1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef CPU_X86_VM_VERSION_X86_HPP 26 #define CPU_X86_VM_VERSION_X86_HPP 27 28 #include "memory/universe.hpp" 29 #include "runtime/abstract_vm_version.hpp" 30 #include "utilities/macros.hpp" 31 32 class VM_Version : public Abstract_VM_Version { 33 friend class VMStructs; 34 friend class JVMCIVMStructs; 35 36 public: 37 // cpuid result register layouts. These are all unions of a uint32_t 38 // (in case anyone wants access to the register as a whole) and a bitfield. 39 40 union StdCpuid1Eax { 41 uint32_t value; 42 struct { 43 uint32_t stepping : 4, 44 model : 4, 45 family : 4, 46 proc_type : 2, 47 : 2, 48 ext_model : 4, 49 ext_family : 8, 50 : 4; 51 } bits; 52 }; 53 54 union StdCpuid1Ebx { // example, unused 55 uint32_t value; 56 struct { 57 uint32_t brand_id : 8, 58 clflush_size : 8, 59 threads_per_cpu : 8, 60 apic_id : 8; 61 } bits; 62 }; 63 64 union StdCpuid1Ecx { 65 uint32_t value; 66 struct { 67 uint32_t sse3 : 1, 68 clmul : 1, 69 : 1, 70 monitor : 1, 71 : 1, 72 vmx : 1, 73 : 1, 74 est : 1, 75 : 1, 76 ssse3 : 1, 77 cid : 1, 78 : 1, 79 fma : 1, 80 cmpxchg16: 1, 81 : 4, 82 dca : 1, 83 sse4_1 : 1, 84 sse4_2 : 1, 85 : 2, 86 popcnt : 1, 87 : 1, 88 aes : 1, 89 : 1, 90 osxsave : 1, 91 avx : 1, 92 : 2, 93 hv : 1; 94 } bits; 95 }; 96 97 union StdCpuid1Edx { 98 uint32_t value; 99 struct { 100 uint32_t : 4, 101 tsc : 1, 102 : 3, 103 cmpxchg8 : 1, 104 : 6, 105 cmov : 1, 106 : 3, 107 clflush : 1, 108 : 3, 109 mmx : 1, 110 fxsr : 1, 111 sse : 1, 112 sse2 : 1, 113 : 1, 114 ht : 1, 115 : 3; 116 } bits; 117 }; 118 119 union DcpCpuid4Eax { 120 uint32_t value; 121 struct { 122 uint32_t cache_type : 5, 123 : 21, 124 cores_per_cpu : 6; 125 } bits; 126 }; 127 128 union DcpCpuid4Ebx { 129 uint32_t value; 130 struct { 131 uint32_t L1_line_size : 12, 132 partitions : 10, 133 associativity : 10; 134 } bits; 135 }; 136 137 union TplCpuidBEbx { 138 uint32_t value; 139 struct { 140 uint32_t logical_cpus : 16, 141 : 16; 142 } bits; 143 }; 144 145 union ExtCpuid1Ecx { 146 uint32_t value; 147 struct { 148 uint32_t LahfSahf : 1, 149 CmpLegacy : 1, 150 : 3, 151 lzcnt : 1, 152 sse4a : 1, 153 misalignsse : 1, 154 prefetchw : 1, 155 : 23; 156 } bits; 157 }; 158 159 union ExtCpuid1Edx { 160 uint32_t value; 161 struct { 162 uint32_t : 22, 163 mmx_amd : 1, 164 mmx : 1, 165 fxsr : 1, 166 : 4, 167 long_mode : 1, 168 tdnow2 : 1, 169 tdnow : 1; 170 } bits; 171 }; 172 173 union ExtCpuid5Ex { 174 uint32_t value; 175 struct { 176 uint32_t L1_line_size : 8, 177 L1_tag_lines : 8, 178 L1_assoc : 8, 179 L1_size : 8; 180 } bits; 181 }; 182 183 union ExtCpuid7Edx { 184 uint32_t value; 185 struct { 186 uint32_t : 8, 187 tsc_invariance : 1, 188 : 23; 189 } bits; 190 }; 191 192 union ExtCpuid8Ecx { 193 uint32_t value; 194 struct { 195 uint32_t cores_per_cpu : 8, 196 : 24; 197 } bits; 198 }; 199 200 union SefCpuid7Eax { 201 uint32_t value; 202 }; 203 204 union SefCpuid7Ebx { 205 uint32_t value; 206 struct { 207 uint32_t fsgsbase : 1, 208 : 2, 209 bmi1 : 1, 210 : 1, 211 avx2 : 1, 212 : 2, 213 bmi2 : 1, 214 erms : 1, 215 : 1, 216 rtm : 1, 217 : 4, 218 avx512f : 1, 219 avx512dq : 1, 220 : 1, 221 adx : 1, 222 : 3, 223 clflushopt : 1, 224 clwb : 1, 225 : 1, 226 avx512pf : 1, 227 avx512er : 1, 228 avx512cd : 1, 229 sha : 1, 230 avx512bw : 1, 231 avx512vl : 1; 232 } bits; 233 }; 234 235 union SefCpuid7Ecx { 236 uint32_t value; 237 struct { 238 uint32_t prefetchwt1 : 1, 239 avx512_vbmi : 1, 240 umip : 1, 241 pku : 1, 242 ospke : 1, 243 : 1, 244 avx512_vbmi2 : 1, 245 : 1, 246 gfni : 1, 247 vaes : 1, 248 avx512_vpclmulqdq : 1, 249 avx512_vnni : 1, 250 avx512_bitalg : 1, 251 : 1, 252 avx512_vpopcntdq : 1, 253 : 17; 254 } bits; 255 }; 256 257 union SefCpuid7Edx { 258 uint32_t value; 259 struct { 260 uint32_t : 2, 261 avx512_4vnniw : 1, 262 avx512_4fmaps : 1, 263 : 28; 264 } bits; 265 }; 266 267 union ExtCpuid1EEbx { 268 uint32_t value; 269 struct { 270 uint32_t : 8, 271 threads_per_core : 8, 272 : 16; 273 } bits; 274 }; 275 276 union XemXcr0Eax { 277 uint32_t value; 278 struct { 279 uint32_t x87 : 1, 280 sse : 1, 281 ymm : 1, 282 bndregs : 1, 283 bndcsr : 1, 284 opmask : 1, 285 zmm512 : 1, 286 zmm32 : 1, 287 : 24; 288 } bits; 289 }; 290 291 protected: 292 static int _cpu; 293 static int _model; 294 static int _stepping; 295 296 static bool _has_intel_jcc_erratum; 297 298 static address _cpuinfo_segv_addr; // address of instruction which causes SEGV 299 static address _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV 300 301 enum Feature_Flag : uint64_t { 302 #define CPU_FEATURE_FLAGS(decl) \ 303 decl(CX8, "cx8", 0) /* next bits are from cpuid 1 (EDX) */ \ 304 decl(CMOV, "cmov", 1) \ 305 decl(FXSR, "fxsr", 2) \ 306 decl(HT, "ht", 3) \ 307 \ 308 decl(MMX, "mmx", 4) \ 309 decl(3DNOW_PREFETCH, "3dnowpref", 5) /* Processor supports 3dnow prefetch and prefetchw instructions */ \ 310 /* may not necessarily support other 3dnow instructions */ \ 311 decl(SSE, "sse", 6) \ 312 decl(SSE2, "sse2", 7) \ 313 \ 314 decl(SSE3, "sse3", 8 ) /* SSE3 comes from cpuid 1 (ECX) */ \ 315 decl(SSSE3, "ssse3", 9 ) \ 316 decl(SSE4A, "sse4a", 10) \ 317 decl(SSE4_1, "sse4.1", 11) \ 318 \ 319 decl(SSE4_2, "sse4.2", 12) \ 320 decl(POPCNT, "popcnt", 13) \ 321 decl(LZCNT, "lzcnt", 14) \ 322 decl(TSC, "tsc", 15) \ 323 \ 324 decl(TSCINV_BIT, "tscinvbit", 16) \ 325 decl(TSCINV, "tscinv", 17) \ 326 decl(AVX, "avx", 18) \ 327 decl(AVX2, "avx2", 19) \ 328 \ 329 decl(AES, "aes", 20) \ 330 decl(ERMS, "erms", 21) /* enhanced 'rep movsb/stosb' instructions */ \ 331 decl(CLMUL, "clmul", 22) /* carryless multiply for CRC */ \ 332 decl(BMI1, "bmi1", 23) \ 333 \ 334 decl(BMI2, "bmi2", 24) \ 335 decl(RTM, "rtm", 25) /* Restricted Transactional Memory instructions */ \ 336 decl(ADX, "adx", 26) \ 337 decl(AVX512F, "avx512f", 27) /* AVX 512bit foundation instructions */ \ 338 \ 339 decl(AVX512DQ, "avx512dq", 28) \ 340 decl(AVX512PF, "avx512pf", 29) \ 341 decl(AVX512ER, "avx512er", 30) \ 342 decl(AVX512CD, "avx512cd", 31) \ 343 \ 344 decl(AVX512BW, "avx512bw", 32) /* Byte and word vector instructions */ \ 345 decl(AVX512VL, "avx512vl", 33) /* EVEX instructions with smaller vector length */ \ 346 decl(SHA, "sha", 34) /* SHA instructions */ \ 347 decl(FMA, "fma", 35) /* FMA instructions */ \ 348 \ 349 decl(VZEROUPPER, "vzeroupper", 36) /* Vzeroupper instruction */ \ 350 decl(AVX512_VPOPCNTDQ, "avx512_vpopcntdq", 37) /* Vector popcount */ \ 351 decl(AVX512_VPCLMULQDQ, "avx512_vpclmulqdq", 38) /* Vector carryless multiplication */ \ 352 decl(AVX512_VAES, "avx512_vaes", 39) /* Vector AES instruction */ \ 353 \ 354 decl(AVX512_VNNI, "avx512_vnni", 40) /* Vector Neural Network Instructions */ \ 355 decl(FLUSH, "clflush", 41) /* flush instruction */ \ 356 decl(FLUSHOPT, "clflushopt", 42) /* flusopth instruction */ \ 357 decl(CLWB, "clwb", 43) /* clwb instruction */ \ 358 \ 359 decl(AVX512_VBMI2, "avx512_vbmi2", 44) /* VBMI2 shift left double instructions */ \ 360 decl(AVX512_VBMI, "avx512_vbmi", 45) /* Vector BMI instructions */ \ 361 decl(HV, "hv", 46) /* Hypervisor instructions */ 362 363 #define DECLARE_CPU_FEATURE_FLAG(id, name, bit) CPU_##id = (1ULL << bit), 364 CPU_FEATURE_FLAGS(DECLARE_CPU_FEATURE_FLAG) 365 #undef DECLARE_CPU_FEATURE_FLAG 366 }; 367 368 static const char* _features_names[]; 369 370 enum Extended_Family { 371 // AMD 372 CPU_FAMILY_AMD_11H = 0x11, 373 // ZX 374 CPU_FAMILY_ZX_CORE_F6 = 6, 375 CPU_FAMILY_ZX_CORE_F7 = 7, 376 // Intel 377 CPU_FAMILY_INTEL_CORE = 6, 378 CPU_MODEL_NEHALEM = 0x1e, 379 CPU_MODEL_NEHALEM_EP = 0x1a, 380 CPU_MODEL_NEHALEM_EX = 0x2e, 381 CPU_MODEL_WESTMERE = 0x25, 382 CPU_MODEL_WESTMERE_EP = 0x2c, 383 CPU_MODEL_WESTMERE_EX = 0x2f, 384 CPU_MODEL_SANDYBRIDGE = 0x2a, 385 CPU_MODEL_SANDYBRIDGE_EP = 0x2d, 386 CPU_MODEL_IVYBRIDGE_EP = 0x3a, 387 CPU_MODEL_HASWELL_E3 = 0x3c, 388 CPU_MODEL_HASWELL_E7 = 0x3f, 389 CPU_MODEL_BROADWELL = 0x3d, 390 CPU_MODEL_SKYLAKE = 0x55 391 }; 392 393 // cpuid information block. All info derived from executing cpuid with 394 // various function numbers is stored here. Intel and AMD info is 395 // merged in this block: accessor methods disentangle it. 396 // 397 // The info block is laid out in subblocks of 4 dwords corresponding to 398 // eax, ebx, ecx and edx, whether or not they contain anything useful. 399 struct CpuidInfo { 400 // cpuid function 0 401 uint32_t std_max_function; 402 uint32_t std_vendor_name_0; 403 uint32_t std_vendor_name_1; 404 uint32_t std_vendor_name_2; 405 406 // cpuid function 1 407 StdCpuid1Eax std_cpuid1_eax; 408 StdCpuid1Ebx std_cpuid1_ebx; 409 StdCpuid1Ecx std_cpuid1_ecx; 410 StdCpuid1Edx std_cpuid1_edx; 411 412 // cpuid function 4 (deterministic cache parameters) 413 DcpCpuid4Eax dcp_cpuid4_eax; 414 DcpCpuid4Ebx dcp_cpuid4_ebx; 415 uint32_t dcp_cpuid4_ecx; // unused currently 416 uint32_t dcp_cpuid4_edx; // unused currently 417 418 // cpuid function 7 (structured extended features) 419 SefCpuid7Eax sef_cpuid7_eax; 420 SefCpuid7Ebx sef_cpuid7_ebx; 421 SefCpuid7Ecx sef_cpuid7_ecx; 422 SefCpuid7Edx sef_cpuid7_edx; 423 424 // cpuid function 0xB (processor topology) 425 // ecx = 0 426 uint32_t tpl_cpuidB0_eax; 427 TplCpuidBEbx tpl_cpuidB0_ebx; 428 uint32_t tpl_cpuidB0_ecx; // unused currently 429 uint32_t tpl_cpuidB0_edx; // unused currently 430 431 // ecx = 1 432 uint32_t tpl_cpuidB1_eax; 433 TplCpuidBEbx tpl_cpuidB1_ebx; 434 uint32_t tpl_cpuidB1_ecx; // unused currently 435 uint32_t tpl_cpuidB1_edx; // unused currently 436 437 // ecx = 2 438 uint32_t tpl_cpuidB2_eax; 439 TplCpuidBEbx tpl_cpuidB2_ebx; 440 uint32_t tpl_cpuidB2_ecx; // unused currently 441 uint32_t tpl_cpuidB2_edx; // unused currently 442 443 // cpuid function 0x80000000 // example, unused 444 uint32_t ext_max_function; 445 uint32_t ext_vendor_name_0; 446 uint32_t ext_vendor_name_1; 447 uint32_t ext_vendor_name_2; 448 449 // cpuid function 0x80000001 450 uint32_t ext_cpuid1_eax; // reserved 451 uint32_t ext_cpuid1_ebx; // reserved 452 ExtCpuid1Ecx ext_cpuid1_ecx; 453 ExtCpuid1Edx ext_cpuid1_edx; 454 455 // cpuid functions 0x80000002 thru 0x80000004: example, unused 456 uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3; 457 uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7; 458 uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11; 459 460 // cpuid function 0x80000005 // AMD L1, Intel reserved 461 uint32_t ext_cpuid5_eax; // unused currently 462 uint32_t ext_cpuid5_ebx; // reserved 463 ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD) 464 ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD) 465 466 // cpuid function 0x80000007 467 uint32_t ext_cpuid7_eax; // reserved 468 uint32_t ext_cpuid7_ebx; // reserved 469 uint32_t ext_cpuid7_ecx; // reserved 470 ExtCpuid7Edx ext_cpuid7_edx; // tscinv 471 472 // cpuid function 0x80000008 473 uint32_t ext_cpuid8_eax; // unused currently 474 uint32_t ext_cpuid8_ebx; // reserved 475 ExtCpuid8Ecx ext_cpuid8_ecx; 476 uint32_t ext_cpuid8_edx; // reserved 477 478 // cpuid function 0x8000001E // AMD 17h 479 uint32_t ext_cpuid1E_eax; 480 ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h) 481 uint32_t ext_cpuid1E_ecx; 482 uint32_t ext_cpuid1E_edx; // unused currently 483 484 // extended control register XCR0 (the XFEATURE_ENABLED_MASK register) 485 XemXcr0Eax xem_xcr0_eax; 486 uint32_t xem_xcr0_edx; // reserved 487 488 // Space to save ymm registers after signal handle 489 int ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15 490 491 // Space to save zmm registers after signal handle 492 int zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31 493 }; 494 495 // The actual cpuid info block 496 static CpuidInfo _cpuid_info; 497 498 // Extractors and predicates 499 static uint32_t extended_cpu_family() { 500 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family; 501 result += _cpuid_info.std_cpuid1_eax.bits.ext_family; 502 return result; 503 } 504 505 static uint32_t extended_cpu_model() { 506 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model; 507 result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4; 508 return result; 509 } 510 511 static uint32_t cpu_stepping() { 512 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping; 513 return result; 514 } 515 516 static uint logical_processor_count() { 517 uint result = threads_per_core(); 518 return result; 519 } 520 521 static bool compute_has_intel_jcc_erratum(); 522 523 static uint64_t feature_flags() { 524 uint64_t result = 0; 525 if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0) 526 result |= CPU_CX8; 527 if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0) 528 result |= CPU_CMOV; 529 if (_cpuid_info.std_cpuid1_edx.bits.clflush != 0) 530 result |= CPU_FLUSH; 531 #ifdef _LP64 532 // clflush should always be available on x86_64 533 // if not we are in real trouble because we rely on it 534 // to flush the code cache. 535 assert ((result & CPU_FLUSH) != 0, "clflush should be available"); 536 #endif 537 if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd_family() && 538 _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0)) 539 result |= CPU_FXSR; 540 // HT flag is set for multi-core processors also. 541 if (threads_per_core() > 1) 542 result |= CPU_HT; 543 if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd_family() && 544 _cpuid_info.ext_cpuid1_edx.bits.mmx != 0)) 545 result |= CPU_MMX; 546 if (_cpuid_info.std_cpuid1_edx.bits.sse != 0) 547 result |= CPU_SSE; 548 if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0) 549 result |= CPU_SSE2; 550 if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0) 551 result |= CPU_SSE3; 552 if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0) 553 result |= CPU_SSSE3; 554 if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0) 555 result |= CPU_SSE4_1; 556 if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0) 557 result |= CPU_SSE4_2; 558 if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0) 559 result |= CPU_POPCNT; 560 if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 && 561 _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 && 562 _cpuid_info.xem_xcr0_eax.bits.sse != 0 && 563 _cpuid_info.xem_xcr0_eax.bits.ymm != 0) { 564 result |= CPU_AVX; 565 result |= CPU_VZEROUPPER; 566 if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0) 567 result |= CPU_AVX2; 568 if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 && 569 _cpuid_info.xem_xcr0_eax.bits.opmask != 0 && 570 _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 && 571 _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) { 572 result |= CPU_AVX512F; 573 if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0) 574 result |= CPU_AVX512CD; 575 if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0) 576 result |= CPU_AVX512DQ; 577 if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0) 578 result |= CPU_AVX512PF; 579 if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0) 580 result |= CPU_AVX512ER; 581 if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0) 582 result |= CPU_AVX512BW; 583 if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0) 584 result |= CPU_AVX512VL; 585 if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vpopcntdq != 0) 586 result |= CPU_AVX512_VPOPCNTDQ; 587 if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vpclmulqdq != 0) 588 result |= CPU_AVX512_VPCLMULQDQ; 589 if (_cpuid_info.sef_cpuid7_ecx.bits.vaes != 0) 590 result |= CPU_AVX512_VAES; 591 if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vnni != 0) 592 result |= CPU_AVX512_VNNI; 593 if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vbmi != 0) 594 result |= CPU_AVX512_VBMI; 595 if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vbmi2 != 0) 596 result |= CPU_AVX512_VBMI2; 597 } 598 } 599 if (_cpuid_info.std_cpuid1_ecx.bits.hv != 0) 600 result |= CPU_HV; 601 if (_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0) 602 result |= CPU_BMI1; 603 if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0) 604 result |= CPU_TSC; 605 if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0) 606 result |= CPU_TSCINV_BIT; 607 if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0) 608 result |= CPU_AES; 609 if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0) 610 result |= CPU_ERMS; 611 if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0) 612 result |= CPU_CLMUL; 613 if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0) 614 result |= CPU_RTM; 615 if (_cpuid_info.sef_cpuid7_ebx.bits.adx != 0) 616 result |= CPU_ADX; 617 if (_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0) 618 result |= CPU_BMI2; 619 if (_cpuid_info.sef_cpuid7_ebx.bits.sha != 0) 620 result |= CPU_SHA; 621 if (_cpuid_info.std_cpuid1_ecx.bits.fma != 0) 622 result |= CPU_FMA; 623 if (_cpuid_info.sef_cpuid7_ebx.bits.clflushopt != 0) 624 result |= CPU_FLUSHOPT; 625 626 // AMD|Hygon features. 627 if (is_amd_family()) { 628 if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) || 629 (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0)) 630 result |= CPU_3DNOW_PREFETCH; 631 if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0) 632 result |= CPU_LZCNT; 633 if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0) 634 result |= CPU_SSE4A; 635 } 636 637 // Intel features. 638 if (is_intel()) { 639 if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0) { 640 result |= CPU_LZCNT; 641 } 642 if (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0) { 643 result |= CPU_3DNOW_PREFETCH; 644 } 645 if (_cpuid_info.sef_cpuid7_ebx.bits.clwb != 0) { 646 result |= CPU_CLWB; 647 } 648 } 649 650 // ZX features. 651 if (is_zx()) { 652 if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0) { 653 result |= CPU_LZCNT; 654 } 655 if (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0) { 656 result |= CPU_3DNOW_PREFETCH; 657 } 658 } 659 660 // Composite features. 661 if (supports_tscinv_bit() && 662 ((is_amd_family() && !is_amd_Barcelona()) || 663 is_intel_tsc_synched_at_init())) { 664 result |= CPU_TSCINV; 665 } 666 667 return result; 668 } 669 670 static bool os_supports_avx_vectors() { 671 bool retVal = false; 672 int nreg = 2 LP64_ONLY(+2); 673 if (supports_evex()) { 674 // Verify that OS save/restore all bits of EVEX registers 675 // during signal processing. 676 retVal = true; 677 for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register 678 if (_cpuid_info.zmm_save[i] != ymm_test_value()) { 679 retVal = false; 680 break; 681 } 682 } 683 } else if (supports_avx()) { 684 // Verify that OS save/restore all bits of AVX registers 685 // during signal processing. 686 retVal = true; 687 for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register 688 if (_cpuid_info.ymm_save[i] != ymm_test_value()) { 689 retVal = false; 690 break; 691 } 692 } 693 // zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen 694 if (retVal == false) { 695 // Verify that OS save/restore all bits of EVEX registers 696 // during signal processing. 697 retVal = true; 698 for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register 699 if (_cpuid_info.zmm_save[i] != ymm_test_value()) { 700 retVal = false; 701 break; 702 } 703 } 704 } 705 } 706 return retVal; 707 } 708 709 static void get_processor_features(); 710 711 public: 712 // Offsets for cpuid asm stub 713 static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); } 714 static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); } 715 static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); } 716 static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); } 717 static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); } 718 static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); } 719 static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); } 720 static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); } 721 static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); } 722 static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); } 723 static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); } 724 static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); } 725 static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); } 726 static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); } 727 static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); } 728 729 // The value used to check ymm register after signal handle 730 static int ymm_test_value() { return 0xCAFEBABE; } 731 732 static void get_cpu_info_wrapper(); 733 static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; } 734 static bool is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; } 735 static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; } 736 static address cpuinfo_cont_addr() { return _cpuinfo_cont_addr; } 737 738 static void clean_cpuFeatures() { _features = 0; } 739 static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); } 740 static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); } 741 742 743 // Initialization 744 static void initialize(); 745 746 // Override Abstract_VM_Version implementation 747 static void print_platform_virtualization_info(outputStream*); 748 749 // Override Abstract_VM_Version implementation 750 static bool use_biased_locking(); 751 752 // Asserts 753 static void assert_is_initialized() { 754 assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized"); 755 } 756 757 // 758 // Processor family: 759 // 3 - 386 760 // 4 - 486 761 // 5 - Pentium 762 // 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon, 763 // Pentium M, Core Solo, Core Duo, Core2 Duo 764 // family 6 model: 9, 13, 14, 15 765 // 0x0f - Pentium 4, Opteron 766 // 767 // Note: The cpu family should be used to select between 768 // instruction sequences which are valid on all Intel 769 // processors. Use the feature test functions below to 770 // determine whether a particular instruction is supported. 771 // 772 static int cpu_family() { return _cpu;} 773 static bool is_P6() { return cpu_family() >= 6; } 774 static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA' 775 static bool is_hygon() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH' 776 static bool is_amd_family() { return is_amd() || is_hygon(); } 777 static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG' 778 static bool is_zx() { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS ' 779 static bool is_atom_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton 780 static bool is_knights_family() { return UseKNLSetting || ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi 781 782 static bool supports_processor_topology() { 783 return (_cpuid_info.std_max_function >= 0xB) && 784 // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level. 785 // Some cpus have max cpuid >= 0xB but do not support processor topology. 786 (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0); 787 } 788 789 static uint cores_per_cpu() { 790 uint result = 1; 791 if (is_intel()) { 792 bool supports_topology = supports_processor_topology(); 793 if (supports_topology) { 794 result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus / 795 _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; 796 } 797 if (!supports_topology || result == 0) { 798 result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1); 799 } 800 } else if (is_amd_family()) { 801 result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1); 802 } else if (is_zx()) { 803 bool supports_topology = supports_processor_topology(); 804 if (supports_topology) { 805 result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus / 806 _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; 807 } 808 if (!supports_topology || result == 0) { 809 result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1); 810 } 811 } 812 return result; 813 } 814 815 static uint threads_per_core() { 816 uint result = 1; 817 if (is_intel() && supports_processor_topology()) { 818 result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; 819 } else if (is_zx() && supports_processor_topology()) { 820 result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus; 821 } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) { 822 if (cpu_family() >= 0x17) { 823 result = _cpuid_info.ext_cpuid1E_ebx.bits.threads_per_core + 1; 824 } else { 825 result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu / 826 cores_per_cpu(); 827 } 828 } 829 return (result == 0 ? 1 : result); 830 } 831 832 static intx L1_line_size() { 833 intx result = 0; 834 if (is_intel()) { 835 result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1); 836 } else if (is_amd_family()) { 837 result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size; 838 } else if (is_zx()) { 839 result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1); 840 } 841 if (result < 32) // not defined ? 842 result = 32; // 32 bytes by default on x86 and other x64 843 return result; 844 } 845 846 static intx prefetch_data_size() { 847 return L1_line_size(); 848 } 849 850 // 851 // Feature identification 852 // 853 static bool supports_cpuid() { return _features != 0; } 854 static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; } 855 static bool supports_cmov() { return (_features & CPU_CMOV) != 0; } 856 static bool supports_fxsr() { return (_features & CPU_FXSR) != 0; } 857 static bool supports_ht() { return (_features & CPU_HT) != 0; } 858 static bool supports_mmx() { return (_features & CPU_MMX) != 0; } 859 static bool supports_sse() { return (_features & CPU_SSE) != 0; } 860 static bool supports_sse2() { return (_features & CPU_SSE2) != 0; } 861 static bool supports_sse3() { return (_features & CPU_SSE3) != 0; } 862 static bool supports_ssse3() { return (_features & CPU_SSSE3)!= 0; } 863 static bool supports_sse4_1() { return (_features & CPU_SSE4_1) != 0; } 864 static bool supports_sse4_2() { return (_features & CPU_SSE4_2) != 0; } 865 static bool supports_popcnt() { return (_features & CPU_POPCNT) != 0; } 866 static bool supports_avx() { return (_features & CPU_AVX) != 0; } 867 static bool supports_avx2() { return (_features & CPU_AVX2) != 0; } 868 static bool supports_tsc() { return (_features & CPU_TSC) != 0; } 869 static bool supports_aes() { return (_features & CPU_AES) != 0; } 870 static bool supports_erms() { return (_features & CPU_ERMS) != 0; } 871 static bool supports_clmul() { return (_features & CPU_CLMUL) != 0; } 872 static bool supports_rtm() { return (_features & CPU_RTM) != 0; } 873 static bool supports_bmi1() { return (_features & CPU_BMI1) != 0; } 874 static bool supports_bmi2() { return (_features & CPU_BMI2) != 0; } 875 static bool supports_adx() { return (_features & CPU_ADX) != 0; } 876 static bool supports_evex() { return (_features & CPU_AVX512F) != 0; } 877 static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; } 878 static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; } 879 static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; } 880 static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; } 881 static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; } 882 static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; } 883 static bool supports_avx512vlbw() { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); } 884 static bool supports_avx512vldq() { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); } 885 static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() && 886 supports_avx512bw() && supports_avx512dq()); } 887 static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); } 888 static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); } 889 static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); } 890 static bool supports_avxonly() { return ((supports_avx2() || supports_avx()) && !supports_evex()); } 891 static bool supports_sha() { return (_features & CPU_SHA) != 0; } 892 static bool supports_fma() { return (_features & CPU_FMA) != 0 && supports_avx(); } 893 static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; } 894 static bool supports_avx512_vpopcntdq() { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; } 895 static bool supports_avx512_vpclmulqdq() { return (_features & CPU_AVX512_VPCLMULQDQ) != 0; } 896 static bool supports_avx512_vaes() { return (_features & CPU_AVX512_VAES) != 0; } 897 static bool supports_avx512_vnni() { return (_features & CPU_AVX512_VNNI) != 0; } 898 static bool supports_avx512_vbmi() { return (_features & CPU_AVX512_VBMI) != 0; } 899 static bool supports_avx512_vbmi2() { return (_features & CPU_AVX512_VBMI2) != 0; } 900 static bool supports_hv() { return (_features & CPU_HV) != 0; } 901 902 // Intel features 903 static bool is_intel_family_core() { return is_intel() && 904 extended_cpu_family() == CPU_FAMILY_INTEL_CORE; } 905 906 static bool is_intel_skylake() { return is_intel_family_core() && 907 extended_cpu_model() == CPU_MODEL_SKYLAKE; } 908 909 static bool is_intel_tsc_synched_at_init() { 910 if (is_intel_family_core()) { 911 uint32_t ext_model = extended_cpu_model(); 912 if (ext_model == CPU_MODEL_NEHALEM_EP || 913 ext_model == CPU_MODEL_WESTMERE_EP || 914 ext_model == CPU_MODEL_SANDYBRIDGE_EP || 915 ext_model == CPU_MODEL_IVYBRIDGE_EP) { 916 // <= 2-socket invariant tsc support. EX versions are usually used 917 // in > 2-socket systems and likely don't synchronize tscs at 918 // initialization. 919 // Code that uses tsc values must be prepared for them to arbitrarily 920 // jump forward or backward. 921 return true; 922 } 923 } 924 return false; 925 } 926 927 // This checks if the JVM is potentially affected by an erratum on Intel CPUs (SKX102) 928 // that causes unpredictable behaviour when jcc crosses 64 byte boundaries. Its microcode 929 // mitigation causes regressions when jumps or fused conditional branches cross or end at 930 // 32 byte boundaries. 931 static bool has_intel_jcc_erratum() { return _has_intel_jcc_erratum; } 932 933 // AMD features 934 static bool supports_3dnow_prefetch() { return (_features & CPU_3DNOW_PREFETCH) != 0; } 935 static bool supports_lzcnt() { return (_features & CPU_LZCNT) != 0; } 936 static bool supports_sse4a() { return (_features & CPU_SSE4A) != 0; } 937 938 static bool is_amd_Barcelona() { return is_amd() && 939 extended_cpu_family() == CPU_FAMILY_AMD_11H; } 940 941 // Intel and AMD newer cores support fast timestamps well 942 static bool supports_tscinv_bit() { 943 return (_features & CPU_TSCINV_BIT) != 0; 944 } 945 static bool supports_tscinv() { 946 return (_features & CPU_TSCINV) != 0; 947 } 948 949 // Intel Core and newer cpus have fast IDIV instruction (excluding Atom). 950 static bool has_fast_idiv() { return is_intel() && cpu_family() == 6 && 951 supports_sse3() && _model != 0x1C; } 952 953 static bool supports_compare_and_exchange() { return true; } 954 955 static intx allocate_prefetch_distance(bool use_watermark_prefetch) { 956 // Hardware prefetching (distance/size in bytes): 957 // Pentium 3 - 64 / 32 958 // Pentium 4 - 256 / 128 959 // Athlon - 64 / 32 ???? 960 // Opteron - 128 / 64 only when 2 sequential cache lines accessed 961 // Core - 128 / 64 962 // 963 // Software prefetching (distance in bytes / instruction with best score): 964 // Pentium 3 - 128 / prefetchnta 965 // Pentium 4 - 512 / prefetchnta 966 // Athlon - 128 / prefetchnta 967 // Opteron - 256 / prefetchnta 968 // Core - 256 / prefetchnta 969 // It will be used only when AllocatePrefetchStyle > 0 970 971 if (is_amd_family()) { // AMD | Hygon 972 if (supports_sse2()) { 973 return 256; // Opteron 974 } else { 975 return 128; // Athlon 976 } 977 } else { // Intel 978 if (supports_sse3() && cpu_family() == 6) { 979 if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus 980 return 192; 981 } else if (use_watermark_prefetch) { // watermark prefetching on Core 982 #ifdef _LP64 983 return 384; 984 #else 985 return 320; 986 #endif 987 } 988 } 989 if (supports_sse2()) { 990 if (cpu_family() == 6) { 991 return 256; // Pentium M, Core, Core2 992 } else { 993 return 512; // Pentium 4 994 } 995 } else { 996 return 128; // Pentium 3 (and all other old CPUs) 997 } 998 } 999 } 1000 1001 // SSE2 and later processors implement a 'pause' instruction 1002 // that can be used for efficient implementation of 1003 // the intrinsic for java.lang.Thread.onSpinWait() 1004 static bool supports_on_spin_wait() { return supports_sse2(); } 1005 1006 // x86_64 supports fast class initialization checks for static methods. 1007 static bool supports_fast_class_init_checks() { 1008 return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32 1009 } 1010 1011 constexpr static bool supports_stack_watermark_barrier() { 1012 return true; 1013 } 1014 1015 // there are several insns to force cache line sync to memory which 1016 // we can use to ensure mapped non-volatile memory is up to date with 1017 // pending in-cache changes. 1018 // 1019 // 64 bit cpus always support clflush which writes back and evicts 1020 // on 32 bit cpus support is recorded via a feature flag 1021 // 1022 // clflushopt is optional and acts like clflush except it does 1023 // not synchronize with other memory ops. it needs a preceding 1024 // and trailing StoreStore fence 1025 // 1026 // clwb is an optional intel-specific instruction which 1027 // writes back without evicting the line. it also does not 1028 // synchronize with other memory ops. so, it needs preceding 1029 // and trailing StoreStore fences. 1030 1031 #ifdef _LP64 1032 static bool supports_clflush() { 1033 // clflush should always be available on x86_64 1034 // if not we are in real trouble because we rely on it 1035 // to flush the code cache. 1036 // Unfortunately, Assembler::clflush is currently called as part 1037 // of generation of the code cache flush routine. This happens 1038 // under Universe::init before the processor features are set 1039 // up. Assembler::flush calls this routine to check that clflush 1040 // is allowed. So, we give the caller a free pass if Universe init 1041 // is still in progress. 1042 assert ((!Universe::is_fully_initialized() || (_features & CPU_FLUSH) != 0), "clflush should be available"); 1043 return true; 1044 } 1045 #else 1046 static bool supports_clflush() { return ((_features & CPU_FLUSH) != 0); } 1047 #endif // _LP64 1048 // Note: CPU_FLUSHOPT and CPU_CLWB bits should always be zero for 32-bit 1049 static bool supports_clflushopt() { return ((_features & CPU_FLUSHOPT) != 0); } 1050 static bool supports_clwb() { return ((_features & CPU_CLWB) != 0); } 1051 1052 #ifdef __APPLE__ 1053 // Is the CPU running emulated (for example macOS Rosetta running x86_64 code on M1 ARM (aarch64) 1054 static bool is_cpu_emulated(); 1055 #endif 1056 1057 // support functions for virtualization detection 1058 private: 1059 static void check_virtualizations(); 1060 }; 1061 1062 #endif // CPU_X86_VM_VERSION_X86_HPP