Now generate the shuffle code.  Pick up all register args and move the
 831   // rest through the floating point stack top.
 832   for (int i = 0; i < total_args_passed; i++) {
 833     if (sig_bt[i] == T_VOID) {
 834       // Longs and doubles are passed in native word order, but misaligned
 835       // in the 32-bit build.
 836       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 837       continue;
 838     }
 839 
 840     // Pick up 0, 1 or 2 words from SP+offset.
 841 
 842     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 843             "scrambled load targets?");
 844     // Load in argument order going down.
 845     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 846     // Point to interpreter value (vs. tag)
 847     int next_off = ld_off - Interpreter::stackElementSize;
 848     //
 849     //
 850     //
 851     VMReg r_1 = regs[i].first();
 852     VMReg r_2 = regs[i].second();
 853     if (!r_1->is_valid()) {
 854       assert(!r_2->is_valid(), "");
 855       continue;
 856     }
 857     if (r_1->is_stack()) {
 858       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 859       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 860 
 861       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 862       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 863       // we be generated.
 864       if (!r_2->is_valid()) {
 865         // __ fld_s(Address(saved_sp, ld_off));
 866         // __ fstp_s(Address(rsp, st_off));
 867         __ movl(rsi, Address(saved_sp, ld_off));
 868         __ movptr(Address(rsp, st_off), rsi);
 869       } else {
 870         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 871         // are accessed as negative so LSW is at LOW address
 872 
 873         // ld_off is MSW so get LSW
 874         // st_off is LSW (i.e. reg.first())
 875         // __ fld_d(Address(saved_sp, next_off));
 876         // __ fstp_d(Address(rsp, st_off));
 877         //
 878         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 879         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 880         // So we must adjust where to pick up the data to match the interpreter.
 881         //
 882         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 883         // are accessed as negative so LSW is at LOW address
 884 
 885         // ld_off is MSW so get LSW
 886         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 887                            next_off : ld_off;
 888         __ movptr(rsi, Address(saved_sp, offset));
 889         __ movptr(Address(rsp, st_off), rsi);
 890 #ifndef _LP64
 891         __ movptr(rsi, Address(saved_sp, ld_off));
 892         __ movptr(Address(rsp, st_off + wordSize), rsi);
 893 #endif // _LP64
 894       }
 895     } else if (r_1->is_Register()) {  // Register argument
 896       Register r = r_1->as_Register();
 897       assert(r != rax, "must be different");
 898       if (r_2->is_valid()) {
 899         //
 900         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 901         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 902         // So we must adjust where to pick up the data to match the interpreter.
 903 
 904         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 905                            next_off : ld_off;
 906 
 907         // this can be a misaligned move
 908         __ movptr(r, Address(saved_sp, offset));
 909 #ifndef _LP64
 910         assert(r_2->as_Register() != rax, "need another temporary register");
 911         // Remember r_1 is low address (and LSB on x86)
 912         // So r_2 gets loaded from high address regardless of the platform
 913         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 914 #endif // _LP64
 915       } else {
 916         __ movl(r, Address(saved_sp, ld_off));
 917       }
 918     } else {
 919       assert(r_1->is_XMMRegister(), "");
 920       if (!r_2->is_valid()) {
 921         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 922       } else {
 923         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 924       }
 925     }
 926   }
 927 
 928   // 6243940 We might end up in handle_wrong_method if
 929   // the callee is deoptimized as we race thru here. If that
 930   // happens we don't want to take a safepoint because the
 931   // caller frame will look interpreted and arguments are now
 932   // "compiled" so it is much better to make this transition
 933   // invisible to the stack walking code. Unfortunately if
 934   // we try and find the callee by normal means a safepoint
 935   // is possible. So we stash the desired callee in the thread
 936   // and the vm will find there should this case occur.
 937 
 938   __ get_thread(rax);
 939   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 940 
 941   // move Method* to rax, in case we end up in an c2i adapter.
 942   // the c2i adapters expect Method* in rax, (c2) because c2's
 943   // resolve stubs return the result (the method) in rax,.
 944   // I'd love to fix this.
 945   __ mov(rax, rbx);
 946 
 947   __ jmp(rdi);
 948 }
 949 
 950 // ---------------------------------------------------------------
 951 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 952                                                             int total_args_passed,
 953                                                             int comp_args_on_stack,
 954                                                             const BasicType *sig_bt,
 955                                                             const VMRegPair *regs,
 956                                                             AdapterFingerPrint* fingerprint) {
 957   address i2c_entry = __ pc();
 958 
 959   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 960 
 961   // -------------------------------------------------------------------------
 962   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 963   // to the interpreter.  The args start out packed in the compiled layout.  They
 964   // need to be unpacked into the interpreter layout.  This will almost always
 965   // require some stack space.  We grow the current (compiled) stack, then repack
 966   // the args.  We  finally end in a jump to the generic interpreter entry point.
 967   // On exit from the interpreter, the interpreter will restore our SP (lest the
 968   // compiled code, which relys solely on SP and not EBP, get sick).
 969 
 970   address c2i_unverified_entry = __ pc();
 971   Label skip_fixup;
 972 
 973   Register holder = rax;
 974   Register receiver = rcx;
 975   Register temp = rbx;
 976 
 977   {
 978 
 979     Label missed;
 980     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 981     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 982     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 983     __ jcc(Assembler::notEqual, missed);
 984     // Method might have been compiled since the call site was patched to
 985     // interpreted if that is the case treat it as a miss so we can get
 986     // the call site corrected.
 987     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 988     __ jcc(Assembler::equal, skip_fixup);
 989 
 990     __ bind(missed);
 991     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 992   }
 993 
 994   address c2i_entry = __ pc();
 995 
 996   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 997   bs->c2i_entry_barrier(masm);
 998 
 999   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1000 
1001   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1002 }
1003 
1004 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1005                                          VMRegPair *regs,
1006                                          VMRegPair *regs2,
1007                                          int total_args_passed) {
1008   assert(regs2 == NULL, "not needed on x86");
1009 // We return the amount of VMRegImpl stack slots we need to reserve for all
1010 // the arguments NOT counting out_preserve_stack_slots.
1011 
1012   uint    stack = 0;        // All arguments on stack
1013 
1014   for( int i = 0; i < total_args_passed; i++) {
1015     // From the type and the argument number (count) compute the location
1016     switch( sig_bt[i] ) {
1017     case T_BOOLEAN:
1018     case T_CHAR:
1019     case T_FLOAT:
1020     case T_BYTE:
1021     case T_SHORT:
1022     case T_INT:
1023     case T_OBJECT:
1024     case T_ARRAY:
1025     case T_ADDRESS:
1026     case T_METADATA:
1027       regs[i].set1(VMRegImpl::stack2reg(stack++));
1028       break;
1029     case T_LONG:
1030     case T_DOUBLE: // The stack numbering is reversed from Java
1031       // Since C arguments do not get reversed, the ordering for
1032       // doubles on the stack must be opposite the Java convention
1033       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1034       regs[i].set2(VMRegImpl::stack2reg(stack));
1035       stack += 2;
1036       break;
1037     case T_VOID: regs[i].set_bad(); break;
1038     default:
1039       ShouldNotReachHere();
1040       break;
1041     }
1042   }
1043   return stack;
1044 }
1045 
1046 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
1047                                              uint num_bits,
1048                                              uint total_args_passed) {
1049   Unimplemented();
1050   return 0;
1051 }
1052 
1053 // A simple move of integer like type
1054 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1055   if (src.first()->is_stack()) {
1056     if (dst.first()->is_stack()) {
1057       // stack to stack
1058       // __ ld(FP, reg2offset(src.first()), L5);
1059       // __ st(L5, SP, reg2offset(dst.first()));
1060       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1061       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1062     } else {
1063       // stack to reg
1064       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1065     }
1066   } else if (dst.first()->is_stack()) {
1067     // reg to stack
1068     // no need to sign extend on 64bit
1069     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1070   } else {
1071     if (dst.first() != src.first()) {
1072       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1073     }
1074   }
1075 }
1076 
1077 // An oop arg. Must pass a handle not the oop itself
1078 static void object_move(MacroAssembler* masm,
1079                         OopMap* map,
1080                         int oop_handle_offset,
1081                         int framesize_in_slots,
1082                         VMRegPair src,
1083                         VMRegPair dst,
1084                         bool is_receiver,
1085                         int* receiver_offset) {
1086 
1087   // Because of the calling conventions we know that src can be a
1088   // register or a stack location. dst can only be a stack location.
1089 
1090   assert(dst.first()->is_stack(), "must be stack");
1091   // must pass a handle. First figure out the location we use as a handle
1092 
1093   if (src.first()->is_stack()) {
1094     // Oop is already on the stack as an argument
1095     Register rHandle = rax;
1096     Label nil;
1097     __ xorptr(rHandle, rHandle);
1098     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1099     __ jcc(Assembler::equal, nil);
1100     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1101     __ bind(nil);
1102     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1103 
1104     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1105     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1106     if (is_receiver) {
1107       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1108     }
1109   } else {
1110     // Oop is in an a register we must store it to the space we reserve
1111     // on the stack for oop_handles
1112     const Register rOop = src.first()->as_Register();
1113     const Register rHandle = rax;
1114     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1115     int offset = oop_slot*VMRegImpl::stack_slot_size;
1116     Label skip;
1117     __ movptr(Address(rsp, offset), rOop);
1118     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1119     __ xorptr(rHandle, rHandle);
1120     __ cmpptr(rOop, (int32_t)NULL_WORD);
1121     __ jcc(Assembler::equal, skip);
1122     __ lea(rHandle, Address(rsp, offset));
1123     __ bind(skip);
1124     // Store the handle parameter
1125     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1126     if (is_receiver) {
1127       *receiver_offset = offset;
1128     }
1129   }
1130 }
1131 
1132 // A float arg may have to do float reg int reg conversion
1133 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1134   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1135 
1136   // Because of the calling convention we know that src is either a stack location
1137   // or an xmm register. dst can only be a stack location.
1138 
1139   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1140 
1141   if (src.first()->is_stack()) {
1142     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1143     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1144   } else {
1145     // reg to stack
1146     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1147   }
1148 }
1149 
1150 // A long move
1151 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1152 
1153   // The only legal possibility for a long_move VMRegPair is:
1154   // 1: two stack slots (possibly unaligned)
1155   // as neither the java  or C calling convention will use registers
1156   // for longs.
1157 
1158   if (src.first()->is_stack() && dst.first()->is_stack()) {
1159     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1160     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1161     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1162     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1163     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1164   } else {
1165     ShouldNotReachHere();
1166   }
1167 }
1168 
1169 // A double move
1170 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1171 
1172   // The only legal possibilities for a double_move VMRegPair are:
1173   // The painful thing here is that like long_move a VMRegPair might be
1174 
1175   // Because of the calling convention we know that src is either
1176   //   1: a single physical register (xmm registers only)
1177   //   2: two stack slots (possibly unaligned)
1178   // dst can only be a pair of stack slots.
1179 
1180   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1181 
1182   if (src.first()->is_stack()) {
1183     // source is all stack
1184     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1185     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1186     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1187     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1188   } else {
1189     // reg to stack
1190     // No worries about stack alignment
1191     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1192   }
1193 }
1194 
1195 
1196 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1197   // We always ignore the frame_slots arg and just use the space just below frame pointer
1198   // which by this time is free to use
1199   switch (ret_type) {
1200   case T_FLOAT:
1201     __ fstp_s(Address(rbp, -wordSize));
1202     break;
1203   case T_DOUBLE:
1204     __ fstp_d(Address(rbp, -2*wordSize));
1205     break;
1206   case T_VOID:  break;
1207   case T_LONG:
1208     __ movptr(Address(rbp, -wordSize), rax);
1209     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1210     break;
1211   default: {
1212     __ movptr(Address(rbp, -wordSize), rax);
1213     }
1214   }
1215 }
1216 
1217 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1218   // We always ignore the frame_slots arg and just use the space just below frame pointer
1219   // which by this time is free to use
1220   switch (ret_type) {
1221   case T_FLOAT:
1222     __ fld_s(Address(rbp, -wordSize));
1223     break;
1224   case T_DOUBLE:
1225     __ fld_d(Address(rbp, -2*wordSize));
1226     break;
1227   case T_LONG:
1228     __ movptr(rax, Address(rbp, -wordSize));
1229     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1230     break;
1231   case T_VOID:  break;
1232   default: {
1233     __ movptr(rax, Address(rbp, -wordSize));
1234     }
1235   }
1236 }
1237 
1238 // Unpack an array argument into a pointer to the body and the length
1239 // if the array is non-null, otherwise pass 0 for both.
1240 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1241   Register tmp_reg = rax;
1242   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1243          "possible collision");
1244   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1245          "possible collision");
1246 
1247   // Pass the length, ptr pair
1248   Label is_null, done;
1249   VMRegPair tmp(tmp_reg->as_VMReg());
1250   if (reg.first()->is_stack()) {
1251     // Load the arg up from the stack
1252     simple_move32(masm, reg, tmp);
1253     reg = tmp;
1254   }
1255   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1256   __ jccb(Assembler::equal, is_null);
1257   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1258   simple_move32(masm, tmp, body_arg);
1259   // load the length relative to the body.
1260   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1261                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1262   simple_move32(masm, tmp, length_arg);
1263   __ jmpb(done);
1264   __ bind(is_null);
1265   // Pass zeros
1266   __ xorptr(tmp_reg, tmp_reg);
1267   simple_move32(masm, tmp, body_arg);
1268   simple_move32(masm, tmp, length_arg);
1269   __ bind(done);
1270 }
1271 
1272 static void verify_oop_args(MacroAssembler* masm,
1273                             const methodHandle& method,
1274                             const BasicType* sig_bt,
1275                             const VMRegPair* regs) {
1276   Register temp_reg = rbx;  // not part of any compiled calling seq
1277   if (VerifyOops) {
1278     for (int i = 0; i < method->size_of_parameters(); i++) {
1279       if (is_reference_type(sig_bt[i])) {
1280         VMReg r = regs[i].first();
1281         assert(r->is_valid(), "bad oop arg");
1282         if (r->is_stack()) {
1283           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1284           __ verify_oop(temp_reg);
1285         } else {
1286           __ verify_oop(r->as_Register());
1287         }
1288       }
1289     }
1290   }
1291 }
1292 
1293 static void gen_special_dispatch(MacroAssembler* masm,
1294                                  const methodHandle& method,
1295                                  const BasicType* sig_bt,
1296                                  const VMRegPair* regs) {
1297   verify_oop_args(masm, method, sig_bt, regs);
1298   vmIntrinsics::ID iid = method->intrinsic_id();
1299 
1300   // Now write the args into the outgoing interpreter space
1301   bool     has_receiver   = false;
1302   Register receiver_reg   = noreg;
1303   int      member_arg_pos = -1;
1304   Register member_reg     = noreg;
1305   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1306   if (ref_kind != 0) {
1307     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1308     member_reg = rbx;  // known to be free at this point
1309     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1310   } else if (iid == vmIntrinsics::_invokeBasic) {
1311     has_receiver = true;
1312   } else {
1313     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1314   }
1315 
1316   if (member_reg != noreg) {
1317     // Load the member_arg into register, if necessary.
1318     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1319     VMReg r = regs[member_arg_pos].first();
1320     if (r->is_stack()) {
1321       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1322     } else {
1323       // no data motion is needed
1324       member_reg = r->as_Register();
1325     }
1326   }
1327 
1328   if (has_receiver) {
1329     // Make sure the receiver is loaded into a register.
1330     assert(method->size_of_parameters() > 0, "oob");
1331     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1332     VMReg r = regs[0].first();
1333     assert(r->is_valid(), "bad receiver arg");
1334     if (r->is_stack()) {
1335       // Porting note:  This assumes that compiled calling conventions always
1336       // pass the receiver oop in a register.  If this is not true on some
1337       // platform, pick a temp and load the receiver from stack.
1338       fatal("receiver always in a register");
1339       receiver_reg = rcx;  // known to be free at this point
1340       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1341     } else {
1342       // no data motion is needed
1343       receiver_reg = r->as_Register();
1344     }
1345   }
1346 
1347   // Figure out which address we are really jumping to:
1348   MethodHandles::generate_method_handle_dispatch(masm, iid,
1349                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1350 }
1351 
1352 // ---------------------------------------------------------------------------
1353 // Generate a native wrapper for a given method.  The method takes arguments
1354 // in the Java compiled code convention, marshals them to the native
1355 // convention (handlizes oops, etc), transitions to native, makes the call,
1356 // returns to java state (possibly blocking), unhandlizes any result and
1357 // returns.
1358 //
1359 // Critical native functions are a shorthand for the use of
1360 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1361 // functions.  The wrapper is expected to unpack the arguments before
1362 // passing them to the callee. Critical native functions leave the state _in_Java,
1363 // since they cannot stop for GC.
1364 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1365 // block and the check for pending exceptions it's impossible for them
1366 // to be thrown.
1367 //
1368 //
1369 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1370                                                 const methodHandle& method,
1371                                                 int compile_id,
1372                                                 BasicType* in_sig_bt,
1373                                                 VMRegPair* in_regs,
1374                                                 BasicType ret_type,
1375                                                 address critical_entry) {
1376   if (method->is_method_handle_intrinsic()) {
1377     vmIntrinsics::ID iid = method->intrinsic_id();
1378     intptr_t start = (intptr_t)__ pc();
1379     int vep_offset = ((intptr_t)__ pc()) - start;
1380     gen_special_dispatch(masm,
1381                          method,
1382                          in_sig_bt,
1383                          in_regs);
1384     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1385     __ flush();
1386     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1387     return nmethod::new_native_nmethod(method,
1388                                        compile_id,
1389                                        masm->code(),
1390                                        vep_offset,
1391                                        frame_complete,
1392                                        stack_slots / VMRegImpl::slots_per_word,
1393                                        in_ByteSize(-1),
1394                                        in_ByteSize(-1),
1395                                        (OopMapSet*)NULL);
1396   }
1397   bool is_critical_native = true;
1398   address native_func = critical_entry;
1399   if (native_func == NULL) {
1400     native_func = method->native_function();
1401     is_critical_native = false;
1402   }
1403   assert(native_func != NULL, "must have function");
1404 
1405   // An OopMap for lock (and class if static)
1406   OopMapSet *oop_maps = new OopMapSet();
1407 
1408   // We have received a description of where all the java arg are located
1409   // on entry to the wrapper. We need to convert these args to where
1410   // the jni function will expect them. To figure out where they go
1411   // we convert the java signature to a C signature by inserting
1412   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1413 
1414   const int total_in_args = method->size_of_parameters();
1415   int total_c_args = total_in_args;
1416   if (!is_critical_native) {
1417     total_c_args += 1;
1418     if (method->is_static()) {
1419       total_c_args++;
1420     }
1421   } else {
1422     for (int i = 0; i < total_in_args; i++) {
1423       if (in_sig_bt[i] == T_ARRAY) {
1424         total_c_args++;
1425       }
1426     }
1427   }
1428 
1429   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1430   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1431   BasicType* in_elem_bt = NULL;
1432 
1433   int argc = 0;
1434   if (!is_critical_native) {
1435     out_sig_bt[argc++] = T_ADDRESS;
1436     if (method->is_static()) {
1437       out_sig_bt[argc++] = T_OBJECT;
1438     }
1439 
1440     for (int i = 0; i < total_in_args ; i++ ) {
1441       out_sig_bt[argc++] = in_sig_bt[i];
1442     }
1443   } else {
1444     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1445     SignatureStream ss(method->signature());
1446     for (int i = 0; i < total_in_args ; i++ ) {
1447       if (in_sig_bt[i] == T_ARRAY) {
1448         // Arrays are passed as int, elem* pair
1449         out_sig_bt[argc++] = T_INT;
1450         out_sig_bt[argc++] = T_ADDRESS;
1451         ss.skip_array_prefix(1);  // skip one '['
1452         assert(ss.is_primitive(), "primitive type expected");
1453         in_elem_bt[i] = ss.type();
1454       } else {
1455         out_sig_bt[argc++] = in_sig_bt[i];
1456         in_elem_bt[i] = T_VOID;
1457       }
1458       if (in_sig_bt[i] != T_VOID) {
1459         assert(in_sig_bt[i] == ss.type() ||
1460                in_sig_bt[i] == T_ARRAY, "must match");
1461         ss.next();
1462       }
1463     }
1464   }
1465 
1466   // Now figure out where the args must be stored and how much stack space
1467   // they require.
1468   int out_arg_slots;
1469   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1470 
1471   // Compute framesize for the wrapper.  We need to handlize all oops in
1472   // registers a max of 2 on x86.
1473 
1474   // Calculate the total number of stack slots we will need.
1475 
1476   // First count the abi requirement plus all of the outgoing args
1477   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1478 
1479   // Now the space for the inbound oop handle area
1480   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1481   if (is_critical_native) {
1482     // Critical natives may have to call out so they need a save area
1483     // for register arguments.
1484     int double_slots = 0;
1485     int single_slots = 0;
1486     for ( int i = 0; i < total_in_args; i++) {
1487       if (in_regs[i].first()->is_Register()) {
1488         const Register reg = in_regs[i].first()->as_Register();
1489         switch (in_sig_bt[i]) {
1490           case T_ARRAY:  // critical array (uses 2 slots on LP64)
1491           case T_BOOLEAN:
1492           case T_BYTE:
1493           case T_SHORT:
1494           case T_CHAR:
1495           case T_INT:  single_slots++; break;
1496           case T_LONG: double_slots++; break;
1497           default:  ShouldNotReachHere();
1498         }
1499       } else if (in_regs[i].first()->is_XMMRegister()) {
1500         switch (in_sig_bt[i]) {
1501           case T_FLOAT:  single_slots++; break;
1502           case T_DOUBLE: double_slots++; break;
1503           default:  ShouldNotReachHere();
1504         }
1505       } else if (in_regs[i].first()->is_FloatRegister()) {
1506         ShouldNotReachHere();
1507       }
1508     }
1509     total_save_slots = double_slots * 2 + single_slots;
1510     // align the save area
1511     if (double_slots != 0) {
1512       stack_slots = align_up(stack_slots, 2);
1513     }
1514   }
1515 
1516   int oop_handle_offset = stack_slots;
1517   stack_slots += total_save_slots;
1518 
1519   // Now any space we need for handlizing a klass if static method
1520 
1521   int klass_slot_offset = 0;
1522   int klass_offset = -1;
1523   int lock_slot_offset = 0;
1524   bool is_static = false;
1525 
1526   if (method->is_static()) {
1527     klass_slot_offset = stack_slots;
1528     stack_slots += VMRegImpl::slots_per_word;
1529     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1530     is_static = true;
1531   }
1532 
1533   // Plus a lock if needed
1534 
1535   if (method->is_synchronized()) {
1536     lock_slot_offset = stack_slots;
1537     stack_slots += VMRegImpl::slots_per_word;
1538   }
1539 
1540   // Now a place (+2) to save return values or temp during shuffling
1541   // + 2 for return address (which we own) and saved rbp,
1542   stack_slots += 4;
1543 
1544   // Ok The space we have allocated will look like:
1545   //
1546   //
1547   // FP-> |                     |
1548   //      |---------------------|
1549   //      | 2 slots for moves   |
1550   //      |---------------------|
1551   //      | lock box (if sync)  |
1552   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1553   //      | klass (if static)   |
1554   //      |---------------------| <- klass_slot_offset
1555   //      | oopHandle area      |
1556   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1557   //      | outbound memory     |
1558   //      | based arguments     |
1559   //      |                     |
1560   //      |---------------------|
1561   //      |                     |
1562   // SP-> | out_preserved_slots |
1563   //
1564   //
1565   // ****************************************************************************
1566   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1567   // arguments off of the stack after the jni call. Before the call we can use
1568   // instructions that are SP relative. After the jni call we switch to FP
1569   // relative instructions instead of re-adjusting the stack on windows.
1570   // ****************************************************************************
1571 
1572 
1573   // Now compute actual number of stack words we need rounding to make
1574   // stack properly aligned.
1575   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1576 
1577   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1578 
1579   intptr_t start = (intptr_t)__ pc();
1580 
1581   // First thing make an ic check to see if we should even be here
1582 
1583   // We are free to use all registers as temps without saving them and
1584   // restoring them except rbp. rbp is the only callee save register
1585   // as far as the interpreter and the compiler(s) are concerned.
1586 
1587 
1588   const Register ic_reg = rax;
1589   const Register receiver = rcx;
1590   Label hit;
1591   Label exception_pending;
1592 
1593   __ verify_oop(receiver);
1594   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1595   __ jcc(Assembler::equal, hit);
1596 
1597   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1598 
1599   // verified entry must be aligned for code patching.
1600   // and the first 5 bytes must be in the same cache line
1601   // if we align at 8 then we will be sure 5 bytes are in the same line
1602   __ align(8);
1603 
1604   __ bind(hit);
1605 
1606   int vep_offset = ((intptr_t)__ pc()) - start;
1607 
1608 #ifdef COMPILER1
1609   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1610   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1611     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1612    }
1613 #endif // COMPILER1
1614 
1615   // The instruction at the verified entry point must be 5 bytes or longer
1616   // because it can be patched on the fly by make_non_entrant. The stack bang
1617   // instruction fits that requirement.
1618 
1619   // Generate stack overflow check
1620   __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
1621 
1622   // Generate a new frame for the wrapper.
1623   __ enter();
1624   // -2 because return address is already present and so is saved rbp
1625   __ subptr(rsp, stack_size - 2*wordSize);
1626 
1627 
1628   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1629   bs->nmethod_entry_barrier(masm);
1630 
1631   // Frame is now completed as far as size and linkage.
1632   int frame_complete = ((intptr_t)__ pc()) - start;
1633 
1634   if (UseRTMLocking) {
1635     // Abort RTM transaction before calling JNI
1636     // because critical section will be large and will be
1637     // aborted anyway. Also nmethod could be deoptimized.
1638     __ xabort(0);
1639   }
1640 
1641   // Calculate the difference between rsp and rbp,. We need to know it
1642   // after the native call because on windows Java Natives will pop
1643   // the arguments and it is painful to do rsp relative addressing
1644   // in a platform independent way. So after the call we switch to
1645   // rbp, relative addressing.
1646 
1647   int fp_adjustment = stack_size - 2*wordSize;
1648 
1649 #ifdef COMPILER2
1650   // C2 may leave the stack dirty if not in SSE2+ mode
1651   if (UseSSE >= 2) {
1652     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1653   } else {
1654     __ empty_FPU_stack();
1655   }
1656 #endif /* COMPILER2 */
1657 
1658   // Compute the rbp, offset for any slots used after the jni call
1659 
1660   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1661 
1662   // We use rdi as a thread pointer because it is callee save and
1663   // if we load it once it is usable thru the entire wrapper
1664   const Register thread = rdi;
1665 
1666    // We use rsi as the oop handle for the receiver/klass
1667    // It is callee save so it survives the call to native
1668 
1669    const Register oop_handle_reg = rsi;
1670 
1671    __ get_thread(thread);
1672 
1673   //
1674   // We immediately shuffle the arguments so that any vm call we have to
1675   // make from here on out (sync slow path, jvmti, etc.) we will have
1676   // captured the oops from our caller and have a valid oopMap for
1677   // them.
1678 
1679   // -----------------
1680   // The Grand Shuffle
1681   //
1682   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1683   // and, if static, the class mirror instead of a receiver.  This pretty much
1684   // guarantees that register layout will not match (and x86 doesn't use reg
1685   // parms though amd does).  Since the native abi doesn't use register args
1686   // and the java conventions does we don't have to worry about collisions.
1687   // All of our moved are reg->stack or stack->stack.
1688   // We ignore the extra arguments during the shuffle and handle them at the
1689   // last moment. The shuffle is described by the two calling convention
1690   // vectors we have in our possession. We simply walk the java vector to
1691   // get the source locations and the c vector to get the destinations.
1692 
1693   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1694 
1695   // Record rsp-based slot for receiver on stack for non-static methods
1696   int receiver_offset = -1;
1697 
1698   // This is a trick. We double the stack slots so we can claim
1699   // the oops in the caller's frame. Since we are sure to have
1700   // more args than the caller doubling is enough to make
1701   // sure we can capture all the incoming oop args from the
1702   // caller.
1703   //
1704   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1705 
1706   // Mark location of rbp,
1707   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1708 
1709   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1710   // Are free to temporaries if we have to do  stack to steck moves.
1711   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1712 
1713   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1714     switch (in_sig_bt[i]) {
1715       case T_ARRAY:
1716         if (is_critical_native) {
1717           VMRegPair in_arg = in_regs[i];
1718           unpack_array_argument(masm, in_arg, in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1719           c_arg++;
1720           break;
1721         }
1722       case T_OBJECT:
1723         assert(!is_critical_native, "no oop arguments");
1724         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1725                     ((i == 0) && (!is_static)),
1726                     &receiver_offset);
1727         break;
1728       case T_VOID:
1729         break;
1730 
1731       case T_FLOAT:
1732         float_move(masm, in_regs[i], out_regs[c_arg]);
1733           break;
1734 
1735       case T_DOUBLE:
1736         assert( i + 1 < total_in_args &&
1737                 in_sig_bt[i + 1] == T_VOID &&
1738                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1739         double_move(masm, in_regs[i], out_regs[c_arg]);
1740         break;
1741 
1742       case T_LONG :
1743         long_move(masm, in_regs[i], out_regs[c_arg]);
1744         break;
1745 
1746       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1747 
1748       default:
1749         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1750     }
1751   }
1752 
1753   // Pre-load a static method's oop into rsi.  Used both by locking code and
1754   // the normal JNI call code.
1755   if (method->is_static() && !is_critical_native) {
1756 
1757     //  load opp into a register
1758     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1759 
1760     // Now handlize the static class mirror it's known not-null.
1761     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1762     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1763 
1764     // Now get the handle
1765     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1766     // store the klass handle as second argument
1767     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1768   }
1769 
1770   // Change state to native (we save the return address in the thread, since it might not
1771   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1772   // points into the right code segment. It does not have to be the correct return pc.
1773   // We use the same pc/oopMap repeatedly when we call out
1774 
1775   intptr_t the_pc = (intptr_t) __ pc();
1776   oop_maps->add_gc_map(the_pc - start, map);
1777 
1778   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1779 
1780 
1781   // We have all of the arguments setup at this point. We must not touch any register
1782   // argument registers at this point (what if we save/restore them there are no oop?
1783 
1784   {
1785     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1786     __ mov_metadata(rax, method());
1787     __ call_VM_leaf(
1788          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1789          thread, rax);
1790   }
1791 
1792   // RedefineClasses() tracing support for obsolete method entry
1793   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1794     __ mov_metadata(rax, method());
1795     __ call_VM_leaf(
1796          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1797          thread, rax);
1798   }
1799 
1800   // These are register definitions we need for locking/unlocking
1801   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1802   const Register obj_reg  = rcx;  // Will contain the oop
1803   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1804 
1805   Label slow_path_lock;
1806   Label lock_done;
1807 
1808   // Lock a synchronized method
1809   if (method->is_synchronized()) {
1810     assert(!is_critical_native, "unhandled");
1811 
1812 
1813     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1814 
1815     // Get the handle (the 2nd argument)
1816     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1817 
1818     // Get address of the box
1819 
1820     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1821 
1822     // Load the oop from the handle
1823     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1824 
1825     if (UseBiasedLocking) {
1826       // Note that oop_handle_reg is trashed during this call
1827       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, noreg, false, lock_done, &slow_path_lock);
1828     }



1829 
1830     // Load immediate 1 into swap_reg %rax,
1831     __ movptr(swap_reg, 1);
1832 
1833     // Load (object->mark() | 1) into swap_reg %rax,
1834     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1835 
1836     // Save (object->mark() | 1) into BasicLock's displaced header
1837     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1838 
1839     // src -> dest iff dest == rax, else rax, <- dest
1840     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1841     __ lock();
1842     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1843     __ jcc(Assembler::equal, lock_done);
1844 
1845     // Test if the oopMark is an obvious stack pointer, i.e.,
1846     //  1) (mark & 3) == 0, and
1847     //  2) rsp <= mark < mark + os::pagesize()
1848     // These 3 tests can be done by evaluating the following
1849     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1850     // assuming both stack pointer and pagesize have their
1851     // least significant 2 bits clear.
1852     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1853 
1854     __ subptr(swap_reg, rsp);
1855     __ andptr(swap_reg, 3 - os::vm_page_size());
1856 
1857     // Save the test result, for recursive case, the result is zero
1858     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1859     __ jcc(Assembler::notEqual, slow_path_lock);




1860     // Slow path will re-enter here
1861     __ bind(lock_done);
1862 
1863     if (UseBiasedLocking) {
1864       // Re-fetch oop_handle_reg as we trashed it above
1865       __ movptr(oop_handle_reg, Address(rsp, wordSize));
1866     }
1867   }
1868 
1869 
1870   // Finally just about ready to make the JNI call
1871 
1872   // get JNIEnv* which is first argument to native
1873   if (!is_critical_native) {
1874     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1875     __ movptr(Address(rsp, 0), rdx);
1876 
1877     // Now set thread in native
1878     __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1879   }
1880 
1881   __ call(RuntimeAddress(native_func));
1882 
1883   // Verify or restore cpu control state after JNI call
1884   __ restore_cpu_control_state_after_jni();
1885 
1886   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1887   // arguments off of the stack. We could just re-adjust the stack pointer here
1888   // and continue to do SP relative addressing but we instead switch to FP
1889   // relative addressing.
1890 
1891   // Unpack native results.
1892   switch (ret_type) {
1893   case T_BOOLEAN: __ c2bool(rax);            break;
1894   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1895   case T_BYTE   : __ sign_extend_byte (rax); break;
1896   case T_SHORT  : __ sign_extend_short(rax); break;
1897   case T_INT    : /* nothing to do */        break;
1898   case T_DOUBLE :
1899   case T_FLOAT  :
1900     // Result is in st0 we'll save as needed
1901     break;
1902   case T_ARRAY:                 // Really a handle
1903   case T_OBJECT:                // Really a handle
1904       break; // can't de-handlize until after safepoint check
1905   case T_VOID: break;
1906   case T_LONG: break;
1907   default       : ShouldNotReachHere();
1908   }
1909 
1910   Label after_transition;
1911 
1912   // If this is a critical native, check for a safepoint or suspend request after the call.
1913   // If a safepoint is needed, transition to native, then to native_trans to handle
1914   // safepoints like the native methods that are not critical natives.
1915   if (is_critical_native) {
1916     Label needs_safepoint;
1917     __ safepoint_poll(needs_safepoint, thread, false /* at_return */, false /* in_nmethod */);
1918     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1919     __ jcc(Assembler::equal, after_transition);
1920     __ bind(needs_safepoint);
1921   }
1922 
1923   // Switch thread to "native transition" state before reading the synchronization state.
1924   // This additional state is necessary because reading and testing the synchronization
1925   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1926   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1927   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1928   //     Thread A is resumed to finish this native method, but doesn't block here since it
1929   //     didn't see any synchronization is progress, and escapes.
1930   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1931 
1932   // Force this write out before the read below
1933   __ membar(Assembler::Membar_mask_bits(
1934             Assembler::LoadLoad | Assembler::LoadStore |
1935             Assembler::StoreLoad | Assembler::StoreStore));
1936 
1937   if (AlwaysRestoreFPU) {
1938     // Make sure the control word is correct.
1939     __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1940   }
1941 
1942   // check for safepoint operation in progress and/or pending suspend requests
1943   { Label Continue, slow_path;
1944 
1945     __ safepoint_poll(slow_path, thread, true /* at_return */, false /* in_nmethod */);
1946 
1947     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1948     __ jcc(Assembler::equal, Continue);
1949     __ bind(slow_path);
1950 
1951     // Don't use call_VM as it will see a possible pending exception and forward it
1952     // and never return here preventing us from clearing _last_native_pc down below.
1953     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1954     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1955     // by hand.
1956     //
1957     __ vzeroupper();
1958 
1959     save_native_result(masm, ret_type, stack_slots);
1960     __ push(thread);
1961     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1962                                               JavaThread::check_special_condition_for_native_trans)));
1963     __ increment(rsp, wordSize);
1964     // Restore any method result value
1965     restore_native_result(masm, ret_type, stack_slots);
1966     __ bind(Continue);
1967   }
1968 
1969   // change thread state
1970   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1971   __ bind(after_transition);
1972 
1973   Label reguard;
1974   Label reguard_done;
1975   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
1976   __ jcc(Assembler::equal, reguard);
1977 
1978   // slow path reguard  re-enters here
1979   __ bind(reguard_done);
1980 
1981   // Handle possible exception (will unlock if necessary)
1982 
1983   // native result if any is live
1984 
1985   // Unlock
1986   Label slow_path_unlock;
1987   Label unlock_done;
1988   if (method->is_synchronized()) {
1989 
1990     Label done;
1991 
1992     // Get locked oop from the handle we passed to jni
1993     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1994 
1995     if (UseBiasedLocking) {
1996       __ biased_locking_exit(obj_reg, rbx, done);
1997     }
1998 
1999     // Simple recursive lock?

2000 
2001     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2002     __ jcc(Assembler::equal, done);

2003 
2004     // Must save rax, if if it is live now because cmpxchg must use it
2005     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2006       save_native_result(masm, ret_type, stack_slots);
2007     }
2008 
2009     //  get old displaced header
2010     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2011 
2012     // get address of the stack lock
2013     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2014 
2015     // Atomic swap old header if oop still contains the stack lock
2016     // src -> dest iff dest == rax, else rax, <- dest
2017     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2018     __ lock();
2019     __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2020     __ jcc(Assembler::notEqual, slow_path_unlock);







2021 
2022     // slow path re-enters here
2023     __ bind(unlock_done);
2024     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2025       restore_native_result(masm, ret_type, stack_slots);
2026     }
2027 
2028     __ bind(done);
2029 
2030   }
2031 
2032   {
2033     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2034     // Tell dtrace about this method exit
2035     save_native_result(masm, ret_type, stack_slots);
2036     __ mov_metadata(rax, method());
2037     __ call_VM_leaf(
2038          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2039          thread, rax);
2040     restore_native_result(masm, ret_type, stack_slots);
2041   }
2042 
2043   // We can finally stop using that last_Java_frame we setup ages ago
2044 
2045   __ reset_last_Java_frame(thread, false);
2046 
2047   // Unbox oop result, e.g. JNIHandles::resolve value.
2048   if (is_reference_type(ret_type)) {
2049     __ resolve_jobject(rax /* value */,
2050                        thread /* thread */,
2051                        rcx /* tmp */);
2052   }
2053 
2054   if (CheckJNICalls) {
2055     // clear_pending_jni_exception_check
2056     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2057   }
2058 
2059   if (!is_critical_native) {
2060     // reset handle block
2061     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2062     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2063 
2064     // Any exception pending?
2065     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2066     __ jcc(Assembler::notEqual, exception_pending);
2067   }
2068 
2069   // no exception, we're almost done
2070 
2071   // check that only result value is on FPU stack
2072   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2073 
2074   // Fixup floating pointer results so that result looks like a return from a compiled method
2075   if (ret_type == T_FLOAT) {
2076     if (UseSSE >= 1) {
2077       // Pop st0 and store as float and reload into xmm register
2078       __ fstp_s(Address(rbp, -4));
2079       __ movflt(xmm0, Address(rbp, -4));
2080     }
2081   } else if (ret_type == T_DOUBLE) {
2082     if (UseSSE >= 2) {
2083       // Pop st0 and store as double and reload into xmm register
2084       __ fstp_d(Address(rbp, -8));
2085       __ movdbl(xmm0, Address(rbp, -8));
2086     }
2087   }
2088 
2089   // Return
2090 
2091   __ leave();
2092   __ ret(0);
2093 
2094   // Unexpected paths are out of line and go here
2095 
2096   // Slow path locking & unlocking
2097   if (method->is_synchronized()) {
2098 
2099     // BEGIN Slow path lock
2100 
2101     __ bind(slow_path_lock);
2102 
2103     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2104     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2105     __ push(thread);
2106     __ push(lock_reg);
2107     __ push(obj_reg);
2108     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2109     __ addptr(rsp, 3*wordSize);
2110 
2111 #ifdef ASSERT
2112     { Label L;
2113     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2114     __ jcc(Assembler::equal, L);
2115     __ stop("no pending exception allowed on exit from monitorenter");
2116     __ bind(L);
2117     }
2118 #endif
2119     __ jmp(lock_done);
2120 
2121     // END Slow path lock
2122 
2123     // BEGIN Slow path unlock
2124     __ bind(slow_path_unlock);
2125     __ vzeroupper();
2126     // Slow path unlock
2127 
2128     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2129       save_native_result(masm, ret_type, stack_slots);
2130     }
2131     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2132 
2133     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2134     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2135 
2136 
2137     // should be a peal
2138     // +wordSize because of the push above
2139     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2140     __ push(thread);
2141     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2142     __ push(rax);
2143 
2144     __ push(obj_reg);
2145     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2146     __ addptr(rsp, 3*wordSize);
2147 #ifdef ASSERT
2148     {
2149       Label L;
2150       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2151       __ jcc(Assembler::equal, L);
2152       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2153       __ bind(L);
2154     }
2155 #endif /* ASSERT */
2156 
2157     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2158 
2159     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2160       restore_native_result(masm, ret_type, stack_slots);
2161     }
2162     __ jmp(unlock_done);
2163     // END Slow path unlock
2164 
2165   }
2166 
2167   // SLOW PATH Reguard the stack if needed
2168 
2169   __ bind(reguard);
2170   __ vzeroupper();
2171   save_native_result(masm, ret_type, stack_slots);
2172   {
2173     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2174   }
2175   restore_native_result(masm, ret_type, stack_slots);
2176   __ jmp(reguard_done);
2177 
2178 
2179   // BEGIN EXCEPTION PROCESSING
2180 
2181   if (!is_critical_native) {
2182     // Forward  the exception
2183     __ bind(exception_pending);
2184 
2185     // remove possible return value from FPU register stack
2186     __ empty_FPU_stack();
2187 
2188     // pop our frame
2189     __ leave();
2190     // and forward the exception
2191     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2192   }
2193 
2194   __ flush();
2195 
2196   nmethod *nm = nmethod::new_native_nmethod(method,
2197                                             compile_id,
2198                                             masm->code(),
2199                                             vep_offset,
2200                                             frame_complete,
2201                                             stack_slots / VMRegImpl::slots_per_word,
2202                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2203                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2204                                             oop_maps);
2205 
2206   return nm;
2207 
2208 }
2209 
2210 // this function returns the adjust size (in number of words) to a c2i adapter
2211 // activation for use during deoptimization
2212 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2213   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2214 }
2215 
2216 
2217 // Number of stack slots between incoming argument block and the start of
2218 // a new frame.  The PROLOG must add this many slots to the stack.  The
2219 // EPILOG must remove this many slots.  Intel needs one slot for
2220 // return address and one for rbp, (must save rbp)
2221 uint SharedRuntime::in_preserve_stack_slots() {
2222   return 2+VerifyStackAtCalls;
2223 }
2224 
2225 uint SharedRuntime::out_preserve_stack_slots() {
2226   return 0;
2227 }
2228 
2229 //------------------------------generate_deopt_blob----------------------------
2230 void SharedRuntime::generate_deopt_blob() {
2231   // allocate space for the code
2232   ResourceMark rm;
2233   // setup code generation tools
2234   // note: the buffer code size must account for StackShadowPages=50
2235   CodeBuffer   buffer("deopt_blob", 1536, 1024);
2236   MacroAssembler* masm = new MacroAssembler(&buffer);
2237   int frame_size_in_words;
2238   OopMap* map = NULL;
2239   // Account for the extra args we place on the stack
2240   // by the time we call fetch_unroll_info
2241   const int additional_words = 2; // deopt kind, thread
2242 
2243   OopMapSet *oop_maps = new OopMapSet();
2244 
2245   // -------------
2246   // This code enters when returning to a de-optimized nmethod.  A return
2247   // address has been pushed on the the stack, and return values are in
2248   // registers.
2249   // If we are doing a normal deopt then we were called from the patched
2250   // nmethod from the point we returned to the nmethod. So the return
2251   // address on the stack is wrong by NativeCall::instruction_size
2252   // We will adjust the value to it looks like we have the original return
2253   // address on the stack (like when we eagerly deoptimized).
2254   // In the case of an exception pending with deoptimized then we enter
2255   // with a return address on the stack that points after the call we patched
2256   // into the exception handler. We have the following register state:
2257   //    rax,: exception
2258   //    rbx,: exception handler
2259   //    rdx: throwing pc
2260   // So in this case we simply jam rdx into the useless return address and
2261   // the stack looks just like we want.
2262   //
2263   // At this point we need to de-opt.  We save the argument return
2264   // registers.  We call the first C routine, fetch_unroll_info().  This
2265   // routine captures the return values and returns a structure which
2266   // describes the current frame size and the sizes of all replacement frames.
2267   // The current frame is compiled code and may contain many inlined
2268   // functions, each with their own JVM state.  We pop the current frame, then
2269   // push all the new frames.  Then we call the C routine unpack_frames() to
2270   // populate these frames.  Finally unpack_frames() returns us the new target
2271   // address.  Notice that callee-save registers are BLOWN here; they have
2272   // already been captured in the vframeArray at the time the return PC was
2273   // patched.
2274   address start = __ pc();
2275   Label cont;
2276 
2277   // Prolog for non exception case!
2278 
2279   // Save everything in sight.
2280 
2281   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2282   // Normal deoptimization
2283   __ push(Deoptimization::Unpack_deopt);
2284   __ jmp(cont);
2285 
2286   int reexecute_offset = __ pc() - start;
2287 
2288   // Reexecute case
2289   // return address is the pc describes what bci to do re-execute at
2290 
2291   // No need to update map as each call to save_live_registers will produce identical oopmap
2292   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2293 
2294   __ push(Deoptimization::Unpack_reexecute);
2295   __ jmp(cont);
2296 
2297   int exception_offset = __ pc() - start;
2298 
2299   // Prolog for exception case
2300 
2301   // all registers are dead at this entry point, except for rax, and
2302   // rdx which contain the exception oop and exception pc
2303   // respectively.  Set them in TLS and fall thru to the
2304   // unpack_with_exception_in_tls entry point.
2305 
2306   __ get_thread(rdi);
2307   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2308   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2309 
2310   int exception_in_tls_offset = __ pc() - start;
2311 
2312   // new implementation because exception oop is now passed in JavaThread
2313 
2314   // Prolog for exception case
2315   // All registers must be preserved because they might be used by LinearScan
2316   // Exceptiop oop and throwing PC are passed in JavaThread
2317   // tos: stack at point of call to method that threw the exception (i.e. only
2318   // args are on the stack, no return address)
2319 
2320   // make room on stack for the return address
2321   // It will be patched later with the throwing pc. The correct value is not
2322   // available now because loading it from memory would destroy registers.
2323   __ push(0);
2324 
2325   // Save everything in sight.
2326 
2327   // No need to update map as each call to save_live_registers will produce identical oopmap
2328   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2329 
2330   // Now it is safe to overwrite any register
2331 
2332   // store the correct deoptimization type
2333   __ push(Deoptimization::Unpack_exception);
2334 
2335   // load throwing pc from JavaThread and patch it as the return address
2336   // of the current frame. Then clear the field in JavaThread
2337   __ get_thread(rdi);
2338   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2339   __ movptr(Address(rbp, wordSize), rdx);
2340   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2341 
2342 #ifdef ASSERT
2343   // verify that there is really an exception oop in JavaThread
2344   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2345   __ verify_oop(rax);
2346 
2347   // verify that there is no pending exception
2348   Label no_pending_exception;
2349   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2350   __ testptr(rax, rax);
2351   __ jcc(Assembler::zero, no_pending_exception);
2352   __ stop("must not have pending exception here");
2353   __ bind(no_pending_exception);
2354 #endif
2355 
2356   __ bind(cont);
2357 
2358   // Compiled code leaves the floating point stack dirty, empty it.
2359   __ empty_FPU_stack();
2360 
2361 
2362   // Call C code.  Need thread and this frame, but NOT official VM entry
2363   // crud.  We cannot block on this call, no GC can happen.
2364   __ get_thread(rcx);
2365   __ push(rcx);
2366   // fetch_unroll_info needs to call last_java_frame()
2367   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2368 
2369   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2370 
2371   // Need to have an oopmap that tells fetch_unroll_info where to
2372   // find any register it might need.
2373 
2374   oop_maps->add_gc_map( __ pc()-start, map);
2375 
2376   // Discard args to fetch_unroll_info
2377   __ pop(rcx);
2378   __ pop(rcx);
2379 
2380   __ get_thread(rcx);
2381   __ reset_last_Java_frame(rcx, false);
2382 
2383   // Load UnrollBlock into EDI
2384   __ mov(rdi, rax);
2385 
2386   // Move the unpack kind to a safe place in the UnrollBlock because
2387   // we are very short of registers
2388 
2389   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2390   // retrieve the deopt kind from the UnrollBlock.
2391   __ movl(rax, unpack_kind);
2392 
2393    Label noException;
2394   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2395   __ jcc(Assembler::notEqual, noException);
2396   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2397   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2398   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2399   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2400 
2401   __ verify_oop(rax);
2402 
2403   // Overwrite the result registers with the exception results.
2404   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2405   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2406 
2407   __ bind(noException);
2408 
2409   // Stack is back to only having register save data on the stack.
2410   // Now restore the result registers. Everything else is either dead or captured
2411   // in the vframeArray.
2412 
2413   RegisterSaver::restore_result_registers(masm);
2414 
2415   // Non standard control word may be leaked out through a safepoint blob, and we can
2416   // deopt at a poll point with the non standard control word. However, we should make
2417   // sure the control word is correct after restore_result_registers.
2418   __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
2419 
2420   // All of the register save area has been popped of the stack. Only the
2421   // return address remains.
2422 
2423   // Pop all the frames we must move/replace.
2424   //
2425   // Frame picture (youngest to oldest)
2426   // 1: self-frame (no frame link)
2427   // 2: deopting frame  (no frame link)
2428   // 3: caller of deopting frame (could be compiled/interpreted).
2429   //
2430   // Note: by leaving the return address of self-frame on the stack
2431   // and using the size of frame 2 to adjust the stack
2432   // when we are done the return to frame 3 will still be on the stack.
2433 
2434   // Pop deoptimized frame
2435   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2436 
2437   // sp should be pointing at the return address to the caller (3)
2438 
2439   // Pick up the initial fp we should save
2440   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2441   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2442 
2443 #ifdef ASSERT
2444   // Compilers generate code that bang the stack by as much as the
2445   // interpreter would need. So this stack banging should never
2446   // trigger a fault. Verify that it does not on non product builds.
2447   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2448   __ bang_stack_size(rbx, rcx);
2449 #endif
2450 
2451   // Load array of frame pcs into ECX
2452   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2453 
2454   __ pop(rsi); // trash the old pc
2455 
2456   // Load array of frame sizes into ESI
2457   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2458 
2459   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2460 
2461   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2462   __ movl(counter, rbx);
2463 
2464   // Now adjust the caller's stack to make up for the extra locals
2465   // but record the original sp so that we can save it in the skeletal interpreter
2466   // frame and the stack walking of interpreter_sender will get the unextended sp
2467   // value and not the "real" sp value.
2468 
2469   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2470   __ movptr(sp_temp, rsp);
2471   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2472   __ subptr(rsp, rbx);
2473 
2474   // Push interpreter frames in a loop
2475   Label loop;
2476   __ bind(loop);
2477   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2478   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2479   __ pushptr(Address(rcx, 0));          // save return address
2480   __ enter();                           // save old & set new rbp,
2481   __ subptr(rsp, rbx);                  // Prolog!
2482   __ movptr(rbx, sp_temp);              // sender's sp
2483   // This value is corrected by layout_activation_impl
2484   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2485   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2486   __ movptr(sp_temp, rsp);              // pass to next frame
2487   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2488   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2489   __ decrementl(counter);             // decrement counter
2490   __ jcc(Assembler::notZero, loop);
2491   __ pushptr(Address(rcx, 0));          // save final return address
2492 
2493   // Re-push self-frame
2494   __ enter();                           // save old & set new rbp,
2495 
2496   //  Return address and rbp, are in place
2497   // We'll push additional args later. Just allocate a full sized
2498   // register save area
2499   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2500 
2501   // Restore frame locals after moving the frame
2502   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2503   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2504   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2505   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2506   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2507 
2508   // Set up the args to unpack_frame
2509 
2510   __ pushl(unpack_kind);                     // get the unpack_kind value
2511   __ get_thread(rcx);
2512   __ push(rcx);
2513 
2514   // set last_Java_sp, last_Java_fp
2515   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2516 
2517   // Call C code.  Need thread but NOT official VM entry
2518   // crud.  We cannot block on this call, no GC can happen.  Call should
2519   // restore return values to their stack-slots with the new SP.
2520   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2521   // Set an oopmap for the call site
2522   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2523 
2524   // rax, contains the return result type
2525   __ push(rax);
2526 
2527   __ get_thread(rcx);
2528   __ reset_last_Java_frame(rcx, false);
2529 
2530   // Collect return values
2531   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2532   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2533 
2534   // Clear floating point stack before returning to interpreter
2535   __ empty_FPU_stack();
2536 
2537   // Check if we should push the float or double return value.
2538   Label results_done, yes_double_value;
2539   __ cmpl(Address(rsp, 0), T_DOUBLE);
2540   __ jcc (Assembler::zero, yes_double_value);
2541   __ cmpl(Address(rsp, 0), T_FLOAT);
2542   __ jcc (Assembler::notZero, results_done);
2543 
2544   // return float value as expected by interpreter
2545   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2546   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2547   __ jmp(results_done);
2548 
2549   // return double value as expected by interpreter
2550   __ bind(yes_double_value);
2551   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2552   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2553 
2554   __ bind(results_done);
2555 
2556   // Pop self-frame.
2557   __ leave();                              // Epilog!
2558 
2559   // Jump to interpreter
2560   __ ret(0);
2561 
2562   // -------------
2563   // make sure all code is generated
2564   masm->flush();
2565 
2566   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2567   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2568 }
2569 
2570 
2571 #ifdef COMPILER2
2572 //------------------------------generate_uncommon_trap_blob--------------------
2573 void SharedRuntime::generate_uncommon_trap_blob() {
2574   // allocate space for the code
2575   ResourceMark rm;
2576   // setup code generation tools
2577   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2578   MacroAssembler* masm = new MacroAssembler(&buffer);
2579 
2580   enum frame_layout {
2581     arg0_off,      // thread                     sp + 0 // Arg location for
2582     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2583     arg2_off,      // exec_mode                  sp + 2
2584     // The frame sender code expects that rbp will be in the "natural" place and
2585     // will override any oopMap setting for it. We must therefore force the layout
2586     // so that it agrees with the frame sender code.
2587     rbp_off,       // callee saved register      sp + 3
2588     return_off,    // slot for return address    sp + 4
2589     framesize
2590   };
2591 
2592   address start = __ pc();
2593 
2594   if (UseRTMLocking) {
2595     // Abort RTM transaction before possible nmethod deoptimization.
2596     __ xabort(0);
2597   }
2598 
2599   // Push self-frame.
2600   __ subptr(rsp, return_off*wordSize);     // Epilog!
2601 
2602   // rbp, is an implicitly saved callee saved register (i.e. the calling
2603   // convention will save restore it in prolog/epilog) Other than that
2604   // there are no callee save registers no that adapter frames are gone.
2605   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2606 
2607   // Clear the floating point exception stack
2608   __ empty_FPU_stack();
2609 
2610   // set last_Java_sp
2611   __ get_thread(rdx);
2612   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2613 
2614   // Call C code.  Need thread but NOT official VM entry
2615   // crud.  We cannot block on this call, no GC can happen.  Call should
2616   // capture callee-saved registers as well as return values.
2617   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2618   // argument already in ECX
2619   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2620   __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2621   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2622 
2623   // Set an oopmap for the call site
2624   OopMapSet *oop_maps = new OopMapSet();
2625   OopMap* map =  new OopMap( framesize, 0 );
2626   // No oopMap for rbp, it is known implicitly
2627 
2628   oop_maps->add_gc_map( __ pc()-start, map);
2629 
2630   __ get_thread(rcx);
2631 
2632   __ reset_last_Java_frame(rcx, false);
2633 
2634   // Load UnrollBlock into EDI
2635   __ movptr(rdi, rax);
2636 
2637 #ifdef ASSERT
2638   { Label L;
2639     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
2640             (int32_t)Deoptimization::Unpack_uncommon_trap);
2641     __ jcc(Assembler::equal, L);
2642     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
2643     __ bind(L);
2644   }
2645 #endif
2646 
2647   // Pop all the frames we must move/replace.
2648   //
2649   // Frame picture (youngest to oldest)
2650   // 1: self-frame (no frame link)
2651   // 2: deopting frame  (no frame link)
2652   // 3: caller of deopting frame (could be compiled/interpreted).
2653 
2654   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2655   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2656 
2657   // Pop deoptimized frame
2658   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2659   __ addptr(rsp, rcx);
2660 
2661   // sp should be pointing at the return address to the caller (3)
2662 
2663   // Pick up the initial fp we should save
2664   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2665   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2666 
2667 #ifdef ASSERT
2668   // Compilers generate code that bang the stack by as much as the
2669   // interpreter would need. So this stack banging should never
2670   // trigger a fault. Verify that it does not on non product builds.
2671   __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2672   __ bang_stack_size(rbx, rcx);
2673 #endif
2674 
2675   // Load array of frame pcs into ECX
2676   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2677 
2678   __ pop(rsi); // trash the pc
2679 
2680   // Load array of frame sizes into ESI
2681   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2682 
2683   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2684 
2685   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2686   __ movl(counter, rbx);
2687 
2688   // Now adjust the caller's stack to make up for the extra locals
2689   // but record the original sp so that we can save it in the skeletal interpreter
2690   // frame and the stack walking of interpreter_sender will get the unextended sp
2691   // value and not the "real" sp value.
2692 
2693   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2694   __ movptr(sp_temp, rsp);
2695   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2696   __ subptr(rsp, rbx);
2697 
2698   // Push interpreter frames in a loop
2699   Label loop;
2700   __ bind(loop);
2701   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2702   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2703   __ pushptr(Address(rcx, 0));          // save return address
2704   __ enter();                           // save old & set new rbp,
2705   __ subptr(rsp, rbx);                  // Prolog!
2706   __ movptr(rbx, sp_temp);              // sender's sp
2707   // This value is corrected by layout_activation_impl
2708   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2709   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2710   __ movptr(sp_temp, rsp);              // pass to next frame
2711   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2712   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2713   __ decrementl(counter);             // decrement counter
2714   __ jcc(Assembler::notZero, loop);
2715   __ pushptr(Address(rcx, 0));            // save final return address
2716 
2717   // Re-push self-frame
2718   __ enter();                           // save old & set new rbp,
2719   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2720 
2721 
2722   // set last_Java_sp, last_Java_fp
2723   __ get_thread(rdi);
2724   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2725 
2726   // Call C code.  Need thread but NOT official VM entry
2727   // crud.  We cannot block on this call, no GC can happen.  Call should
2728   // restore return values to their stack-slots with the new SP.
2729   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2730   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2731   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2732   // Set an oopmap for the call site
2733   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2734 
2735   __ get_thread(rdi);
2736   __ reset_last_Java_frame(rdi, true);
2737 
2738   // Pop self-frame.
2739   __ leave();     // Epilog!
2740 
2741   // Jump to interpreter
2742   __ ret(0);
2743 
2744   // -------------
2745   // make sure all code is generated
2746   masm->flush();
2747 
2748    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2749 }
2750 #endif // COMPILER2
2751 
2752 //------------------------------generate_handler_blob------
2753 //
2754 // Generate a special Compile2Runtime blob that saves all registers,
2755 // setup oopmap, and calls safepoint code to stop the compiled code for
2756 // a safepoint.
2757 //
2758 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2759 
2760   // Account for thread arg in our frame
2761   const int additional_words = 1;
2762   int frame_size_in_words;
2763 
2764   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2765 
2766   ResourceMark rm;
2767   OopMapSet *oop_maps = new OopMapSet();
2768   OopMap* map;
2769 
2770   // allocate space for the code
2771   // setup code generation tools
2772   CodeBuffer   buffer("handler_blob", 1024, 512);
2773   MacroAssembler* masm = new MacroAssembler(&buffer);
2774 
2775   const Register java_thread = rdi; // callee-saved for VC++
2776   address start   = __ pc();
2777   address call_pc = NULL;
2778   bool cause_return = (poll_type == POLL_AT_RETURN);
2779   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2780 
2781   if (UseRTMLocking) {
2782     // Abort RTM transaction before calling runtime
2783     // because critical section will be large and will be
2784     // aborted anyway. Also nmethod could be deoptimized.
2785     __ xabort(0);
2786   }
2787 
2788   // If cause_return is true we are at a poll_return and there is
2789   // the return address on the stack to the caller on the nmethod
2790   // that is safepoint. We can leave this return on the stack and
2791   // effectively complete the return and safepoint in the caller.
2792   // Otherwise we push space for a return address that the safepoint
2793   // handler will install later to make the stack walking sensible.
2794   if (!cause_return)
2795     __ push(rbx);  // Make room for return address (or push it again)
2796 
2797   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2798 
2799   // The following is basically a call_VM. However, we need the precise
2800   // address of the call in order to generate an oopmap. Hence, we do all the
2801   // work ourselves.
2802 
2803   // Push thread argument and setup last_Java_sp
2804   __ get_thread(java_thread);
2805   __ push(java_thread);
2806   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
2807 
2808   // if this was not a poll_return then we need to correct the return address now.
2809   if (!cause_return) {
2810     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
2811     // Additionally, rbx is a callee saved register and we can look at it later to determine
2812     // if someone changed the return address for us!
2813     __ movptr(rbx, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2814     __ movptr(Address(rbp, wordSize), rbx);
2815   }
2816 
2817   // do the call
2818   __ call(RuntimeAddress(call_ptr));
2819 
2820   // Set an oopmap for the call site.  This oopmap will map all
2821   // oop-registers and debug-info registers as callee-saved.  This
2822   // will allow deoptimization at this safepoint to find all possible
2823   // debug-info recordings, as well as let GC find all oops.
2824 
2825   oop_maps->add_gc_map( __ pc() - start, map);
2826 
2827   // Discard arg
2828   __ pop(rcx);
2829 
2830   Label noException;
2831 
2832   // Clear last_Java_sp again
2833   __ get_thread(java_thread);
2834   __ reset_last_Java_frame(java_thread, false);
2835 
2836   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2837   __ jcc(Assembler::equal, noException);
2838 
2839   // Exception pending
2840   RegisterSaver::restore_live_registers(masm, save_vectors);
2841 
2842   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2843 
2844   __ bind(noException);
2845 
2846   Label no_adjust, bail, not_special;
2847   if (!cause_return) {
2848     // If our stashed return pc was modified by the runtime we avoid touching it
2849     __ cmpptr(rbx, Address(rbp, wordSize));
2850     __ jccb(Assembler::notEqual, no_adjust);
2851 
2852     // Skip over the poll instruction.
2853     // See NativeInstruction::is_safepoint_poll()
2854     // Possible encodings:
2855     //      85 00       test   %eax,(%rax)
2856     //      85 01       test   %eax,(%rcx)
2857     //      85 02       test   %eax,(%rdx)
2858     //      85 03       test   %eax,(%rbx)
2859     //      85 06       test   %eax,(%rsi)
2860     //      85 07       test   %eax,(%rdi)
2861     //
2862     //      85 04 24    test   %eax,(%rsp)
2863     //      85 45 00    test   %eax,0x0(%rbp)
2864 
2865 #ifdef ASSERT
2866     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
2867 #endif
2868     // rsp/rbp base encoding takes 3 bytes with the following register values:
2869     // rsp 0x04
2870     // rbp 0x05
2871     __ movzbl(rcx, Address(rbx, 1));
2872     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
2873     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
2874     __ cmpptr(rcx, 1);
2875     __ jcc(Assembler::above, not_special);
2876     __ addptr(rbx, 1);
2877     __ bind(not_special);
2878 #ifdef ASSERT
2879     // Verify the correct encoding of the poll we're about to skip.
2880     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
2881     __ jcc(Assembler::notEqual, bail);
2882     // Mask out the modrm bits
2883     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
2884     // rax encodes to 0, so if the bits are nonzero it's incorrect
2885     __ jcc(Assembler::notZero, bail);
2886 #endif
2887     // Adjust return pc forward to step over the safepoint poll instruction
2888     __ addptr(rbx, 2);
2889     __ movptr(Address(rbp, wordSize), rbx);
2890   }
2891 
2892   __ bind(no_adjust);
2893   // Normal exit, register restoring and exit
2894   RegisterSaver::restore_live_registers(masm, save_vectors);
2895 
2896   __ ret(0);
2897 
2898 #ifdef ASSERT
2899   __ bind(bail);
2900   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2901 #endif
2902 
2903   // make sure all code is generated
2904   masm->flush();
2905 
2906   // Fill-out other meta info
2907   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2908 }
2909 
2910 //
2911 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2912 //
2913 // Generate a stub that calls into vm to find out the proper destination
2914 // of a java call. All the argument registers are live at this point
2915 // but since this is generic code we don't know what they are and the caller
2916 // must do any gc of the args.
2917 //
2918 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
2919   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2920 
2921   // allocate space for the code
2922   ResourceMark rm;
2923 
2924   CodeBuffer buffer(name, 1000, 512);
2925   MacroAssembler* masm                = new MacroAssembler(&buffer);
2926 
2927   int frame_size_words;
2928   enum frame_layout {
2929                 thread_off,
2930                 extra_words };
2931 
2932   OopMapSet *oop_maps = new OopMapSet();
2933   OopMap* map = NULL;
2934 
2935   int start = __ offset();
2936 
2937   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2938 
2939   int frame_complete = __ offset();
2940 
2941   const Register thread = rdi;
2942   __ get_thread(rdi);
2943 
2944   __ push(thread);
2945   __ set_last_Java_frame(thread, noreg, rbp, NULL);
2946 
2947   __ call(RuntimeAddress(destination));
2948 
2949 
2950   // Set an oopmap for the call site.
2951   // We need this not only for callee-saved registers, but also for volatile
2952   // registers that the compiler might be keeping live across a safepoint.
2953 
2954   oop_maps->add_gc_map( __ offset() - start, map);
2955 
2956   // rax, contains the address we are going to jump to assuming no exception got installed
2957 
2958   __ addptr(rsp, wordSize);
2959 
2960   // clear last_Java_sp
2961   __ reset_last_Java_frame(thread, true);
2962   // check for pending exceptions
2963   Label pending;
2964   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2965   __ jcc(Assembler::notEqual, pending);
2966 
2967   // get the returned Method*
2968   __ get_vm_result_2(rbx, thread);
2969   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2970 
2971   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2972 
2973   RegisterSaver::restore_live_registers(masm);
2974 
2975   // We are back the the original state on entry and ready to go.
2976 
2977   __ jmp(rax);
2978 
2979   // Pending exception after the safepoint
2980 
2981   __ bind(pending);
2982 
2983   RegisterSaver::restore_live_registers(masm);
2984 
2985   // exception pending => remove activation and forward to exception handler
2986 
2987   __ get_thread(thread);
2988   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2989   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2990   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2991 
2992   // -------------
2993   // make sure all code is generated
2994   masm->flush();
2995 
2996   // return the  blob
2997   // frame_size_words or bytes??
2998   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
2999 }
3000 
3001 #ifdef COMPILER2
3002 RuntimeStub* SharedRuntime::make_native_invoker(address call_target,
3003                                                 int shadow_space_bytes,
3004                                                 const GrowableArray<VMReg>& input_registers,
3005                                                 const GrowableArray<VMReg>& output_registers) {
3006   ShouldNotCallThis();
3007   return nullptr;
3008 }
3009 #endif
--- EOF ---