1 /* 2 * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 33 class BlockBegin; 34 class BlockList; 35 class LIR_Assembler; 36 class CodeEmitInfo; 37 class CodeStub; 38 class CodeStubList; 39 class C1SafepointPollStub; 40 class ArrayCopyStub; 41 class LIR_Op; 42 class ciType; 43 class ValueType; 44 class LIR_OpVisitState; 45 class FpuStackSim; 46 47 //--------------------------------------------------------------------- 48 // LIR Operands 49 // LIR_OprDesc 50 // LIR_OprPtr 51 // LIR_Const 52 // LIR_Address 53 //--------------------------------------------------------------------- 54 class LIR_OprDesc; 55 class LIR_OprPtr; 56 class LIR_Const; 57 class LIR_Address; 58 class LIR_OprVisitor; 59 60 61 typedef LIR_OprDesc* LIR_Opr; 62 typedef int RegNr; 63 64 typedef GrowableArray<LIR_Opr> LIR_OprList; 65 typedef GrowableArray<LIR_Op*> LIR_OpArray; 66 typedef GrowableArray<LIR_Op*> LIR_OpList; 67 68 // define LIR_OprPtr early so LIR_OprDesc can refer to it 69 class LIR_OprPtr: public CompilationResourceObj { 70 public: 71 bool is_oop_pointer() const { return (type() == T_OBJECT); } 72 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 73 74 virtual LIR_Const* as_constant() { return NULL; } 75 virtual LIR_Address* as_address() { return NULL; } 76 virtual BasicType type() const = 0; 77 virtual void print_value_on(outputStream* out) const = 0; 78 }; 79 80 81 82 // LIR constants 83 class LIR_Const: public LIR_OprPtr { 84 private: 85 JavaValue _value; 86 87 void type_check(BasicType t) const { assert(type() == t, "type check"); } 88 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 89 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 90 91 public: 92 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 93 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 94 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 95 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 96 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 97 LIR_Const(void* p) { 98 #ifdef _LP64 99 assert(sizeof(jlong) >= sizeof(p), "too small");; 100 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 101 #else 102 assert(sizeof(jint) >= sizeof(p), "too small");; 103 _value.set_type(T_INT); _value.set_jint((jint)p); 104 #endif 105 } 106 LIR_Const(Metadata* m) { 107 _value.set_type(T_METADATA); 108 #ifdef _LP64 109 _value.set_jlong((jlong)m); 110 #else 111 _value.set_jint((jint)m); 112 #endif // _LP64 113 } 114 115 virtual BasicType type() const { return _value.get_type(); } 116 virtual LIR_Const* as_constant() { return this; } 117 118 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 119 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 120 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 121 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 122 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 123 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 124 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 125 126 #ifdef _LP64 127 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 129 #else 130 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 131 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 132 #endif 133 134 135 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 136 jint as_jint_lo_bits() const { 137 if (type() == T_DOUBLE) { 138 return low(jlong_cast(_value.get_jdouble())); 139 } else { 140 return as_jint_lo(); 141 } 142 } 143 jint as_jint_hi_bits() const { 144 if (type() == T_DOUBLE) { 145 return high(jlong_cast(_value.get_jdouble())); 146 } else { 147 return as_jint_hi(); 148 } 149 } 150 jlong as_jlong_bits() const { 151 if (type() == T_DOUBLE) { 152 return jlong_cast(_value.get_jdouble()); 153 } else { 154 return as_jlong(); 155 } 156 } 157 158 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 159 160 161 bool is_zero_float() { 162 jfloat f = as_jfloat(); 163 jfloat ok = 0.0f; 164 return jint_cast(f) == jint_cast(ok); 165 } 166 167 bool is_one_float() { 168 jfloat f = as_jfloat(); 169 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 170 } 171 172 bool is_zero_double() { 173 jdouble d = as_jdouble(); 174 jdouble ok = 0.0; 175 return jlong_cast(d) == jlong_cast(ok); 176 } 177 178 bool is_one_double() { 179 jdouble d = as_jdouble(); 180 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 181 } 182 }; 183 184 185 //---------------------LIR Operand descriptor------------------------------------ 186 // 187 // The class LIR_OprDesc represents a LIR instruction operand; 188 // it can be a register (ALU/FPU), stack location or a constant; 189 // Constants and addresses are represented as resource area allocated 190 // structures (see above). 191 // Registers and stack locations are inlined into the this pointer 192 // (see value function). 193 194 class LIR_OprDesc: public CompilationResourceObj { 195 public: 196 // value structure: 197 // data opr-type opr-kind 198 // +--------------+-------+-------+ 199 // [max...........|7 6 5 4|3 2 1 0] 200 // ^ 201 // is_pointer bit 202 // 203 // lowest bit cleared, means it is a structure pointer 204 // we need 4 bits to represent types 205 206 private: 207 friend class LIR_OprFact; 208 209 // Conversion 210 intptr_t value() const { return (intptr_t) this; } 211 212 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 213 return (value() & mask) == masked_value; 214 } 215 216 enum OprKind { 217 pointer_value = 0 218 , stack_value = 1 219 , cpu_register = 3 220 , fpu_register = 5 221 , illegal_value = 7 222 }; 223 224 enum OprBits { 225 pointer_bits = 1 226 , kind_bits = 3 227 , type_bits = 4 228 , size_bits = 2 229 , destroys_bits = 1 230 , virtual_bits = 1 231 , is_xmm_bits = 1 232 , last_use_bits = 1 233 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation 234 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 235 + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits 236 , data_bits = BitsPerInt - non_data_bits 237 , reg_bits = data_bits / 2 // for two registers in one value encoding 238 }; 239 240 enum OprShift : uintptr_t { 241 kind_shift = 0 242 , type_shift = kind_shift + kind_bits 243 , size_shift = type_shift + type_bits 244 , destroys_shift = size_shift + size_bits 245 , last_use_shift = destroys_shift + destroys_bits 246 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits 247 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits 248 , is_xmm_shift = virtual_shift + virtual_bits 249 , data_shift = is_xmm_shift + is_xmm_bits 250 , reg1_shift = data_shift 251 , reg2_shift = data_shift + reg_bits 252 253 }; 254 255 enum OprSize { 256 single_size = 0 << size_shift 257 , double_size = 1 << size_shift 258 }; 259 260 enum OprMask { 261 kind_mask = right_n_bits(kind_bits) 262 , type_mask = right_n_bits(type_bits) << type_shift 263 , size_mask = right_n_bits(size_bits) << size_shift 264 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 265 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift 266 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 267 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 268 , pointer_mask = right_n_bits(pointer_bits) 269 , lower_reg_mask = right_n_bits(reg_bits) 270 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask)) 271 }; 272 273 uint32_t data() const { return (uint32_t)value() >> data_shift; } 274 int lo_reg_half() const { return data() & lower_reg_mask; } 275 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 276 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 277 OprSize size_field() const { return (OprSize)(value() & size_mask); } 278 279 static char type_char(BasicType t); 280 281 public: 282 enum { 283 vreg_base = ConcreteRegisterImpl::number_of_registers, 284 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field 285 vreg_limit = 10000, // choose a reasonable limit, 286 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field 287 }; 288 289 static inline LIR_Opr illegalOpr(); 290 291 enum OprType { 292 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 293 , int_type = 1 << type_shift 294 , long_type = 2 << type_shift 295 , object_type = 3 << type_shift 296 , address_type = 4 << type_shift 297 , float_type = 5 << type_shift 298 , double_type = 6 << type_shift 299 , metadata_type = 7 << type_shift 300 }; 301 friend OprType as_OprType(BasicType t); 302 friend BasicType as_BasicType(OprType t); 303 304 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 305 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 306 307 static OprSize size_for(BasicType t) { 308 switch (t) { 309 case T_LONG: 310 case T_DOUBLE: 311 return double_size; 312 break; 313 314 case T_FLOAT: 315 case T_BOOLEAN: 316 case T_CHAR: 317 case T_BYTE: 318 case T_SHORT: 319 case T_INT: 320 case T_ADDRESS: 321 case T_OBJECT: 322 case T_ARRAY: 323 case T_METADATA: 324 return single_size; 325 break; 326 327 default: 328 ShouldNotReachHere(); 329 return single_size; 330 } 331 } 332 333 334 void validate_type() const PRODUCT_RETURN; 335 336 BasicType type() const { 337 if (is_pointer()) { 338 return pointer()->type(); 339 } 340 return as_BasicType(type_field()); 341 } 342 343 344 ValueType* value_type() const { return as_ValueType(type()); } 345 346 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 347 348 bool is_equal(LIR_Opr opr) const { return this == opr; } 349 // checks whether types are same 350 bool is_same_type(LIR_Opr opr) const { 351 assert(type_field() != unknown_type && 352 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 353 return type_field() == opr->type_field(); 354 } 355 bool is_same_register(LIR_Opr opr) { 356 return (is_register() && opr->is_register() && 357 kind_field() == opr->kind_field() && 358 (value() & no_type_mask) == (opr->value() & no_type_mask)); 359 } 360 361 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 362 bool is_illegal() const { return kind_field() == illegal_value; } 363 bool is_valid() const { return kind_field() != illegal_value; } 364 365 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 366 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 367 368 bool is_constant() const { return is_pointer() && pointer()->as_constant() != NULL; } 369 bool is_address() const { return is_pointer() && pointer()->as_address() != NULL; } 370 371 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 372 bool is_oop() const; 373 374 // semantic for fpu- and xmm-registers: 375 // * is_float and is_double return true for xmm_registers 376 // (so is_single_fpu and is_single_xmm are true) 377 // * So you must always check for is_???_xmm prior to is_???_fpu to 378 // distinguish between fpu- and xmm-registers 379 380 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 381 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 382 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 383 384 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 385 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 386 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 387 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 388 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 389 390 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 391 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 392 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 393 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 394 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 395 396 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 397 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 398 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 399 400 // fast accessor functions for special bits that do not work for pointers 401 // (in this functions, the check for is_pointer() is omitted) 402 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 403 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 404 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 405 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 406 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 407 408 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 409 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; } 410 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 411 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); } 412 413 414 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 415 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 416 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 417 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 418 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 419 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 420 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 421 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 422 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 423 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 424 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 425 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 426 427 LIR_OprPtr* pointer() const { assert(is_pointer(), "type check"); return (LIR_OprPtr*)this; } 428 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 429 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 430 431 Register as_register() const; 432 Register as_register_lo() const; 433 Register as_register_hi() const; 434 435 Register as_pointer_register() { 436 #ifdef _LP64 437 if (is_double_cpu()) { 438 assert(as_register_lo() == as_register_hi(), "should be a single register"); 439 return as_register_lo(); 440 } 441 #endif 442 return as_register(); 443 } 444 445 FloatRegister as_float_reg () const; 446 FloatRegister as_double_reg () const; 447 #ifdef X86 448 XMMRegister as_xmm_float_reg () const; 449 XMMRegister as_xmm_double_reg() const; 450 // for compatibility with RInfo 451 int fpu() const { return lo_reg_half(); } 452 #endif 453 454 jint as_jint() const { return as_constant_ptr()->as_jint(); } 455 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 456 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 457 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 458 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 459 460 void print() const PRODUCT_RETURN; 461 void print(outputStream* out) const PRODUCT_RETURN; 462 }; 463 464 465 inline LIR_OprDesc::OprType as_OprType(BasicType type) { 466 switch (type) { 467 case T_INT: return LIR_OprDesc::int_type; 468 case T_LONG: return LIR_OprDesc::long_type; 469 case T_FLOAT: return LIR_OprDesc::float_type; 470 case T_DOUBLE: return LIR_OprDesc::double_type; 471 case T_OBJECT: 472 case T_ARRAY: return LIR_OprDesc::object_type; 473 case T_ADDRESS: return LIR_OprDesc::address_type; 474 case T_METADATA: return LIR_OprDesc::metadata_type; 475 case T_ILLEGAL: // fall through 476 default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type; 477 } 478 } 479 480 inline BasicType as_BasicType(LIR_OprDesc::OprType t) { 481 switch (t) { 482 case LIR_OprDesc::int_type: return T_INT; 483 case LIR_OprDesc::long_type: return T_LONG; 484 case LIR_OprDesc::float_type: return T_FLOAT; 485 case LIR_OprDesc::double_type: return T_DOUBLE; 486 case LIR_OprDesc::object_type: return T_OBJECT; 487 case LIR_OprDesc::address_type: return T_ADDRESS; 488 case LIR_OprDesc::metadata_type:return T_METADATA; 489 case LIR_OprDesc::unknown_type: // fall through 490 default: ShouldNotReachHere(); return T_ILLEGAL; 491 } 492 } 493 494 495 // LIR_Address 496 class LIR_Address: public LIR_OprPtr { 497 friend class LIR_OpVisitState; 498 499 public: 500 // NOTE: currently these must be the log2 of the scale factor (and 501 // must also be equivalent to the ScaleFactor enum in 502 // assembler_i486.hpp) 503 enum Scale { 504 times_1 = 0, 505 times_2 = 1, 506 times_4 = 2, 507 times_8 = 3 508 }; 509 510 private: 511 LIR_Opr _base; 512 LIR_Opr _index; 513 Scale _scale; 514 intx _disp; 515 BasicType _type; 516 517 public: 518 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 519 _base(base) 520 , _index(index) 521 , _scale(times_1) 522 , _disp(0) 523 , _type(type) { verify(); } 524 525 LIR_Address(LIR_Opr base, intx disp, BasicType type): 526 _base(base) 527 , _index(LIR_OprDesc::illegalOpr()) 528 , _scale(times_1) 529 , _disp(disp) 530 , _type(type) { verify(); } 531 532 LIR_Address(LIR_Opr base, BasicType type): 533 _base(base) 534 , _index(LIR_OprDesc::illegalOpr()) 535 , _scale(times_1) 536 , _disp(0) 537 , _type(type) { verify(); } 538 539 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 540 _base(base) 541 , _index(index) 542 , _scale(times_1) 543 , _disp(disp) 544 , _type(type) { verify(); } 545 546 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 547 _base(base) 548 , _index(index) 549 , _scale(scale) 550 , _disp(disp) 551 , _type(type) { verify(); } 552 553 LIR_Opr base() const { return _base; } 554 LIR_Opr index() const { return _index; } 555 Scale scale() const { return _scale; } 556 intx disp() const { return _disp; } 557 558 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 559 560 virtual LIR_Address* as_address() { return this; } 561 virtual BasicType type() const { return _type; } 562 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 563 564 void verify() const PRODUCT_RETURN; 565 566 static Scale scale(BasicType type); 567 }; 568 569 570 // operand factory 571 class LIR_OprFact: public AllStatic { 572 public: 573 574 static LIR_Opr illegalOpr; 575 576 static LIR_Opr single_cpu(int reg) { 577 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 578 LIR_OprDesc::int_type | 579 LIR_OprDesc::cpu_register | 580 LIR_OprDesc::single_size); 581 } 582 static LIR_Opr single_cpu_oop(int reg) { 583 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 584 LIR_OprDesc::object_type | 585 LIR_OprDesc::cpu_register | 586 LIR_OprDesc::single_size); 587 } 588 static LIR_Opr single_cpu_address(int reg) { 589 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 590 LIR_OprDesc::address_type | 591 LIR_OprDesc::cpu_register | 592 LIR_OprDesc::single_size); 593 } 594 static LIR_Opr single_cpu_metadata(int reg) { 595 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 596 LIR_OprDesc::metadata_type | 597 LIR_OprDesc::cpu_register | 598 LIR_OprDesc::single_size); 599 } 600 static LIR_Opr double_cpu(int reg1, int reg2) { 601 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 602 return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) | 603 (reg2 << LIR_OprDesc::reg2_shift) | 604 LIR_OprDesc::long_type | 605 LIR_OprDesc::cpu_register | 606 LIR_OprDesc::double_size); 607 } 608 609 static LIR_Opr single_fpu(int reg) { 610 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 611 LIR_OprDesc::float_type | 612 LIR_OprDesc::fpu_register | 613 LIR_OprDesc::single_size); 614 } 615 616 // Platform dependant. 617 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 618 619 #ifdef ARM32 620 static LIR_Opr single_softfp(int reg) { 621 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 622 LIR_OprDesc::float_type | 623 LIR_OprDesc::cpu_register | 624 LIR_OprDesc::single_size); 625 } 626 static LIR_Opr double_softfp(int reg1, int reg2) { 627 return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) | 628 (reg2 << LIR_OprDesc::reg2_shift) | 629 LIR_OprDesc::double_type | 630 LIR_OprDesc::cpu_register | 631 LIR_OprDesc::double_size); 632 } 633 #endif // ARM32 634 635 #if defined(X86) 636 static LIR_Opr single_xmm(int reg) { 637 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 638 LIR_OprDesc::float_type | 639 LIR_OprDesc::fpu_register | 640 LIR_OprDesc::single_size | 641 LIR_OprDesc::is_xmm_mask); 642 } 643 static LIR_Opr double_xmm(int reg) { 644 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 645 (reg << LIR_OprDesc::reg2_shift) | 646 LIR_OprDesc::double_type | 647 LIR_OprDesc::fpu_register | 648 LIR_OprDesc::double_size | 649 LIR_OprDesc::is_xmm_mask); 650 } 651 #endif // X86 652 653 static LIR_Opr virtual_register(int index, BasicType type) { 654 if (index > LIR_OprDesc::vreg_max) { 655 // Running out of virtual registers. Caller should bailout. 656 return illegalOpr; 657 } 658 659 LIR_Opr res; 660 switch (type) { 661 case T_OBJECT: // fall through 662 case T_ARRAY: 663 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 664 LIR_OprDesc::object_type | 665 LIR_OprDesc::cpu_register | 666 LIR_OprDesc::single_size | 667 LIR_OprDesc::virtual_mask); 668 break; 669 670 case T_METADATA: 671 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 672 LIR_OprDesc::metadata_type| 673 LIR_OprDesc::cpu_register | 674 LIR_OprDesc::single_size | 675 LIR_OprDesc::virtual_mask); 676 break; 677 678 case T_INT: 679 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 680 LIR_OprDesc::int_type | 681 LIR_OprDesc::cpu_register | 682 LIR_OprDesc::single_size | 683 LIR_OprDesc::virtual_mask); 684 break; 685 686 case T_ADDRESS: 687 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 688 LIR_OprDesc::address_type | 689 LIR_OprDesc::cpu_register | 690 LIR_OprDesc::single_size | 691 LIR_OprDesc::virtual_mask); 692 break; 693 694 case T_LONG: 695 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 696 LIR_OprDesc::long_type | 697 LIR_OprDesc::cpu_register | 698 LIR_OprDesc::double_size | 699 LIR_OprDesc::virtual_mask); 700 break; 701 702 #ifdef __SOFTFP__ 703 case T_FLOAT: 704 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 705 LIR_OprDesc::float_type | 706 LIR_OprDesc::cpu_register | 707 LIR_OprDesc::single_size | 708 LIR_OprDesc::virtual_mask); 709 break; 710 case T_DOUBLE: 711 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 712 LIR_OprDesc::double_type | 713 LIR_OprDesc::cpu_register | 714 LIR_OprDesc::double_size | 715 LIR_OprDesc::virtual_mask); 716 break; 717 #else // __SOFTFP__ 718 case T_FLOAT: 719 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 720 LIR_OprDesc::float_type | 721 LIR_OprDesc::fpu_register | 722 LIR_OprDesc::single_size | 723 LIR_OprDesc::virtual_mask); 724 break; 725 726 case 727 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 728 LIR_OprDesc::double_type | 729 LIR_OprDesc::fpu_register | 730 LIR_OprDesc::double_size | 731 LIR_OprDesc::virtual_mask); 732 break; 733 #endif // __SOFTFP__ 734 default: ShouldNotReachHere(); res = illegalOpr; 735 } 736 737 #ifdef ASSERT 738 res->validate_type(); 739 assert(res->vreg_number() == index, "conversion check"); 740 assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base"); 741 742 // old-style calculation; check if old and new method are equal 743 LIR_OprDesc::OprType t = as_OprType(type); 744 #ifdef __SOFTFP__ 745 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 746 t | 747 LIR_OprDesc::cpu_register | 748 LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask); 749 #else // __SOFTFP__ 750 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t | 751 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) | 752 LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask); 753 assert(res == old_res, "old and new method not equal"); 754 #endif // __SOFTFP__ 755 #endif // ASSERT 756 757 return res; 758 } 759 760 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 761 // the index is platform independent; a double stack useing indeces 2 and 3 has always 762 // index 2. 763 static LIR_Opr stack(int index, BasicType type) { 764 LIR_Opr res; 765 switch (type) { 766 case T_OBJECT: // fall through 767 case T_ARRAY: 768 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 769 LIR_OprDesc::object_type | 770 LIR_OprDesc::stack_value | 771 LIR_OprDesc::single_size); 772 break; 773 774 case T_METADATA: 775 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 776 LIR_OprDesc::metadata_type | 777 LIR_OprDesc::stack_value | 778 LIR_OprDesc::single_size); 779 break; 780 case T_INT: 781 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 782 LIR_OprDesc::int_type | 783 LIR_OprDesc::stack_value | 784 LIR_OprDesc::single_size); 785 break; 786 787 case T_ADDRESS: 788 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 789 LIR_OprDesc::address_type | 790 LIR_OprDesc::stack_value | 791 LIR_OprDesc::single_size); 792 break; 793 794 case T_LONG: 795 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 796 LIR_OprDesc::long_type | 797 LIR_OprDesc::stack_value | 798 LIR_OprDesc::double_size); 799 break; 800 801 case T_FLOAT: 802 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 803 LIR_OprDesc::float_type | 804 LIR_OprDesc::stack_value | 805 LIR_OprDesc::single_size); 806 break; 807 case T_DOUBLE: 808 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 809 LIR_OprDesc::double_type | 810 LIR_OprDesc::stack_value | 811 LIR_OprDesc::double_size); 812 break; 813 814 default: ShouldNotReachHere(); res = illegalOpr; 815 } 816 817 #ifdef ASSERT 818 assert(index >= 0, "index must be positive"); 819 assert(index == (int)res->data(), "conversion check"); 820 821 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 822 LIR_OprDesc::stack_value | 823 as_OprType(type) | 824 LIR_OprDesc::size_for(type)); 825 assert(res == old_res, "old and new method not equal"); 826 #endif 827 828 return res; 829 } 830 831 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 832 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 833 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 834 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 835 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 836 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 837 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 838 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 839 static LIR_Opr illegal() { return (LIR_Opr)-1; } 840 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 841 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 842 843 static LIR_Opr value_type(ValueType* type); 844 }; 845 846 847 //------------------------------------------------------------------------------- 848 // LIR Instructions 849 //------------------------------------------------------------------------------- 850 // 851 // Note: 852 // - every instruction has a result operand 853 // - every instruction has an CodeEmitInfo operand (can be revisited later) 854 // - every instruction has a LIR_OpCode operand 855 // - LIR_OpN, means an instruction that has N input operands 856 // 857 // class hierarchy: 858 // 859 class LIR_Op; 860 class LIR_Op0; 861 class LIR_OpLabel; 862 class LIR_Op1; 863 class LIR_OpBranch; 864 class LIR_OpConvert; 865 class LIR_OpAllocObj; 866 class LIR_OpReturn; 867 class LIR_OpRoundFP; 868 class LIR_Op2; 869 class LIR_OpDelay; 870 class LIR_Op3; 871 class LIR_OpAllocArray; 872 #ifdef RISCV 873 class LIR_Op4; 874 #endif 875 class LIR_OpCall; 876 class LIR_OpJavaCall; 877 class LIR_OpRTCall; 878 class LIR_OpArrayCopy; 879 class LIR_OpUpdateCRC32; 880 class LIR_OpLock; 881 class LIR_OpTypeCheck; 882 class LIR_OpCompareAndSwap; 883 class LIR_OpLoadKlass; 884 class LIR_OpProfileCall; 885 class LIR_OpProfileType; 886 #ifdef ASSERT 887 class LIR_OpAssert; 888 #endif 889 890 // LIR operation codes 891 enum LIR_Code { 892 lir_none 893 , begin_op0 894 , lir_label 895 , lir_nop 896 , lir_backwardbranch_target 897 , lir_std_entry 898 , lir_osr_entry 899 , lir_fpop_raw 900 , lir_breakpoint 901 , lir_rtcall 902 , lir_membar 903 , lir_membar_acquire 904 , lir_membar_release 905 , lir_membar_loadload 906 , lir_membar_storestore 907 , lir_membar_loadstore 908 , lir_membar_storeload 909 , lir_get_thread 910 , lir_on_spin_wait 911 , end_op0 912 , begin_op1 913 , lir_fxch 914 , lir_fld 915 , lir_push 916 , lir_pop 917 , lir_null_check 918 , lir_return 919 , lir_leal 920 #ifndef RISCV 921 , lir_branch 922 , lir_cond_float_branch 923 #endif 924 , lir_move 925 , lir_convert 926 , lir_alloc_object 927 , lir_monaddr 928 , lir_roundfp 929 , lir_safepoint 930 , lir_unwind 931 , lir_load_klass 932 , end_op1 933 , begin_op2 934 #ifdef RISCV 935 , lir_branch 936 , lir_cond_float_branch 937 #endif 938 , lir_cmp 939 , lir_cmp_l2i 940 , lir_ucmp_fd2i 941 , lir_cmp_fd2i 942 #ifndef RISCV 943 , lir_cmove 944 #endif 945 , lir_add 946 , lir_sub 947 , lir_mul 948 , lir_div 949 , lir_rem 950 , lir_sqrt 951 , lir_abs 952 , lir_neg 953 , lir_tan 954 , lir_log10 955 , lir_logic_and 956 , lir_logic_or 957 , lir_logic_xor 958 , lir_shl 959 , lir_shr 960 , lir_ushr 961 , lir_alloc_array 962 , lir_throw 963 , lir_xadd 964 , lir_xchg 965 , end_op2 966 , begin_op3 967 , lir_idiv 968 , lir_irem 969 , lir_fmad 970 , lir_fmaf 971 , end_op3 972 #ifdef RISCV 973 , begin_op4 974 , lir_cmove 975 , end_op4 976 #endif 977 , begin_opJavaCall 978 , lir_static_call 979 , lir_optvirtual_call 980 , lir_icvirtual_call 981 , lir_dynamic_call 982 , end_opJavaCall 983 , begin_opArrayCopy 984 , lir_arraycopy 985 , end_opArrayCopy 986 , begin_opUpdateCRC32 987 , lir_updatecrc32 988 , end_opUpdateCRC32 989 , begin_opLock 990 , lir_lock 991 , lir_unlock 992 , end_opLock 993 , begin_delay_slot 994 , lir_delay_slot 995 , end_delay_slot 996 , begin_opTypeCheck 997 , lir_instanceof 998 , lir_checkcast 999 , lir_store_check 1000 , end_opTypeCheck 1001 , begin_opCompareAndSwap 1002 , lir_cas_long 1003 , lir_cas_obj 1004 , lir_cas_int 1005 , end_opCompareAndSwap 1006 , begin_opMDOProfile 1007 , lir_profile_call 1008 , lir_profile_type 1009 , end_opMDOProfile 1010 , begin_opAssert 1011 , lir_assert 1012 , end_opAssert 1013 #if defined(RISCV) && defined(INCLUDE_ZGC) 1014 , begin_opZLoadBarrierTest 1015 , lir_zloadbarrier_test 1016 , end_opZLoadBarrierTest 1017 #endif 1018 }; 1019 1020 1021 enum LIR_Condition { 1022 lir_cond_equal 1023 , lir_cond_notEqual 1024 , lir_cond_less 1025 , lir_cond_lessEqual 1026 , lir_cond_greaterEqual 1027 , lir_cond_greater 1028 , lir_cond_belowEqual 1029 , lir_cond_aboveEqual 1030 , lir_cond_always 1031 , lir_cond_unknown = -1 1032 }; 1033 1034 1035 enum LIR_PatchCode { 1036 lir_patch_none, 1037 lir_patch_low, 1038 lir_patch_high, 1039 lir_patch_normal 1040 }; 1041 1042 1043 enum LIR_MoveKind { 1044 lir_move_normal, 1045 lir_move_volatile, 1046 lir_move_unaligned, 1047 lir_move_wide, 1048 lir_move_max_flag 1049 }; 1050 1051 1052 // -------------------------------------------------- 1053 // LIR_Op 1054 // -------------------------------------------------- 1055 class LIR_Op: public CompilationResourceObj { 1056 friend class LIR_OpVisitState; 1057 1058 #ifdef ASSERT 1059 private: 1060 const char * _file; 1061 int _line; 1062 #endif 1063 1064 protected: 1065 LIR_Opr _result; 1066 unsigned short _code; 1067 unsigned short _flags; 1068 CodeEmitInfo* _info; 1069 int _id; // value id for register allocation 1070 int _fpu_pop_count; 1071 Instruction* _source; // for debugging 1072 1073 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1074 1075 protected: 1076 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1077 1078 public: 1079 LIR_Op() 1080 : 1081 #ifdef ASSERT 1082 _file(NULL) 1083 , _line(0), 1084 #endif 1085 _result(LIR_OprFact::illegalOpr) 1086 , _code(lir_none) 1087 , _flags(0) 1088 , _info(NULL) 1089 , _id(-1) 1090 , _fpu_pop_count(0) 1091 , _source(NULL) {} 1092 1093 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1094 : 1095 #ifdef ASSERT 1096 _file(NULL) 1097 , _line(0), 1098 #endif 1099 _result(result) 1100 , _code(code) 1101 , _flags(0) 1102 , _info(info) 1103 , _id(-1) 1104 , _fpu_pop_count(0) 1105 , _source(NULL) {} 1106 1107 CodeEmitInfo* info() const { return _info; } 1108 LIR_Code code() const { return (LIR_Code)_code; } 1109 LIR_Opr result_opr() const { return _result; } 1110 void set_result_opr(LIR_Opr opr) { _result = opr; } 1111 1112 #ifdef ASSERT 1113 void set_file_and_line(const char * file, int line) { 1114 _file = file; 1115 _line = line; 1116 } 1117 #endif 1118 1119 virtual const char * name() const PRODUCT_RETURN0; 1120 virtual void visit(LIR_OpVisitState* state); 1121 1122 int id() const { return _id; } 1123 void set_id(int id) { _id = id; } 1124 1125 // FPU stack simulation helpers -- only used on Intel 1126 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; } 1127 int fpu_pop_count() const { return _fpu_pop_count; } 1128 bool pop_fpu_stack() { return _fpu_pop_count > 0; } 1129 1130 Instruction* source() const { return _source; } 1131 void set_source(Instruction* ins) { _source = ins; } 1132 1133 virtual void emit_code(LIR_Assembler* masm) = 0; 1134 virtual void print_instr(outputStream* out) const = 0; 1135 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1136 1137 virtual bool is_patching() { return false; } 1138 virtual LIR_OpCall* as_OpCall() { return NULL; } 1139 virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; } 1140 virtual LIR_OpLabel* as_OpLabel() { return NULL; } 1141 virtual LIR_OpDelay* as_OpDelay() { return NULL; } 1142 virtual LIR_OpLock* as_OpLock() { return NULL; } 1143 virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; } 1144 virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; } 1145 virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; } 1146 virtual LIR_OpBranch* as_OpBranch() { return NULL; } 1147 virtual LIR_OpReturn* as_OpReturn() { return NULL; } 1148 virtual LIR_OpRTCall* as_OpRTCall() { return NULL; } 1149 virtual LIR_OpConvert* as_OpConvert() { return NULL; } 1150 virtual LIR_Op0* as_Op0() { return NULL; } 1151 virtual LIR_Op1* as_Op1() { return NULL; } 1152 virtual LIR_Op2* as_Op2() { return NULL; } 1153 virtual LIR_Op3* as_Op3() { return NULL; } 1154 #ifdef RISCV 1155 virtual LIR_Op4* as_Op4() { return NULL; } 1156 #endif 1157 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; } 1158 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; } 1159 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; } 1160 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; } 1161 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return NULL; } 1162 virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; } 1163 virtual LIR_OpProfileType* as_OpProfileType() { return NULL; } 1164 #ifdef ASSERT 1165 virtual LIR_OpAssert* as_OpAssert() { return NULL; } 1166 #endif 1167 1168 virtual void verify() const {} 1169 }; 1170 1171 // for calls 1172 class LIR_OpCall: public LIR_Op { 1173 friend class LIR_OpVisitState; 1174 1175 protected: 1176 address _addr; 1177 LIR_OprList* _arguments; 1178 protected: 1179 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1180 LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1181 : LIR_Op(code, result, info) 1182 , _addr(addr) 1183 , _arguments(arguments) {} 1184 1185 public: 1186 address addr() const { return _addr; } 1187 const LIR_OprList* arguments() const { return _arguments; } 1188 virtual LIR_OpCall* as_OpCall() { return this; } 1189 }; 1190 1191 1192 // -------------------------------------------------- 1193 // LIR_OpJavaCall 1194 // -------------------------------------------------- 1195 class LIR_OpJavaCall: public LIR_OpCall { 1196 friend class LIR_OpVisitState; 1197 1198 private: 1199 ciMethod* _method; 1200 LIR_Opr _receiver; 1201 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1202 1203 public: 1204 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1205 LIR_Opr receiver, LIR_Opr result, 1206 address addr, LIR_OprList* arguments, 1207 CodeEmitInfo* info) 1208 : LIR_OpCall(code, addr, result, arguments, info) 1209 , _method(method) 1210 , _receiver(receiver) 1211 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1212 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1213 1214 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1215 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1216 LIR_OprList* arguments, CodeEmitInfo* info) 1217 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1218 , _method(method) 1219 , _receiver(receiver) 1220 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1221 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1222 1223 LIR_Opr receiver() const { return _receiver; } 1224 ciMethod* method() const { return _method; } 1225 1226 // JSR 292 support. 1227 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1228 bool is_method_handle_invoke() const { 1229 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1230 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1231 } 1232 1233 virtual void emit_code(LIR_Assembler* masm); 1234 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1235 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1236 }; 1237 1238 // -------------------------------------------------- 1239 // LIR_OpLabel 1240 // -------------------------------------------------- 1241 // Location where a branch can continue 1242 class LIR_OpLabel: public LIR_Op { 1243 friend class LIR_OpVisitState; 1244 1245 private: 1246 Label* _label; 1247 public: 1248 LIR_OpLabel(Label* lbl) 1249 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL) 1250 , _label(lbl) {} 1251 Label* label() const { return _label; } 1252 1253 virtual void emit_code(LIR_Assembler* masm); 1254 virtual LIR_OpLabel* as_OpLabel() { return this; } 1255 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1256 }; 1257 1258 // LIR_OpArrayCopy 1259 class LIR_OpArrayCopy: public LIR_Op { 1260 friend class LIR_OpVisitState; 1261 1262 private: 1263 ArrayCopyStub* _stub; 1264 LIR_Opr _src; 1265 LIR_Opr _src_pos; 1266 LIR_Opr _dst; 1267 LIR_Opr _dst_pos; 1268 LIR_Opr _length; 1269 LIR_Opr _tmp; 1270 ciArrayKlass* _expected_type; 1271 int _flags; 1272 1273 public: 1274 enum Flags { 1275 src_null_check = 1 << 0, 1276 dst_null_check = 1 << 1, 1277 src_pos_positive_check = 1 << 2, 1278 dst_pos_positive_check = 1 << 3, 1279 length_positive_check = 1 << 4, 1280 src_range_check = 1 << 5, 1281 dst_range_check = 1 << 6, 1282 type_check = 1 << 7, 1283 overlapping = 1 << 8, 1284 unaligned = 1 << 9, 1285 src_objarray = 1 << 10, 1286 dst_objarray = 1 << 11, 1287 all_flags = (1 << 12) - 1 1288 }; 1289 1290 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1291 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1292 1293 LIR_Opr src() const { return _src; } 1294 LIR_Opr src_pos() const { return _src_pos; } 1295 LIR_Opr dst() const { return _dst; } 1296 LIR_Opr dst_pos() const { return _dst_pos; } 1297 LIR_Opr length() const { return _length; } 1298 LIR_Opr tmp() const { return _tmp; } 1299 int flags() const { return _flags; } 1300 ciArrayKlass* expected_type() const { return _expected_type; } 1301 ArrayCopyStub* stub() const { return _stub; } 1302 1303 virtual void emit_code(LIR_Assembler* masm); 1304 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1305 void print_instr(outputStream* out) const PRODUCT_RETURN; 1306 }; 1307 1308 // LIR_OpUpdateCRC32 1309 class LIR_OpUpdateCRC32: public LIR_Op { 1310 friend class LIR_OpVisitState; 1311 1312 private: 1313 LIR_Opr _crc; 1314 LIR_Opr _val; 1315 1316 public: 1317 1318 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1319 1320 LIR_Opr crc() const { return _crc; } 1321 LIR_Opr val() const { return _val; } 1322 1323 virtual void emit_code(LIR_Assembler* masm); 1324 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1325 void print_instr(outputStream* out) const PRODUCT_RETURN; 1326 }; 1327 1328 // -------------------------------------------------- 1329 // LIR_Op0 1330 // -------------------------------------------------- 1331 class LIR_Op0: public LIR_Op { 1332 friend class LIR_OpVisitState; 1333 1334 public: 1335 LIR_Op0(LIR_Code code) 1336 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1337 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL) 1338 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1339 1340 virtual void emit_code(LIR_Assembler* masm); 1341 virtual LIR_Op0* as_Op0() { return this; } 1342 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1343 }; 1344 1345 1346 // -------------------------------------------------- 1347 // LIR_Op1 1348 // -------------------------------------------------- 1349 1350 class LIR_Op1: public LIR_Op { 1351 friend class LIR_OpVisitState; 1352 1353 protected: 1354 LIR_Opr _opr; // input operand 1355 BasicType _type; // Operand types 1356 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1357 1358 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1359 1360 void set_kind(LIR_MoveKind kind) { 1361 assert(code() == lir_move, "must be"); 1362 _flags = kind; 1363 } 1364 1365 public: 1366 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL) 1367 : LIR_Op(code, result, info) 1368 , _opr(opr) 1369 , _type(type) 1370 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1371 1372 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1373 : LIR_Op(code, result, info) 1374 , _opr(opr) 1375 , _type(type) 1376 , _patch(patch) { 1377 assert(code == lir_move, "must be"); 1378 set_kind(kind); 1379 } 1380 1381 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1382 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1383 , _opr(opr) 1384 , _type(T_ILLEGAL) 1385 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1386 1387 LIR_Opr in_opr() const { return _opr; } 1388 LIR_PatchCode patch_code() const { return _patch; } 1389 BasicType type() const { return _type; } 1390 1391 LIR_MoveKind move_kind() const { 1392 assert(code() == lir_move, "must be"); 1393 return (LIR_MoveKind)_flags; 1394 } 1395 1396 virtual bool is_patching() { return _patch != lir_patch_none; } 1397 virtual void emit_code(LIR_Assembler* masm); 1398 virtual LIR_Op1* as_Op1() { return this; } 1399 virtual const char * name() const PRODUCT_RETURN0; 1400 1401 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1402 1403 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1404 virtual void verify() const; 1405 }; 1406 1407 1408 // for runtime calls 1409 class LIR_OpRTCall: public LIR_OpCall { 1410 friend class LIR_OpVisitState; 1411 1412 private: 1413 LIR_Opr _tmp; 1414 public: 1415 LIR_OpRTCall(address addr, LIR_Opr tmp, 1416 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1417 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1418 , _tmp(tmp) {} 1419 1420 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1421 virtual void emit_code(LIR_Assembler* masm); 1422 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1423 1424 LIR_Opr tmp() const { return _tmp; } 1425 1426 virtual void verify() const; 1427 }; 1428 1429 class LIR_OpReturn: public LIR_Op1 { 1430 friend class LIR_OpVisitState; 1431 1432 private: 1433 C1SafepointPollStub* _stub; 1434 1435 public: 1436 LIR_OpReturn(LIR_Opr opr); 1437 1438 C1SafepointPollStub* stub() const { return _stub; } 1439 virtual LIR_OpReturn* as_OpReturn() { return this; } 1440 }; 1441 1442 class ConversionStub; 1443 1444 class LIR_OpConvert: public LIR_Op1 { 1445 friend class LIR_OpVisitState; 1446 1447 private: 1448 Bytecodes::Code _bytecode; 1449 ConversionStub* _stub; 1450 1451 public: 1452 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1453 : LIR_Op1(lir_convert, opr, result) 1454 , _bytecode(code) 1455 , _stub(stub) {} 1456 1457 Bytecodes::Code bytecode() const { return _bytecode; } 1458 ConversionStub* stub() const { return _stub; } 1459 1460 virtual void emit_code(LIR_Assembler* masm); 1461 virtual LIR_OpConvert* as_OpConvert() { return this; } 1462 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1463 1464 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1465 }; 1466 1467 1468 // LIR_OpAllocObj 1469 class LIR_OpAllocObj : public LIR_Op1 { 1470 friend class LIR_OpVisitState; 1471 1472 private: 1473 LIR_Opr _tmp1; 1474 LIR_Opr _tmp2; 1475 LIR_Opr _tmp3; 1476 LIR_Opr _tmp4; 1477 int _hdr_size; 1478 int _obj_size; 1479 CodeStub* _stub; 1480 bool _init_check; 1481 1482 public: 1483 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1484 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1485 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1486 : LIR_Op1(lir_alloc_object, klass, result) 1487 , _tmp1(t1) 1488 , _tmp2(t2) 1489 , _tmp3(t3) 1490 , _tmp4(t4) 1491 , _hdr_size(hdr_size) 1492 , _obj_size(obj_size) 1493 , _stub(stub) 1494 , _init_check(init_check) { } 1495 1496 LIR_Opr klass() const { return in_opr(); } 1497 LIR_Opr obj() const { return result_opr(); } 1498 LIR_Opr tmp1() const { return _tmp1; } 1499 LIR_Opr tmp2() const { return _tmp2; } 1500 LIR_Opr tmp3() const { return _tmp3; } 1501 LIR_Opr tmp4() const { return _tmp4; } 1502 int header_size() const { return _hdr_size; } 1503 int object_size() const { return _obj_size; } 1504 bool init_check() const { return _init_check; } 1505 CodeStub* stub() const { return _stub; } 1506 1507 virtual void emit_code(LIR_Assembler* masm); 1508 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1509 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1510 }; 1511 1512 1513 // LIR_OpRoundFP 1514 class LIR_OpRoundFP : public LIR_Op1 { 1515 friend class LIR_OpVisitState; 1516 1517 private: 1518 LIR_Opr _tmp; 1519 1520 public: 1521 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) 1522 : LIR_Op1(lir_roundfp, reg, result) 1523 , _tmp(stack_loc_temp) {} 1524 1525 LIR_Opr tmp() const { return _tmp; } 1526 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; } 1527 void print_instr(outputStream* out) const PRODUCT_RETURN; 1528 }; 1529 1530 // LIR_OpTypeCheck 1531 class LIR_OpTypeCheck: public LIR_Op { 1532 friend class LIR_OpVisitState; 1533 1534 private: 1535 LIR_Opr _object; 1536 LIR_Opr _array; 1537 ciKlass* _klass; 1538 LIR_Opr _tmp1; 1539 LIR_Opr _tmp2; 1540 LIR_Opr _tmp3; 1541 bool _fast_check; 1542 CodeEmitInfo* _info_for_patch; 1543 CodeEmitInfo* _info_for_exception; 1544 CodeStub* _stub; 1545 ciMethod* _profiled_method; 1546 int _profiled_bci; 1547 bool _should_profile; 1548 1549 public: 1550 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1551 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1552 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub); 1553 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1554 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1555 1556 LIR_Opr object() const { return _object; } 1557 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1558 LIR_Opr tmp1() const { return _tmp1; } 1559 LIR_Opr tmp2() const { return _tmp2; } 1560 LIR_Opr tmp3() const { return _tmp3; } 1561 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1562 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1563 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1564 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1565 CodeStub* stub() const { return _stub; } 1566 1567 // MethodData* profiling 1568 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1569 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1570 void set_should_profile(bool b) { _should_profile = b; } 1571 ciMethod* profiled_method() const { return _profiled_method; } 1572 int profiled_bci() const { return _profiled_bci; } 1573 bool should_profile() const { return _should_profile; } 1574 1575 virtual bool is_patching() { return _info_for_patch != NULL; } 1576 virtual void emit_code(LIR_Assembler* masm); 1577 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1578 void print_instr(outputStream* out) const PRODUCT_RETURN; 1579 }; 1580 1581 // LIR_Op2 1582 class LIR_Op2: public LIR_Op { 1583 friend class LIR_OpVisitState; 1584 1585 int _fpu_stack_size; // for sin/cos implementation on Intel 1586 1587 protected: 1588 LIR_Opr _opr1; 1589 LIR_Opr _opr2; 1590 BasicType _type; 1591 LIR_Opr _tmp1; 1592 LIR_Opr _tmp2; 1593 LIR_Opr _tmp3; 1594 LIR_Opr _tmp4; 1595 LIR_Opr _tmp5; 1596 LIR_Condition _condition; 1597 1598 void verify() const; 1599 1600 public: 1601 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL) 1602 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1603 , _fpu_stack_size(0) 1604 , _opr1(opr1) 1605 , _opr2(opr2) 1606 , _type(type) 1607 , _tmp1(LIR_OprFact::illegalOpr) 1608 , _tmp2(LIR_OprFact::illegalOpr) 1609 , _tmp3(LIR_OprFact::illegalOpr) 1610 , _tmp4(LIR_OprFact::illegalOpr) 1611 , _tmp5(LIR_OprFact::illegalOpr) 1612 , _condition(condition) { 1613 assert(code == lir_cmp || code == lir_assert RISCV_ONLY(|| code == lir_branch || code == lir_cond_float_branch), "code check"); 1614 } 1615 1616 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1617 : LIR_Op(code, result, NULL) 1618 , _fpu_stack_size(0) 1619 , _opr1(opr1) 1620 , _opr2(opr2) 1621 , _type(type) 1622 , _tmp1(LIR_OprFact::illegalOpr) 1623 , _tmp2(LIR_OprFact::illegalOpr) 1624 , _tmp3(LIR_OprFact::illegalOpr) 1625 , _tmp4(LIR_OprFact::illegalOpr) 1626 , _tmp5(LIR_OprFact::illegalOpr) 1627 , _condition(condition) { 1628 assert(code == lir_cmove, "code check"); 1629 assert(type != T_ILLEGAL, "cmove should have type"); 1630 } 1631 1632 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1633 CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL) 1634 : LIR_Op(code, result, info) 1635 , _fpu_stack_size(0) 1636 , _opr1(opr1) 1637 , _opr2(opr2) 1638 , _type(type) 1639 , _tmp1(LIR_OprFact::illegalOpr) 1640 , _tmp2(LIR_OprFact::illegalOpr) 1641 , _tmp3(LIR_OprFact::illegalOpr) 1642 , _tmp4(LIR_OprFact::illegalOpr) 1643 , _tmp5(LIR_OprFact::illegalOpr) 1644 , _condition(lir_cond_unknown) { 1645 assert(code != lir_cmp && RISCV_ONLY(code != lir_branch && code != lir_cond_float_branch &&) is_in_range(code, begin_op2, end_op2), "code check"); 1646 } 1647 1648 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1649 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1650 : LIR_Op(code, result, NULL) 1651 , _fpu_stack_size(0) 1652 , _opr1(opr1) 1653 , _opr2(opr2) 1654 , _type(T_ILLEGAL) 1655 , _tmp1(tmp1) 1656 , _tmp2(tmp2) 1657 , _tmp3(tmp3) 1658 , _tmp4(tmp4) 1659 , _tmp5(tmp5) 1660 , _condition(lir_cond_unknown) { 1661 assert(code != lir_cmp && RISCV_ONLY(code != lir_branch && code != lir_cond_float_branch &&) is_in_range(code, begin_op2, end_op2), "code check"); 1662 } 1663 1664 LIR_Opr in_opr1() const { return _opr1; } 1665 LIR_Opr in_opr2() const { return _opr2; } 1666 BasicType type() const { return _type; } 1667 LIR_Opr tmp1_opr() const { return _tmp1; } 1668 LIR_Opr tmp2_opr() const { return _tmp2; } 1669 LIR_Opr tmp3_opr() const { return _tmp3; } 1670 LIR_Opr tmp4_opr() const { return _tmp4; } 1671 LIR_Opr tmp5_opr() const { return _tmp5; } 1672 LIR_Condition condition() const { 1673 #ifdef RISCV 1674 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition; 1675 #else 1676 assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition; 1677 #endif 1678 } 1679 void set_condition(LIR_Condition condition) { 1680 #ifdef RISCV 1681 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition; 1682 #else 1683 assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); _condition = condition; 1684 #endif 1685 } 1686 1687 void set_fpu_stack_size(int size) { _fpu_stack_size = size; } 1688 int fpu_stack_size() const { return _fpu_stack_size; } 1689 1690 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1691 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1692 1693 virtual void emit_code(LIR_Assembler* masm); 1694 virtual LIR_Op2* as_Op2() { return this; } 1695 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1696 }; 1697 1698 #ifdef RISCV 1699 class LIR_OpBranch: public LIR_Op2 { 1700 #else 1701 class LIR_OpBranch: public LIR_Op { 1702 #endif 1703 friend class LIR_OpVisitState; 1704 1705 private: 1706 #ifndef RISCV 1707 LIR_Condition _cond; 1708 #endif 1709 Label* _label; 1710 BlockBegin* _block; // if this is a branch to a block, this is the block 1711 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block 1712 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1713 1714 public: 1715 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1716 #ifdef RISCV 1717 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL) 1718 #else 1719 : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL) 1720 , _cond(cond) 1721 #endif 1722 , _label(lbl) 1723 , _block(NULL) 1724 , _ublock(NULL) 1725 , _stub(NULL) { } 1726 1727 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1728 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1729 1730 // for unordered comparisons 1731 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1732 1733 #ifdef RISCV 1734 LIR_Condition cond() const { return condition(); } 1735 void set_cond(LIR_Condition cond) { set_condition(cond); } 1736 #else 1737 LIR_Condition cond() const { return _cond; } 1738 void set_cond(LIR_Condition cond) { _cond = cond; } 1739 #endif 1740 Label* label() const { return _label; } 1741 BlockBegin* block() const { return _block; } 1742 BlockBegin* ublock() const { return _ublock; } 1743 CodeStub* stub() const { return _stub; } 1744 1745 void change_block(BlockBegin* b); 1746 void change_ublock(BlockBegin* b); 1747 void negate_cond(); 1748 1749 virtual void emit_code(LIR_Assembler* masm); 1750 virtual LIR_OpBranch* as_OpBranch() { return this; } 1751 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1752 }; 1753 1754 class LIR_OpAllocArray : public LIR_Op { 1755 friend class LIR_OpVisitState; 1756 1757 private: 1758 LIR_Opr _klass; 1759 LIR_Opr _len; 1760 LIR_Opr _tmp1; 1761 LIR_Opr _tmp2; 1762 LIR_Opr _tmp3; 1763 LIR_Opr _tmp4; 1764 BasicType _type; 1765 CodeStub* _stub; 1766 1767 public: 1768 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub) 1769 : LIR_Op(lir_alloc_array, result, NULL) 1770 , _klass(klass) 1771 , _len(len) 1772 , _tmp1(t1) 1773 , _tmp2(t2) 1774 , _tmp3(t3) 1775 , _tmp4(t4) 1776 , _type(type) 1777 , _stub(stub) {} 1778 1779 LIR_Opr klass() const { return _klass; } 1780 LIR_Opr len() const { return _len; } 1781 LIR_Opr obj() const { return result_opr(); } 1782 LIR_Opr tmp1() const { return _tmp1; } 1783 LIR_Opr tmp2() const { return _tmp2; } 1784 LIR_Opr tmp3() const { return _tmp3; } 1785 LIR_Opr tmp4() const { return _tmp4; } 1786 BasicType type() const { return _type; } 1787 CodeStub* stub() const { return _stub; } 1788 1789 virtual void emit_code(LIR_Assembler* masm); 1790 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1791 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1792 }; 1793 1794 1795 class LIR_Op3: public LIR_Op { 1796 friend class LIR_OpVisitState; 1797 1798 private: 1799 LIR_Opr _opr1; 1800 LIR_Opr _opr2; 1801 LIR_Opr _opr3; 1802 public: 1803 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL) 1804 : LIR_Op(code, result, info) 1805 , _opr1(opr1) 1806 , _opr2(opr2) 1807 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1808 LIR_Opr in_opr1() const { return _opr1; } 1809 LIR_Opr in_opr2() const { return _opr2; } 1810 LIR_Opr in_opr3() const { return _opr3; } 1811 1812 virtual void emit_code(LIR_Assembler* masm); 1813 virtual LIR_Op3* as_Op3() { return this; } 1814 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1815 }; 1816 1817 #ifdef RISCV 1818 class LIR_Op4: public LIR_Op { 1819 friend class LIR_OpVisitState; 1820 protected: 1821 LIR_Opr _opr1; 1822 LIR_Opr _opr2; 1823 LIR_Opr _opr3; 1824 LIR_Opr _opr4; 1825 BasicType _type; 1826 LIR_Opr _tmp1; 1827 LIR_Opr _tmp2; 1828 LIR_Opr _tmp3; 1829 LIR_Opr _tmp4; 1830 LIR_Opr _tmp5; 1831 LIR_Condition _condition; 1832 1833 public: 1834 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4, 1835 LIR_Opr result, BasicType type) 1836 : LIR_Op(code, result, NULL) 1837 , _opr1(opr1) 1838 , _opr2(opr2) 1839 , _opr3(opr3) 1840 , _opr4(opr4) 1841 , _type(type) 1842 , _tmp1(LIR_OprFact::illegalOpr) 1843 , _tmp2(LIR_OprFact::illegalOpr) 1844 , _tmp3(LIR_OprFact::illegalOpr) 1845 , _tmp4(LIR_OprFact::illegalOpr) 1846 , _tmp5(LIR_OprFact::illegalOpr) 1847 , _condition(condition) { 1848 assert(code == lir_cmove, "code check"); 1849 assert(type != T_ILLEGAL, "cmove should have type"); 1850 } 1851 1852 LIR_Opr in_opr1() const { return _opr1; } 1853 LIR_Opr in_opr2() const { return _opr2; } 1854 LIR_Opr in_opr3() const { return _opr3; } 1855 LIR_Opr in_opr4() const { return _opr4; } 1856 BasicType type() const { return _type; } 1857 LIR_Opr tmp1_opr() const { return _tmp1; } 1858 LIR_Opr tmp2_opr() const { return _tmp2; } 1859 LIR_Opr tmp3_opr() const { return _tmp3; } 1860 LIR_Opr tmp4_opr() const { return _tmp4; } 1861 LIR_Opr tmp5_opr() const { return _tmp5; } 1862 1863 LIR_Condition condition() const { return _condition; } 1864 void set_condition(LIR_Condition condition) { _condition = condition; } 1865 1866 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1867 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1868 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; } 1869 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; } 1870 virtual void emit_code(LIR_Assembler* masm); 1871 virtual LIR_Op4* as_Op4() { return this; } 1872 1873 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1874 }; 1875 #endif 1876 1877 //-------------------------------- 1878 class LabelObj: public CompilationResourceObj { 1879 private: 1880 Label _label; 1881 public: 1882 LabelObj() {} 1883 Label* label() { return &_label; } 1884 }; 1885 1886 1887 class LIR_OpLock: public LIR_Op { 1888 friend class LIR_OpVisitState; 1889 1890 private: 1891 LIR_Opr _hdr; 1892 LIR_Opr _obj; 1893 LIR_Opr _lock; 1894 LIR_Opr _scratch; 1895 CodeStub* _stub; 1896 public: 1897 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) 1898 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1899 , _hdr(hdr) 1900 , _obj(obj) 1901 , _lock(lock) 1902 , _scratch(scratch) 1903 , _stub(stub) {} 1904 1905 LIR_Opr hdr_opr() const { return _hdr; } 1906 LIR_Opr obj_opr() const { return _obj; } 1907 LIR_Opr lock_opr() const { return _lock; } 1908 LIR_Opr scratch_opr() const { return _scratch; } 1909 CodeStub* stub() const { return _stub; } 1910 1911 virtual void emit_code(LIR_Assembler* masm); 1912 virtual LIR_OpLock* as_OpLock() { return this; } 1913 void print_instr(outputStream* out) const PRODUCT_RETURN; 1914 }; 1915 1916 class LIR_OpLoadKlass: public LIR_Op { 1917 friend class LIR_OpVisitState; 1918 1919 private: 1920 LIR_Opr _obj; 1921 public: 1922 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) 1923 : LIR_Op(lir_load_klass, result, info) 1924 , _obj(obj) 1925 {} 1926 1927 LIR_Opr obj() const { return _obj; } 1928 1929 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 1930 virtual void emit_code(LIR_Assembler* masm); 1931 void print_instr(outputStream* out) const PRODUCT_RETURN; 1932 }; 1933 1934 class LIR_OpDelay: public LIR_Op { 1935 friend class LIR_OpVisitState; 1936 1937 private: 1938 LIR_Op* _op; 1939 1940 public: 1941 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 1942 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 1943 _op(op) { 1944 assert(op->code() == lir_nop, "should be filling with nops"); 1945 } 1946 virtual void emit_code(LIR_Assembler* masm); 1947 virtual LIR_OpDelay* as_OpDelay() { return this; } 1948 void print_instr(outputStream* out) const PRODUCT_RETURN; 1949 LIR_Op* delay_op() const { return _op; } 1950 CodeEmitInfo* call_info() const { return info(); } 1951 }; 1952 1953 #ifdef ASSERT 1954 // LIR_OpAssert 1955 class LIR_OpAssert : public LIR_Op2 { 1956 friend class LIR_OpVisitState; 1957 1958 private: 1959 const char* _msg; 1960 bool _halt; 1961 1962 public: 1963 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 1964 : LIR_Op2(lir_assert, condition, opr1, opr2) 1965 , _msg(msg) 1966 , _halt(halt) { 1967 } 1968 1969 const char* msg() const { return _msg; } 1970 bool halt() const { return _halt; } 1971 1972 virtual void emit_code(LIR_Assembler* masm); 1973 virtual LIR_OpAssert* as_OpAssert() { return this; } 1974 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1975 }; 1976 #endif 1977 1978 // LIR_OpCompareAndSwap 1979 class LIR_OpCompareAndSwap : public LIR_Op { 1980 friend class LIR_OpVisitState; 1981 1982 private: 1983 LIR_Opr _addr; 1984 LIR_Opr _cmp_value; 1985 LIR_Opr _new_value; 1986 LIR_Opr _tmp1; 1987 LIR_Opr _tmp2; 1988 1989 public: 1990 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1991 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 1992 : LIR_Op(code, result, NULL) // no result, no info 1993 , _addr(addr) 1994 , _cmp_value(cmp_value) 1995 , _new_value(new_value) 1996 , _tmp1(t1) 1997 , _tmp2(t2) { } 1998 1999 LIR_Opr addr() const { return _addr; } 2000 LIR_Opr cmp_value() const { return _cmp_value; } 2001 LIR_Opr new_value() const { return _new_value; } 2002 LIR_Opr tmp1() const { return _tmp1; } 2003 LIR_Opr tmp2() const { return _tmp2; } 2004 2005 virtual void emit_code(LIR_Assembler* masm); 2006 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 2007 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2008 }; 2009 2010 // LIR_OpProfileCall 2011 class LIR_OpProfileCall : public LIR_Op { 2012 friend class LIR_OpVisitState; 2013 2014 private: 2015 ciMethod* _profiled_method; 2016 int _profiled_bci; 2017 ciMethod* _profiled_callee; 2018 LIR_Opr _mdo; 2019 LIR_Opr _recv; 2020 LIR_Opr _tmp1; 2021 ciKlass* _known_holder; 2022 2023 public: 2024 // Destroys recv 2025 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 2026 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL) // no result, no info 2027 , _profiled_method(profiled_method) 2028 , _profiled_bci(profiled_bci) 2029 , _profiled_callee(profiled_callee) 2030 , _mdo(mdo) 2031 , _recv(recv) 2032 , _tmp1(t1) 2033 , _known_holder(known_holder) { } 2034 2035 ciMethod* profiled_method() const { return _profiled_method; } 2036 int profiled_bci() const { return _profiled_bci; } 2037 ciMethod* profiled_callee() const { return _profiled_callee; } 2038 LIR_Opr mdo() const { return _mdo; } 2039 LIR_Opr recv() const { return _recv; } 2040 LIR_Opr tmp1() const { return _tmp1; } 2041 ciKlass* known_holder() const { return _known_holder; } 2042 2043 virtual void emit_code(LIR_Assembler* masm); 2044 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 2045 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2046 bool should_profile_receiver_type() const { 2047 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 2048 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 2049 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface; 2050 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 2051 } 2052 }; 2053 2054 // LIR_OpProfileType 2055 class LIR_OpProfileType : public LIR_Op { 2056 friend class LIR_OpVisitState; 2057 2058 private: 2059 LIR_Opr _mdp; 2060 LIR_Opr _obj; 2061 LIR_Opr _tmp; 2062 ciKlass* _exact_klass; // non NULL if we know the klass statically (no need to load it from _obj) 2063 intptr_t _current_klass; // what the profiling currently reports 2064 bool _not_null; // true if we know statically that _obj cannot be null 2065 bool _no_conflict; // true if we're profling parameters, _exact_klass is not NULL and we know 2066 // _exact_klass it the only possible type for this parameter in any context. 2067 2068 public: 2069 // Destroys recv 2070 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 2071 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL) // no result, no info 2072 , _mdp(mdp) 2073 , _obj(obj) 2074 , _tmp(tmp) 2075 , _exact_klass(exact_klass) 2076 , _current_klass(current_klass) 2077 , _not_null(not_null) 2078 , _no_conflict(no_conflict) { } 2079 2080 LIR_Opr mdp() const { return _mdp; } 2081 LIR_Opr obj() const { return _obj; } 2082 LIR_Opr tmp() const { return _tmp; } 2083 ciKlass* exact_klass() const { return _exact_klass; } 2084 intptr_t current_klass() const { return _current_klass; } 2085 bool not_null() const { return _not_null; } 2086 bool no_conflict() const { return _no_conflict; } 2087 2088 virtual void emit_code(LIR_Assembler* masm); 2089 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 2090 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 2091 }; 2092 2093 class LIR_InsertionBuffer; 2094 2095 //--------------------------------LIR_List--------------------------------------------------- 2096 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 2097 // The LIR instructions are appended by the LIR_List class itself; 2098 // 2099 // Notes: 2100 // - all offsets are(should be) in bytes 2101 // - local positions are specified with an offset, with offset 0 being local 0 2102 2103 class LIR_List: public CompilationResourceObj { 2104 private: 2105 LIR_OpList _operations; 2106 2107 Compilation* _compilation; 2108 #ifndef PRODUCT 2109 BlockBegin* _block; 2110 #endif 2111 #ifdef ASSERT 2112 const char * _file; 2113 int _line; 2114 #endif 2115 #ifdef RISCV 2116 LIR_Opr _cmp_opr1; 2117 LIR_Opr _cmp_opr2; 2118 #endif 2119 2120 public: 2121 void append(LIR_Op* op) { 2122 if (op->source() == NULL) 2123 op->set_source(_compilation->current_instruction()); 2124 #ifndef PRODUCT 2125 if (PrintIRWithLIR) { 2126 _compilation->maybe_print_current_instruction(); 2127 op->print(); tty->cr(); 2128 } 2129 #endif // PRODUCT 2130 2131 #ifdef RISCV 2132 set_cmp_oprs(op); 2133 // lir_cmp set cmp oprs only on riscv 2134 if (op->code() == lir_cmp) return; 2135 #endif 2136 2137 _operations.append(op); 2138 2139 #ifdef ASSERT 2140 op->verify(); 2141 op->set_file_and_line(_file, _line); 2142 _file = NULL; 2143 _line = 0; 2144 #endif 2145 } 2146 2147 LIR_List(Compilation* compilation, BlockBegin* block = NULL); 2148 2149 #ifdef ASSERT 2150 void set_file_and_line(const char * file, int line); 2151 #endif 2152 2153 #ifdef RISCV 2154 void set_cmp_oprs(LIR_Op* op); 2155 #endif 2156 2157 //---------- accessors --------------- 2158 LIR_OpList* instructions_list() { return &_operations; } 2159 int length() const { return _operations.length(); } 2160 LIR_Op* at(int i) const { return _operations.at(i); } 2161 2162 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2163 2164 // insert LIR_Ops in buffer to right places in LIR_List 2165 void append(LIR_InsertionBuffer* buffer); 2166 2167 //---------- mutators --------------- 2168 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2169 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2170 void remove_at(int i) { _operations.remove_at(i); } 2171 2172 //---------- printing ------------- 2173 void print_instructions() PRODUCT_RETURN; 2174 2175 2176 //---------- instructions ------------- 2177 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2178 address dest, LIR_OprList* arguments, 2179 CodeEmitInfo* info) { 2180 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2181 } 2182 void call_static(ciMethod* method, LIR_Opr result, 2183 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2184 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2185 } 2186 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2187 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2188 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2189 } 2190 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2191 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2192 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2193 } 2194 2195 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2196 void membar() { append(new LIR_Op0(lir_membar)); } 2197 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2198 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2199 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2200 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2201 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2202 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2203 2204 void nop() { append(new LIR_Op0(lir_nop)); } 2205 2206 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2207 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2208 2209 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2210 2211 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2212 2213 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2214 2215 // result is a stack location for old backend and vreg for UseLinearScan 2216 // stack_loc_temp is an illegal register for old backend 2217 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); } 2218 void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); } 2219 void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); } 2220 void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); } 2221 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2222 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2223 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2224 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { 2225 if (UseCompressedOops) { 2226 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2227 } else { 2228 move(src, dst, info); 2229 } 2230 } 2231 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { 2232 if (UseCompressedOops) { 2233 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2234 } else { 2235 move(src, dst, info); 2236 } 2237 } 2238 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2239 2240 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2241 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2242 2243 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2244 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2245 2246 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2247 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2248 2249 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2250 2251 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2252 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2253 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2254 2255 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2256 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2257 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2258 } 2259 void unwind_exception(LIR_Opr exceptionOop) { 2260 append(new LIR_Op1(lir_unwind, exceptionOop)); 2261 } 2262 2263 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2264 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2265 2266 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) { 2267 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2268 } 2269 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) { 2270 cmp(condition, left, LIR_OprFact::intConst(right), info); 2271 } 2272 2273 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2274 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2275 2276 #ifdef RISCV 2277 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type, 2278 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) { 2279 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type)); 2280 } 2281 #else 2282 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) { 2283 append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type)); 2284 } 2285 #endif 2286 2287 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2288 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2289 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2290 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2291 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2292 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2293 2294 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); } 2295 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op2(lir_neg, from, tmp, to)); } 2296 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); } 2297 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2298 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2299 void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); } 2300 void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); } 2301 2302 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2303 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2304 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2305 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2306 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2307 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2308 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2309 2310 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2311 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2312 2313 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2314 2315 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2316 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2317 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2318 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2319 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2320 2321 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2322 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2323 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2324 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2325 2326 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2327 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub); 2328 2329 // jump is an unconditional branch 2330 void jump(BlockBegin* block) { 2331 append(new LIR_OpBranch(lir_cond_always, block)); 2332 } 2333 void jump(CodeStub* stub) { 2334 append(new LIR_OpBranch(lir_cond_always, stub)); 2335 } 2336 void branch(LIR_Condition cond, Label* lbl) { 2337 append(new LIR_OpBranch(cond, lbl)); 2338 } 2339 // Should not be used for fp comparisons 2340 void branch(LIR_Condition cond, BlockBegin* block) { 2341 append(new LIR_OpBranch(cond, block)); 2342 } 2343 // Should not be used for fp comparisons 2344 void branch(LIR_Condition cond, CodeStub* stub) { 2345 append(new LIR_OpBranch(cond, stub)); 2346 } 2347 // Should only be used for fp comparisons 2348 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2349 append(new LIR_OpBranch(cond, block, unordered)); 2350 } 2351 2352 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2353 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2354 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2355 2356 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2357 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2358 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2359 2360 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2361 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2362 2363 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2364 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2365 } 2366 2367 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2368 LIR_OprList* arguments, CodeEmitInfo* info) { 2369 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2370 } 2371 2372 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2373 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2374 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info); 2375 2376 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2377 2378 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2379 2380 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2381 2382 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2383 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2384 2385 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2386 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2387 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2388 ciMethod* profiled_method, int profiled_bci); 2389 // MethodData* profiling 2390 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2391 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2392 } 2393 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2394 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2395 } 2396 2397 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2398 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2399 2400 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info) { append(new LIR_OpLoadKlass(obj, result, info)); } 2401 2402 #ifdef ASSERT 2403 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2404 #endif 2405 }; 2406 2407 void print_LIR(BlockList* blocks); 2408 2409 class LIR_InsertionBuffer : public CompilationResourceObj { 2410 private: 2411 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (NULL when uninitialized) 2412 2413 // list of insertion points. index and count are stored alternately: 2414 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2415 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2416 intStack _index_and_count; 2417 2418 // the LIR_Ops to be inserted 2419 LIR_OpList _ops; 2420 2421 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2422 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2423 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2424 2425 #ifdef ASSERT 2426 void verify(); 2427 #endif 2428 public: 2429 LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { } 2430 2431 // must be called before using the insertion buffer 2432 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2433 bool initialized() const { return _lir != NULL; } 2434 // called automatically when the buffer is appended to the LIR_List 2435 void finish() { _lir = NULL; } 2436 2437 // accessors 2438 LIR_List* lir_list() const { return _lir; } 2439 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2440 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2441 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2442 2443 int number_of_ops() const { return _ops.length(); } 2444 LIR_Op* op_at(int i) const { return _ops.at(i); } 2445 2446 // append an instruction to the buffer 2447 void append(int index, LIR_Op* op); 2448 2449 // instruction 2450 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2451 }; 2452 2453 2454 // 2455 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2456 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2457 // information about the input, output and temporaries used by the 2458 // op to be recorded. It also records whether the op has call semantics 2459 // and also records all the CodeEmitInfos used by this op. 2460 // 2461 2462 2463 class LIR_OpVisitState: public StackObj { 2464 public: 2465 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2466 2467 enum { 2468 maxNumberOfOperands = 21, 2469 maxNumberOfInfos = 4 2470 }; 2471 2472 private: 2473 LIR_Op* _op; 2474 2475 // optimization: the operands and infos are not stored in a variable-length 2476 // list, but in a fixed-size array to save time of size checks and resizing 2477 int _oprs_len[numModes]; 2478 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2479 int _info_len; 2480 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2481 2482 bool _has_call; 2483 bool _has_slow_case; 2484 2485 2486 // only include register operands 2487 // addresses are decomposed to the base and index registers 2488 // constants and stack operands are ignored 2489 void append(LIR_Opr& opr, OprMode mode) { 2490 assert(opr->is_valid(), "should not call this otherwise"); 2491 assert(mode >= 0 && mode < numModes, "bad mode"); 2492 2493 if (opr->is_register()) { 2494 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2495 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2496 2497 } else if (opr->is_pointer()) { 2498 LIR_Address* address = opr->as_address_ptr(); 2499 if (address != NULL) { 2500 // special handling for addresses: add base and index register of the address 2501 // both are always input operands or temp if we want to extend 2502 // their liveness! 2503 if (mode == outputMode) { 2504 mode = inputMode; 2505 } 2506 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2507 if (address->_base->is_valid()) { 2508 assert(address->_base->is_register(), "must be"); 2509 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2510 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2511 } 2512 if (address->_index->is_valid()) { 2513 assert(address->_index->is_register(), "must be"); 2514 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2515 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2516 } 2517 2518 } else { 2519 assert(opr->is_constant(), "constant operands are not processed"); 2520 } 2521 } else { 2522 assert(opr->is_stack(), "stack operands are not processed"); 2523 } 2524 } 2525 2526 void append(CodeEmitInfo* info) { 2527 assert(info != NULL, "should not call this otherwise"); 2528 assert(_info_len < maxNumberOfInfos, "array overflow"); 2529 _info_new[_info_len++] = info; 2530 } 2531 2532 public: 2533 LIR_OpVisitState() { reset(); } 2534 2535 LIR_Op* op() const { return _op; } 2536 void set_op(LIR_Op* op) { reset(); _op = op; } 2537 2538 bool has_call() const { return _has_call; } 2539 bool has_slow_case() const { return _has_slow_case; } 2540 2541 void reset() { 2542 _op = NULL; 2543 _has_call = false; 2544 _has_slow_case = false; 2545 2546 _oprs_len[inputMode] = 0; 2547 _oprs_len[tempMode] = 0; 2548 _oprs_len[outputMode] = 0; 2549 _info_len = 0; 2550 } 2551 2552 2553 int opr_count(OprMode mode) const { 2554 assert(mode >= 0 && mode < numModes, "bad mode"); 2555 return _oprs_len[mode]; 2556 } 2557 2558 LIR_Opr opr_at(OprMode mode, int index) const { 2559 assert(mode >= 0 && mode < numModes, "bad mode"); 2560 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2561 return *_oprs_new[mode][index]; 2562 } 2563 2564 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2565 assert(mode >= 0 && mode < numModes, "bad mode"); 2566 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2567 *_oprs_new[mode][index] = opr; 2568 } 2569 2570 int info_count() const { 2571 return _info_len; 2572 } 2573 2574 CodeEmitInfo* info_at(int index) const { 2575 assert(index < _info_len, "index out of bounds"); 2576 return _info_new[index]; 2577 } 2578 2579 XHandlers* all_xhandler(); 2580 2581 // collects all register operands of the instruction 2582 void visit(LIR_Op* op); 2583 2584 #ifdef ASSERT 2585 // check that an operation has no operands 2586 bool no_operands(LIR_Op* op); 2587 #endif 2588 2589 // LIR_Op visitor functions use these to fill in the state 2590 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2591 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2592 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2593 void do_info(CodeEmitInfo* info) { append(info); } 2594 2595 void do_stub(CodeStub* stub); 2596 void do_call() { _has_call = true; } 2597 void do_slow_case() { _has_slow_case = true; } 2598 void do_slow_case(CodeEmitInfo* info) { 2599 _has_slow_case = true; 2600 append(info); 2601 } 2602 }; 2603 2604 2605 inline LIR_Opr LIR_OprDesc::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2606 2607 #endif // SHARE_C1_C1_LIR_HPP