1 /* 2 * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciUtilities.hpp" 29 #include "compiler/oopMap.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "gc/shared/barrierSetAssembler.hpp" 32 #include "gc/shared/barrierSetNMethod.hpp" 33 #include "gc/shared/gc_globals.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "memory/universe.hpp" 36 #include "nativeInst_x86.hpp" 37 #include "oops/instanceOop.hpp" 38 #include "oops/method.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "prims/methodHandles.hpp" 42 #include "runtime/arguments.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/handles.inline.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/stubCodeGenerator.hpp" 47 #include "runtime/stubRoutines.hpp" 48 #include "runtime/thread.inline.hpp" 49 #ifdef COMPILER2 50 #include "opto/runtime.hpp" 51 #endif 52 #if INCLUDE_JVMCI 53 #include "jvmci/jvmci_globals.hpp" 54 #endif 55 #if INCLUDE_ZGC 56 #include "gc/z/zThreadLocalData.hpp" 57 #endif 58 59 // Declaration and definition of StubGenerator (no .hpp file). 60 // For a more detailed description of the stub routine structure 61 // see the comment in stubRoutines.hpp 62 63 #define __ _masm-> 64 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) 65 #define a__ ((Assembler*)_masm)-> 66 67 #ifdef PRODUCT 68 #define BLOCK_COMMENT(str) /* nothing */ 69 #else 70 #define BLOCK_COMMENT(str) __ block_comment(str) 71 #endif 72 73 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 74 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions 75 76 // Stub Code definitions 77 78 class StubGenerator: public StubCodeGenerator { 79 private: 80 81 #ifdef PRODUCT 82 #define inc_counter_np(counter) ((void)0) 83 #else 84 void inc_counter_np_(int& counter) { 85 // This can destroy rscratch1 if counter is far from the code cache 86 __ incrementl(ExternalAddress((address)&counter)); 87 } 88 #define inc_counter_np(counter) \ 89 BLOCK_COMMENT("inc_counter " #counter); \ 90 inc_counter_np_(counter); 91 #endif 92 93 // Call stubs are used to call Java from C 94 // 95 // Linux Arguments: 96 // c_rarg0: call wrapper address address 97 // c_rarg1: result address 98 // c_rarg2: result type BasicType 99 // c_rarg3: method Method* 100 // c_rarg4: (interpreter) entry point address 101 // c_rarg5: parameters intptr_t* 102 // 16(rbp): parameter size (in words) int 103 // 24(rbp): thread Thread* 104 // 105 // [ return_from_Java ] <--- rsp 106 // [ argument word n ] 107 // ... 108 // -12 [ argument word 1 ] 109 // -11 [ saved r15 ] <--- rsp_after_call 110 // -10 [ saved r14 ] 111 // -9 [ saved r13 ] 112 // -8 [ saved r12 ] 113 // -7 [ saved rbx ] 114 // -6 [ call wrapper ] 115 // -5 [ result ] 116 // -4 [ result type ] 117 // -3 [ method ] 118 // -2 [ entry point ] 119 // -1 [ parameters ] 120 // 0 [ saved rbp ] <--- rbp 121 // 1 [ return address ] 122 // 2 [ parameter size ] 123 // 3 [ thread ] 124 // 125 // Windows Arguments: 126 // c_rarg0: call wrapper address address 127 // c_rarg1: result address 128 // c_rarg2: result type BasicType 129 // c_rarg3: method Method* 130 // 48(rbp): (interpreter) entry point address 131 // 56(rbp): parameters intptr_t* 132 // 64(rbp): parameter size (in words) int 133 // 72(rbp): thread Thread* 134 // 135 // [ return_from_Java ] <--- rsp 136 // [ argument word n ] 137 // ... 138 // -60 [ argument word 1 ] 139 // -59 [ saved xmm31 ] <--- rsp after_call 140 // [ saved xmm16-xmm30 ] (EVEX enabled, else the space is blank) 141 // -27 [ saved xmm15 ] 142 // [ saved xmm7-xmm14 ] 143 // -9 [ saved xmm6 ] (each xmm register takes 2 slots) 144 // -7 [ saved r15 ] 145 // -6 [ saved r14 ] 146 // -5 [ saved r13 ] 147 // -4 [ saved r12 ] 148 // -3 [ saved rdi ] 149 // -2 [ saved rsi ] 150 // -1 [ saved rbx ] 151 // 0 [ saved rbp ] <--- rbp 152 // 1 [ return address ] 153 // 2 [ call wrapper ] 154 // 3 [ result ] 155 // 4 [ result type ] 156 // 5 [ method ] 157 // 6 [ entry point ] 158 // 7 [ parameters ] 159 // 8 [ parameter size ] 160 // 9 [ thread ] 161 // 162 // Windows reserves the callers stack space for arguments 1-4. 163 // We spill c_rarg0-c_rarg3 to this space. 164 165 // Call stub stack layout word offsets from rbp 166 enum call_stub_layout { 167 #ifdef _WIN64 168 xmm_save_first = 6, // save from xmm6 169 xmm_save_last = 31, // to xmm31 170 xmm_save_base = -9, 171 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 172 r15_off = -7, 173 r14_off = -6, 174 r13_off = -5, 175 r12_off = -4, 176 rdi_off = -3, 177 rsi_off = -2, 178 rbx_off = -1, 179 rbp_off = 0, 180 retaddr_off = 1, 181 call_wrapper_off = 2, 182 result_off = 3, 183 result_type_off = 4, 184 method_off = 5, 185 entry_point_off = 6, 186 parameters_off = 7, 187 parameter_size_off = 8, 188 thread_off = 9 189 #else 190 rsp_after_call_off = -12, 191 mxcsr_off = rsp_after_call_off, 192 r15_off = -11, 193 r14_off = -10, 194 r13_off = -9, 195 r12_off = -8, 196 rbx_off = -7, 197 call_wrapper_off = -6, 198 result_off = -5, 199 result_type_off = -4, 200 method_off = -3, 201 entry_point_off = -2, 202 parameters_off = -1, 203 rbp_off = 0, 204 retaddr_off = 1, 205 parameter_size_off = 2, 206 thread_off = 3 207 #endif 208 }; 209 210 #ifdef _WIN64 211 Address xmm_save(int reg) { 212 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); 213 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); 214 } 215 #endif 216 217 address generate_call_stub(address& return_address) { 218 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && 219 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, 220 "adjust this code"); 221 StubCodeMark mark(this, "StubRoutines", "call_stub"); 222 address start = __ pc(); 223 224 // same as in generate_catch_exception()! 225 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 226 227 const Address call_wrapper (rbp, call_wrapper_off * wordSize); 228 const Address result (rbp, result_off * wordSize); 229 const Address result_type (rbp, result_type_off * wordSize); 230 const Address method (rbp, method_off * wordSize); 231 const Address entry_point (rbp, entry_point_off * wordSize); 232 const Address parameters (rbp, parameters_off * wordSize); 233 const Address parameter_size(rbp, parameter_size_off * wordSize); 234 235 // same as in generate_catch_exception()! 236 const Address thread (rbp, thread_off * wordSize); 237 238 const Address r15_save(rbp, r15_off * wordSize); 239 const Address r14_save(rbp, r14_off * wordSize); 240 const Address r13_save(rbp, r13_off * wordSize); 241 const Address r12_save(rbp, r12_off * wordSize); 242 const Address rbx_save(rbp, rbx_off * wordSize); 243 244 // stub code 245 __ enter(); 246 __ subptr(rsp, -rsp_after_call_off * wordSize); 247 248 // save register parameters 249 #ifndef _WIN64 250 __ movptr(parameters, c_rarg5); // parameters 251 __ movptr(entry_point, c_rarg4); // entry_point 252 #endif 253 254 __ movptr(method, c_rarg3); // method 255 __ movl(result_type, c_rarg2); // result type 256 __ movptr(result, c_rarg1); // result 257 __ movptr(call_wrapper, c_rarg0); // call wrapper 258 259 // save regs belonging to calling function 260 __ movptr(rbx_save, rbx); 261 __ movptr(r12_save, r12); 262 __ movptr(r13_save, r13); 263 __ movptr(r14_save, r14); 264 __ movptr(r15_save, r15); 265 266 #ifdef _WIN64 267 int last_reg = 15; 268 if (UseAVX > 2) { 269 last_reg = 31; 270 } 271 if (VM_Version::supports_evex()) { 272 for (int i = xmm_save_first; i <= last_reg; i++) { 273 __ vextractf32x4(xmm_save(i), as_XMMRegister(i), 0); 274 } 275 } else { 276 for (int i = xmm_save_first; i <= last_reg; i++) { 277 __ movdqu(xmm_save(i), as_XMMRegister(i)); 278 } 279 } 280 281 const Address rdi_save(rbp, rdi_off * wordSize); 282 const Address rsi_save(rbp, rsi_off * wordSize); 283 284 __ movptr(rsi_save, rsi); 285 __ movptr(rdi_save, rdi); 286 #else 287 const Address mxcsr_save(rbp, mxcsr_off * wordSize); 288 { 289 Label skip_ldmx; 290 __ stmxcsr(mxcsr_save); 291 __ movl(rax, mxcsr_save); 292 __ andl(rax, MXCSR_MASK); // Only check control and mask bits 293 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 294 __ cmp32(rax, mxcsr_std); 295 __ jcc(Assembler::equal, skip_ldmx); 296 __ ldmxcsr(mxcsr_std); 297 __ bind(skip_ldmx); 298 } 299 #endif 300 301 // Load up thread register 302 __ movptr(r15_thread, thread); 303 __ reinit_heapbase(); 304 305 #ifdef ASSERT 306 // make sure we have no pending exceptions 307 { 308 Label L; 309 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 310 __ jcc(Assembler::equal, L); 311 __ stop("StubRoutines::call_stub: entered with pending exception"); 312 __ bind(L); 313 } 314 #endif 315 316 // pass parameters if any 317 BLOCK_COMMENT("pass parameters if any"); 318 Label parameters_done; 319 __ movl(c_rarg3, parameter_size); 320 __ testl(c_rarg3, c_rarg3); 321 __ jcc(Assembler::zero, parameters_done); 322 323 Label loop; 324 __ movptr(c_rarg2, parameters); // parameter pointer 325 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 326 __ BIND(loop); 327 __ movptr(rax, Address(c_rarg2, 0));// get parameter 328 __ addptr(c_rarg2, wordSize); // advance to next parameter 329 __ decrementl(c_rarg1); // decrement counter 330 __ push(rax); // pass parameter 331 __ jcc(Assembler::notZero, loop); 332 333 // call Java function 334 __ BIND(parameters_done); 335 __ movptr(rbx, method); // get Method* 336 __ movptr(c_rarg1, entry_point); // get entry_point 337 __ mov(r13, rsp); // set sender sp 338 BLOCK_COMMENT("call Java function"); 339 __ call(c_rarg1); 340 341 BLOCK_COMMENT("call_stub_return_address:"); 342 return_address = __ pc(); 343 344 // store result depending on type (everything that is not 345 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) 346 __ movptr(c_rarg0, result); 347 Label is_long, is_float, is_double, exit; 348 __ movl(c_rarg1, result_type); 349 __ cmpl(c_rarg1, T_OBJECT); 350 __ jcc(Assembler::equal, is_long); 351 __ cmpl(c_rarg1, T_LONG); 352 __ jcc(Assembler::equal, is_long); 353 __ cmpl(c_rarg1, T_FLOAT); 354 __ jcc(Assembler::equal, is_float); 355 __ cmpl(c_rarg1, T_DOUBLE); 356 __ jcc(Assembler::equal, is_double); 357 358 // handle T_INT case 359 __ movl(Address(c_rarg0, 0), rax); 360 361 __ BIND(exit); 362 363 // pop parameters 364 __ lea(rsp, rsp_after_call); 365 366 #ifdef ASSERT 367 // verify that threads correspond 368 { 369 Label L1, L2, L3; 370 __ cmpptr(r15_thread, thread); 371 __ jcc(Assembler::equal, L1); 372 __ stop("StubRoutines::call_stub: r15_thread is corrupted"); 373 __ bind(L1); 374 __ get_thread(rbx); 375 __ cmpptr(r15_thread, thread); 376 __ jcc(Assembler::equal, L2); 377 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 378 __ bind(L2); 379 __ cmpptr(r15_thread, rbx); 380 __ jcc(Assembler::equal, L3); 381 __ stop("StubRoutines::call_stub: threads must correspond"); 382 __ bind(L3); 383 } 384 #endif 385 386 // restore regs belonging to calling function 387 #ifdef _WIN64 388 // emit the restores for xmm regs 389 if (VM_Version::supports_evex()) { 390 for (int i = xmm_save_first; i <= last_reg; i++) { 391 __ vinsertf32x4(as_XMMRegister(i), as_XMMRegister(i), xmm_save(i), 0); 392 } 393 } else { 394 for (int i = xmm_save_first; i <= last_reg; i++) { 395 __ movdqu(as_XMMRegister(i), xmm_save(i)); 396 } 397 } 398 #endif 399 __ movptr(r15, r15_save); 400 __ movptr(r14, r14_save); 401 __ movptr(r13, r13_save); 402 __ movptr(r12, r12_save); 403 __ movptr(rbx, rbx_save); 404 405 #ifdef _WIN64 406 __ movptr(rdi, rdi_save); 407 __ movptr(rsi, rsi_save); 408 #else 409 __ ldmxcsr(mxcsr_save); 410 #endif 411 412 // restore rsp 413 __ addptr(rsp, -rsp_after_call_off * wordSize); 414 415 // return 416 __ vzeroupper(); 417 __ pop(rbp); 418 __ ret(0); 419 420 // handle return types different from T_INT 421 __ BIND(is_long); 422 __ movq(Address(c_rarg0, 0), rax); 423 __ jmp(exit); 424 425 __ BIND(is_float); 426 __ movflt(Address(c_rarg0, 0), xmm0); 427 __ jmp(exit); 428 429 __ BIND(is_double); 430 __ movdbl(Address(c_rarg0, 0), xmm0); 431 __ jmp(exit); 432 433 return start; 434 } 435 436 // Return point for a Java call if there's an exception thrown in 437 // Java code. The exception is caught and transformed into a 438 // pending exception stored in JavaThread that can be tested from 439 // within the VM. 440 // 441 // Note: Usually the parameters are removed by the callee. In case 442 // of an exception crossing an activation frame boundary, that is 443 // not the case if the callee is compiled code => need to setup the 444 // rsp. 445 // 446 // rax: exception oop 447 448 address generate_catch_exception() { 449 StubCodeMark mark(this, "StubRoutines", "catch_exception"); 450 address start = __ pc(); 451 452 // same as in generate_call_stub(): 453 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); 454 const Address thread (rbp, thread_off * wordSize); 455 456 #ifdef ASSERT 457 // verify that threads correspond 458 { 459 Label L1, L2, L3; 460 __ cmpptr(r15_thread, thread); 461 __ jcc(Assembler::equal, L1); 462 __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); 463 __ bind(L1); 464 __ get_thread(rbx); 465 __ cmpptr(r15_thread, thread); 466 __ jcc(Assembler::equal, L2); 467 __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); 468 __ bind(L2); 469 __ cmpptr(r15_thread, rbx); 470 __ jcc(Assembler::equal, L3); 471 __ stop("StubRoutines::catch_exception: threads must correspond"); 472 __ bind(L3); 473 } 474 #endif 475 476 // set pending exception 477 __ verify_oop(rax); 478 479 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); 480 __ lea(rscratch1, ExternalAddress((address)__FILE__)); 481 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); 482 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); 483 484 // complete return to VM 485 assert(StubRoutines::_call_stub_return_address != NULL, 486 "_call_stub_return_address must have been generated before"); 487 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); 488 489 return start; 490 } 491 492 // Continuation point for runtime calls returning with a pending 493 // exception. The pending exception check happened in the runtime 494 // or native call stub. The pending exception in Thread is 495 // converted into a Java-level exception. 496 // 497 // Contract with Java-level exception handlers: 498 // rax: exception 499 // rdx: throwing pc 500 // 501 // NOTE: At entry of this stub, exception-pc must be on stack !! 502 503 address generate_forward_exception() { 504 StubCodeMark mark(this, "StubRoutines", "forward exception"); 505 address start = __ pc(); 506 507 // Upon entry, the sp points to the return address returning into 508 // Java (interpreted or compiled) code; i.e., the return address 509 // becomes the throwing pc. 510 // 511 // Arguments pushed before the runtime call are still on the stack 512 // but the exception handler will reset the stack pointer -> 513 // ignore them. A potential result in registers can be ignored as 514 // well. 515 516 #ifdef ASSERT 517 // make sure this code is only executed if there is a pending exception 518 { 519 Label L; 520 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD); 521 __ jcc(Assembler::notEqual, L); 522 __ stop("StubRoutines::forward exception: no pending exception (1)"); 523 __ bind(L); 524 } 525 #endif 526 527 // compute exception handler into rbx 528 __ movptr(c_rarg0, Address(rsp, 0)); 529 BLOCK_COMMENT("call exception_handler_for_return_address"); 530 __ call_VM_leaf(CAST_FROM_FN_PTR(address, 531 SharedRuntime::exception_handler_for_return_address), 532 r15_thread, c_rarg0); 533 __ mov(rbx, rax); 534 535 // setup rax & rdx, remove return address & clear pending exception 536 __ pop(rdx); 537 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 538 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 539 540 #ifdef ASSERT 541 // make sure exception is set 542 { 543 Label L; 544 __ testptr(rax, rax); 545 __ jcc(Assembler::notEqual, L); 546 __ stop("StubRoutines::forward exception: no pending exception (2)"); 547 __ bind(L); 548 } 549 #endif 550 551 // continue at exception handler (return address removed) 552 // rax: exception 553 // rbx: exception handler 554 // rdx: throwing pc 555 __ verify_oop(rax); 556 __ jmp(rbx); 557 558 return start; 559 } 560 561 // Support for intptr_t OrderAccess::fence() 562 // 563 // Arguments : 564 // 565 // Result: 566 address generate_orderaccess_fence() { 567 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); 568 address start = __ pc(); 569 __ membar(Assembler::StoreLoad); 570 __ ret(0); 571 572 return start; 573 } 574 575 576 // Support for intptr_t get_previous_sp() 577 // 578 // This routine is used to find the previous stack pointer for the 579 // caller. 580 address generate_get_previous_sp() { 581 StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); 582 address start = __ pc(); 583 584 __ movptr(rax, rsp); 585 __ addptr(rax, 8); // return address is at the top of the stack. 586 __ ret(0); 587 588 return start; 589 } 590 591 //---------------------------------------------------------------------------------------------------- 592 // Support for void verify_mxcsr() 593 // 594 // This routine is used with -Xcheck:jni to verify that native 595 // JNI code does not return to Java code without restoring the 596 // MXCSR register to our expected state. 597 598 address generate_verify_mxcsr() { 599 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); 600 address start = __ pc(); 601 602 const Address mxcsr_save(rsp, 0); 603 604 if (CheckJNICalls) { 605 Label ok_ret; 606 ExternalAddress mxcsr_std(StubRoutines::x86::addr_mxcsr_std()); 607 __ push(rax); 608 __ subptr(rsp, wordSize); // allocate a temp location 609 __ stmxcsr(mxcsr_save); 610 __ movl(rax, mxcsr_save); 611 __ andl(rax, MXCSR_MASK); // Only check control and mask bits 612 __ cmp32(rax, mxcsr_std); 613 __ jcc(Assembler::equal, ok_ret); 614 615 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); 616 617 __ ldmxcsr(mxcsr_std); 618 619 __ bind(ok_ret); 620 __ addptr(rsp, wordSize); 621 __ pop(rax); 622 } 623 624 __ ret(0); 625 626 return start; 627 } 628 629 address generate_f2i_fixup() { 630 StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); 631 Address inout(rsp, 5 * wordSize); // return address + 4 saves 632 633 address start = __ pc(); 634 635 Label L; 636 637 __ push(rax); 638 __ push(c_rarg3); 639 __ push(c_rarg2); 640 __ push(c_rarg1); 641 642 __ movl(rax, 0x7f800000); 643 __ xorl(c_rarg3, c_rarg3); 644 __ movl(c_rarg2, inout); 645 __ movl(c_rarg1, c_rarg2); 646 __ andl(c_rarg1, 0x7fffffff); 647 __ cmpl(rax, c_rarg1); // NaN? -> 0 648 __ jcc(Assembler::negative, L); 649 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint 650 __ movl(c_rarg3, 0x80000000); 651 __ movl(rax, 0x7fffffff); 652 __ cmovl(Assembler::positive, c_rarg3, rax); 653 654 __ bind(L); 655 __ movptr(inout, c_rarg3); 656 657 __ pop(c_rarg1); 658 __ pop(c_rarg2); 659 __ pop(c_rarg3); 660 __ pop(rax); 661 662 __ ret(0); 663 664 return start; 665 } 666 667 address generate_f2l_fixup() { 668 StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); 669 Address inout(rsp, 5 * wordSize); // return address + 4 saves 670 address start = __ pc(); 671 672 Label L; 673 674 __ push(rax); 675 __ push(c_rarg3); 676 __ push(c_rarg2); 677 __ push(c_rarg1); 678 679 __ movl(rax, 0x7f800000); 680 __ xorl(c_rarg3, c_rarg3); 681 __ movl(c_rarg2, inout); 682 __ movl(c_rarg1, c_rarg2); 683 __ andl(c_rarg1, 0x7fffffff); 684 __ cmpl(rax, c_rarg1); // NaN? -> 0 685 __ jcc(Assembler::negative, L); 686 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong 687 __ mov64(c_rarg3, 0x8000000000000000); 688 __ mov64(rax, 0x7fffffffffffffff); 689 __ cmov(Assembler::positive, c_rarg3, rax); 690 691 __ bind(L); 692 __ movptr(inout, c_rarg3); 693 694 __ pop(c_rarg1); 695 __ pop(c_rarg2); 696 __ pop(c_rarg3); 697 __ pop(rax); 698 699 __ ret(0); 700 701 return start; 702 } 703 704 address generate_d2i_fixup() { 705 StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); 706 Address inout(rsp, 6 * wordSize); // return address + 5 saves 707 708 address start = __ pc(); 709 710 Label L; 711 712 __ push(rax); 713 __ push(c_rarg3); 714 __ push(c_rarg2); 715 __ push(c_rarg1); 716 __ push(c_rarg0); 717 718 __ movl(rax, 0x7ff00000); 719 __ movq(c_rarg2, inout); 720 __ movl(c_rarg3, c_rarg2); 721 __ mov(c_rarg1, c_rarg2); 722 __ mov(c_rarg0, c_rarg2); 723 __ negl(c_rarg3); 724 __ shrptr(c_rarg1, 0x20); 725 __ orl(c_rarg3, c_rarg2); 726 __ andl(c_rarg1, 0x7fffffff); 727 __ xorl(c_rarg2, c_rarg2); 728 __ shrl(c_rarg3, 0x1f); 729 __ orl(c_rarg1, c_rarg3); 730 __ cmpl(rax, c_rarg1); 731 __ jcc(Assembler::negative, L); // NaN -> 0 732 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint 733 __ movl(c_rarg2, 0x80000000); 734 __ movl(rax, 0x7fffffff); 735 __ cmov(Assembler::positive, c_rarg2, rax); 736 737 __ bind(L); 738 __ movptr(inout, c_rarg2); 739 740 __ pop(c_rarg0); 741 __ pop(c_rarg1); 742 __ pop(c_rarg2); 743 __ pop(c_rarg3); 744 __ pop(rax); 745 746 __ ret(0); 747 748 return start; 749 } 750 751 address generate_d2l_fixup() { 752 StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); 753 Address inout(rsp, 6 * wordSize); // return address + 5 saves 754 755 address start = __ pc(); 756 757 Label L; 758 759 __ push(rax); 760 __ push(c_rarg3); 761 __ push(c_rarg2); 762 __ push(c_rarg1); 763 __ push(c_rarg0); 764 765 __ movl(rax, 0x7ff00000); 766 __ movq(c_rarg2, inout); 767 __ movl(c_rarg3, c_rarg2); 768 __ mov(c_rarg1, c_rarg2); 769 __ mov(c_rarg0, c_rarg2); 770 __ negl(c_rarg3); 771 __ shrptr(c_rarg1, 0x20); 772 __ orl(c_rarg3, c_rarg2); 773 __ andl(c_rarg1, 0x7fffffff); 774 __ xorl(c_rarg2, c_rarg2); 775 __ shrl(c_rarg3, 0x1f); 776 __ orl(c_rarg1, c_rarg3); 777 __ cmpl(rax, c_rarg1); 778 __ jcc(Assembler::negative, L); // NaN -> 0 779 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong 780 __ mov64(c_rarg2, 0x8000000000000000); 781 __ mov64(rax, 0x7fffffffffffffff); 782 __ cmovq(Assembler::positive, c_rarg2, rax); 783 784 __ bind(L); 785 __ movq(inout, c_rarg2); 786 787 __ pop(c_rarg0); 788 __ pop(c_rarg1); 789 __ pop(c_rarg2); 790 __ pop(c_rarg3); 791 __ pop(rax); 792 793 __ ret(0); 794 795 return start; 796 } 797 798 address generate_iota_indices(const char *stub_name) { 799 __ align(CodeEntryAlignment); 800 StubCodeMark mark(this, "StubRoutines", stub_name); 801 address start = __ pc(); 802 __ emit_data64(0x0706050403020100, relocInfo::none); 803 __ emit_data64(0x0F0E0D0C0B0A0908, relocInfo::none); 804 __ emit_data64(0x1716151413121110, relocInfo::none); 805 __ emit_data64(0x1F1E1D1C1B1A1918, relocInfo::none); 806 __ emit_data64(0x2726252423222120, relocInfo::none); 807 __ emit_data64(0x2F2E2D2C2B2A2928, relocInfo::none); 808 __ emit_data64(0x3736353433323130, relocInfo::none); 809 __ emit_data64(0x3F3E3D3C3B3A3938, relocInfo::none); 810 return start; 811 } 812 813 address generate_vector_byte_shuffle_mask(const char *stub_name) { 814 __ align(CodeEntryAlignment); 815 StubCodeMark mark(this, "StubRoutines", stub_name); 816 address start = __ pc(); 817 __ emit_data64(0x7070707070707070, relocInfo::none); 818 __ emit_data64(0x7070707070707070, relocInfo::none); 819 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 820 __ emit_data64(0xF0F0F0F0F0F0F0F0, relocInfo::none); 821 return start; 822 } 823 824 address generate_fp_mask(const char *stub_name, int64_t mask) { 825 __ align(CodeEntryAlignment); 826 StubCodeMark mark(this, "StubRoutines", stub_name); 827 address start = __ pc(); 828 829 __ emit_data64( mask, relocInfo::none ); 830 __ emit_data64( mask, relocInfo::none ); 831 832 return start; 833 } 834 835 address generate_vector_mask(const char *stub_name, int64_t mask) { 836 __ align(CodeEntryAlignment); 837 StubCodeMark mark(this, "StubRoutines", stub_name); 838 address start = __ pc(); 839 840 __ emit_data64(mask, relocInfo::none); 841 __ emit_data64(mask, relocInfo::none); 842 __ emit_data64(mask, relocInfo::none); 843 __ emit_data64(mask, relocInfo::none); 844 __ emit_data64(mask, relocInfo::none); 845 __ emit_data64(mask, relocInfo::none); 846 __ emit_data64(mask, relocInfo::none); 847 __ emit_data64(mask, relocInfo::none); 848 849 return start; 850 } 851 852 address generate_vector_byte_perm_mask(const char *stub_name) { 853 __ align(CodeEntryAlignment); 854 StubCodeMark mark(this, "StubRoutines", stub_name); 855 address start = __ pc(); 856 857 __ emit_data64(0x0000000000000001, relocInfo::none); 858 __ emit_data64(0x0000000000000003, relocInfo::none); 859 __ emit_data64(0x0000000000000005, relocInfo::none); 860 __ emit_data64(0x0000000000000007, relocInfo::none); 861 __ emit_data64(0x0000000000000000, relocInfo::none); 862 __ emit_data64(0x0000000000000002, relocInfo::none); 863 __ emit_data64(0x0000000000000004, relocInfo::none); 864 __ emit_data64(0x0000000000000006, relocInfo::none); 865 866 return start; 867 } 868 869 address generate_vector_fp_mask(const char *stub_name, int64_t mask) { 870 __ align(CodeEntryAlignment); 871 StubCodeMark mark(this, "StubRoutines", stub_name); 872 address start = __ pc(); 873 874 __ emit_data64(mask, relocInfo::none); 875 __ emit_data64(mask, relocInfo::none); 876 __ emit_data64(mask, relocInfo::none); 877 __ emit_data64(mask, relocInfo::none); 878 __ emit_data64(mask, relocInfo::none); 879 __ emit_data64(mask, relocInfo::none); 880 __ emit_data64(mask, relocInfo::none); 881 __ emit_data64(mask, relocInfo::none); 882 883 return start; 884 } 885 886 address generate_vector_custom_i32(const char *stub_name, Assembler::AvxVectorLen len, 887 int32_t val0, int32_t val1, int32_t val2, int32_t val3, 888 int32_t val4 = 0, int32_t val5 = 0, int32_t val6 = 0, int32_t val7 = 0, 889 int32_t val8 = 0, int32_t val9 = 0, int32_t val10 = 0, int32_t val11 = 0, 890 int32_t val12 = 0, int32_t val13 = 0, int32_t val14 = 0, int32_t val15 = 0) { 891 __ align(CodeEntryAlignment); 892 StubCodeMark mark(this, "StubRoutines", stub_name); 893 address start = __ pc(); 894 895 assert(len != Assembler::AVX_NoVec, "vector len must be specified"); 896 __ emit_data(val0, relocInfo::none, 0); 897 __ emit_data(val1, relocInfo::none, 0); 898 __ emit_data(val2, relocInfo::none, 0); 899 __ emit_data(val3, relocInfo::none, 0); 900 if (len >= Assembler::AVX_256bit) { 901 __ emit_data(val4, relocInfo::none, 0); 902 __ emit_data(val5, relocInfo::none, 0); 903 __ emit_data(val6, relocInfo::none, 0); 904 __ emit_data(val7, relocInfo::none, 0); 905 if (len >= Assembler::AVX_512bit) { 906 __ emit_data(val8, relocInfo::none, 0); 907 __ emit_data(val9, relocInfo::none, 0); 908 __ emit_data(val10, relocInfo::none, 0); 909 __ emit_data(val11, relocInfo::none, 0); 910 __ emit_data(val12, relocInfo::none, 0); 911 __ emit_data(val13, relocInfo::none, 0); 912 __ emit_data(val14, relocInfo::none, 0); 913 __ emit_data(val15, relocInfo::none, 0); 914 } 915 } 916 917 return start; 918 } 919 920 // Non-destructive plausibility checks for oops 921 // 922 // Arguments: 923 // all args on stack! 924 // 925 // Stack after saving c_rarg3: 926 // [tos + 0]: saved c_rarg3 927 // [tos + 1]: saved c_rarg2 928 // [tos + 2]: saved r12 (several TemplateTable methods use it) 929 // [tos + 3]: saved flags 930 // [tos + 4]: return address 931 // * [tos + 5]: error message (char*) 932 // * [tos + 6]: object to verify (oop) 933 // * [tos + 7]: saved rax - saved by caller and bashed 934 // * [tos + 8]: saved r10 (rscratch1) - saved by caller 935 // * = popped on exit 936 address generate_verify_oop() { 937 StubCodeMark mark(this, "StubRoutines", "verify_oop"); 938 address start = __ pc(); 939 940 Label exit, error; 941 942 __ pushf(); 943 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr())); 944 945 __ push(r12); 946 947 // save c_rarg2 and c_rarg3 948 __ push(c_rarg2); 949 __ push(c_rarg3); 950 951 enum { 952 // After previous pushes. 953 oop_to_verify = 6 * wordSize, 954 saved_rax = 7 * wordSize, 955 saved_r10 = 8 * wordSize, 956 957 // Before the call to MacroAssembler::debug(), see below. 958 return_addr = 16 * wordSize, 959 error_msg = 17 * wordSize 960 }; 961 962 // get object 963 __ movptr(rax, Address(rsp, oop_to_verify)); 964 965 // make sure object is 'reasonable' 966 __ testptr(rax, rax); 967 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK 968 969 #if INCLUDE_ZGC 970 if (UseZGC) { 971 // Check if metadata bits indicate a bad oop 972 __ testptr(rax, Address(r15_thread, ZThreadLocalData::address_bad_mask_offset())); 973 __ jcc(Assembler::notZero, error); 974 } 975 #endif 976 977 // Check if the oop is in the right area of memory 978 __ movptr(c_rarg2, rax); 979 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask()); 980 __ andptr(c_rarg2, c_rarg3); 981 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits()); 982 __ cmpptr(c_rarg2, c_rarg3); 983 __ jcc(Assembler::notZero, error); 984 985 // make sure klass is 'reasonable', which is not zero. 986 __ load_klass(rax, rax, rscratch1); // get klass 987 __ testptr(rax, rax); 988 __ jcc(Assembler::zero, error); // if klass is NULL it is broken 989 990 // return if everything seems ok 991 __ bind(exit); 992 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 993 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 994 __ pop(c_rarg3); // restore c_rarg3 995 __ pop(c_rarg2); // restore c_rarg2 996 __ pop(r12); // restore r12 997 __ popf(); // restore flags 998 __ ret(4 * wordSize); // pop caller saved stuff 999 1000 // handle errors 1001 __ bind(error); 1002 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back 1003 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back 1004 __ pop(c_rarg3); // get saved c_rarg3 back 1005 __ pop(c_rarg2); // get saved c_rarg2 back 1006 __ pop(r12); // get saved r12 back 1007 __ popf(); // get saved flags off stack -- 1008 // will be ignored 1009 1010 __ pusha(); // push registers 1011 // (rip is already 1012 // already pushed) 1013 // debug(char* msg, int64_t pc, int64_t regs[]) 1014 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and 1015 // pushed all the registers, so now the stack looks like: 1016 // [tos + 0] 16 saved registers 1017 // [tos + 16] return address 1018 // * [tos + 17] error message (char*) 1019 // * [tos + 18] object to verify (oop) 1020 // * [tos + 19] saved rax - saved by caller and bashed 1021 // * [tos + 20] saved r10 (rscratch1) - saved by caller 1022 // * = popped on exit 1023 1024 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message 1025 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address 1026 __ movq(c_rarg2, rsp); // pass address of regs on stack 1027 __ mov(r12, rsp); // remember rsp 1028 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1029 __ andptr(rsp, -16); // align stack as required by ABI 1030 BLOCK_COMMENT("call MacroAssembler::debug"); 1031 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 1032 __ hlt(); 1033 return start; 1034 } 1035 1036 // 1037 // Verify that a register contains clean 32-bits positive value 1038 // (high 32-bits are 0) so it could be used in 64-bits shifts. 1039 // 1040 // Input: 1041 // Rint - 32-bits value 1042 // Rtmp - scratch 1043 // 1044 void assert_clean_int(Register Rint, Register Rtmp) { 1045 #ifdef ASSERT 1046 Label L; 1047 assert_different_registers(Rtmp, Rint); 1048 __ movslq(Rtmp, Rint); 1049 __ cmpq(Rtmp, Rint); 1050 __ jcc(Assembler::equal, L); 1051 __ stop("high 32-bits of int value are not 0"); 1052 __ bind(L); 1053 #endif 1054 } 1055 1056 // Generate overlap test for array copy stubs 1057 // 1058 // Input: 1059 // c_rarg0 - from 1060 // c_rarg1 - to 1061 // c_rarg2 - element count 1062 // 1063 // Output: 1064 // rax - &from[element count - 1] 1065 // 1066 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) { 1067 assert(no_overlap_target != NULL, "must be generated"); 1068 array_overlap_test(no_overlap_target, NULL, sf); 1069 } 1070 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) { 1071 array_overlap_test(NULL, &L_no_overlap, sf); 1072 } 1073 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) { 1074 const Register from = c_rarg0; 1075 const Register to = c_rarg1; 1076 const Register count = c_rarg2; 1077 const Register end_from = rax; 1078 1079 __ cmpptr(to, from); 1080 __ lea(end_from, Address(from, count, sf, 0)); 1081 if (NOLp == NULL) { 1082 ExternalAddress no_overlap(no_overlap_target); 1083 __ jump_cc(Assembler::belowEqual, no_overlap); 1084 __ cmpptr(to, end_from); 1085 __ jump_cc(Assembler::aboveEqual, no_overlap); 1086 } else { 1087 __ jcc(Assembler::belowEqual, (*NOLp)); 1088 __ cmpptr(to, end_from); 1089 __ jcc(Assembler::aboveEqual, (*NOLp)); 1090 } 1091 } 1092 1093 // Shuffle first three arg regs on Windows into Linux/Solaris locations. 1094 // 1095 // Outputs: 1096 // rdi - rcx 1097 // rsi - rdx 1098 // rdx - r8 1099 // rcx - r9 1100 // 1101 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter 1102 // are non-volatile. r9 and r10 should not be used by the caller. 1103 // 1104 DEBUG_ONLY(bool regs_in_thread;) 1105 1106 void setup_arg_regs(int nargs = 3) { 1107 const Register saved_rdi = r9; 1108 const Register saved_rsi = r10; 1109 assert(nargs == 3 || nargs == 4, "else fix"); 1110 #ifdef _WIN64 1111 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1112 "unexpected argument registers"); 1113 if (nargs >= 4) 1114 __ mov(rax, r9); // r9 is also saved_rdi 1115 __ movptr(saved_rdi, rdi); 1116 __ movptr(saved_rsi, rsi); 1117 __ mov(rdi, rcx); // c_rarg0 1118 __ mov(rsi, rdx); // c_rarg1 1119 __ mov(rdx, r8); // c_rarg2 1120 if (nargs >= 4) 1121 __ mov(rcx, rax); // c_rarg3 (via rax) 1122 #else 1123 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1124 "unexpected argument registers"); 1125 #endif 1126 DEBUG_ONLY(regs_in_thread = false;) 1127 } 1128 1129 void restore_arg_regs() { 1130 assert(!regs_in_thread, "wrong call to restore_arg_regs"); 1131 const Register saved_rdi = r9; 1132 const Register saved_rsi = r10; 1133 #ifdef _WIN64 1134 __ movptr(rdi, saved_rdi); 1135 __ movptr(rsi, saved_rsi); 1136 #endif 1137 } 1138 1139 // This is used in places where r10 is a scratch register, and can 1140 // be adapted if r9 is needed also. 1141 void setup_arg_regs_using_thread() { 1142 const Register saved_r15 = r9; 1143 #ifdef _WIN64 1144 __ mov(saved_r15, r15); // r15 is callee saved and needs to be restored 1145 __ get_thread(r15_thread); 1146 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, 1147 "unexpected argument registers"); 1148 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset())), rdi); 1149 __ movptr(Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset())), rsi); 1150 1151 __ mov(rdi, rcx); // c_rarg0 1152 __ mov(rsi, rdx); // c_rarg1 1153 __ mov(rdx, r8); // c_rarg2 1154 #else 1155 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, 1156 "unexpected argument registers"); 1157 #endif 1158 DEBUG_ONLY(regs_in_thread = true;) 1159 } 1160 1161 void restore_arg_regs_using_thread() { 1162 assert(regs_in_thread, "wrong call to restore_arg_regs"); 1163 const Register saved_r15 = r9; 1164 #ifdef _WIN64 1165 __ get_thread(r15_thread); 1166 __ movptr(rsi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rsi_offset()))); 1167 __ movptr(rdi, Address(r15_thread, in_bytes(JavaThread::windows_saved_rdi_offset()))); 1168 __ mov(r15, saved_r15); // r15 is callee saved and needs to be restored 1169 #endif 1170 } 1171 1172 // Copy big chunks forward 1173 // 1174 // Inputs: 1175 // end_from - source arrays end address 1176 // end_to - destination array end address 1177 // qword_count - 64-bits element count, negative 1178 // to - scratch 1179 // L_copy_bytes - entry label 1180 // L_copy_8_bytes - exit label 1181 // 1182 void copy_bytes_forward(Register end_from, Register end_to, 1183 Register qword_count, Register to, 1184 Label& L_copy_bytes, Label& L_copy_8_bytes) { 1185 DEBUG_ONLY(__ stop("enter at entry label, not here")); 1186 Label L_loop; 1187 __ align(OptoLoopAlignment); 1188 if (UseUnalignedLoadStores) { 1189 Label L_end; 1190 __ BIND(L_loop); 1191 if (UseAVX >= 2) { 1192 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); 1193 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); 1194 __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24)); 1195 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1); 1196 } else { 1197 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); 1198 __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); 1199 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40)); 1200 __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1); 1201 __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24)); 1202 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2); 1203 __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8)); 1204 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3); 1205 } 1206 1207 __ BIND(L_copy_bytes); 1208 __ addptr(qword_count, 8); 1209 __ jcc(Assembler::lessEqual, L_loop); 1210 __ subptr(qword_count, 4); // sub(8) and add(4) 1211 __ jccb(Assembler::greater, L_end); 1212 // Copy trailing 32 bytes 1213 if (UseAVX >= 2) { 1214 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); 1215 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); 1216 } else { 1217 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); 1218 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); 1219 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8)); 1220 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1); 1221 } 1222 __ addptr(qword_count, 4); 1223 __ BIND(L_end); 1224 if (UseAVX >= 2) { 1225 // clean upper bits of YMM registers 1226 __ vpxor(xmm0, xmm0); 1227 __ vpxor(xmm1, xmm1); 1228 } 1229 } else { 1230 // Copy 32-bytes per iteration 1231 __ BIND(L_loop); 1232 __ movq(to, Address(end_from, qword_count, Address::times_8, -24)); 1233 __ movq(Address(end_to, qword_count, Address::times_8, -24), to); 1234 __ movq(to, Address(end_from, qword_count, Address::times_8, -16)); 1235 __ movq(Address(end_to, qword_count, Address::times_8, -16), to); 1236 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8)); 1237 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to); 1238 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0)); 1239 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to); 1240 1241 __ BIND(L_copy_bytes); 1242 __ addptr(qword_count, 4); 1243 __ jcc(Assembler::lessEqual, L_loop); 1244 } 1245 __ subptr(qword_count, 4); 1246 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords 1247 } 1248 1249 // Copy big chunks backward 1250 // 1251 // Inputs: 1252 // from - source arrays address 1253 // dest - destination array address 1254 // qword_count - 64-bits element count 1255 // to - scratch 1256 // L_copy_bytes - entry label 1257 // L_copy_8_bytes - exit label 1258 // 1259 void copy_bytes_backward(Register from, Register dest, 1260 Register qword_count, Register to, 1261 Label& L_copy_bytes, Label& L_copy_8_bytes) { 1262 DEBUG_ONLY(__ stop("enter at entry label, not here")); 1263 Label L_loop; 1264 __ align(OptoLoopAlignment); 1265 if (UseUnalignedLoadStores) { 1266 Label L_end; 1267 __ BIND(L_loop); 1268 if (UseAVX >= 2) { 1269 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32)); 1270 __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0); 1271 __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); 1272 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); 1273 } else { 1274 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48)); 1275 __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0); 1276 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32)); 1277 __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1); 1278 __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16)); 1279 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2); 1280 __ movdqu(xmm3, Address(from, qword_count, Address::times_8, 0)); 1281 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3); 1282 } 1283 1284 __ BIND(L_copy_bytes); 1285 __ subptr(qword_count, 8); 1286 __ jcc(Assembler::greaterEqual, L_loop); 1287 1288 __ addptr(qword_count, 4); // add(8) and sub(4) 1289 __ jccb(Assembler::less, L_end); 1290 // Copy trailing 32 bytes 1291 if (UseAVX >= 2) { 1292 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0)); 1293 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0); 1294 } else { 1295 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16)); 1296 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0); 1297 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); 1298 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); 1299 } 1300 __ subptr(qword_count, 4); 1301 __ BIND(L_end); 1302 if (UseAVX >= 2) { 1303 // clean upper bits of YMM registers 1304 __ vpxor(xmm0, xmm0); 1305 __ vpxor(xmm1, xmm1); 1306 } 1307 } else { 1308 // Copy 32-bytes per iteration 1309 __ BIND(L_loop); 1310 __ movq(to, Address(from, qword_count, Address::times_8, 24)); 1311 __ movq(Address(dest, qword_count, Address::times_8, 24), to); 1312 __ movq(to, Address(from, qword_count, Address::times_8, 16)); 1313 __ movq(Address(dest, qword_count, Address::times_8, 16), to); 1314 __ movq(to, Address(from, qword_count, Address::times_8, 8)); 1315 __ movq(Address(dest, qword_count, Address::times_8, 8), to); 1316 __ movq(to, Address(from, qword_count, Address::times_8, 0)); 1317 __ movq(Address(dest, qword_count, Address::times_8, 0), to); 1318 1319 __ BIND(L_copy_bytes); 1320 __ subptr(qword_count, 4); 1321 __ jcc(Assembler::greaterEqual, L_loop); 1322 } 1323 __ addptr(qword_count, 4); 1324 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords 1325 } 1326 1327 #ifndef PRODUCT 1328 int& get_profile_ctr(int shift) { 1329 if ( 0 == shift) 1330 return SharedRuntime::_jbyte_array_copy_ctr; 1331 else if(1 == shift) 1332 return SharedRuntime::_jshort_array_copy_ctr; 1333 else if(2 == shift) 1334 return SharedRuntime::_jint_array_copy_ctr; 1335 else 1336 return SharedRuntime::_jlong_array_copy_ctr; 1337 } 1338 #endif 1339 1340 void setup_argument_regs(BasicType type) { 1341 if (type == T_BYTE || type == T_SHORT) { 1342 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1343 // r9 and r10 may be used to save non-volatile registers 1344 } else { 1345 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 1346 // r9 is used to save r15_thread 1347 } 1348 } 1349 1350 void restore_argument_regs(BasicType type) { 1351 if (type == T_BYTE || type == T_SHORT) { 1352 restore_arg_regs(); 1353 } else { 1354 restore_arg_regs_using_thread(); 1355 } 1356 } 1357 1358 #if COMPILER2_OR_JVMCI 1359 // Note: Following rules apply to AVX3 optimized arraycopy stubs:- 1360 // - If target supports AVX3 features (BW+VL+F) then implementation uses 32 byte vectors (YMMs) 1361 // for both special cases (various small block sizes) and aligned copy loop. This is the 1362 // default configuration. 1363 // - If copy length is above AVX3Threshold, then implementation use 64 byte vectors (ZMMs) 1364 // for main copy loop (and subsequent tail) since bulk of the cycles will be consumed in it. 1365 // - If user forces MaxVectorSize=32 then above 4096 bytes its seen that REP MOVs shows a 1366 // better performance for disjoint copies. For conjoint/backward copy vector based 1367 // copy performs better. 1368 // - If user sets AVX3Threshold=0, then special cases for small blocks sizes operate over 1369 // 64 byte vector registers (ZMMs). 1370 1371 // Inputs: 1372 // c_rarg0 - source array address 1373 // c_rarg1 - destination array address 1374 // c_rarg2 - element count, treated as ssize_t, can be zero 1375 // 1376 // 1377 // Side Effects: 1378 // disjoint_copy_avx3_masked is set to the no-overlap entry point 1379 // used by generate_conjoint_[byte/int/short/long]_copy(). 1380 // 1381 1382 address generate_disjoint_copy_avx3_masked(address* entry, const char *name, int shift, 1383 bool aligned, bool is_oop, bool dest_uninitialized) { 1384 __ align(CodeEntryAlignment); 1385 StubCodeMark mark(this, "StubRoutines", name); 1386 address start = __ pc(); 1387 1388 bool use64byteVector = MaxVectorSize > 32 && AVX3Threshold == 0; 1389 Label L_main_loop, L_main_loop_64bytes, L_tail, L_tail64, L_exit, L_entry; 1390 Label L_repmovs, L_main_pre_loop, L_main_pre_loop_64bytes, L_pre_main_post_64; 1391 const Register from = rdi; // source array address 1392 const Register to = rsi; // destination array address 1393 const Register count = rdx; // elements count 1394 const Register temp1 = r8; 1395 const Register temp2 = r11; 1396 const Register temp3 = rax; 1397 const Register temp4 = rcx; 1398 // End pointers are inclusive, and if count is not zero they point 1399 // to the last unit copied: end_to[0] := end_from[0] 1400 1401 __ enter(); // required for proper stackwalking of RuntimeStub frame 1402 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1403 1404 if (entry != NULL) { 1405 *entry = __ pc(); 1406 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1407 BLOCK_COMMENT("Entry:"); 1408 } 1409 1410 BasicType type_vec[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 1411 BasicType type = is_oop ? T_OBJECT : type_vec[shift]; 1412 1413 setup_argument_regs(type); 1414 1415 DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; 1416 if (dest_uninitialized) { 1417 decorators |= IS_DEST_UNINITIALIZED; 1418 } 1419 if (aligned) { 1420 decorators |= ARRAYCOPY_ALIGNED; 1421 } 1422 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1423 bs->arraycopy_prologue(_masm, decorators, type, from, to, count); 1424 1425 { 1426 // Type(shift) byte(0), short(1), int(2), long(3) 1427 int loop_size[] = { 192, 96, 48, 24}; 1428 int threshold[] = { 4096, 2048, 1024, 512}; 1429 1430 // UnsafeCopyMemory page error: continue after ucm 1431 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); 1432 // 'from', 'to' and 'count' are now valid 1433 1434 // temp1 holds remaining count and temp4 holds running count used to compute 1435 // next address offset for start of to/from addresses (temp4 * scale). 1436 __ mov64(temp4, 0); 1437 __ movq(temp1, count); 1438 1439 // Zero length check. 1440 __ BIND(L_tail); 1441 __ cmpq(temp1, 0); 1442 __ jcc(Assembler::lessEqual, L_exit); 1443 1444 // Special cases using 32 byte [masked] vector copy operations. 1445 __ arraycopy_avx3_special_cases(xmm1, k2, from, to, temp1, shift, 1446 temp4, temp3, use64byteVector, L_entry, L_exit); 1447 1448 // PRE-MAIN-POST loop for aligned copy. 1449 __ BIND(L_entry); 1450 1451 if (AVX3Threshold != 0) { 1452 __ cmpq(count, threshold[shift]); 1453 if (MaxVectorSize == 64) { 1454 // Copy using 64 byte vectors. 1455 __ jcc(Assembler::greaterEqual, L_pre_main_post_64); 1456 } else { 1457 assert(MaxVectorSize < 64, "vector size should be < 64 bytes"); 1458 // REP MOVS offer a faster copy path. 1459 __ jcc(Assembler::greaterEqual, L_repmovs); 1460 } 1461 } 1462 1463 if (MaxVectorSize < 64 || AVX3Threshold != 0) { 1464 // Partial copy to make dst address 32 byte aligned. 1465 __ movq(temp2, to); 1466 __ andq(temp2, 31); 1467 __ jcc(Assembler::equal, L_main_pre_loop); 1468 1469 __ negptr(temp2); 1470 __ addq(temp2, 32); 1471 if (shift) { 1472 __ shrq(temp2, shift); 1473 } 1474 __ movq(temp3, temp2); 1475 __ copy32_masked_avx(to, from, xmm1, k2, temp3, temp4, temp1, shift); 1476 __ movq(temp4, temp2); 1477 __ movq(temp1, count); 1478 __ subq(temp1, temp2); 1479 1480 __ cmpq(temp1, loop_size[shift]); 1481 __ jcc(Assembler::less, L_tail); 1482 1483 __ BIND(L_main_pre_loop); 1484 __ subq(temp1, loop_size[shift]); 1485 1486 // Main loop with aligned copy block size of 192 bytes at 32 byte granularity. 1487 __ align32(); 1488 __ BIND(L_main_loop); 1489 __ copy64_avx(to, from, temp4, xmm1, false, shift, 0); 1490 __ copy64_avx(to, from, temp4, xmm1, false, shift, 64); 1491 __ copy64_avx(to, from, temp4, xmm1, false, shift, 128); 1492 __ addptr(temp4, loop_size[shift]); 1493 __ subq(temp1, loop_size[shift]); 1494 __ jcc(Assembler::greater, L_main_loop); 1495 1496 __ addq(temp1, loop_size[shift]); 1497 1498 // Tail loop. 1499 __ jmp(L_tail); 1500 1501 __ BIND(L_repmovs); 1502 __ movq(temp2, temp1); 1503 // Swap to(RSI) and from(RDI) addresses to comply with REP MOVs semantics. 1504 __ movq(temp3, to); 1505 __ movq(to, from); 1506 __ movq(from, temp3); 1507 // Save to/from for restoration post rep_mov. 1508 __ movq(temp1, to); 1509 __ movq(temp3, from); 1510 if(shift < 3) { 1511 __ shrq(temp2, 3-shift); // quad word count 1512 } 1513 __ movq(temp4 , temp2); // move quad ward count into temp4(RCX). 1514 __ rep_mov(); 1515 __ shlq(temp2, 3); // convert quad words into byte count. 1516 if(shift) { 1517 __ shrq(temp2, shift); // type specific count. 1518 } 1519 // Restore original addresses in to/from. 1520 __ movq(to, temp3); 1521 __ movq(from, temp1); 1522 __ movq(temp4, temp2); 1523 __ movq(temp1, count); 1524 __ subq(temp1, temp2); // tailing part (less than a quad ward size). 1525 __ jmp(L_tail); 1526 } 1527 1528 if (MaxVectorSize > 32) { 1529 __ BIND(L_pre_main_post_64); 1530 // Partial copy to make dst address 64 byte aligned. 1531 __ movq(temp2, to); 1532 __ andq(temp2, 63); 1533 __ jcc(Assembler::equal, L_main_pre_loop_64bytes); 1534 1535 __ negptr(temp2); 1536 __ addq(temp2, 64); 1537 if (shift) { 1538 __ shrq(temp2, shift); 1539 } 1540 __ movq(temp3, temp2); 1541 __ copy64_masked_avx(to, from, xmm1, k2, temp3, temp4, temp1, shift, 0 , true); 1542 __ movq(temp4, temp2); 1543 __ movq(temp1, count); 1544 __ subq(temp1, temp2); 1545 1546 __ cmpq(temp1, loop_size[shift]); 1547 __ jcc(Assembler::less, L_tail64); 1548 1549 __ BIND(L_main_pre_loop_64bytes); 1550 __ subq(temp1, loop_size[shift]); 1551 1552 // Main loop with aligned copy block size of 192 bytes at 1553 // 64 byte copy granularity. 1554 __ align32(); 1555 __ BIND(L_main_loop_64bytes); 1556 __ copy64_avx(to, from, temp4, xmm1, false, shift, 0 , true); 1557 __ copy64_avx(to, from, temp4, xmm1, false, shift, 64, true); 1558 __ copy64_avx(to, from, temp4, xmm1, false, shift, 128, true); 1559 __ addptr(temp4, loop_size[shift]); 1560 __ subq(temp1, loop_size[shift]); 1561 __ jcc(Assembler::greater, L_main_loop_64bytes); 1562 1563 __ addq(temp1, loop_size[shift]); 1564 // Zero length check. 1565 __ jcc(Assembler::lessEqual, L_exit); 1566 1567 __ BIND(L_tail64); 1568 1569 // Tail handling using 64 byte [masked] vector copy operations. 1570 use64byteVector = true; 1571 __ arraycopy_avx3_special_cases(xmm1, k2, from, to, temp1, shift, 1572 temp4, temp3, use64byteVector, L_entry, L_exit); 1573 } 1574 __ BIND(L_exit); 1575 } 1576 1577 address ucme_exit_pc = __ pc(); 1578 // When called from generic_arraycopy r11 contains specific values 1579 // used during arraycopy epilogue, re-initializing r11. 1580 if (is_oop) { 1581 __ movq(r11, shift == 3 ? count : to); 1582 } 1583 bs->arraycopy_epilogue(_masm, decorators, type, from, to, count); 1584 restore_argument_regs(type); 1585 inc_counter_np(get_profile_ctr(shift)); // Update counter after rscratch1 is free 1586 __ xorptr(rax, rax); // return 0 1587 __ vzeroupper(); 1588 __ leave(); // required for proper stackwalking of RuntimeStub frame 1589 __ ret(0); 1590 return start; 1591 } 1592 1593 // Inputs: 1594 // c_rarg0 - source array address 1595 // c_rarg1 - destination array address 1596 // c_rarg2 - element count, treated as ssize_t, can be zero 1597 // 1598 // 1599 address generate_conjoint_copy_avx3_masked(address* entry, const char *name, int shift, 1600 address nooverlap_target, bool aligned, bool is_oop, 1601 bool dest_uninitialized) { 1602 __ align(CodeEntryAlignment); 1603 StubCodeMark mark(this, "StubRoutines", name); 1604 address start = __ pc(); 1605 1606 bool use64byteVector = MaxVectorSize > 32 && AVX3Threshold == 0; 1607 1608 Label L_main_pre_loop, L_main_pre_loop_64bytes, L_pre_main_post_64; 1609 Label L_main_loop, L_main_loop_64bytes, L_tail, L_tail64, L_exit, L_entry; 1610 const Register from = rdi; // source array address 1611 const Register to = rsi; // destination array address 1612 const Register count = rdx; // elements count 1613 const Register temp1 = r8; 1614 const Register temp2 = rcx; 1615 const Register temp3 = r11; 1616 const Register temp4 = rax; 1617 // End pointers are inclusive, and if count is not zero they point 1618 // to the last unit copied: end_to[0] := end_from[0] 1619 1620 __ enter(); // required for proper stackwalking of RuntimeStub frame 1621 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1622 1623 if (entry != NULL) { 1624 *entry = __ pc(); 1625 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1626 BLOCK_COMMENT("Entry:"); 1627 } 1628 1629 array_overlap_test(nooverlap_target, (Address::ScaleFactor)(shift)); 1630 1631 BasicType type_vec[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 1632 BasicType type = is_oop ? T_OBJECT : type_vec[shift]; 1633 1634 setup_argument_regs(type); 1635 1636 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1637 if (dest_uninitialized) { 1638 decorators |= IS_DEST_UNINITIALIZED; 1639 } 1640 if (aligned) { 1641 decorators |= ARRAYCOPY_ALIGNED; 1642 } 1643 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1644 bs->arraycopy_prologue(_masm, decorators, type, from, to, count); 1645 { 1646 // Type(shift) byte(0), short(1), int(2), long(3) 1647 int loop_size[] = { 192, 96, 48, 24}; 1648 int threshold[] = { 4096, 2048, 1024, 512}; 1649 1650 // UnsafeCopyMemory page error: continue after ucm 1651 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); 1652 // 'from', 'to' and 'count' are now valid 1653 1654 // temp1 holds remaining count. 1655 __ movq(temp1, count); 1656 1657 // Zero length check. 1658 __ BIND(L_tail); 1659 __ cmpq(temp1, 0); 1660 __ jcc(Assembler::lessEqual, L_exit); 1661 1662 __ mov64(temp2, 0); 1663 __ movq(temp3, temp1); 1664 // Special cases using 32 byte [masked] vector copy operations. 1665 __ arraycopy_avx3_special_cases_conjoint(xmm1, k2, from, to, temp2, temp3, temp1, shift, 1666 temp4, use64byteVector, L_entry, L_exit); 1667 1668 // PRE-MAIN-POST loop for aligned copy. 1669 __ BIND(L_entry); 1670 1671 if (MaxVectorSize > 32 && AVX3Threshold != 0) { 1672 __ cmpq(temp1, threshold[shift]); 1673 __ jcc(Assembler::greaterEqual, L_pre_main_post_64); 1674 } 1675 1676 if (MaxVectorSize < 64 || AVX3Threshold != 0) { 1677 // Partial copy to make dst address 32 byte aligned. 1678 __ leaq(temp2, Address(to, temp1, (Address::ScaleFactor)(shift), 0)); 1679 __ andq(temp2, 31); 1680 __ jcc(Assembler::equal, L_main_pre_loop); 1681 1682 if (shift) { 1683 __ shrq(temp2, shift); 1684 } 1685 __ subq(temp1, temp2); 1686 __ copy32_masked_avx(to, from, xmm1, k2, temp2, temp1, temp3, shift); 1687 1688 __ cmpq(temp1, loop_size[shift]); 1689 __ jcc(Assembler::less, L_tail); 1690 1691 __ BIND(L_main_pre_loop); 1692 1693 // Main loop with aligned copy block size of 192 bytes at 32 byte granularity. 1694 __ align32(); 1695 __ BIND(L_main_loop); 1696 __ copy64_avx(to, from, temp1, xmm1, true, shift, -64); 1697 __ copy64_avx(to, from, temp1, xmm1, true, shift, -128); 1698 __ copy64_avx(to, from, temp1, xmm1, true, shift, -192); 1699 __ subptr(temp1, loop_size[shift]); 1700 __ cmpq(temp1, loop_size[shift]); 1701 __ jcc(Assembler::greater, L_main_loop); 1702 1703 // Tail loop. 1704 __ jmp(L_tail); 1705 } 1706 1707 if (MaxVectorSize > 32) { 1708 __ BIND(L_pre_main_post_64); 1709 // Partial copy to make dst address 64 byte aligned. 1710 __ leaq(temp2, Address(to, temp1, (Address::ScaleFactor)(shift), 0)); 1711 __ andq(temp2, 63); 1712 __ jcc(Assembler::equal, L_main_pre_loop_64bytes); 1713 1714 if (shift) { 1715 __ shrq(temp2, shift); 1716 } 1717 __ subq(temp1, temp2); 1718 __ copy64_masked_avx(to, from, xmm1, k2, temp2, temp1, temp3, shift, 0 , true); 1719 1720 __ cmpq(temp1, loop_size[shift]); 1721 __ jcc(Assembler::less, L_tail64); 1722 1723 __ BIND(L_main_pre_loop_64bytes); 1724 1725 // Main loop with aligned copy block size of 192 bytes at 1726 // 64 byte copy granularity. 1727 __ align32(); 1728 __ BIND(L_main_loop_64bytes); 1729 __ copy64_avx(to, from, temp1, xmm1, true, shift, -64 , true); 1730 __ copy64_avx(to, from, temp1, xmm1, true, shift, -128, true); 1731 __ copy64_avx(to, from, temp1, xmm1, true, shift, -192, true); 1732 __ subq(temp1, loop_size[shift]); 1733 __ cmpq(temp1, loop_size[shift]); 1734 __ jcc(Assembler::greater, L_main_loop_64bytes); 1735 1736 // Zero length check. 1737 __ cmpq(temp1, 0); 1738 __ jcc(Assembler::lessEqual, L_exit); 1739 1740 __ BIND(L_tail64); 1741 1742 // Tail handling using 64 byte [masked] vector copy operations. 1743 use64byteVector = true; 1744 __ mov64(temp2, 0); 1745 __ movq(temp3, temp1); 1746 __ arraycopy_avx3_special_cases_conjoint(xmm1, k2, from, to, temp2, temp3, temp1, shift, 1747 temp4, use64byteVector, L_entry, L_exit); 1748 } 1749 __ BIND(L_exit); 1750 } 1751 address ucme_exit_pc = __ pc(); 1752 // When called from generic_arraycopy r11 contains specific values 1753 // used during arraycopy epilogue, re-initializing r11. 1754 if(is_oop) { 1755 __ movq(r11, count); 1756 } 1757 bs->arraycopy_epilogue(_masm, decorators, type, from, to, count); 1758 restore_argument_regs(type); 1759 inc_counter_np(get_profile_ctr(shift)); // Update counter after rscratch1 is free 1760 __ xorptr(rax, rax); // return 0 1761 __ vzeroupper(); 1762 __ leave(); // required for proper stackwalking of RuntimeStub frame 1763 __ ret(0); 1764 return start; 1765 } 1766 #endif // COMPILER2_OR_JVMCI 1767 1768 1769 // Arguments: 1770 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 1771 // ignored 1772 // name - stub name string 1773 // 1774 // Inputs: 1775 // c_rarg0 - source array address 1776 // c_rarg1 - destination array address 1777 // c_rarg2 - element count, treated as ssize_t, can be zero 1778 // 1779 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, 1780 // we let the hardware handle it. The one to eight bytes within words, 1781 // dwords or qwords that span cache line boundaries will still be loaded 1782 // and stored atomically. 1783 // 1784 // Side Effects: 1785 // disjoint_byte_copy_entry is set to the no-overlap entry point 1786 // used by generate_conjoint_byte_copy(). 1787 // 1788 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) { 1789 #if COMPILER2_OR_JVMCI 1790 if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { 1791 return generate_disjoint_copy_avx3_masked(entry, "jbyte_disjoint_arraycopy_avx3", 0, 1792 aligned, false, false); 1793 } 1794 #endif 1795 __ align(CodeEntryAlignment); 1796 StubCodeMark mark(this, "StubRoutines", name); 1797 address start = __ pc(); 1798 1799 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; 1800 Label L_copy_byte, L_exit; 1801 const Register from = rdi; // source array address 1802 const Register to = rsi; // destination array address 1803 const Register count = rdx; // elements count 1804 const Register byte_count = rcx; 1805 const Register qword_count = count; 1806 const Register end_from = from; // source array end address 1807 const Register end_to = to; // destination array end address 1808 // End pointers are inclusive, and if count is not zero they point 1809 // to the last unit copied: end_to[0] := end_from[0] 1810 1811 __ enter(); // required for proper stackwalking of RuntimeStub frame 1812 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1813 1814 if (entry != NULL) { 1815 *entry = __ pc(); 1816 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1817 BLOCK_COMMENT("Entry:"); 1818 } 1819 1820 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1821 // r9 and r10 may be used to save non-volatile registers 1822 1823 { 1824 // UnsafeCopyMemory page error: continue after ucm 1825 UnsafeCopyMemoryMark ucmm(this, !aligned, true); 1826 // 'from', 'to' and 'count' are now valid 1827 __ movptr(byte_count, count); 1828 __ shrptr(count, 3); // count => qword_count 1829 1830 // Copy from low to high addresses. Use 'to' as scratch. 1831 __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); 1832 __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); 1833 __ negptr(qword_count); // make the count negative 1834 __ jmp(L_copy_bytes); 1835 1836 // Copy trailing qwords 1837 __ BIND(L_copy_8_bytes); 1838 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); 1839 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); 1840 __ increment(qword_count); 1841 __ jcc(Assembler::notZero, L_copy_8_bytes); 1842 1843 // Check for and copy trailing dword 1844 __ BIND(L_copy_4_bytes); 1845 __ testl(byte_count, 4); 1846 __ jccb(Assembler::zero, L_copy_2_bytes); 1847 __ movl(rax, Address(end_from, 8)); 1848 __ movl(Address(end_to, 8), rax); 1849 1850 __ addptr(end_from, 4); 1851 __ addptr(end_to, 4); 1852 1853 // Check for and copy trailing word 1854 __ BIND(L_copy_2_bytes); 1855 __ testl(byte_count, 2); 1856 __ jccb(Assembler::zero, L_copy_byte); 1857 __ movw(rax, Address(end_from, 8)); 1858 __ movw(Address(end_to, 8), rax); 1859 1860 __ addptr(end_from, 2); 1861 __ addptr(end_to, 2); 1862 1863 // Check for and copy trailing byte 1864 __ BIND(L_copy_byte); 1865 __ testl(byte_count, 1); 1866 __ jccb(Assembler::zero, L_exit); 1867 __ movb(rax, Address(end_from, 8)); 1868 __ movb(Address(end_to, 8), rax); 1869 } 1870 __ BIND(L_exit); 1871 address ucme_exit_pc = __ pc(); 1872 restore_arg_regs(); 1873 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free 1874 __ xorptr(rax, rax); // return 0 1875 __ vzeroupper(); 1876 __ leave(); // required for proper stackwalking of RuntimeStub frame 1877 __ ret(0); 1878 1879 { 1880 UnsafeCopyMemoryMark ucmm(this, !aligned, false, ucme_exit_pc); 1881 // Copy in multi-bytes chunks 1882 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 1883 __ jmp(L_copy_4_bytes); 1884 } 1885 return start; 1886 } 1887 1888 // Arguments: 1889 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 1890 // ignored 1891 // name - stub name string 1892 // 1893 // Inputs: 1894 // c_rarg0 - source array address 1895 // c_rarg1 - destination array address 1896 // c_rarg2 - element count, treated as ssize_t, can be zero 1897 // 1898 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, 1899 // we let the hardware handle it. The one to eight bytes within words, 1900 // dwords or qwords that span cache line boundaries will still be loaded 1901 // and stored atomically. 1902 // 1903 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target, 1904 address* entry, const char *name) { 1905 #if COMPILER2_OR_JVMCI 1906 if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { 1907 return generate_conjoint_copy_avx3_masked(entry, "jbyte_conjoint_arraycopy_avx3", 0, 1908 nooverlap_target, aligned, false, false); 1909 } 1910 #endif 1911 __ align(CodeEntryAlignment); 1912 StubCodeMark mark(this, "StubRoutines", name); 1913 address start = __ pc(); 1914 1915 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; 1916 const Register from = rdi; // source array address 1917 const Register to = rsi; // destination array address 1918 const Register count = rdx; // elements count 1919 const Register byte_count = rcx; 1920 const Register qword_count = count; 1921 1922 __ enter(); // required for proper stackwalking of RuntimeStub frame 1923 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 1924 1925 if (entry != NULL) { 1926 *entry = __ pc(); 1927 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 1928 BLOCK_COMMENT("Entry:"); 1929 } 1930 1931 array_overlap_test(nooverlap_target, Address::times_1); 1932 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 1933 // r9 and r10 may be used to save non-volatile registers 1934 1935 { 1936 // UnsafeCopyMemory page error: continue after ucm 1937 UnsafeCopyMemoryMark ucmm(this, !aligned, true); 1938 // 'from', 'to' and 'count' are now valid 1939 __ movptr(byte_count, count); 1940 __ shrptr(count, 3); // count => qword_count 1941 1942 // Copy from high to low addresses. 1943 1944 // Check for and copy trailing byte 1945 __ testl(byte_count, 1); 1946 __ jcc(Assembler::zero, L_copy_2_bytes); 1947 __ movb(rax, Address(from, byte_count, Address::times_1, -1)); 1948 __ movb(Address(to, byte_count, Address::times_1, -1), rax); 1949 __ decrement(byte_count); // Adjust for possible trailing word 1950 1951 // Check for and copy trailing word 1952 __ BIND(L_copy_2_bytes); 1953 __ testl(byte_count, 2); 1954 __ jcc(Assembler::zero, L_copy_4_bytes); 1955 __ movw(rax, Address(from, byte_count, Address::times_1, -2)); 1956 __ movw(Address(to, byte_count, Address::times_1, -2), rax); 1957 1958 // Check for and copy trailing dword 1959 __ BIND(L_copy_4_bytes); 1960 __ testl(byte_count, 4); 1961 __ jcc(Assembler::zero, L_copy_bytes); 1962 __ movl(rax, Address(from, qword_count, Address::times_8)); 1963 __ movl(Address(to, qword_count, Address::times_8), rax); 1964 __ jmp(L_copy_bytes); 1965 1966 // Copy trailing qwords 1967 __ BIND(L_copy_8_bytes); 1968 __ movq(rax, Address(from, qword_count, Address::times_8, -8)); 1969 __ movq(Address(to, qword_count, Address::times_8, -8), rax); 1970 __ decrement(qword_count); 1971 __ jcc(Assembler::notZero, L_copy_8_bytes); 1972 } 1973 restore_arg_regs(); 1974 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free 1975 __ xorptr(rax, rax); // return 0 1976 __ vzeroupper(); 1977 __ leave(); // required for proper stackwalking of RuntimeStub frame 1978 __ ret(0); 1979 1980 { 1981 // UnsafeCopyMemory page error: continue after ucm 1982 UnsafeCopyMemoryMark ucmm(this, !aligned, true); 1983 // Copy in multi-bytes chunks 1984 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 1985 } 1986 restore_arg_regs(); 1987 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free 1988 __ xorptr(rax, rax); // return 0 1989 __ vzeroupper(); 1990 __ leave(); // required for proper stackwalking of RuntimeStub frame 1991 __ ret(0); 1992 1993 return start; 1994 } 1995 1996 // Arguments: 1997 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 1998 // ignored 1999 // name - stub name string 2000 // 2001 // Inputs: 2002 // c_rarg0 - source array address 2003 // c_rarg1 - destination array address 2004 // c_rarg2 - element count, treated as ssize_t, can be zero 2005 // 2006 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we 2007 // let the hardware handle it. The two or four words within dwords 2008 // or qwords that span cache line boundaries will still be loaded 2009 // and stored atomically. 2010 // 2011 // Side Effects: 2012 // disjoint_short_copy_entry is set to the no-overlap entry point 2013 // used by generate_conjoint_short_copy(). 2014 // 2015 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) { 2016 #if COMPILER2_OR_JVMCI 2017 if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { 2018 return generate_disjoint_copy_avx3_masked(entry, "jshort_disjoint_arraycopy_avx3", 1, 2019 aligned, false, false); 2020 } 2021 #endif 2022 2023 __ align(CodeEntryAlignment); 2024 StubCodeMark mark(this, "StubRoutines", name); 2025 address start = __ pc(); 2026 2027 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit; 2028 const Register from = rdi; // source array address 2029 const Register to = rsi; // destination array address 2030 const Register count = rdx; // elements count 2031 const Register word_count = rcx; 2032 const Register qword_count = count; 2033 const Register end_from = from; // source array end address 2034 const Register end_to = to; // destination array end address 2035 // End pointers are inclusive, and if count is not zero they point 2036 // to the last unit copied: end_to[0] := end_from[0] 2037 2038 __ enter(); // required for proper stackwalking of RuntimeStub frame 2039 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 2040 2041 if (entry != NULL) { 2042 *entry = __ pc(); 2043 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 2044 BLOCK_COMMENT("Entry:"); 2045 } 2046 2047 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 2048 // r9 and r10 may be used to save non-volatile registers 2049 2050 { 2051 // UnsafeCopyMemory page error: continue after ucm 2052 UnsafeCopyMemoryMark ucmm(this, !aligned, true); 2053 // 'from', 'to' and 'count' are now valid 2054 __ movptr(word_count, count); 2055 __ shrptr(count, 2); // count => qword_count 2056 2057 // Copy from low to high addresses. Use 'to' as scratch. 2058 __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); 2059 __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); 2060 __ negptr(qword_count); 2061 __ jmp(L_copy_bytes); 2062 2063 // Copy trailing qwords 2064 __ BIND(L_copy_8_bytes); 2065 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); 2066 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); 2067 __ increment(qword_count); 2068 __ jcc(Assembler::notZero, L_copy_8_bytes); 2069 2070 // Original 'dest' is trashed, so we can't use it as a 2071 // base register for a possible trailing word copy 2072 2073 // Check for and copy trailing dword 2074 __ BIND(L_copy_4_bytes); 2075 __ testl(word_count, 2); 2076 __ jccb(Assembler::zero, L_copy_2_bytes); 2077 __ movl(rax, Address(end_from, 8)); 2078 __ movl(Address(end_to, 8), rax); 2079 2080 __ addptr(end_from, 4); 2081 __ addptr(end_to, 4); 2082 2083 // Check for and copy trailing word 2084 __ BIND(L_copy_2_bytes); 2085 __ testl(word_count, 1); 2086 __ jccb(Assembler::zero, L_exit); 2087 __ movw(rax, Address(end_from, 8)); 2088 __ movw(Address(end_to, 8), rax); 2089 } 2090 __ BIND(L_exit); 2091 address ucme_exit_pc = __ pc(); 2092 restore_arg_regs(); 2093 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free 2094 __ xorptr(rax, rax); // return 0 2095 __ vzeroupper(); 2096 __ leave(); // required for proper stackwalking of RuntimeStub frame 2097 __ ret(0); 2098 2099 { 2100 UnsafeCopyMemoryMark ucmm(this, !aligned, false, ucme_exit_pc); 2101 // Copy in multi-bytes chunks 2102 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 2103 __ jmp(L_copy_4_bytes); 2104 } 2105 2106 return start; 2107 } 2108 2109 address generate_fill(BasicType t, bool aligned, const char *name) { 2110 __ align(CodeEntryAlignment); 2111 StubCodeMark mark(this, "StubRoutines", name); 2112 address start = __ pc(); 2113 2114 BLOCK_COMMENT("Entry:"); 2115 2116 const Register to = c_rarg0; // source array address 2117 const Register value = c_rarg1; // value 2118 const Register count = c_rarg2; // elements count 2119 2120 __ enter(); // required for proper stackwalking of RuntimeStub frame 2121 2122 __ generate_fill(t, aligned, to, value, count, rax, xmm0); 2123 2124 __ vzeroupper(); 2125 __ leave(); // required for proper stackwalking of RuntimeStub frame 2126 __ ret(0); 2127 return start; 2128 } 2129 2130 // Arguments: 2131 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 2132 // ignored 2133 // name - stub name string 2134 // 2135 // Inputs: 2136 // c_rarg0 - source array address 2137 // c_rarg1 - destination array address 2138 // c_rarg2 - element count, treated as ssize_t, can be zero 2139 // 2140 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we 2141 // let the hardware handle it. The two or four words within dwords 2142 // or qwords that span cache line boundaries will still be loaded 2143 // and stored atomically. 2144 // 2145 address generate_conjoint_short_copy(bool aligned, address nooverlap_target, 2146 address *entry, const char *name) { 2147 #if COMPILER2_OR_JVMCI 2148 if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { 2149 return generate_conjoint_copy_avx3_masked(entry, "jshort_conjoint_arraycopy_avx3", 1, 2150 nooverlap_target, aligned, false, false); 2151 } 2152 #endif 2153 __ align(CodeEntryAlignment); 2154 StubCodeMark mark(this, "StubRoutines", name); 2155 address start = __ pc(); 2156 2157 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes; 2158 const Register from = rdi; // source array address 2159 const Register to = rsi; // destination array address 2160 const Register count = rdx; // elements count 2161 const Register word_count = rcx; 2162 const Register qword_count = count; 2163 2164 __ enter(); // required for proper stackwalking of RuntimeStub frame 2165 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 2166 2167 if (entry != NULL) { 2168 *entry = __ pc(); 2169 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 2170 BLOCK_COMMENT("Entry:"); 2171 } 2172 2173 array_overlap_test(nooverlap_target, Address::times_2); 2174 setup_arg_regs(); // from => rdi, to => rsi, count => rdx 2175 // r9 and r10 may be used to save non-volatile registers 2176 2177 { 2178 // UnsafeCopyMemory page error: continue after ucm 2179 UnsafeCopyMemoryMark ucmm(this, !aligned, true); 2180 // 'from', 'to' and 'count' are now valid 2181 __ movptr(word_count, count); 2182 __ shrptr(count, 2); // count => qword_count 2183 2184 // Copy from high to low addresses. Use 'to' as scratch. 2185 2186 // Check for and copy trailing word 2187 __ testl(word_count, 1); 2188 __ jccb(Assembler::zero, L_copy_4_bytes); 2189 __ movw(rax, Address(from, word_count, Address::times_2, -2)); 2190 __ movw(Address(to, word_count, Address::times_2, -2), rax); 2191 2192 // Check for and copy trailing dword 2193 __ BIND(L_copy_4_bytes); 2194 __ testl(word_count, 2); 2195 __ jcc(Assembler::zero, L_copy_bytes); 2196 __ movl(rax, Address(from, qword_count, Address::times_8)); 2197 __ movl(Address(to, qword_count, Address::times_8), rax); 2198 __ jmp(L_copy_bytes); 2199 2200 // Copy trailing qwords 2201 __ BIND(L_copy_8_bytes); 2202 __ movq(rax, Address(from, qword_count, Address::times_8, -8)); 2203 __ movq(Address(to, qword_count, Address::times_8, -8), rax); 2204 __ decrement(qword_count); 2205 __ jcc(Assembler::notZero, L_copy_8_bytes); 2206 } 2207 restore_arg_regs(); 2208 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free 2209 __ xorptr(rax, rax); // return 0 2210 __ vzeroupper(); 2211 __ leave(); // required for proper stackwalking of RuntimeStub frame 2212 __ ret(0); 2213 2214 { 2215 // UnsafeCopyMemory page error: continue after ucm 2216 UnsafeCopyMemoryMark ucmm(this, !aligned, true); 2217 // Copy in multi-bytes chunks 2218 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 2219 } 2220 restore_arg_regs(); 2221 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free 2222 __ xorptr(rax, rax); // return 0 2223 __ vzeroupper(); 2224 __ leave(); // required for proper stackwalking of RuntimeStub frame 2225 __ ret(0); 2226 2227 return start; 2228 } 2229 2230 // Arguments: 2231 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 2232 // ignored 2233 // is_oop - true => oop array, so generate store check code 2234 // name - stub name string 2235 // 2236 // Inputs: 2237 // c_rarg0 - source array address 2238 // c_rarg1 - destination array address 2239 // c_rarg2 - element count, treated as ssize_t, can be zero 2240 // 2241 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let 2242 // the hardware handle it. The two dwords within qwords that span 2243 // cache line boundaries will still be loaded and stored atomicly. 2244 // 2245 // Side Effects: 2246 // disjoint_int_copy_entry is set to the no-overlap entry point 2247 // used by generate_conjoint_int_oop_copy(). 2248 // 2249 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry, 2250 const char *name, bool dest_uninitialized = false) { 2251 #if COMPILER2_OR_JVMCI 2252 if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { 2253 return generate_disjoint_copy_avx3_masked(entry, "jint_disjoint_arraycopy_avx3", 2, 2254 aligned, is_oop, dest_uninitialized); 2255 } 2256 #endif 2257 2258 __ align(CodeEntryAlignment); 2259 StubCodeMark mark(this, "StubRoutines", name); 2260 address start = __ pc(); 2261 2262 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit; 2263 const Register from = rdi; // source array address 2264 const Register to = rsi; // destination array address 2265 const Register count = rdx; // elements count 2266 const Register dword_count = rcx; 2267 const Register qword_count = count; 2268 const Register end_from = from; // source array end address 2269 const Register end_to = to; // destination array end address 2270 // End pointers are inclusive, and if count is not zero they point 2271 // to the last unit copied: end_to[0] := end_from[0] 2272 2273 __ enter(); // required for proper stackwalking of RuntimeStub frame 2274 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 2275 2276 if (entry != NULL) { 2277 *entry = __ pc(); 2278 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 2279 BLOCK_COMMENT("Entry:"); 2280 } 2281 2282 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 2283 // r9 is used to save r15_thread 2284 2285 DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; 2286 if (dest_uninitialized) { 2287 decorators |= IS_DEST_UNINITIALIZED; 2288 } 2289 if (aligned) { 2290 decorators |= ARRAYCOPY_ALIGNED; 2291 } 2292 2293 BasicType type = is_oop ? T_OBJECT : T_INT; 2294 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2295 bs->arraycopy_prologue(_masm, decorators, type, from, to, count); 2296 2297 { 2298 // UnsafeCopyMemory page error: continue after ucm 2299 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); 2300 // 'from', 'to' and 'count' are now valid 2301 __ movptr(dword_count, count); 2302 __ shrptr(count, 1); // count => qword_count 2303 2304 // Copy from low to high addresses. Use 'to' as scratch. 2305 __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); 2306 __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); 2307 __ negptr(qword_count); 2308 __ jmp(L_copy_bytes); 2309 2310 // Copy trailing qwords 2311 __ BIND(L_copy_8_bytes); 2312 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); 2313 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); 2314 __ increment(qword_count); 2315 __ jcc(Assembler::notZero, L_copy_8_bytes); 2316 2317 // Check for and copy trailing dword 2318 __ BIND(L_copy_4_bytes); 2319 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1 2320 __ jccb(Assembler::zero, L_exit); 2321 __ movl(rax, Address(end_from, 8)); 2322 __ movl(Address(end_to, 8), rax); 2323 } 2324 __ BIND(L_exit); 2325 address ucme_exit_pc = __ pc(); 2326 bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count); 2327 restore_arg_regs_using_thread(); 2328 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free 2329 __ vzeroupper(); 2330 __ xorptr(rax, rax); // return 0 2331 __ leave(); // required for proper stackwalking of RuntimeStub frame 2332 __ ret(0); 2333 2334 { 2335 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, false, ucme_exit_pc); 2336 // Copy in multi-bytes chunks 2337 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 2338 __ jmp(L_copy_4_bytes); 2339 } 2340 2341 return start; 2342 } 2343 2344 // Arguments: 2345 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary 2346 // ignored 2347 // is_oop - true => oop array, so generate store check code 2348 // name - stub name string 2349 // 2350 // Inputs: 2351 // c_rarg0 - source array address 2352 // c_rarg1 - destination array address 2353 // c_rarg2 - element count, treated as ssize_t, can be zero 2354 // 2355 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let 2356 // the hardware handle it. The two dwords within qwords that span 2357 // cache line boundaries will still be loaded and stored atomicly. 2358 // 2359 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target, 2360 address *entry, const char *name, 2361 bool dest_uninitialized = false) { 2362 #if COMPILER2_OR_JVMCI 2363 if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { 2364 return generate_conjoint_copy_avx3_masked(entry, "jint_conjoint_arraycopy_avx3", 2, 2365 nooverlap_target, aligned, is_oop, dest_uninitialized); 2366 } 2367 #endif 2368 __ align(CodeEntryAlignment); 2369 StubCodeMark mark(this, "StubRoutines", name); 2370 address start = __ pc(); 2371 2372 Label L_copy_bytes, L_copy_8_bytes, L_exit; 2373 const Register from = rdi; // source array address 2374 const Register to = rsi; // destination array address 2375 const Register count = rdx; // elements count 2376 const Register dword_count = rcx; 2377 const Register qword_count = count; 2378 2379 __ enter(); // required for proper stackwalking of RuntimeStub frame 2380 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 2381 2382 if (entry != NULL) { 2383 *entry = __ pc(); 2384 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 2385 BLOCK_COMMENT("Entry:"); 2386 } 2387 2388 array_overlap_test(nooverlap_target, Address::times_4); 2389 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 2390 // r9 is used to save r15_thread 2391 2392 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2393 if (dest_uninitialized) { 2394 decorators |= IS_DEST_UNINITIALIZED; 2395 } 2396 if (aligned) { 2397 decorators |= ARRAYCOPY_ALIGNED; 2398 } 2399 2400 BasicType type = is_oop ? T_OBJECT : T_INT; 2401 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2402 // no registers are destroyed by this call 2403 bs->arraycopy_prologue(_masm, decorators, type, from, to, count); 2404 2405 assert_clean_int(count, rax); // Make sure 'count' is clean int. 2406 { 2407 // UnsafeCopyMemory page error: continue after ucm 2408 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); 2409 // 'from', 'to' and 'count' are now valid 2410 __ movptr(dword_count, count); 2411 __ shrptr(count, 1); // count => qword_count 2412 2413 // Copy from high to low addresses. Use 'to' as scratch. 2414 2415 // Check for and copy trailing dword 2416 __ testl(dword_count, 1); 2417 __ jcc(Assembler::zero, L_copy_bytes); 2418 __ movl(rax, Address(from, dword_count, Address::times_4, -4)); 2419 __ movl(Address(to, dword_count, Address::times_4, -4), rax); 2420 __ jmp(L_copy_bytes); 2421 2422 // Copy trailing qwords 2423 __ BIND(L_copy_8_bytes); 2424 __ movq(rax, Address(from, qword_count, Address::times_8, -8)); 2425 __ movq(Address(to, qword_count, Address::times_8, -8), rax); 2426 __ decrement(qword_count); 2427 __ jcc(Assembler::notZero, L_copy_8_bytes); 2428 } 2429 if (is_oop) { 2430 __ jmp(L_exit); 2431 } 2432 restore_arg_regs_using_thread(); 2433 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free 2434 __ xorptr(rax, rax); // return 0 2435 __ vzeroupper(); 2436 __ leave(); // required for proper stackwalking of RuntimeStub frame 2437 __ ret(0); 2438 2439 { 2440 // UnsafeCopyMemory page error: continue after ucm 2441 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); 2442 // Copy in multi-bytes chunks 2443 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 2444 } 2445 2446 __ BIND(L_exit); 2447 bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count); 2448 restore_arg_regs_using_thread(); 2449 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free 2450 __ xorptr(rax, rax); // return 0 2451 __ vzeroupper(); 2452 __ leave(); // required for proper stackwalking of RuntimeStub frame 2453 __ ret(0); 2454 2455 return start; 2456 } 2457 2458 // Arguments: 2459 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes 2460 // ignored 2461 // is_oop - true => oop array, so generate store check code 2462 // name - stub name string 2463 // 2464 // Inputs: 2465 // c_rarg0 - source array address 2466 // c_rarg1 - destination array address 2467 // c_rarg2 - element count, treated as ssize_t, can be zero 2468 // 2469 // Side Effects: 2470 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the 2471 // no-overlap entry point used by generate_conjoint_long_oop_copy(). 2472 // 2473 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry, 2474 const char *name, bool dest_uninitialized = false) { 2475 #if COMPILER2_OR_JVMCI 2476 if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { 2477 return generate_disjoint_copy_avx3_masked(entry, "jlong_disjoint_arraycopy_avx3", 3, 2478 aligned, is_oop, dest_uninitialized); 2479 } 2480 #endif 2481 __ align(CodeEntryAlignment); 2482 StubCodeMark mark(this, "StubRoutines", name); 2483 address start = __ pc(); 2484 2485 Label L_copy_bytes, L_copy_8_bytes, L_exit; 2486 const Register from = rdi; // source array address 2487 const Register to = rsi; // destination array address 2488 const Register qword_count = rdx; // elements count 2489 const Register end_from = from; // source array end address 2490 const Register end_to = rcx; // destination array end address 2491 const Register saved_count = r11; 2492 // End pointers are inclusive, and if count is not zero they point 2493 // to the last unit copied: end_to[0] := end_from[0] 2494 2495 __ enter(); // required for proper stackwalking of RuntimeStub frame 2496 // Save no-overlap entry point for generate_conjoint_long_oop_copy() 2497 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 2498 2499 if (entry != NULL) { 2500 *entry = __ pc(); 2501 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 2502 BLOCK_COMMENT("Entry:"); 2503 } 2504 2505 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 2506 // r9 is used to save r15_thread 2507 // 'from', 'to' and 'qword_count' are now valid 2508 2509 DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; 2510 if (dest_uninitialized) { 2511 decorators |= IS_DEST_UNINITIALIZED; 2512 } 2513 if (aligned) { 2514 decorators |= ARRAYCOPY_ALIGNED; 2515 } 2516 2517 BasicType type = is_oop ? T_OBJECT : T_LONG; 2518 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2519 bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count); 2520 { 2521 // UnsafeCopyMemory page error: continue after ucm 2522 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); 2523 2524 // Copy from low to high addresses. Use 'to' as scratch. 2525 __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); 2526 __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); 2527 __ negptr(qword_count); 2528 __ jmp(L_copy_bytes); 2529 2530 // Copy trailing qwords 2531 __ BIND(L_copy_8_bytes); 2532 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); 2533 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); 2534 __ increment(qword_count); 2535 __ jcc(Assembler::notZero, L_copy_8_bytes); 2536 } 2537 if (is_oop) { 2538 __ jmp(L_exit); 2539 } else { 2540 restore_arg_regs_using_thread(); 2541 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free 2542 __ xorptr(rax, rax); // return 0 2543 __ vzeroupper(); 2544 __ leave(); // required for proper stackwalking of RuntimeStub frame 2545 __ ret(0); 2546 } 2547 2548 { 2549 // UnsafeCopyMemory page error: continue after ucm 2550 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); 2551 // Copy in multi-bytes chunks 2552 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 2553 } 2554 2555 __ BIND(L_exit); 2556 bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count); 2557 restore_arg_regs_using_thread(); 2558 if (is_oop) { 2559 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free 2560 } else { 2561 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free 2562 } 2563 __ vzeroupper(); 2564 __ xorptr(rax, rax); // return 0 2565 __ leave(); // required for proper stackwalking of RuntimeStub frame 2566 __ ret(0); 2567 2568 return start; 2569 } 2570 2571 // Arguments: 2572 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes 2573 // ignored 2574 // is_oop - true => oop array, so generate store check code 2575 // name - stub name string 2576 // 2577 // Inputs: 2578 // c_rarg0 - source array address 2579 // c_rarg1 - destination array address 2580 // c_rarg2 - element count, treated as ssize_t, can be zero 2581 // 2582 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, 2583 address nooverlap_target, address *entry, 2584 const char *name, bool dest_uninitialized = false) { 2585 #if COMPILER2_OR_JVMCI 2586 if (VM_Version::supports_avx512vlbw() && VM_Version::supports_bmi2() && MaxVectorSize >= 32) { 2587 return generate_conjoint_copy_avx3_masked(entry, "jlong_conjoint_arraycopy_avx3", 3, 2588 nooverlap_target, aligned, is_oop, dest_uninitialized); 2589 } 2590 #endif 2591 __ align(CodeEntryAlignment); 2592 StubCodeMark mark(this, "StubRoutines", name); 2593 address start = __ pc(); 2594 2595 Label L_copy_bytes, L_copy_8_bytes, L_exit; 2596 const Register from = rdi; // source array address 2597 const Register to = rsi; // destination array address 2598 const Register qword_count = rdx; // elements count 2599 const Register saved_count = rcx; 2600 2601 __ enter(); // required for proper stackwalking of RuntimeStub frame 2602 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. 2603 2604 if (entry != NULL) { 2605 *entry = __ pc(); 2606 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) 2607 BLOCK_COMMENT("Entry:"); 2608 } 2609 2610 array_overlap_test(nooverlap_target, Address::times_8); 2611 setup_arg_regs_using_thread(); // from => rdi, to => rsi, count => rdx 2612 // r9 is used to save r15_thread 2613 // 'from', 'to' and 'qword_count' are now valid 2614 2615 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 2616 if (dest_uninitialized) { 2617 decorators |= IS_DEST_UNINITIALIZED; 2618 } 2619 if (aligned) { 2620 decorators |= ARRAYCOPY_ALIGNED; 2621 } 2622 2623 BasicType type = is_oop ? T_OBJECT : T_LONG; 2624 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2625 bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count); 2626 { 2627 // UnsafeCopyMemory page error: continue after ucm 2628 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); 2629 2630 __ jmp(L_copy_bytes); 2631 2632 // Copy trailing qwords 2633 __ BIND(L_copy_8_bytes); 2634 __ movq(rax, Address(from, qword_count, Address::times_8, -8)); 2635 __ movq(Address(to, qword_count, Address::times_8, -8), rax); 2636 __ decrement(qword_count); 2637 __ jcc(Assembler::notZero, L_copy_8_bytes); 2638 } 2639 if (is_oop) { 2640 __ jmp(L_exit); 2641 } else { 2642 restore_arg_regs_using_thread(); 2643 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free 2644 __ xorptr(rax, rax); // return 0 2645 __ vzeroupper(); 2646 __ leave(); // required for proper stackwalking of RuntimeStub frame 2647 __ ret(0); 2648 } 2649 { 2650 // UnsafeCopyMemory page error: continue after ucm 2651 UnsafeCopyMemoryMark ucmm(this, !is_oop && !aligned, true); 2652 2653 // Copy in multi-bytes chunks 2654 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); 2655 } 2656 __ BIND(L_exit); 2657 bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count); 2658 restore_arg_regs_using_thread(); 2659 if (is_oop) { 2660 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free 2661 } else { 2662 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free 2663 } 2664 __ vzeroupper(); 2665 __ xorptr(rax, rax); // return 0 2666 __ leave(); // required for proper stackwalking of RuntimeStub frame 2667 __ ret(0); 2668 2669 return start; 2670 } 2671 2672 2673 // Helper for generating a dynamic type check. 2674 // Smashes no registers. 2675 void generate_type_check(Register sub_klass, 2676 Register super_check_offset, 2677 Register super_klass, 2678 Label& L_success) { 2679 assert_different_registers(sub_klass, super_check_offset, super_klass); 2680 2681 BLOCK_COMMENT("type_check:"); 2682 2683 Label L_miss; 2684 2685 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL, 2686 super_check_offset); 2687 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL); 2688 2689 // Fall through on failure! 2690 __ BIND(L_miss); 2691 } 2692 2693 // 2694 // Generate checkcasting array copy stub 2695 // 2696 // Input: 2697 // c_rarg0 - source array address 2698 // c_rarg1 - destination array address 2699 // c_rarg2 - element count, treated as ssize_t, can be zero 2700 // c_rarg3 - size_t ckoff (super_check_offset) 2701 // not Win64 2702 // c_rarg4 - oop ckval (super_klass) 2703 // Win64 2704 // rsp+40 - oop ckval (super_klass) 2705 // 2706 // Output: 2707 // rax == 0 - success 2708 // rax == -1^K - failure, where K is partial transfer count 2709 // 2710 address generate_checkcast_copy(const char *name, address *entry, 2711 bool dest_uninitialized = false) { 2712 2713 Label L_load_element, L_store_element, L_do_card_marks, L_done; 2714 2715 // Input registers (after setup_arg_regs) 2716 const Register from = rdi; // source array address 2717 const Register to = rsi; // destination array address 2718 const Register length = rdx; // elements count 2719 const Register ckoff = rcx; // super_check_offset 2720 const Register ckval = r8; // super_klass 2721 2722 // Registers used as temps (r13, r14 are save-on-entry) 2723 const Register end_from = from; // source array end address 2724 const Register end_to = r13; // destination array end address 2725 const Register count = rdx; // -(count_remaining) 2726 const Register r14_length = r14; // saved copy of length 2727 // End pointers are inclusive, and if length is not zero they point 2728 // to the last unit copied: end_to[0] := end_from[0] 2729 2730 const Register rax_oop = rax; // actual oop copied 2731 const Register r11_klass = r11; // oop._klass 2732 2733 //--------------------------------------------------------------- 2734 // Assembler stub will be used for this call to arraycopy 2735 // if the two arrays are subtypes of Object[] but the 2736 // destination array type is not equal to or a supertype 2737 // of the source type. Each element must be separately 2738 // checked. 2739 2740 __ align(CodeEntryAlignment); 2741 StubCodeMark mark(this, "StubRoutines", name); 2742 address start = __ pc(); 2743 2744 __ enter(); // required for proper stackwalking of RuntimeStub frame 2745 2746 #ifdef ASSERT 2747 // caller guarantees that the arrays really are different 2748 // otherwise, we would have to make conjoint checks 2749 { Label L; 2750 array_overlap_test(L, TIMES_OOP); 2751 __ stop("checkcast_copy within a single array"); 2752 __ bind(L); 2753 } 2754 #endif //ASSERT 2755 2756 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx 2757 // ckoff => rcx, ckval => r8 2758 // r9 and r10 may be used to save non-volatile registers 2759 #ifdef _WIN64 2760 // last argument (#4) is on stack on Win64 2761 __ movptr(ckval, Address(rsp, 6 * wordSize)); 2762 #endif 2763 2764 // Caller of this entry point must set up the argument registers. 2765 if (entry != NULL) { 2766 *entry = __ pc(); 2767 BLOCK_COMMENT("Entry:"); 2768 } 2769 2770 // allocate spill slots for r13, r14 2771 enum { 2772 saved_r13_offset, 2773 saved_r14_offset, 2774 saved_r10_offset, 2775 saved_rbp_offset 2776 }; 2777 __ subptr(rsp, saved_rbp_offset * wordSize); 2778 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13); 2779 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14); 2780 __ movptr(Address(rsp, saved_r10_offset * wordSize), r10); 2781 2782 #ifdef ASSERT 2783 Label L2; 2784 __ get_thread(r14); 2785 __ cmpptr(r15_thread, r14); 2786 __ jcc(Assembler::equal, L2); 2787 __ stop("StubRoutines::call_stub: r15_thread is modified by call"); 2788 __ bind(L2); 2789 #endif // ASSERT 2790 2791 // check that int operands are properly extended to size_t 2792 assert_clean_int(length, rax); 2793 assert_clean_int(ckoff, rax); 2794 2795 #ifdef ASSERT 2796 BLOCK_COMMENT("assert consistent ckoff/ckval"); 2797 // The ckoff and ckval must be mutually consistent, 2798 // even though caller generates both. 2799 { Label L; 2800 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2801 __ cmpl(ckoff, Address(ckval, sco_offset)); 2802 __ jcc(Assembler::equal, L); 2803 __ stop("super_check_offset inconsistent"); 2804 __ bind(L); 2805 } 2806 #endif //ASSERT 2807 2808 // Loop-invariant addresses. They are exclusive end pointers. 2809 Address end_from_addr(from, length, TIMES_OOP, 0); 2810 Address end_to_addr(to, length, TIMES_OOP, 0); 2811 // Loop-variant addresses. They assume post-incremented count < 0. 2812 Address from_element_addr(end_from, count, TIMES_OOP, 0); 2813 Address to_element_addr(end_to, count, TIMES_OOP, 0); 2814 2815 DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT; 2816 if (dest_uninitialized) { 2817 decorators |= IS_DEST_UNINITIALIZED; 2818 } 2819 2820 BasicType type = T_OBJECT; 2821 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2822 bs->arraycopy_prologue(_masm, decorators, type, from, to, count); 2823 2824 // Copy from low to high addresses, indexed from the end of each array. 2825 __ lea(end_from, end_from_addr); 2826 __ lea(end_to, end_to_addr); 2827 __ movptr(r14_length, length); // save a copy of the length 2828 assert(length == count, ""); // else fix next line: 2829 __ negptr(count); // negate and test the length 2830 __ jcc(Assembler::notZero, L_load_element); 2831 2832 // Empty array: Nothing to do. 2833 __ xorptr(rax, rax); // return 0 on (trivial) success 2834 __ jmp(L_done); 2835 2836 // ======== begin loop ======== 2837 // (Loop is rotated; its entry is L_load_element.) 2838 // Loop control: 2839 // for (count = -count; count != 0; count++) 2840 // Base pointers src, dst are biased by 8*(count-1),to last element. 2841 __ align(OptoLoopAlignment); 2842 2843 __ BIND(L_store_element); 2844 __ store_heap_oop(to_element_addr, rax_oop, noreg, noreg, AS_RAW); // store the oop 2845 __ increment(count); // increment the count toward zero 2846 __ jcc(Assembler::zero, L_do_card_marks); 2847 2848 // ======== loop entry is here ======== 2849 __ BIND(L_load_element); 2850 __ load_heap_oop(rax_oop, from_element_addr, noreg, noreg, AS_RAW); // load the oop 2851 __ testptr(rax_oop, rax_oop); 2852 __ jcc(Assembler::zero, L_store_element); 2853 2854 __ load_klass(r11_klass, rax_oop, rscratch1);// query the object klass 2855 generate_type_check(r11_klass, ckoff, ckval, L_store_element); 2856 // ======== end loop ======== 2857 2858 // It was a real error; we must depend on the caller to finish the job. 2859 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops. 2860 // Emit GC store barriers for the oops we have copied (r14 + rdx), 2861 // and report their number to the caller. 2862 assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1); 2863 Label L_post_barrier; 2864 __ addptr(r14_length, count); // K = (original - remaining) oops 2865 __ movptr(rax, r14_length); // save the value 2866 __ notptr(rax); // report (-1^K) to caller (does not affect flags) 2867 __ jccb(Assembler::notZero, L_post_barrier); 2868 __ jmp(L_done); // K == 0, nothing was copied, skip post barrier 2869 2870 // Come here on success only. 2871 __ BIND(L_do_card_marks); 2872 __ xorptr(rax, rax); // return 0 on success 2873 2874 __ BIND(L_post_barrier); 2875 bs->arraycopy_epilogue(_masm, decorators, type, from, to, r14_length); 2876 2877 // Common exit point (success or failure). 2878 __ BIND(L_done); 2879 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize)); 2880 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize)); 2881 __ movptr(r10, Address(rsp, saved_r10_offset * wordSize)); 2882 restore_arg_regs(); 2883 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free 2884 __ leave(); // required for proper stackwalking of RuntimeStub frame 2885 __ ret(0); 2886 2887 return start; 2888 } 2889 2890 // 2891 // Generate 'unsafe' array copy stub 2892 // Though just as safe as the other stubs, it takes an unscaled 2893 // size_t argument instead of an element count. 2894 // 2895 // Input: 2896 // c_rarg0 - source array address 2897 // c_rarg1 - destination array address 2898 // c_rarg2 - byte count, treated as ssize_t, can be zero 2899 // 2900 // Examines the alignment of the operands and dispatches 2901 // to a long, int, short, or byte copy loop. 2902 // 2903 address generate_unsafe_copy(const char *name, 2904 address byte_copy_entry, address short_copy_entry, 2905 address int_copy_entry, address long_copy_entry) { 2906 2907 Label L_long_aligned, L_int_aligned, L_short_aligned; 2908 2909 // Input registers (before setup_arg_regs) 2910 const Register from = c_rarg0; // source array address 2911 const Register to = c_rarg1; // destination array address 2912 const Register size = c_rarg2; // byte count (size_t) 2913 2914 // Register used as a temp 2915 const Register bits = rax; // test copy of low bits 2916 2917 __ align(CodeEntryAlignment); 2918 StubCodeMark mark(this, "StubRoutines", name); 2919 address start = __ pc(); 2920 2921 __ enter(); // required for proper stackwalking of RuntimeStub frame 2922 2923 // bump this on entry, not on exit: 2924 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr); 2925 2926 __ mov(bits, from); 2927 __ orptr(bits, to); 2928 __ orptr(bits, size); 2929 2930 __ testb(bits, BytesPerLong-1); 2931 __ jccb(Assembler::zero, L_long_aligned); 2932 2933 __ testb(bits, BytesPerInt-1); 2934 __ jccb(Assembler::zero, L_int_aligned); 2935 2936 __ testb(bits, BytesPerShort-1); 2937 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry)); 2938 2939 __ BIND(L_short_aligned); 2940 __ shrptr(size, LogBytesPerShort); // size => short_count 2941 __ jump(RuntimeAddress(short_copy_entry)); 2942 2943 __ BIND(L_int_aligned); 2944 __ shrptr(size, LogBytesPerInt); // size => int_count 2945 __ jump(RuntimeAddress(int_copy_entry)); 2946 2947 __ BIND(L_long_aligned); 2948 __ shrptr(size, LogBytesPerLong); // size => qword_count 2949 __ jump(RuntimeAddress(long_copy_entry)); 2950 2951 return start; 2952 } 2953 2954 // Perform range checks on the proposed arraycopy. 2955 // Kills temp, but nothing else. 2956 // Also, clean the sign bits of src_pos and dst_pos. 2957 void arraycopy_range_checks(Register src, // source array oop (c_rarg0) 2958 Register src_pos, // source position (c_rarg1) 2959 Register dst, // destination array oo (c_rarg2) 2960 Register dst_pos, // destination position (c_rarg3) 2961 Register length, 2962 Register temp, 2963 Label& L_failed) { 2964 BLOCK_COMMENT("arraycopy_range_checks:"); 2965 2966 // if (src_pos + length > arrayOop(src)->length()) FAIL; 2967 __ movl(temp, length); 2968 __ addl(temp, src_pos); // src_pos + length 2969 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes())); 2970 __ jcc(Assembler::above, L_failed); 2971 2972 // if (dst_pos + length > arrayOop(dst)->length()) FAIL; 2973 __ movl(temp, length); 2974 __ addl(temp, dst_pos); // dst_pos + length 2975 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes())); 2976 __ jcc(Assembler::above, L_failed); 2977 2978 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'. 2979 // Move with sign extension can be used since they are positive. 2980 __ movslq(src_pos, src_pos); 2981 __ movslq(dst_pos, dst_pos); 2982 2983 BLOCK_COMMENT("arraycopy_range_checks done"); 2984 } 2985 2986 // 2987 // Generate generic array copy stubs 2988 // 2989 // Input: 2990 // c_rarg0 - src oop 2991 // c_rarg1 - src_pos (32-bits) 2992 // c_rarg2 - dst oop 2993 // c_rarg3 - dst_pos (32-bits) 2994 // not Win64 2995 // c_rarg4 - element count (32-bits) 2996 // Win64 2997 // rsp+40 - element count (32-bits) 2998 // 2999 // Output: 3000 // rax == 0 - success 3001 // rax == -1^K - failure, where K is partial transfer count 3002 // 3003 address generate_generic_copy(const char *name, 3004 address byte_copy_entry, address short_copy_entry, 3005 address int_copy_entry, address oop_copy_entry, 3006 address long_copy_entry, address checkcast_copy_entry) { 3007 3008 Label L_failed, L_failed_0, L_objArray; 3009 Label L_copy_shorts, L_copy_ints, L_copy_longs; 3010 3011 // Input registers 3012 const Register src = c_rarg0; // source array oop 3013 const Register src_pos = c_rarg1; // source position 3014 const Register dst = c_rarg2; // destination array oop 3015 const Register dst_pos = c_rarg3; // destination position 3016 #ifndef _WIN64 3017 const Register length = c_rarg4; 3018 const Register rklass_tmp = r9; // load_klass 3019 #else 3020 const Address length(rsp, 7 * wordSize); // elements count is on stack on Win64 3021 const Register rklass_tmp = rdi; // load_klass 3022 #endif 3023 3024 { int modulus = CodeEntryAlignment; 3025 int target = modulus - 5; // 5 = sizeof jmp(L_failed) 3026 int advance = target - (__ offset() % modulus); 3027 if (advance < 0) advance += modulus; 3028 if (advance > 0) __ nop(advance); 3029 } 3030 StubCodeMark mark(this, "StubRoutines", name); 3031 3032 // Short-hop target to L_failed. Makes for denser prologue code. 3033 __ BIND(L_failed_0); 3034 __ jmp(L_failed); 3035 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed"); 3036 3037 __ align(CodeEntryAlignment); 3038 address start = __ pc(); 3039 3040 __ enter(); // required for proper stackwalking of RuntimeStub frame 3041 3042 #ifdef _WIN64 3043 __ push(rklass_tmp); // rdi is callee-save on Windows 3044 #endif 3045 3046 // bump this on entry, not on exit: 3047 inc_counter_np(SharedRuntime::_generic_array_copy_ctr); 3048 3049 //----------------------------------------------------------------------- 3050 // Assembler stub will be used for this call to arraycopy 3051 // if the following conditions are met: 3052 // 3053 // (1) src and dst must not be null. 3054 // (2) src_pos must not be negative. 3055 // (3) dst_pos must not be negative. 3056 // (4) length must not be negative. 3057 // (5) src klass and dst klass should be the same and not NULL. 3058 // (6) src and dst should be arrays. 3059 // (7) src_pos + length must not exceed length of src. 3060 // (8) dst_pos + length must not exceed length of dst. 3061 // 3062 3063 // if (src == NULL) return -1; 3064 __ testptr(src, src); // src oop 3065 size_t j1off = __ offset(); 3066 __ jccb(Assembler::zero, L_failed_0); 3067 3068 // if (src_pos < 0) return -1; 3069 __ testl(src_pos, src_pos); // src_pos (32-bits) 3070 __ jccb(Assembler::negative, L_failed_0); 3071 3072 // if (dst == NULL) return -1; 3073 __ testptr(dst, dst); // dst oop 3074 __ jccb(Assembler::zero, L_failed_0); 3075 3076 // if (dst_pos < 0) return -1; 3077 __ testl(dst_pos, dst_pos); // dst_pos (32-bits) 3078 size_t j4off = __ offset(); 3079 __ jccb(Assembler::negative, L_failed_0); 3080 3081 // The first four tests are very dense code, 3082 // but not quite dense enough to put four 3083 // jumps in a 16-byte instruction fetch buffer. 3084 // That's good, because some branch predicters 3085 // do not like jumps so close together. 3086 // Make sure of this. 3087 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps"); 3088 3089 // registers used as temp 3090 const Register r11_length = r11; // elements count to copy 3091 const Register r10_src_klass = r10; // array klass 3092 3093 // if (length < 0) return -1; 3094 __ movl(r11_length, length); // length (elements count, 32-bits value) 3095 __ testl(r11_length, r11_length); 3096 __ jccb(Assembler::negative, L_failed_0); 3097 3098 __ load_klass(r10_src_klass, src, rklass_tmp); 3099 #ifdef ASSERT 3100 // assert(src->klass() != NULL); 3101 { 3102 BLOCK_COMMENT("assert klasses not null {"); 3103 Label L1, L2; 3104 __ testptr(r10_src_klass, r10_src_klass); 3105 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL 3106 __ bind(L1); 3107 __ stop("broken null klass"); 3108 __ bind(L2); 3109 __ load_klass(rax, dst, rklass_tmp); 3110 __ cmpq(rax, 0); 3111 __ jcc(Assembler::equal, L1); // this would be broken also 3112 BLOCK_COMMENT("} assert klasses not null done"); 3113 } 3114 #endif 3115 3116 // Load layout helper (32-bits) 3117 // 3118 // |array_tag| | header_size | element_type | |log2_element_size| 3119 // 32 30 24 16 8 2 0 3120 // 3121 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 3122 // 3123 3124 const int lh_offset = in_bytes(Klass::layout_helper_offset()); 3125 3126 // Handle objArrays completely differently... 3127 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 3128 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh); 3129 __ jcc(Assembler::equal, L_objArray); 3130 3131 // if (src->klass() != dst->klass()) return -1; 3132 __ load_klass(rax, dst, rklass_tmp); 3133 __ cmpq(r10_src_klass, rax); 3134 __ jcc(Assembler::notEqual, L_failed); 3135 3136 const Register rax_lh = rax; // layout helper 3137 __ movl(rax_lh, Address(r10_src_klass, lh_offset)); 3138 3139 // if (!src->is_Array()) return -1; 3140 __ cmpl(rax_lh, Klass::_lh_neutral_value); 3141 __ jcc(Assembler::greaterEqual, L_failed); 3142 3143 // At this point, it is known to be a typeArray (array_tag 0x3). 3144 #ifdef ASSERT 3145 { 3146 BLOCK_COMMENT("assert primitive array {"); 3147 Label L; 3148 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift)); 3149 __ jcc(Assembler::greaterEqual, L); 3150 __ stop("must be a primitive array"); 3151 __ bind(L); 3152 BLOCK_COMMENT("} assert primitive array done"); 3153 } 3154 #endif 3155 3156 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, 3157 r10, L_failed); 3158 3159 // TypeArrayKlass 3160 // 3161 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); 3162 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); 3163 // 3164 3165 const Register r10_offset = r10; // array offset 3166 const Register rax_elsize = rax_lh; // element size 3167 3168 __ movl(r10_offset, rax_lh); 3169 __ shrl(r10_offset, Klass::_lh_header_size_shift); 3170 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset 3171 __ addptr(src, r10_offset); // src array offset 3172 __ addptr(dst, r10_offset); // dst array offset 3173 BLOCK_COMMENT("choose copy loop based on element size"); 3174 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize 3175 3176 #ifdef _WIN64 3177 __ pop(rklass_tmp); // Restore callee-save rdi 3178 #endif 3179 3180 // next registers should be set before the jump to corresponding stub 3181 const Register from = c_rarg0; // source array address 3182 const Register to = c_rarg1; // destination array address 3183 const Register count = c_rarg2; // elements count 3184 3185 // 'from', 'to', 'count' registers should be set in such order 3186 // since they are the same as 'src', 'src_pos', 'dst'. 3187 3188 __ cmpl(rax_elsize, 0); 3189 __ jccb(Assembler::notEqual, L_copy_shorts); 3190 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr 3191 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr 3192 __ movl2ptr(count, r11_length); // length 3193 __ jump(RuntimeAddress(byte_copy_entry)); 3194 3195 __ BIND(L_copy_shorts); 3196 __ cmpl(rax_elsize, LogBytesPerShort); 3197 __ jccb(Assembler::notEqual, L_copy_ints); 3198 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr 3199 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr 3200 __ movl2ptr(count, r11_length); // length 3201 __ jump(RuntimeAddress(short_copy_entry)); 3202 3203 __ BIND(L_copy_ints); 3204 __ cmpl(rax_elsize, LogBytesPerInt); 3205 __ jccb(Assembler::notEqual, L_copy_longs); 3206 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr 3207 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr 3208 __ movl2ptr(count, r11_length); // length 3209 __ jump(RuntimeAddress(int_copy_entry)); 3210 3211 __ BIND(L_copy_longs); 3212 #ifdef ASSERT 3213 { 3214 BLOCK_COMMENT("assert long copy {"); 3215 Label L; 3216 __ cmpl(rax_elsize, LogBytesPerLong); 3217 __ jcc(Assembler::equal, L); 3218 __ stop("must be long copy, but elsize is wrong"); 3219 __ bind(L); 3220 BLOCK_COMMENT("} assert long copy done"); 3221 } 3222 #endif 3223 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr 3224 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr 3225 __ movl2ptr(count, r11_length); // length 3226 __ jump(RuntimeAddress(long_copy_entry)); 3227 3228 // ObjArrayKlass 3229 __ BIND(L_objArray); 3230 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos] 3231 3232 Label L_plain_copy, L_checkcast_copy; 3233 // test array classes for subtyping 3234 __ load_klass(rax, dst, rklass_tmp); 3235 __ cmpq(r10_src_klass, rax); // usual case is exact equality 3236 __ jcc(Assembler::notEqual, L_checkcast_copy); 3237 3238 // Identically typed arrays can be copied without element-wise checks. 3239 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, 3240 r10, L_failed); 3241 3242 __ lea(from, Address(src, src_pos, TIMES_OOP, 3243 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr 3244 __ lea(to, Address(dst, dst_pos, TIMES_OOP, 3245 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr 3246 __ movl2ptr(count, r11_length); // length 3247 __ BIND(L_plain_copy); 3248 #ifdef _WIN64 3249 __ pop(rklass_tmp); // Restore callee-save rdi 3250 #endif 3251 __ jump(RuntimeAddress(oop_copy_entry)); 3252 3253 __ BIND(L_checkcast_copy); 3254 // live at this point: r10_src_klass, r11_length, rax (dst_klass) 3255 { 3256 // Before looking at dst.length, make sure dst is also an objArray. 3257 __ cmpl(Address(rax, lh_offset), objArray_lh); 3258 __ jcc(Assembler::notEqual, L_failed); 3259 3260 // It is safe to examine both src.length and dst.length. 3261 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, 3262 rax, L_failed); 3263 3264 const Register r11_dst_klass = r11; 3265 __ load_klass(r11_dst_klass, dst, rklass_tmp); // reload 3266 3267 // Marshal the base address arguments now, freeing registers. 3268 __ lea(from, Address(src, src_pos, TIMES_OOP, 3269 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 3270 __ lea(to, Address(dst, dst_pos, TIMES_OOP, 3271 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 3272 __ movl(count, length); // length (reloaded) 3273 Register sco_temp = c_rarg3; // this register is free now 3274 assert_different_registers(from, to, count, sco_temp, 3275 r11_dst_klass, r10_src_klass); 3276 assert_clean_int(count, sco_temp); 3277 3278 // Generate the type check. 3279 const int sco_offset = in_bytes(Klass::super_check_offset_offset()); 3280 __ movl(sco_temp, Address(r11_dst_klass, sco_offset)); 3281 assert_clean_int(sco_temp, rax); 3282 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy); 3283 3284 // Fetch destination element klass from the ObjArrayKlass header. 3285 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 3286 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset)); 3287 __ movl( sco_temp, Address(r11_dst_klass, sco_offset)); 3288 assert_clean_int(sco_temp, rax); 3289 3290 #ifdef _WIN64 3291 __ pop(rklass_tmp); // Restore callee-save rdi 3292 #endif 3293 3294 // the checkcast_copy loop needs two extra arguments: 3295 assert(c_rarg3 == sco_temp, "#3 already in place"); 3296 // Set up arguments for checkcast_copy_entry. 3297 setup_arg_regs(4); 3298 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris 3299 __ jump(RuntimeAddress(checkcast_copy_entry)); 3300 } 3301 3302 __ BIND(L_failed); 3303 #ifdef _WIN64 3304 __ pop(rklass_tmp); // Restore callee-save rdi 3305 #endif 3306 __ xorptr(rax, rax); 3307 __ notptr(rax); // return -1 3308 __ leave(); // required for proper stackwalking of RuntimeStub frame 3309 __ ret(0); 3310 3311 return start; 3312 } 3313 3314 address generate_data_cache_writeback() { 3315 const Register src = c_rarg0; // source address 3316 3317 __ align(CodeEntryAlignment); 3318 3319 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback"); 3320 3321 address start = __ pc(); 3322 __ enter(); 3323 __ cache_wb(Address(src, 0)); 3324 __ leave(); 3325 __ ret(0); 3326 3327 return start; 3328 } 3329 3330 address generate_data_cache_writeback_sync() { 3331 const Register is_pre = c_rarg0; // pre or post sync 3332 3333 __ align(CodeEntryAlignment); 3334 3335 StubCodeMark mark(this, "StubRoutines", "_data_cache_writeback_sync"); 3336 3337 // pre wbsync is a no-op 3338 // post wbsync translates to an sfence 3339 3340 Label skip; 3341 address start = __ pc(); 3342 __ enter(); 3343 __ cmpl(is_pre, 0); 3344 __ jcc(Assembler::notEqual, skip); 3345 __ cache_wbsync(false); 3346 __ bind(skip); 3347 __ leave(); 3348 __ ret(0); 3349 3350 return start; 3351 } 3352 3353 void generate_arraycopy_stubs() { 3354 address entry; 3355 address entry_jbyte_arraycopy; 3356 address entry_jshort_arraycopy; 3357 address entry_jint_arraycopy; 3358 address entry_oop_arraycopy; 3359 address entry_jlong_arraycopy; 3360 address entry_checkcast_arraycopy; 3361 3362 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry, 3363 "jbyte_disjoint_arraycopy"); 3364 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy, 3365 "jbyte_arraycopy"); 3366 3367 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry, 3368 "jshort_disjoint_arraycopy"); 3369 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy, 3370 "jshort_arraycopy"); 3371 3372 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry, 3373 "jint_disjoint_arraycopy"); 3374 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry, 3375 &entry_jint_arraycopy, "jint_arraycopy"); 3376 3377 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry, 3378 "jlong_disjoint_arraycopy"); 3379 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry, 3380 &entry_jlong_arraycopy, "jlong_arraycopy"); 3381 3382 3383 if (UseCompressedOops) { 3384 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry, 3385 "oop_disjoint_arraycopy"); 3386 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry, 3387 &entry_oop_arraycopy, "oop_arraycopy"); 3388 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry, 3389 "oop_disjoint_arraycopy_uninit", 3390 /*dest_uninitialized*/true); 3391 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry, 3392 NULL, "oop_arraycopy_uninit", 3393 /*dest_uninitialized*/true); 3394 } else { 3395 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry, 3396 "oop_disjoint_arraycopy"); 3397 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry, 3398 &entry_oop_arraycopy, "oop_arraycopy"); 3399 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry, 3400 "oop_disjoint_arraycopy_uninit", 3401 /*dest_uninitialized*/true); 3402 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry, 3403 NULL, "oop_arraycopy_uninit", 3404 /*dest_uninitialized*/true); 3405 } 3406 3407 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy); 3408 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, 3409 /*dest_uninitialized*/true); 3410 3411 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy", 3412 entry_jbyte_arraycopy, 3413 entry_jshort_arraycopy, 3414 entry_jint_arraycopy, 3415 entry_jlong_arraycopy); 3416 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy", 3417 entry_jbyte_arraycopy, 3418 entry_jshort_arraycopy, 3419 entry_jint_arraycopy, 3420 entry_oop_arraycopy, 3421 entry_jlong_arraycopy, 3422 entry_checkcast_arraycopy); 3423 3424 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill"); 3425 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill"); 3426 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill"); 3427 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill"); 3428 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill"); 3429 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill"); 3430 3431 // We don't generate specialized code for HeapWord-aligned source 3432 // arrays, so just use the code we've already generated 3433 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy; 3434 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy; 3435 3436 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy; 3437 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy; 3438 3439 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy; 3440 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy; 3441 3442 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy; 3443 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy; 3444 3445 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy; 3446 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy; 3447 3448 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit; 3449 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit; 3450 } 3451 3452 // AES intrinsic stubs 3453 enum {AESBlockSize = 16}; 3454 3455 address generate_key_shuffle_mask() { 3456 __ align(16); 3457 StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask"); 3458 address start = __ pc(); 3459 __ emit_data64( 0x0405060700010203, relocInfo::none ); 3460 __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none ); 3461 return start; 3462 } 3463 3464 address generate_counter_shuffle_mask() { 3465 __ align(16); 3466 StubCodeMark mark(this, "StubRoutines", "counter_shuffle_mask"); 3467 address start = __ pc(); 3468 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 3469 __ emit_data64(0x0001020304050607, relocInfo::none); 3470 return start; 3471 } 3472 3473 // Utility routine for loading a 128-bit key word in little endian format 3474 // can optionally specify that the shuffle mask is already in an xmmregister 3475 void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) { 3476 __ movdqu(xmmdst, Address(key, offset)); 3477 if (xmm_shuf_mask != NULL) { 3478 __ pshufb(xmmdst, xmm_shuf_mask); 3479 } else { 3480 __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3481 } 3482 } 3483 3484 // Utility routine for increase 128bit counter (iv in CTR mode) 3485 void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) { 3486 __ pextrq(reg, xmmdst, 0x0); 3487 __ addq(reg, inc_delta); 3488 __ pinsrq(xmmdst, reg, 0x0); 3489 __ jcc(Assembler::carryClear, next_block); // jump if no carry 3490 __ pextrq(reg, xmmdst, 0x01); // Carry 3491 __ addq(reg, 0x01); 3492 __ pinsrq(xmmdst, reg, 0x01); //Carry end 3493 __ BIND(next_block); // next instruction 3494 } 3495 3496 // Arguments: 3497 // 3498 // Inputs: 3499 // c_rarg0 - source byte array address 3500 // c_rarg1 - destination byte array address 3501 // c_rarg2 - K (key) in little endian int array 3502 // 3503 address generate_aescrypt_encryptBlock() { 3504 assert(UseAES, "need AES instructions and misaligned SSE support"); 3505 __ align(CodeEntryAlignment); 3506 StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock"); 3507 Label L_doLast; 3508 address start = __ pc(); 3509 3510 const Register from = c_rarg0; // source array address 3511 const Register to = c_rarg1; // destination array address 3512 const Register key = c_rarg2; // key array address 3513 const Register keylen = rax; 3514 3515 const XMMRegister xmm_result = xmm0; 3516 const XMMRegister xmm_key_shuf_mask = xmm1; 3517 // On win64 xmm6-xmm15 must be preserved so don't use them. 3518 const XMMRegister xmm_temp1 = xmm2; 3519 const XMMRegister xmm_temp2 = xmm3; 3520 const XMMRegister xmm_temp3 = xmm4; 3521 const XMMRegister xmm_temp4 = xmm5; 3522 3523 __ enter(); // required for proper stackwalking of RuntimeStub frame 3524 3525 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} 3526 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3527 3528 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3529 __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input 3530 3531 // For encryption, the java expanded key ordering is just what we need 3532 // we don't know if the key is aligned, hence not using load-execute form 3533 3534 load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask); 3535 __ pxor(xmm_result, xmm_temp1); 3536 3537 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); 3538 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); 3539 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); 3540 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); 3541 3542 __ aesenc(xmm_result, xmm_temp1); 3543 __ aesenc(xmm_result, xmm_temp2); 3544 __ aesenc(xmm_result, xmm_temp3); 3545 __ aesenc(xmm_result, xmm_temp4); 3546 3547 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); 3548 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); 3549 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); 3550 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); 3551 3552 __ aesenc(xmm_result, xmm_temp1); 3553 __ aesenc(xmm_result, xmm_temp2); 3554 __ aesenc(xmm_result, xmm_temp3); 3555 __ aesenc(xmm_result, xmm_temp4); 3556 3557 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); 3558 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); 3559 3560 __ cmpl(keylen, 44); 3561 __ jccb(Assembler::equal, L_doLast); 3562 3563 __ aesenc(xmm_result, xmm_temp1); 3564 __ aesenc(xmm_result, xmm_temp2); 3565 3566 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); 3567 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); 3568 3569 __ cmpl(keylen, 52); 3570 __ jccb(Assembler::equal, L_doLast); 3571 3572 __ aesenc(xmm_result, xmm_temp1); 3573 __ aesenc(xmm_result, xmm_temp2); 3574 3575 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); 3576 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); 3577 3578 __ BIND(L_doLast); 3579 __ aesenc(xmm_result, xmm_temp1); 3580 __ aesenclast(xmm_result, xmm_temp2); 3581 __ movdqu(Address(to, 0), xmm_result); // store the result 3582 __ xorptr(rax, rax); // return 0 3583 __ leave(); // required for proper stackwalking of RuntimeStub frame 3584 __ ret(0); 3585 3586 return start; 3587 } 3588 3589 3590 // Arguments: 3591 // 3592 // Inputs: 3593 // c_rarg0 - source byte array address 3594 // c_rarg1 - destination byte array address 3595 // c_rarg2 - K (key) in little endian int array 3596 // 3597 address generate_aescrypt_decryptBlock() { 3598 assert(UseAES, "need AES instructions and misaligned SSE support"); 3599 __ align(CodeEntryAlignment); 3600 StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock"); 3601 Label L_doLast; 3602 address start = __ pc(); 3603 3604 const Register from = c_rarg0; // source array address 3605 const Register to = c_rarg1; // destination array address 3606 const Register key = c_rarg2; // key array address 3607 const Register keylen = rax; 3608 3609 const XMMRegister xmm_result = xmm0; 3610 const XMMRegister xmm_key_shuf_mask = xmm1; 3611 // On win64 xmm6-xmm15 must be preserved so don't use them. 3612 const XMMRegister xmm_temp1 = xmm2; 3613 const XMMRegister xmm_temp2 = xmm3; 3614 const XMMRegister xmm_temp3 = xmm4; 3615 const XMMRegister xmm_temp4 = xmm5; 3616 3617 __ enter(); // required for proper stackwalking of RuntimeStub frame 3618 3619 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} 3620 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3621 3622 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3623 __ movdqu(xmm_result, Address(from, 0)); 3624 3625 // for decryption java expanded key ordering is rotated one position from what we want 3626 // so we start from 0x10 here and hit 0x00 last 3627 // we don't know if the key is aligned, hence not using load-execute form 3628 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); 3629 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); 3630 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); 3631 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); 3632 3633 __ pxor (xmm_result, xmm_temp1); 3634 __ aesdec(xmm_result, xmm_temp2); 3635 __ aesdec(xmm_result, xmm_temp3); 3636 __ aesdec(xmm_result, xmm_temp4); 3637 3638 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); 3639 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); 3640 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); 3641 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); 3642 3643 __ aesdec(xmm_result, xmm_temp1); 3644 __ aesdec(xmm_result, xmm_temp2); 3645 __ aesdec(xmm_result, xmm_temp3); 3646 __ aesdec(xmm_result, xmm_temp4); 3647 3648 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); 3649 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); 3650 load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask); 3651 3652 __ cmpl(keylen, 44); 3653 __ jccb(Assembler::equal, L_doLast); 3654 3655 __ aesdec(xmm_result, xmm_temp1); 3656 __ aesdec(xmm_result, xmm_temp2); 3657 3658 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); 3659 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); 3660 3661 __ cmpl(keylen, 52); 3662 __ jccb(Assembler::equal, L_doLast); 3663 3664 __ aesdec(xmm_result, xmm_temp1); 3665 __ aesdec(xmm_result, xmm_temp2); 3666 3667 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); 3668 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); 3669 3670 __ BIND(L_doLast); 3671 __ aesdec(xmm_result, xmm_temp1); 3672 __ aesdec(xmm_result, xmm_temp2); 3673 3674 // for decryption the aesdeclast operation is always on key+0x00 3675 __ aesdeclast(xmm_result, xmm_temp3); 3676 __ movdqu(Address(to, 0), xmm_result); // store the result 3677 __ xorptr(rax, rax); // return 0 3678 __ leave(); // required for proper stackwalking of RuntimeStub frame 3679 __ ret(0); 3680 3681 return start; 3682 } 3683 3684 3685 // Arguments: 3686 // 3687 // Inputs: 3688 // c_rarg0 - source byte array address 3689 // c_rarg1 - destination byte array address 3690 // c_rarg2 - K (key) in little endian int array 3691 // c_rarg3 - r vector byte array address 3692 // c_rarg4 - input length 3693 // 3694 // Output: 3695 // rax - input length 3696 // 3697 address generate_cipherBlockChaining_encryptAESCrypt() { 3698 assert(UseAES, "need AES instructions and misaligned SSE support"); 3699 __ align(CodeEntryAlignment); 3700 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt"); 3701 address start = __ pc(); 3702 3703 Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256; 3704 const Register from = c_rarg0; // source array address 3705 const Register to = c_rarg1; // destination array address 3706 const Register key = c_rarg2; // key array address 3707 const Register rvec = c_rarg3; // r byte array initialized from initvector array address 3708 // and left with the results of the last encryption block 3709 #ifndef _WIN64 3710 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) 3711 #else 3712 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 3713 const Register len_reg = r11; // pick the volatile windows register 3714 #endif 3715 const Register pos = rax; 3716 3717 // xmm register assignments for the loops below 3718 const XMMRegister xmm_result = xmm0; 3719 const XMMRegister xmm_temp = xmm1; 3720 // keys 0-10 preloaded into xmm2-xmm12 3721 const int XMM_REG_NUM_KEY_FIRST = 2; 3722 const int XMM_REG_NUM_KEY_LAST = 15; 3723 const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); 3724 const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10); 3725 const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11); 3726 const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12); 3727 const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13); 3728 3729 __ enter(); // required for proper stackwalking of RuntimeStub frame 3730 3731 #ifdef _WIN64 3732 // on win64, fill len_reg from stack position 3733 __ movl(len_reg, len_mem); 3734 #else 3735 __ push(len_reg); // Save 3736 #endif 3737 3738 const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front 3739 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3740 // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0 3741 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) { 3742 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); 3743 offset += 0x10; 3744 } 3745 __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec 3746 3747 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) 3748 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3749 __ cmpl(rax, 44); 3750 __ jcc(Assembler::notEqual, L_key_192_256); 3751 3752 // 128 bit code follows here 3753 __ movptr(pos, 0); 3754 __ align(OptoLoopAlignment); 3755 3756 __ BIND(L_loopTop_128); 3757 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input 3758 __ pxor (xmm_result, xmm_temp); // xor with the current r vector 3759 __ pxor (xmm_result, xmm_key0); // do the aes rounds 3760 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) { 3761 __ aesenc(xmm_result, as_XMMRegister(rnum)); 3762 } 3763 __ aesenclast(xmm_result, xmm_key10); 3764 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 3765 // no need to store r to memory until we exit 3766 __ addptr(pos, AESBlockSize); 3767 __ subptr(len_reg, AESBlockSize); 3768 __ jcc(Assembler::notEqual, L_loopTop_128); 3769 3770 __ BIND(L_exit); 3771 __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object 3772 3773 #ifdef _WIN64 3774 __ movl(rax, len_mem); 3775 #else 3776 __ pop(rax); // return length 3777 #endif 3778 __ leave(); // required for proper stackwalking of RuntimeStub frame 3779 __ ret(0); 3780 3781 __ BIND(L_key_192_256); 3782 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256) 3783 load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask); 3784 load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask); 3785 __ cmpl(rax, 52); 3786 __ jcc(Assembler::notEqual, L_key_256); 3787 3788 // 192-bit code follows here (could be changed to use more xmm registers) 3789 __ movptr(pos, 0); 3790 __ align(OptoLoopAlignment); 3791 3792 __ BIND(L_loopTop_192); 3793 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input 3794 __ pxor (xmm_result, xmm_temp); // xor with the current r vector 3795 __ pxor (xmm_result, xmm_key0); // do the aes rounds 3796 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) { 3797 __ aesenc(xmm_result, as_XMMRegister(rnum)); 3798 } 3799 __ aesenclast(xmm_result, xmm_key12); 3800 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 3801 // no need to store r to memory until we exit 3802 __ addptr(pos, AESBlockSize); 3803 __ subptr(len_reg, AESBlockSize); 3804 __ jcc(Assembler::notEqual, L_loopTop_192); 3805 __ jmp(L_exit); 3806 3807 __ BIND(L_key_256); 3808 // 256-bit code follows here (could be changed to use more xmm registers) 3809 load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask); 3810 __ movptr(pos, 0); 3811 __ align(OptoLoopAlignment); 3812 3813 __ BIND(L_loopTop_256); 3814 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input 3815 __ pxor (xmm_result, xmm_temp); // xor with the current r vector 3816 __ pxor (xmm_result, xmm_key0); // do the aes rounds 3817 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) { 3818 __ aesenc(xmm_result, as_XMMRegister(rnum)); 3819 } 3820 load_key(xmm_temp, key, 0xe0); 3821 __ aesenclast(xmm_result, xmm_temp); 3822 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 3823 // no need to store r to memory until we exit 3824 __ addptr(pos, AESBlockSize); 3825 __ subptr(len_reg, AESBlockSize); 3826 __ jcc(Assembler::notEqual, L_loopTop_256); 3827 __ jmp(L_exit); 3828 3829 return start; 3830 } 3831 3832 // Safefetch stubs. 3833 void generate_safefetch(const char* name, int size, address* entry, 3834 address* fault_pc, address* continuation_pc) { 3835 // safefetch signatures: 3836 // int SafeFetch32(int* adr, int errValue); 3837 // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); 3838 // 3839 // arguments: 3840 // c_rarg0 = adr 3841 // c_rarg1 = errValue 3842 // 3843 // result: 3844 // PPC_RET = *adr or errValue 3845 3846 StubCodeMark mark(this, "StubRoutines", name); 3847 3848 // Entry point, pc or function descriptor. 3849 *entry = __ pc(); 3850 3851 // Load *adr into c_rarg1, may fault. 3852 *fault_pc = __ pc(); 3853 switch (size) { 3854 case 4: 3855 // int32_t 3856 __ movl(c_rarg1, Address(c_rarg0, 0)); 3857 break; 3858 case 8: 3859 // int64_t 3860 __ movq(c_rarg1, Address(c_rarg0, 0)); 3861 break; 3862 default: 3863 ShouldNotReachHere(); 3864 } 3865 3866 // return errValue or *adr 3867 *continuation_pc = __ pc(); 3868 __ movq(rax, c_rarg1); 3869 __ ret(0); 3870 } 3871 3872 // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time 3873 // to hide instruction latency 3874 // 3875 // Arguments: 3876 // 3877 // Inputs: 3878 // c_rarg0 - source byte array address 3879 // c_rarg1 - destination byte array address 3880 // c_rarg2 - K (key) in little endian int array 3881 // c_rarg3 - r vector byte array address 3882 // c_rarg4 - input length 3883 // 3884 // Output: 3885 // rax - input length 3886 // 3887 address generate_cipherBlockChaining_decryptAESCrypt_Parallel() { 3888 assert(UseAES, "need AES instructions and misaligned SSE support"); 3889 __ align(CodeEntryAlignment); 3890 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); 3891 address start = __ pc(); 3892 3893 const Register from = c_rarg0; // source array address 3894 const Register to = c_rarg1; // destination array address 3895 const Register key = c_rarg2; // key array address 3896 const Register rvec = c_rarg3; // r byte array initialized from initvector array address 3897 // and left with the results of the last encryption block 3898 #ifndef _WIN64 3899 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) 3900 #else 3901 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 3902 const Register len_reg = r11; // pick the volatile windows register 3903 #endif 3904 const Register pos = rax; 3905 3906 const int PARALLEL_FACTOR = 4; 3907 const int ROUNDS[3] = { 10, 12, 14 }; // aes rounds for key128, key192, key256 3908 3909 Label L_exit; 3910 Label L_singleBlock_loopTopHead[3]; // 128, 192, 256 3911 Label L_singleBlock_loopTopHead2[3]; // 128, 192, 256 3912 Label L_singleBlock_loopTop[3]; // 128, 192, 256 3913 Label L_multiBlock_loopTopHead[3]; // 128, 192, 256 3914 Label L_multiBlock_loopTop[3]; // 128, 192, 256 3915 3916 // keys 0-10 preloaded into xmm5-xmm15 3917 const int XMM_REG_NUM_KEY_FIRST = 5; 3918 const int XMM_REG_NUM_KEY_LAST = 15; 3919 const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); 3920 const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST); 3921 3922 __ enter(); // required for proper stackwalking of RuntimeStub frame 3923 3924 #ifdef _WIN64 3925 // on win64, fill len_reg from stack position 3926 __ movl(len_reg, len_mem); 3927 #else 3928 __ push(len_reg); // Save 3929 #endif 3930 __ push(rbx); 3931 // the java expanded key ordering is rotated one position from what we want 3932 // so we start from 0x10 here and hit 0x00 last 3933 const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front 3934 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 3935 // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00 3936 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) { 3937 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); 3938 offset += 0x10; 3939 } 3940 load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask); 3941 3942 const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block 3943 3944 // registers holding the four results in the parallelized loop 3945 const XMMRegister xmm_result0 = xmm0; 3946 const XMMRegister xmm_result1 = xmm2; 3947 const XMMRegister xmm_result2 = xmm3; 3948 const XMMRegister xmm_result3 = xmm4; 3949 3950 __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec 3951 3952 __ xorptr(pos, pos); 3953 3954 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) 3955 __ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 3956 __ cmpl(rbx, 52); 3957 __ jcc(Assembler::equal, L_multiBlock_loopTopHead[1]); 3958 __ cmpl(rbx, 60); 3959 __ jcc(Assembler::equal, L_multiBlock_loopTopHead[2]); 3960 3961 #define DoFour(opc, src_reg) \ 3962 __ opc(xmm_result0, src_reg); \ 3963 __ opc(xmm_result1, src_reg); \ 3964 __ opc(xmm_result2, src_reg); \ 3965 __ opc(xmm_result3, src_reg); \ 3966 3967 for (int k = 0; k < 3; ++k) { 3968 __ BIND(L_multiBlock_loopTopHead[k]); 3969 if (k != 0) { 3970 __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left 3971 __ jcc(Assembler::less, L_singleBlock_loopTopHead2[k]); 3972 } 3973 if (k == 1) { 3974 __ subptr(rsp, 6 * wordSize); 3975 __ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15 3976 load_key(xmm15, key, 0xb0); // 0xb0; 192-bit key goes up to 0xc0 3977 __ movdqu(Address(rsp, 2 * wordSize), xmm15); 3978 load_key(xmm1, key, 0xc0); // 0xc0; 3979 __ movdqu(Address(rsp, 4 * wordSize), xmm1); 3980 } else if (k == 2) { 3981 __ subptr(rsp, 10 * wordSize); 3982 __ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15 3983 load_key(xmm15, key, 0xd0); // 0xd0; 256-bit key goes upto 0xe0 3984 __ movdqu(Address(rsp, 6 * wordSize), xmm15); 3985 load_key(xmm1, key, 0xe0); // 0xe0; 3986 __ movdqu(Address(rsp, 8 * wordSize), xmm1); 3987 load_key(xmm15, key, 0xb0); // 0xb0; 3988 __ movdqu(Address(rsp, 2 * wordSize), xmm15); 3989 load_key(xmm1, key, 0xc0); // 0xc0; 3990 __ movdqu(Address(rsp, 4 * wordSize), xmm1); 3991 } 3992 __ align(OptoLoopAlignment); 3993 __ BIND(L_multiBlock_loopTop[k]); 3994 __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left 3995 __ jcc(Assembler::less, L_singleBlock_loopTopHead[k]); 3996 3997 if (k != 0) { 3998 __ movdqu(xmm15, Address(rsp, 2 * wordSize)); 3999 __ movdqu(xmm1, Address(rsp, 4 * wordSize)); 4000 } 4001 4002 __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); // get next 4 blocks into xmmresult registers 4003 __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1 * AESBlockSize)); 4004 __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2 * AESBlockSize)); 4005 __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3 * AESBlockSize)); 4006 4007 DoFour(pxor, xmm_key_first); 4008 if (k == 0) { 4009 for (int rnum = 1; rnum < ROUNDS[k]; rnum++) { 4010 DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); 4011 } 4012 DoFour(aesdeclast, xmm_key_last); 4013 } else if (k == 1) { 4014 for (int rnum = 1; rnum <= ROUNDS[k]-2; rnum++) { 4015 DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); 4016 } 4017 __ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again. 4018 DoFour(aesdec, xmm1); // key : 0xc0 4019 __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again 4020 DoFour(aesdeclast, xmm_key_last); 4021 } else if (k == 2) { 4022 for (int rnum = 1; rnum <= ROUNDS[k] - 4; rnum++) { 4023 DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); 4024 } 4025 DoFour(aesdec, xmm1); // key : 0xc0 4026 __ movdqu(xmm15, Address(rsp, 6 * wordSize)); 4027 __ movdqu(xmm1, Address(rsp, 8 * wordSize)); 4028 DoFour(aesdec, xmm15); // key : 0xd0 4029 __ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again. 4030 DoFour(aesdec, xmm1); // key : 0xe0 4031 __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again 4032 DoFour(aesdeclast, xmm_key_last); 4033 } 4034 4035 // for each result, xor with the r vector of previous cipher block 4036 __ pxor(xmm_result0, xmm_prev_block_cipher); 4037 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0 * AESBlockSize)); 4038 __ pxor(xmm_result1, xmm_prev_block_cipher); 4039 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1 * AESBlockSize)); 4040 __ pxor(xmm_result2, xmm_prev_block_cipher); 4041 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2 * AESBlockSize)); 4042 __ pxor(xmm_result3, xmm_prev_block_cipher); 4043 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3 * AESBlockSize)); // this will carry over to next set of blocks 4044 if (k != 0) { 4045 __ movdqu(Address(rvec, 0x00), xmm_prev_block_cipher); 4046 } 4047 4048 __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output 4049 __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1); 4050 __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2); 4051 __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3); 4052 4053 __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); 4054 __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); 4055 __ jmp(L_multiBlock_loopTop[k]); 4056 4057 // registers used in the non-parallelized loops 4058 // xmm register assignments for the loops below 4059 const XMMRegister xmm_result = xmm0; 4060 const XMMRegister xmm_prev_block_cipher_save = xmm2; 4061 const XMMRegister xmm_key11 = xmm3; 4062 const XMMRegister xmm_key12 = xmm4; 4063 const XMMRegister key_tmp = xmm4; 4064 4065 __ BIND(L_singleBlock_loopTopHead[k]); 4066 if (k == 1) { 4067 __ addptr(rsp, 6 * wordSize); 4068 } else if (k == 2) { 4069 __ addptr(rsp, 10 * wordSize); 4070 } 4071 __ cmpptr(len_reg, 0); // any blocks left?? 4072 __ jcc(Assembler::equal, L_exit); 4073 __ BIND(L_singleBlock_loopTopHead2[k]); 4074 if (k == 1) { 4075 load_key(xmm_key11, key, 0xb0); // 0xb0; 192-bit key goes upto 0xc0 4076 load_key(xmm_key12, key, 0xc0); // 0xc0; 192-bit key goes upto 0xc0 4077 } 4078 if (k == 2) { 4079 load_key(xmm_key11, key, 0xb0); // 0xb0; 256-bit key goes upto 0xe0 4080 } 4081 __ align(OptoLoopAlignment); 4082 __ BIND(L_singleBlock_loopTop[k]); 4083 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input 4084 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector 4085 __ pxor(xmm_result, xmm_key_first); // do the aes dec rounds 4086 for (int rnum = 1; rnum <= 9 ; rnum++) { 4087 __ aesdec(xmm_result, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); 4088 } 4089 if (k == 1) { 4090 __ aesdec(xmm_result, xmm_key11); 4091 __ aesdec(xmm_result, xmm_key12); 4092 } 4093 if (k == 2) { 4094 __ aesdec(xmm_result, xmm_key11); 4095 load_key(key_tmp, key, 0xc0); 4096 __ aesdec(xmm_result, key_tmp); 4097 load_key(key_tmp, key, 0xd0); 4098 __ aesdec(xmm_result, key_tmp); 4099 load_key(key_tmp, key, 0xe0); 4100 __ aesdec(xmm_result, key_tmp); 4101 } 4102 4103 __ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0 4104 __ pxor(xmm_result, xmm_prev_block_cipher); // xor with the current r vector 4105 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output 4106 // no need to store r to memory until we exit 4107 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block 4108 __ addptr(pos, AESBlockSize); 4109 __ subptr(len_reg, AESBlockSize); 4110 __ jcc(Assembler::notEqual, L_singleBlock_loopTop[k]); 4111 if (k != 2) { 4112 __ jmp(L_exit); 4113 } 4114 } //for 128/192/256 4115 4116 __ BIND(L_exit); 4117 __ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object 4118 __ pop(rbx); 4119 #ifdef _WIN64 4120 __ movl(rax, len_mem); 4121 #else 4122 __ pop(rax); // return length 4123 #endif 4124 __ leave(); // required for proper stackwalking of RuntimeStub frame 4125 __ ret(0); 4126 return start; 4127 } 4128 4129 address generate_electronicCodeBook_encryptAESCrypt() { 4130 __ align(CodeEntryAlignment); 4131 StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_encryptAESCrypt"); 4132 address start = __ pc(); 4133 const Register from = c_rarg0; // source array address 4134 const Register to = c_rarg1; // destination array address 4135 const Register key = c_rarg2; // key array address 4136 const Register len = c_rarg3; // src len (must be multiple of blocksize 16) 4137 __ enter(); // required for proper stackwalking of RuntimeStub frame 4138 __ aesecb_encrypt(from, to, key, len); 4139 __ leave(); // required for proper stackwalking of RuntimeStub frame 4140 __ ret(0); 4141 return start; 4142 } 4143 4144 address generate_electronicCodeBook_decryptAESCrypt() { 4145 __ align(CodeEntryAlignment); 4146 StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_decryptAESCrypt"); 4147 address start = __ pc(); 4148 const Register from = c_rarg0; // source array address 4149 const Register to = c_rarg1; // destination array address 4150 const Register key = c_rarg2; // key array address 4151 const Register len = c_rarg3; // src len (must be multiple of blocksize 16) 4152 __ enter(); // required for proper stackwalking of RuntimeStub frame 4153 __ aesecb_decrypt(from, to, key, len); 4154 __ leave(); // required for proper stackwalking of RuntimeStub frame 4155 __ ret(0); 4156 return start; 4157 } 4158 4159 // ofs and limit are use for multi-block byte array. 4160 // int com.sun.security.provider.MD5.implCompress(byte[] b, int ofs) 4161 address generate_md5_implCompress(bool multi_block, const char *name) { 4162 __ align(CodeEntryAlignment); 4163 StubCodeMark mark(this, "StubRoutines", name); 4164 address start = __ pc(); 4165 4166 const Register buf_param = r15; 4167 const Address state_param(rsp, 0 * wordSize); 4168 const Address ofs_param (rsp, 1 * wordSize ); 4169 const Address limit_param(rsp, 1 * wordSize + 4); 4170 4171 __ enter(); 4172 __ push(rbx); 4173 __ push(rdi); 4174 __ push(rsi); 4175 __ push(r15); 4176 __ subptr(rsp, 2 * wordSize); 4177 4178 __ movptr(buf_param, c_rarg0); 4179 __ movptr(state_param, c_rarg1); 4180 if (multi_block) { 4181 __ movl(ofs_param, c_rarg2); 4182 __ movl(limit_param, c_rarg3); 4183 } 4184 __ fast_md5(buf_param, state_param, ofs_param, limit_param, multi_block); 4185 4186 __ addptr(rsp, 2 * wordSize); 4187 __ pop(r15); 4188 __ pop(rsi); 4189 __ pop(rdi); 4190 __ pop(rbx); 4191 __ leave(); 4192 __ ret(0); 4193 return start; 4194 } 4195 4196 address generate_upper_word_mask() { 4197 __ align64(); 4198 StubCodeMark mark(this, "StubRoutines", "upper_word_mask"); 4199 address start = __ pc(); 4200 __ emit_data64(0x0000000000000000, relocInfo::none); 4201 __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); 4202 return start; 4203 } 4204 4205 address generate_shuffle_byte_flip_mask() { 4206 __ align64(); 4207 StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask"); 4208 address start = __ pc(); 4209 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 4210 __ emit_data64(0x0001020304050607, relocInfo::none); 4211 return start; 4212 } 4213 4214 // ofs and limit are use for multi-block byte array. 4215 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 4216 address generate_sha1_implCompress(bool multi_block, const char *name) { 4217 __ align(CodeEntryAlignment); 4218 StubCodeMark mark(this, "StubRoutines", name); 4219 address start = __ pc(); 4220 4221 Register buf = c_rarg0; 4222 Register state = c_rarg1; 4223 Register ofs = c_rarg2; 4224 Register limit = c_rarg3; 4225 4226 const XMMRegister abcd = xmm0; 4227 const XMMRegister e0 = xmm1; 4228 const XMMRegister e1 = xmm2; 4229 const XMMRegister msg0 = xmm3; 4230 4231 const XMMRegister msg1 = xmm4; 4232 const XMMRegister msg2 = xmm5; 4233 const XMMRegister msg3 = xmm6; 4234 const XMMRegister shuf_mask = xmm7; 4235 4236 __ enter(); 4237 4238 __ subptr(rsp, 4 * wordSize); 4239 4240 __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, 4241 buf, state, ofs, limit, rsp, multi_block); 4242 4243 __ addptr(rsp, 4 * wordSize); 4244 4245 __ leave(); 4246 __ ret(0); 4247 return start; 4248 } 4249 4250 address generate_pshuffle_byte_flip_mask() { 4251 __ align64(); 4252 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask"); 4253 address start = __ pc(); 4254 __ emit_data64(0x0405060700010203, relocInfo::none); 4255 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 4256 4257 if (VM_Version::supports_avx2()) { 4258 __ emit_data64(0x0405060700010203, relocInfo::none); // second copy 4259 __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); 4260 // _SHUF_00BA 4261 __ emit_data64(0x0b0a090803020100, relocInfo::none); 4262 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 4263 __ emit_data64(0x0b0a090803020100, relocInfo::none); 4264 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 4265 // _SHUF_DC00 4266 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 4267 __ emit_data64(0x0b0a090803020100, relocInfo::none); 4268 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 4269 __ emit_data64(0x0b0a090803020100, relocInfo::none); 4270 } 4271 4272 return start; 4273 } 4274 4275 //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 4276 address generate_pshuffle_byte_flip_mask_sha512() { 4277 __ align32(); 4278 StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512"); 4279 address start = __ pc(); 4280 if (VM_Version::supports_avx2()) { 4281 __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK 4282 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 4283 __ emit_data64(0x1011121314151617, relocInfo::none); 4284 __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); 4285 __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO 4286 __ emit_data64(0x0000000000000000, relocInfo::none); 4287 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 4288 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); 4289 } 4290 4291 return start; 4292 } 4293 4294 // ofs and limit are use for multi-block byte array. 4295 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 4296 address generate_sha256_implCompress(bool multi_block, const char *name) { 4297 assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); 4298 __ align(CodeEntryAlignment); 4299 StubCodeMark mark(this, "StubRoutines", name); 4300 address start = __ pc(); 4301 4302 Register buf = c_rarg0; 4303 Register state = c_rarg1; 4304 Register ofs = c_rarg2; 4305 Register limit = c_rarg3; 4306 4307 const XMMRegister msg = xmm0; 4308 const XMMRegister state0 = xmm1; 4309 const XMMRegister state1 = xmm2; 4310 const XMMRegister msgtmp0 = xmm3; 4311 4312 const XMMRegister msgtmp1 = xmm4; 4313 const XMMRegister msgtmp2 = xmm5; 4314 const XMMRegister msgtmp3 = xmm6; 4315 const XMMRegister msgtmp4 = xmm7; 4316 4317 const XMMRegister shuf_mask = xmm8; 4318 4319 __ enter(); 4320 4321 __ subptr(rsp, 4 * wordSize); 4322 4323 if (VM_Version::supports_sha()) { 4324 __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 4325 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 4326 } else if (VM_Version::supports_avx2()) { 4327 __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 4328 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 4329 } 4330 __ addptr(rsp, 4 * wordSize); 4331 __ vzeroupper(); 4332 __ leave(); 4333 __ ret(0); 4334 return start; 4335 } 4336 4337 address generate_sha512_implCompress(bool multi_block, const char *name) { 4338 assert(VM_Version::supports_avx2(), ""); 4339 assert(VM_Version::supports_bmi2(), ""); 4340 __ align(CodeEntryAlignment); 4341 StubCodeMark mark(this, "StubRoutines", name); 4342 address start = __ pc(); 4343 4344 Register buf = c_rarg0; 4345 Register state = c_rarg1; 4346 Register ofs = c_rarg2; 4347 Register limit = c_rarg3; 4348 4349 const XMMRegister msg = xmm0; 4350 const XMMRegister state0 = xmm1; 4351 const XMMRegister state1 = xmm2; 4352 const XMMRegister msgtmp0 = xmm3; 4353 const XMMRegister msgtmp1 = xmm4; 4354 const XMMRegister msgtmp2 = xmm5; 4355 const XMMRegister msgtmp3 = xmm6; 4356 const XMMRegister msgtmp4 = xmm7; 4357 4358 const XMMRegister shuf_mask = xmm8; 4359 4360 __ enter(); 4361 4362 __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, 4363 buf, state, ofs, limit, rsp, multi_block, shuf_mask); 4364 4365 __ vzeroupper(); 4366 __ leave(); 4367 __ ret(0); 4368 return start; 4369 } 4370 4371 // This mask is used for incrementing counter value(linc0, linc4, etc.) 4372 address counter_mask_addr() { 4373 __ align64(); 4374 StubCodeMark mark(this, "StubRoutines", "counter_mask_addr"); 4375 address start = __ pc(); 4376 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);//lbswapmask 4377 __ emit_data64(0x0001020304050607, relocInfo::none); 4378 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 4379 __ emit_data64(0x0001020304050607, relocInfo::none); 4380 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 4381 __ emit_data64(0x0001020304050607, relocInfo::none); 4382 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); 4383 __ emit_data64(0x0001020304050607, relocInfo::none); 4384 __ emit_data64(0x0000000000000000, relocInfo::none);//linc0 = counter_mask_addr+64 4385 __ emit_data64(0x0000000000000000, relocInfo::none); 4386 __ emit_data64(0x0000000000000001, relocInfo::none);//counter_mask_addr() + 80 4387 __ emit_data64(0x0000000000000000, relocInfo::none); 4388 __ emit_data64(0x0000000000000002, relocInfo::none); 4389 __ emit_data64(0x0000000000000000, relocInfo::none); 4390 __ emit_data64(0x0000000000000003, relocInfo::none); 4391 __ emit_data64(0x0000000000000000, relocInfo::none); 4392 __ emit_data64(0x0000000000000004, relocInfo::none);//linc4 = counter_mask_addr() + 128 4393 __ emit_data64(0x0000000000000000, relocInfo::none); 4394 __ emit_data64(0x0000000000000004, relocInfo::none); 4395 __ emit_data64(0x0000000000000000, relocInfo::none); 4396 __ emit_data64(0x0000000000000004, relocInfo::none); 4397 __ emit_data64(0x0000000000000000, relocInfo::none); 4398 __ emit_data64(0x0000000000000004, relocInfo::none); 4399 __ emit_data64(0x0000000000000000, relocInfo::none); 4400 __ emit_data64(0x0000000000000008, relocInfo::none);//linc8 = counter_mask_addr() + 192 4401 __ emit_data64(0x0000000000000000, relocInfo::none); 4402 __ emit_data64(0x0000000000000008, relocInfo::none); 4403 __ emit_data64(0x0000000000000000, relocInfo::none); 4404 __ emit_data64(0x0000000000000008, relocInfo::none); 4405 __ emit_data64(0x0000000000000000, relocInfo::none); 4406 __ emit_data64(0x0000000000000008, relocInfo::none); 4407 __ emit_data64(0x0000000000000000, relocInfo::none); 4408 __ emit_data64(0x0000000000000020, relocInfo::none);//linc32 = counter_mask_addr() + 256 4409 __ emit_data64(0x0000000000000000, relocInfo::none); 4410 __ emit_data64(0x0000000000000020, relocInfo::none); 4411 __ emit_data64(0x0000000000000000, relocInfo::none); 4412 __ emit_data64(0x0000000000000020, relocInfo::none); 4413 __ emit_data64(0x0000000000000000, relocInfo::none); 4414 __ emit_data64(0x0000000000000020, relocInfo::none); 4415 __ emit_data64(0x0000000000000000, relocInfo::none); 4416 __ emit_data64(0x0000000000000010, relocInfo::none);//linc16 = counter_mask_addr() + 320 4417 __ emit_data64(0x0000000000000000, relocInfo::none); 4418 __ emit_data64(0x0000000000000010, relocInfo::none); 4419 __ emit_data64(0x0000000000000000, relocInfo::none); 4420 __ emit_data64(0x0000000000000010, relocInfo::none); 4421 __ emit_data64(0x0000000000000000, relocInfo::none); 4422 __ emit_data64(0x0000000000000010, relocInfo::none); 4423 __ emit_data64(0x0000000000000000, relocInfo::none); 4424 return start; 4425 } 4426 4427 // Vector AES Counter implementation 4428 address generate_counterMode_VectorAESCrypt() { 4429 __ align(CodeEntryAlignment); 4430 StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt"); 4431 address start = __ pc(); 4432 const Register from = c_rarg0; // source array address 4433 const Register to = c_rarg1; // destination array address 4434 const Register key = c_rarg2; // key array address r8 4435 const Register counter = c_rarg3; // counter byte array initialized from counter array address 4436 // and updated with the incremented counter in the end 4437 #ifndef _WIN64 4438 const Register len_reg = c_rarg4; 4439 const Register saved_encCounter_start = c_rarg5; 4440 const Register used_addr = r10; 4441 const Address used_mem(rbp, 2 * wordSize); 4442 const Register used = r11; 4443 #else 4444 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 4445 const Address saved_encCounter_mem(rbp, 7 * wordSize); // saved encrypted counter is on stack on Win64 4446 const Address used_mem(rbp, 8 * wordSize); // used length is on stack on Win64 4447 const Register len_reg = r10; // pick the first volatile windows register 4448 const Register saved_encCounter_start = r11; 4449 const Register used_addr = r13; 4450 const Register used = r14; 4451 #endif 4452 __ enter(); 4453 // Save state before entering routine 4454 __ push(r12); 4455 __ push(r13); 4456 __ push(r14); 4457 __ push(r15); 4458 #ifdef _WIN64 4459 // on win64, fill len_reg from stack position 4460 __ movl(len_reg, len_mem); 4461 __ movptr(saved_encCounter_start, saved_encCounter_mem); 4462 __ movptr(used_addr, used_mem); 4463 __ movl(used, Address(used_addr, 0)); 4464 #else 4465 __ push(len_reg); // Save 4466 __ movptr(used_addr, used_mem); 4467 __ movl(used, Address(used_addr, 0)); 4468 #endif 4469 __ push(rbx); 4470 __ aesctr_encrypt(from, to, key, counter, len_reg, used, used_addr, saved_encCounter_start); 4471 // Restore state before leaving routine 4472 __ pop(rbx); 4473 #ifdef _WIN64 4474 __ movl(rax, len_mem); // return length 4475 #else 4476 __ pop(rax); // return length 4477 #endif 4478 __ pop(r15); 4479 __ pop(r14); 4480 __ pop(r13); 4481 __ pop(r12); 4482 4483 __ leave(); // required for proper stackwalking of RuntimeStub frame 4484 __ ret(0); 4485 return start; 4486 } 4487 4488 // This is a version of CTR/AES crypt which does 6 blocks in a loop at a time 4489 // to hide instruction latency 4490 // 4491 // Arguments: 4492 // 4493 // Inputs: 4494 // c_rarg0 - source byte array address 4495 // c_rarg1 - destination byte array address 4496 // c_rarg2 - K (key) in little endian int array 4497 // c_rarg3 - counter vector byte array address 4498 // Linux 4499 // c_rarg4 - input length 4500 // c_rarg5 - saved encryptedCounter start 4501 // rbp + 6 * wordSize - saved used length 4502 // Windows 4503 // rbp + 6 * wordSize - input length 4504 // rbp + 7 * wordSize - saved encryptedCounter start 4505 // rbp + 8 * wordSize - saved used length 4506 // 4507 // Output: 4508 // rax - input length 4509 // 4510 address generate_counterMode_AESCrypt_Parallel() { 4511 assert(UseAES, "need AES instructions and misaligned SSE support"); 4512 __ align(CodeEntryAlignment); 4513 StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt"); 4514 address start = __ pc(); 4515 const Register from = c_rarg0; // source array address 4516 const Register to = c_rarg1; // destination array address 4517 const Register key = c_rarg2; // key array address 4518 const Register counter = c_rarg3; // counter byte array initialized from counter array address 4519 // and updated with the incremented counter in the end 4520 #ifndef _WIN64 4521 const Register len_reg = c_rarg4; 4522 const Register saved_encCounter_start = c_rarg5; 4523 const Register used_addr = r10; 4524 const Address used_mem(rbp, 2 * wordSize); 4525 const Register used = r11; 4526 #else 4527 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 4528 const Address saved_encCounter_mem(rbp, 7 * wordSize); // length is on stack on Win64 4529 const Address used_mem(rbp, 8 * wordSize); // length is on stack on Win64 4530 const Register len_reg = r10; // pick the first volatile windows register 4531 const Register saved_encCounter_start = r11; 4532 const Register used_addr = r13; 4533 const Register used = r14; 4534 #endif 4535 const Register pos = rax; 4536 4537 const int PARALLEL_FACTOR = 6; 4538 const XMMRegister xmm_counter_shuf_mask = xmm0; 4539 const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front 4540 const XMMRegister xmm_curr_counter = xmm2; 4541 4542 const XMMRegister xmm_key_tmp0 = xmm3; 4543 const XMMRegister xmm_key_tmp1 = xmm4; 4544 4545 // registers holding the four results in the parallelized loop 4546 const XMMRegister xmm_result0 = xmm5; 4547 const XMMRegister xmm_result1 = xmm6; 4548 const XMMRegister xmm_result2 = xmm7; 4549 const XMMRegister xmm_result3 = xmm8; 4550 const XMMRegister xmm_result4 = xmm9; 4551 const XMMRegister xmm_result5 = xmm10; 4552 4553 const XMMRegister xmm_from0 = xmm11; 4554 const XMMRegister xmm_from1 = xmm12; 4555 const XMMRegister xmm_from2 = xmm13; 4556 const XMMRegister xmm_from3 = xmm14; //the last one is xmm14. we have to preserve it on WIN64. 4557 const XMMRegister xmm_from4 = xmm3; //reuse xmm3~4. Because xmm_key_tmp0~1 are useless when loading input text 4558 const XMMRegister xmm_from5 = xmm4; 4559 4560 //for key_128, key_192, key_256 4561 const int rounds[3] = {10, 12, 14}; 4562 Label L_exit_preLoop, L_preLoop_start; 4563 Label L_multiBlock_loopTop[3]; 4564 Label L_singleBlockLoopTop[3]; 4565 Label L__incCounter[3][6]; //for 6 blocks 4566 Label L__incCounter_single[3]; //for single block, key128, key192, key256 4567 Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3]; 4568 Label L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3]; 4569 4570 Label L_exit; 4571 4572 __ enter(); // required for proper stackwalking of RuntimeStub frame 4573 4574 #ifdef _WIN64 4575 // allocate spill slots for r13, r14 4576 enum { 4577 saved_r13_offset, 4578 saved_r14_offset 4579 }; 4580 __ subptr(rsp, 2 * wordSize); 4581 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13); 4582 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14); 4583 4584 // on win64, fill len_reg from stack position 4585 __ movl(len_reg, len_mem); 4586 __ movptr(saved_encCounter_start, saved_encCounter_mem); 4587 __ movptr(used_addr, used_mem); 4588 __ movl(used, Address(used_addr, 0)); 4589 #else 4590 __ push(len_reg); // Save 4591 __ movptr(used_addr, used_mem); 4592 __ movl(used, Address(used_addr, 0)); 4593 #endif 4594 4595 __ push(rbx); // Save RBX 4596 __ movdqu(xmm_curr_counter, Address(counter, 0x00)); // initialize counter with initial counter 4597 __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()), pos); // pos as scratch 4598 __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled 4599 __ movptr(pos, 0); 4600 4601 // Use the partially used encrpyted counter from last invocation 4602 __ BIND(L_preLoop_start); 4603 __ cmpptr(used, 16); 4604 __ jcc(Assembler::aboveEqual, L_exit_preLoop); 4605 __ cmpptr(len_reg, 0); 4606 __ jcc(Assembler::lessEqual, L_exit_preLoop); 4607 __ movb(rbx, Address(saved_encCounter_start, used)); 4608 __ xorb(rbx, Address(from, pos)); 4609 __ movb(Address(to, pos), rbx); 4610 __ addptr(pos, 1); 4611 __ addptr(used, 1); 4612 __ subptr(len_reg, 1); 4613 4614 __ jmp(L_preLoop_start); 4615 4616 __ BIND(L_exit_preLoop); 4617 __ movl(Address(used_addr, 0), used); 4618 4619 // key length could be only {11, 13, 15} * 4 = {44, 52, 60} 4620 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()), rbx); // rbx as scratch 4621 __ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 4622 __ cmpl(rbx, 52); 4623 __ jcc(Assembler::equal, L_multiBlock_loopTop[1]); 4624 __ cmpl(rbx, 60); 4625 __ jcc(Assembler::equal, L_multiBlock_loopTop[2]); 4626 4627 #define CTR_DoSix(opc, src_reg) \ 4628 __ opc(xmm_result0, src_reg); \ 4629 __ opc(xmm_result1, src_reg); \ 4630 __ opc(xmm_result2, src_reg); \ 4631 __ opc(xmm_result3, src_reg); \ 4632 __ opc(xmm_result4, src_reg); \ 4633 __ opc(xmm_result5, src_reg); 4634 4635 // k == 0 : generate code for key_128 4636 // k == 1 : generate code for key_192 4637 // k == 2 : generate code for key_256 4638 for (int k = 0; k < 3; ++k) { 4639 //multi blocks starts here 4640 __ align(OptoLoopAlignment); 4641 __ BIND(L_multiBlock_loopTop[k]); 4642 __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left 4643 __ jcc(Assembler::less, L_singleBlockLoopTop[k]); 4644 load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask); 4645 4646 //load, then increase counters 4647 CTR_DoSix(movdqa, xmm_curr_counter); 4648 inc_counter(rbx, xmm_result1, 0x01, L__incCounter[k][0]); 4649 inc_counter(rbx, xmm_result2, 0x02, L__incCounter[k][1]); 4650 inc_counter(rbx, xmm_result3, 0x03, L__incCounter[k][2]); 4651 inc_counter(rbx, xmm_result4, 0x04, L__incCounter[k][3]); 4652 inc_counter(rbx, xmm_result5, 0x05, L__incCounter[k][4]); 4653 inc_counter(rbx, xmm_curr_counter, 0x06, L__incCounter[k][5]); 4654 CTR_DoSix(pshufb, xmm_counter_shuf_mask); // after increased, shuffled counters back for PXOR 4655 CTR_DoSix(pxor, xmm_key_tmp0); //PXOR with Round 0 key 4656 4657 //load two ROUND_KEYs at a time 4658 for (int i = 1; i < rounds[k]; ) { 4659 load_key(xmm_key_tmp1, key, (0x10 * i), xmm_key_shuf_mask); 4660 load_key(xmm_key_tmp0, key, (0x10 * (i+1)), xmm_key_shuf_mask); 4661 CTR_DoSix(aesenc, xmm_key_tmp1); 4662 i++; 4663 if (i != rounds[k]) { 4664 CTR_DoSix(aesenc, xmm_key_tmp0); 4665 } else { 4666 CTR_DoSix(aesenclast, xmm_key_tmp0); 4667 } 4668 i++; 4669 } 4670 4671 // get next PARALLEL_FACTOR blocks into xmm_result registers 4672 __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); 4673 __ movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize)); 4674 __ movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize)); 4675 __ movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize)); 4676 __ movdqu(xmm_from4, Address(from, pos, Address::times_1, 4 * AESBlockSize)); 4677 __ movdqu(xmm_from5, Address(from, pos, Address::times_1, 5 * AESBlockSize)); 4678 4679 __ pxor(xmm_result0, xmm_from0); 4680 __ pxor(xmm_result1, xmm_from1); 4681 __ pxor(xmm_result2, xmm_from2); 4682 __ pxor(xmm_result3, xmm_from3); 4683 __ pxor(xmm_result4, xmm_from4); 4684 __ pxor(xmm_result5, xmm_from5); 4685 4686 // store 6 results into the next 64 bytes of output 4687 __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); 4688 __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1); 4689 __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2); 4690 __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3); 4691 __ movdqu(Address(to, pos, Address::times_1, 4 * AESBlockSize), xmm_result4); 4692 __ movdqu(Address(to, pos, Address::times_1, 5 * AESBlockSize), xmm_result5); 4693 4694 __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text 4695 __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length 4696 __ jmp(L_multiBlock_loopTop[k]); 4697 4698 // singleBlock starts here 4699 __ align(OptoLoopAlignment); 4700 __ BIND(L_singleBlockLoopTop[k]); 4701 __ cmpptr(len_reg, 0); 4702 __ jcc(Assembler::lessEqual, L_exit); 4703 load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask); 4704 __ movdqa(xmm_result0, xmm_curr_counter); 4705 inc_counter(rbx, xmm_curr_counter, 0x01, L__incCounter_single[k]); 4706 __ pshufb(xmm_result0, xmm_counter_shuf_mask); 4707 __ pxor(xmm_result0, xmm_key_tmp0); 4708 for (int i = 1; i < rounds[k]; i++) { 4709 load_key(xmm_key_tmp0, key, (0x10 * i), xmm_key_shuf_mask); 4710 __ aesenc(xmm_result0, xmm_key_tmp0); 4711 } 4712 load_key(xmm_key_tmp0, key, (rounds[k] * 0x10), xmm_key_shuf_mask); 4713 __ aesenclast(xmm_result0, xmm_key_tmp0); 4714 __ cmpptr(len_reg, AESBlockSize); 4715 __ jcc(Assembler::less, L_processTail_insr[k]); 4716 __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); 4717 __ pxor(xmm_result0, xmm_from0); 4718 __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); 4719 __ addptr(pos, AESBlockSize); 4720 __ subptr(len_reg, AESBlockSize); 4721 __ jmp(L_singleBlockLoopTop[k]); 4722 __ BIND(L_processTail_insr[k]); // Process the tail part of the input array 4723 __ addptr(pos, len_reg); // 1. Insert bytes from src array into xmm_from0 register 4724 __ testptr(len_reg, 8); 4725 __ jcc(Assembler::zero, L_processTail_4_insr[k]); 4726 __ subptr(pos,8); 4727 __ pinsrq(xmm_from0, Address(from, pos), 0); 4728 __ BIND(L_processTail_4_insr[k]); 4729 __ testptr(len_reg, 4); 4730 __ jcc(Assembler::zero, L_processTail_2_insr[k]); 4731 __ subptr(pos,4); 4732 __ pslldq(xmm_from0, 4); 4733 __ pinsrd(xmm_from0, Address(from, pos), 0); 4734 __ BIND(L_processTail_2_insr[k]); 4735 __ testptr(len_reg, 2); 4736 __ jcc(Assembler::zero, L_processTail_1_insr[k]); 4737 __ subptr(pos, 2); 4738 __ pslldq(xmm_from0, 2); 4739 __ pinsrw(xmm_from0, Address(from, pos), 0); 4740 __ BIND(L_processTail_1_insr[k]); 4741 __ testptr(len_reg, 1); 4742 __ jcc(Assembler::zero, L_processTail_exit_insr[k]); 4743 __ subptr(pos, 1); 4744 __ pslldq(xmm_from0, 1); 4745 __ pinsrb(xmm_from0, Address(from, pos), 0); 4746 __ BIND(L_processTail_exit_insr[k]); 4747 4748 __ movdqu(Address(saved_encCounter_start, 0), xmm_result0); // 2. Perform pxor of the encrypted counter and plaintext Bytes. 4749 __ pxor(xmm_result0, xmm_from0); // Also the encrypted counter is saved for next invocation. 4750 4751 __ testptr(len_reg, 8); 4752 __ jcc(Assembler::zero, L_processTail_4_extr[k]); // 3. Extract bytes from xmm_result0 into the dest. array 4753 __ pextrq(Address(to, pos), xmm_result0, 0); 4754 __ psrldq(xmm_result0, 8); 4755 __ addptr(pos, 8); 4756 __ BIND(L_processTail_4_extr[k]); 4757 __ testptr(len_reg, 4); 4758 __ jcc(Assembler::zero, L_processTail_2_extr[k]); 4759 __ pextrd(Address(to, pos), xmm_result0, 0); 4760 __ psrldq(xmm_result0, 4); 4761 __ addptr(pos, 4); 4762 __ BIND(L_processTail_2_extr[k]); 4763 __ testptr(len_reg, 2); 4764 __ jcc(Assembler::zero, L_processTail_1_extr[k]); 4765 __ pextrw(Address(to, pos), xmm_result0, 0); 4766 __ psrldq(xmm_result0, 2); 4767 __ addptr(pos, 2); 4768 __ BIND(L_processTail_1_extr[k]); 4769 __ testptr(len_reg, 1); 4770 __ jcc(Assembler::zero, L_processTail_exit_extr[k]); 4771 __ pextrb(Address(to, pos), xmm_result0, 0); 4772 4773 __ BIND(L_processTail_exit_extr[k]); 4774 __ movl(Address(used_addr, 0), len_reg); 4775 __ jmp(L_exit); 4776 4777 } 4778 4779 __ BIND(L_exit); 4780 __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back. 4781 __ movdqu(Address(counter, 0), xmm_curr_counter); //save counter back 4782 __ pop(rbx); // pop the saved RBX. 4783 #ifdef _WIN64 4784 __ movl(rax, len_mem); 4785 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize)); 4786 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize)); 4787 __ addptr(rsp, 2 * wordSize); 4788 #else 4789 __ pop(rax); // return 'len' 4790 #endif 4791 __ leave(); // required for proper stackwalking of RuntimeStub frame 4792 __ ret(0); 4793 return start; 4794 } 4795 4796 void roundDec(XMMRegister xmm_reg) { 4797 __ vaesdec(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit); 4798 __ vaesdec(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit); 4799 __ vaesdec(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit); 4800 __ vaesdec(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit); 4801 __ vaesdec(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit); 4802 __ vaesdec(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit); 4803 __ vaesdec(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit); 4804 __ vaesdec(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit); 4805 } 4806 4807 void roundDeclast(XMMRegister xmm_reg) { 4808 __ vaesdeclast(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit); 4809 __ vaesdeclast(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit); 4810 __ vaesdeclast(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit); 4811 __ vaesdeclast(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit); 4812 __ vaesdeclast(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit); 4813 __ vaesdeclast(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit); 4814 __ vaesdeclast(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit); 4815 __ vaesdeclast(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit); 4816 } 4817 4818 void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask = NULL) { 4819 __ movdqu(xmmdst, Address(key, offset)); 4820 if (xmm_shuf_mask != NULL) { 4821 __ pshufb(xmmdst, xmm_shuf_mask); 4822 } else { 4823 __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 4824 } 4825 __ evshufi64x2(xmmdst, xmmdst, xmmdst, 0x0, Assembler::AVX_512bit); 4826 4827 } 4828 4829 address generate_cipherBlockChaining_decryptVectorAESCrypt() { 4830 assert(VM_Version::supports_avx512_vaes(), "need AES instructions and misaligned SSE support"); 4831 __ align(CodeEntryAlignment); 4832 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); 4833 address start = __ pc(); 4834 4835 const Register from = c_rarg0; // source array address 4836 const Register to = c_rarg1; // destination array address 4837 const Register key = c_rarg2; // key array address 4838 const Register rvec = c_rarg3; // r byte array initialized from initvector array address 4839 // and left with the results of the last encryption block 4840 #ifndef _WIN64 4841 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) 4842 #else 4843 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 4844 const Register len_reg = r11; // pick the volatile windows register 4845 #endif 4846 4847 Label Loop, Loop1, L_128, L_256, L_192, KEY_192, KEY_256, Loop2, Lcbc_dec_rem_loop, 4848 Lcbc_dec_rem_last, Lcbc_dec_ret, Lcbc_dec_rem, Lcbc_exit; 4849 4850 __ enter(); 4851 4852 #ifdef _WIN64 4853 // on win64, fill len_reg from stack position 4854 __ movl(len_reg, len_mem); 4855 #else 4856 __ push(len_reg); // Save 4857 #endif 4858 __ push(rbx); 4859 __ vzeroupper(); 4860 4861 // Temporary variable declaration for swapping key bytes 4862 const XMMRegister xmm_key_shuf_mask = xmm1; 4863 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); 4864 4865 // Calculate number of rounds from key size: 44 for 10-rounds, 52 for 12-rounds, 60 for 14-rounds 4866 const Register rounds = rbx; 4867 __ movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); 4868 4869 const XMMRegister IV = xmm0; 4870 // Load IV and broadcast value to 512-bits 4871 __ evbroadcasti64x2(IV, Address(rvec, 0), Assembler::AVX_512bit); 4872 4873 // Temporary variables for storing round keys 4874 const XMMRegister RK0 = xmm30; 4875 const XMMRegister RK1 = xmm9; 4876 const XMMRegister RK2 = xmm18; 4877 const XMMRegister RK3 = xmm19; 4878 const XMMRegister RK4 = xmm20; 4879 const XMMRegister RK5 = xmm21; 4880 const XMMRegister RK6 = xmm22; 4881 const XMMRegister RK7 = xmm23; 4882 const XMMRegister RK8 = xmm24; 4883 const XMMRegister RK9 = xmm25; 4884 const XMMRegister RK10 = xmm26; 4885 4886 // Load and shuffle key 4887 // the java expanded key ordering is rotated one position from what we want 4888 // so we start from 1*16 here and hit 0*16 last 4889 ev_load_key(RK1, key, 1 * 16, xmm_key_shuf_mask); 4890 ev_load_key(RK2, key, 2 * 16, xmm_key_shuf_mask); 4891 ev_load_key(RK3, key, 3 * 16, xmm_key_shuf_mask); 4892 ev_load_key(RK4, key, 4 * 16, xmm_key_shuf_mask); 4893 ev_load_key(RK5, key, 5 * 16, xmm_key_shuf_mask); 4894 ev_load_key(RK6, key, 6 * 16, xmm_key_shuf_mask); 4895 ev_load_key(RK7, key, 7 * 16, xmm_key_shuf_mask); 4896 ev_load_key(RK8, key, 8 * 16, xmm_key_shuf_mask); 4897 ev_load_key(RK9, key, 9 * 16, xmm_key_shuf_mask); 4898 ev_load_key(RK10, key, 10 * 16, xmm_key_shuf_mask); 4899 ev_load_key(RK0, key, 0*16, xmm_key_shuf_mask); 4900 4901 // Variables for storing source cipher text 4902 const XMMRegister S0 = xmm10; 4903 const XMMRegister S1 = xmm11; 4904 const XMMRegister S2 = xmm12; 4905 const XMMRegister S3 = xmm13; 4906 const XMMRegister S4 = xmm14; 4907 const XMMRegister S5 = xmm15; 4908 const XMMRegister S6 = xmm16; 4909 const XMMRegister S7 = xmm17; 4910 4911 // Variables for storing decrypted text 4912 const XMMRegister B0 = xmm1; 4913 const XMMRegister B1 = xmm2; 4914 const XMMRegister B2 = xmm3; 4915 const XMMRegister B3 = xmm4; 4916 const XMMRegister B4 = xmm5; 4917 const XMMRegister B5 = xmm6; 4918 const XMMRegister B6 = xmm7; 4919 const XMMRegister B7 = xmm8; 4920 4921 __ cmpl(rounds, 44); 4922 __ jcc(Assembler::greater, KEY_192); 4923 __ jmp(Loop); 4924 4925 __ BIND(KEY_192); 4926 const XMMRegister RK11 = xmm27; 4927 const XMMRegister RK12 = xmm28; 4928 ev_load_key(RK11, key, 11*16, xmm_key_shuf_mask); 4929 ev_load_key(RK12, key, 12*16, xmm_key_shuf_mask); 4930 4931 __ cmpl(rounds, 52); 4932 __ jcc(Assembler::greater, KEY_256); 4933 __ jmp(Loop); 4934 4935 __ BIND(KEY_256); 4936 const XMMRegister RK13 = xmm29; 4937 const XMMRegister RK14 = xmm31; 4938 ev_load_key(RK13, key, 13*16, xmm_key_shuf_mask); 4939 ev_load_key(RK14, key, 14*16, xmm_key_shuf_mask); 4940 4941 __ BIND(Loop); 4942 __ cmpl(len_reg, 512); 4943 __ jcc(Assembler::below, Lcbc_dec_rem); 4944 __ BIND(Loop1); 4945 __ subl(len_reg, 512); 4946 __ evmovdquq(S0, Address(from, 0 * 64), Assembler::AVX_512bit); 4947 __ evmovdquq(S1, Address(from, 1 * 64), Assembler::AVX_512bit); 4948 __ evmovdquq(S2, Address(from, 2 * 64), Assembler::AVX_512bit); 4949 __ evmovdquq(S3, Address(from, 3 * 64), Assembler::AVX_512bit); 4950 __ evmovdquq(S4, Address(from, 4 * 64), Assembler::AVX_512bit); 4951 __ evmovdquq(S5, Address(from, 5 * 64), Assembler::AVX_512bit); 4952 __ evmovdquq(S6, Address(from, 6 * 64), Assembler::AVX_512bit); 4953 __ evmovdquq(S7, Address(from, 7 * 64), Assembler::AVX_512bit); 4954 __ leaq(from, Address(from, 8 * 64)); 4955 4956 __ evpxorq(B0, S0, RK1, Assembler::AVX_512bit); 4957 __ evpxorq(B1, S1, RK1, Assembler::AVX_512bit); 4958 __ evpxorq(B2, S2, RK1, Assembler::AVX_512bit); 4959 __ evpxorq(B3, S3, RK1, Assembler::AVX_512bit); 4960 __ evpxorq(B4, S4, RK1, Assembler::AVX_512bit); 4961 __ evpxorq(B5, S5, RK1, Assembler::AVX_512bit); 4962 __ evpxorq(B6, S6, RK1, Assembler::AVX_512bit); 4963 __ evpxorq(B7, S7, RK1, Assembler::AVX_512bit); 4964 4965 __ evalignq(IV, S0, IV, 0x06); 4966 __ evalignq(S0, S1, S0, 0x06); 4967 __ evalignq(S1, S2, S1, 0x06); 4968 __ evalignq(S2, S3, S2, 0x06); 4969 __ evalignq(S3, S4, S3, 0x06); 4970 __ evalignq(S4, S5, S4, 0x06); 4971 __ evalignq(S5, S6, S5, 0x06); 4972 __ evalignq(S6, S7, S6, 0x06); 4973 4974 roundDec(RK2); 4975 roundDec(RK3); 4976 roundDec(RK4); 4977 roundDec(RK5); 4978 roundDec(RK6); 4979 roundDec(RK7); 4980 roundDec(RK8); 4981 roundDec(RK9); 4982 roundDec(RK10); 4983 4984 __ cmpl(rounds, 44); 4985 __ jcc(Assembler::belowEqual, L_128); 4986 roundDec(RK11); 4987 roundDec(RK12); 4988 4989 __ cmpl(rounds, 52); 4990 __ jcc(Assembler::belowEqual, L_192); 4991 roundDec(RK13); 4992 roundDec(RK14); 4993 4994 __ BIND(L_256); 4995 roundDeclast(RK0); 4996 __ jmp(Loop2); 4997 4998 __ BIND(L_128); 4999 roundDeclast(RK0); 5000 __ jmp(Loop2); 5001 5002 __ BIND(L_192); 5003 roundDeclast(RK0); 5004 5005 __ BIND(Loop2); 5006 __ evpxorq(B0, B0, IV, Assembler::AVX_512bit); 5007 __ evpxorq(B1, B1, S0, Assembler::AVX_512bit); 5008 __ evpxorq(B2, B2, S1, Assembler::AVX_512bit); 5009 __ evpxorq(B3, B3, S2, Assembler::AVX_512bit); 5010 __ evpxorq(B4, B4, S3, Assembler::AVX_512bit); 5011 __ evpxorq(B5, B5, S4, Assembler::AVX_512bit); 5012 __ evpxorq(B6, B6, S5, Assembler::AVX_512bit); 5013 __ evpxorq(B7, B7, S6, Assembler::AVX_512bit); 5014 __ evmovdquq(IV, S7, Assembler::AVX_512bit); 5015 5016 __ evmovdquq(Address(to, 0 * 64), B0, Assembler::AVX_512bit); 5017 __ evmovdquq(Address(to, 1 * 64), B1, Assembler::AVX_512bit); 5018 __ evmovdquq(Address(to, 2 * 64), B2, Assembler::AVX_512bit); 5019 __ evmovdquq(Address(to, 3 * 64), B3, Assembler::AVX_512bit); 5020 __ evmovdquq(Address(to, 4 * 64), B4, Assembler::AVX_512bit); 5021 __ evmovdquq(Address(to, 5 * 64), B5, Assembler::AVX_512bit); 5022 __ evmovdquq(Address(to, 6 * 64), B6, Assembler::AVX_512bit); 5023 __ evmovdquq(Address(to, 7 * 64), B7, Assembler::AVX_512bit); 5024 __ leaq(to, Address(to, 8 * 64)); 5025 __ jmp(Loop); 5026 5027 __ BIND(Lcbc_dec_rem); 5028 __ evshufi64x2(IV, IV, IV, 0x03, Assembler::AVX_512bit); 5029 5030 __ BIND(Lcbc_dec_rem_loop); 5031 __ subl(len_reg, 16); 5032 __ jcc(Assembler::carrySet, Lcbc_dec_ret); 5033 5034 __ movdqu(S0, Address(from, 0)); 5035 __ evpxorq(B0, S0, RK1, Assembler::AVX_512bit); 5036 __ vaesdec(B0, B0, RK2, Assembler::AVX_512bit); 5037 __ vaesdec(B0, B0, RK3, Assembler::AVX_512bit); 5038 __ vaesdec(B0, B0, RK4, Assembler::AVX_512bit); 5039 __ vaesdec(B0, B0, RK5, Assembler::AVX_512bit); 5040 __ vaesdec(B0, B0, RK6, Assembler::AVX_512bit); 5041 __ vaesdec(B0, B0, RK7, Assembler::AVX_512bit); 5042 __ vaesdec(B0, B0, RK8, Assembler::AVX_512bit); 5043 __ vaesdec(B0, B0, RK9, Assembler::AVX_512bit); 5044 __ vaesdec(B0, B0, RK10, Assembler::AVX_512bit); 5045 __ cmpl(rounds, 44); 5046 __ jcc(Assembler::belowEqual, Lcbc_dec_rem_last); 5047 5048 __ vaesdec(B0, B0, RK11, Assembler::AVX_512bit); 5049 __ vaesdec(B0, B0, RK12, Assembler::AVX_512bit); 5050 __ cmpl(rounds, 52); 5051 __ jcc(Assembler::belowEqual, Lcbc_dec_rem_last); 5052 5053 __ vaesdec(B0, B0, RK13, Assembler::AVX_512bit); 5054 __ vaesdec(B0, B0, RK14, Assembler::AVX_512bit); 5055 5056 __ BIND(Lcbc_dec_rem_last); 5057 __ vaesdeclast(B0, B0, RK0, Assembler::AVX_512bit); 5058 5059 __ evpxorq(B0, B0, IV, Assembler::AVX_512bit); 5060 __ evmovdquq(IV, S0, Assembler::AVX_512bit); 5061 __ movdqu(Address(to, 0), B0); 5062 __ leaq(from, Address(from, 16)); 5063 __ leaq(to, Address(to, 16)); 5064 __ jmp(Lcbc_dec_rem_loop); 5065 5066 __ BIND(Lcbc_dec_ret); 5067 __ movdqu(Address(rvec, 0), IV); 5068 5069 // Zero out the round keys 5070 __ evpxorq(RK0, RK0, RK0, Assembler::AVX_512bit); 5071 __ evpxorq(RK1, RK1, RK1, Assembler::AVX_512bit); 5072 __ evpxorq(RK2, RK2, RK2, Assembler::AVX_512bit); 5073 __ evpxorq(RK3, RK3, RK3, Assembler::AVX_512bit); 5074 __ evpxorq(RK4, RK4, RK4, Assembler::AVX_512bit); 5075 __ evpxorq(RK5, RK5, RK5, Assembler::AVX_512bit); 5076 __ evpxorq(RK6, RK6, RK6, Assembler::AVX_512bit); 5077 __ evpxorq(RK7, RK7, RK7, Assembler::AVX_512bit); 5078 __ evpxorq(RK8, RK8, RK8, Assembler::AVX_512bit); 5079 __ evpxorq(RK9, RK9, RK9, Assembler::AVX_512bit); 5080 __ evpxorq(RK10, RK10, RK10, Assembler::AVX_512bit); 5081 __ cmpl(rounds, 44); 5082 __ jcc(Assembler::belowEqual, Lcbc_exit); 5083 __ evpxorq(RK11, RK11, RK11, Assembler::AVX_512bit); 5084 __ evpxorq(RK12, RK12, RK12, Assembler::AVX_512bit); 5085 __ cmpl(rounds, 52); 5086 __ jcc(Assembler::belowEqual, Lcbc_exit); 5087 __ evpxorq(RK13, RK13, RK13, Assembler::AVX_512bit); 5088 __ evpxorq(RK14, RK14, RK14, Assembler::AVX_512bit); 5089 5090 __ BIND(Lcbc_exit); 5091 __ pop(rbx); 5092 #ifdef _WIN64 5093 __ movl(rax, len_mem); 5094 #else 5095 __ pop(rax); // return length 5096 #endif 5097 __ leave(); // required for proper stackwalking of RuntimeStub frame 5098 __ ret(0); 5099 return start; 5100 } 5101 5102 // Polynomial x^128+x^127+x^126+x^121+1 5103 address ghash_polynomial_addr() { 5104 __ align(CodeEntryAlignment); 5105 StubCodeMark mark(this, "StubRoutines", "_ghash_poly_addr"); 5106 address start = __ pc(); 5107 __ emit_data64(0x0000000000000001, relocInfo::none); 5108 __ emit_data64(0xc200000000000000, relocInfo::none); 5109 return start; 5110 } 5111 5112 address ghash_shufflemask_addr() { 5113 __ align(CodeEntryAlignment); 5114 StubCodeMark mark(this, "StubRoutines", "_ghash_shuffmask_addr"); 5115 address start = __ pc(); 5116 __ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none); 5117 __ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none); 5118 return start; 5119 } 5120 5121 // Ghash single and multi block operations using AVX instructions 5122 address generate_avx_ghash_processBlocks() { 5123 __ align(CodeEntryAlignment); 5124 5125 StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks"); 5126 address start = __ pc(); 5127 5128 // arguments 5129 const Register state = c_rarg0; 5130 const Register htbl = c_rarg1; 5131 const Register data = c_rarg2; 5132 const Register blocks = c_rarg3; 5133 __ enter(); 5134 // Save state before entering routine 5135 __ avx_ghash(state, htbl, data, blocks); 5136 __ leave(); // required for proper stackwalking of RuntimeStub frame 5137 __ ret(0); 5138 return start; 5139 } 5140 5141 // byte swap x86 long 5142 address generate_ghash_long_swap_mask() { 5143 __ align(CodeEntryAlignment); 5144 StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask"); 5145 address start = __ pc(); 5146 __ emit_data64(0x0f0e0d0c0b0a0908, relocInfo::none ); 5147 __ emit_data64(0x0706050403020100, relocInfo::none ); 5148 return start; 5149 } 5150 5151 // byte swap x86 byte array 5152 address generate_ghash_byte_swap_mask() { 5153 __ align(CodeEntryAlignment); 5154 StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask"); 5155 address start = __ pc(); 5156 __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none ); 5157 __ emit_data64(0x0001020304050607, relocInfo::none ); 5158 return start; 5159 } 5160 5161 /* Single and multi-block ghash operations */ 5162 address generate_ghash_processBlocks() { 5163 __ align(CodeEntryAlignment); 5164 Label L_ghash_loop, L_exit; 5165 StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks"); 5166 address start = __ pc(); 5167 5168 const Register state = c_rarg0; 5169 const Register subkeyH = c_rarg1; 5170 const Register data = c_rarg2; 5171 const Register blocks = c_rarg3; 5172 5173 const XMMRegister xmm_temp0 = xmm0; 5174 const XMMRegister xmm_temp1 = xmm1; 5175 const XMMRegister xmm_temp2 = xmm2; 5176 const XMMRegister xmm_temp3 = xmm3; 5177 const XMMRegister xmm_temp4 = xmm4; 5178 const XMMRegister xmm_temp5 = xmm5; 5179 const XMMRegister xmm_temp6 = xmm6; 5180 const XMMRegister xmm_temp7 = xmm7; 5181 const XMMRegister xmm_temp8 = xmm8; 5182 const XMMRegister xmm_temp9 = xmm9; 5183 const XMMRegister xmm_temp10 = xmm10; 5184 5185 __ enter(); 5186 5187 __ movdqu(xmm_temp10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); 5188 5189 __ movdqu(xmm_temp0, Address(state, 0)); 5190 __ pshufb(xmm_temp0, xmm_temp10); 5191 5192 5193 __ BIND(L_ghash_loop); 5194 __ movdqu(xmm_temp2, Address(data, 0)); 5195 __ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr())); 5196 5197 __ movdqu(xmm_temp1, Address(subkeyH, 0)); 5198 __ pshufb(xmm_temp1, xmm_temp10); 5199 5200 __ pxor(xmm_temp0, xmm_temp2); 5201 5202 // 5203 // Multiply with the hash key 5204 // 5205 __ movdqu(xmm_temp3, xmm_temp0); 5206 __ pclmulqdq(xmm_temp3, xmm_temp1, 0); // xmm3 holds a0*b0 5207 __ movdqu(xmm_temp4, xmm_temp0); 5208 __ pclmulqdq(xmm_temp4, xmm_temp1, 16); // xmm4 holds a0*b1 5209 5210 __ movdqu(xmm_temp5, xmm_temp0); 5211 __ pclmulqdq(xmm_temp5, xmm_temp1, 1); // xmm5 holds a1*b0 5212 __ movdqu(xmm_temp6, xmm_temp0); 5213 __ pclmulqdq(xmm_temp6, xmm_temp1, 17); // xmm6 holds a1*b1 5214 5215 __ pxor(xmm_temp4, xmm_temp5); // xmm4 holds a0*b1 + a1*b0 5216 5217 __ movdqu(xmm_temp5, xmm_temp4); // move the contents of xmm4 to xmm5 5218 __ psrldq(xmm_temp4, 8); // shift by xmm4 64 bits to the right 5219 __ pslldq(xmm_temp5, 8); // shift by xmm5 64 bits to the left 5220 __ pxor(xmm_temp3, xmm_temp5); 5221 __ pxor(xmm_temp6, xmm_temp4); // Register pair <xmm6:xmm3> holds the result 5222 // of the carry-less multiplication of 5223 // xmm0 by xmm1. 5224 5225 // We shift the result of the multiplication by one bit position 5226 // to the left to cope for the fact that the bits are reversed. 5227 __ movdqu(xmm_temp7, xmm_temp3); 5228 __ movdqu(xmm_temp8, xmm_temp6); 5229 __ pslld(xmm_temp3, 1); 5230 __ pslld(xmm_temp6, 1); 5231 __ psrld(xmm_temp7, 31); 5232 __ psrld(xmm_temp8, 31); 5233 __ movdqu(xmm_temp9, xmm_temp7); 5234 __ pslldq(xmm_temp8, 4); 5235 __ pslldq(xmm_temp7, 4); 5236 __ psrldq(xmm_temp9, 12); 5237 __ por(xmm_temp3, xmm_temp7); 5238 __ por(xmm_temp6, xmm_temp8); 5239 __ por(xmm_temp6, xmm_temp9); 5240 5241 // 5242 // First phase of the reduction 5243 // 5244 // Move xmm3 into xmm7, xmm8, xmm9 in order to perform the shifts 5245 // independently. 5246 __ movdqu(xmm_temp7, xmm_temp3); 5247 __ movdqu(xmm_temp8, xmm_temp3); 5248 __ movdqu(xmm_temp9, xmm_temp3); 5249 __ pslld(xmm_temp7, 31); // packed right shift shifting << 31 5250 __ pslld(xmm_temp8, 30); // packed right shift shifting << 30 5251 __ pslld(xmm_temp9, 25); // packed right shift shifting << 25 5252 __ pxor(xmm_temp7, xmm_temp8); // xor the shifted versions 5253 __ pxor(xmm_temp7, xmm_temp9); 5254 __ movdqu(xmm_temp8, xmm_temp7); 5255 __ pslldq(xmm_temp7, 12); 5256 __ psrldq(xmm_temp8, 4); 5257 __ pxor(xmm_temp3, xmm_temp7); // first phase of the reduction complete 5258 5259 // 5260 // Second phase of the reduction 5261 // 5262 // Make 3 copies of xmm3 in xmm2, xmm4, xmm5 for doing these 5263 // shift operations. 5264 __ movdqu(xmm_temp2, xmm_temp3); 5265 __ movdqu(xmm_temp4, xmm_temp3); 5266 __ movdqu(xmm_temp5, xmm_temp3); 5267 __ psrld(xmm_temp2, 1); // packed left shifting >> 1 5268 __ psrld(xmm_temp4, 2); // packed left shifting >> 2 5269 __ psrld(xmm_temp5, 7); // packed left shifting >> 7 5270 __ pxor(xmm_temp2, xmm_temp4); // xor the shifted versions 5271 __ pxor(xmm_temp2, xmm_temp5); 5272 __ pxor(xmm_temp2, xmm_temp8); 5273 __ pxor(xmm_temp3, xmm_temp2); 5274 __ pxor(xmm_temp6, xmm_temp3); // the result is in xmm6 5275 5276 __ decrement(blocks); 5277 __ jcc(Assembler::zero, L_exit); 5278 __ movdqu(xmm_temp0, xmm_temp6); 5279 __ addptr(data, 16); 5280 __ jmp(L_ghash_loop); 5281 5282 __ BIND(L_exit); 5283 __ pshufb(xmm_temp6, xmm_temp10); // Byte swap 16-byte result 5284 __ movdqu(Address(state, 0), xmm_temp6); // store the result 5285 __ leave(); 5286 __ ret(0); 5287 return start; 5288 } 5289 5290 address base64_shuffle_addr() 5291 { 5292 __ align64(); 5293 StubCodeMark mark(this, "StubRoutines", "shuffle_base64"); 5294 address start = __ pc(); 5295 assert(((unsigned long long)start & 0x3f) == 0, 5296 "Alignment problem (0x%08llx)", (unsigned long long)start); 5297 __ emit_data64(0x0405030401020001, relocInfo::none); 5298 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 5299 __ emit_data64(0x10110f100d0e0c0d, relocInfo::none); 5300 __ emit_data64(0x1617151613141213, relocInfo::none); 5301 __ emit_data64(0x1c1d1b1c191a1819, relocInfo::none); 5302 __ emit_data64(0x222321221f201e1f, relocInfo::none); 5303 __ emit_data64(0x2829272825262425, relocInfo::none); 5304 __ emit_data64(0x2e2f2d2e2b2c2a2b, relocInfo::none); 5305 return start; 5306 } 5307 5308 address base64_avx2_shuffle_addr() 5309 { 5310 __ align32(); 5311 StubCodeMark mark(this, "StubRoutines", "avx2_shuffle_base64"); 5312 address start = __ pc(); 5313 __ emit_data64(0x0809070805060405, relocInfo::none); 5314 __ emit_data64(0x0e0f0d0e0b0c0a0b, relocInfo::none); 5315 __ emit_data64(0x0405030401020001, relocInfo::none); 5316 __ emit_data64(0x0a0b090a07080607, relocInfo::none); 5317 return start; 5318 } 5319 5320 address base64_avx2_input_mask_addr() 5321 { 5322 __ align32(); 5323 StubCodeMark mark(this, "StubRoutines", "avx2_input_mask_base64"); 5324 address start = __ pc(); 5325 __ emit_data64(0x8000000000000000, relocInfo::none); 5326 __ emit_data64(0x8000000080000000, relocInfo::none); 5327 __ emit_data64(0x8000000080000000, relocInfo::none); 5328 __ emit_data64(0x8000000080000000, relocInfo::none); 5329 return start; 5330 } 5331 5332 address base64_avx2_lut_addr() 5333 { 5334 __ align32(); 5335 StubCodeMark mark(this, "StubRoutines", "avx2_lut_base64"); 5336 address start = __ pc(); 5337 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 5338 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 5339 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 5340 __ emit_data64(0x0000f0edfcfcfcfc, relocInfo::none); 5341 5342 // URL LUT 5343 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 5344 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 5345 __ emit_data64(0xfcfcfcfcfcfc4741, relocInfo::none); 5346 __ emit_data64(0x000020effcfcfcfc, relocInfo::none); 5347 return start; 5348 } 5349 5350 address base64_encoding_table_addr() 5351 { 5352 __ align64(); 5353 StubCodeMark mark(this, "StubRoutines", "encoding_table_base64"); 5354 address start = __ pc(); 5355 assert(((unsigned long long)start & 0x3f) == 0, "Alignment problem (0x%08llx)", (unsigned long long)start); 5356 __ emit_data64(0x4847464544434241, relocInfo::none); 5357 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 5358 __ emit_data64(0x5857565554535251, relocInfo::none); 5359 __ emit_data64(0x6665646362615a59, relocInfo::none); 5360 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 5361 __ emit_data64(0x767574737271706f, relocInfo::none); 5362 __ emit_data64(0x333231307a797877, relocInfo::none); 5363 __ emit_data64(0x2f2b393837363534, relocInfo::none); 5364 5365 // URL table 5366 __ emit_data64(0x4847464544434241, relocInfo::none); 5367 __ emit_data64(0x504f4e4d4c4b4a49, relocInfo::none); 5368 __ emit_data64(0x5857565554535251, relocInfo::none); 5369 __ emit_data64(0x6665646362615a59, relocInfo::none); 5370 __ emit_data64(0x6e6d6c6b6a696867, relocInfo::none); 5371 __ emit_data64(0x767574737271706f, relocInfo::none); 5372 __ emit_data64(0x333231307a797877, relocInfo::none); 5373 __ emit_data64(0x5f2d393837363534, relocInfo::none); 5374 return start; 5375 } 5376 5377 // Code for generating Base64 encoding. 5378 // Intrinsic function prototype in Base64.java: 5379 // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, 5380 // boolean isURL) { 5381 address generate_base64_encodeBlock() 5382 { 5383 __ align(CodeEntryAlignment); 5384 StubCodeMark mark(this, "StubRoutines", "implEncode"); 5385 address start = __ pc(); 5386 __ enter(); 5387 5388 // Save callee-saved registers before using them 5389 __ push(r12); 5390 __ push(r13); 5391 __ push(r14); 5392 __ push(r15); 5393 5394 // arguments 5395 const Register source = c_rarg0; // Source Array 5396 const Register start_offset = c_rarg1; // start offset 5397 const Register end_offset = c_rarg2; // end offset 5398 const Register dest = c_rarg3; // destination array 5399 5400 #ifndef _WIN64 5401 const Register dp = c_rarg4; // Position for writing to dest array 5402 const Register isURL = c_rarg5; // Base64 or URL character set 5403 #else 5404 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 5405 const Address isURL_mem(rbp, 7 * wordSize); 5406 const Register isURL = r10; // pick the volatile windows register 5407 const Register dp = r12; 5408 __ movl(dp, dp_mem); 5409 __ movl(isURL, isURL_mem); 5410 #endif 5411 5412 const Register length = r14; 5413 const Register encode_table = r13; 5414 Label L_process3, L_exit, L_processdata, L_vbmiLoop, L_not512, L_32byteLoop; 5415 5416 // calculate length from offsets 5417 __ movl(length, end_offset); 5418 __ subl(length, start_offset); 5419 __ cmpl(length, 0); 5420 __ jcc(Assembler::lessEqual, L_exit); 5421 5422 // Code for 512-bit VBMI encoding. Encodes 48 input bytes into 64 5423 // output bytes. We read 64 input bytes and ignore the last 16, so be 5424 // sure not to read past the end of the input buffer. 5425 if (VM_Version::supports_avx512_vbmi()) { 5426 __ cmpl(length, 64); // Do not overrun input buffer. 5427 __ jcc(Assembler::below, L_not512); 5428 5429 __ shll(isURL, 6); // index into decode table based on isURL 5430 __ lea(encode_table, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 5431 __ addptr(encode_table, isURL); 5432 __ shrl(isURL, 6); // restore isURL 5433 5434 __ mov64(rax, 0x3036242a1016040aull); // Shifts 5435 __ evmovdquq(xmm3, ExternalAddress(StubRoutines::x86::base64_shuffle_addr()), Assembler::AVX_512bit, r15); 5436 __ evmovdquq(xmm2, Address(encode_table, 0), Assembler::AVX_512bit); 5437 __ evpbroadcastq(xmm1, rax, Assembler::AVX_512bit); 5438 5439 __ align32(); 5440 __ BIND(L_vbmiLoop); 5441 5442 __ vpermb(xmm0, xmm3, Address(source, start_offset), Assembler::AVX_512bit); 5443 __ subl(length, 48); 5444 5445 // Put the input bytes into the proper lanes for writing, then 5446 // encode them. 5447 __ evpmultishiftqb(xmm0, xmm1, xmm0, Assembler::AVX_512bit); 5448 __ vpermb(xmm0, xmm0, xmm2, Assembler::AVX_512bit); 5449 5450 // Write to destination 5451 __ evmovdquq(Address(dest, dp), xmm0, Assembler::AVX_512bit); 5452 5453 __ addptr(dest, 64); 5454 __ addptr(source, 48); 5455 __ cmpl(length, 64); 5456 __ jcc(Assembler::aboveEqual, L_vbmiLoop); 5457 5458 __ vzeroupper(); 5459 } 5460 5461 __ BIND(L_not512); 5462 if (VM_Version::supports_avx2() 5463 && VM_Version::supports_avx512vlbw()) { 5464 /* 5465 ** This AVX2 encoder is based off the paper at: 5466 ** https://dl.acm.org/doi/10.1145/3132709 5467 ** 5468 ** We use AVX2 SIMD instructions to encode 24 bytes into 32 5469 ** output bytes. 5470 ** 5471 */ 5472 // Lengths under 32 bytes are done with scalar routine 5473 __ cmpl(length, 31); 5474 __ jcc(Assembler::belowEqual, L_process3); 5475 5476 // Set up supporting constant table data 5477 __ vmovdqu(xmm9, ExternalAddress(StubRoutines::x86::base64_avx2_shuffle_addr()), rax); 5478 // 6-bit mask for 2nd and 4th (and multiples) 6-bit values 5479 __ movl(rax, 0x0fc0fc00); 5480 __ vmovdqu(xmm1, ExternalAddress(StubRoutines::x86::base64_avx2_input_mask_addr()), rax); 5481 __ evpbroadcastd(xmm8, rax, Assembler::AVX_256bit); 5482 5483 // Multiplication constant for "shifting" right by 6 and 10 5484 // bits 5485 __ movl(rax, 0x04000040); 5486 5487 __ subl(length, 24); 5488 __ evpbroadcastd(xmm7, rax, Assembler::AVX_256bit); 5489 5490 // For the first load, we mask off reading of the first 4 5491 // bytes into the register. This is so we can get 4 3-byte 5492 // chunks into each lane of the register, avoiding having to 5493 // handle end conditions. We then shuffle these bytes into a 5494 // specific order so that manipulation is easier. 5495 // 5496 // The initial read loads the XMM register like this: 5497 // 5498 // Lower 128-bit lane: 5499 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 5500 // | XX | XX | XX | XX | A0 | A1 | A2 | B0 | B1 | B2 | C0 | C1 5501 // | C2 | D0 | D1 | D2 | 5502 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 5503 // 5504 // Upper 128-bit lane: 5505 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 5506 // | E0 | E1 | E2 | F0 | F1 | F2 | G0 | G1 | G2 | H0 | H1 | H2 5507 // | XX | XX | XX | XX | 5508 // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 5509 // 5510 // Where A0 is the first input byte, B0 is the fourth, etc. 5511 // The alphabetical significance denotes the 3 bytes to be 5512 // consumed and encoded into 4 bytes. 5513 // 5514 // We then shuffle the register so each 32-bit word contains 5515 // the sequence: 5516 // A1 A0 A2 A1, B1, B0, B2, B1, etc. 5517 // Each of these byte sequences are then manipulated into 4 5518 // 6-bit values ready for encoding. 5519 // 5520 // If we focus on one set of 3-byte chunks, changing the 5521 // nomenclature such that A0 => a, A1 => b, and A2 => c, we 5522 // shuffle such that each 24-bit chunk contains: 5523 // 5524 // b7 b6 b5 b4 b3 b2 b1 b0 | a7 a6 a5 a4 a3 a2 a1 a0 | c7 c6 5525 // c5 c4 c3 c2 c1 c0 | b7 b6 b5 b4 b3 b2 b1 b0 5526 // Explain this step. 5527 // b3 b2 b1 b0 c5 c4 c3 c2 | c1 c0 d5 d4 d3 d2 d1 d0 | a5 a4 5528 // a3 a2 a1 a0 b5 b4 | b3 b2 b1 b0 c5 c4 c3 c2 5529 // 5530 // W first and off all but bits 4-9 and 16-21 (c5..c0 and 5531 // a5..a0) and shift them using a vector multiplication 5532 // operation (vpmulhuw) which effectively shifts c right by 6 5533 // bits and a right by 10 bits. We similarly mask bits 10-15 5534 // (d5..d0) and 22-27 (b5..b0) and shift them left by 8 and 4 5535 // bits respecively. This is done using vpmullw. We end up 5536 // with 4 6-bit values, thus splitting the 3 input bytes, 5537 // ready for encoding: 5538 // 0 0 d5..d0 0 0 c5..c0 0 0 b5..b0 0 0 a5..a0 5539 // 5540 // For translation, we recognize that there are 5 distinct 5541 // ranges of legal Base64 characters as below: 5542 // 5543 // +-------------+-------------+------------+ 5544 // | 6-bit value | ASCII range | offset | 5545 // +-------------+-------------+------------+ 5546 // | 0..25 | A..Z | 65 | 5547 // | 26..51 | a..z | 71 | 5548 // | 52..61 | 0..9 | -4 | 5549 // | 62 | + or - | -19 or -17 | 5550 // | 63 | / or _ | -16 or 32 | 5551 // +-------------+-------------+------------+ 5552 // 5553 // We note that vpshufb does a parallel lookup in a 5554 // destination register using the lower 4 bits of bytes from a 5555 // source register. If we use a saturated subtraction and 5556 // subtract 51 from each 6-bit value, bytes from [0,51] 5557 // saturate to 0, and [52,63] map to a range of [1,12]. We 5558 // distinguish the [0,25] and [26,51] ranges by assigning a 5559 // value of 13 for all 6-bit values less than 26. We end up 5560 // with: 5561 // 5562 // +-------------+-------------+------------+ 5563 // | 6-bit value | Reduced | offset | 5564 // +-------------+-------------+------------+ 5565 // | 0..25 | 13 | 65 | 5566 // | 26..51 | 0 | 71 | 5567 // | 52..61 | 0..9 | -4 | 5568 // | 62 | 11 | -19 or -17 | 5569 // | 63 | 12 | -16 or 32 | 5570 // +-------------+-------------+------------+ 5571 // 5572 // We then use a final vpshufb to add the appropriate offset, 5573 // translating the bytes. 5574 // 5575 // Load input bytes - only 28 bytes. Mask the first load to 5576 // not load into the full register. 5577 __ vpmaskmovd(xmm1, xmm1, Address(source, start_offset, Address::times_1, -4), Assembler::AVX_256bit); 5578 5579 // Move 3-byte chunks of input (12 bytes) into 16 bytes, 5580 // ordering by: 5581 // 1, 0, 2, 1; 4, 3, 5, 4; etc. This groups 6-bit chunks 5582 // for easy masking 5583 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 5584 5585 __ addl(start_offset, 24); 5586 5587 // Load masking register for first and third (and multiples) 5588 // 6-bit values. 5589 __ movl(rax, 0x003f03f0); 5590 __ evpbroadcastd(xmm6, rax, Assembler::AVX_256bit); 5591 // Multiplication constant for "shifting" left by 4 and 8 bits 5592 __ movl(rax, 0x01000010); 5593 __ evpbroadcastd(xmm5, rax, Assembler::AVX_256bit); 5594 5595 // Isolate 6-bit chunks of interest 5596 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 5597 5598 // Load constants for encoding 5599 __ movl(rax, 0x19191919); 5600 __ evpbroadcastd(xmm3, rax, Assembler::AVX_256bit); 5601 __ movl(rax, 0x33333333); 5602 __ evpbroadcastd(xmm4, rax, Assembler::AVX_256bit); 5603 5604 // Shift output bytes 0 and 2 into proper lanes 5605 __ vpmulhuw(xmm2, xmm0, xmm7, Assembler::AVX_256bit); 5606 5607 // Mask and shift output bytes 1 and 3 into proper lanes and 5608 // combine 5609 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 5610 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 5611 __ vpor(xmm0, xmm0, xmm2, Assembler::AVX_256bit); 5612 5613 // Find out which are 0..25. This indicates which input 5614 // values fall in the range of 'A'-'Z', which require an 5615 // additional offset (see comments above) 5616 __ vpcmpgtb(xmm2, xmm0, xmm3, Assembler::AVX_256bit); 5617 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 5618 __ vpsubb(xmm1, xmm1, xmm2, Assembler::AVX_256bit); 5619 5620 // Load the proper lookup table 5621 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_avx2_lut_addr())); 5622 __ movl(r15, isURL); 5623 __ shll(r15, 5); 5624 __ vmovdqu(xmm2, Address(r11, r15)); 5625 5626 // Shuffle the offsets based on the range calculation done 5627 // above. This allows us to add the correct offset to the 5628 // 6-bit value corresponding to the range documented above. 5629 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 5630 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 5631 5632 // Store the encoded bytes 5633 __ vmovdqu(Address(dest, dp), xmm0); 5634 __ addl(dp, 32); 5635 5636 __ cmpl(length, 31); 5637 __ jcc(Assembler::belowEqual, L_process3); 5638 5639 __ align32(); 5640 __ BIND(L_32byteLoop); 5641 5642 // Get next 32 bytes 5643 __ vmovdqu(xmm1, Address(source, start_offset, Address::times_1, -4)); 5644 5645 __ subl(length, 24); 5646 __ addl(start_offset, 24); 5647 5648 // This logic is identical to the above, with only constant 5649 // register loads removed. Shuffle the input, mask off 6-bit 5650 // chunks, shift them into place, then add the offset to 5651 // encode. 5652 __ vpshufb(xmm1, xmm1, xmm9, Assembler::AVX_256bit); 5653 5654 __ vpand(xmm0, xmm8, xmm1, Assembler::AVX_256bit); 5655 __ vpmulhuw(xmm10, xmm0, xmm7, Assembler::AVX_256bit); 5656 __ vpand(xmm0, xmm6, xmm1, Assembler::AVX_256bit); 5657 __ vpmullw(xmm0, xmm5, xmm0, Assembler::AVX_256bit); 5658 __ vpor(xmm0, xmm0, xmm10, Assembler::AVX_256bit); 5659 __ vpcmpgtb(xmm10, xmm0, xmm3, Assembler::AVX_256bit); 5660 __ vpsubusb(xmm1, xmm0, xmm4, Assembler::AVX_256bit); 5661 __ vpsubb(xmm1, xmm1, xmm10, Assembler::AVX_256bit); 5662 __ vpshufb(xmm1, xmm2, xmm1, Assembler::AVX_256bit); 5663 __ vpaddb(xmm0, xmm1, xmm0, Assembler::AVX_256bit); 5664 5665 // Store the encoded bytes 5666 __ vmovdqu(Address(dest, dp), xmm0); 5667 __ addl(dp, 32); 5668 5669 __ cmpl(length, 31); 5670 __ jcc(Assembler::above, L_32byteLoop); 5671 5672 __ BIND(L_process3); 5673 __ vzeroupper(); 5674 } else { 5675 __ BIND(L_process3); 5676 } 5677 5678 __ cmpl(length, 3); 5679 __ jcc(Assembler::below, L_exit); 5680 5681 // Load the encoding table based on isURL 5682 __ lea(r11, ExternalAddress(StubRoutines::x86::base64_encoding_table_addr())); 5683 __ movl(r15, isURL); 5684 __ shll(r15, 6); 5685 __ addptr(r11, r15); 5686 5687 __ BIND(L_processdata); 5688 5689 // Load 3 bytes 5690 __ load_unsigned_byte(r15, Address(source, start_offset)); 5691 __ load_unsigned_byte(r10, Address(source, start_offset, Address::times_1, 1)); 5692 __ load_unsigned_byte(r13, Address(source, start_offset, Address::times_1, 2)); 5693 5694 // Build a 32-bit word with bytes 1, 2, 0, 1 5695 __ movl(rax, r10); 5696 __ shll(r10, 24); 5697 __ orl(rax, r10); 5698 5699 __ subl(length, 3); 5700 5701 __ shll(r15, 8); 5702 __ shll(r13, 16); 5703 __ orl(rax, r15); 5704 5705 __ addl(start_offset, 3); 5706 5707 __ orl(rax, r13); 5708 // At this point, rax contains | byte1 | byte2 | byte0 | byte1 5709 // r13 has byte2 << 16 - need low-order 6 bits to translate. 5710 // This translated byte is the fourth output byte. 5711 __ shrl(r13, 16); 5712 __ andl(r13, 0x3f); 5713 5714 // The high-order 6 bits of r15 (byte0) is translated. 5715 // The translated byte is the first output byte. 5716 __ shrl(r15, 10); 5717 5718 __ load_unsigned_byte(r13, Address(r11, r13)); 5719 __ load_unsigned_byte(r15, Address(r11, r15)); 5720 5721 __ movb(Address(dest, dp, Address::times_1, 3), r13); 5722 5723 // Extract high-order 4 bits of byte1 and low-order 2 bits of byte0. 5724 // This translated byte is the second output byte. 5725 __ shrl(rax, 4); 5726 __ movl(r10, rax); 5727 __ andl(rax, 0x3f); 5728 5729 __ movb(Address(dest, dp, Address::times_1, 0), r15); 5730 5731 __ load_unsigned_byte(rax, Address(r11, rax)); 5732 5733 // Extract low-order 2 bits of byte1 and high-order 4 bits of byte2. 5734 // This translated byte is the third output byte. 5735 __ shrl(r10, 18); 5736 __ andl(r10, 0x3f); 5737 5738 __ load_unsigned_byte(r10, Address(r11, r10)); 5739 5740 __ movb(Address(dest, dp, Address::times_1, 1), rax); 5741 __ movb(Address(dest, dp, Address::times_1, 2), r10); 5742 5743 __ addl(dp, 4); 5744 __ cmpl(length, 3); 5745 __ jcc(Assembler::aboveEqual, L_processdata); 5746 5747 __ BIND(L_exit); 5748 __ pop(r15); 5749 __ pop(r14); 5750 __ pop(r13); 5751 __ pop(r12); 5752 __ leave(); 5753 __ ret(0); 5754 return start; 5755 } 5756 5757 // base64 AVX512vbmi tables 5758 address base64_vbmi_lookup_lo_addr() { 5759 __ align64(); 5760 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64"); 5761 address start = __ pc(); 5762 assert(((unsigned long long)start & 0x3f) == 0, 5763 "Alignment problem (0x%08llx)", (unsigned long long)start); 5764 __ emit_data64(0x8080808080808080, relocInfo::none); 5765 __ emit_data64(0x8080808080808080, relocInfo::none); 5766 __ emit_data64(0x8080808080808080, relocInfo::none); 5767 __ emit_data64(0x8080808080808080, relocInfo::none); 5768 __ emit_data64(0x8080808080808080, relocInfo::none); 5769 __ emit_data64(0x3f8080803e808080, relocInfo::none); 5770 __ emit_data64(0x3b3a393837363534, relocInfo::none); 5771 __ emit_data64(0x8080808080803d3c, relocInfo::none); 5772 return start; 5773 } 5774 5775 address base64_vbmi_lookup_hi_addr() { 5776 __ align64(); 5777 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64"); 5778 address start = __ pc(); 5779 assert(((unsigned long long)start & 0x3f) == 0, 5780 "Alignment problem (0x%08llx)", (unsigned long long)start); 5781 __ emit_data64(0x0605040302010080, relocInfo::none); 5782 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 5783 __ emit_data64(0x161514131211100f, relocInfo::none); 5784 __ emit_data64(0x8080808080191817, relocInfo::none); 5785 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 5786 __ emit_data64(0x2827262524232221, relocInfo::none); 5787 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 5788 __ emit_data64(0x8080808080333231, relocInfo::none); 5789 return start; 5790 } 5791 address base64_vbmi_lookup_lo_url_addr() { 5792 __ align64(); 5793 StubCodeMark mark(this, "StubRoutines", "lookup_lo_base64url"); 5794 address start = __ pc(); 5795 assert(((unsigned long long)start & 0x3f) == 0, 5796 "Alignment problem (0x%08llx)", (unsigned long long)start); 5797 __ emit_data64(0x8080808080808080, relocInfo::none); 5798 __ emit_data64(0x8080808080808080, relocInfo::none); 5799 __ emit_data64(0x8080808080808080, relocInfo::none); 5800 __ emit_data64(0x8080808080808080, relocInfo::none); 5801 __ emit_data64(0x8080808080808080, relocInfo::none); 5802 __ emit_data64(0x80803e8080808080, relocInfo::none); 5803 __ emit_data64(0x3b3a393837363534, relocInfo::none); 5804 __ emit_data64(0x8080808080803d3c, relocInfo::none); 5805 return start; 5806 } 5807 5808 address base64_vbmi_lookup_hi_url_addr() { 5809 __ align64(); 5810 StubCodeMark mark(this, "StubRoutines", "lookup_hi_base64url"); 5811 address start = __ pc(); 5812 assert(((unsigned long long)start & 0x3f) == 0, 5813 "Alignment problem (0x%08llx)", (unsigned long long)start); 5814 __ emit_data64(0x0605040302010080, relocInfo::none); 5815 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 5816 __ emit_data64(0x161514131211100f, relocInfo::none); 5817 __ emit_data64(0x3f80808080191817, relocInfo::none); 5818 __ emit_data64(0x201f1e1d1c1b1a80, relocInfo::none); 5819 __ emit_data64(0x2827262524232221, relocInfo::none); 5820 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 5821 __ emit_data64(0x8080808080333231, relocInfo::none); 5822 return start; 5823 } 5824 5825 address base64_vbmi_pack_vec_addr() { 5826 __ align64(); 5827 StubCodeMark mark(this, "StubRoutines", "pack_vec_base64"); 5828 address start = __ pc(); 5829 assert(((unsigned long long)start & 0x3f) == 0, 5830 "Alignment problem (0x%08llx)", (unsigned long long)start); 5831 __ emit_data64(0x090a040506000102, relocInfo::none); 5832 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 5833 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 5834 __ emit_data64(0x292a242526202122, relocInfo::none); 5835 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 5836 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 5837 __ emit_data64(0x0000000000000000, relocInfo::none); 5838 __ emit_data64(0x0000000000000000, relocInfo::none); 5839 return start; 5840 } 5841 5842 address base64_vbmi_join_0_1_addr() { 5843 __ align64(); 5844 StubCodeMark mark(this, "StubRoutines", "join_0_1_base64"); 5845 address start = __ pc(); 5846 assert(((unsigned long long)start & 0x3f) == 0, 5847 "Alignment problem (0x%08llx)", (unsigned long long)start); 5848 __ emit_data64(0x090a040506000102, relocInfo::none); 5849 __ emit_data64(0x161011120c0d0e08, relocInfo::none); 5850 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 5851 __ emit_data64(0x292a242526202122, relocInfo::none); 5852 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 5853 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 5854 __ emit_data64(0x494a444546404142, relocInfo::none); 5855 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 5856 return start; 5857 } 5858 5859 address base64_vbmi_join_1_2_addr() { 5860 __ align64(); 5861 StubCodeMark mark(this, "StubRoutines", "join_1_2_base64"); 5862 address start = __ pc(); 5863 assert(((unsigned long long)start & 0x3f) == 0, 5864 "Alignment problem (0x%08llx)", (unsigned long long)start); 5865 __ emit_data64(0x1c1d1e18191a1415, relocInfo::none); 5866 __ emit_data64(0x292a242526202122, relocInfo::none); 5867 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 5868 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 5869 __ emit_data64(0x494a444546404142, relocInfo::none); 5870 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 5871 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 5872 __ emit_data64(0x696a646566606162, relocInfo::none); 5873 return start; 5874 } 5875 5876 address base64_vbmi_join_2_3_addr() { 5877 __ align64(); 5878 StubCodeMark mark(this, "StubRoutines", "join_2_3_base64"); 5879 address start = __ pc(); 5880 assert(((unsigned long long)start & 0x3f) == 0, 5881 "Alignment problem (0x%08llx)", (unsigned long long)start); 5882 __ emit_data64(0x363031322c2d2e28, relocInfo::none); 5883 __ emit_data64(0x3c3d3e38393a3435, relocInfo::none); 5884 __ emit_data64(0x494a444546404142, relocInfo::none); 5885 __ emit_data64(0x565051524c4d4e48, relocInfo::none); 5886 __ emit_data64(0x5c5d5e58595a5455, relocInfo::none); 5887 __ emit_data64(0x696a646566606162, relocInfo::none); 5888 __ emit_data64(0x767071726c6d6e68, relocInfo::none); 5889 __ emit_data64(0x7c7d7e78797a7475, relocInfo::none); 5890 return start; 5891 } 5892 5893 address base64_decoding_table_addr() { 5894 StubCodeMark mark(this, "StubRoutines", "decoding_table_base64"); 5895 address start = __ pc(); 5896 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5897 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5898 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5899 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5900 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5901 __ emit_data64(0x3fffffff3effffff, relocInfo::none); 5902 __ emit_data64(0x3b3a393837363534, relocInfo::none); 5903 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 5904 __ emit_data64(0x06050403020100ff, relocInfo::none); 5905 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 5906 __ emit_data64(0x161514131211100f, relocInfo::none); 5907 __ emit_data64(0xffffffffff191817, relocInfo::none); 5908 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 5909 __ emit_data64(0x2827262524232221, relocInfo::none); 5910 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 5911 __ emit_data64(0xffffffffff333231, relocInfo::none); 5912 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5913 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5914 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5915 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5916 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5917 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5918 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5919 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5920 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5921 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5922 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5923 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5924 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5925 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5926 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5927 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5928 5929 // URL table 5930 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5931 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5932 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5933 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5934 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5935 __ emit_data64(0xffff3effffffffff, relocInfo::none); 5936 __ emit_data64(0x3b3a393837363534, relocInfo::none); 5937 __ emit_data64(0xffffffffffff3d3c, relocInfo::none); 5938 __ emit_data64(0x06050403020100ff, relocInfo::none); 5939 __ emit_data64(0x0e0d0c0b0a090807, relocInfo::none); 5940 __ emit_data64(0x161514131211100f, relocInfo::none); 5941 __ emit_data64(0x3fffffffff191817, relocInfo::none); 5942 __ emit_data64(0x201f1e1d1c1b1aff, relocInfo::none); 5943 __ emit_data64(0x2827262524232221, relocInfo::none); 5944 __ emit_data64(0x302f2e2d2c2b2a29, relocInfo::none); 5945 __ emit_data64(0xffffffffff333231, relocInfo::none); 5946 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5947 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5948 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5949 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5950 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5951 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5952 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5953 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5954 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5955 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5956 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5957 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5958 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5959 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5960 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5961 __ emit_data64(0xffffffffffffffff, relocInfo::none); 5962 return start; 5963 } 5964 5965 5966 // Code for generating Base64 decoding. 5967 // 5968 // Based on the article (and associated code) from https://arxiv.org/abs/1910.05109. 5969 // 5970 // Intrinsic function prototype in Base64.java: 5971 // private void decodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL, isMIME) { 5972 address generate_base64_decodeBlock() { 5973 __ align(CodeEntryAlignment); 5974 StubCodeMark mark(this, "StubRoutines", "implDecode"); 5975 address start = __ pc(); 5976 __ enter(); 5977 5978 // Save callee-saved registers before using them 5979 __ push(r12); 5980 __ push(r13); 5981 __ push(r14); 5982 __ push(r15); 5983 __ push(rbx); 5984 5985 // arguments 5986 const Register source = c_rarg0; // Source Array 5987 const Register start_offset = c_rarg1; // start offset 5988 const Register end_offset = c_rarg2; // end offset 5989 const Register dest = c_rarg3; // destination array 5990 const Register isMIME = rbx; 5991 5992 #ifndef _WIN64 5993 const Register dp = c_rarg4; // Position for writing to dest array 5994 const Register isURL = c_rarg5;// Base64 or URL character set 5995 __ movl(isMIME, Address(rbp, 2 * wordSize)); 5996 #else 5997 const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 5998 const Address isURL_mem(rbp, 7 * wordSize); 5999 const Register isURL = r10; // pick the volatile windows register 6000 const Register dp = r12; 6001 __ movl(dp, dp_mem); 6002 __ movl(isURL, isURL_mem); 6003 __ movl(isMIME, Address(rbp, 8 * wordSize)); 6004 #endif 6005 6006 const XMMRegister lookup_lo = xmm5; 6007 const XMMRegister lookup_hi = xmm6; 6008 const XMMRegister errorvec = xmm7; 6009 const XMMRegister pack16_op = xmm9; 6010 const XMMRegister pack32_op = xmm8; 6011 const XMMRegister input0 = xmm3; 6012 const XMMRegister input1 = xmm20; 6013 const XMMRegister input2 = xmm21; 6014 const XMMRegister input3 = xmm19; 6015 const XMMRegister join01 = xmm12; 6016 const XMMRegister join12 = xmm11; 6017 const XMMRegister join23 = xmm10; 6018 const XMMRegister translated0 = xmm2; 6019 const XMMRegister translated1 = xmm1; 6020 const XMMRegister translated2 = xmm0; 6021 const XMMRegister translated3 = xmm4; 6022 6023 const XMMRegister merged0 = xmm2; 6024 const XMMRegister merged1 = xmm1; 6025 const XMMRegister merged2 = xmm0; 6026 const XMMRegister merged3 = xmm4; 6027 const XMMRegister merge_ab_bc0 = xmm2; 6028 const XMMRegister merge_ab_bc1 = xmm1; 6029 const XMMRegister merge_ab_bc2 = xmm0; 6030 const XMMRegister merge_ab_bc3 = xmm4; 6031 6032 const XMMRegister pack24bits = xmm4; 6033 6034 const Register length = r14; 6035 const Register output_size = r13; 6036 const Register output_mask = r15; 6037 const KRegister input_mask = k1; 6038 6039 const XMMRegister input_initial_valid_b64 = xmm0; 6040 const XMMRegister tmp = xmm10; 6041 const XMMRegister mask = xmm0; 6042 const XMMRegister invalid_b64 = xmm1; 6043 6044 Label L_process256, L_process64, L_process64Loop, L_exit, L_processdata, L_loadURL; 6045 Label L_continue, L_finalBit, L_padding, L_donePadding, L_bruteForce; 6046 Label L_forceLoop, L_bottomLoop, L_checkMIME, L_exit_no_vzero; 6047 6048 // calculate length from offsets 6049 __ movl(length, end_offset); 6050 __ subl(length, start_offset); 6051 __ push(dest); // Save for return value calc 6052 6053 // If AVX512 VBMI not supported, just compile non-AVX code 6054 if(VM_Version::supports_avx512_vbmi() && 6055 VM_Version::supports_avx512bw()) { 6056 __ cmpl(length, 128); // 128-bytes is break-even for AVX-512 6057 __ jcc(Assembler::lessEqual, L_bruteForce); 6058 6059 __ cmpl(isMIME, 0); 6060 __ jcc(Assembler::notEqual, L_bruteForce); 6061 6062 // Load lookup tables based on isURL 6063 __ cmpl(isURL, 0); 6064 __ jcc(Assembler::notZero, L_loadURL); 6065 6066 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_addr()), Assembler::AVX_512bit, r13); 6067 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_addr()), Assembler::AVX_512bit, r13); 6068 6069 __ BIND(L_continue); 6070 6071 __ movl(r15, 0x01400140); 6072 __ evpbroadcastd(pack16_op, r15, Assembler::AVX_512bit); 6073 6074 __ movl(r15, 0x00011000); 6075 __ evpbroadcastd(pack32_op, r15, Assembler::AVX_512bit); 6076 6077 __ cmpl(length, 0xff); 6078 __ jcc(Assembler::lessEqual, L_process64); 6079 6080 // load masks required for decoding data 6081 __ BIND(L_processdata); 6082 __ evmovdquq(join01, ExternalAddress(StubRoutines::x86::base64_vbmi_join_0_1_addr()), Assembler::AVX_512bit,r13); 6083 __ evmovdquq(join12, ExternalAddress(StubRoutines::x86::base64_vbmi_join_1_2_addr()), Assembler::AVX_512bit, r13); 6084 __ evmovdquq(join23, ExternalAddress(StubRoutines::x86::base64_vbmi_join_2_3_addr()), Assembler::AVX_512bit, r13); 6085 6086 __ align32(); 6087 __ BIND(L_process256); 6088 // Grab input data 6089 __ evmovdquq(input0, Address(source, start_offset, Address::times_1, 0x00), Assembler::AVX_512bit); 6090 __ evmovdquq(input1, Address(source, start_offset, Address::times_1, 0x40), Assembler::AVX_512bit); 6091 __ evmovdquq(input2, Address(source, start_offset, Address::times_1, 0x80), Assembler::AVX_512bit); 6092 __ evmovdquq(input3, Address(source, start_offset, Address::times_1, 0xc0), Assembler::AVX_512bit); 6093 6094 // Copy the low part of the lookup table into the destination of the permutation 6095 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 6096 __ evmovdquq(translated1, lookup_lo, Assembler::AVX_512bit); 6097 __ evmovdquq(translated2, lookup_lo, Assembler::AVX_512bit); 6098 __ evmovdquq(translated3, lookup_lo, Assembler::AVX_512bit); 6099 6100 // Translate the base64 input into "decoded" bytes 6101 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 6102 __ evpermt2b(translated1, input1, lookup_hi, Assembler::AVX_512bit); 6103 __ evpermt2b(translated2, input2, lookup_hi, Assembler::AVX_512bit); 6104 __ evpermt2b(translated3, input3, lookup_hi, Assembler::AVX_512bit); 6105 6106 // OR all of the translations together to check for errors (high-order bit of byte set) 6107 __ vpternlogd(input0, 0xfe, input1, input2, Assembler::AVX_512bit); 6108 6109 __ vpternlogd(input3, 0xfe, translated0, translated1, Assembler::AVX_512bit); 6110 __ vpternlogd(input0, 0xfe, translated2, translated3, Assembler::AVX_512bit); 6111 __ vpor(errorvec, input3, input0, Assembler::AVX_512bit); 6112 6113 // Check if there was an error - if so, try 64-byte chunks 6114 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 6115 __ kortestql(k3, k3); 6116 __ jcc(Assembler::notZero, L_process64); 6117 6118 // The merging and shuffling happens here 6119 // We multiply each byte pair [00dddddd | 00cccccc | 00bbbbbb | 00aaaaaa] 6120 // Multiply [00cccccc] by 2^6 added to [00dddddd] to get [0000cccc | ccdddddd] 6121 // The pack16_op is a vector of 0x01400140, so multiply D by 1 and C by 0x40 6122 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 6123 __ vpmaddubsw(merge_ab_bc1, translated1, pack16_op, Assembler::AVX_512bit); 6124 __ vpmaddubsw(merge_ab_bc2, translated2, pack16_op, Assembler::AVX_512bit); 6125 __ vpmaddubsw(merge_ab_bc3, translated3, pack16_op, Assembler::AVX_512bit); 6126 6127 // Now do the same with packed 16-bit values. 6128 // We start with [0000cccc | ccdddddd | 0000aaaa | aabbbbbb] 6129 // pack32_op is 0x00011000 (2^12, 1), so this multiplies [0000aaaa | aabbbbbb] by 2^12 6130 // and adds [0000cccc | ccdddddd] to yield [00000000 | aaaaaabb | bbbbcccc | ccdddddd] 6131 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 6132 __ vpmaddwd(merged1, merge_ab_bc1, pack32_op, Assembler::AVX_512bit); 6133 __ vpmaddwd(merged2, merge_ab_bc2, pack32_op, Assembler::AVX_512bit); 6134 __ vpmaddwd(merged3, merge_ab_bc3, pack32_op, Assembler::AVX_512bit); 6135 6136 // The join vectors specify which byte from which vector goes into the outputs 6137 // One of every 4 bytes in the extended vector is zero, so we pack them into their 6138 // final positions in the register for storing (256 bytes in, 192 bytes out) 6139 __ evpermt2b(merged0, join01, merged1, Assembler::AVX_512bit); 6140 __ evpermt2b(merged1, join12, merged2, Assembler::AVX_512bit); 6141 __ evpermt2b(merged2, join23, merged3, Assembler::AVX_512bit); 6142 6143 // Store result 6144 __ evmovdquq(Address(dest, dp, Address::times_1, 0x00), merged0, Assembler::AVX_512bit); 6145 __ evmovdquq(Address(dest, dp, Address::times_1, 0x40), merged1, Assembler::AVX_512bit); 6146 __ evmovdquq(Address(dest, dp, Address::times_1, 0x80), merged2, Assembler::AVX_512bit); 6147 6148 __ addptr(source, 0x100); 6149 __ addptr(dest, 0xc0); 6150 __ subl(length, 0x100); 6151 __ cmpl(length, 64 * 4); 6152 __ jcc(Assembler::greaterEqual, L_process256); 6153 6154 // At this point, we've decoded 64 * 4 * n bytes. 6155 // The remaining length will be <= 64 * 4 - 1. 6156 // UNLESS there was an error decoding the first 256-byte chunk. In this 6157 // case, the length will be arbitrarily long. 6158 // 6159 // Note that this will be the path for MIME-encoded strings. 6160 6161 __ BIND(L_process64); 6162 6163 __ evmovdquq(pack24bits, ExternalAddress(StubRoutines::x86::base64_vbmi_pack_vec_addr()), Assembler::AVX_512bit, r13); 6164 6165 __ cmpl(length, 63); 6166 __ jcc(Assembler::lessEqual, L_finalBit); 6167 6168 __ mov64(rax, 0x0000ffffffffffff); 6169 __ kmovql(k2, rax); 6170 6171 __ align32(); 6172 __ BIND(L_process64Loop); 6173 6174 // Handle first 64-byte block 6175 6176 __ evmovdquq(input0, Address(source, start_offset), Assembler::AVX_512bit); 6177 __ evmovdquq(translated0, lookup_lo, Assembler::AVX_512bit); 6178 __ evpermt2b(translated0, input0, lookup_hi, Assembler::AVX_512bit); 6179 6180 __ vpor(errorvec, translated0, input0, Assembler::AVX_512bit); 6181 6182 // Check for error and bomb out before updating dest 6183 __ evpmovb2m(k3, errorvec, Assembler::AVX_512bit); 6184 __ kortestql(k3, k3); 6185 __ jcc(Assembler::notZero, L_exit); 6186 6187 // Pack output register, selecting correct byte ordering 6188 __ vpmaddubsw(merge_ab_bc0, translated0, pack16_op, Assembler::AVX_512bit); 6189 __ vpmaddwd(merged0, merge_ab_bc0, pack32_op, Assembler::AVX_512bit); 6190 __ vpermb(merged0, pack24bits, merged0, Assembler::AVX_512bit); 6191 6192 __ evmovdqub(Address(dest, dp), k2, merged0, true, Assembler::AVX_512bit); 6193 6194 __ subl(length, 64); 6195 __ addptr(source, 64); 6196 __ addptr(dest, 48); 6197 6198 __ cmpl(length, 64); 6199 __ jcc(Assembler::greaterEqual, L_process64Loop); 6200 6201 __ cmpl(length, 0); 6202 __ jcc(Assembler::lessEqual, L_exit); 6203 6204 __ BIND(L_finalBit); 6205 // Now have 1 to 63 bytes left to decode 6206 6207 // I was going to let Java take care of the final fragment 6208 // however it will repeatedly call this routine for every 4 bytes 6209 // of input data, so handle the rest here. 6210 __ movq(rax, -1); 6211 __ bzhiq(rax, rax, length); // Input mask in rax 6212 6213 __ movl(output_size, length); 6214 __ shrl(output_size, 2); // Find (len / 4) * 3 (output length) 6215 __ lea(output_size, Address(output_size, output_size, Address::times_2, 0)); 6216 // output_size in r13 6217 6218 // Strip pad characters, if any, and adjust length and mask 6219 __ cmpb(Address(source, length, Address::times_1, -1), '='); 6220 __ jcc(Assembler::equal, L_padding); 6221 6222 __ BIND(L_donePadding); 6223 6224 // Output size is (64 - output_size), output mask is (all 1s >> output_size). 6225 __ kmovql(input_mask, rax); 6226 __ movq(output_mask, -1); 6227 __ bzhiq(output_mask, output_mask, output_size); 6228 6229 // Load initial input with all valid base64 characters. Will be used 6230 // in merging source bytes to avoid masking when determining if an error occurred. 6231 __ movl(rax, 0x61616161); 6232 __ evpbroadcastd(input_initial_valid_b64, rax, Assembler::AVX_512bit); 6233 6234 // A register containing all invalid base64 decoded values 6235 __ movl(rax, 0x80808080); 6236 __ evpbroadcastd(invalid_b64, rax, Assembler::AVX_512bit); 6237 6238 // input_mask is in k1 6239 // output_size is in r13 6240 // output_mask is in r15 6241 // zmm0 - free 6242 // zmm1 - 0x00011000 6243 // zmm2 - 0x01400140 6244 // zmm3 - errorvec 6245 // zmm4 - pack vector 6246 // zmm5 - lookup_lo 6247 // zmm6 - lookup_hi 6248 // zmm7 - errorvec 6249 // zmm8 - 0x61616161 6250 // zmm9 - 0x80808080 6251 6252 // Load only the bytes from source, merging into our "fully-valid" register 6253 __ evmovdqub(input_initial_valid_b64, input_mask, Address(source, start_offset, Address::times_1, 0x0), true, Assembler::AVX_512bit); 6254 6255 // Decode all bytes within our merged input 6256 __ evmovdquq(tmp, lookup_lo, Assembler::AVX_512bit); 6257 __ evpermt2b(tmp, input_initial_valid_b64, lookup_hi, Assembler::AVX_512bit); 6258 __ vporq(mask, tmp, input_initial_valid_b64, Assembler::AVX_512bit); 6259 6260 // Check for error. Compare (decoded | initial) to all invalid. 6261 // If any bytes have their high-order bit set, then we have an error. 6262 __ evptestmb(k2, mask, invalid_b64, Assembler::AVX_512bit); 6263 __ kortestql(k2, k2); 6264 6265 // If we have an error, use the brute force loop to decode what we can (4-byte chunks). 6266 __ jcc(Assembler::notZero, L_bruteForce); 6267 6268 // Shuffle output bytes 6269 __ vpmaddubsw(tmp, tmp, pack16_op, Assembler::AVX_512bit); 6270 __ vpmaddwd(tmp, tmp, pack32_op, Assembler::AVX_512bit); 6271 6272 __ vpermb(tmp, pack24bits, tmp, Assembler::AVX_512bit); 6273 __ kmovql(k1, output_mask); 6274 __ evmovdqub(Address(dest, dp), k1, tmp, true, Assembler::AVX_512bit); 6275 6276 __ addptr(dest, output_size); 6277 6278 __ BIND(L_exit); 6279 __ vzeroupper(); 6280 __ pop(rax); // Get original dest value 6281 __ subptr(dest, rax); // Number of bytes converted 6282 __ movptr(rax, dest); 6283 __ pop(rbx); 6284 __ pop(r15); 6285 __ pop(r14); 6286 __ pop(r13); 6287 __ pop(r12); 6288 __ leave(); 6289 __ ret(0); 6290 6291 __ BIND(L_loadURL); 6292 __ evmovdquq(lookup_lo, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_lo_url_addr()), Assembler::AVX_512bit, r13); 6293 __ evmovdquq(lookup_hi, ExternalAddress(StubRoutines::x86::base64_vbmi_lookup_hi_url_addr()), Assembler::AVX_512bit, r13); 6294 __ jmp(L_continue); 6295 6296 __ BIND(L_padding); 6297 __ decrementq(output_size, 1); 6298 __ shrq(rax, 1); 6299 6300 __ cmpb(Address(source, length, Address::times_1, -2), '='); 6301 __ jcc(Assembler::notEqual, L_donePadding); 6302 6303 __ decrementq(output_size, 1); 6304 __ shrq(rax, 1); 6305 __ jmp(L_donePadding); 6306 6307 __ align32(); 6308 __ BIND(L_bruteForce); 6309 } // End of if(avx512_vbmi) 6310 6311 // Use non-AVX code to decode 4-byte chunks into 3 bytes of output 6312 6313 // Register state (Linux): 6314 // r12-15 - saved on stack 6315 // rdi - src 6316 // rsi - sp 6317 // rdx - sl 6318 // rcx - dst 6319 // r8 - dp 6320 // r9 - isURL 6321 6322 // Register state (Windows): 6323 // r12-15 - saved on stack 6324 // rcx - src 6325 // rdx - sp 6326 // r8 - sl 6327 // r9 - dst 6328 // r12 - dp 6329 // r10 - isURL 6330 6331 // Registers (common): 6332 // length (r14) - bytes in src 6333 6334 const Register decode_table = r11; 6335 const Register out_byte_count = rbx; 6336 const Register byte1 = r13; 6337 const Register byte2 = r15; 6338 const Register byte3 = WINDOWS_ONLY(r8) NOT_WINDOWS(rdx); 6339 const Register byte4 = WINDOWS_ONLY(r10) NOT_WINDOWS(r9); 6340 6341 __ shrl(length, 2); // Multiple of 4 bytes only - length is # 4-byte chunks 6342 __ cmpl(length, 0); 6343 __ jcc(Assembler::lessEqual, L_exit_no_vzero); 6344 6345 __ shll(isURL, 8); // index into decode table based on isURL 6346 __ lea(decode_table, ExternalAddress(StubRoutines::x86::base64_decoding_table_addr())); 6347 __ addptr(decode_table, isURL); 6348 6349 __ jmp(L_bottomLoop); 6350 6351 __ align32(); 6352 __ BIND(L_forceLoop); 6353 __ shll(byte1, 18); 6354 __ shll(byte2, 12); 6355 __ shll(byte3, 6); 6356 __ orl(byte1, byte2); 6357 __ orl(byte1, byte3); 6358 __ orl(byte1, byte4); 6359 6360 __ addptr(source, 4); 6361 6362 __ movb(Address(dest, dp, Address::times_1, 2), byte1); 6363 __ shrl(byte1, 8); 6364 __ movb(Address(dest, dp, Address::times_1, 1), byte1); 6365 __ shrl(byte1, 8); 6366 __ movb(Address(dest, dp, Address::times_1, 0), byte1); 6367 6368 __ addptr(dest, 3); 6369 __ decrementl(length, 1); 6370 __ jcc(Assembler::zero, L_exit_no_vzero); 6371 6372 __ BIND(L_bottomLoop); 6373 __ load_unsigned_byte(byte1, Address(source, start_offset, Address::times_1, 0x00)); 6374 __ load_unsigned_byte(byte2, Address(source, start_offset, Address::times_1, 0x01)); 6375 __ load_signed_byte(byte1, Address(decode_table, byte1)); 6376 __ load_signed_byte(byte2, Address(decode_table, byte2)); 6377 __ load_unsigned_byte(byte3, Address(source, start_offset, Address::times_1, 0x02)); 6378 __ load_unsigned_byte(byte4, Address(source, start_offset, Address::times_1, 0x03)); 6379 __ load_signed_byte(byte3, Address(decode_table, byte3)); 6380 __ load_signed_byte(byte4, Address(decode_table, byte4)); 6381 6382 __ mov(rax, byte1); 6383 __ orl(rax, byte2); 6384 __ orl(rax, byte3); 6385 __ orl(rax, byte4); 6386 __ jcc(Assembler::positive, L_forceLoop); 6387 6388 __ BIND(L_exit_no_vzero); 6389 __ pop(rax); // Get original dest value 6390 __ subptr(dest, rax); // Number of bytes converted 6391 __ movptr(rax, dest); 6392 __ pop(rbx); 6393 __ pop(r15); 6394 __ pop(r14); 6395 __ pop(r13); 6396 __ pop(r12); 6397 __ leave(); 6398 __ ret(0); 6399 6400 return start; 6401 } 6402 6403 6404 /** 6405 * Arguments: 6406 * 6407 * Inputs: 6408 * c_rarg0 - int crc 6409 * c_rarg1 - byte* buf 6410 * c_rarg2 - int length 6411 * 6412 * Ouput: 6413 * rax - int crc result 6414 */ 6415 address generate_updateBytesCRC32() { 6416 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); 6417 6418 __ align(CodeEntryAlignment); 6419 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); 6420 6421 address start = __ pc(); 6422 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 6423 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 6424 // rscratch1: r10 6425 const Register crc = c_rarg0; // crc 6426 const Register buf = c_rarg1; // source java byte array address 6427 const Register len = c_rarg2; // length 6428 const Register table = c_rarg3; // crc_table address (reuse register) 6429 const Register tmp1 = r11; 6430 const Register tmp2 = r10; 6431 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); 6432 6433 BLOCK_COMMENT("Entry:"); 6434 __ enter(); // required for proper stackwalking of RuntimeStub frame 6435 6436 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 6437 VM_Version::supports_avx512bw() && 6438 VM_Version::supports_avx512vl()) { 6439 // The constants used in the CRC32 algorithm requires the 1's compliment of the initial crc value. 6440 // However, the constant table for CRC32-C assumes the original crc value. Account for this 6441 // difference before calling and after returning. 6442 __ lea(table, ExternalAddress(StubRoutines::x86::crc_table_avx512_addr())); 6443 __ notl(crc); 6444 __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); 6445 __ notl(crc); 6446 } else { 6447 __ kernel_crc32(crc, buf, len, table, tmp1); 6448 } 6449 6450 __ movl(rax, crc); 6451 __ vzeroupper(); 6452 __ leave(); // required for proper stackwalking of RuntimeStub frame 6453 __ ret(0); 6454 6455 return start; 6456 } 6457 6458 /** 6459 * Arguments: 6460 * 6461 * Inputs: 6462 * c_rarg0 - int crc 6463 * c_rarg1 - byte* buf 6464 * c_rarg2 - long length 6465 * c_rarg3 - table_start - optional (present only when doing a library_call, 6466 * not used by x86 algorithm) 6467 * 6468 * Ouput: 6469 * rax - int crc result 6470 */ 6471 address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { 6472 assert(UseCRC32CIntrinsics, "need SSE4_2"); 6473 __ align(CodeEntryAlignment); 6474 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); 6475 address start = __ pc(); 6476 //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs 6477 //Windows RCX RDX R8 R9 none none XMM0..XMM3 6478 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 6479 const Register crc = c_rarg0; // crc 6480 const Register buf = c_rarg1; // source java byte array address 6481 const Register len = c_rarg2; // length 6482 const Register a = rax; 6483 const Register j = r9; 6484 const Register k = r10; 6485 const Register l = r11; 6486 #ifdef _WIN64 6487 const Register y = rdi; 6488 const Register z = rsi; 6489 #else 6490 const Register y = rcx; 6491 const Register z = r8; 6492 #endif 6493 assert_different_registers(crc, buf, len, a, j, k, l, y, z); 6494 6495 BLOCK_COMMENT("Entry:"); 6496 __ enter(); // required for proper stackwalking of RuntimeStub frame 6497 if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && 6498 VM_Version::supports_avx512bw() && 6499 VM_Version::supports_avx512vl()) { 6500 __ lea(j, ExternalAddress(StubRoutines::x86::crc32c_table_avx512_addr())); 6501 __ kernel_crc32_avx512(crc, buf, len, j, l, k); 6502 } else { 6503 #ifdef _WIN64 6504 __ push(y); 6505 __ push(z); 6506 #endif 6507 __ crc32c_ipl_alg2_alt2(crc, buf, len, 6508 a, j, k, 6509 l, y, z, 6510 c_farg0, c_farg1, c_farg2, 6511 is_pclmulqdq_supported); 6512 #ifdef _WIN64 6513 __ pop(z); 6514 __ pop(y); 6515 #endif 6516 } 6517 __ movl(rax, crc); 6518 __ vzeroupper(); 6519 __ leave(); // required for proper stackwalking of RuntimeStub frame 6520 __ ret(0); 6521 6522 return start; 6523 } 6524 6525 6526 /*** 6527 * Arguments: 6528 * 6529 * Inputs: 6530 * c_rarg0 - int adler 6531 * c_rarg1 - byte* buff 6532 * c_rarg2 - int len 6533 * 6534 * Output: 6535 * rax - int adler result 6536 */ 6537 6538 address generate_updateBytesAdler32() { 6539 assert(UseAdler32Intrinsics, "need AVX2"); 6540 6541 __ align(CodeEntryAlignment); 6542 StubCodeMark mark(this, "StubRoutines", "updateBytesAdler32"); 6543 6544 address start = __ pc(); 6545 6546 const Register data = r9; 6547 const Register size = r10; 6548 6549 const XMMRegister yshuf0 = xmm6; 6550 const XMMRegister yshuf1 = xmm7; 6551 assert_different_registers(c_rarg0, c_rarg1, c_rarg2, data, size); 6552 6553 BLOCK_COMMENT("Entry:"); 6554 __ enter(); // required for proper stackwalking of RuntimeStub frame 6555 6556 __ vmovdqu(yshuf0, ExternalAddress((address) StubRoutines::x86::_adler32_shuf0_table), r9); 6557 __ vmovdqu(yshuf1, ExternalAddress((address) StubRoutines::x86::_adler32_shuf1_table), r9); 6558 __ movptr(data, c_rarg1); //data 6559 __ movl(size, c_rarg2); //length 6560 __ updateBytesAdler32(c_rarg0, data, size, yshuf0, yshuf1, ExternalAddress((address) StubRoutines::x86::_adler32_ascale_table)); 6561 __ leave(); 6562 __ ret(0); 6563 return start; 6564 } 6565 6566 /** 6567 * Arguments: 6568 * 6569 * Input: 6570 * c_rarg0 - x address 6571 * c_rarg1 - x length 6572 * c_rarg2 - y address 6573 * c_rarg3 - y length 6574 * not Win64 6575 * c_rarg4 - z address 6576 * c_rarg5 - z length 6577 * Win64 6578 * rsp+40 - z address 6579 * rsp+48 - z length 6580 */ 6581 address generate_multiplyToLen() { 6582 __ align(CodeEntryAlignment); 6583 StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); 6584 6585 address start = __ pc(); 6586 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 6587 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 6588 const Register x = rdi; 6589 const Register xlen = rax; 6590 const Register y = rsi; 6591 const Register ylen = rcx; 6592 const Register z = r8; 6593 const Register zlen = r11; 6594 6595 // Next registers will be saved on stack in multiply_to_len(). 6596 const Register tmp1 = r12; 6597 const Register tmp2 = r13; 6598 const Register tmp3 = r14; 6599 const Register tmp4 = r15; 6600 const Register tmp5 = rbx; 6601 6602 BLOCK_COMMENT("Entry:"); 6603 __ enter(); // required for proper stackwalking of RuntimeStub frame 6604 6605 #ifndef _WIN64 6606 __ movptr(zlen, r9); // Save r9 in r11 - zlen 6607 #endif 6608 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx 6609 // ylen => rcx, z => r8, zlen => r11 6610 // r9 and r10 may be used to save non-volatile registers 6611 #ifdef _WIN64 6612 // last 2 arguments (#4, #5) are on stack on Win64 6613 __ movptr(z, Address(rsp, 6 * wordSize)); 6614 __ movptr(zlen, Address(rsp, 7 * wordSize)); 6615 #endif 6616 6617 __ movptr(xlen, rsi); 6618 __ movptr(y, rdx); 6619 __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5); 6620 6621 restore_arg_regs(); 6622 6623 __ leave(); // required for proper stackwalking of RuntimeStub frame 6624 __ ret(0); 6625 6626 return start; 6627 } 6628 6629 /** 6630 * Arguments: 6631 * 6632 * Input: 6633 * c_rarg0 - obja address 6634 * c_rarg1 - objb address 6635 * c_rarg3 - length length 6636 * c_rarg4 - scale log2_array_indxscale 6637 * 6638 * Output: 6639 * rax - int >= mismatched index, < 0 bitwise complement of tail 6640 */ 6641 address generate_vectorizedMismatch() { 6642 __ align(CodeEntryAlignment); 6643 StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch"); 6644 address start = __ pc(); 6645 6646 BLOCK_COMMENT("Entry:"); 6647 __ enter(); 6648 6649 #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 6650 const Register scale = c_rarg0; //rcx, will exchange with r9 6651 const Register objb = c_rarg1; //rdx 6652 const Register length = c_rarg2; //r8 6653 const Register obja = c_rarg3; //r9 6654 __ xchgq(obja, scale); //now obja and scale contains the correct contents 6655 6656 const Register tmp1 = r10; 6657 const Register tmp2 = r11; 6658 #endif 6659 #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 6660 const Register obja = c_rarg0; //U:rdi 6661 const Register objb = c_rarg1; //U:rsi 6662 const Register length = c_rarg2; //U:rdx 6663 const Register scale = c_rarg3; //U:rcx 6664 const Register tmp1 = r8; 6665 const Register tmp2 = r9; 6666 #endif 6667 const Register result = rax; //return value 6668 const XMMRegister vec0 = xmm0; 6669 const XMMRegister vec1 = xmm1; 6670 const XMMRegister vec2 = xmm2; 6671 6672 __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); 6673 6674 __ vzeroupper(); 6675 __ leave(); 6676 __ ret(0); 6677 6678 return start; 6679 } 6680 6681 /** 6682 * Arguments: 6683 * 6684 // Input: 6685 // c_rarg0 - x address 6686 // c_rarg1 - x length 6687 // c_rarg2 - z address 6688 // c_rarg3 - z lenth 6689 * 6690 */ 6691 address generate_squareToLen() { 6692 6693 __ align(CodeEntryAlignment); 6694 StubCodeMark mark(this, "StubRoutines", "squareToLen"); 6695 6696 address start = __ pc(); 6697 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 6698 // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) 6699 const Register x = rdi; 6700 const Register len = rsi; 6701 const Register z = r8; 6702 const Register zlen = rcx; 6703 6704 const Register tmp1 = r12; 6705 const Register tmp2 = r13; 6706 const Register tmp3 = r14; 6707 const Register tmp4 = r15; 6708 const Register tmp5 = rbx; 6709 6710 BLOCK_COMMENT("Entry:"); 6711 __ enter(); // required for proper stackwalking of RuntimeStub frame 6712 6713 setup_arg_regs(4); // x => rdi, len => rsi, z => rdx 6714 // zlen => rcx 6715 // r9 and r10 may be used to save non-volatile registers 6716 __ movptr(r8, rdx); 6717 __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 6718 6719 restore_arg_regs(); 6720 6721 __ leave(); // required for proper stackwalking of RuntimeStub frame 6722 __ ret(0); 6723 6724 return start; 6725 } 6726 6727 address generate_method_entry_barrier() { 6728 __ align(CodeEntryAlignment); 6729 StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier"); 6730 6731 Label deoptimize_label; 6732 6733 address start = __ pc(); 6734 6735 __ push(-1); // cookie, this is used for writing the new rsp when deoptimizing 6736 6737 BLOCK_COMMENT("Entry:"); 6738 __ enter(); // save rbp 6739 6740 // save c_rarg0, because we want to use that value. 6741 // We could do without it but then we depend on the number of slots used by pusha 6742 __ push(c_rarg0); 6743 6744 __ lea(c_rarg0, Address(rsp, wordSize * 3)); // 1 for cookie, 1 for rbp, 1 for c_rarg0 - this should be the return address 6745 6746 __ pusha(); 6747 6748 // The method may have floats as arguments, and we must spill them before calling 6749 // the VM runtime. 6750 assert(Argument::n_float_register_parameters_j == 8, "Assumption"); 6751 const int xmm_size = wordSize * 2; 6752 const int xmm_spill_size = xmm_size * Argument::n_float_register_parameters_j; 6753 __ subptr(rsp, xmm_spill_size); 6754 __ movdqu(Address(rsp, xmm_size * 7), xmm7); 6755 __ movdqu(Address(rsp, xmm_size * 6), xmm6); 6756 __ movdqu(Address(rsp, xmm_size * 5), xmm5); 6757 __ movdqu(Address(rsp, xmm_size * 4), xmm4); 6758 __ movdqu(Address(rsp, xmm_size * 3), xmm3); 6759 __ movdqu(Address(rsp, xmm_size * 2), xmm2); 6760 __ movdqu(Address(rsp, xmm_size * 1), xmm1); 6761 __ movdqu(Address(rsp, xmm_size * 0), xmm0); 6762 6763 __ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(address*)>(BarrierSetNMethod::nmethod_stub_entry_barrier)), 1); 6764 6765 __ movdqu(xmm0, Address(rsp, xmm_size * 0)); 6766 __ movdqu(xmm1, Address(rsp, xmm_size * 1)); 6767 __ movdqu(xmm2, Address(rsp, xmm_size * 2)); 6768 __ movdqu(xmm3, Address(rsp, xmm_size * 3)); 6769 __ movdqu(xmm4, Address(rsp, xmm_size * 4)); 6770 __ movdqu(xmm5, Address(rsp, xmm_size * 5)); 6771 __ movdqu(xmm6, Address(rsp, xmm_size * 6)); 6772 __ movdqu(xmm7, Address(rsp, xmm_size * 7)); 6773 __ addptr(rsp, xmm_spill_size); 6774 6775 __ cmpl(rax, 1); // 1 means deoptimize 6776 __ jcc(Assembler::equal, deoptimize_label); 6777 6778 __ popa(); 6779 __ pop(c_rarg0); 6780 6781 __ leave(); 6782 6783 __ addptr(rsp, 1 * wordSize); // cookie 6784 __ ret(0); 6785 6786 6787 __ BIND(deoptimize_label); 6788 6789 __ popa(); 6790 __ pop(c_rarg0); 6791 6792 __ leave(); 6793 6794 // this can be taken out, but is good for verification purposes. getting a SIGSEGV 6795 // here while still having a correct stack is valuable 6796 __ testptr(rsp, Address(rsp, 0)); 6797 6798 __ movptr(rsp, Address(rsp, 0)); // new rsp was written in the barrier 6799 __ jmp(Address(rsp, -1 * wordSize)); // jmp target should be callers verified_entry_point 6800 6801 return start; 6802 } 6803 6804 /** 6805 * Arguments: 6806 * 6807 * Input: 6808 * c_rarg0 - out address 6809 * c_rarg1 - in address 6810 * c_rarg2 - offset 6811 * c_rarg3 - len 6812 * not Win64 6813 * c_rarg4 - k 6814 * Win64 6815 * rsp+40 - k 6816 */ 6817 address generate_mulAdd() { 6818 __ align(CodeEntryAlignment); 6819 StubCodeMark mark(this, "StubRoutines", "mulAdd"); 6820 6821 address start = __ pc(); 6822 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) 6823 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) 6824 const Register out = rdi; 6825 const Register in = rsi; 6826 const Register offset = r11; 6827 const Register len = rcx; 6828 const Register k = r8; 6829 6830 // Next registers will be saved on stack in mul_add(). 6831 const Register tmp1 = r12; 6832 const Register tmp2 = r13; 6833 const Register tmp3 = r14; 6834 const Register tmp4 = r15; 6835 const Register tmp5 = rbx; 6836 6837 BLOCK_COMMENT("Entry:"); 6838 __ enter(); // required for proper stackwalking of RuntimeStub frame 6839 6840 setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx 6841 // len => rcx, k => r8 6842 // r9 and r10 may be used to save non-volatile registers 6843 #ifdef _WIN64 6844 // last argument is on stack on Win64 6845 __ movl(k, Address(rsp, 6 * wordSize)); 6846 #endif 6847 __ movptr(r11, rdx); // move offset in rdx to offset(r11) 6848 __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); 6849 6850 restore_arg_regs(); 6851 6852 __ leave(); // required for proper stackwalking of RuntimeStub frame 6853 __ ret(0); 6854 6855 return start; 6856 } 6857 6858 address generate_bigIntegerRightShift() { 6859 __ align(CodeEntryAlignment); 6860 StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker"); 6861 6862 address start = __ pc(); 6863 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 6864 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 6865 const Register newArr = rdi; 6866 const Register oldArr = rsi; 6867 const Register newIdx = rdx; 6868 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 6869 const Register totalNumIter = r8; 6870 6871 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 6872 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 6873 const Register tmp1 = r11; // Caller save. 6874 const Register tmp2 = rax; // Caller save. 6875 const Register tmp3 = WINDOWS_ONLY(r12) NOT_WINDOWS(r9); // Windows: Callee save. Linux: Caller save. 6876 const Register tmp4 = WINDOWS_ONLY(r13) NOT_WINDOWS(r10); // Windows: Callee save. Linux: Caller save. 6877 const Register tmp5 = r14; // Callee save. 6878 const Register tmp6 = r15; 6879 6880 const XMMRegister x0 = xmm0; 6881 const XMMRegister x1 = xmm1; 6882 const XMMRegister x2 = xmm2; 6883 6884 BLOCK_COMMENT("Entry:"); 6885 __ enter(); // required for proper stackwalking of RuntimeStub frame 6886 6887 #ifdef _WINDOWS 6888 setup_arg_regs(4); 6889 // For windows, since last argument is on stack, we need to move it to the appropriate register. 6890 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 6891 // Save callee save registers. 6892 __ push(tmp3); 6893 __ push(tmp4); 6894 #endif 6895 __ push(tmp5); 6896 6897 // Rename temps used throughout the code. 6898 const Register idx = tmp1; 6899 const Register nIdx = tmp2; 6900 6901 __ xorl(idx, idx); 6902 6903 // Start right shift from end of the array. 6904 // For example, if #iteration = 4 and newIdx = 1 6905 // then dest[4] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 6906 // if #iteration = 4 and newIdx = 0 6907 // then dest[3] = src[4] >> shiftCount | src[3] <<< (shiftCount - 32) 6908 __ movl(idx, totalNumIter); 6909 __ movl(nIdx, idx); 6910 __ addl(nIdx, newIdx); 6911 6912 // If vectorization is enabled, check if the number of iterations is at least 64 6913 // If not, then go to ShifTwo processing 2 iterations 6914 if (VM_Version::supports_avx512_vbmi2()) { 6915 __ cmpptr(totalNumIter, (AVX3Threshold/64)); 6916 __ jcc(Assembler::less, ShiftTwo); 6917 6918 if (AVX3Threshold < 16 * 64) { 6919 __ cmpl(totalNumIter, 16); 6920 __ jcc(Assembler::less, ShiftTwo); 6921 } 6922 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 6923 __ subl(idx, 16); 6924 __ subl(nIdx, 16); 6925 __ BIND(Shift512Loop); 6926 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 4), Assembler::AVX_512bit); 6927 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 6928 __ vpshrdvd(x2, x1, x0, Assembler::AVX_512bit); 6929 __ evmovdqul(Address(newArr, nIdx, Address::times_4), x2, Assembler::AVX_512bit); 6930 __ subl(nIdx, 16); 6931 __ subl(idx, 16); 6932 __ jcc(Assembler::greaterEqual, Shift512Loop); 6933 __ addl(idx, 16); 6934 __ addl(nIdx, 16); 6935 } 6936 __ BIND(ShiftTwo); 6937 __ cmpl(idx, 2); 6938 __ jcc(Assembler::less, ShiftOne); 6939 __ subl(idx, 2); 6940 __ subl(nIdx, 2); 6941 __ BIND(ShiftTwoLoop); 6942 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 8)); 6943 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 6944 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 6945 __ shrdl(tmp5, tmp4); 6946 __ shrdl(tmp4, tmp3); 6947 __ movl(Address(newArr, nIdx, Address::times_4, 4), tmp5); 6948 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 6949 __ subl(nIdx, 2); 6950 __ subl(idx, 2); 6951 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 6952 __ addl(idx, 2); 6953 __ addl(nIdx, 2); 6954 6955 // Do the last iteration 6956 __ BIND(ShiftOne); 6957 __ cmpl(idx, 1); 6958 __ jcc(Assembler::less, Exit); 6959 __ subl(idx, 1); 6960 __ subl(nIdx, 1); 6961 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 4)); 6962 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 6963 __ shrdl(tmp4, tmp3); 6964 __ movl(Address(newArr, nIdx, Address::times_4), tmp4); 6965 __ BIND(Exit); 6966 // Restore callee save registers. 6967 __ pop(tmp5); 6968 #ifdef _WINDOWS 6969 __ pop(tmp4); 6970 __ pop(tmp3); 6971 restore_arg_regs(); 6972 #endif 6973 __ leave(); // required for proper stackwalking of RuntimeStub frame 6974 __ ret(0); 6975 return start; 6976 } 6977 6978 /** 6979 * Arguments: 6980 * 6981 * Input: 6982 * c_rarg0 - newArr address 6983 * c_rarg1 - oldArr address 6984 * c_rarg2 - newIdx 6985 * c_rarg3 - shiftCount 6986 * not Win64 6987 * c_rarg4 - numIter 6988 * Win64 6989 * rsp40 - numIter 6990 */ 6991 address generate_bigIntegerLeftShift() { 6992 __ align(CodeEntryAlignment); 6993 StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker"); 6994 address start = __ pc(); 6995 Label Shift512Loop, ShiftTwo, ShiftTwoLoop, ShiftOne, Exit; 6996 // For Unix, the arguments are as follows: rdi, rsi, rdx, rcx, r8. 6997 const Register newArr = rdi; 6998 const Register oldArr = rsi; 6999 const Register newIdx = rdx; 7000 const Register shiftCount = rcx; // It was intentional to have shiftCount in rcx since it is used implicitly for shift. 7001 const Register totalNumIter = r8; 7002 // For windows, we use r9 and r10 as temps to save rdi and rsi. Thus we cannot allocate them for our temps. 7003 // For everything else, we prefer using r9 and r10 since we do not have to save them before use. 7004 const Register tmp1 = r11; // Caller save. 7005 const Register tmp2 = rax; // Caller save. 7006 const Register tmp3 = WINDOWS_ONLY(r12) NOT_WINDOWS(r9); // Windows: Callee save. Linux: Caller save. 7007 const Register tmp4 = WINDOWS_ONLY(r13) NOT_WINDOWS(r10); // Windows: Callee save. Linux: Caller save. 7008 const Register tmp5 = r14; // Callee save. 7009 7010 const XMMRegister x0 = xmm0; 7011 const XMMRegister x1 = xmm1; 7012 const XMMRegister x2 = xmm2; 7013 BLOCK_COMMENT("Entry:"); 7014 __ enter(); // required for proper stackwalking of RuntimeStub frame 7015 7016 #ifdef _WINDOWS 7017 setup_arg_regs(4); 7018 // For windows, since last argument is on stack, we need to move it to the appropriate register. 7019 __ movl(totalNumIter, Address(rsp, 6 * wordSize)); 7020 // Save callee save registers. 7021 __ push(tmp3); 7022 __ push(tmp4); 7023 #endif 7024 __ push(tmp5); 7025 7026 // Rename temps used throughout the code 7027 const Register idx = tmp1; 7028 const Register numIterTmp = tmp2; 7029 7030 // Start idx from zero. 7031 __ xorl(idx, idx); 7032 // Compute interior pointer for new array. We do this so that we can use same index for both old and new arrays. 7033 __ lea(newArr, Address(newArr, newIdx, Address::times_4)); 7034 __ movl(numIterTmp, totalNumIter); 7035 7036 // If vectorization is enabled, check if the number of iterations is at least 64 7037 // If not, then go to ShiftTwo shifting two numbers at a time 7038 if (VM_Version::supports_avx512_vbmi2()) { 7039 __ cmpl(totalNumIter, (AVX3Threshold/64)); 7040 __ jcc(Assembler::less, ShiftTwo); 7041 7042 if (AVX3Threshold < 16 * 64) { 7043 __ cmpl(totalNumIter, 16); 7044 __ jcc(Assembler::less, ShiftTwo); 7045 } 7046 __ evpbroadcastd(x0, shiftCount, Assembler::AVX_512bit); 7047 __ subl(numIterTmp, 16); 7048 __ BIND(Shift512Loop); 7049 __ evmovdqul(x1, Address(oldArr, idx, Address::times_4), Assembler::AVX_512bit); 7050 __ evmovdqul(x2, Address(oldArr, idx, Address::times_4, 0x4), Assembler::AVX_512bit); 7051 __ vpshldvd(x1, x2, x0, Assembler::AVX_512bit); 7052 __ evmovdqul(Address(newArr, idx, Address::times_4), x1, Assembler::AVX_512bit); 7053 __ addl(idx, 16); 7054 __ subl(numIterTmp, 16); 7055 __ jcc(Assembler::greaterEqual, Shift512Loop); 7056 __ addl(numIterTmp, 16); 7057 } 7058 __ BIND(ShiftTwo); 7059 __ cmpl(totalNumIter, 1); 7060 __ jcc(Assembler::less, Exit); 7061 __ movl(tmp3, Address(oldArr, idx, Address::times_4)); 7062 __ subl(numIterTmp, 2); 7063 __ jcc(Assembler::less, ShiftOne); 7064 7065 __ BIND(ShiftTwoLoop); 7066 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 7067 __ movl(tmp5, Address(oldArr, idx, Address::times_4, 0x8)); 7068 __ shldl(tmp3, tmp4); 7069 __ shldl(tmp4, tmp5); 7070 __ movl(Address(newArr, idx, Address::times_4), tmp3); 7071 __ movl(Address(newArr, idx, Address::times_4, 0x4), tmp4); 7072 __ movl(tmp3, tmp5); 7073 __ addl(idx, 2); 7074 __ subl(numIterTmp, 2); 7075 __ jcc(Assembler::greaterEqual, ShiftTwoLoop); 7076 7077 // Do the last iteration 7078 __ BIND(ShiftOne); 7079 __ addl(numIterTmp, 2); 7080 __ cmpl(numIterTmp, 1); 7081 __ jcc(Assembler::less, Exit); 7082 __ movl(tmp4, Address(oldArr, idx, Address::times_4, 0x4)); 7083 __ shldl(tmp3, tmp4); 7084 __ movl(Address(newArr, idx, Address::times_4), tmp3); 7085 7086 __ BIND(Exit); 7087 // Restore callee save registers. 7088 __ pop(tmp5); 7089 #ifdef _WINDOWS 7090 __ pop(tmp4); 7091 __ pop(tmp3); 7092 restore_arg_regs(); 7093 #endif 7094 __ leave(); // required for proper stackwalking of RuntimeStub frame 7095 __ ret(0); 7096 return start; 7097 } 7098 7099 address generate_libmExp() { 7100 StubCodeMark mark(this, "StubRoutines", "libmExp"); 7101 7102 address start = __ pc(); 7103 7104 const XMMRegister x0 = xmm0; 7105 const XMMRegister x1 = xmm1; 7106 const XMMRegister x2 = xmm2; 7107 const XMMRegister x3 = xmm3; 7108 7109 const XMMRegister x4 = xmm4; 7110 const XMMRegister x5 = xmm5; 7111 const XMMRegister x6 = xmm6; 7112 const XMMRegister x7 = xmm7; 7113 7114 const Register tmp = r11; 7115 7116 BLOCK_COMMENT("Entry:"); 7117 __ enter(); // required for proper stackwalking of RuntimeStub frame 7118 7119 __ fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp); 7120 7121 __ leave(); // required for proper stackwalking of RuntimeStub frame 7122 __ ret(0); 7123 7124 return start; 7125 7126 } 7127 7128 address generate_libmLog() { 7129 StubCodeMark mark(this, "StubRoutines", "libmLog"); 7130 7131 address start = __ pc(); 7132 7133 const XMMRegister x0 = xmm0; 7134 const XMMRegister x1 = xmm1; 7135 const XMMRegister x2 = xmm2; 7136 const XMMRegister x3 = xmm3; 7137 7138 const XMMRegister x4 = xmm4; 7139 const XMMRegister x5 = xmm5; 7140 const XMMRegister x6 = xmm6; 7141 const XMMRegister x7 = xmm7; 7142 7143 const Register tmp1 = r11; 7144 const Register tmp2 = r8; 7145 7146 BLOCK_COMMENT("Entry:"); 7147 __ enter(); // required for proper stackwalking of RuntimeStub frame 7148 7149 __ fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2); 7150 7151 __ leave(); // required for proper stackwalking of RuntimeStub frame 7152 __ ret(0); 7153 7154 return start; 7155 7156 } 7157 7158 address generate_libmLog10() { 7159 StubCodeMark mark(this, "StubRoutines", "libmLog10"); 7160 7161 address start = __ pc(); 7162 7163 const XMMRegister x0 = xmm0; 7164 const XMMRegister x1 = xmm1; 7165 const XMMRegister x2 = xmm2; 7166 const XMMRegister x3 = xmm3; 7167 7168 const XMMRegister x4 = xmm4; 7169 const XMMRegister x5 = xmm5; 7170 const XMMRegister x6 = xmm6; 7171 const XMMRegister x7 = xmm7; 7172 7173 const Register tmp = r11; 7174 7175 BLOCK_COMMENT("Entry:"); 7176 __ enter(); // required for proper stackwalking of RuntimeStub frame 7177 7178 __ fast_log10(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp); 7179 7180 __ leave(); // required for proper stackwalking of RuntimeStub frame 7181 __ ret(0); 7182 7183 return start; 7184 7185 } 7186 7187 address generate_libmPow() { 7188 StubCodeMark mark(this, "StubRoutines", "libmPow"); 7189 7190 address start = __ pc(); 7191 7192 const XMMRegister x0 = xmm0; 7193 const XMMRegister x1 = xmm1; 7194 const XMMRegister x2 = xmm2; 7195 const XMMRegister x3 = xmm3; 7196 7197 const XMMRegister x4 = xmm4; 7198 const XMMRegister x5 = xmm5; 7199 const XMMRegister x6 = xmm6; 7200 const XMMRegister x7 = xmm7; 7201 7202 const Register tmp1 = r8; 7203 const Register tmp2 = r9; 7204 const Register tmp3 = r10; 7205 const Register tmp4 = r11; 7206 7207 BLOCK_COMMENT("Entry:"); 7208 __ enter(); // required for proper stackwalking of RuntimeStub frame 7209 7210 __ fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); 7211 7212 __ leave(); // required for proper stackwalking of RuntimeStub frame 7213 __ ret(0); 7214 7215 return start; 7216 7217 } 7218 7219 address generate_libmSin() { 7220 StubCodeMark mark(this, "StubRoutines", "libmSin"); 7221 7222 address start = __ pc(); 7223 7224 const XMMRegister x0 = xmm0; 7225 const XMMRegister x1 = xmm1; 7226 const XMMRegister x2 = xmm2; 7227 const XMMRegister x3 = xmm3; 7228 7229 const XMMRegister x4 = xmm4; 7230 const XMMRegister x5 = xmm5; 7231 const XMMRegister x6 = xmm6; 7232 const XMMRegister x7 = xmm7; 7233 7234 const Register tmp1 = r8; 7235 const Register tmp2 = r9; 7236 const Register tmp3 = r10; 7237 const Register tmp4 = r11; 7238 7239 BLOCK_COMMENT("Entry:"); 7240 __ enter(); // required for proper stackwalking of RuntimeStub frame 7241 7242 #ifdef _WIN64 7243 __ push(rsi); 7244 __ push(rdi); 7245 #endif 7246 __ fast_sin(x0, x1, x2, x3, x4, x5, x6, x7, rax, rbx, rcx, rdx, tmp1, tmp2, tmp3, tmp4); 7247 7248 #ifdef _WIN64 7249 __ pop(rdi); 7250 __ pop(rsi); 7251 #endif 7252 7253 __ leave(); // required for proper stackwalking of RuntimeStub frame 7254 __ ret(0); 7255 7256 return start; 7257 7258 } 7259 7260 address generate_libmCos() { 7261 StubCodeMark mark(this, "StubRoutines", "libmCos"); 7262 7263 address start = __ pc(); 7264 7265 const XMMRegister x0 = xmm0; 7266 const XMMRegister x1 = xmm1; 7267 const XMMRegister x2 = xmm2; 7268 const XMMRegister x3 = xmm3; 7269 7270 const XMMRegister x4 = xmm4; 7271 const XMMRegister x5 = xmm5; 7272 const XMMRegister x6 = xmm6; 7273 const XMMRegister x7 = xmm7; 7274 7275 const Register tmp1 = r8; 7276 const Register tmp2 = r9; 7277 const Register tmp3 = r10; 7278 const Register tmp4 = r11; 7279 7280 BLOCK_COMMENT("Entry:"); 7281 __ enter(); // required for proper stackwalking of RuntimeStub frame 7282 7283 #ifdef _WIN64 7284 __ push(rsi); 7285 __ push(rdi); 7286 #endif 7287 __ fast_cos(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); 7288 7289 #ifdef _WIN64 7290 __ pop(rdi); 7291 __ pop(rsi); 7292 #endif 7293 7294 __ leave(); // required for proper stackwalking of RuntimeStub frame 7295 __ ret(0); 7296 7297 return start; 7298 7299 } 7300 7301 address generate_libmTan() { 7302 StubCodeMark mark(this, "StubRoutines", "libmTan"); 7303 7304 address start = __ pc(); 7305 7306 const XMMRegister x0 = xmm0; 7307 const XMMRegister x1 = xmm1; 7308 const XMMRegister x2 = xmm2; 7309 const XMMRegister x3 = xmm3; 7310 7311 const XMMRegister x4 = xmm4; 7312 const XMMRegister x5 = xmm5; 7313 const XMMRegister x6 = xmm6; 7314 const XMMRegister x7 = xmm7; 7315 7316 const Register tmp1 = r8; 7317 const Register tmp2 = r9; 7318 const Register tmp3 = r10; 7319 const Register tmp4 = r11; 7320 7321 BLOCK_COMMENT("Entry:"); 7322 __ enter(); // required for proper stackwalking of RuntimeStub frame 7323 7324 #ifdef _WIN64 7325 __ push(rsi); 7326 __ push(rdi); 7327 #endif 7328 __ fast_tan(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); 7329 7330 #ifdef _WIN64 7331 __ pop(rdi); 7332 __ pop(rsi); 7333 #endif 7334 7335 __ leave(); // required for proper stackwalking of RuntimeStub frame 7336 __ ret(0); 7337 7338 return start; 7339 7340 } 7341 7342 #undef __ 7343 #define __ masm-> 7344 7345 // Continuation point for throwing of implicit exceptions that are 7346 // not handled in the current activation. Fabricates an exception 7347 // oop and initiates normal exception dispatching in this 7348 // frame. Since we need to preserve callee-saved values (currently 7349 // only for C2, but done for C1 as well) we need a callee-saved oop 7350 // map and therefore have to make these stubs into RuntimeStubs 7351 // rather than BufferBlobs. If the compiler needs all registers to 7352 // be preserved between the fault point and the exception handler 7353 // then it must assume responsibility for that in 7354 // AbstractCompiler::continuation_for_implicit_null_exception or 7355 // continuation_for_implicit_division_by_zero_exception. All other 7356 // implicit exceptions (e.g., NullPointerException or 7357 // AbstractMethodError on entry) are either at call sites or 7358 // otherwise assume that stack unwinding will be initiated, so 7359 // caller saved registers were assumed volatile in the compiler. 7360 address generate_throw_exception(const char* name, 7361 address runtime_entry, 7362 Register arg1 = noreg, 7363 Register arg2 = noreg) { 7364 // Information about frame layout at time of blocking runtime call. 7365 // Note that we only have to preserve callee-saved registers since 7366 // the compilers are responsible for supplying a continuation point 7367 // if they expect all registers to be preserved. 7368 enum layout { 7369 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, 7370 rbp_off2, 7371 return_off, 7372 return_off2, 7373 framesize // inclusive of return address 7374 }; 7375 7376 int insts_size = 512; 7377 int locs_size = 64; 7378 7379 CodeBuffer code(name, insts_size, locs_size); 7380 OopMapSet* oop_maps = new OopMapSet(); 7381 MacroAssembler* masm = new MacroAssembler(&code); 7382 7383 address start = __ pc(); 7384 7385 // This is an inlined and slightly modified version of call_VM 7386 // which has the ability to fetch the return PC out of 7387 // thread-local storage and also sets up last_Java_sp slightly 7388 // differently than the real call_VM 7389 7390 __ enter(); // required for proper stackwalking of RuntimeStub frame 7391 7392 assert(is_even(framesize/2), "sp not 16-byte aligned"); 7393 7394 // return address and rbp are already in place 7395 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog 7396 7397 int frame_complete = __ pc() - start; 7398 7399 // Set up last_Java_sp and last_Java_fp 7400 address the_pc = __ pc(); 7401 __ set_last_Java_frame(rsp, rbp, the_pc); 7402 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack 7403 7404 // Call runtime 7405 if (arg1 != noreg) { 7406 assert(arg2 != c_rarg1, "clobbered"); 7407 __ movptr(c_rarg1, arg1); 7408 } 7409 if (arg2 != noreg) { 7410 __ movptr(c_rarg2, arg2); 7411 } 7412 __ movptr(c_rarg0, r15_thread); 7413 BLOCK_COMMENT("call runtime_entry"); 7414 __ call(RuntimeAddress(runtime_entry)); 7415 7416 // Generate oop map 7417 OopMap* map = new OopMap(framesize, 0); 7418 7419 oop_maps->add_gc_map(the_pc - start, map); 7420 7421 __ reset_last_Java_frame(true); 7422 7423 __ leave(); // required for proper stackwalking of RuntimeStub frame 7424 7425 // check for pending exceptions 7426 #ifdef ASSERT 7427 Label L; 7428 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), 7429 (int32_t) NULL_WORD); 7430 __ jcc(Assembler::notEqual, L); 7431 __ should_not_reach_here(); 7432 __ bind(L); 7433 #endif // ASSERT 7434 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 7435 7436 7437 // codeBlob framesize is in words (not VMRegImpl::slot_size) 7438 RuntimeStub* stub = 7439 RuntimeStub::new_runtime_stub(name, 7440 &code, 7441 frame_complete, 7442 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 7443 oop_maps, false); 7444 return stub->entry_point(); 7445 } 7446 7447 void create_control_words() { 7448 // Round to nearest, 64-bit mode, exceptions masked 7449 StubRoutines::x86::_mxcsr_std = 0x1F80; 7450 } 7451 7452 // Initialization 7453 void generate_initial() { 7454 // Generates all stubs and initializes the entry points 7455 7456 // This platform-specific settings are needed by generate_call_stub() 7457 create_control_words(); 7458 7459 // entry points that exist in all platforms Note: This is code 7460 // that could be shared among different platforms - however the 7461 // benefit seems to be smaller than the disadvantage of having a 7462 // much more complicated generator structure. See also comment in 7463 // stubRoutines.hpp. 7464 7465 StubRoutines::_forward_exception_entry = generate_forward_exception(); 7466 7467 StubRoutines::_call_stub_entry = 7468 generate_call_stub(StubRoutines::_call_stub_return_address); 7469 7470 // is referenced by megamorphic call 7471 StubRoutines::_catch_exception_entry = generate_catch_exception(); 7472 7473 // atomic calls 7474 StubRoutines::_fence_entry = generate_orderaccess_fence(); 7475 7476 // platform dependent 7477 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); 7478 7479 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); 7480 7481 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); 7482 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); 7483 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); 7484 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); 7485 7486 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); 7487 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); 7488 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); 7489 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); 7490 7491 // Build this early so it's available for the interpreter. 7492 StubRoutines::_throw_StackOverflowError_entry = 7493 generate_throw_exception("StackOverflowError throw_exception", 7494 CAST_FROM_FN_PTR(address, 7495 SharedRuntime:: 7496 throw_StackOverflowError)); 7497 StubRoutines::_throw_delayed_StackOverflowError_entry = 7498 generate_throw_exception("delayed StackOverflowError throw_exception", 7499 CAST_FROM_FN_PTR(address, 7500 SharedRuntime:: 7501 throw_delayed_StackOverflowError)); 7502 if (UseCRC32Intrinsics) { 7503 // set table address before stub generation which use it 7504 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; 7505 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); 7506 } 7507 7508 if (UseCRC32CIntrinsics) { 7509 bool supports_clmul = VM_Version::supports_clmul(); 7510 StubRoutines::x86::generate_CRC32C_table(supports_clmul); 7511 StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; 7512 StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); 7513 } 7514 7515 if (UseAdler32Intrinsics) { 7516 StubRoutines::_updateBytesAdler32 = generate_updateBytesAdler32(); 7517 } 7518 7519 if (UseLibmIntrinsic && InlineIntrinsics) { 7520 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) || 7521 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) || 7522 vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 7523 StubRoutines::x86::_ONEHALF_adr = (address)StubRoutines::x86::_ONEHALF; 7524 StubRoutines::x86::_P_2_adr = (address)StubRoutines::x86::_P_2; 7525 StubRoutines::x86::_SC_4_adr = (address)StubRoutines::x86::_SC_4; 7526 StubRoutines::x86::_Ctable_adr = (address)StubRoutines::x86::_Ctable; 7527 StubRoutines::x86::_SC_2_adr = (address)StubRoutines::x86::_SC_2; 7528 StubRoutines::x86::_SC_3_adr = (address)StubRoutines::x86::_SC_3; 7529 StubRoutines::x86::_SC_1_adr = (address)StubRoutines::x86::_SC_1; 7530 StubRoutines::x86::_PI_INV_TABLE_adr = (address)StubRoutines::x86::_PI_INV_TABLE; 7531 StubRoutines::x86::_PI_4_adr = (address)StubRoutines::x86::_PI_4; 7532 StubRoutines::x86::_PI32INV_adr = (address)StubRoutines::x86::_PI32INV; 7533 StubRoutines::x86::_SIGN_MASK_adr = (address)StubRoutines::x86::_SIGN_MASK; 7534 StubRoutines::x86::_P_1_adr = (address)StubRoutines::x86::_P_1; 7535 StubRoutines::x86::_P_3_adr = (address)StubRoutines::x86::_P_3; 7536 StubRoutines::x86::_NEG_ZERO_adr = (address)StubRoutines::x86::_NEG_ZERO; 7537 } 7538 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { 7539 StubRoutines::_dexp = generate_libmExp(); 7540 } 7541 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { 7542 StubRoutines::_dlog = generate_libmLog(); 7543 } 7544 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { 7545 StubRoutines::_dlog10 = generate_libmLog10(); 7546 } 7547 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { 7548 StubRoutines::_dpow = generate_libmPow(); 7549 } 7550 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { 7551 StubRoutines::_dsin = generate_libmSin(); 7552 } 7553 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { 7554 StubRoutines::_dcos = generate_libmCos(); 7555 } 7556 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { 7557 StubRoutines::_dtan = generate_libmTan(); 7558 } 7559 } 7560 7561 // Safefetch stubs. 7562 generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, 7563 &StubRoutines::_safefetch32_fault_pc, 7564 &StubRoutines::_safefetch32_continuation_pc); 7565 generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry, 7566 &StubRoutines::_safefetchN_fault_pc, 7567 &StubRoutines::_safefetchN_continuation_pc); 7568 } 7569 7570 void generate_all() { 7571 // Generates all stubs and initializes the entry points 7572 7573 // These entry points require SharedInfo::stack0 to be set up in 7574 // non-core builds and need to be relocatable, so they each 7575 // fabricate a RuntimeStub internally. 7576 StubRoutines::_throw_AbstractMethodError_entry = 7577 generate_throw_exception("AbstractMethodError throw_exception", 7578 CAST_FROM_FN_PTR(address, 7579 SharedRuntime:: 7580 throw_AbstractMethodError)); 7581 7582 StubRoutines::_throw_IncompatibleClassChangeError_entry = 7583 generate_throw_exception("IncompatibleClassChangeError throw_exception", 7584 CAST_FROM_FN_PTR(address, 7585 SharedRuntime:: 7586 throw_IncompatibleClassChangeError)); 7587 7588 StubRoutines::_throw_NullPointerException_at_call_entry = 7589 generate_throw_exception("NullPointerException at call throw_exception", 7590 CAST_FROM_FN_PTR(address, 7591 SharedRuntime:: 7592 throw_NullPointerException_at_call)); 7593 7594 // entry points that are platform specific 7595 StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF); 7596 StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000); 7597 StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF); 7598 StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000); 7599 StubRoutines::x86::_vector_all_bits_set = generate_vector_mask("vector_all_bits_set", 0xFFFFFFFFFFFFFFFF); 7600 StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff); 7601 StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask"); 7602 StubRoutines::x86::_vector_int_to_byte_mask = generate_vector_mask("vector_int_to_byte_mask", 0x000000ff000000ff); 7603 StubRoutines::x86::_vector_int_to_short_mask = generate_vector_mask("vector_int_to_short_mask", 0x0000ffff0000ffff); 7604 StubRoutines::x86::_vector_32_bit_mask = generate_vector_custom_i32("vector_32_bit_mask", Assembler::AVX_512bit, 7605 0xFFFFFFFF, 0, 0, 0); 7606 StubRoutines::x86::_vector_64_bit_mask = generate_vector_custom_i32("vector_64_bit_mask", Assembler::AVX_512bit, 7607 0xFFFFFFFF, 0xFFFFFFFF, 0, 0); 7608 StubRoutines::x86::_vector_int_shuffle_mask = generate_vector_mask("vector_int_shuffle_mask", 0x0302010003020100); 7609 StubRoutines::x86::_vector_byte_shuffle_mask = generate_vector_byte_shuffle_mask("vector_byte_shuffle_mask"); 7610 StubRoutines::x86::_vector_short_shuffle_mask = generate_vector_mask("vector_short_shuffle_mask", 0x0100010001000100); 7611 StubRoutines::x86::_vector_long_shuffle_mask = generate_vector_mask("vector_long_shuffle_mask", 0x0000000100000000); 7612 StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000); 7613 StubRoutines::x86::_vector_iota_indices = generate_iota_indices("iota_indices"); 7614 7615 // support for verify_oop (must happen after universe_init) 7616 if (VerifyOops) { 7617 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); 7618 } 7619 7620 // data cache line writeback 7621 StubRoutines::_data_cache_writeback = generate_data_cache_writeback(); 7622 StubRoutines::_data_cache_writeback_sync = generate_data_cache_writeback_sync(); 7623 7624 // arraycopy stubs used by compilers 7625 generate_arraycopy_stubs(); 7626 7627 // don't bother generating these AES intrinsic stubs unless global flag is set 7628 if (UseAESIntrinsics) { 7629 StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others 7630 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); 7631 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); 7632 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt(); 7633 if (VM_Version::supports_avx512_vaes() && VM_Version::supports_avx512vl() && VM_Version::supports_avx512dq() ) { 7634 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptVectorAESCrypt(); 7635 StubRoutines::_electronicCodeBook_encryptAESCrypt = generate_electronicCodeBook_encryptAESCrypt(); 7636 StubRoutines::_electronicCodeBook_decryptAESCrypt = generate_electronicCodeBook_decryptAESCrypt(); 7637 } else { 7638 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel(); 7639 } 7640 } 7641 if (UseAESCTRIntrinsics) { 7642 if (VM_Version::supports_avx512_vaes() && VM_Version::supports_avx512bw() && VM_Version::supports_avx512vl()) { 7643 StubRoutines::x86::_counter_mask_addr = counter_mask_addr(); 7644 StubRoutines::_counterMode_AESCrypt = generate_counterMode_VectorAESCrypt(); 7645 } else { 7646 StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask(); 7647 StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel(); 7648 } 7649 } 7650 7651 if (UseMD5Intrinsics) { 7652 StubRoutines::_md5_implCompress = generate_md5_implCompress(false, "md5_implCompress"); 7653 StubRoutines::_md5_implCompressMB = generate_md5_implCompress(true, "md5_implCompressMB"); 7654 } 7655 if (UseSHA1Intrinsics) { 7656 StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); 7657 StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); 7658 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); 7659 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); 7660 } 7661 if (UseSHA256Intrinsics) { 7662 StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; 7663 char* dst = (char*)StubRoutines::x86::_k256_W; 7664 char* src = (char*)StubRoutines::x86::_k256; 7665 for (int ii = 0; ii < 16; ++ii) { 7666 memcpy(dst + 32 * ii, src + 16 * ii, 16); 7667 memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); 7668 } 7669 StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; 7670 StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); 7671 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); 7672 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); 7673 } 7674 if (UseSHA512Intrinsics) { 7675 StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; 7676 StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); 7677 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); 7678 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); 7679 } 7680 7681 // Generate GHASH intrinsics code 7682 if (UseGHASHIntrinsics) { 7683 StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask(); 7684 StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask(); 7685 if (VM_Version::supports_avx()) { 7686 StubRoutines::x86::_ghash_shuffmask_addr = ghash_shufflemask_addr(); 7687 StubRoutines::x86::_ghash_poly_addr = ghash_polynomial_addr(); 7688 StubRoutines::_ghash_processBlocks = generate_avx_ghash_processBlocks(); 7689 } else { 7690 StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks(); 7691 } 7692 } 7693 7694 7695 if (UseBASE64Intrinsics) { 7696 if(VM_Version::supports_avx2() && 7697 VM_Version::supports_avx512bw() && 7698 VM_Version::supports_avx512vl()) { 7699 StubRoutines::x86::_avx2_shuffle_base64 = base64_avx2_shuffle_addr(); 7700 StubRoutines::x86::_avx2_input_mask_base64 = base64_avx2_input_mask_addr(); 7701 StubRoutines::x86::_avx2_lut_base64 = base64_avx2_lut_addr(); 7702 } 7703 StubRoutines::x86::_encoding_table_base64 = base64_encoding_table_addr(); 7704 if (VM_Version::supports_avx512_vbmi()) { 7705 StubRoutines::x86::_shuffle_base64 = base64_shuffle_addr(); 7706 StubRoutines::x86::_lookup_lo_base64 = base64_vbmi_lookup_lo_addr(); 7707 StubRoutines::x86::_lookup_hi_base64 = base64_vbmi_lookup_hi_addr(); 7708 StubRoutines::x86::_lookup_lo_base64url = base64_vbmi_lookup_lo_url_addr(); 7709 StubRoutines::x86::_lookup_hi_base64url = base64_vbmi_lookup_hi_url_addr(); 7710 StubRoutines::x86::_pack_vec_base64 = base64_vbmi_pack_vec_addr(); 7711 StubRoutines::x86::_join_0_1_base64 = base64_vbmi_join_0_1_addr(); 7712 StubRoutines::x86::_join_1_2_base64 = base64_vbmi_join_1_2_addr(); 7713 StubRoutines::x86::_join_2_3_base64 = base64_vbmi_join_2_3_addr(); 7714 } 7715 StubRoutines::x86::_decoding_table_base64 = base64_decoding_table_addr(); 7716 StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); 7717 StubRoutines::_base64_decodeBlock = generate_base64_decodeBlock(); 7718 } 7719 7720 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 7721 if (bs_nm != NULL) { 7722 StubRoutines::x86::_method_entry_barrier = generate_method_entry_barrier(); 7723 } 7724 #ifdef COMPILER2 7725 if (UseMultiplyToLenIntrinsic) { 7726 StubRoutines::_multiplyToLen = generate_multiplyToLen(); 7727 } 7728 if (UseSquareToLenIntrinsic) { 7729 StubRoutines::_squareToLen = generate_squareToLen(); 7730 } 7731 if (UseMulAddIntrinsic) { 7732 StubRoutines::_mulAdd = generate_mulAdd(); 7733 } 7734 if (VM_Version::supports_avx512_vbmi2()) { 7735 StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift(); 7736 StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift(); 7737 } 7738 if (UseMontgomeryMultiplyIntrinsic) { 7739 StubRoutines::_montgomeryMultiply 7740 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); 7741 } 7742 if (UseMontgomerySquareIntrinsic) { 7743 StubRoutines::_montgomerySquare 7744 = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); 7745 } 7746 7747 // Get svml stub routine addresses 7748 void *libjsvml = NULL; 7749 char ebuf[1024]; 7750 char dll_name[JVM_MAXPATHLEN]; 7751 if (os::dll_locate_lib(dll_name, sizeof(dll_name), Arguments::get_dll_dir(), "jsvml")) { 7752 libjsvml = os::dll_load(dll_name, ebuf, sizeof ebuf); 7753 } 7754 if (libjsvml != NULL) { 7755 // SVML method naming convention 7756 // All the methods are named as __jsvml_op<T><N>_ha_<VV> 7757 // Where: 7758 // ha stands for high accuracy 7759 // <T> is optional to indicate float/double 7760 // Set to f for vector float operation 7761 // Omitted for vector double operation 7762 // <N> is the number of elements in the vector 7763 // 1, 2, 4, 8, 16 7764 // e.g. 128 bit float vector has 4 float elements 7765 // <VV> indicates the avx/sse level: 7766 // z0 is AVX512, l9 is AVX2, e9 is AVX1 and ex is for SSE2 7767 // e.g. __jsvml_expf16_ha_z0 is the method for computing 16 element vector float exp using AVX 512 insns 7768 // __jsvml_exp8_ha_z0 is the method for computing 8 element vector double exp using AVX 512 insns 7769 7770 log_info(library)("Loaded library %s, handle " INTPTR_FORMAT, JNI_LIB_PREFIX "jsvml" JNI_LIB_SUFFIX, p2i(libjsvml)); 7771 if (UseAVX > 2) { 7772 for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { 7773 int vop = VectorSupport::VECTOR_OP_SVML_START + op; 7774 if ((!VM_Version::supports_avx512dq()) && 7775 (vop == VectorSupport::VECTOR_OP_LOG || vop == VectorSupport::VECTOR_OP_LOG10 || vop == VectorSupport::VECTOR_OP_POW)) { 7776 continue; 7777 } 7778 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf16_ha_z0", VectorSupport::svmlname[op]); 7779 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 7780 7781 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s8_ha_z0", VectorSupport::svmlname[op]); 7782 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_512][op] = (address)os::dll_lookup(libjsvml, ebuf); 7783 } 7784 } 7785 const char* avx_sse_str = (UseAVX >= 2) ? "l9" : ((UseAVX == 1) ? "e9" : "ex"); 7786 for (int op = 0; op < VectorSupport::NUM_SVML_OP; op++) { 7787 int vop = VectorSupport::VECTOR_OP_SVML_START + op; 7788 if (vop == VectorSupport::VECTOR_OP_POW) { 7789 continue; 7790 } 7791 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 7792 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 7793 7794 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 7795 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 7796 7797 snprintf(ebuf, sizeof(ebuf), "__jsvml_%sf8_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 7798 StubRoutines::_vector_f_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 7799 7800 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s1_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 7801 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_64][op] = (address)os::dll_lookup(libjsvml, ebuf); 7802 7803 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s2_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 7804 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_128][op] = (address)os::dll_lookup(libjsvml, ebuf); 7805 7806 snprintf(ebuf, sizeof(ebuf), "__jsvml_%s4_ha_%s", VectorSupport::svmlname[op], avx_sse_str); 7807 StubRoutines::_vector_d_math[VectorSupport::VEC_SIZE_256][op] = (address)os::dll_lookup(libjsvml, ebuf); 7808 } 7809 } 7810 #endif // COMPILER2 7811 7812 if (UseVectorizedMismatchIntrinsic) { 7813 StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); 7814 } 7815 } 7816 7817 public: 7818 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { 7819 if (all) { 7820 generate_all(); 7821 } else { 7822 generate_initial(); 7823 } 7824 } 7825 }; // end class declaration 7826 7827 #define UCM_TABLE_MAX_ENTRIES 16 7828 void StubGenerator_generate(CodeBuffer* code, bool all) { 7829 if (UnsafeCopyMemory::_table == NULL) { 7830 UnsafeCopyMemory::create_table(UCM_TABLE_MAX_ENTRIES); 7831 } 7832 StubGenerator g(code, all); 7833 }