1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "compiler/disassembler.hpp" 28 #include "gc/shared/collectedHeap.hpp" 29 #include "gc/shared/tlab_globals.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "interpreter/interpreterRuntime.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/templateTable.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/methodData.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "oops/oop.inline.hpp" 38 #include "prims/jvmtiExport.hpp" 39 #include "prims/methodHandles.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/safepointMechanism.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "runtime/synchronizer.hpp" 45 #include "utilities/macros.hpp" 46 47 #define __ Disassembler::hook<InterpreterMacroAssembler>(__FILE__, __LINE__, _masm)-> 48 49 // Global Register Names 50 static const Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 51 static const Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 52 53 // Address Computation: local variables 54 static inline Address iaddress(int n) { 55 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 56 } 57 58 static inline Address laddress(int n) { 59 return iaddress(n + 1); 60 } 61 62 #ifndef _LP64 63 static inline Address haddress(int n) { 64 return iaddress(n + 0); 65 } 66 #endif 67 68 static inline Address faddress(int n) { 69 return iaddress(n); 70 } 71 72 static inline Address daddress(int n) { 73 return laddress(n); 74 } 75 76 static inline Address aaddress(int n) { 77 return iaddress(n); 78 } 79 80 static inline Address iaddress(Register r) { 81 return Address(rlocals, r, Address::times_ptr); 82 } 83 84 static inline Address laddress(Register r) { 85 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 86 } 87 88 #ifndef _LP64 89 static inline Address haddress(Register r) { 90 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 91 } 92 #endif 93 94 static inline Address faddress(Register r) { 95 return iaddress(r); 96 } 97 98 static inline Address daddress(Register r) { 99 return laddress(r); 100 } 101 102 static inline Address aaddress(Register r) { 103 return iaddress(r); 104 } 105 106 107 // expression stack 108 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 109 // data beyond the rsp which is potentially unsafe in an MT environment; 110 // an interrupt may overwrite that data.) 111 static inline Address at_rsp () { 112 return Address(rsp, 0); 113 } 114 115 // At top of Java expression stack which may be different than esp(). It 116 // isn't for category 1 objects. 117 static inline Address at_tos () { 118 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 119 } 120 121 static inline Address at_tos_p1() { 122 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 123 } 124 125 static inline Address at_tos_p2() { 126 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 127 } 128 129 // Condition conversion 130 static Assembler::Condition j_not(TemplateTable::Condition cc) { 131 switch (cc) { 132 case TemplateTable::equal : return Assembler::notEqual; 133 case TemplateTable::not_equal : return Assembler::equal; 134 case TemplateTable::less : return Assembler::greaterEqual; 135 case TemplateTable::less_equal : return Assembler::greater; 136 case TemplateTable::greater : return Assembler::lessEqual; 137 case TemplateTable::greater_equal: return Assembler::less; 138 } 139 ShouldNotReachHere(); 140 return Assembler::zero; 141 } 142 143 144 145 // Miscelaneous helper routines 146 // Store an oop (or NULL) at the address described by obj. 147 // If val == noreg this means store a NULL 148 149 150 static void do_oop_store(InterpreterMacroAssembler* _masm, 151 Address dst, 152 Register val, 153 DecoratorSet decorators = 0) { 154 assert(val == noreg || val == rax, "parameter is just for looks"); 155 __ store_heap_oop(dst, val, rdx, rbx, decorators); 156 } 157 158 static void do_oop_load(InterpreterMacroAssembler* _masm, 159 Address src, 160 Register dst, 161 DecoratorSet decorators = 0) { 162 __ load_heap_oop(dst, src, rdx, rbx, decorators); 163 } 164 165 Address TemplateTable::at_bcp(int offset) { 166 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 167 return Address(rbcp, offset); 168 } 169 170 171 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 172 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 173 int byte_no) { 174 if (!RewriteBytecodes) return; 175 Label L_patch_done; 176 177 switch (bc) { 178 case Bytecodes::_fast_aputfield: 179 case Bytecodes::_fast_bputfield: 180 case Bytecodes::_fast_zputfield: 181 case Bytecodes::_fast_cputfield: 182 case Bytecodes::_fast_dputfield: 183 case Bytecodes::_fast_fputfield: 184 case Bytecodes::_fast_iputfield: 185 case Bytecodes::_fast_lputfield: 186 case Bytecodes::_fast_sputfield: 187 { 188 // We skip bytecode quickening for putfield instructions when 189 // the put_code written to the constant pool cache is zero. 190 // This is required so that every execution of this instruction 191 // calls out to InterpreterRuntime::resolve_get_put to do 192 // additional, required work. 193 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 194 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 195 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 196 __ movl(bc_reg, bc); 197 __ cmpl(temp_reg, (int) 0); 198 __ jcc(Assembler::zero, L_patch_done); // don't patch 199 } 200 break; 201 default: 202 assert(byte_no == -1, "sanity"); 203 // the pair bytecodes have already done the load. 204 if (load_bc_into_bc_reg) { 205 __ movl(bc_reg, bc); 206 } 207 } 208 209 if (JvmtiExport::can_post_breakpoint()) { 210 Label L_fast_patch; 211 // if a breakpoint is present we can't rewrite the stream directly 212 __ movzbl(temp_reg, at_bcp(0)); 213 __ cmpl(temp_reg, Bytecodes::_breakpoint); 214 __ jcc(Assembler::notEqual, L_fast_patch); 215 __ get_method(temp_reg); 216 // Let breakpoint table handling rewrite to quicker bytecode 217 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 218 #ifndef ASSERT 219 __ jmpb(L_patch_done); 220 #else 221 __ jmp(L_patch_done); 222 #endif 223 __ bind(L_fast_patch); 224 } 225 226 #ifdef ASSERT 227 Label L_okay; 228 __ load_unsigned_byte(temp_reg, at_bcp(0)); 229 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 230 __ jcc(Assembler::equal, L_okay); 231 __ cmpl(temp_reg, bc_reg); 232 __ jcc(Assembler::equal, L_okay); 233 __ stop("patching the wrong bytecode"); 234 __ bind(L_okay); 235 #endif 236 237 // patch bytecode 238 __ movb(at_bcp(0), bc_reg); 239 __ bind(L_patch_done); 240 } 241 // Individual instructions 242 243 244 void TemplateTable::nop() { 245 transition(vtos, vtos); 246 // nothing to do 247 } 248 249 void TemplateTable::shouldnotreachhere() { 250 transition(vtos, vtos); 251 __ stop("shouldnotreachhere bytecode"); 252 } 253 254 void TemplateTable::aconst_null() { 255 transition(vtos, atos); 256 __ xorl(rax, rax); 257 } 258 259 void TemplateTable::iconst(int value) { 260 transition(vtos, itos); 261 if (value == 0) { 262 __ xorl(rax, rax); 263 } else { 264 __ movl(rax, value); 265 } 266 } 267 268 void TemplateTable::lconst(int value) { 269 transition(vtos, ltos); 270 if (value == 0) { 271 __ xorl(rax, rax); 272 } else { 273 __ movl(rax, value); 274 } 275 #ifndef _LP64 276 assert(value >= 0, "check this code"); 277 __ xorptr(rdx, rdx); 278 #endif 279 } 280 281 282 283 void TemplateTable::fconst(int value) { 284 transition(vtos, ftos); 285 if (UseSSE >= 1) { 286 static float one = 1.0f, two = 2.0f; 287 switch (value) { 288 case 0: 289 __ xorps(xmm0, xmm0); 290 break; 291 case 1: 292 __ movflt(xmm0, ExternalAddress((address) &one)); 293 break; 294 case 2: 295 __ movflt(xmm0, ExternalAddress((address) &two)); 296 break; 297 default: 298 ShouldNotReachHere(); 299 break; 300 } 301 } else { 302 #ifdef _LP64 303 ShouldNotReachHere(); 304 #else 305 if (value == 0) { __ fldz(); 306 } else if (value == 1) { __ fld1(); 307 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 308 } else { ShouldNotReachHere(); 309 } 310 #endif // _LP64 311 } 312 } 313 314 void TemplateTable::dconst(int value) { 315 transition(vtos, dtos); 316 if (UseSSE >= 2) { 317 static double one = 1.0; 318 switch (value) { 319 case 0: 320 __ xorpd(xmm0, xmm0); 321 break; 322 case 1: 323 __ movdbl(xmm0, ExternalAddress((address) &one)); 324 break; 325 default: 326 ShouldNotReachHere(); 327 break; 328 } 329 } else { 330 #ifdef _LP64 331 ShouldNotReachHere(); 332 #else 333 if (value == 0) { __ fldz(); 334 } else if (value == 1) { __ fld1(); 335 } else { ShouldNotReachHere(); 336 } 337 #endif 338 } 339 } 340 341 void TemplateTable::bipush() { 342 transition(vtos, itos); 343 __ load_signed_byte(rax, at_bcp(1)); 344 } 345 346 void TemplateTable::sipush() { 347 transition(vtos, itos); 348 __ load_unsigned_short(rax, at_bcp(1)); 349 __ bswapl(rax); 350 __ sarl(rax, 16); 351 } 352 353 void TemplateTable::ldc(bool wide) { 354 transition(vtos, vtos); 355 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 356 Label call_ldc, notFloat, notClass, notInt, Done; 357 358 if (wide) { 359 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 360 } else { 361 __ load_unsigned_byte(rbx, at_bcp(1)); 362 } 363 364 __ get_cpool_and_tags(rcx, rax); 365 const int base_offset = ConstantPool::header_size() * wordSize; 366 const int tags_offset = Array<u1>::base_offset_in_bytes(); 367 368 // get type 369 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 370 371 // unresolved class - get the resolved class 372 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 373 __ jccb(Assembler::equal, call_ldc); 374 375 // unresolved class in error state - call into runtime to throw the error 376 // from the first resolution attempt 377 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 378 __ jccb(Assembler::equal, call_ldc); 379 380 // resolved class - need to call vm to get java mirror of the class 381 __ cmpl(rdx, JVM_CONSTANT_Class); 382 __ jcc(Assembler::notEqual, notClass); 383 384 __ bind(call_ldc); 385 386 __ movl(rarg, wide); 387 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 388 389 __ push(atos); 390 __ jmp(Done); 391 392 __ bind(notClass); 393 __ cmpl(rdx, JVM_CONSTANT_Float); 394 __ jccb(Assembler::notEqual, notFloat); 395 396 // ftos 397 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 398 __ push(ftos); 399 __ jmp(Done); 400 401 __ bind(notFloat); 402 __ cmpl(rdx, JVM_CONSTANT_Integer); 403 __ jccb(Assembler::notEqual, notInt); 404 405 // itos 406 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 407 __ push(itos); 408 __ jmp(Done); 409 410 // assume the tag is for condy; if not, the VM runtime will tell us 411 __ bind(notInt); 412 condy_helper(Done); 413 414 __ bind(Done); 415 } 416 417 // Fast path for caching oop constants. 418 void TemplateTable::fast_aldc(bool wide) { 419 transition(vtos, atos); 420 421 Register result = rax; 422 Register tmp = rdx; 423 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 424 int index_size = wide ? sizeof(u2) : sizeof(u1); 425 426 Label resolved; 427 428 // We are resolved if the resolved reference cache entry contains a 429 // non-null object (String, MethodType, etc.) 430 assert_different_registers(result, tmp); 431 __ get_cache_index_at_bcp(tmp, 1, index_size); 432 __ load_resolved_reference_at_index(result, tmp); 433 __ testptr(result, result); 434 __ jcc(Assembler::notZero, resolved); 435 436 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 437 438 // first time invocation - must resolve first 439 __ movl(rarg, (int)bytecode()); 440 __ call_VM(result, entry, rarg); 441 __ bind(resolved); 442 443 { // Check for the null sentinel. 444 // If we just called the VM, it already did the mapping for us, 445 // but it's harmless to retry. 446 Label notNull; 447 ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr()); 448 __ movptr(tmp, null_sentinel); 449 __ resolve_oop_handle(tmp); 450 __ cmpoop(tmp, result); 451 __ jccb(Assembler::notEqual, notNull); 452 __ xorptr(result, result); // NULL object reference 453 __ bind(notNull); 454 } 455 456 if (VerifyOops) { 457 __ verify_oop(result); 458 } 459 } 460 461 void TemplateTable::ldc2_w() { 462 transition(vtos, vtos); 463 Label notDouble, notLong, Done; 464 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 465 466 __ get_cpool_and_tags(rcx, rax); 467 const int base_offset = ConstantPool::header_size() * wordSize; 468 const int tags_offset = Array<u1>::base_offset_in_bytes(); 469 470 // get type 471 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 472 __ cmpl(rdx, JVM_CONSTANT_Double); 473 __ jccb(Assembler::notEqual, notDouble); 474 475 // dtos 476 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 477 __ push(dtos); 478 479 __ jmp(Done); 480 __ bind(notDouble); 481 __ cmpl(rdx, JVM_CONSTANT_Long); 482 __ jccb(Assembler::notEqual, notLong); 483 484 // ltos 485 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 486 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 487 __ push(ltos); 488 __ jmp(Done); 489 490 __ bind(notLong); 491 condy_helper(Done); 492 493 __ bind(Done); 494 } 495 496 void TemplateTable::condy_helper(Label& Done) { 497 const Register obj = rax; 498 const Register off = rbx; 499 const Register flags = rcx; 500 const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 501 __ movl(rarg, (int)bytecode()); 502 call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg); 503 #ifndef _LP64 504 // borrow rdi from locals 505 __ get_thread(rdi); 506 __ get_vm_result_2(flags, rdi); 507 __ restore_locals(); 508 #else 509 __ get_vm_result_2(flags, r15_thread); 510 #endif 511 // VMr = obj = base address to find primitive value to push 512 // VMr2 = flags = (tos, off) using format of CPCE::_flags 513 __ movl(off, flags); 514 __ andl(off, ConstantPoolCacheEntry::field_index_mask); 515 const Address field(obj, off, Address::times_1, 0*wordSize); 516 517 // What sort of thing are we loading? 518 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 519 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 520 521 switch (bytecode()) { 522 case Bytecodes::_ldc: 523 case Bytecodes::_ldc_w: 524 { 525 // tos in (itos, ftos, stos, btos, ctos, ztos) 526 Label notInt, notFloat, notShort, notByte, notChar, notBool; 527 __ cmpl(flags, itos); 528 __ jcc(Assembler::notEqual, notInt); 529 // itos 530 __ movl(rax, field); 531 __ push(itos); 532 __ jmp(Done); 533 534 __ bind(notInt); 535 __ cmpl(flags, ftos); 536 __ jcc(Assembler::notEqual, notFloat); 537 // ftos 538 __ load_float(field); 539 __ push(ftos); 540 __ jmp(Done); 541 542 __ bind(notFloat); 543 __ cmpl(flags, stos); 544 __ jcc(Assembler::notEqual, notShort); 545 // stos 546 __ load_signed_short(rax, field); 547 __ push(stos); 548 __ jmp(Done); 549 550 __ bind(notShort); 551 __ cmpl(flags, btos); 552 __ jcc(Assembler::notEqual, notByte); 553 // btos 554 __ load_signed_byte(rax, field); 555 __ push(btos); 556 __ jmp(Done); 557 558 __ bind(notByte); 559 __ cmpl(flags, ctos); 560 __ jcc(Assembler::notEqual, notChar); 561 // ctos 562 __ load_unsigned_short(rax, field); 563 __ push(ctos); 564 __ jmp(Done); 565 566 __ bind(notChar); 567 __ cmpl(flags, ztos); 568 __ jcc(Assembler::notEqual, notBool); 569 // ztos 570 __ load_signed_byte(rax, field); 571 __ push(ztos); 572 __ jmp(Done); 573 574 __ bind(notBool); 575 break; 576 } 577 578 case Bytecodes::_ldc2_w: 579 { 580 Label notLong, notDouble; 581 __ cmpl(flags, ltos); 582 __ jcc(Assembler::notEqual, notLong); 583 // ltos 584 // Loading high word first because movptr clobbers rax 585 NOT_LP64(__ movptr(rdx, field.plus_disp(4))); 586 __ movptr(rax, field); 587 __ push(ltos); 588 __ jmp(Done); 589 590 __ bind(notLong); 591 __ cmpl(flags, dtos); 592 __ jcc(Assembler::notEqual, notDouble); 593 // dtos 594 __ load_double(field); 595 __ push(dtos); 596 __ jmp(Done); 597 598 __ bind(notDouble); 599 break; 600 } 601 602 default: 603 ShouldNotReachHere(); 604 } 605 606 __ stop("bad ldc/condy"); 607 } 608 609 void TemplateTable::locals_index(Register reg, int offset) { 610 __ load_unsigned_byte(reg, at_bcp(offset)); 611 __ negptr(reg); 612 } 613 614 void TemplateTable::iload() { 615 iload_internal(); 616 } 617 618 void TemplateTable::nofast_iload() { 619 iload_internal(may_not_rewrite); 620 } 621 622 void TemplateTable::iload_internal(RewriteControl rc) { 623 transition(vtos, itos); 624 if (RewriteFrequentPairs && rc == may_rewrite) { 625 Label rewrite, done; 626 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 627 LP64_ONLY(assert(rbx != bc, "register damaged")); 628 629 // get next byte 630 __ load_unsigned_byte(rbx, 631 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 632 // if _iload, wait to rewrite to iload2. We only want to rewrite the 633 // last two iloads in a pair. Comparing against fast_iload means that 634 // the next bytecode is neither an iload or a caload, and therefore 635 // an iload pair. 636 __ cmpl(rbx, Bytecodes::_iload); 637 __ jcc(Assembler::equal, done); 638 639 __ cmpl(rbx, Bytecodes::_fast_iload); 640 __ movl(bc, Bytecodes::_fast_iload2); 641 642 __ jccb(Assembler::equal, rewrite); 643 644 // if _caload, rewrite to fast_icaload 645 __ cmpl(rbx, Bytecodes::_caload); 646 __ movl(bc, Bytecodes::_fast_icaload); 647 __ jccb(Assembler::equal, rewrite); 648 649 // rewrite so iload doesn't check again. 650 __ movl(bc, Bytecodes::_fast_iload); 651 652 // rewrite 653 // bc: fast bytecode 654 __ bind(rewrite); 655 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 656 __ bind(done); 657 } 658 659 // Get the local value into tos 660 locals_index(rbx); 661 __ movl(rax, iaddress(rbx)); 662 } 663 664 void TemplateTable::fast_iload2() { 665 transition(vtos, itos); 666 locals_index(rbx); 667 __ movl(rax, iaddress(rbx)); 668 __ push(itos); 669 locals_index(rbx, 3); 670 __ movl(rax, iaddress(rbx)); 671 } 672 673 void TemplateTable::fast_iload() { 674 transition(vtos, itos); 675 locals_index(rbx); 676 __ movl(rax, iaddress(rbx)); 677 } 678 679 void TemplateTable::lload() { 680 transition(vtos, ltos); 681 locals_index(rbx); 682 __ movptr(rax, laddress(rbx)); 683 NOT_LP64(__ movl(rdx, haddress(rbx))); 684 } 685 686 void TemplateTable::fload() { 687 transition(vtos, ftos); 688 locals_index(rbx); 689 __ load_float(faddress(rbx)); 690 } 691 692 void TemplateTable::dload() { 693 transition(vtos, dtos); 694 locals_index(rbx); 695 __ load_double(daddress(rbx)); 696 } 697 698 void TemplateTable::aload() { 699 transition(vtos, atos); 700 locals_index(rbx); 701 __ movptr(rax, aaddress(rbx)); 702 } 703 704 void TemplateTable::locals_index_wide(Register reg) { 705 __ load_unsigned_short(reg, at_bcp(2)); 706 __ bswapl(reg); 707 __ shrl(reg, 16); 708 __ negptr(reg); 709 } 710 711 void TemplateTable::wide_iload() { 712 transition(vtos, itos); 713 locals_index_wide(rbx); 714 __ movl(rax, iaddress(rbx)); 715 } 716 717 void TemplateTable::wide_lload() { 718 transition(vtos, ltos); 719 locals_index_wide(rbx); 720 __ movptr(rax, laddress(rbx)); 721 NOT_LP64(__ movl(rdx, haddress(rbx))); 722 } 723 724 void TemplateTable::wide_fload() { 725 transition(vtos, ftos); 726 locals_index_wide(rbx); 727 __ load_float(faddress(rbx)); 728 } 729 730 void TemplateTable::wide_dload() { 731 transition(vtos, dtos); 732 locals_index_wide(rbx); 733 __ load_double(daddress(rbx)); 734 } 735 736 void TemplateTable::wide_aload() { 737 transition(vtos, atos); 738 locals_index_wide(rbx); 739 __ movptr(rax, aaddress(rbx)); 740 } 741 742 void TemplateTable::index_check(Register array, Register index) { 743 // Pop ptr into array 744 __ pop_ptr(array); 745 index_check_without_pop(array, index); 746 } 747 748 void TemplateTable::index_check_without_pop(Register array, Register index) { 749 // destroys rbx 750 // check array 751 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 752 // sign extend index for use by indexed load 753 __ movl2ptr(index, index); 754 // check index 755 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 756 if (index != rbx) { 757 // ??? convention: move aberrant index into rbx for exception message 758 assert(rbx != array, "different registers"); 759 __ movl(rbx, index); 760 } 761 Label skip; 762 __ jccb(Assembler::below, skip); 763 // Pass array to create more detailed exceptions. 764 __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array); 765 __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 766 __ bind(skip); 767 } 768 769 void TemplateTable::iaload() { 770 transition(itos, itos); 771 // rax: index 772 // rdx: array 773 index_check(rdx, rax); // kills rbx 774 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, rax, 775 Address(rdx, rax, Address::times_4, 776 arrayOopDesc::base_offset_in_bytes(T_INT)), 777 noreg, noreg); 778 } 779 780 void TemplateTable::laload() { 781 transition(itos, ltos); 782 // rax: index 783 // rdx: array 784 index_check(rdx, rax); // kills rbx 785 NOT_LP64(__ mov(rbx, rax)); 786 // rbx,: index 787 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, noreg /* ltos */, 788 Address(rdx, rbx, Address::times_8, 789 arrayOopDesc::base_offset_in_bytes(T_LONG)), 790 noreg, noreg); 791 } 792 793 794 795 void TemplateTable::faload() { 796 transition(itos, ftos); 797 // rax: index 798 // rdx: array 799 index_check(rdx, rax); // kills rbx 800 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, noreg /* ftos */, 801 Address(rdx, rax, 802 Address::times_4, 803 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 804 noreg, noreg); 805 } 806 807 void TemplateTable::daload() { 808 transition(itos, dtos); 809 // rax: index 810 // rdx: array 811 index_check(rdx, rax); // kills rbx 812 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, noreg /* dtos */, 813 Address(rdx, rax, 814 Address::times_8, 815 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 816 noreg, noreg); 817 } 818 819 void TemplateTable::aaload() { 820 transition(itos, atos); 821 // rax: index 822 // rdx: array 823 index_check(rdx, rax); // kills rbx 824 do_oop_load(_masm, 825 Address(rdx, rax, 826 UseCompressedOops ? Address::times_4 : Address::times_ptr, 827 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), 828 rax, 829 IS_ARRAY); 830 } 831 832 void TemplateTable::baload() { 833 transition(itos, itos); 834 // rax: index 835 // rdx: array 836 index_check(rdx, rax); // kills rbx 837 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, rax, 838 Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), 839 noreg, noreg); 840 } 841 842 void TemplateTable::caload() { 843 transition(itos, itos); 844 // rax: index 845 // rdx: array 846 index_check(rdx, rax); // kills rbx 847 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 848 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 849 noreg, noreg); 850 } 851 852 // iload followed by caload frequent pair 853 void TemplateTable::fast_icaload() { 854 transition(vtos, itos); 855 // load index out of locals 856 locals_index(rbx); 857 __ movl(rax, iaddress(rbx)); 858 859 // rax: index 860 // rdx: array 861 index_check(rdx, rax); // kills rbx 862 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, rax, 863 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), 864 noreg, noreg); 865 } 866 867 868 void TemplateTable::saload() { 869 transition(itos, itos); 870 // rax: index 871 // rdx: array 872 index_check(rdx, rax); // kills rbx 873 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, rax, 874 Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)), 875 noreg, noreg); 876 } 877 878 void TemplateTable::iload(int n) { 879 transition(vtos, itos); 880 __ movl(rax, iaddress(n)); 881 } 882 883 void TemplateTable::lload(int n) { 884 transition(vtos, ltos); 885 __ movptr(rax, laddress(n)); 886 NOT_LP64(__ movptr(rdx, haddress(n))); 887 } 888 889 void TemplateTable::fload(int n) { 890 transition(vtos, ftos); 891 __ load_float(faddress(n)); 892 } 893 894 void TemplateTable::dload(int n) { 895 transition(vtos, dtos); 896 __ load_double(daddress(n)); 897 } 898 899 void TemplateTable::aload(int n) { 900 transition(vtos, atos); 901 __ movptr(rax, aaddress(n)); 902 } 903 904 void TemplateTable::aload_0() { 905 aload_0_internal(); 906 } 907 908 void TemplateTable::nofast_aload_0() { 909 aload_0_internal(may_not_rewrite); 910 } 911 912 void TemplateTable::aload_0_internal(RewriteControl rc) { 913 transition(vtos, atos); 914 // According to bytecode histograms, the pairs: 915 // 916 // _aload_0, _fast_igetfield 917 // _aload_0, _fast_agetfield 918 // _aload_0, _fast_fgetfield 919 // 920 // occur frequently. If RewriteFrequentPairs is set, the (slow) 921 // _aload_0 bytecode checks if the next bytecode is either 922 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 923 // rewrites the current bytecode into a pair bytecode; otherwise it 924 // rewrites the current bytecode into _fast_aload_0 that doesn't do 925 // the pair check anymore. 926 // 927 // Note: If the next bytecode is _getfield, the rewrite must be 928 // delayed, otherwise we may miss an opportunity for a pair. 929 // 930 // Also rewrite frequent pairs 931 // aload_0, aload_1 932 // aload_0, iload_1 933 // These bytecodes with a small amount of code are most profitable 934 // to rewrite 935 if (RewriteFrequentPairs && rc == may_rewrite) { 936 Label rewrite, done; 937 938 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 939 LP64_ONLY(assert(rbx != bc, "register damaged")); 940 941 // get next byte 942 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 943 944 // if _getfield then wait with rewrite 945 __ cmpl(rbx, Bytecodes::_getfield); 946 __ jcc(Assembler::equal, done); 947 948 // if _igetfield then rewrite to _fast_iaccess_0 949 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 950 __ cmpl(rbx, Bytecodes::_fast_igetfield); 951 __ movl(bc, Bytecodes::_fast_iaccess_0); 952 __ jccb(Assembler::equal, rewrite); 953 954 // if _agetfield then rewrite to _fast_aaccess_0 955 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 956 __ cmpl(rbx, Bytecodes::_fast_agetfield); 957 __ movl(bc, Bytecodes::_fast_aaccess_0); 958 __ jccb(Assembler::equal, rewrite); 959 960 // if _fgetfield then rewrite to _fast_faccess_0 961 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 962 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 963 __ movl(bc, Bytecodes::_fast_faccess_0); 964 __ jccb(Assembler::equal, rewrite); 965 966 // else rewrite to _fast_aload0 967 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 968 __ movl(bc, Bytecodes::_fast_aload_0); 969 970 // rewrite 971 // bc: fast bytecode 972 __ bind(rewrite); 973 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 974 975 __ bind(done); 976 } 977 978 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 979 aload(0); 980 } 981 982 void TemplateTable::istore() { 983 transition(itos, vtos); 984 locals_index(rbx); 985 __ movl(iaddress(rbx), rax); 986 } 987 988 989 void TemplateTable::lstore() { 990 transition(ltos, vtos); 991 locals_index(rbx); 992 __ movptr(laddress(rbx), rax); 993 NOT_LP64(__ movptr(haddress(rbx), rdx)); 994 } 995 996 void TemplateTable::fstore() { 997 transition(ftos, vtos); 998 locals_index(rbx); 999 __ store_float(faddress(rbx)); 1000 } 1001 1002 void TemplateTable::dstore() { 1003 transition(dtos, vtos); 1004 locals_index(rbx); 1005 __ store_double(daddress(rbx)); 1006 } 1007 1008 void TemplateTable::astore() { 1009 transition(vtos, vtos); 1010 __ pop_ptr(rax); 1011 locals_index(rbx); 1012 __ movptr(aaddress(rbx), rax); 1013 } 1014 1015 void TemplateTable::wide_istore() { 1016 transition(vtos, vtos); 1017 __ pop_i(); 1018 locals_index_wide(rbx); 1019 __ movl(iaddress(rbx), rax); 1020 } 1021 1022 void TemplateTable::wide_lstore() { 1023 transition(vtos, vtos); 1024 NOT_LP64(__ pop_l(rax, rdx)); 1025 LP64_ONLY(__ pop_l()); 1026 locals_index_wide(rbx); 1027 __ movptr(laddress(rbx), rax); 1028 NOT_LP64(__ movl(haddress(rbx), rdx)); 1029 } 1030 1031 void TemplateTable::wide_fstore() { 1032 #ifdef _LP64 1033 transition(vtos, vtos); 1034 __ pop_f(xmm0); 1035 locals_index_wide(rbx); 1036 __ movflt(faddress(rbx), xmm0); 1037 #else 1038 wide_istore(); 1039 #endif 1040 } 1041 1042 void TemplateTable::wide_dstore() { 1043 #ifdef _LP64 1044 transition(vtos, vtos); 1045 __ pop_d(xmm0); 1046 locals_index_wide(rbx); 1047 __ movdbl(daddress(rbx), xmm0); 1048 #else 1049 wide_lstore(); 1050 #endif 1051 } 1052 1053 void TemplateTable::wide_astore() { 1054 transition(vtos, vtos); 1055 __ pop_ptr(rax); 1056 locals_index_wide(rbx); 1057 __ movptr(aaddress(rbx), rax); 1058 } 1059 1060 void TemplateTable::iastore() { 1061 transition(itos, vtos); 1062 __ pop_i(rbx); 1063 // rax: value 1064 // rbx: index 1065 // rdx: array 1066 index_check(rdx, rbx); // prefer index in rbx 1067 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, 1068 Address(rdx, rbx, Address::times_4, 1069 arrayOopDesc::base_offset_in_bytes(T_INT)), 1070 rax, noreg, noreg); 1071 } 1072 1073 void TemplateTable::lastore() { 1074 transition(ltos, vtos); 1075 __ pop_i(rbx); 1076 // rax,: low(value) 1077 // rcx: array 1078 // rdx: high(value) 1079 index_check(rcx, rbx); // prefer index in rbx, 1080 // rbx,: index 1081 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, 1082 Address(rcx, rbx, Address::times_8, 1083 arrayOopDesc::base_offset_in_bytes(T_LONG)), 1084 noreg /* ltos */, noreg, noreg); 1085 } 1086 1087 1088 void TemplateTable::fastore() { 1089 transition(ftos, vtos); 1090 __ pop_i(rbx); 1091 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1092 // rbx: index 1093 // rdx: array 1094 index_check(rdx, rbx); // prefer index in rbx 1095 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, 1096 Address(rdx, rbx, Address::times_4, 1097 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 1098 noreg /* ftos */, noreg, noreg); 1099 } 1100 1101 void TemplateTable::dastore() { 1102 transition(dtos, vtos); 1103 __ pop_i(rbx); 1104 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1105 // rbx: index 1106 // rdx: array 1107 index_check(rdx, rbx); // prefer index in rbx 1108 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, 1109 Address(rdx, rbx, Address::times_8, 1110 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 1111 noreg /* dtos */, noreg, noreg); 1112 } 1113 1114 void TemplateTable::aastore() { 1115 Label is_null, ok_is_subtype, done; 1116 transition(vtos, vtos); 1117 // stack: ..., array, index, value 1118 __ movptr(rax, at_tos()); // value 1119 __ movl(rcx, at_tos_p1()); // index 1120 __ movptr(rdx, at_tos_p2()); // array 1121 1122 Address element_address(rdx, rcx, 1123 UseCompressedOops? Address::times_4 : Address::times_ptr, 1124 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1125 1126 index_check_without_pop(rdx, rcx); // kills rbx 1127 __ testptr(rax, rax); 1128 __ jcc(Assembler::zero, is_null); 1129 1130 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1131 // Move subklass into rbx 1132 __ load_klass(rbx, rax, tmp_load_klass); 1133 // Move superklass into rax 1134 __ load_klass(rax, rdx, tmp_load_klass); 1135 __ movptr(rax, Address(rax, 1136 ObjArrayKlass::element_klass_offset())); 1137 1138 // Generate subtype check. Blows rcx, rdi 1139 // Superklass in rax. Subklass in rbx. 1140 __ gen_subtype_check(rbx, ok_is_subtype); 1141 1142 // Come here on failure 1143 // object is at TOS 1144 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1145 1146 // Come here on success 1147 __ bind(ok_is_subtype); 1148 1149 // Get the value we will store 1150 __ movptr(rax, at_tos()); 1151 __ movl(rcx, at_tos_p1()); // index 1152 // Now store using the appropriate barrier 1153 do_oop_store(_masm, element_address, rax, IS_ARRAY); 1154 __ jmp(done); 1155 1156 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 1157 __ bind(is_null); 1158 __ profile_null_seen(rbx); 1159 1160 // Store a NULL 1161 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1162 1163 // Pop stack arguments 1164 __ bind(done); 1165 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1166 } 1167 1168 void TemplateTable::bastore() { 1169 transition(itos, vtos); 1170 __ pop_i(rbx); 1171 // rax: value 1172 // rbx: index 1173 // rdx: array 1174 index_check(rdx, rbx); // prefer index in rbx 1175 // Need to check whether array is boolean or byte 1176 // since both types share the bastore bytecode. 1177 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 1178 __ load_klass(rcx, rdx, tmp_load_klass); 1179 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1180 int diffbit = Klass::layout_helper_boolean_diffbit(); 1181 __ testl(rcx, diffbit); 1182 Label L_skip; 1183 __ jccb(Assembler::zero, L_skip); 1184 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1185 __ bind(L_skip); 1186 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, 1187 Address(rdx, rbx,Address::times_1, 1188 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1189 rax, noreg, noreg); 1190 } 1191 1192 void TemplateTable::castore() { 1193 transition(itos, vtos); 1194 __ pop_i(rbx); 1195 // rax: value 1196 // rbx: index 1197 // rdx: array 1198 index_check(rdx, rbx); // prefer index in rbx 1199 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, 1200 Address(rdx, rbx, Address::times_2, 1201 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1202 rax, noreg, noreg); 1203 } 1204 1205 1206 void TemplateTable::sastore() { 1207 castore(); 1208 } 1209 1210 void TemplateTable::istore(int n) { 1211 transition(itos, vtos); 1212 __ movl(iaddress(n), rax); 1213 } 1214 1215 void TemplateTable::lstore(int n) { 1216 transition(ltos, vtos); 1217 __ movptr(laddress(n), rax); 1218 NOT_LP64(__ movptr(haddress(n), rdx)); 1219 } 1220 1221 void TemplateTable::fstore(int n) { 1222 transition(ftos, vtos); 1223 __ store_float(faddress(n)); 1224 } 1225 1226 void TemplateTable::dstore(int n) { 1227 transition(dtos, vtos); 1228 __ store_double(daddress(n)); 1229 } 1230 1231 1232 void TemplateTable::astore(int n) { 1233 transition(vtos, vtos); 1234 __ pop_ptr(rax); 1235 __ movptr(aaddress(n), rax); 1236 } 1237 1238 void TemplateTable::pop() { 1239 transition(vtos, vtos); 1240 __ addptr(rsp, Interpreter::stackElementSize); 1241 } 1242 1243 void TemplateTable::pop2() { 1244 transition(vtos, vtos); 1245 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1246 } 1247 1248 1249 void TemplateTable::dup() { 1250 transition(vtos, vtos); 1251 __ load_ptr(0, rax); 1252 __ push_ptr(rax); 1253 // stack: ..., a, a 1254 } 1255 1256 void TemplateTable::dup_x1() { 1257 transition(vtos, vtos); 1258 // stack: ..., a, b 1259 __ load_ptr( 0, rax); // load b 1260 __ load_ptr( 1, rcx); // load a 1261 __ store_ptr(1, rax); // store b 1262 __ store_ptr(0, rcx); // store a 1263 __ push_ptr(rax); // push b 1264 // stack: ..., b, a, b 1265 } 1266 1267 void TemplateTable::dup_x2() { 1268 transition(vtos, vtos); 1269 // stack: ..., a, b, c 1270 __ load_ptr( 0, rax); // load c 1271 __ load_ptr( 2, rcx); // load a 1272 __ store_ptr(2, rax); // store c in a 1273 __ push_ptr(rax); // push c 1274 // stack: ..., c, b, c, c 1275 __ load_ptr( 2, rax); // load b 1276 __ store_ptr(2, rcx); // store a in b 1277 // stack: ..., c, a, c, c 1278 __ store_ptr(1, rax); // store b in c 1279 // stack: ..., c, a, b, c 1280 } 1281 1282 void TemplateTable::dup2() { 1283 transition(vtos, vtos); 1284 // stack: ..., a, b 1285 __ load_ptr(1, rax); // load a 1286 __ push_ptr(rax); // push a 1287 __ load_ptr(1, rax); // load b 1288 __ push_ptr(rax); // push b 1289 // stack: ..., a, b, a, b 1290 } 1291 1292 1293 void TemplateTable::dup2_x1() { 1294 transition(vtos, vtos); 1295 // stack: ..., a, b, c 1296 __ load_ptr( 0, rcx); // load c 1297 __ load_ptr( 1, rax); // load b 1298 __ push_ptr(rax); // push b 1299 __ push_ptr(rcx); // push c 1300 // stack: ..., a, b, c, b, c 1301 __ store_ptr(3, rcx); // store c in b 1302 // stack: ..., a, c, c, b, c 1303 __ load_ptr( 4, rcx); // load a 1304 __ store_ptr(2, rcx); // store a in 2nd c 1305 // stack: ..., a, c, a, b, c 1306 __ store_ptr(4, rax); // store b in a 1307 // stack: ..., b, c, a, b, c 1308 } 1309 1310 void TemplateTable::dup2_x2() { 1311 transition(vtos, vtos); 1312 // stack: ..., a, b, c, d 1313 __ load_ptr( 0, rcx); // load d 1314 __ load_ptr( 1, rax); // load c 1315 __ push_ptr(rax); // push c 1316 __ push_ptr(rcx); // push d 1317 // stack: ..., a, b, c, d, c, d 1318 __ load_ptr( 4, rax); // load b 1319 __ store_ptr(2, rax); // store b in d 1320 __ store_ptr(4, rcx); // store d in b 1321 // stack: ..., a, d, c, b, c, d 1322 __ load_ptr( 5, rcx); // load a 1323 __ load_ptr( 3, rax); // load c 1324 __ store_ptr(3, rcx); // store a in c 1325 __ store_ptr(5, rax); // store c in a 1326 // stack: ..., c, d, a, b, c, d 1327 } 1328 1329 void TemplateTable::swap() { 1330 transition(vtos, vtos); 1331 // stack: ..., a, b 1332 __ load_ptr( 1, rcx); // load a 1333 __ load_ptr( 0, rax); // load b 1334 __ store_ptr(0, rcx); // store a in b 1335 __ store_ptr(1, rax); // store b in a 1336 // stack: ..., b, a 1337 } 1338 1339 void TemplateTable::iop2(Operation op) { 1340 transition(itos, itos); 1341 switch (op) { 1342 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1343 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1344 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1345 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1346 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1347 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1348 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1349 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1350 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1351 default : ShouldNotReachHere(); 1352 } 1353 } 1354 1355 void TemplateTable::lop2(Operation op) { 1356 transition(ltos, ltos); 1357 #ifdef _LP64 1358 switch (op) { 1359 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1360 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1361 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1362 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1363 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1364 default : ShouldNotReachHere(); 1365 } 1366 #else 1367 __ pop_l(rbx, rcx); 1368 switch (op) { 1369 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1370 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1371 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1372 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1373 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1374 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1375 default : ShouldNotReachHere(); 1376 } 1377 #endif 1378 } 1379 1380 void TemplateTable::idiv() { 1381 transition(itos, itos); 1382 __ movl(rcx, rax); 1383 __ pop_i(rax); 1384 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1385 // they are not equal, one could do a normal division (no correction 1386 // needed), which may speed up this implementation for the common case. 1387 // (see also JVM spec., p.243 & p.271) 1388 __ corrected_idivl(rcx); 1389 } 1390 1391 void TemplateTable::irem() { 1392 transition(itos, itos); 1393 __ movl(rcx, rax); 1394 __ pop_i(rax); 1395 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1396 // they are not equal, one could do a normal division (no correction 1397 // needed), which may speed up this implementation for the common case. 1398 // (see also JVM spec., p.243 & p.271) 1399 __ corrected_idivl(rcx); 1400 __ movl(rax, rdx); 1401 } 1402 1403 void TemplateTable::lmul() { 1404 transition(ltos, ltos); 1405 #ifdef _LP64 1406 __ pop_l(rdx); 1407 __ imulq(rax, rdx); 1408 #else 1409 __ pop_l(rbx, rcx); 1410 __ push(rcx); __ push(rbx); 1411 __ push(rdx); __ push(rax); 1412 __ lmul(2 * wordSize, 0); 1413 __ addptr(rsp, 4 * wordSize); // take off temporaries 1414 #endif 1415 } 1416 1417 void TemplateTable::ldiv() { 1418 transition(ltos, ltos); 1419 #ifdef _LP64 1420 __ mov(rcx, rax); 1421 __ pop_l(rax); 1422 // generate explicit div0 check 1423 __ testq(rcx, rcx); 1424 __ jump_cc(Assembler::zero, 1425 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1426 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1427 // they are not equal, one could do a normal division (no correction 1428 // needed), which may speed up this implementation for the common case. 1429 // (see also JVM spec., p.243 & p.271) 1430 __ corrected_idivq(rcx); // kills rbx 1431 #else 1432 __ pop_l(rbx, rcx); 1433 __ push(rcx); __ push(rbx); 1434 __ push(rdx); __ push(rax); 1435 // check if y = 0 1436 __ orl(rax, rdx); 1437 __ jump_cc(Assembler::zero, 1438 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1439 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1440 __ addptr(rsp, 4 * wordSize); // take off temporaries 1441 #endif 1442 } 1443 1444 void TemplateTable::lrem() { 1445 transition(ltos, ltos); 1446 #ifdef _LP64 1447 __ mov(rcx, rax); 1448 __ pop_l(rax); 1449 __ testq(rcx, rcx); 1450 __ jump_cc(Assembler::zero, 1451 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1452 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1453 // they are not equal, one could do a normal division (no correction 1454 // needed), which may speed up this implementation for the common case. 1455 // (see also JVM spec., p.243 & p.271) 1456 __ corrected_idivq(rcx); // kills rbx 1457 __ mov(rax, rdx); 1458 #else 1459 __ pop_l(rbx, rcx); 1460 __ push(rcx); __ push(rbx); 1461 __ push(rdx); __ push(rax); 1462 // check if y = 0 1463 __ orl(rax, rdx); 1464 __ jump_cc(Assembler::zero, 1465 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1466 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1467 __ addptr(rsp, 4 * wordSize); 1468 #endif 1469 } 1470 1471 void TemplateTable::lshl() { 1472 transition(itos, ltos); 1473 __ movl(rcx, rax); // get shift count 1474 #ifdef _LP64 1475 __ pop_l(rax); // get shift value 1476 __ shlq(rax); 1477 #else 1478 __ pop_l(rax, rdx); // get shift value 1479 __ lshl(rdx, rax); 1480 #endif 1481 } 1482 1483 void TemplateTable::lshr() { 1484 #ifdef _LP64 1485 transition(itos, ltos); 1486 __ movl(rcx, rax); // get shift count 1487 __ pop_l(rax); // get shift value 1488 __ sarq(rax); 1489 #else 1490 transition(itos, ltos); 1491 __ mov(rcx, rax); // get shift count 1492 __ pop_l(rax, rdx); // get shift value 1493 __ lshr(rdx, rax, true); 1494 #endif 1495 } 1496 1497 void TemplateTable::lushr() { 1498 transition(itos, ltos); 1499 #ifdef _LP64 1500 __ movl(rcx, rax); // get shift count 1501 __ pop_l(rax); // get shift value 1502 __ shrq(rax); 1503 #else 1504 __ mov(rcx, rax); // get shift count 1505 __ pop_l(rax, rdx); // get shift value 1506 __ lshr(rdx, rax); 1507 #endif 1508 } 1509 1510 void TemplateTable::fop2(Operation op) { 1511 transition(ftos, ftos); 1512 1513 if (UseSSE >= 1) { 1514 switch (op) { 1515 case add: 1516 __ addss(xmm0, at_rsp()); 1517 __ addptr(rsp, Interpreter::stackElementSize); 1518 break; 1519 case sub: 1520 __ movflt(xmm1, xmm0); 1521 __ pop_f(xmm0); 1522 __ subss(xmm0, xmm1); 1523 break; 1524 case mul: 1525 __ mulss(xmm0, at_rsp()); 1526 __ addptr(rsp, Interpreter::stackElementSize); 1527 break; 1528 case div: 1529 __ movflt(xmm1, xmm0); 1530 __ pop_f(xmm0); 1531 __ divss(xmm0, xmm1); 1532 break; 1533 case rem: 1534 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1535 // modulo operation. The frem method calls the function 1536 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1537 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1538 // (signalling or quiet) is returned. 1539 // 1540 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1541 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1542 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1543 // The fprem instruction used on x86_32 is functionally equivalent to 1544 // SharedRuntime::frem in that it returns a NaN. 1545 #ifdef _LP64 1546 __ movflt(xmm1, xmm0); 1547 __ pop_f(xmm0); 1548 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1549 #else 1550 __ push_f(xmm0); 1551 __ pop_f(); 1552 __ fld_s(at_rsp()); 1553 __ fremr(rax); 1554 __ f2ieee(); 1555 __ pop(rax); // pop second operand off the stack 1556 __ push_f(); 1557 __ pop_f(xmm0); 1558 #endif 1559 break; 1560 default: 1561 ShouldNotReachHere(); 1562 break; 1563 } 1564 } else { 1565 #ifdef _LP64 1566 ShouldNotReachHere(); 1567 #else 1568 switch (op) { 1569 case add: __ fadd_s (at_rsp()); break; 1570 case sub: __ fsubr_s(at_rsp()); break; 1571 case mul: __ fmul_s (at_rsp()); break; 1572 case div: __ fdivr_s(at_rsp()); break; 1573 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1574 default : ShouldNotReachHere(); 1575 } 1576 __ f2ieee(); 1577 __ pop(rax); // pop second operand off the stack 1578 #endif // _LP64 1579 } 1580 } 1581 1582 void TemplateTable::dop2(Operation op) { 1583 transition(dtos, dtos); 1584 if (UseSSE >= 2) { 1585 switch (op) { 1586 case add: 1587 __ addsd(xmm0, at_rsp()); 1588 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1589 break; 1590 case sub: 1591 __ movdbl(xmm1, xmm0); 1592 __ pop_d(xmm0); 1593 __ subsd(xmm0, xmm1); 1594 break; 1595 case mul: 1596 __ mulsd(xmm0, at_rsp()); 1597 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1598 break; 1599 case div: 1600 __ movdbl(xmm1, xmm0); 1601 __ pop_d(xmm0); 1602 __ divsd(xmm0, xmm1); 1603 break; 1604 case rem: 1605 // Similar to fop2(), the modulo operation is performed using the 1606 // SharedRuntime::drem method (on x86_64 platforms) or using the 1607 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1608 #ifdef _LP64 1609 __ movdbl(xmm1, xmm0); 1610 __ pop_d(xmm0); 1611 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1612 #else 1613 __ push_d(xmm0); 1614 __ pop_d(); 1615 __ fld_d(at_rsp()); 1616 __ fremr(rax); 1617 __ d2ieee(); 1618 __ pop(rax); 1619 __ pop(rdx); 1620 __ push_d(); 1621 __ pop_d(xmm0); 1622 #endif 1623 break; 1624 default: 1625 ShouldNotReachHere(); 1626 break; 1627 } 1628 } else { 1629 #ifdef _LP64 1630 ShouldNotReachHere(); 1631 #else 1632 switch (op) { 1633 case add: __ fadd_d (at_rsp()); break; 1634 case sub: __ fsubr_d(at_rsp()); break; 1635 case mul: { 1636 // strict semantics 1637 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1638 __ fmulp(); 1639 __ fmul_d (at_rsp()); 1640 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1641 __ fmulp(); 1642 break; 1643 } 1644 case div: { 1645 // strict semantics 1646 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1())); 1647 __ fmul_d (at_rsp()); 1648 __ fdivrp(); 1649 __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2())); 1650 __ fmulp(); 1651 break; 1652 } 1653 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1654 default : ShouldNotReachHere(); 1655 } 1656 __ d2ieee(); 1657 // Pop double precision number from rsp. 1658 __ pop(rax); 1659 __ pop(rdx); 1660 #endif 1661 } 1662 } 1663 1664 void TemplateTable::ineg() { 1665 transition(itos, itos); 1666 __ negl(rax); 1667 } 1668 1669 void TemplateTable::lneg() { 1670 transition(ltos, ltos); 1671 LP64_ONLY(__ negq(rax)); 1672 NOT_LP64(__ lneg(rdx, rax)); 1673 } 1674 1675 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1676 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1677 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1678 // of 128-bits operands for SSE instructions. 1679 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1680 // Store the value to a 128-bits operand. 1681 operand[0] = lo; 1682 operand[1] = hi; 1683 return operand; 1684 } 1685 1686 // Buffer for 128-bits masks used by SSE instructions. 1687 static jlong float_signflip_pool[2*2]; 1688 static jlong double_signflip_pool[2*2]; 1689 1690 void TemplateTable::fneg() { 1691 transition(ftos, ftos); 1692 if (UseSSE >= 1) { 1693 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 1694 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1695 } else { 1696 LP64_ONLY(ShouldNotReachHere()); 1697 NOT_LP64(__ fchs()); 1698 } 1699 } 1700 1701 void TemplateTable::dneg() { 1702 transition(dtos, dtos); 1703 if (UseSSE >= 2) { 1704 static jlong *double_signflip = 1705 double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 1706 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1707 } else { 1708 #ifdef _LP64 1709 ShouldNotReachHere(); 1710 #else 1711 __ fchs(); 1712 #endif 1713 } 1714 } 1715 1716 void TemplateTable::iinc() { 1717 transition(vtos, vtos); 1718 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1719 locals_index(rbx); 1720 __ addl(iaddress(rbx), rdx); 1721 } 1722 1723 void TemplateTable::wide_iinc() { 1724 transition(vtos, vtos); 1725 __ movl(rdx, at_bcp(4)); // get constant 1726 locals_index_wide(rbx); 1727 __ bswapl(rdx); // swap bytes & sign-extend constant 1728 __ sarl(rdx, 16); 1729 __ addl(iaddress(rbx), rdx); 1730 // Note: should probably use only one movl to get both 1731 // the index and the constant -> fix this 1732 } 1733 1734 void TemplateTable::convert() { 1735 #ifdef _LP64 1736 // Checking 1737 #ifdef ASSERT 1738 { 1739 TosState tos_in = ilgl; 1740 TosState tos_out = ilgl; 1741 switch (bytecode()) { 1742 case Bytecodes::_i2l: // fall through 1743 case Bytecodes::_i2f: // fall through 1744 case Bytecodes::_i2d: // fall through 1745 case Bytecodes::_i2b: // fall through 1746 case Bytecodes::_i2c: // fall through 1747 case Bytecodes::_i2s: tos_in = itos; break; 1748 case Bytecodes::_l2i: // fall through 1749 case Bytecodes::_l2f: // fall through 1750 case Bytecodes::_l2d: tos_in = ltos; break; 1751 case Bytecodes::_f2i: // fall through 1752 case Bytecodes::_f2l: // fall through 1753 case Bytecodes::_f2d: tos_in = ftos; break; 1754 case Bytecodes::_d2i: // fall through 1755 case Bytecodes::_d2l: // fall through 1756 case Bytecodes::_d2f: tos_in = dtos; break; 1757 default : ShouldNotReachHere(); 1758 } 1759 switch (bytecode()) { 1760 case Bytecodes::_l2i: // fall through 1761 case Bytecodes::_f2i: // fall through 1762 case Bytecodes::_d2i: // fall through 1763 case Bytecodes::_i2b: // fall through 1764 case Bytecodes::_i2c: // fall through 1765 case Bytecodes::_i2s: tos_out = itos; break; 1766 case Bytecodes::_i2l: // fall through 1767 case Bytecodes::_f2l: // fall through 1768 case Bytecodes::_d2l: tos_out = ltos; break; 1769 case Bytecodes::_i2f: // fall through 1770 case Bytecodes::_l2f: // fall through 1771 case Bytecodes::_d2f: tos_out = ftos; break; 1772 case Bytecodes::_i2d: // fall through 1773 case Bytecodes::_l2d: // fall through 1774 case Bytecodes::_f2d: tos_out = dtos; break; 1775 default : ShouldNotReachHere(); 1776 } 1777 transition(tos_in, tos_out); 1778 } 1779 #endif // ASSERT 1780 1781 static const int64_t is_nan = 0x8000000000000000L; 1782 1783 // Conversion 1784 switch (bytecode()) { 1785 case Bytecodes::_i2l: 1786 __ movslq(rax, rax); 1787 break; 1788 case Bytecodes::_i2f: 1789 __ cvtsi2ssl(xmm0, rax); 1790 break; 1791 case Bytecodes::_i2d: 1792 __ cvtsi2sdl(xmm0, rax); 1793 break; 1794 case Bytecodes::_i2b: 1795 __ movsbl(rax, rax); 1796 break; 1797 case Bytecodes::_i2c: 1798 __ movzwl(rax, rax); 1799 break; 1800 case Bytecodes::_i2s: 1801 __ movswl(rax, rax); 1802 break; 1803 case Bytecodes::_l2i: 1804 __ movl(rax, rax); 1805 break; 1806 case Bytecodes::_l2f: 1807 __ cvtsi2ssq(xmm0, rax); 1808 break; 1809 case Bytecodes::_l2d: 1810 __ cvtsi2sdq(xmm0, rax); 1811 break; 1812 case Bytecodes::_f2i: 1813 { 1814 Label L; 1815 __ cvttss2sil(rax, xmm0); 1816 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1817 __ jcc(Assembler::notEqual, L); 1818 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1819 __ bind(L); 1820 } 1821 break; 1822 case Bytecodes::_f2l: 1823 { 1824 Label L; 1825 __ cvttss2siq(rax, xmm0); 1826 // NaN or overflow/underflow? 1827 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1828 __ jcc(Assembler::notEqual, L); 1829 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1830 __ bind(L); 1831 } 1832 break; 1833 case Bytecodes::_f2d: 1834 __ cvtss2sd(xmm0, xmm0); 1835 break; 1836 case Bytecodes::_d2i: 1837 { 1838 Label L; 1839 __ cvttsd2sil(rax, xmm0); 1840 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1841 __ jcc(Assembler::notEqual, L); 1842 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1843 __ bind(L); 1844 } 1845 break; 1846 case Bytecodes::_d2l: 1847 { 1848 Label L; 1849 __ cvttsd2siq(rax, xmm0); 1850 // NaN or overflow/underflow? 1851 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1852 __ jcc(Assembler::notEqual, L); 1853 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1854 __ bind(L); 1855 } 1856 break; 1857 case Bytecodes::_d2f: 1858 __ cvtsd2ss(xmm0, xmm0); 1859 break; 1860 default: 1861 ShouldNotReachHere(); 1862 } 1863 #else 1864 // Checking 1865 #ifdef ASSERT 1866 { TosState tos_in = ilgl; 1867 TosState tos_out = ilgl; 1868 switch (bytecode()) { 1869 case Bytecodes::_i2l: // fall through 1870 case Bytecodes::_i2f: // fall through 1871 case Bytecodes::_i2d: // fall through 1872 case Bytecodes::_i2b: // fall through 1873 case Bytecodes::_i2c: // fall through 1874 case Bytecodes::_i2s: tos_in = itos; break; 1875 case Bytecodes::_l2i: // fall through 1876 case Bytecodes::_l2f: // fall through 1877 case Bytecodes::_l2d: tos_in = ltos; break; 1878 case Bytecodes::_f2i: // fall through 1879 case Bytecodes::_f2l: // fall through 1880 case Bytecodes::_f2d: tos_in = ftos; break; 1881 case Bytecodes::_d2i: // fall through 1882 case Bytecodes::_d2l: // fall through 1883 case Bytecodes::_d2f: tos_in = dtos; break; 1884 default : ShouldNotReachHere(); 1885 } 1886 switch (bytecode()) { 1887 case Bytecodes::_l2i: // fall through 1888 case Bytecodes::_f2i: // fall through 1889 case Bytecodes::_d2i: // fall through 1890 case Bytecodes::_i2b: // fall through 1891 case Bytecodes::_i2c: // fall through 1892 case Bytecodes::_i2s: tos_out = itos; break; 1893 case Bytecodes::_i2l: // fall through 1894 case Bytecodes::_f2l: // fall through 1895 case Bytecodes::_d2l: tos_out = ltos; break; 1896 case Bytecodes::_i2f: // fall through 1897 case Bytecodes::_l2f: // fall through 1898 case Bytecodes::_d2f: tos_out = ftos; break; 1899 case Bytecodes::_i2d: // fall through 1900 case Bytecodes::_l2d: // fall through 1901 case Bytecodes::_f2d: tos_out = dtos; break; 1902 default : ShouldNotReachHere(); 1903 } 1904 transition(tos_in, tos_out); 1905 } 1906 #endif // ASSERT 1907 1908 // Conversion 1909 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1910 switch (bytecode()) { 1911 case Bytecodes::_i2l: 1912 __ extend_sign(rdx, rax); 1913 break; 1914 case Bytecodes::_i2f: 1915 if (UseSSE >= 1) { 1916 __ cvtsi2ssl(xmm0, rax); 1917 } else { 1918 __ push(rax); // store int on tos 1919 __ fild_s(at_rsp()); // load int to ST0 1920 __ f2ieee(); // truncate to float size 1921 __ pop(rcx); // adjust rsp 1922 } 1923 break; 1924 case Bytecodes::_i2d: 1925 if (UseSSE >= 2) { 1926 __ cvtsi2sdl(xmm0, rax); 1927 } else { 1928 __ push(rax); // add one slot for d2ieee() 1929 __ push(rax); // store int on tos 1930 __ fild_s(at_rsp()); // load int to ST0 1931 __ d2ieee(); // truncate to double size 1932 __ pop(rcx); // adjust rsp 1933 __ pop(rcx); 1934 } 1935 break; 1936 case Bytecodes::_i2b: 1937 __ shll(rax, 24); // truncate upper 24 bits 1938 __ sarl(rax, 24); // and sign-extend byte 1939 LP64_ONLY(__ movsbl(rax, rax)); 1940 break; 1941 case Bytecodes::_i2c: 1942 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1943 LP64_ONLY(__ movzwl(rax, rax)); 1944 break; 1945 case Bytecodes::_i2s: 1946 __ shll(rax, 16); // truncate upper 16 bits 1947 __ sarl(rax, 16); // and sign-extend short 1948 LP64_ONLY(__ movswl(rax, rax)); 1949 break; 1950 case Bytecodes::_l2i: 1951 /* nothing to do */ 1952 break; 1953 case Bytecodes::_l2f: 1954 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1955 // 64-bit long values to floats. On 32-bit platforms it is not possible 1956 // to use that instruction with 64-bit operands, therefore the FPU is 1957 // used to perform the conversion. 1958 __ push(rdx); // store long on tos 1959 __ push(rax); 1960 __ fild_d(at_rsp()); // load long to ST0 1961 __ f2ieee(); // truncate to float size 1962 __ pop(rcx); // adjust rsp 1963 __ pop(rcx); 1964 if (UseSSE >= 1) { 1965 __ push_f(); 1966 __ pop_f(xmm0); 1967 } 1968 break; 1969 case Bytecodes::_l2d: 1970 // On 32-bit platforms the FPU is used for conversion because on 1971 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1972 // instruction with 64-bit operands. 1973 __ push(rdx); // store long on tos 1974 __ push(rax); 1975 __ fild_d(at_rsp()); // load long to ST0 1976 __ d2ieee(); // truncate to double size 1977 __ pop(rcx); // adjust rsp 1978 __ pop(rcx); 1979 if (UseSSE >= 2) { 1980 __ push_d(); 1981 __ pop_d(xmm0); 1982 } 1983 break; 1984 case Bytecodes::_f2i: 1985 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1986 // as it returns 0 for any NaN. 1987 if (UseSSE >= 1) { 1988 __ push_f(xmm0); 1989 } else { 1990 __ push(rcx); // reserve space for argument 1991 __ fstp_s(at_rsp()); // pass float argument on stack 1992 } 1993 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1994 break; 1995 case Bytecodes::_f2l: 1996 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 1997 // as it returns 0 for any NaN. 1998 if (UseSSE >= 1) { 1999 __ push_f(xmm0); 2000 } else { 2001 __ push(rcx); // reserve space for argument 2002 __ fstp_s(at_rsp()); // pass float argument on stack 2003 } 2004 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 2005 break; 2006 case Bytecodes::_f2d: 2007 if (UseSSE < 1) { 2008 /* nothing to do */ 2009 } else if (UseSSE == 1) { 2010 __ push_f(xmm0); 2011 __ pop_f(); 2012 } else { // UseSSE >= 2 2013 __ cvtss2sd(xmm0, xmm0); 2014 } 2015 break; 2016 case Bytecodes::_d2i: 2017 if (UseSSE >= 2) { 2018 __ push_d(xmm0); 2019 } else { 2020 __ push(rcx); // reserve space for argument 2021 __ push(rcx); 2022 __ fstp_d(at_rsp()); // pass double argument on stack 2023 } 2024 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 2025 break; 2026 case Bytecodes::_d2l: 2027 if (UseSSE >= 2) { 2028 __ push_d(xmm0); 2029 } else { 2030 __ push(rcx); // reserve space for argument 2031 __ push(rcx); 2032 __ fstp_d(at_rsp()); // pass double argument on stack 2033 } 2034 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 2035 break; 2036 case Bytecodes::_d2f: 2037 if (UseSSE <= 1) { 2038 __ push(rcx); // reserve space for f2ieee() 2039 __ f2ieee(); // truncate to float size 2040 __ pop(rcx); // adjust rsp 2041 if (UseSSE == 1) { 2042 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 2043 // the conversion is performed using the FPU in this case. 2044 __ push_f(); 2045 __ pop_f(xmm0); 2046 } 2047 } else { // UseSSE >= 2 2048 __ cvtsd2ss(xmm0, xmm0); 2049 } 2050 break; 2051 default : 2052 ShouldNotReachHere(); 2053 } 2054 #endif 2055 } 2056 2057 void TemplateTable::lcmp() { 2058 transition(ltos, itos); 2059 #ifdef _LP64 2060 Label done; 2061 __ pop_l(rdx); 2062 __ cmpq(rdx, rax); 2063 __ movl(rax, -1); 2064 __ jccb(Assembler::less, done); 2065 __ setb(Assembler::notEqual, rax); 2066 __ movzbl(rax, rax); 2067 __ bind(done); 2068 #else 2069 2070 // y = rdx:rax 2071 __ pop_l(rbx, rcx); // get x = rcx:rbx 2072 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 2073 __ mov(rax, rcx); 2074 #endif 2075 } 2076 2077 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 2078 if ((is_float && UseSSE >= 1) || 2079 (!is_float && UseSSE >= 2)) { 2080 Label done; 2081 if (is_float) { 2082 // XXX get rid of pop here, use ... reg, mem32 2083 __ pop_f(xmm1); 2084 __ ucomiss(xmm1, xmm0); 2085 } else { 2086 // XXX get rid of pop here, use ... reg, mem64 2087 __ pop_d(xmm1); 2088 __ ucomisd(xmm1, xmm0); 2089 } 2090 if (unordered_result < 0) { 2091 __ movl(rax, -1); 2092 __ jccb(Assembler::parity, done); 2093 __ jccb(Assembler::below, done); 2094 __ setb(Assembler::notEqual, rdx); 2095 __ movzbl(rax, rdx); 2096 } else { 2097 __ movl(rax, 1); 2098 __ jccb(Assembler::parity, done); 2099 __ jccb(Assembler::above, done); 2100 __ movl(rax, 0); 2101 __ jccb(Assembler::equal, done); 2102 __ decrementl(rax); 2103 } 2104 __ bind(done); 2105 } else { 2106 #ifdef _LP64 2107 ShouldNotReachHere(); 2108 #else 2109 if (is_float) { 2110 __ fld_s(at_rsp()); 2111 } else { 2112 __ fld_d(at_rsp()); 2113 __ pop(rdx); 2114 } 2115 __ pop(rcx); 2116 __ fcmp2int(rax, unordered_result < 0); 2117 #endif // _LP64 2118 } 2119 } 2120 2121 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2122 __ get_method(rcx); // rcx holds method 2123 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2124 // holds bumped taken count 2125 2126 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2127 InvocationCounter::counter_offset(); 2128 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2129 InvocationCounter::counter_offset(); 2130 2131 // Load up edx with the branch displacement 2132 if (is_wide) { 2133 __ movl(rdx, at_bcp(1)); 2134 } else { 2135 __ load_signed_short(rdx, at_bcp(1)); 2136 } 2137 __ bswapl(rdx); 2138 2139 if (!is_wide) { 2140 __ sarl(rdx, 16); 2141 } 2142 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2143 2144 // Handle all the JSR stuff here, then exit. 2145 // It's much shorter and cleaner than intermingling with the non-JSR 2146 // normal-branch stuff occurring below. 2147 if (is_jsr) { 2148 // Pre-load the next target bytecode into rbx 2149 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2150 2151 // compute return address as bci in rax 2152 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2153 in_bytes(ConstMethod::codes_offset()))); 2154 __ subptr(rax, Address(rcx, Method::const_offset())); 2155 // Adjust the bcp in r13 by the displacement in rdx 2156 __ addptr(rbcp, rdx); 2157 // jsr returns atos that is not an oop 2158 __ push_i(rax); 2159 __ dispatch_only(vtos, true); 2160 return; 2161 } 2162 2163 // Normal (non-jsr) branch handling 2164 2165 // Adjust the bcp in r13 by the displacement in rdx 2166 __ addptr(rbcp, rdx); 2167 2168 assert(UseLoopCounter || !UseOnStackReplacement, 2169 "on-stack-replacement requires loop counters"); 2170 Label backedge_counter_overflow; 2171 Label dispatch; 2172 if (UseLoopCounter) { 2173 // increment backedge counter for backward branches 2174 // rax: MDO 2175 // rbx: MDO bumped taken-count 2176 // rcx: method 2177 // rdx: target offset 2178 // r13: target bcp 2179 // r14: locals pointer 2180 __ testl(rdx, rdx); // check if forward or backward branch 2181 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2182 2183 // check if MethodCounters exists 2184 Label has_counters; 2185 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2186 __ testptr(rax, rax); 2187 __ jcc(Assembler::notZero, has_counters); 2188 __ push(rdx); 2189 __ push(rcx); 2190 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2191 rcx); 2192 __ pop(rcx); 2193 __ pop(rdx); 2194 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2195 __ testptr(rax, rax); 2196 __ jcc(Assembler::zero, dispatch); 2197 __ bind(has_counters); 2198 2199 Label no_mdo; 2200 int increment = InvocationCounter::count_increment; 2201 if (ProfileInterpreter) { 2202 // Are we profiling? 2203 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2204 __ testptr(rbx, rbx); 2205 __ jccb(Assembler::zero, no_mdo); 2206 // Increment the MDO backedge counter 2207 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2208 in_bytes(InvocationCounter::counter_offset())); 2209 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2210 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero, 2211 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2212 __ jmp(dispatch); 2213 } 2214 __ bind(no_mdo); 2215 // Increment backedge counter in MethodCounters* 2216 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2217 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2218 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 2219 rax, false, Assembler::zero, UseOnStackReplacement ? &backedge_counter_overflow : NULL); 2220 __ bind(dispatch); 2221 } 2222 2223 // Pre-load the next target bytecode into rbx 2224 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2225 2226 // continue with the bytecode @ target 2227 // rax: return bci for jsr's, unused otherwise 2228 // rbx: target bytecode 2229 // r13: target bcp 2230 __ dispatch_only(vtos, true); 2231 2232 if (UseLoopCounter) { 2233 if (UseOnStackReplacement) { 2234 Label set_mdp; 2235 // invocation counter overflow 2236 __ bind(backedge_counter_overflow); 2237 __ negptr(rdx); 2238 __ addptr(rdx, rbcp); // branch bcp 2239 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2240 __ call_VM(noreg, 2241 CAST_FROM_FN_PTR(address, 2242 InterpreterRuntime::frequency_counter_overflow), 2243 rdx); 2244 2245 // rax: osr nmethod (osr ok) or NULL (osr not possible) 2246 // rdx: scratch 2247 // r14: locals pointer 2248 // r13: bcp 2249 __ testptr(rax, rax); // test result 2250 __ jcc(Assembler::zero, dispatch); // no osr if null 2251 // nmethod may have been invalidated (VM may block upon call_VM return) 2252 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2253 __ jcc(Assembler::notEqual, dispatch); 2254 2255 // We have the address of an on stack replacement routine in rax. 2256 // In preparation of invoking it, first we must migrate the locals 2257 // and monitors from off the interpreter frame on the stack. 2258 // Ensure to save the osr nmethod over the migration call, 2259 // it will be preserved in rbx. 2260 __ mov(rbx, rax); 2261 2262 NOT_LP64(__ get_thread(rcx)); 2263 2264 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2265 2266 // rax is OSR buffer, move it to expected parameter location 2267 LP64_ONLY(__ mov(j_rarg0, rax)); 2268 NOT_LP64(__ mov(rcx, rax)); 2269 // We use j_rarg definitions here so that registers don't conflict as parameter 2270 // registers change across platforms as we are in the midst of a calling 2271 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2272 2273 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2274 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2275 2276 // pop the interpreter frame 2277 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2278 __ leave(); // remove frame anchor 2279 __ pop(retaddr); // get return address 2280 __ mov(rsp, sender_sp); // set sp to sender sp 2281 // Ensure compiled code always sees stack at proper alignment 2282 __ andptr(rsp, -(StackAlignmentInBytes)); 2283 2284 // unlike x86 we need no specialized return from compiled code 2285 // to the interpreter or the call stub. 2286 2287 // push the return address 2288 __ push(retaddr); 2289 2290 // and begin the OSR nmethod 2291 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 2292 } 2293 } 2294 } 2295 2296 void TemplateTable::if_0cmp(Condition cc) { 2297 transition(itos, vtos); 2298 // assume branch is more often taken than not (loops use backward branches) 2299 Label not_taken; 2300 __ testl(rax, rax); 2301 __ jcc(j_not(cc), not_taken); 2302 branch(false, false); 2303 __ bind(not_taken); 2304 __ profile_not_taken_branch(rax); 2305 } 2306 2307 void TemplateTable::if_icmp(Condition cc) { 2308 transition(itos, vtos); 2309 // assume branch is more often taken than not (loops use backward branches) 2310 Label not_taken; 2311 __ pop_i(rdx); 2312 __ cmpl(rdx, rax); 2313 __ jcc(j_not(cc), not_taken); 2314 branch(false, false); 2315 __ bind(not_taken); 2316 __ profile_not_taken_branch(rax); 2317 } 2318 2319 void TemplateTable::if_nullcmp(Condition cc) { 2320 transition(atos, vtos); 2321 // assume branch is more often taken than not (loops use backward branches) 2322 Label not_taken; 2323 __ testptr(rax, rax); 2324 __ jcc(j_not(cc), not_taken); 2325 branch(false, false); 2326 __ bind(not_taken); 2327 __ profile_not_taken_branch(rax); 2328 } 2329 2330 void TemplateTable::if_acmp(Condition cc) { 2331 transition(atos, vtos); 2332 // assume branch is more often taken than not (loops use backward branches) 2333 Label not_taken; 2334 __ pop_ptr(rdx); 2335 __ cmpoop(rdx, rax); 2336 __ jcc(j_not(cc), not_taken); 2337 branch(false, false); 2338 __ bind(not_taken); 2339 __ profile_not_taken_branch(rax); 2340 } 2341 2342 void TemplateTable::ret() { 2343 transition(vtos, vtos); 2344 locals_index(rbx); 2345 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2346 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2347 __ profile_ret(rbx, rcx); 2348 __ get_method(rax); 2349 __ movptr(rbcp, Address(rax, Method::const_offset())); 2350 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2351 ConstMethod::codes_offset())); 2352 __ dispatch_next(vtos, 0, true); 2353 } 2354 2355 void TemplateTable::wide_ret() { 2356 transition(vtos, vtos); 2357 locals_index_wide(rbx); 2358 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2359 __ profile_ret(rbx, rcx); 2360 __ get_method(rax); 2361 __ movptr(rbcp, Address(rax, Method::const_offset())); 2362 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2363 __ dispatch_next(vtos, 0, true); 2364 } 2365 2366 void TemplateTable::tableswitch() { 2367 Label default_case, continue_execution; 2368 transition(itos, vtos); 2369 2370 // align r13/rsi 2371 __ lea(rbx, at_bcp(BytesPerInt)); 2372 __ andptr(rbx, -BytesPerInt); 2373 // load lo & hi 2374 __ movl(rcx, Address(rbx, BytesPerInt)); 2375 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2376 __ bswapl(rcx); 2377 __ bswapl(rdx); 2378 // check against lo & hi 2379 __ cmpl(rax, rcx); 2380 __ jcc(Assembler::less, default_case); 2381 __ cmpl(rax, rdx); 2382 __ jcc(Assembler::greater, default_case); 2383 // lookup dispatch offset 2384 __ subl(rax, rcx); 2385 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2386 __ profile_switch_case(rax, rbx, rcx); 2387 // continue execution 2388 __ bind(continue_execution); 2389 __ bswapl(rdx); 2390 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2391 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2392 __ addptr(rbcp, rdx); 2393 __ dispatch_only(vtos, true); 2394 // handle default 2395 __ bind(default_case); 2396 __ profile_switch_default(rax); 2397 __ movl(rdx, Address(rbx, 0)); 2398 __ jmp(continue_execution); 2399 } 2400 2401 void TemplateTable::lookupswitch() { 2402 transition(itos, itos); 2403 __ stop("lookupswitch bytecode should have been rewritten"); 2404 } 2405 2406 void TemplateTable::fast_linearswitch() { 2407 transition(itos, vtos); 2408 Label loop_entry, loop, found, continue_execution; 2409 // bswap rax so we can avoid bswapping the table entries 2410 __ bswapl(rax); 2411 // align r13 2412 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2413 // this instruction (change offsets 2414 // below) 2415 __ andptr(rbx, -BytesPerInt); 2416 // set counter 2417 __ movl(rcx, Address(rbx, BytesPerInt)); 2418 __ bswapl(rcx); 2419 __ jmpb(loop_entry); 2420 // table search 2421 __ bind(loop); 2422 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2423 __ jcc(Assembler::equal, found); 2424 __ bind(loop_entry); 2425 __ decrementl(rcx); 2426 __ jcc(Assembler::greaterEqual, loop); 2427 // default case 2428 __ profile_switch_default(rax); 2429 __ movl(rdx, Address(rbx, 0)); 2430 __ jmp(continue_execution); 2431 // entry found -> get offset 2432 __ bind(found); 2433 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2434 __ profile_switch_case(rcx, rax, rbx); 2435 // continue execution 2436 __ bind(continue_execution); 2437 __ bswapl(rdx); 2438 __ movl2ptr(rdx, rdx); 2439 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2440 __ addptr(rbcp, rdx); 2441 __ dispatch_only(vtos, true); 2442 } 2443 2444 void TemplateTable::fast_binaryswitch() { 2445 transition(itos, vtos); 2446 // Implementation using the following core algorithm: 2447 // 2448 // int binary_search(int key, LookupswitchPair* array, int n) { 2449 // // Binary search according to "Methodik des Programmierens" by 2450 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2451 // int i = 0; 2452 // int j = n; 2453 // while (i+1 < j) { 2454 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2455 // // with Q: for all i: 0 <= i < n: key < a[i] 2456 // // where a stands for the array and assuming that the (inexisting) 2457 // // element a[n] is infinitely big. 2458 // int h = (i + j) >> 1; 2459 // // i < h < j 2460 // if (key < array[h].fast_match()) { 2461 // j = h; 2462 // } else { 2463 // i = h; 2464 // } 2465 // } 2466 // // R: a[i] <= key < a[i+1] or Q 2467 // // (i.e., if key is within array, i is the correct index) 2468 // return i; 2469 // } 2470 2471 // Register allocation 2472 const Register key = rax; // already set (tosca) 2473 const Register array = rbx; 2474 const Register i = rcx; 2475 const Register j = rdx; 2476 const Register h = rdi; 2477 const Register temp = rsi; 2478 2479 // Find array start 2480 NOT_LP64(__ save_bcp()); 2481 2482 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2483 // get rid of this 2484 // instruction (change 2485 // offsets below) 2486 __ andptr(array, -BytesPerInt); 2487 2488 // Initialize i & j 2489 __ xorl(i, i); // i = 0; 2490 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2491 2492 // Convert j into native byteordering 2493 __ bswapl(j); 2494 2495 // And start 2496 Label entry; 2497 __ jmp(entry); 2498 2499 // binary search loop 2500 { 2501 Label loop; 2502 __ bind(loop); 2503 // int h = (i + j) >> 1; 2504 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2505 __ sarl(h, 1); // h = (i + j) >> 1; 2506 // if (key < array[h].fast_match()) { 2507 // j = h; 2508 // } else { 2509 // i = h; 2510 // } 2511 // Convert array[h].match to native byte-ordering before compare 2512 __ movl(temp, Address(array, h, Address::times_8)); 2513 __ bswapl(temp); 2514 __ cmpl(key, temp); 2515 // j = h if (key < array[h].fast_match()) 2516 __ cmov32(Assembler::less, j, h); 2517 // i = h if (key >= array[h].fast_match()) 2518 __ cmov32(Assembler::greaterEqual, i, h); 2519 // while (i+1 < j) 2520 __ bind(entry); 2521 __ leal(h, Address(i, 1)); // i+1 2522 __ cmpl(h, j); // i+1 < j 2523 __ jcc(Assembler::less, loop); 2524 } 2525 2526 // end of binary search, result index is i (must check again!) 2527 Label default_case; 2528 // Convert array[i].match to native byte-ordering before compare 2529 __ movl(temp, Address(array, i, Address::times_8)); 2530 __ bswapl(temp); 2531 __ cmpl(key, temp); 2532 __ jcc(Assembler::notEqual, default_case); 2533 2534 // entry found -> j = offset 2535 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2536 __ profile_switch_case(i, key, array); 2537 __ bswapl(j); 2538 LP64_ONLY(__ movslq(j, j)); 2539 2540 NOT_LP64(__ restore_bcp()); 2541 NOT_LP64(__ restore_locals()); // restore rdi 2542 2543 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2544 __ addptr(rbcp, j); 2545 __ dispatch_only(vtos, true); 2546 2547 // default case -> j = default offset 2548 __ bind(default_case); 2549 __ profile_switch_default(i); 2550 __ movl(j, Address(array, -2 * BytesPerInt)); 2551 __ bswapl(j); 2552 LP64_ONLY(__ movslq(j, j)); 2553 2554 NOT_LP64(__ restore_bcp()); 2555 NOT_LP64(__ restore_locals()); 2556 2557 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2558 __ addptr(rbcp, j); 2559 __ dispatch_only(vtos, true); 2560 } 2561 2562 void TemplateTable::_return(TosState state) { 2563 transition(state, state); 2564 2565 assert(_desc->calls_vm(), 2566 "inconsistent calls_vm information"); // call in remove_activation 2567 2568 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2569 assert(state == vtos, "only valid state"); 2570 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2571 __ movptr(robj, aaddress(0)); 2572 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 2573 __ load_klass(rdi, robj, tmp_load_klass); 2574 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2575 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2576 Label skip_register_finalizer; 2577 __ jcc(Assembler::zero, skip_register_finalizer); 2578 2579 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2580 2581 __ bind(skip_register_finalizer); 2582 } 2583 2584 if (_desc->bytecode() != Bytecodes::_return_register_finalizer) { 2585 Label no_safepoint; 2586 NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll")); 2587 #ifdef _LP64 2588 __ testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2589 #else 2590 const Register thread = rdi; 2591 __ get_thread(thread); 2592 __ testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 2593 #endif 2594 __ jcc(Assembler::zero, no_safepoint); 2595 __ push(state); 2596 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2597 InterpreterRuntime::at_safepoint)); 2598 __ pop(state); 2599 __ bind(no_safepoint); 2600 } 2601 2602 // Narrow result if state is itos but result type is smaller. 2603 // Need to narrow in the return bytecode rather than in generate_return_entry 2604 // since compiled code callers expect the result to already be narrowed. 2605 if (state == itos) { 2606 __ narrow(rax); 2607 } 2608 __ remove_activation(state, rbcp); 2609 2610 __ jmp(rbcp); 2611 } 2612 2613 // ---------------------------------------------------------------------------- 2614 // Volatile variables demand their effects be made known to all CPU's 2615 // in order. Store buffers on most chips allow reads & writes to 2616 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2617 // without some kind of memory barrier (i.e., it's not sufficient that 2618 // the interpreter does not reorder volatile references, the hardware 2619 // also must not reorder them). 2620 // 2621 // According to the new Java Memory Model (JMM): 2622 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2623 // writes act as aquire & release, so: 2624 // (2) A read cannot let unrelated NON-volatile memory refs that 2625 // happen after the read float up to before the read. It's OK for 2626 // non-volatile memory refs that happen before the volatile read to 2627 // float down below it. 2628 // (3) Similar a volatile write cannot let unrelated NON-volatile 2629 // memory refs that happen BEFORE the write float down to after the 2630 // write. It's OK for non-volatile memory refs that happen after the 2631 // volatile write to float up before it. 2632 // 2633 // We only put in barriers around volatile refs (they are expensive), 2634 // not _between_ memory refs (that would require us to track the 2635 // flavor of the previous memory refs). Requirements (2) and (3) 2636 // require some barriers before volatile stores and after volatile 2637 // loads. These nearly cover requirement (1) but miss the 2638 // volatile-store-volatile-load case. This final case is placed after 2639 // volatile-stores although it could just as well go before 2640 // volatile-loads. 2641 2642 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2643 // Helper function to insert a is-volatile test and memory barrier 2644 __ membar(order_constraint); 2645 } 2646 2647 void TemplateTable::resolve_cache_and_index(int byte_no, 2648 Register cache, 2649 Register index, 2650 size_t index_size) { 2651 const Register temp = rbx; 2652 assert_different_registers(cache, index, temp); 2653 2654 Label L_clinit_barrier_slow; 2655 Label resolved; 2656 2657 Bytecodes::Code code = bytecode(); 2658 switch (code) { 2659 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2660 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2661 default: break; 2662 } 2663 2664 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2665 __ get_cache_and_index_and_bytecode_at_bcp(cache, index, temp, byte_no, 1, index_size); 2666 __ cmpl(temp, code); // have we resolved this bytecode? 2667 __ jcc(Assembler::equal, resolved); 2668 2669 // resolve first time through 2670 // Class initialization barrier slow path lands here as well. 2671 __ bind(L_clinit_barrier_slow); 2672 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2673 __ movl(temp, code); 2674 __ call_VM(noreg, entry, temp); 2675 // Update registers with resolved info 2676 __ get_cache_and_index_at_bcp(cache, index, 1, index_size); 2677 2678 __ bind(resolved); 2679 2680 // Class initialization barrier for static methods 2681 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2682 const Register method = temp; 2683 const Register klass = temp; 2684 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 2685 assert(thread != noreg, "x86_32 not supported"); 2686 2687 __ load_resolved_method_at_index(byte_no, method, cache, index); 2688 __ load_method_holder(klass, method); 2689 __ clinit_barrier(klass, thread, NULL /*L_fast_path*/, &L_clinit_barrier_slow); 2690 } 2691 } 2692 2693 // The cache and index registers must be set before call 2694 void TemplateTable::load_field_cp_cache_entry(Register obj, 2695 Register cache, 2696 Register index, 2697 Register off, 2698 Register flags, 2699 bool is_static = false) { 2700 assert_different_registers(cache, index, flags, off); 2701 2702 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2703 // Field offset 2704 __ movptr(off, Address(cache, index, Address::times_ptr, 2705 in_bytes(cp_base_offset + 2706 ConstantPoolCacheEntry::f2_offset()))); 2707 // Flags 2708 __ movl(flags, Address(cache, index, Address::times_ptr, 2709 in_bytes(cp_base_offset + 2710 ConstantPoolCacheEntry::flags_offset()))); 2711 2712 // klass overwrite register 2713 if (is_static) { 2714 __ movptr(obj, Address(cache, index, Address::times_ptr, 2715 in_bytes(cp_base_offset + 2716 ConstantPoolCacheEntry::f1_offset()))); 2717 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2718 __ movptr(obj, Address(obj, mirror_offset)); 2719 __ resolve_oop_handle(obj); 2720 } 2721 } 2722 2723 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2724 Register method, 2725 Register itable_index, 2726 Register flags, 2727 bool is_invokevirtual, 2728 bool is_invokevfinal, /*unused*/ 2729 bool is_invokedynamic) { 2730 // setup registers 2731 const Register cache = rcx; 2732 const Register index = rdx; 2733 assert_different_registers(method, flags); 2734 assert_different_registers(method, cache, index); 2735 assert_different_registers(itable_index, flags); 2736 assert_different_registers(itable_index, cache, index); 2737 // determine constant pool cache field offsets 2738 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2739 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2740 ConstantPoolCacheEntry::flags_offset()); 2741 // access constant pool cache fields 2742 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2743 ConstantPoolCacheEntry::f2_offset()); 2744 2745 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2746 resolve_cache_and_index(byte_no, cache, index, index_size); 2747 __ load_resolved_method_at_index(byte_no, method, cache, index); 2748 2749 if (itable_index != noreg) { 2750 // pick up itable or appendix index from f2 also: 2751 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2752 } 2753 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2754 } 2755 2756 // The registers cache and index expected to be set before call. 2757 // Correct values of the cache and index registers are preserved. 2758 void TemplateTable::jvmti_post_field_access(Register cache, 2759 Register index, 2760 bool is_static, 2761 bool has_tos) { 2762 if (JvmtiExport::can_post_field_access()) { 2763 // Check to see if a field access watch has been set before we take 2764 // the time to call into the VM. 2765 Label L1; 2766 assert_different_registers(cache, index, rax); 2767 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2768 __ testl(rax,rax); 2769 __ jcc(Assembler::zero, L1); 2770 2771 // cache entry pointer 2772 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2773 __ shll(index, LogBytesPerWord); 2774 __ addptr(cache, index); 2775 if (is_static) { 2776 __ xorptr(rax, rax); // NULL object reference 2777 } else { 2778 __ pop(atos); // Get the object 2779 __ verify_oop(rax); 2780 __ push(atos); // Restore stack state 2781 } 2782 // rax,: object pointer or NULL 2783 // cache: cache entry pointer 2784 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2785 rax, cache); 2786 __ get_cache_and_index_at_bcp(cache, index, 1); 2787 __ bind(L1); 2788 } 2789 } 2790 2791 void TemplateTable::pop_and_check_object(Register r) { 2792 __ pop_ptr(r); 2793 __ null_check(r); // for field access must check obj. 2794 __ verify_oop(r); 2795 } 2796 2797 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2798 transition(vtos, vtos); 2799 2800 const Register cache = rcx; 2801 const Register index = rdx; 2802 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2803 const Register off = rbx; 2804 const Register flags = rax; 2805 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2806 2807 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2808 jvmti_post_field_access(cache, index, is_static, false); 2809 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2810 2811 if (!is_static) pop_and_check_object(obj); 2812 2813 const Address field(obj, off, Address::times_1, 0*wordSize); 2814 2815 Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj; 2816 2817 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2818 // Make sure we don't need to mask edx after the above shift 2819 assert(btos == 0, "change code, btos != 0"); 2820 2821 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2822 2823 __ jcc(Assembler::notZero, notByte); 2824 // btos 2825 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 2826 __ push(btos); 2827 // Rewrite bytecode to be faster 2828 if (!is_static && rc == may_rewrite) { 2829 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2830 } 2831 __ jmp(Done); 2832 2833 __ bind(notByte); 2834 __ cmpl(flags, ztos); 2835 __ jcc(Assembler::notEqual, notBool); 2836 2837 // ztos (same code as btos) 2838 __ access_load_at(T_BOOLEAN, IN_HEAP, rax, field, noreg, noreg); 2839 __ push(ztos); 2840 // Rewrite bytecode to be faster 2841 if (!is_static && rc == may_rewrite) { 2842 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2843 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2844 } 2845 __ jmp(Done); 2846 2847 __ bind(notBool); 2848 __ cmpl(flags, atos); 2849 __ jcc(Assembler::notEqual, notObj); 2850 // atos 2851 do_oop_load(_masm, field, rax); 2852 __ push(atos); 2853 if (!is_static && rc == may_rewrite) { 2854 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2855 } 2856 __ jmp(Done); 2857 2858 __ bind(notObj); 2859 __ cmpl(flags, itos); 2860 __ jcc(Assembler::notEqual, notInt); 2861 // itos 2862 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 2863 __ push(itos); 2864 // Rewrite bytecode to be faster 2865 if (!is_static && rc == may_rewrite) { 2866 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2867 } 2868 __ jmp(Done); 2869 2870 __ bind(notInt); 2871 __ cmpl(flags, ctos); 2872 __ jcc(Assembler::notEqual, notChar); 2873 // ctos 2874 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 2875 __ push(ctos); 2876 // Rewrite bytecode to be faster 2877 if (!is_static && rc == may_rewrite) { 2878 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2879 } 2880 __ jmp(Done); 2881 2882 __ bind(notChar); 2883 __ cmpl(flags, stos); 2884 __ jcc(Assembler::notEqual, notShort); 2885 // stos 2886 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 2887 __ push(stos); 2888 // Rewrite bytecode to be faster 2889 if (!is_static && rc == may_rewrite) { 2890 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2891 } 2892 __ jmp(Done); 2893 2894 __ bind(notShort); 2895 __ cmpl(flags, ltos); 2896 __ jcc(Assembler::notEqual, notLong); 2897 // ltos 2898 // Generate code as if volatile (x86_32). There just aren't enough registers to 2899 // save that information and this code is faster than the test. 2900 __ access_load_at(T_LONG, IN_HEAP | MO_RELAXED, noreg /* ltos */, field, noreg, noreg); 2901 __ push(ltos); 2902 // Rewrite bytecode to be faster 2903 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 2904 __ jmp(Done); 2905 2906 __ bind(notLong); 2907 __ cmpl(flags, ftos); 2908 __ jcc(Assembler::notEqual, notFloat); 2909 // ftos 2910 2911 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2912 __ push(ftos); 2913 // Rewrite bytecode to be faster 2914 if (!is_static && rc == may_rewrite) { 2915 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2916 } 2917 __ jmp(Done); 2918 2919 __ bind(notFloat); 2920 #ifdef ASSERT 2921 Label notDouble; 2922 __ cmpl(flags, dtos); 2923 __ jcc(Assembler::notEqual, notDouble); 2924 #endif 2925 // dtos 2926 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 2927 __ access_load_at(T_DOUBLE, IN_HEAP | MO_RELAXED, noreg /* dtos */, field, noreg, noreg); 2928 __ push(dtos); 2929 // Rewrite bytecode to be faster 2930 if (!is_static && rc == may_rewrite) { 2931 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2932 } 2933 #ifdef ASSERT 2934 __ jmp(Done); 2935 2936 __ bind(notDouble); 2937 __ stop("Bad state"); 2938 #endif 2939 2940 __ bind(Done); 2941 // [jk] not needed currently 2942 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2943 // Assembler::LoadStore)); 2944 } 2945 2946 void TemplateTable::getfield(int byte_no) { 2947 getfield_or_static(byte_no, false); 2948 } 2949 2950 void TemplateTable::nofast_getfield(int byte_no) { 2951 getfield_or_static(byte_no, false, may_not_rewrite); 2952 } 2953 2954 void TemplateTable::getstatic(int byte_no) { 2955 getfield_or_static(byte_no, true); 2956 } 2957 2958 2959 // The registers cache and index expected to be set before call. 2960 // The function may destroy various registers, just not the cache and index registers. 2961 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2962 2963 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); 2964 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2965 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2966 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); 2967 2968 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2969 2970 if (JvmtiExport::can_post_field_modification()) { 2971 // Check to see if a field modification watch has been set before 2972 // we take the time to call into the VM. 2973 Label L1; 2974 assert_different_registers(cache, index, rax); 2975 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2976 __ testl(rax, rax); 2977 __ jcc(Assembler::zero, L1); 2978 2979 __ get_cache_and_index_at_bcp(robj, RDX, 1); 2980 2981 2982 if (is_static) { 2983 // Life is simple. Null out the object pointer. 2984 __ xorl(RBX, RBX); 2985 2986 } else { 2987 // Life is harder. The stack holds the value on top, followed by 2988 // the object. We don't know the size of the value, though; it 2989 // could be one or two words depending on its type. As a result, 2990 // we must find the type to determine where the object is. 2991 #ifndef _LP64 2992 Label two_word, valsize_known; 2993 #endif 2994 __ movl(RCX, Address(robj, RDX, 2995 Address::times_ptr, 2996 in_bytes(cp_base_offset + 2997 ConstantPoolCacheEntry::flags_offset()))); 2998 NOT_LP64(__ mov(rbx, rsp)); 2999 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); 3000 3001 // Make sure we don't need to mask rcx after the above shift 3002 ConstantPoolCacheEntry::verify_tos_state_shift(); 3003 #ifdef _LP64 3004 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 3005 __ cmpl(c_rarg3, ltos); 3006 __ cmovptr(Assembler::equal, 3007 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 3008 __ cmpl(c_rarg3, dtos); 3009 __ cmovptr(Assembler::equal, 3010 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 3011 #else 3012 __ cmpl(rcx, ltos); 3013 __ jccb(Assembler::equal, two_word); 3014 __ cmpl(rcx, dtos); 3015 __ jccb(Assembler::equal, two_word); 3016 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 3017 __ jmpb(valsize_known); 3018 3019 __ bind(two_word); 3020 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 3021 3022 __ bind(valsize_known); 3023 // setup object pointer 3024 __ movptr(rbx, Address(rbx, 0)); 3025 #endif 3026 } 3027 // cache entry pointer 3028 __ addptr(robj, in_bytes(cp_base_offset)); 3029 __ shll(RDX, LogBytesPerWord); 3030 __ addptr(robj, RDX); 3031 // object (tos) 3032 __ mov(RCX, rsp); 3033 // c_rarg1: object pointer set up above (NULL if static) 3034 // c_rarg2: cache entry pointer 3035 // c_rarg3: jvalue object on the stack 3036 __ call_VM(noreg, 3037 CAST_FROM_FN_PTR(address, 3038 InterpreterRuntime::post_field_modification), 3039 RBX, robj, RCX); 3040 __ get_cache_and_index_at_bcp(cache, index, 1); 3041 __ bind(L1); 3042 } 3043 } 3044 3045 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 3046 transition(vtos, vtos); 3047 3048 const Register cache = rcx; 3049 const Register index = rdx; 3050 const Register obj = rcx; 3051 const Register off = rbx; 3052 const Register flags = rax; 3053 3054 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 3055 jvmti_post_field_mod(cache, index, is_static); 3056 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 3057 3058 // [jk] not needed currently 3059 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3060 // Assembler::StoreStore)); 3061 3062 Label notVolatile, Done; 3063 __ movl(rdx, flags); 3064 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3065 __ andl(rdx, 0x1); 3066 3067 // Check for volatile store 3068 __ testl(rdx, rdx); 3069 __ jcc(Assembler::zero, notVolatile); 3070 3071 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3072 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3073 Assembler::StoreStore)); 3074 __ jmp(Done); 3075 __ bind(notVolatile); 3076 3077 putfield_or_static_helper(byte_no, is_static, rc, obj, off, flags); 3078 3079 __ bind(Done); 3080 } 3081 3082 void TemplateTable::putfield_or_static_helper(int byte_no, bool is_static, RewriteControl rc, 3083 Register obj, Register off, Register flags) { 3084 3085 // field addresses 3086 const Address field(obj, off, Address::times_1, 0*wordSize); 3087 NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);) 3088 3089 Label notByte, notBool, notInt, notShort, notChar, 3090 notLong, notFloat, notObj; 3091 Label Done; 3092 3093 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3094 3095 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3096 3097 assert(btos == 0, "change code, btos != 0"); 3098 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 3099 __ jcc(Assembler::notZero, notByte); 3100 3101 // btos 3102 { 3103 __ pop(btos); 3104 if (!is_static) pop_and_check_object(obj); 3105 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg); 3106 if (!is_static && rc == may_rewrite) { 3107 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3108 } 3109 __ jmp(Done); 3110 } 3111 3112 __ bind(notByte); 3113 __ cmpl(flags, ztos); 3114 __ jcc(Assembler::notEqual, notBool); 3115 3116 // ztos 3117 { 3118 __ pop(ztos); 3119 if (!is_static) pop_and_check_object(obj); 3120 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg); 3121 if (!is_static && rc == may_rewrite) { 3122 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 3123 } 3124 __ jmp(Done); 3125 } 3126 3127 __ bind(notBool); 3128 __ cmpl(flags, atos); 3129 __ jcc(Assembler::notEqual, notObj); 3130 3131 // atos 3132 { 3133 __ pop(atos); 3134 if (!is_static) pop_and_check_object(obj); 3135 // Store into the field 3136 do_oop_store(_masm, field, rax); 3137 if (!is_static && rc == may_rewrite) { 3138 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3139 } 3140 __ jmp(Done); 3141 } 3142 3143 __ bind(notObj); 3144 __ cmpl(flags, itos); 3145 __ jcc(Assembler::notEqual, notInt); 3146 3147 // itos 3148 { 3149 __ pop(itos); 3150 if (!is_static) pop_and_check_object(obj); 3151 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg); 3152 if (!is_static && rc == may_rewrite) { 3153 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3154 } 3155 __ jmp(Done); 3156 } 3157 3158 __ bind(notInt); 3159 __ cmpl(flags, ctos); 3160 __ jcc(Assembler::notEqual, notChar); 3161 3162 // ctos 3163 { 3164 __ pop(ctos); 3165 if (!is_static) pop_and_check_object(obj); 3166 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg); 3167 if (!is_static && rc == may_rewrite) { 3168 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3169 } 3170 __ jmp(Done); 3171 } 3172 3173 __ bind(notChar); 3174 __ cmpl(flags, stos); 3175 __ jcc(Assembler::notEqual, notShort); 3176 3177 // stos 3178 { 3179 __ pop(stos); 3180 if (!is_static) pop_and_check_object(obj); 3181 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg); 3182 if (!is_static && rc == may_rewrite) { 3183 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3184 } 3185 __ jmp(Done); 3186 } 3187 3188 __ bind(notShort); 3189 __ cmpl(flags, ltos); 3190 __ jcc(Assembler::notEqual, notLong); 3191 3192 // ltos 3193 { 3194 __ pop(ltos); 3195 if (!is_static) pop_and_check_object(obj); 3196 // MO_RELAXED: generate atomic store for the case of volatile field (important for x86_32) 3197 __ access_store_at(T_LONG, IN_HEAP | MO_RELAXED, field, noreg /* ltos*/, noreg, noreg); 3198 #ifdef _LP64 3199 if (!is_static && rc == may_rewrite) { 3200 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3201 } 3202 #endif // _LP64 3203 __ jmp(Done); 3204 } 3205 3206 __ bind(notLong); 3207 __ cmpl(flags, ftos); 3208 __ jcc(Assembler::notEqual, notFloat); 3209 3210 // ftos 3211 { 3212 __ pop(ftos); 3213 if (!is_static) pop_and_check_object(obj); 3214 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg); 3215 if (!is_static && rc == may_rewrite) { 3216 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3217 } 3218 __ jmp(Done); 3219 } 3220 3221 __ bind(notFloat); 3222 #ifdef ASSERT 3223 Label notDouble; 3224 __ cmpl(flags, dtos); 3225 __ jcc(Assembler::notEqual, notDouble); 3226 #endif 3227 3228 // dtos 3229 { 3230 __ pop(dtos); 3231 if (!is_static) pop_and_check_object(obj); 3232 // MO_RELAXED: for the case of volatile field, in fact it adds no extra work for the underlying implementation 3233 __ access_store_at(T_DOUBLE, IN_HEAP | MO_RELAXED, field, noreg /* dtos */, noreg, noreg); 3234 if (!is_static && rc == may_rewrite) { 3235 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3236 } 3237 } 3238 3239 #ifdef ASSERT 3240 __ jmp(Done); 3241 3242 __ bind(notDouble); 3243 __ stop("Bad state"); 3244 #endif 3245 3246 __ bind(Done); 3247 } 3248 3249 void TemplateTable::putfield(int byte_no) { 3250 putfield_or_static(byte_no, false); 3251 } 3252 3253 void TemplateTable::nofast_putfield(int byte_no) { 3254 putfield_or_static(byte_no, false, may_not_rewrite); 3255 } 3256 3257 void TemplateTable::putstatic(int byte_no) { 3258 putfield_or_static(byte_no, true); 3259 } 3260 3261 void TemplateTable::jvmti_post_fast_field_mod() { 3262 3263 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3264 3265 if (JvmtiExport::can_post_field_modification()) { 3266 // Check to see if a field modification watch has been set before 3267 // we take the time to call into the VM. 3268 Label L2; 3269 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3270 __ testl(scratch, scratch); 3271 __ jcc(Assembler::zero, L2); 3272 __ pop_ptr(rbx); // copy the object pointer from tos 3273 __ verify_oop(rbx); 3274 __ push_ptr(rbx); // put the object pointer back on tos 3275 // Save tos values before call_VM() clobbers them. Since we have 3276 // to do it for every data type, we use the saved values as the 3277 // jvalue object. 3278 switch (bytecode()) { // load values into the jvalue object 3279 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 3280 case Bytecodes::_fast_bputfield: // fall through 3281 case Bytecodes::_fast_zputfield: // fall through 3282 case Bytecodes::_fast_sputfield: // fall through 3283 case Bytecodes::_fast_cputfield: // fall through 3284 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 3285 case Bytecodes::_fast_dputfield: __ push(dtos); break; 3286 case Bytecodes::_fast_fputfield: __ push(ftos); break; 3287 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 3288 3289 default: 3290 ShouldNotReachHere(); 3291 } 3292 __ mov(scratch, rsp); // points to jvalue on the stack 3293 // access constant pool cache entry 3294 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); 3295 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1)); 3296 __ verify_oop(rbx); 3297 // rbx: object pointer copied above 3298 // c_rarg2: cache entry pointer 3299 // c_rarg3: jvalue object on the stack 3300 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3301 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3302 3303 switch (bytecode()) { // restore tos values 3304 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3305 case Bytecodes::_fast_bputfield: // fall through 3306 case Bytecodes::_fast_zputfield: // fall through 3307 case Bytecodes::_fast_sputfield: // fall through 3308 case Bytecodes::_fast_cputfield: // fall through 3309 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3310 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3311 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3312 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3313 default: break; 3314 } 3315 __ bind(L2); 3316 } 3317 } 3318 3319 void TemplateTable::fast_storefield(TosState state) { 3320 transition(state, vtos); 3321 3322 ByteSize base = ConstantPoolCache::base_offset(); 3323 3324 jvmti_post_fast_field_mod(); 3325 3326 // access constant pool cache 3327 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3328 3329 // test for volatile with rdx but rdx is tos register for lputfield. 3330 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3331 in_bytes(base + 3332 ConstantPoolCacheEntry::flags_offset()))); 3333 3334 // replace index with field offset from cache entry 3335 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3336 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3337 3338 // [jk] not needed currently 3339 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3340 // Assembler::StoreStore)); 3341 3342 Label notVolatile, Done; 3343 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3344 __ andl(rdx, 0x1); 3345 3346 // Get object from stack 3347 pop_and_check_object(rcx); 3348 3349 // field address 3350 const Address field(rcx, rbx, Address::times_1); 3351 3352 // Check for volatile store 3353 __ testl(rdx, rdx); 3354 __ jcc(Assembler::zero, notVolatile); 3355 3356 fast_storefield_helper(field, rax); 3357 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3358 Assembler::StoreStore)); 3359 __ jmp(Done); 3360 __ bind(notVolatile); 3361 3362 fast_storefield_helper(field, rax); 3363 3364 __ bind(Done); 3365 } 3366 3367 void TemplateTable::fast_storefield_helper(Address field, Register rax) { 3368 3369 // access field 3370 switch (bytecode()) { 3371 case Bytecodes::_fast_aputfield: 3372 do_oop_store(_masm, field, rax); 3373 break; 3374 case Bytecodes::_fast_lputfield: 3375 #ifdef _LP64 3376 __ access_store_at(T_LONG, IN_HEAP, field, noreg /* ltos */, noreg, noreg); 3377 #else 3378 __ stop("should not be rewritten"); 3379 #endif 3380 break; 3381 case Bytecodes::_fast_iputfield: 3382 __ access_store_at(T_INT, IN_HEAP, field, rax, noreg, noreg); 3383 break; 3384 case Bytecodes::_fast_zputfield: 3385 __ access_store_at(T_BOOLEAN, IN_HEAP, field, rax, noreg, noreg); 3386 break; 3387 case Bytecodes::_fast_bputfield: 3388 __ access_store_at(T_BYTE, IN_HEAP, field, rax, noreg, noreg); 3389 break; 3390 case Bytecodes::_fast_sputfield: 3391 __ access_store_at(T_SHORT, IN_HEAP, field, rax, noreg, noreg); 3392 break; 3393 case Bytecodes::_fast_cputfield: 3394 __ access_store_at(T_CHAR, IN_HEAP, field, rax, noreg, noreg); 3395 break; 3396 case Bytecodes::_fast_fputfield: 3397 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos*/, noreg, noreg); 3398 break; 3399 case Bytecodes::_fast_dputfield: 3400 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos*/, noreg, noreg); 3401 break; 3402 default: 3403 ShouldNotReachHere(); 3404 } 3405 } 3406 3407 void TemplateTable::fast_accessfield(TosState state) { 3408 transition(atos, state); 3409 3410 // Do the JVMTI work here to avoid disturbing the register state below 3411 if (JvmtiExport::can_post_field_access()) { 3412 // Check to see if a field access watch has been set before we 3413 // take the time to call into the VM. 3414 Label L1; 3415 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3416 __ testl(rcx, rcx); 3417 __ jcc(Assembler::zero, L1); 3418 // access constant pool cache entry 3419 LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); 3420 NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); 3421 __ verify_oop(rax); 3422 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3423 LP64_ONLY(__ mov(c_rarg1, rax)); 3424 // c_rarg1: object pointer copied above 3425 // c_rarg2: cache entry pointer 3426 LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3427 NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3428 __ pop_ptr(rax); // restore object pointer 3429 __ bind(L1); 3430 } 3431 3432 // access constant pool cache 3433 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3434 // replace index with field offset from cache entry 3435 // [jk] not needed currently 3436 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 3437 // in_bytes(ConstantPoolCache::base_offset() + 3438 // ConstantPoolCacheEntry::flags_offset()))); 3439 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3440 // __ andl(rdx, 0x1); 3441 // 3442 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3443 in_bytes(ConstantPoolCache::base_offset() + 3444 ConstantPoolCacheEntry::f2_offset()))); 3445 3446 // rax: object 3447 __ verify_oop(rax); 3448 __ null_check(rax); 3449 Address field(rax, rbx, Address::times_1); 3450 3451 // access field 3452 switch (bytecode()) { 3453 case Bytecodes::_fast_agetfield: 3454 do_oop_load(_masm, field, rax); 3455 __ verify_oop(rax); 3456 break; 3457 case Bytecodes::_fast_lgetfield: 3458 #ifdef _LP64 3459 __ access_load_at(T_LONG, IN_HEAP, noreg /* ltos */, field, noreg, noreg); 3460 #else 3461 __ stop("should not be rewritten"); 3462 #endif 3463 break; 3464 case Bytecodes::_fast_igetfield: 3465 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3466 break; 3467 case Bytecodes::_fast_bgetfield: 3468 __ access_load_at(T_BYTE, IN_HEAP, rax, field, noreg, noreg); 3469 break; 3470 case Bytecodes::_fast_sgetfield: 3471 __ access_load_at(T_SHORT, IN_HEAP, rax, field, noreg, noreg); 3472 break; 3473 case Bytecodes::_fast_cgetfield: 3474 __ access_load_at(T_CHAR, IN_HEAP, rax, field, noreg, noreg); 3475 break; 3476 case Bytecodes::_fast_fgetfield: 3477 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3478 break; 3479 case Bytecodes::_fast_dgetfield: 3480 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3481 break; 3482 default: 3483 ShouldNotReachHere(); 3484 } 3485 // [jk] not needed currently 3486 // Label notVolatile; 3487 // __ testl(rdx, rdx); 3488 // __ jcc(Assembler::zero, notVolatile); 3489 // __ membar(Assembler::LoadLoad); 3490 // __ bind(notVolatile); 3491 } 3492 3493 void TemplateTable::fast_xaccess(TosState state) { 3494 transition(vtos, state); 3495 3496 // get receiver 3497 __ movptr(rax, aaddress(0)); 3498 // access constant pool cache 3499 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 3500 __ movptr(rbx, 3501 Address(rcx, rdx, Address::times_ptr, 3502 in_bytes(ConstantPoolCache::base_offset() + 3503 ConstantPoolCacheEntry::f2_offset()))); 3504 // make sure exception is reported in correct bcp range (getfield is 3505 // next instruction) 3506 __ increment(rbcp); 3507 __ null_check(rax); 3508 const Address field = Address(rax, rbx, Address::times_1, 0*wordSize); 3509 switch (state) { 3510 case itos: 3511 __ access_load_at(T_INT, IN_HEAP, rax, field, noreg, noreg); 3512 break; 3513 case atos: 3514 do_oop_load(_masm, field, rax); 3515 __ verify_oop(rax); 3516 break; 3517 case ftos: 3518 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3519 break; 3520 default: 3521 ShouldNotReachHere(); 3522 } 3523 3524 // [jk] not needed currently 3525 // Label notVolatile; 3526 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3527 // in_bytes(ConstantPoolCache::base_offset() + 3528 // ConstantPoolCacheEntry::flags_offset()))); 3529 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3530 // __ testl(rdx, 0x1); 3531 // __ jcc(Assembler::zero, notVolatile); 3532 // __ membar(Assembler::LoadLoad); 3533 // __ bind(notVolatile); 3534 3535 __ decrement(rbcp); 3536 } 3537 3538 //----------------------------------------------------------------------------- 3539 // Calls 3540 3541 void TemplateTable::prepare_invoke(int byte_no, 3542 Register method, // linked method (or i-klass) 3543 Register index, // itable index, MethodType, etc. 3544 Register recv, // if caller wants to see it 3545 Register flags // if caller wants to test it 3546 ) { 3547 // determine flags 3548 const Bytecodes::Code code = bytecode(); 3549 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3550 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3551 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3552 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3553 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3554 const bool load_receiver = (recv != noreg); 3555 const bool save_flags = (flags != noreg); 3556 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3557 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3558 assert(flags == noreg || flags == rdx, ""); 3559 assert(recv == noreg || recv == rcx, ""); 3560 3561 // setup registers & access constant pool cache 3562 if (recv == noreg) recv = rcx; 3563 if (flags == noreg) flags = rdx; 3564 assert_different_registers(method, index, recv, flags); 3565 3566 // save 'interpreter return address' 3567 __ save_bcp(); 3568 3569 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3570 3571 // maybe push appendix to arguments (just before return address) 3572 if (is_invokedynamic || is_invokehandle) { 3573 Label L_no_push; 3574 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3575 __ jcc(Assembler::zero, L_no_push); 3576 // Push the appendix as a trailing parameter. 3577 // This must be done before we get the receiver, 3578 // since the parameter_size includes it. 3579 __ push(rbx); 3580 __ mov(rbx, index); 3581 __ load_resolved_reference_at_index(index, rbx); 3582 __ pop(rbx); 3583 __ push(index); // push appendix (MethodType, CallSite, etc.) 3584 __ bind(L_no_push); 3585 } 3586 3587 // load receiver if needed (after appendix is pushed so parameter size is correct) 3588 // Note: no return address pushed yet 3589 if (load_receiver) { 3590 __ movl(recv, flags); 3591 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3592 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3593 const int receiver_is_at_end = -1; // back off one slot to get receiver 3594 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3595 __ movptr(recv, recv_addr); 3596 __ verify_oop(recv); 3597 } 3598 3599 if (save_flags) { 3600 __ movl(rbcp, flags); 3601 } 3602 3603 // compute return type 3604 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3605 // Make sure we don't need to mask flags after the above shift 3606 ConstantPoolCacheEntry::verify_tos_state_shift(); 3607 // load return address 3608 { 3609 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3610 ExternalAddress table(table_addr); 3611 LP64_ONLY(__ lea(rscratch1, table)); 3612 LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr))); 3613 NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)))); 3614 } 3615 3616 // push return address 3617 __ push(flags); 3618 3619 // Restore flags value from the constant pool cache, and restore rsi 3620 // for later null checks. r13 is the bytecode pointer 3621 if (save_flags) { 3622 __ movl(flags, rbcp); 3623 __ restore_bcp(); 3624 } 3625 } 3626 3627 void TemplateTable::invokevirtual_helper(Register index, 3628 Register recv, 3629 Register flags) { 3630 // Uses temporary registers rax, rdx 3631 assert_different_registers(index, recv, rax, rdx); 3632 assert(index == rbx, ""); 3633 assert(recv == rcx, ""); 3634 3635 // Test for an invoke of a final method 3636 Label notFinal; 3637 __ movl(rax, flags); 3638 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3639 __ jcc(Assembler::zero, notFinal); 3640 3641 const Register method = index; // method must be rbx 3642 assert(method == rbx, 3643 "Method* must be rbx for interpreter calling convention"); 3644 3645 // do the call - the index is actually the method to call 3646 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3647 3648 // It's final, need a null check here! 3649 __ null_check(recv); 3650 3651 // profile this call 3652 __ profile_final_call(rax); 3653 __ profile_arguments_type(rax, method, rbcp, true); 3654 3655 __ jump_from_interpreted(method, rax); 3656 3657 __ bind(notFinal); 3658 3659 // get receiver klass 3660 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3661 __ load_klass(rax, recv, tmp_load_klass, true); 3662 3663 // profile this call 3664 __ profile_virtual_call(rax, rlocals, rdx); 3665 // get target Method* & entry point 3666 __ lookup_virtual_method(rax, index, method); 3667 3668 __ profile_arguments_type(rdx, method, rbcp, true); 3669 __ jump_from_interpreted(method, rdx); 3670 } 3671 3672 void TemplateTable::invokevirtual(int byte_no) { 3673 transition(vtos, vtos); 3674 assert(byte_no == f2_byte, "use this argument"); 3675 prepare_invoke(byte_no, 3676 rbx, // method or vtable index 3677 noreg, // unused itable index 3678 rcx, rdx); // recv, flags 3679 3680 // rbx: index 3681 // rcx: receiver 3682 // rdx: flags 3683 3684 invokevirtual_helper(rbx, rcx, rdx); 3685 } 3686 3687 void TemplateTable::invokespecial(int byte_no) { 3688 transition(vtos, vtos); 3689 assert(byte_no == f1_byte, "use this argument"); 3690 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3691 rcx); // get receiver also for null check 3692 __ verify_oop(rcx); 3693 __ null_check(rcx); 3694 // do the call 3695 __ profile_call(rax); 3696 __ profile_arguments_type(rax, rbx, rbcp, false); 3697 __ jump_from_interpreted(rbx, rax); 3698 } 3699 3700 void TemplateTable::invokestatic(int byte_no) { 3701 transition(vtos, vtos); 3702 assert(byte_no == f1_byte, "use this argument"); 3703 prepare_invoke(byte_no, rbx); // get f1 Method* 3704 // do the call 3705 __ profile_call(rax); 3706 __ profile_arguments_type(rax, rbx, rbcp, false); 3707 __ jump_from_interpreted(rbx, rax); 3708 } 3709 3710 3711 void TemplateTable::fast_invokevfinal(int byte_no) { 3712 transition(vtos, vtos); 3713 assert(byte_no == f2_byte, "use this argument"); 3714 __ stop("fast_invokevfinal not used on x86"); 3715 } 3716 3717 3718 void TemplateTable::invokeinterface(int byte_no) { 3719 transition(vtos, vtos); 3720 assert(byte_no == f1_byte, "use this argument"); 3721 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* 3722 rcx, rdx); // recv, flags 3723 3724 // rax: reference klass (from f1) if interface method 3725 // rbx: method (from f2) 3726 // rcx: receiver 3727 // rdx: flags 3728 3729 // First check for Object case, then private interface method, 3730 // then regular interface method. 3731 3732 // Special case of invokeinterface called for virtual method of 3733 // java.lang.Object. See cpCache.cpp for details. 3734 Label notObjectMethod; 3735 __ movl(rlocals, rdx); 3736 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3737 __ jcc(Assembler::zero, notObjectMethod); 3738 invokevirtual_helper(rbx, rcx, rdx); 3739 // no return from above 3740 __ bind(notObjectMethod); 3741 3742 Label no_such_interface; // for receiver subtype check 3743 Register recvKlass; // used for exception processing 3744 3745 // Check for private method invocation - indicated by vfinal 3746 Label notVFinal; 3747 __ movl(rlocals, rdx); 3748 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3749 __ jcc(Assembler::zero, notVFinal); 3750 3751 // Get receiver klass into rlocals - also a null check 3752 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 3753 __ load_klass(rlocals, rcx, tmp_load_klass, true); 3754 3755 Label subtype; 3756 __ check_klass_subtype(rlocals, rax, rbcp, subtype); 3757 // If we get here the typecheck failed 3758 recvKlass = rdx; 3759 __ mov(recvKlass, rlocals); // shuffle receiver class for exception use 3760 __ jmp(no_such_interface); 3761 3762 __ bind(subtype); 3763 3764 // do the call - rbx is actually the method to call 3765 3766 __ profile_final_call(rdx); 3767 __ profile_arguments_type(rdx, rbx, rbcp, true); 3768 3769 __ jump_from_interpreted(rbx, rdx); 3770 // no return from above 3771 __ bind(notVFinal); 3772 3773 // Get receiver klass into rdx - also a null check 3774 __ restore_locals(); // restore r14 3775 __ load_klass(rdx, rcx, tmp_load_klass, true); 3776 3777 Label no_such_method; 3778 3779 // Preserve method for throw_AbstractMethodErrorVerbose. 3780 __ mov(rcx, rbx); 3781 // Receiver subtype check against REFC. 3782 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3783 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3784 rdx, rax, noreg, 3785 // outputs: scan temp. reg, scan temp. reg 3786 rbcp, rlocals, 3787 no_such_interface, 3788 /*return_method=*/false); 3789 3790 // profile this call 3791 __ restore_bcp(); // rbcp was destroyed by receiver type check 3792 __ profile_virtual_call(rdx, rbcp, rlocals); 3793 3794 // Get declaring interface class from method, and itable index 3795 __ load_method_holder(rax, rbx); 3796 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3797 __ subl(rbx, Method::itable_index_max); 3798 __ negl(rbx); 3799 3800 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3801 __ mov(rlocals, rdx); 3802 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3803 rlocals, rax, rbx, 3804 // outputs: method, scan temp. reg 3805 rbx, rbcp, 3806 no_such_interface); 3807 3808 // rbx: Method* to call 3809 // rcx: receiver 3810 // Check for abstract method error 3811 // Note: This should be done more efficiently via a throw_abstract_method_error 3812 // interpreter entry point and a conditional jump to it in case of a null 3813 // method. 3814 __ testptr(rbx, rbx); 3815 __ jcc(Assembler::zero, no_such_method); 3816 3817 __ profile_arguments_type(rdx, rbx, rbcp, true); 3818 3819 // do the call 3820 // rcx: receiver 3821 // rbx,: Method* 3822 __ jump_from_interpreted(rbx, rdx); 3823 __ should_not_reach_here(); 3824 3825 // exception handling code follows... 3826 // note: must restore interpreter registers to canonical 3827 // state for exception handling to work correctly! 3828 3829 __ bind(no_such_method); 3830 // throw exception 3831 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3832 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3833 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3834 // Pass arguments for generating a verbose error message. 3835 #ifdef _LP64 3836 recvKlass = c_rarg1; 3837 Register method = c_rarg2; 3838 if (recvKlass != rdx) { __ movq(recvKlass, rdx); } 3839 if (method != rcx) { __ movq(method, rcx); } 3840 #else 3841 recvKlass = rdx; 3842 Register method = rcx; 3843 #endif 3844 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), 3845 recvKlass, method); 3846 // The call_VM checks for exception, so we should never return here. 3847 __ should_not_reach_here(); 3848 3849 __ bind(no_such_interface); 3850 // throw exception 3851 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3852 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3853 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3854 // Pass arguments for generating a verbose error message. 3855 LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } ) 3856 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), 3857 recvKlass, rax); 3858 // the call_VM checks for exception, so we should never return here. 3859 __ should_not_reach_here(); 3860 } 3861 3862 void TemplateTable::invokehandle(int byte_no) { 3863 transition(vtos, vtos); 3864 assert(byte_no == f1_byte, "use this argument"); 3865 const Register rbx_method = rbx; 3866 const Register rax_mtype = rax; 3867 const Register rcx_recv = rcx; 3868 const Register rdx_flags = rdx; 3869 3870 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3871 __ verify_method_ptr(rbx_method); 3872 __ verify_oop(rcx_recv); 3873 __ null_check(rcx_recv); 3874 3875 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3876 // rbx: MH.invokeExact_MT method (from f2) 3877 3878 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3879 3880 // FIXME: profile the LambdaForm also 3881 __ profile_final_call(rax); 3882 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3883 3884 __ jump_from_interpreted(rbx_method, rdx); 3885 } 3886 3887 void TemplateTable::invokedynamic(int byte_no) { 3888 transition(vtos, vtos); 3889 assert(byte_no == f1_byte, "use this argument"); 3890 3891 const Register rbx_method = rbx; 3892 const Register rax_callsite = rax; 3893 3894 prepare_invoke(byte_no, rbx_method, rax_callsite); 3895 3896 // rax: CallSite object (from cpool->resolved_references[f1]) 3897 // rbx: MH.linkToCallSite method (from f2) 3898 3899 // Note: rax_callsite is already pushed by prepare_invoke 3900 3901 // %%% should make a type profile for any invokedynamic that takes a ref argument 3902 // profile this call 3903 __ profile_call(rbcp); 3904 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3905 3906 __ verify_oop(rax_callsite); 3907 3908 __ jump_from_interpreted(rbx_method, rdx); 3909 } 3910 3911 //----------------------------------------------------------------------------- 3912 // Allocation 3913 3914 void TemplateTable::_new() { 3915 transition(vtos, atos); 3916 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3917 Label slow_case; 3918 Label slow_case_no_pop; 3919 Label done; 3920 Label initialize_header; 3921 Label initialize_object; // including clearing the fields 3922 3923 __ get_cpool_and_tags(rcx, rax); 3924 3925 // Make sure the class we're about to instantiate has been resolved. 3926 // This is done before loading InstanceKlass to be consistent with the order 3927 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3928 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3929 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3930 __ jcc(Assembler::notEqual, slow_case_no_pop); 3931 3932 // get InstanceKlass 3933 __ load_resolved_klass_at_index(rcx, rcx, rdx); 3934 __ push(rcx); // save the contexts of klass for initializing the header 3935 3936 // make sure klass is initialized & doesn't have finalizer 3937 // make sure klass is fully initialized 3938 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 3939 __ jcc(Assembler::notEqual, slow_case); 3940 3941 // get instance_size in InstanceKlass (scaled to a count of bytes) 3942 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 3943 // test to see if it has a finalizer or is malformed in some way 3944 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3945 __ jcc(Assembler::notZero, slow_case); 3946 3947 // Allocate the instance: 3948 // If TLAB is enabled: 3949 // Try to allocate in the TLAB. 3950 // If fails, go to the slow path. 3951 // Else If inline contiguous allocations are enabled: 3952 // Try to allocate in eden. 3953 // If fails due to heap end, go to slow path. 3954 // 3955 // If TLAB is enabled OR inline contiguous is enabled: 3956 // Initialize the allocation. 3957 // Exit. 3958 // 3959 // Go to slow path. 3960 3961 const bool allow_shared_alloc = 3962 Universe::heap()->supports_inline_contig_alloc(); 3963 3964 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 3965 #ifndef _LP64 3966 if (UseTLAB || allow_shared_alloc) { 3967 __ get_thread(thread); 3968 } 3969 #endif // _LP64 3970 3971 if (UseTLAB) { 3972 __ tlab_allocate(thread, rax, rdx, 0, rcx, rbx, slow_case); 3973 if (ZeroTLAB) { 3974 // the fields have been already cleared 3975 __ jmp(initialize_header); 3976 } else { 3977 // initialize both the header and fields 3978 __ jmp(initialize_object); 3979 } 3980 } else { 3981 // Allocation in the shared Eden, if allowed. 3982 // 3983 // rdx: instance size in bytes 3984 __ eden_allocate(thread, rax, rdx, 0, rbx, slow_case); 3985 } 3986 3987 // If UseTLAB or allow_shared_alloc are true, the object is created above and 3988 // there is an initialize need. Otherwise, skip and go to the slow path. 3989 if (UseTLAB || allow_shared_alloc) { 3990 // The object is initialized before the header. If the object size is 3991 // zero, go directly to the header initialization. 3992 __ bind(initialize_object); 3993 int header_size = align_up(oopDesc::base_offset_in_bytes(), BytesPerLong); 3994 __ decrement(rdx, header_size); 3995 __ jcc(Assembler::zero, initialize_header); 3996 3997 // Initialize topmost object field, divide rdx by 8, check if odd and 3998 // test if zero. 3999 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 4000 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 4001 4002 // rdx must have been multiple of 8 4003 #ifdef ASSERT 4004 // make sure rdx was multiple of 8 4005 Label L; 4006 // Ignore partial flag stall after shrl() since it is debug VM 4007 __ jcc(Assembler::carryClear, L); 4008 __ stop("object size is not multiple of 2 - adjust this code"); 4009 __ bind(L); 4010 // rdx must be > 0, no extra check needed here 4011 #endif 4012 4013 // initialize remaining object fields: rdx was a multiple of 8 4014 { Label loop; 4015 __ bind(loop); 4016 __ movptr(Address(rax, rdx, Address::times_8, header_size - 1*oopSize), rcx); 4017 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, header_size - 2*oopSize), rcx)); 4018 __ decrement(rdx); 4019 __ jcc(Assembler::notZero, loop); 4020 } 4021 4022 // initialize object header only. 4023 __ bind(initialize_header); 4024 if (UseBiasedLocking || UseCompactObjectHeaders) { 4025 __ pop(rcx); // get saved klass back in the register. 4026 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 4027 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 4028 } else { 4029 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), 4030 (intptr_t)markWord::prototype().value()); // header 4031 __ pop(rcx); // get saved klass back in the register. 4032 } 4033 if (!UseCompactObjectHeaders) { 4034 #ifdef _LP64 4035 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 4036 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 4037 #endif 4038 __ store_klass(rax, rcx, rscratch1); // klass 4039 } 4040 4041 { 4042 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 4043 // Trigger dtrace event for fastpath 4044 __ push(atos); 4045 __ call_VM_leaf( 4046 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 4047 __ pop(atos); 4048 } 4049 4050 __ jmp(done); 4051 } 4052 4053 // slow case 4054 __ bind(slow_case); 4055 __ pop(rcx); // restore stack pointer to what it was when we came in. 4056 __ bind(slow_case_no_pop); 4057 4058 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4059 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4060 4061 __ get_constant_pool(rarg1); 4062 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4063 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 4064 __ verify_oop(rax); 4065 4066 // continue 4067 __ bind(done); 4068 } 4069 4070 void TemplateTable::newarray() { 4071 transition(itos, atos); 4072 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4073 __ load_unsigned_byte(rarg1, at_bcp(1)); 4074 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 4075 rarg1, rax); 4076 } 4077 4078 void TemplateTable::anewarray() { 4079 transition(itos, atos); 4080 4081 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4082 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 4083 4084 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 4085 __ get_constant_pool(rarg1); 4086 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 4087 rarg1, rarg2, rax); 4088 } 4089 4090 void TemplateTable::arraylength() { 4091 transition(atos, itos); 4092 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 4093 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 4094 } 4095 4096 void TemplateTable::checkcast() { 4097 transition(atos, atos); 4098 Label done, is_null, ok_is_subtype, quicked, resolved; 4099 __ testptr(rax, rax); // object is in rax 4100 __ jcc(Assembler::zero, is_null); 4101 4102 // Get cpool & tags index 4103 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4104 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4105 // See if bytecode has already been quicked 4106 __ cmpb(Address(rdx, rbx, 4107 Address::times_1, 4108 Array<u1>::base_offset_in_bytes()), 4109 JVM_CONSTANT_Class); 4110 __ jcc(Assembler::equal, quicked); 4111 __ push(atos); // save receiver for result, and for GC 4112 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4113 4114 // vm_result_2 has metadata result 4115 #ifndef _LP64 4116 // borrow rdi from locals 4117 __ get_thread(rdi); 4118 __ get_vm_result_2(rax, rdi); 4119 __ restore_locals(); 4120 #else 4121 __ get_vm_result_2(rax, r15_thread); 4122 #endif 4123 4124 __ pop_ptr(rdx); // restore receiver 4125 __ jmpb(resolved); 4126 4127 // Get superklass in rax and subklass in rbx 4128 __ bind(quicked); 4129 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4130 __ load_resolved_klass_at_index(rax, rcx, rbx); 4131 4132 __ bind(resolved); 4133 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 4134 __ load_klass(rbx, rdx, tmp_load_klass); 4135 4136 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4137 // Superklass in rax. Subklass in rbx. 4138 __ gen_subtype_check(rbx, ok_is_subtype); 4139 4140 // Come here on failure 4141 __ push_ptr(rdx); 4142 // object is at TOS 4143 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4144 4145 // Come here on success 4146 __ bind(ok_is_subtype); 4147 __ mov(rax, rdx); // Restore object in rdx 4148 4149 // Collect counts on whether this check-cast sees NULLs a lot or not. 4150 if (ProfileInterpreter) { 4151 __ jmp(done); 4152 __ bind(is_null); 4153 __ profile_null_seen(rcx); 4154 } else { 4155 __ bind(is_null); // same as 'done' 4156 } 4157 __ bind(done); 4158 } 4159 4160 void TemplateTable::instanceof() { 4161 transition(atos, itos); 4162 Label done, is_null, ok_is_subtype, quicked, resolved; 4163 __ testptr(rax, rax); 4164 __ jcc(Assembler::zero, is_null); 4165 4166 // Get cpool & tags index 4167 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4168 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4169 // See if bytecode has already been quicked 4170 __ cmpb(Address(rdx, rbx, 4171 Address::times_1, 4172 Array<u1>::base_offset_in_bytes()), 4173 JVM_CONSTANT_Class); 4174 __ jcc(Assembler::equal, quicked); 4175 4176 __ push(atos); // save receiver for result, and for GC 4177 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4178 // vm_result_2 has metadata result 4179 4180 #ifndef _LP64 4181 // borrow rdi from locals 4182 __ get_thread(rdi); 4183 __ get_vm_result_2(rax, rdi); 4184 __ restore_locals(); 4185 #else 4186 __ get_vm_result_2(rax, r15_thread); 4187 #endif 4188 4189 __ pop_ptr(rdx); // restore receiver 4190 __ verify_oop(rdx); 4191 Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg); 4192 __ load_klass(rdx, rdx, tmp_load_klass); 4193 __ jmpb(resolved); 4194 4195 // Get superklass in rax and subklass in rdx 4196 __ bind(quicked); 4197 __ load_klass(rdx, rax, tmp_load_klass); 4198 __ load_resolved_klass_at_index(rax, rcx, rbx); 4199 4200 __ bind(resolved); 4201 4202 // Generate subtype check. Blows rcx, rdi 4203 // Superklass in rax. Subklass in rdx. 4204 __ gen_subtype_check(rdx, ok_is_subtype); 4205 4206 // Come here on failure 4207 __ xorl(rax, rax); 4208 __ jmpb(done); 4209 // Come here on success 4210 __ bind(ok_is_subtype); 4211 __ movl(rax, 1); 4212 4213 // Collect counts on whether this test sees NULLs a lot or not. 4214 if (ProfileInterpreter) { 4215 __ jmp(done); 4216 __ bind(is_null); 4217 __ profile_null_seen(rcx); 4218 } else { 4219 __ bind(is_null); // same as 'done' 4220 } 4221 __ bind(done); 4222 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 4223 // rax = 1: obj != NULL and obj is an instanceof the specified klass 4224 } 4225 4226 4227 //---------------------------------------------------------------------------------------------------- 4228 // Breakpoints 4229 void TemplateTable::_breakpoint() { 4230 // Note: We get here even if we are single stepping.. 4231 // jbug insists on setting breakpoints at every bytecode 4232 // even if we are in single step mode. 4233 4234 transition(vtos, vtos); 4235 4236 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4237 4238 // get the unpatched byte code 4239 __ get_method(rarg); 4240 __ call_VM(noreg, 4241 CAST_FROM_FN_PTR(address, 4242 InterpreterRuntime::get_original_bytecode_at), 4243 rarg, rbcp); 4244 __ mov(rbx, rax); // why? 4245 4246 // post the breakpoint event 4247 __ get_method(rarg); 4248 __ call_VM(noreg, 4249 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4250 rarg, rbcp); 4251 4252 // complete the execution of original bytecode 4253 __ dispatch_only_normal(vtos); 4254 } 4255 4256 //----------------------------------------------------------------------------- 4257 // Exceptions 4258 4259 void TemplateTable::athrow() { 4260 transition(atos, vtos); 4261 __ null_check(rax); 4262 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4263 } 4264 4265 //----------------------------------------------------------------------------- 4266 // Synchronization 4267 // 4268 // Note: monitorenter & exit are symmetric routines; which is reflected 4269 // in the assembly code structure as well 4270 // 4271 // Stack layout: 4272 // 4273 // [expressions ] <--- rsp = expression stack top 4274 // .. 4275 // [expressions ] 4276 // [monitor entry] <--- monitor block top = expression stack bot 4277 // .. 4278 // [monitor entry] 4279 // [frame data ] <--- monitor block bot 4280 // ... 4281 // [saved rbp ] <--- rbp 4282 void TemplateTable::monitorenter() { 4283 transition(atos, vtos); 4284 4285 // check for NULL object 4286 __ null_check(rax); 4287 4288 const Address monitor_block_top( 4289 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4290 const Address monitor_block_bot( 4291 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4292 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4293 4294 Label allocated; 4295 4296 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4297 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4298 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4299 4300 // initialize entry pointer 4301 __ xorl(rmon, rmon); // points to free slot or NULL 4302 4303 // find a free slot in the monitor block (result in rmon) 4304 { 4305 Label entry, loop, exit; 4306 __ movptr(rtop, monitor_block_top); // points to current entry, 4307 // starting with top-most entry 4308 __ lea(rbot, monitor_block_bot); // points to word before bottom 4309 // of monitor block 4310 __ jmpb(entry); 4311 4312 __ bind(loop); 4313 // check if current entry is used 4314 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 4315 // if not used then remember entry in rmon 4316 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4317 // check if current entry is for same object 4318 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4319 // if same object then stop searching 4320 __ jccb(Assembler::equal, exit); 4321 // otherwise advance to next entry 4322 __ addptr(rtop, entry_size); 4323 __ bind(entry); 4324 // check if bottom reached 4325 __ cmpptr(rtop, rbot); 4326 // if not at bottom then check this entry 4327 __ jcc(Assembler::notEqual, loop); 4328 __ bind(exit); 4329 } 4330 4331 __ testptr(rmon, rmon); // check if a slot has been found 4332 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4333 4334 // allocate one if there's no free slot 4335 { 4336 Label entry, loop; 4337 // 1. compute new pointers // rsp: old expression stack top 4338 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4339 __ subptr(rsp, entry_size); // move expression stack top 4340 __ subptr(rmon, entry_size); // move expression stack bottom 4341 __ mov(rtop, rsp); // set start value for copy loop 4342 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4343 __ jmp(entry); 4344 // 2. move expression stack contents 4345 __ bind(loop); 4346 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4347 // word from old location 4348 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4349 __ addptr(rtop, wordSize); // advance to next word 4350 __ bind(entry); 4351 __ cmpptr(rtop, rmon); // check if bottom reached 4352 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4353 // copy next word 4354 } 4355 4356 // call run-time routine 4357 // rmon: points to monitor entry 4358 __ bind(allocated); 4359 4360 // Increment bcp to point to the next bytecode, so exception 4361 // handling for async. exceptions work correctly. 4362 // The object has already been poped from the stack, so the 4363 // expression stack looks correct. 4364 __ increment(rbcp); 4365 4366 // store object 4367 __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); 4368 __ lock_object(rmon); 4369 4370 // check to make sure this monitor doesn't cause stack overflow after locking 4371 __ save_bcp(); // in case of exception 4372 __ generate_stack_overflow_check(0); 4373 4374 // The bcp has already been incremented. Just need to dispatch to 4375 // next instruction. 4376 __ dispatch_next(vtos); 4377 } 4378 4379 void TemplateTable::monitorexit() { 4380 transition(atos, vtos); 4381 4382 // check for NULL object 4383 __ null_check(rax); 4384 4385 const Address monitor_block_top( 4386 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4387 const Address monitor_block_bot( 4388 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4389 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4390 4391 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4392 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4393 4394 Label found; 4395 4396 // find matching slot 4397 { 4398 Label entry, loop; 4399 __ movptr(rtop, monitor_block_top); // points to current entry, 4400 // starting with top-most entry 4401 __ lea(rbot, monitor_block_bot); // points to word before bottom 4402 // of monitor block 4403 __ jmpb(entry); 4404 4405 __ bind(loop); 4406 // check if current entry is for same object 4407 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4408 // if same object then stop searching 4409 __ jcc(Assembler::equal, found); 4410 // otherwise advance to next entry 4411 __ addptr(rtop, entry_size); 4412 __ bind(entry); 4413 // check if bottom reached 4414 __ cmpptr(rtop, rbot); 4415 // if not at bottom then check this entry 4416 __ jcc(Assembler::notEqual, loop); 4417 } 4418 4419 // error handling. Unlocking was not block-structured 4420 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4421 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4422 __ should_not_reach_here(); 4423 4424 // call run-time routine 4425 __ bind(found); 4426 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4427 __ unlock_object(rtop); 4428 __ pop_ptr(rax); // discard object 4429 } 4430 4431 // Wide instructions 4432 void TemplateTable::wide() { 4433 transition(vtos, vtos); 4434 __ load_unsigned_byte(rbx, at_bcp(1)); 4435 ExternalAddress wtable((address)Interpreter::_wentry_point); 4436 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 4437 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4438 } 4439 4440 // Multi arrays 4441 void TemplateTable::multianewarray() { 4442 transition(vtos, atos); 4443 4444 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4445 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4446 // last dim is on top of stack; we want address of first one: 4447 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 4448 // the latter wordSize to point to the beginning of the array. 4449 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4450 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4451 __ load_unsigned_byte(rbx, at_bcp(3)); 4452 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4453 } --- EOF ---