1 /*
2 * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_C1_C1_LIR_HPP
26 #define SHARE_C1_C1_LIR_HPP
27
28 #include "c1/c1_Defs.hpp"
29 #include "c1/c1_ValueType.hpp"
30 #include "oops/method.hpp"
31 #include "utilities/globalDefinitions.hpp"
32
33 class BlockBegin;
34 class BlockList;
35 class LIR_Assembler;
36 class CodeEmitInfo;
37 class CodeStub;
38 class CodeStubList;
39 class C1SafepointPollStub;
40 class ArrayCopyStub;
41 class LIR_Op;
42 class ciType;
43 class ValueType;
44 class LIR_OpVisitState;
45 class FpuStackSim;
46
47 //---------------------------------------------------------------------
48 // LIR Operands
49 // LIR_OprDesc
50 // LIR_OprPtr
51 // LIR_Const
52 // LIR_Address
53 //---------------------------------------------------------------------
54 class LIR_OprDesc;
55 class LIR_OprPtr;
56 class LIR_Const;
57 class LIR_Address;
58 class LIR_OprVisitor;
59
60
61 typedef LIR_OprDesc* LIR_Opr;
62 typedef int RegNr;
63
64 typedef GrowableArray<LIR_Opr> LIR_OprList;
65 typedef GrowableArray<LIR_Op*> LIR_OpArray;
66 typedef GrowableArray<LIR_Op*> LIR_OpList;
67
68 // define LIR_OprPtr early so LIR_OprDesc can refer to it
69 class LIR_OprPtr: public CompilationResourceObj {
70 public:
71 bool is_oop_pointer() const { return (type() == T_OBJECT); }
72 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
73
74 virtual LIR_Const* as_constant() { return NULL; }
75 virtual LIR_Address* as_address() { return NULL; }
76 virtual BasicType type() const = 0;
77 virtual void print_value_on(outputStream* out) const = 0;
78 };
79
80
81
82 // LIR constants
83 class LIR_Const: public LIR_OprPtr {
84 private:
85 JavaValue _value;
86
87 void type_check(BasicType t) const { assert(type() == t, "type check"); }
88 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); }
89 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
90
91 public:
92 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
93 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); }
94 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); }
95 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); }
96 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); }
97 LIR_Const(void* p) {
98 #ifdef _LP64
99 assert(sizeof(jlong) >= sizeof(p), "too small");;
100 _value.set_type(T_LONG); _value.set_jlong((jlong)p);
101 #else
102 assert(sizeof(jint) >= sizeof(p), "too small");;
103 _value.set_type(T_INT); _value.set_jint((jint)p);
104 #endif
105 }
106 LIR_Const(Metadata* m) {
107 _value.set_type(T_METADATA);
108 #ifdef _LP64
109 _value.set_jlong((jlong)m);
110 #else
111 _value.set_jint((jint)m);
112 #endif // _LP64
113 }
114
115 virtual BasicType type() const { return _value.get_type(); }
116 virtual LIR_Const* as_constant() { return this; }
117
118 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
119 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); }
120 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); }
121 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); }
122 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); }
123 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); }
124 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); }
125
126 #ifdef _LP64
127 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); }
128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
129 #else
130 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); }
131 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
132 #endif
133
134
135 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
136 jint as_jint_lo_bits() const {
137 if (type() == T_DOUBLE) {
138 return low(jlong_cast(_value.get_jdouble()));
139 } else {
140 return as_jint_lo();
141 }
142 }
143 jint as_jint_hi_bits() const {
144 if (type() == T_DOUBLE) {
145 return high(jlong_cast(_value.get_jdouble()));
146 } else {
147 return as_jint_hi();
148 }
149 }
150 jlong as_jlong_bits() const {
151 if (type() == T_DOUBLE) {
152 return jlong_cast(_value.get_jdouble());
153 } else {
154 return as_jlong();
155 }
156 }
157
158 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
159
160
161 bool is_zero_float() {
162 jfloat f = as_jfloat();
163 jfloat ok = 0.0f;
164 return jint_cast(f) == jint_cast(ok);
165 }
166
167 bool is_one_float() {
168 jfloat f = as_jfloat();
169 return !g_isnan(f) && g_isfinite(f) && f == 1.0;
170 }
171
172 bool is_zero_double() {
173 jdouble d = as_jdouble();
174 jdouble ok = 0.0;
175 return jlong_cast(d) == jlong_cast(ok);
176 }
177
178 bool is_one_double() {
179 jdouble d = as_jdouble();
180 return !g_isnan(d) && g_isfinite(d) && d == 1.0;
181 }
182 };
183
184
185 //---------------------LIR Operand descriptor------------------------------------
186 //
187 // The class LIR_OprDesc represents a LIR instruction operand;
188 // it can be a register (ALU/FPU), stack location or a constant;
189 // Constants and addresses are represented as resource area allocated
190 // structures (see above).
191 // Registers and stack locations are inlined into the this pointer
192 // (see value function).
193
194 class LIR_OprDesc: public CompilationResourceObj {
195 public:
196 // value structure:
197 // data opr-type opr-kind
198 // +--------------+-------+-------+
199 // [max...........|7 6 5 4|3 2 1 0]
200 // ^
201 // is_pointer bit
202 //
203 // lowest bit cleared, means it is a structure pointer
204 // we need 4 bits to represent types
205
206 private:
207 friend class LIR_OprFact;
208
209 // Conversion
210 intptr_t value() const { return (intptr_t) this; }
211
212 bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
213 return (value() & mask) == masked_value;
214 }
215
216 enum OprKind {
217 pointer_value = 0
218 , stack_value = 1
219 , cpu_register = 3
220 , fpu_register = 5
221 , illegal_value = 7
222 };
223
224 enum OprBits {
225 pointer_bits = 1
226 , kind_bits = 3
227 , type_bits = 4
228 , size_bits = 2
229 , destroys_bits = 1
230 , virtual_bits = 1
231 , is_xmm_bits = 1
232 , last_use_bits = 1
233 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation
234 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits
235 + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits
236 , data_bits = BitsPerInt - non_data_bits
237 , reg_bits = data_bits / 2 // for two registers in one value encoding
238 };
239
240 enum OprShift : uintptr_t {
241 kind_shift = 0
242 , type_shift = kind_shift + kind_bits
243 , size_shift = type_shift + type_bits
244 , destroys_shift = size_shift + size_bits
245 , last_use_shift = destroys_shift + destroys_bits
246 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
247 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
248 , is_xmm_shift = virtual_shift + virtual_bits
249 , data_shift = is_xmm_shift + is_xmm_bits
250 , reg1_shift = data_shift
251 , reg2_shift = data_shift + reg_bits
252
253 };
254
255 enum OprSize {
256 single_size = 0 << size_shift
257 , double_size = 1 << size_shift
258 };
259
260 enum OprMask {
261 kind_mask = right_n_bits(kind_bits)
262 , type_mask = right_n_bits(type_bits) << type_shift
263 , size_mask = right_n_bits(size_bits) << size_shift
264 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift
265 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
266 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift
267 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift
268 , pointer_mask = right_n_bits(pointer_bits)
269 , lower_reg_mask = right_n_bits(reg_bits)
270 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
271 };
272
273 uint32_t data() const { return (uint32_t)value() >> data_shift; }
274 int lo_reg_half() const { return data() & lower_reg_mask; }
275 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; }
276 OprKind kind_field() const { return (OprKind)(value() & kind_mask); }
277 OprSize size_field() const { return (OprSize)(value() & size_mask); }
278
279 static char type_char(BasicType t);
280
281 public:
282 enum {
283 vreg_base = ConcreteRegisterImpl::number_of_registers,
284 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field
285 vreg_limit = 10000, // choose a reasonable limit,
286 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field
287 };
288
289 static inline LIR_Opr illegalOpr();
290
291 enum OprType {
292 unknown_type = 0 << type_shift // means: not set (catch uninitialized types)
293 , int_type = 1 << type_shift
294 , long_type = 2 << type_shift
295 , object_type = 3 << type_shift
296 , address_type = 4 << type_shift
297 , float_type = 5 << type_shift
298 , double_type = 6 << type_shift
299 , metadata_type = 7 << type_shift
300 };
301 friend OprType as_OprType(BasicType t);
302 friend BasicType as_BasicType(OprType t);
303
304 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
305 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
306
307 static OprSize size_for(BasicType t) {
308 switch (t) {
309 case T_LONG:
310 case T_DOUBLE:
311 return double_size;
312 break;
313
314 case T_FLOAT:
315 case T_BOOLEAN:
316 case T_CHAR:
317 case T_BYTE:
318 case T_SHORT:
319 case T_INT:
320 case T_ADDRESS:
321 case T_OBJECT:
322 case T_ARRAY:
323 case T_METADATA:
324 return single_size;
325 break;
326
327 default:
328 ShouldNotReachHere();
329 return single_size;
330 }
331 }
332
333
334 void validate_type() const PRODUCT_RETURN;
335
336 BasicType type() const {
337 if (is_pointer()) {
338 return pointer()->type();
339 }
340 return as_BasicType(type_field());
341 }
342
343
344 ValueType* value_type() const { return as_ValueType(type()); }
345
346 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); }
347
348 bool is_equal(LIR_Opr opr) const { return this == opr; }
349 // checks whether types are same
350 bool is_same_type(LIR_Opr opr) const {
351 assert(type_field() != unknown_type &&
352 opr->type_field() != unknown_type, "shouldn't see unknown_type");
353 return type_field() == opr->type_field();
354 }
355 bool is_same_register(LIR_Opr opr) {
356 return (is_register() && opr->is_register() &&
357 kind_field() == opr->kind_field() &&
358 (value() & no_type_mask) == (opr->value() & no_type_mask));
359 }
360
361 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); }
362 bool is_illegal() const { return kind_field() == illegal_value; }
363 bool is_valid() const { return kind_field() != illegal_value; }
364
365 bool is_register() const { return is_cpu_register() || is_fpu_register(); }
366 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); }
367
368 bool is_constant() const { return is_pointer() && pointer()->as_constant() != NULL; }
369 bool is_address() const { return is_pointer() && pointer()->as_address() != NULL; }
370
371 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
372 bool is_oop() const;
373
374 // semantic for fpu- and xmm-registers:
375 // * is_float and is_double return true for xmm_registers
376 // (so is_single_fpu and is_single_xmm are true)
377 // * So you must always check for is_???_xmm prior to is_???_fpu to
378 // distinguish between fpu- and xmm-registers
379
380 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); }
381 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); }
382 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); }
383
384 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); }
385 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
386 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); }
387 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); }
388 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); }
389
390 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); }
391 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
392 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); }
393 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); }
394 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); }
395
396 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); }
397 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
398 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
399
400 // fast accessor functions for special bits that do not work for pointers
401 // (in this functions, the check for is_pointer() is omitted)
402 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
403 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
404 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); }
405 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
406 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); }
407
408 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
409 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
410 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
411 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
412
413
414 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
415 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
416 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); }
417 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
418 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
419 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); }
420 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
421 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
422 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); }
423 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
424 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
425 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); }
426
427 LIR_OprPtr* pointer() const { assert(is_pointer(), "type check"); return (LIR_OprPtr*)this; }
428 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); }
429 LIR_Address* as_address_ptr() const { return pointer()->as_address(); }
430
431 Register as_register() const;
432 Register as_register_lo() const;
433 Register as_register_hi() const;
434
435 Register as_pointer_register() {
436 #ifdef _LP64
437 if (is_double_cpu()) {
438 assert(as_register_lo() == as_register_hi(), "should be a single register");
439 return as_register_lo();
440 }
441 #endif
442 return as_register();
443 }
444
445 FloatRegister as_float_reg () const;
446 FloatRegister as_double_reg () const;
447 #ifdef X86
448 XMMRegister as_xmm_float_reg () const;
449 XMMRegister as_xmm_double_reg() const;
450 // for compatibility with RInfo
451 int fpu() const { return lo_reg_half(); }
452 #endif
453
454 jint as_jint() const { return as_constant_ptr()->as_jint(); }
455 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); }
456 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); }
457 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
458 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); }
459
460 void print() const PRODUCT_RETURN;
461 void print(outputStream* out) const PRODUCT_RETURN;
462 };
463
464
465 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
466 switch (type) {
467 case T_INT: return LIR_OprDesc::int_type;
468 case T_LONG: return LIR_OprDesc::long_type;
469 case T_FLOAT: return LIR_OprDesc::float_type;
470 case T_DOUBLE: return LIR_OprDesc::double_type;
471 case T_OBJECT:
472 case T_ARRAY: return LIR_OprDesc::object_type;
473 case T_ADDRESS: return LIR_OprDesc::address_type;
474 case T_METADATA: return LIR_OprDesc::metadata_type;
475 case T_ILLEGAL: // fall through
476 default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
477 }
478 }
479
480 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
481 switch (t) {
482 case LIR_OprDesc::int_type: return T_INT;
483 case LIR_OprDesc::long_type: return T_LONG;
484 case LIR_OprDesc::float_type: return T_FLOAT;
485 case LIR_OprDesc::double_type: return T_DOUBLE;
486 case LIR_OprDesc::object_type: return T_OBJECT;
487 case LIR_OprDesc::address_type: return T_ADDRESS;
488 case LIR_OprDesc::metadata_type:return T_METADATA;
489 case LIR_OprDesc::unknown_type: // fall through
490 default: ShouldNotReachHere(); return T_ILLEGAL;
491 }
492 }
493
494
495 // LIR_Address
496 class LIR_Address: public LIR_OprPtr {
497 friend class LIR_OpVisitState;
498
499 public:
500 // NOTE: currently these must be the log2 of the scale factor (and
501 // must also be equivalent to the ScaleFactor enum in
502 // assembler_i486.hpp)
503 enum Scale {
504 times_1 = 0,
505 times_2 = 1,
506 times_4 = 2,
507 times_8 = 3
508 };
509
510 private:
511 LIR_Opr _base;
512 LIR_Opr _index;
513 Scale _scale;
514 intx _disp;
515 BasicType _type;
516
517 public:
518 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
519 _base(base)
520 , _index(index)
521 , _scale(times_1)
522 , _disp(0)
523 , _type(type) { verify(); }
524
525 LIR_Address(LIR_Opr base, intx disp, BasicType type):
526 _base(base)
527 , _index(LIR_OprDesc::illegalOpr())
528 , _scale(times_1)
529 , _disp(disp)
530 , _type(type) { verify(); }
531
532 LIR_Address(LIR_Opr base, BasicType type):
533 _base(base)
534 , _index(LIR_OprDesc::illegalOpr())
535 , _scale(times_1)
536 , _disp(0)
537 , _type(type) { verify(); }
538
539 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
540 _base(base)
541 , _index(index)
542 , _scale(times_1)
543 , _disp(disp)
544 , _type(type) { verify(); }
545
546 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
547 _base(base)
548 , _index(index)
549 , _scale(scale)
550 , _disp(disp)
551 , _type(type) { verify(); }
552
553 LIR_Opr base() const { return _base; }
554 LIR_Opr index() const { return _index; }
555 Scale scale() const { return _scale; }
556 intx disp() const { return _disp; }
557
558 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
559
560 virtual LIR_Address* as_address() { return this; }
561 virtual BasicType type() const { return _type; }
562 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
563
564 void verify() const PRODUCT_RETURN;
565
566 static Scale scale(BasicType type);
567 };
568
569
570 // operand factory
571 class LIR_OprFact: public AllStatic {
572 public:
573
574 static LIR_Opr illegalOpr;
575
576 static LIR_Opr single_cpu(int reg) {
577 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
578 LIR_OprDesc::int_type |
579 LIR_OprDesc::cpu_register |
580 LIR_OprDesc::single_size);
581 }
582 static LIR_Opr single_cpu_oop(int reg) {
583 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
584 LIR_OprDesc::object_type |
585 LIR_OprDesc::cpu_register |
586 LIR_OprDesc::single_size);
587 }
588 static LIR_Opr single_cpu_address(int reg) {
589 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
590 LIR_OprDesc::address_type |
591 LIR_OprDesc::cpu_register |
592 LIR_OprDesc::single_size);
593 }
594 static LIR_Opr single_cpu_metadata(int reg) {
595 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
596 LIR_OprDesc::metadata_type |
597 LIR_OprDesc::cpu_register |
598 LIR_OprDesc::single_size);
599 }
600 static LIR_Opr double_cpu(int reg1, int reg2) {
601 LP64_ONLY(assert(reg1 == reg2, "must be identical"));
602 return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
603 (reg2 << LIR_OprDesc::reg2_shift) |
604 LIR_OprDesc::long_type |
605 LIR_OprDesc::cpu_register |
606 LIR_OprDesc::double_size);
607 }
608
609 static LIR_Opr single_fpu(int reg) {
610 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
611 LIR_OprDesc::float_type |
612 LIR_OprDesc::fpu_register |
613 LIR_OprDesc::single_size);
614 }
615
616 // Platform dependant.
617 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
618
619 #ifdef ARM32
620 static LIR_Opr single_softfp(int reg) {
621 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
622 LIR_OprDesc::float_type |
623 LIR_OprDesc::cpu_register |
624 LIR_OprDesc::single_size);
625 }
626 static LIR_Opr double_softfp(int reg1, int reg2) {
627 return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
628 (reg2 << LIR_OprDesc::reg2_shift) |
629 LIR_OprDesc::double_type |
630 LIR_OprDesc::cpu_register |
631 LIR_OprDesc::double_size);
632 }
633 #endif // ARM32
634
635 #if defined(X86)
636 static LIR_Opr single_xmm(int reg) {
637 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
638 LIR_OprDesc::float_type |
639 LIR_OprDesc::fpu_register |
640 LIR_OprDesc::single_size |
641 LIR_OprDesc::is_xmm_mask);
642 }
643 static LIR_Opr double_xmm(int reg) {
644 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
645 (reg << LIR_OprDesc::reg2_shift) |
646 LIR_OprDesc::double_type |
647 LIR_OprDesc::fpu_register |
648 LIR_OprDesc::double_size |
649 LIR_OprDesc::is_xmm_mask);
650 }
651 #endif // X86
652
653 static LIR_Opr virtual_register(int index, BasicType type) {
654 if (index > LIR_OprDesc::vreg_max) {
655 // Running out of virtual registers. Caller should bailout.
656 return illegalOpr;
657 }
658
659 LIR_Opr res;
660 switch (type) {
661 case T_OBJECT: // fall through
662 case T_ARRAY:
663 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
664 LIR_OprDesc::object_type |
665 LIR_OprDesc::cpu_register |
666 LIR_OprDesc::single_size |
667 LIR_OprDesc::virtual_mask);
668 break;
669
670 case T_METADATA:
671 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
672 LIR_OprDesc::metadata_type|
673 LIR_OprDesc::cpu_register |
674 LIR_OprDesc::single_size |
675 LIR_OprDesc::virtual_mask);
676 break;
677
678 case T_INT:
679 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
680 LIR_OprDesc::int_type |
681 LIR_OprDesc::cpu_register |
682 LIR_OprDesc::single_size |
683 LIR_OprDesc::virtual_mask);
684 break;
685
686 case T_ADDRESS:
687 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
688 LIR_OprDesc::address_type |
689 LIR_OprDesc::cpu_register |
690 LIR_OprDesc::single_size |
691 LIR_OprDesc::virtual_mask);
692 break;
693
694 case T_LONG:
695 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
696 LIR_OprDesc::long_type |
697 LIR_OprDesc::cpu_register |
698 LIR_OprDesc::double_size |
699 LIR_OprDesc::virtual_mask);
700 break;
701
702 #ifdef __SOFTFP__
703 case T_FLOAT:
704 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
705 LIR_OprDesc::float_type |
706 LIR_OprDesc::cpu_register |
707 LIR_OprDesc::single_size |
708 LIR_OprDesc::virtual_mask);
709 break;
710 case T_DOUBLE:
711 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
712 LIR_OprDesc::double_type |
713 LIR_OprDesc::cpu_register |
714 LIR_OprDesc::double_size |
715 LIR_OprDesc::virtual_mask);
716 break;
717 #else // __SOFTFP__
718 case T_FLOAT:
719 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
720 LIR_OprDesc::float_type |
721 LIR_OprDesc::fpu_register |
722 LIR_OprDesc::single_size |
723 LIR_OprDesc::virtual_mask);
724 break;
725
726 case
727 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
728 LIR_OprDesc::double_type |
729 LIR_OprDesc::fpu_register |
730 LIR_OprDesc::double_size |
731 LIR_OprDesc::virtual_mask);
732 break;
733 #endif // __SOFTFP__
734 default: ShouldNotReachHere(); res = illegalOpr;
735 }
736
737 #ifdef ASSERT
738 res->validate_type();
739 assert(res->vreg_number() == index, "conversion check");
740 assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
741
742 // old-style calculation; check if old and new method are equal
743 LIR_OprDesc::OprType t = as_OprType(type);
744 #ifdef __SOFTFP__
745 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
746 t |
747 LIR_OprDesc::cpu_register |
748 LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
749 #else // __SOFTFP__
750 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
751 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
752 LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
753 assert(res == old_res, "old and new method not equal");
754 #endif // __SOFTFP__
755 #endif // ASSERT
756
757 return res;
758 }
759
760 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
761 // the index is platform independent; a double stack useing indeces 2 and 3 has always
762 // index 2.
763 static LIR_Opr stack(int index, BasicType type) {
764 LIR_Opr res;
765 switch (type) {
766 case T_OBJECT: // fall through
767 case T_ARRAY:
768 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
769 LIR_OprDesc::object_type |
770 LIR_OprDesc::stack_value |
771 LIR_OprDesc::single_size);
772 break;
773
774 case T_METADATA:
775 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
776 LIR_OprDesc::metadata_type |
777 LIR_OprDesc::stack_value |
778 LIR_OprDesc::single_size);
779 break;
780 case T_INT:
781 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
782 LIR_OprDesc::int_type |
783 LIR_OprDesc::stack_value |
784 LIR_OprDesc::single_size);
785 break;
786
787 case T_ADDRESS:
788 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
789 LIR_OprDesc::address_type |
790 LIR_OprDesc::stack_value |
791 LIR_OprDesc::single_size);
792 break;
793
794 case T_LONG:
795 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
796 LIR_OprDesc::long_type |
797 LIR_OprDesc::stack_value |
798 LIR_OprDesc::double_size);
799 break;
800
801 case T_FLOAT:
802 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
803 LIR_OprDesc::float_type |
804 LIR_OprDesc::stack_value |
805 LIR_OprDesc::single_size);
806 break;
807 case T_DOUBLE:
808 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
809 LIR_OprDesc::double_type |
810 LIR_OprDesc::stack_value |
811 LIR_OprDesc::double_size);
812 break;
813
814 default: ShouldNotReachHere(); res = illegalOpr;
815 }
816
817 #ifdef ASSERT
818 assert(index >= 0, "index must be positive");
819 assert(index == (int)res->data(), "conversion check");
820
821 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
822 LIR_OprDesc::stack_value |
823 as_OprType(type) |
824 LIR_OprDesc::size_for(type));
825 assert(res == old_res, "old and new method not equal");
826 #endif
827
828 return res;
829 }
830
831 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); }
832 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); }
833 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); }
834 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); }
835 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); }
836 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; }
837 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); }
838 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); }
839 static LIR_Opr illegal() { return (LIR_Opr)-1; }
840 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); }
841 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); }
842
843 static LIR_Opr value_type(ValueType* type);
844 };
845
846
847 //-------------------------------------------------------------------------------
848 // LIR Instructions
849 //-------------------------------------------------------------------------------
850 //
851 // Note:
852 // - every instruction has a result operand
853 // - every instruction has an CodeEmitInfo operand (can be revisited later)
854 // - every instruction has a LIR_OpCode operand
855 // - LIR_OpN, means an instruction that has N input operands
856 //
857 // class hierarchy:
858 //
859 class LIR_Op;
860 class LIR_Op0;
861 class LIR_OpLabel;
862 class LIR_Op1;
863 class LIR_OpBranch;
864 class LIR_OpConvert;
865 class LIR_OpAllocObj;
866 class LIR_OpReturn;
867 class LIR_OpRoundFP;
868 class LIR_Op2;
869 class LIR_OpDelay;
870 class LIR_Op3;
871 class LIR_OpAllocArray;
872 #ifdef RISCV
873 class LIR_Op4;
874 #endif
875 class LIR_OpCall;
876 class LIR_OpJavaCall;
877 class LIR_OpRTCall;
878 class LIR_OpArrayCopy;
879 class LIR_OpUpdateCRC32;
880 class LIR_OpLock;
881 class LIR_OpTypeCheck;
882 class LIR_OpCompareAndSwap;
883 class LIR_OpLoadKlass;
884 class LIR_OpProfileCall;
885 class LIR_OpProfileType;
886 #ifdef ASSERT
887 class LIR_OpAssert;
888 #endif
889
890 // LIR operation codes
891 enum LIR_Code {
892 lir_none
893 , begin_op0
894 , lir_label
895 , lir_nop
896 , lir_backwardbranch_target
897 , lir_std_entry
898 , lir_osr_entry
899 , lir_fpop_raw
900 , lir_breakpoint
901 , lir_rtcall
902 , lir_membar
903 , lir_membar_acquire
904 , lir_membar_release
905 , lir_membar_loadload
906 , lir_membar_storestore
907 , lir_membar_loadstore
908 , lir_membar_storeload
909 , lir_get_thread
910 , lir_on_spin_wait
911 , end_op0
912 , begin_op1
913 , lir_fxch
914 , lir_fld
915 , lir_push
916 , lir_pop
917 , lir_null_check
918 , lir_return
919 , lir_leal
920 #ifndef RISCV
921 , lir_branch
922 , lir_cond_float_branch
923 #endif
924 , lir_move
925 , lir_convert
926 , lir_alloc_object
927 , lir_monaddr
928 , lir_roundfp
929 , lir_safepoint
930 , lir_unwind
931 , lir_load_klass
932 , end_op1
933 , begin_op2
934 #ifdef RISCV
935 , lir_branch
936 , lir_cond_float_branch
937 #endif
938 , lir_cmp
939 , lir_cmp_l2i
940 , lir_ucmp_fd2i
941 , lir_cmp_fd2i
942 #ifndef RISCV
943 , lir_cmove
944 #endif
945 , lir_add
946 , lir_sub
947 , lir_mul
948 , lir_div
949 , lir_rem
950 , lir_sqrt
951 , lir_abs
952 , lir_neg
953 , lir_tan
954 , lir_log10
955 , lir_logic_and
956 , lir_logic_or
957 , lir_logic_xor
958 , lir_shl
959 , lir_shr
960 , lir_ushr
961 , lir_alloc_array
962 , lir_throw
963 , lir_xadd
964 , lir_xchg
965 , end_op2
966 , begin_op3
967 , lir_idiv
968 , lir_irem
969 , lir_fmad
970 , lir_fmaf
971 , end_op3
972 #ifdef RISCV
973 , begin_op4
974 , lir_cmove
975 , end_op4
976 #endif
977 , begin_opJavaCall
978 , lir_static_call
979 , lir_optvirtual_call
980 , lir_icvirtual_call
981 , lir_dynamic_call
982 , end_opJavaCall
983 , begin_opArrayCopy
984 , lir_arraycopy
985 , end_opArrayCopy
986 , begin_opUpdateCRC32
987 , lir_updatecrc32
988 , end_opUpdateCRC32
989 , begin_opLock
990 , lir_lock
991 , lir_unlock
992 , end_opLock
993 , begin_delay_slot
994 , lir_delay_slot
995 , end_delay_slot
996 , begin_opTypeCheck
997 , lir_instanceof
998 , lir_checkcast
999 , lir_store_check
1000 , end_opTypeCheck
1001 , begin_opCompareAndSwap
1002 , lir_cas_long
1003 , lir_cas_obj
1004 , lir_cas_int
1005 , end_opCompareAndSwap
1006 , begin_opMDOProfile
1007 , lir_profile_call
1008 , lir_profile_type
1009 , end_opMDOProfile
1010 , begin_opAssert
1011 , lir_assert
1012 , end_opAssert
1013 #if defined(RISCV) && defined(INCLUDE_ZGC)
1014 , begin_opZLoadBarrierTest
1015 , lir_zloadbarrier_test
1016 , end_opZLoadBarrierTest
1017 #endif
1018 };
1019
1020
1021 enum LIR_Condition {
1022 lir_cond_equal
1023 , lir_cond_notEqual
1024 , lir_cond_less
1025 , lir_cond_lessEqual
1026 , lir_cond_greaterEqual
1027 , lir_cond_greater
1028 , lir_cond_belowEqual
1029 , lir_cond_aboveEqual
1030 , lir_cond_always
1031 , lir_cond_unknown = -1
1032 };
1033
1034
1035 enum LIR_PatchCode {
1036 lir_patch_none,
1037 lir_patch_low,
1038 lir_patch_high,
1039 lir_patch_normal
1040 };
1041
1042
1043 enum LIR_MoveKind {
1044 lir_move_normal,
1045 lir_move_volatile,
1046 lir_move_unaligned,
1047 lir_move_wide,
1048 lir_move_max_flag
1049 };
1050
1051
1052 // --------------------------------------------------
1053 // LIR_Op
1054 // --------------------------------------------------
1055 class LIR_Op: public CompilationResourceObj {
1056 friend class LIR_OpVisitState;
1057
1058 #ifdef ASSERT
1059 private:
1060 const char * _file;
1061 int _line;
1062 #endif
1063
1064 protected:
1065 LIR_Opr _result;
1066 unsigned short _code;
1067 unsigned short _flags;
1068 CodeEmitInfo* _info;
1069 int _id; // value id for register allocation
1070 int _fpu_pop_count;
1071 Instruction* _source; // for debugging
1072
1073 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1074
1075 protected:
1076 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; }
1077
1078 public:
1079 LIR_Op()
1080 :
1081 #ifdef ASSERT
1082 _file(NULL)
1083 , _line(0),
1084 #endif
1085 _result(LIR_OprFact::illegalOpr)
1086 , _code(lir_none)
1087 , _flags(0)
1088 , _info(NULL)
1089 , _id(-1)
1090 , _fpu_pop_count(0)
1091 , _source(NULL) {}
1092
1093 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1094 :
1095 #ifdef ASSERT
1096 _file(NULL)
1097 , _line(0),
1098 #endif
1099 _result(result)
1100 , _code(code)
1101 , _flags(0)
1102 , _info(info)
1103 , _id(-1)
1104 , _fpu_pop_count(0)
1105 , _source(NULL) {}
1106
1107 CodeEmitInfo* info() const { return _info; }
1108 LIR_Code code() const { return (LIR_Code)_code; }
1109 LIR_Opr result_opr() const { return _result; }
1110 void set_result_opr(LIR_Opr opr) { _result = opr; }
1111
1112 #ifdef ASSERT
1113 void set_file_and_line(const char * file, int line) {
1114 _file = file;
1115 _line = line;
1116 }
1117 #endif
1118
1119 virtual const char * name() const PRODUCT_RETURN0;
1120 virtual void visit(LIR_OpVisitState* state);
1121
1122 int id() const { return _id; }
1123 void set_id(int id) { _id = id; }
1124
1125 // FPU stack simulation helpers -- only used on Intel
1126 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1127 int fpu_pop_count() const { return _fpu_pop_count; }
1128 bool pop_fpu_stack() { return _fpu_pop_count > 0; }
1129
1130 Instruction* source() const { return _source; }
1131 void set_source(Instruction* ins) { _source = ins; }
1132
1133 virtual void emit_code(LIR_Assembler* masm) = 0;
1134 virtual void print_instr(outputStream* out) const = 0;
1135 virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1136
1137 virtual bool is_patching() { return false; }
1138 virtual LIR_OpCall* as_OpCall() { return NULL; }
1139 virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1140 virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1141 virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1142 virtual LIR_OpLock* as_OpLock() { return NULL; }
1143 virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1144 virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1145 virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1146 virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1147 virtual LIR_OpReturn* as_OpReturn() { return NULL; }
1148 virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1149 virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1150 virtual LIR_Op0* as_Op0() { return NULL; }
1151 virtual LIR_Op1* as_Op1() { return NULL; }
1152 virtual LIR_Op2* as_Op2() { return NULL; }
1153 virtual LIR_Op3* as_Op3() { return NULL; }
1154 #ifdef RISCV
1155 virtual LIR_Op4* as_Op4() { return NULL; }
1156 #endif
1157 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1158 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1159 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1160 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1161 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return NULL; }
1162 virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1163 virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1164 #ifdef ASSERT
1165 virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1166 #endif
1167
1168 virtual void verify() const {}
1169 };
1170
1171 // for calls
1172 class LIR_OpCall: public LIR_Op {
1173 friend class LIR_OpVisitState;
1174
1175 protected:
1176 address _addr;
1177 LIR_OprList* _arguments;
1178 protected:
1179 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1180 LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1181 : LIR_Op(code, result, info)
1182 , _addr(addr)
1183 , _arguments(arguments) {}
1184
1185 public:
1186 address addr() const { return _addr; }
1187 const LIR_OprList* arguments() const { return _arguments; }
1188 virtual LIR_OpCall* as_OpCall() { return this; }
1189 };
1190
1191
1192 // --------------------------------------------------
1193 // LIR_OpJavaCall
1194 // --------------------------------------------------
1195 class LIR_OpJavaCall: public LIR_OpCall {
1196 friend class LIR_OpVisitState;
1197
1198 private:
1199 ciMethod* _method;
1200 LIR_Opr _receiver;
1201 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1202
1203 public:
1204 LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1205 LIR_Opr receiver, LIR_Opr result,
1206 address addr, LIR_OprList* arguments,
1207 CodeEmitInfo* info)
1208 : LIR_OpCall(code, addr, result, arguments, info)
1209 , _method(method)
1210 , _receiver(receiver)
1211 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1212 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1213
1214 LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1215 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1216 LIR_OprList* arguments, CodeEmitInfo* info)
1217 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1218 , _method(method)
1219 , _receiver(receiver)
1220 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1221 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1222
1223 LIR_Opr receiver() const { return _receiver; }
1224 ciMethod* method() const { return _method; }
1225
1226 // JSR 292 support.
1227 bool is_invokedynamic() const { return code() == lir_dynamic_call; }
1228 bool is_method_handle_invoke() const {
1229 return method()->is_compiled_lambda_form() || // Java-generated lambda form
1230 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic
1231 }
1232
1233 virtual void emit_code(LIR_Assembler* masm);
1234 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1235 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1236 };
1237
1238 // --------------------------------------------------
1239 // LIR_OpLabel
1240 // --------------------------------------------------
1241 // Location where a branch can continue
1242 class LIR_OpLabel: public LIR_Op {
1243 friend class LIR_OpVisitState;
1244
1245 private:
1246 Label* _label;
1247 public:
1248 LIR_OpLabel(Label* lbl)
1249 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1250 , _label(lbl) {}
1251 Label* label() const { return _label; }
1252
1253 virtual void emit_code(LIR_Assembler* masm);
1254 virtual LIR_OpLabel* as_OpLabel() { return this; }
1255 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1256 };
1257
1258 // LIR_OpArrayCopy
1259 class LIR_OpArrayCopy: public LIR_Op {
1260 friend class LIR_OpVisitState;
1261
1262 private:
1263 ArrayCopyStub* _stub;
1264 LIR_Opr _src;
1265 LIR_Opr _src_pos;
1266 LIR_Opr _dst;
1267 LIR_Opr _dst_pos;
1268 LIR_Opr _length;
1269 LIR_Opr _tmp;
1270 ciArrayKlass* _expected_type;
1271 int _flags;
1272
1273 public:
1274 enum Flags {
1275 src_null_check = 1 << 0,
1276 dst_null_check = 1 << 1,
1277 src_pos_positive_check = 1 << 2,
1278 dst_pos_positive_check = 1 << 3,
1279 length_positive_check = 1 << 4,
1280 src_range_check = 1 << 5,
1281 dst_range_check = 1 << 6,
1282 type_check = 1 << 7,
1283 overlapping = 1 << 8,
1284 unaligned = 1 << 9,
1285 src_objarray = 1 << 10,
1286 dst_objarray = 1 << 11,
1287 all_flags = (1 << 12) - 1
1288 };
1289
1290 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1291 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1292
1293 LIR_Opr src() const { return _src; }
1294 LIR_Opr src_pos() const { return _src_pos; }
1295 LIR_Opr dst() const { return _dst; }
1296 LIR_Opr dst_pos() const { return _dst_pos; }
1297 LIR_Opr length() const { return _length; }
1298 LIR_Opr tmp() const { return _tmp; }
1299 int flags() const { return _flags; }
1300 ciArrayKlass* expected_type() const { return _expected_type; }
1301 ArrayCopyStub* stub() const { return _stub; }
1302
1303 virtual void emit_code(LIR_Assembler* masm);
1304 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1305 void print_instr(outputStream* out) const PRODUCT_RETURN;
1306 };
1307
1308 // LIR_OpUpdateCRC32
1309 class LIR_OpUpdateCRC32: public LIR_Op {
1310 friend class LIR_OpVisitState;
1311
1312 private:
1313 LIR_Opr _crc;
1314 LIR_Opr _val;
1315
1316 public:
1317
1318 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1319
1320 LIR_Opr crc() const { return _crc; }
1321 LIR_Opr val() const { return _val; }
1322
1323 virtual void emit_code(LIR_Assembler* masm);
1324 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; }
1325 void print_instr(outputStream* out) const PRODUCT_RETURN;
1326 };
1327
1328 // --------------------------------------------------
1329 // LIR_Op0
1330 // --------------------------------------------------
1331 class LIR_Op0: public LIR_Op {
1332 friend class LIR_OpVisitState;
1333
1334 public:
1335 LIR_Op0(LIR_Code code)
1336 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1337 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1338 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1339
1340 virtual void emit_code(LIR_Assembler* masm);
1341 virtual LIR_Op0* as_Op0() { return this; }
1342 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1343 };
1344
1345
1346 // --------------------------------------------------
1347 // LIR_Op1
1348 // --------------------------------------------------
1349
1350 class LIR_Op1: public LIR_Op {
1351 friend class LIR_OpVisitState;
1352
1353 protected:
1354 LIR_Opr _opr; // input operand
1355 BasicType _type; // Operand types
1356 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1357
1358 static void print_patch_code(outputStream* out, LIR_PatchCode code);
1359
1360 void set_kind(LIR_MoveKind kind) {
1361 assert(code() == lir_move, "must be");
1362 _flags = kind;
1363 }
1364
1365 public:
1366 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1367 : LIR_Op(code, result, info)
1368 , _opr(opr)
1369 , _type(type)
1370 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1371
1372 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1373 : LIR_Op(code, result, info)
1374 , _opr(opr)
1375 , _type(type)
1376 , _patch(patch) {
1377 assert(code == lir_move, "must be");
1378 set_kind(kind);
1379 }
1380
1381 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1382 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1383 , _opr(opr)
1384 , _type(T_ILLEGAL)
1385 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1386
1387 LIR_Opr in_opr() const { return _opr; }
1388 LIR_PatchCode patch_code() const { return _patch; }
1389 BasicType type() const { return _type; }
1390
1391 LIR_MoveKind move_kind() const {
1392 assert(code() == lir_move, "must be");
1393 return (LIR_MoveKind)_flags;
1394 }
1395
1396 virtual bool is_patching() { return _patch != lir_patch_none; }
1397 virtual void emit_code(LIR_Assembler* masm);
1398 virtual LIR_Op1* as_Op1() { return this; }
1399 virtual const char * name() const PRODUCT_RETURN0;
1400
1401 void set_in_opr(LIR_Opr opr) { _opr = opr; }
1402
1403 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1404 virtual void verify() const;
1405 };
1406
1407
1408 // for runtime calls
1409 class LIR_OpRTCall: public LIR_OpCall {
1410 friend class LIR_OpVisitState;
1411
1412 private:
1413 LIR_Opr _tmp;
1414 public:
1415 LIR_OpRTCall(address addr, LIR_Opr tmp,
1416 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1417 : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1418 , _tmp(tmp) {}
1419
1420 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1421 virtual void emit_code(LIR_Assembler* masm);
1422 virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1423
1424 LIR_Opr tmp() const { return _tmp; }
1425
1426 virtual void verify() const;
1427 };
1428
1429 class LIR_OpReturn: public LIR_Op1 {
1430 friend class LIR_OpVisitState;
1431
1432 private:
1433 C1SafepointPollStub* _stub;
1434
1435 public:
1436 LIR_OpReturn(LIR_Opr opr);
1437
1438 C1SafepointPollStub* stub() const { return _stub; }
1439 virtual LIR_OpReturn* as_OpReturn() { return this; }
1440 };
1441
1442 class ConversionStub;
1443
1444 class LIR_OpConvert: public LIR_Op1 {
1445 friend class LIR_OpVisitState;
1446
1447 private:
1448 Bytecodes::Code _bytecode;
1449 ConversionStub* _stub;
1450
1451 public:
1452 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1453 : LIR_Op1(lir_convert, opr, result)
1454 , _bytecode(code)
1455 , _stub(stub) {}
1456
1457 Bytecodes::Code bytecode() const { return _bytecode; }
1458 ConversionStub* stub() const { return _stub; }
1459
1460 virtual void emit_code(LIR_Assembler* masm);
1461 virtual LIR_OpConvert* as_OpConvert() { return this; }
1462 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1463
1464 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1465 };
1466
1467
1468 // LIR_OpAllocObj
1469 class LIR_OpAllocObj : public LIR_Op1 {
1470 friend class LIR_OpVisitState;
1471
1472 private:
1473 LIR_Opr _tmp1;
1474 LIR_Opr _tmp2;
1475 LIR_Opr _tmp3;
1476 LIR_Opr _tmp4;
1477 int _hdr_size;
1478 int _obj_size;
1479 CodeStub* _stub;
1480 bool _init_check;
1481
1482 public:
1483 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1484 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1485 int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1486 : LIR_Op1(lir_alloc_object, klass, result)
1487 , _tmp1(t1)
1488 , _tmp2(t2)
1489 , _tmp3(t3)
1490 , _tmp4(t4)
1491 , _hdr_size(hdr_size)
1492 , _obj_size(obj_size)
1493 , _stub(stub)
1494 , _init_check(init_check) { }
1495
1496 LIR_Opr klass() const { return in_opr(); }
1497 LIR_Opr obj() const { return result_opr(); }
1498 LIR_Opr tmp1() const { return _tmp1; }
1499 LIR_Opr tmp2() const { return _tmp2; }
1500 LIR_Opr tmp3() const { return _tmp3; }
1501 LIR_Opr tmp4() const { return _tmp4; }
1502 int header_size() const { return _hdr_size; }
1503 int object_size() const { return _obj_size; }
1504 bool init_check() const { return _init_check; }
1505 CodeStub* stub() const { return _stub; }
1506
1507 virtual void emit_code(LIR_Assembler* masm);
1508 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1509 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1510 };
1511
1512
1513 // LIR_OpRoundFP
1514 class LIR_OpRoundFP : public LIR_Op1 {
1515 friend class LIR_OpVisitState;
1516
1517 private:
1518 LIR_Opr _tmp;
1519
1520 public:
1521 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1522 : LIR_Op1(lir_roundfp, reg, result)
1523 , _tmp(stack_loc_temp) {}
1524
1525 LIR_Opr tmp() const { return _tmp; }
1526 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; }
1527 void print_instr(outputStream* out) const PRODUCT_RETURN;
1528 };
1529
1530 // LIR_OpTypeCheck
1531 class LIR_OpTypeCheck: public LIR_Op {
1532 friend class LIR_OpVisitState;
1533
1534 private:
1535 LIR_Opr _object;
1536 LIR_Opr _array;
1537 ciKlass* _klass;
1538 LIR_Opr _tmp1;
1539 LIR_Opr _tmp2;
1540 LIR_Opr _tmp3;
1541 bool _fast_check;
1542 CodeEmitInfo* _info_for_patch;
1543 CodeEmitInfo* _info_for_exception;
1544 CodeStub* _stub;
1545 ciMethod* _profiled_method;
1546 int _profiled_bci;
1547 bool _should_profile;
1548
1549 public:
1550 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1551 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1552 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1553 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1554 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1555
1556 LIR_Opr object() const { return _object; }
1557 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; }
1558 LIR_Opr tmp1() const { return _tmp1; }
1559 LIR_Opr tmp2() const { return _tmp2; }
1560 LIR_Opr tmp3() const { return _tmp3; }
1561 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; }
1562 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; }
1563 CodeEmitInfo* info_for_patch() const { return _info_for_patch; }
1564 CodeEmitInfo* info_for_exception() const { return _info_for_exception; }
1565 CodeStub* stub() const { return _stub; }
1566
1567 // MethodData* profiling
1568 void set_profiled_method(ciMethod *method) { _profiled_method = method; }
1569 void set_profiled_bci(int bci) { _profiled_bci = bci; }
1570 void set_should_profile(bool b) { _should_profile = b; }
1571 ciMethod* profiled_method() const { return _profiled_method; }
1572 int profiled_bci() const { return _profiled_bci; }
1573 bool should_profile() const { return _should_profile; }
1574
1575 virtual bool is_patching() { return _info_for_patch != NULL; }
1576 virtual void emit_code(LIR_Assembler* masm);
1577 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1578 void print_instr(outputStream* out) const PRODUCT_RETURN;
1579 };
1580
1581 // LIR_Op2
1582 class LIR_Op2: public LIR_Op {
1583 friend class LIR_OpVisitState;
1584
1585 int _fpu_stack_size; // for sin/cos implementation on Intel
1586
1587 protected:
1588 LIR_Opr _opr1;
1589 LIR_Opr _opr2;
1590 BasicType _type;
1591 LIR_Opr _tmp1;
1592 LIR_Opr _tmp2;
1593 LIR_Opr _tmp3;
1594 LIR_Opr _tmp4;
1595 LIR_Opr _tmp5;
1596 LIR_Condition _condition;
1597
1598 void verify() const;
1599
1600 public:
1601 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1602 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1603 , _fpu_stack_size(0)
1604 , _opr1(opr1)
1605 , _opr2(opr2)
1606 , _type(type)
1607 , _tmp1(LIR_OprFact::illegalOpr)
1608 , _tmp2(LIR_OprFact::illegalOpr)
1609 , _tmp3(LIR_OprFact::illegalOpr)
1610 , _tmp4(LIR_OprFact::illegalOpr)
1611 , _tmp5(LIR_OprFact::illegalOpr)
1612 , _condition(condition) {
1613 assert(code == lir_cmp || code == lir_assert RISCV_ONLY(|| code == lir_branch || code == lir_cond_float_branch), "code check");
1614 }
1615
1616 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1617 : LIR_Op(code, result, NULL)
1618 , _fpu_stack_size(0)
1619 , _opr1(opr1)
1620 , _opr2(opr2)
1621 , _type(type)
1622 , _tmp1(LIR_OprFact::illegalOpr)
1623 , _tmp2(LIR_OprFact::illegalOpr)
1624 , _tmp3(LIR_OprFact::illegalOpr)
1625 , _tmp4(LIR_OprFact::illegalOpr)
1626 , _tmp5(LIR_OprFact::illegalOpr)
1627 , _condition(condition) {
1628 assert(code == lir_cmove, "code check");
1629 assert(type != T_ILLEGAL, "cmove should have type");
1630 }
1631
1632 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1633 CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1634 : LIR_Op(code, result, info)
1635 , _fpu_stack_size(0)
1636 , _opr1(opr1)
1637 , _opr2(opr2)
1638 , _type(type)
1639 , _tmp1(LIR_OprFact::illegalOpr)
1640 , _tmp2(LIR_OprFact::illegalOpr)
1641 , _tmp3(LIR_OprFact::illegalOpr)
1642 , _tmp4(LIR_OprFact::illegalOpr)
1643 , _tmp5(LIR_OprFact::illegalOpr)
1644 , _condition(lir_cond_unknown) {
1645 assert(code != lir_cmp && RISCV_ONLY(code != lir_branch && code != lir_cond_float_branch &&) is_in_range(code, begin_op2, end_op2), "code check");
1646 }
1647
1648 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1649 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1650 : LIR_Op(code, result, NULL)
1651 , _fpu_stack_size(0)
1652 , _opr1(opr1)
1653 , _opr2(opr2)
1654 , _type(T_ILLEGAL)
1655 , _tmp1(tmp1)
1656 , _tmp2(tmp2)
1657 , _tmp3(tmp3)
1658 , _tmp4(tmp4)
1659 , _tmp5(tmp5)
1660 , _condition(lir_cond_unknown) {
1661 assert(code != lir_cmp && RISCV_ONLY(code != lir_branch && code != lir_cond_float_branch &&) is_in_range(code, begin_op2, end_op2), "code check");
1662 }
1663
1664 LIR_Opr in_opr1() const { return _opr1; }
1665 LIR_Opr in_opr2() const { return _opr2; }
1666 BasicType type() const { return _type; }
1667 LIR_Opr tmp1_opr() const { return _tmp1; }
1668 LIR_Opr tmp2_opr() const { return _tmp2; }
1669 LIR_Opr tmp3_opr() const { return _tmp3; }
1670 LIR_Opr tmp4_opr() const { return _tmp4; }
1671 LIR_Opr tmp5_opr() const { return _tmp5; }
1672 LIR_Condition condition() const {
1673 #ifdef RISCV
1674 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition;
1675 #else
1676 assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1677 #endif
1678 }
1679 void set_condition(LIR_Condition condition) {
1680 #ifdef RISCV
1681 assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition;
1682 #else
1683 assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); _condition = condition;
1684 #endif
1685 }
1686
1687 void set_fpu_stack_size(int size) { _fpu_stack_size = size; }
1688 int fpu_stack_size() const { return _fpu_stack_size; }
1689
1690 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; }
1691 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; }
1692
1693 virtual void emit_code(LIR_Assembler* masm);
1694 virtual LIR_Op2* as_Op2() { return this; }
1695 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1696 };
1697
1698 #ifdef RISCV
1699 class LIR_OpBranch: public LIR_Op2 {
1700 #else
1701 class LIR_OpBranch: public LIR_Op {
1702 #endif
1703 friend class LIR_OpVisitState;
1704
1705 private:
1706 #ifndef RISCV
1707 LIR_Condition _cond;
1708 #endif
1709 Label* _label;
1710 BlockBegin* _block; // if this is a branch to a block, this is the block
1711 BlockBegin* _ublock; // if this is a float-branch, this is the unordered block
1712 CodeStub* _stub; // if this is a branch to a stub, this is the stub
1713
1714 public:
1715 LIR_OpBranch(LIR_Condition cond, Label* lbl)
1716 #ifdef RISCV
1717 : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1718 #else
1719 : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1720 , _cond(cond)
1721 #endif
1722 , _label(lbl)
1723 , _block(NULL)
1724 , _ublock(NULL)
1725 , _stub(NULL) { }
1726
1727 LIR_OpBranch(LIR_Condition cond, BlockBegin* block);
1728 LIR_OpBranch(LIR_Condition cond, CodeStub* stub);
1729
1730 // for unordered comparisons
1731 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock);
1732
1733 #ifdef RISCV
1734 LIR_Condition cond() const { return condition(); }
1735 void set_cond(LIR_Condition cond) { set_condition(cond); }
1736 #else
1737 LIR_Condition cond() const { return _cond; }
1738 void set_cond(LIR_Condition cond) { _cond = cond; }
1739 #endif
1740 Label* label() const { return _label; }
1741 BlockBegin* block() const { return _block; }
1742 BlockBegin* ublock() const { return _ublock; }
1743 CodeStub* stub() const { return _stub; }
1744
1745 void change_block(BlockBegin* b);
1746 void change_ublock(BlockBegin* b);
1747 void negate_cond();
1748
1749 virtual void emit_code(LIR_Assembler* masm);
1750 virtual LIR_OpBranch* as_OpBranch() { return this; }
1751 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1752 };
1753
1754 class LIR_OpAllocArray : public LIR_Op {
1755 friend class LIR_OpVisitState;
1756
1757 private:
1758 LIR_Opr _klass;
1759 LIR_Opr _len;
1760 LIR_Opr _tmp1;
1761 LIR_Opr _tmp2;
1762 LIR_Opr _tmp3;
1763 LIR_Opr _tmp4;
1764 BasicType _type;
1765 CodeStub* _stub;
1766
1767 public:
1768 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1769 : LIR_Op(lir_alloc_array, result, NULL)
1770 , _klass(klass)
1771 , _len(len)
1772 , _tmp1(t1)
1773 , _tmp2(t2)
1774 , _tmp3(t3)
1775 , _tmp4(t4)
1776 , _type(type)
1777 , _stub(stub) {}
1778
1779 LIR_Opr klass() const { return _klass; }
1780 LIR_Opr len() const { return _len; }
1781 LIR_Opr obj() const { return result_opr(); }
1782 LIR_Opr tmp1() const { return _tmp1; }
1783 LIR_Opr tmp2() const { return _tmp2; }
1784 LIR_Opr tmp3() const { return _tmp3; }
1785 LIR_Opr tmp4() const { return _tmp4; }
1786 BasicType type() const { return _type; }
1787 CodeStub* stub() const { return _stub; }
1788
1789 virtual void emit_code(LIR_Assembler* masm);
1790 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1791 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1792 };
1793
1794
1795 class LIR_Op3: public LIR_Op {
1796 friend class LIR_OpVisitState;
1797
1798 private:
1799 LIR_Opr _opr1;
1800 LIR_Opr _opr2;
1801 LIR_Opr _opr3;
1802 public:
1803 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1804 : LIR_Op(code, result, info)
1805 , _opr1(opr1)
1806 , _opr2(opr2)
1807 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1808 LIR_Opr in_opr1() const { return _opr1; }
1809 LIR_Opr in_opr2() const { return _opr2; }
1810 LIR_Opr in_opr3() const { return _opr3; }
1811
1812 virtual void emit_code(LIR_Assembler* masm);
1813 virtual LIR_Op3* as_Op3() { return this; }
1814 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1815 };
1816
1817 #ifdef RISCV
1818 class LIR_Op4: public LIR_Op {
1819 friend class LIR_OpVisitState;
1820 protected:
1821 LIR_Opr _opr1;
1822 LIR_Opr _opr2;
1823 LIR_Opr _opr3;
1824 LIR_Opr _opr4;
1825 BasicType _type;
1826 LIR_Opr _tmp1;
1827 LIR_Opr _tmp2;
1828 LIR_Opr _tmp3;
1829 LIR_Opr _tmp4;
1830 LIR_Opr _tmp5;
1831 LIR_Condition _condition;
1832
1833 public:
1834 LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4,
1835 LIR_Opr result, BasicType type)
1836 : LIR_Op(code, result, NULL)
1837 , _opr1(opr1)
1838 , _opr2(opr2)
1839 , _opr3(opr3)
1840 , _opr4(opr4)
1841 , _type(type)
1842 , _tmp1(LIR_OprFact::illegalOpr)
1843 , _tmp2(LIR_OprFact::illegalOpr)
1844 , _tmp3(LIR_OprFact::illegalOpr)
1845 , _tmp4(LIR_OprFact::illegalOpr)
1846 , _tmp5(LIR_OprFact::illegalOpr)
1847 , _condition(condition) {
1848 assert(code == lir_cmove, "code check");
1849 assert(type != T_ILLEGAL, "cmove should have type");
1850 }
1851
1852 LIR_Opr in_opr1() const { return _opr1; }
1853 LIR_Opr in_opr2() const { return _opr2; }
1854 LIR_Opr in_opr3() const { return _opr3; }
1855 LIR_Opr in_opr4() const { return _opr4; }
1856 BasicType type() const { return _type; }
1857 LIR_Opr tmp1_opr() const { return _tmp1; }
1858 LIR_Opr tmp2_opr() const { return _tmp2; }
1859 LIR_Opr tmp3_opr() const { return _tmp3; }
1860 LIR_Opr tmp4_opr() const { return _tmp4; }
1861 LIR_Opr tmp5_opr() const { return _tmp5; }
1862
1863 LIR_Condition condition() const { return _condition; }
1864 void set_condition(LIR_Condition condition) { _condition = condition; }
1865
1866 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; }
1867 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; }
1868 void set_in_opr3(LIR_Opr opr) { _opr3 = opr; }
1869 void set_in_opr4(LIR_Opr opr) { _opr4 = opr; }
1870 virtual void emit_code(LIR_Assembler* masm);
1871 virtual LIR_Op4* as_Op4() { return this; }
1872
1873 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1874 };
1875 #endif
1876
1877 //--------------------------------
1878 class LabelObj: public CompilationResourceObj {
1879 private:
1880 Label _label;
1881 public:
1882 LabelObj() {}
1883 Label* label() { return &_label; }
1884 };
1885
1886
1887 class LIR_OpLock: public LIR_Op {
1888 friend class LIR_OpVisitState;
1889
1890 private:
1891 LIR_Opr _hdr;
1892 LIR_Opr _obj;
1893 LIR_Opr _lock;
1894 LIR_Opr _scratch;
1895 CodeStub* _stub;
1896 public:
1897 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1898 : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1899 , _hdr(hdr)
1900 , _obj(obj)
1901 , _lock(lock)
1902 , _scratch(scratch)
1903 , _stub(stub) {}
1904
1905 LIR_Opr hdr_opr() const { return _hdr; }
1906 LIR_Opr obj_opr() const { return _obj; }
1907 LIR_Opr lock_opr() const { return _lock; }
1908 LIR_Opr scratch_opr() const { return _scratch; }
1909 CodeStub* stub() const { return _stub; }
1910
1911 virtual void emit_code(LIR_Assembler* masm);
1912 virtual LIR_OpLock* as_OpLock() { return this; }
1913 void print_instr(outputStream* out) const PRODUCT_RETURN;
1914 };
1915
1916 class LIR_OpLoadKlass: public LIR_Op {
1917 friend class LIR_OpVisitState;
1918
1919 private:
1920 LIR_Opr _obj;
1921 CodeStub* _stub;
1922 public:
1923 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub)
1924 : LIR_Op(lir_load_klass, result, info)
1925 , _obj(obj)
1926 , _stub(stub) {}
1927
1928 LIR_Opr obj() const { return _obj; }
1929 CodeStub* stub() const { return _stub; }
1930
1931 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; }
1932 virtual void emit_code(LIR_Assembler* masm);
1933 void print_instr(outputStream* out) const PRODUCT_RETURN;
1934 };
1935
1936 class LIR_OpDelay: public LIR_Op {
1937 friend class LIR_OpVisitState;
1938
1939 private:
1940 LIR_Op* _op;
1941
1942 public:
1943 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1944 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1945 _op(op) {
1946 assert(op->code() == lir_nop, "should be filling with nops");
1947 }
1948 virtual void emit_code(LIR_Assembler* masm);
1949 virtual LIR_OpDelay* as_OpDelay() { return this; }
1950 void print_instr(outputStream* out) const PRODUCT_RETURN;
1951 LIR_Op* delay_op() const { return _op; }
1952 CodeEmitInfo* call_info() const { return info(); }
1953 };
1954
1955 #ifdef ASSERT
1956 // LIR_OpAssert
1957 class LIR_OpAssert : public LIR_Op2 {
1958 friend class LIR_OpVisitState;
1959
1960 private:
1961 const char* _msg;
1962 bool _halt;
1963
1964 public:
1965 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1966 : LIR_Op2(lir_assert, condition, opr1, opr2)
1967 , _msg(msg)
1968 , _halt(halt) {
1969 }
1970
1971 const char* msg() const { return _msg; }
1972 bool halt() const { return _halt; }
1973
1974 virtual void emit_code(LIR_Assembler* masm);
1975 virtual LIR_OpAssert* as_OpAssert() { return this; }
1976 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1977 };
1978 #endif
1979
1980 // LIR_OpCompareAndSwap
1981 class LIR_OpCompareAndSwap : public LIR_Op {
1982 friend class LIR_OpVisitState;
1983
1984 private:
1985 LIR_Opr _addr;
1986 LIR_Opr _cmp_value;
1987 LIR_Opr _new_value;
1988 LIR_Opr _tmp1;
1989 LIR_Opr _tmp2;
1990
1991 public:
1992 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1993 LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1994 : LIR_Op(code, result, NULL) // no result, no info
1995 , _addr(addr)
1996 , _cmp_value(cmp_value)
1997 , _new_value(new_value)
1998 , _tmp1(t1)
1999 , _tmp2(t2) { }
2000
2001 LIR_Opr addr() const { return _addr; }
2002 LIR_Opr cmp_value() const { return _cmp_value; }
2003 LIR_Opr new_value() const { return _new_value; }
2004 LIR_Opr tmp1() const { return _tmp1; }
2005 LIR_Opr tmp2() const { return _tmp2; }
2006
2007 virtual void emit_code(LIR_Assembler* masm);
2008 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
2009 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2010 };
2011
2012 // LIR_OpProfileCall
2013 class LIR_OpProfileCall : public LIR_Op {
2014 friend class LIR_OpVisitState;
2015
2016 private:
2017 ciMethod* _profiled_method;
2018 int _profiled_bci;
2019 ciMethod* _profiled_callee;
2020 LIR_Opr _mdo;
2021 LIR_Opr _recv;
2022 LIR_Opr _tmp1;
2023 ciKlass* _known_holder;
2024
2025 public:
2026 // Destroys recv
2027 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
2028 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL) // no result, no info
2029 , _profiled_method(profiled_method)
2030 , _profiled_bci(profiled_bci)
2031 , _profiled_callee(profiled_callee)
2032 , _mdo(mdo)
2033 , _recv(recv)
2034 , _tmp1(t1)
2035 , _known_holder(known_holder) { }
2036
2037 ciMethod* profiled_method() const { return _profiled_method; }
2038 int profiled_bci() const { return _profiled_bci; }
2039 ciMethod* profiled_callee() const { return _profiled_callee; }
2040 LIR_Opr mdo() const { return _mdo; }
2041 LIR_Opr recv() const { return _recv; }
2042 LIR_Opr tmp1() const { return _tmp1; }
2043 ciKlass* known_holder() const { return _known_holder; }
2044
2045 virtual void emit_code(LIR_Assembler* masm);
2046 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
2047 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2048 bool should_profile_receiver_type() const {
2049 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
2050 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
2051 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface;
2052 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
2053 }
2054 };
2055
2056 // LIR_OpProfileType
2057 class LIR_OpProfileType : public LIR_Op {
2058 friend class LIR_OpVisitState;
2059
2060 private:
2061 LIR_Opr _mdp;
2062 LIR_Opr _obj;
2063 LIR_Opr _tmp;
2064 ciKlass* _exact_klass; // non NULL if we know the klass statically (no need to load it from _obj)
2065 intptr_t _current_klass; // what the profiling currently reports
2066 bool _not_null; // true if we know statically that _obj cannot be null
2067 bool _no_conflict; // true if we're profling parameters, _exact_klass is not NULL and we know
2068 // _exact_klass it the only possible type for this parameter in any context.
2069
2070 public:
2071 // Destroys recv
2072 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
2073 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL) // no result, no info
2074 , _mdp(mdp)
2075 , _obj(obj)
2076 , _tmp(tmp)
2077 , _exact_klass(exact_klass)
2078 , _current_klass(current_klass)
2079 , _not_null(not_null)
2080 , _no_conflict(no_conflict) { }
2081
2082 LIR_Opr mdp() const { return _mdp; }
2083 LIR_Opr obj() const { return _obj; }
2084 LIR_Opr tmp() const { return _tmp; }
2085 ciKlass* exact_klass() const { return _exact_klass; }
2086 intptr_t current_klass() const { return _current_klass; }
2087 bool not_null() const { return _not_null; }
2088 bool no_conflict() const { return _no_conflict; }
2089
2090 virtual void emit_code(LIR_Assembler* masm);
2091 virtual LIR_OpProfileType* as_OpProfileType() { return this; }
2092 virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2093 };
2094
2095 class LIR_InsertionBuffer;
2096
2097 //--------------------------------LIR_List---------------------------------------------------
2098 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
2099 // The LIR instructions are appended by the LIR_List class itself;
2100 //
2101 // Notes:
2102 // - all offsets are(should be) in bytes
2103 // - local positions are specified with an offset, with offset 0 being local 0
2104
2105 class LIR_List: public CompilationResourceObj {
2106 private:
2107 LIR_OpList _operations;
2108
2109 Compilation* _compilation;
2110 #ifndef PRODUCT
2111 BlockBegin* _block;
2112 #endif
2113 #ifdef ASSERT
2114 const char * _file;
2115 int _line;
2116 #endif
2117 #ifdef RISCV
2118 LIR_Opr _cmp_opr1;
2119 LIR_Opr _cmp_opr2;
2120 #endif
2121
2122 public:
2123 void append(LIR_Op* op) {
2124 if (op->source() == NULL)
2125 op->set_source(_compilation->current_instruction());
2126 #ifndef PRODUCT
2127 if (PrintIRWithLIR) {
2128 _compilation->maybe_print_current_instruction();
2129 op->print(); tty->cr();
2130 }
2131 #endif // PRODUCT
2132
2133 #ifdef RISCV
2134 set_cmp_oprs(op);
2135 // lir_cmp set cmp oprs only on riscv
2136 if (op->code() == lir_cmp) return;
2137 #endif
2138
2139 _operations.append(op);
2140
2141 #ifdef ASSERT
2142 op->verify();
2143 op->set_file_and_line(_file, _line);
2144 _file = NULL;
2145 _line = 0;
2146 #endif
2147 }
2148
2149 LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2150
2151 #ifdef ASSERT
2152 void set_file_and_line(const char * file, int line);
2153 #endif
2154
2155 #ifdef RISCV
2156 void set_cmp_oprs(LIR_Op* op);
2157 #endif
2158
2159 //---------- accessors ---------------
2160 LIR_OpList* instructions_list() { return &_operations; }
2161 int length() const { return _operations.length(); }
2162 LIR_Op* at(int i) const { return _operations.at(i); }
2163
2164 NOT_PRODUCT(BlockBegin* block() const { return _block; });
2165
2166 // insert LIR_Ops in buffer to right places in LIR_List
2167 void append(LIR_InsertionBuffer* buffer);
2168
2169 //---------- mutators ---------------
2170 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); }
2171 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); }
2172 void remove_at(int i) { _operations.remove_at(i); }
2173
2174 //---------- printing -------------
2175 void print_instructions() PRODUCT_RETURN;
2176
2177
2178 //---------- instructions -------------
2179 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2180 address dest, LIR_OprList* arguments,
2181 CodeEmitInfo* info) {
2182 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2183 }
2184 void call_static(ciMethod* method, LIR_Opr result,
2185 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2186 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2187 }
2188 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2189 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2190 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2191 }
2192 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2193 address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2194 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2195 }
2196
2197 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); }
2198 void membar() { append(new LIR_Op0(lir_membar)); }
2199 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); }
2200 void membar_release() { append(new LIR_Op0(lir_membar_release)); }
2201 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); }
2202 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); }
2203 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); }
2204 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); }
2205
2206 void nop() { append(new LIR_Op0(lir_nop)); }
2207
2208 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); }
2209 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2210
2211 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); }
2212
2213 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); }
2214
2215 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2216
2217 // result is a stack location for old backend and vreg for UseLinearScan
2218 // stack_loc_temp is an illegal register for old backend
2219 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2220 void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2221 void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2222 void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2223 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2224 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2225 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2226 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2227 if (UseCompressedOops) {
2228 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2229 } else {
2230 move(src, dst, info);
2231 }
2232 }
2233 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2234 if (UseCompressedOops) {
2235 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2236 } else {
2237 move(src, dst, info);
2238 }
2239 }
2240 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2241
2242 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); }
2243 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2244
2245 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); }
2246 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2247
2248 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2249 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); }
2250
2251 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2252
2253 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); }
2254 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); }
2255 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); }
2256
2257 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2258 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2259 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2260 }
2261 void unwind_exception(LIR_Opr exceptionOop) {
2262 append(new LIR_Op1(lir_unwind, exceptionOop));
2263 }
2264
2265 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); }
2266 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); }
2267
2268 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2269 append(new LIR_Op2(lir_cmp, condition, left, right, info));
2270 }
2271 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2272 cmp(condition, left, LIR_OprFact::intConst(right), info);
2273 }
2274
2275 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2276 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2277
2278 #ifdef RISCV
2279 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type,
2280 LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) {
2281 append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type));
2282 }
2283 #else
2284 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2285 append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2286 }
2287 #endif
2288
2289 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2290 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2291 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2292 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2293 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2294 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2295
2296 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2297 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op2(lir_neg, from, tmp, to)); }
2298 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2299 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2300 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2301 void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2302 void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2303
2304 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); }
2305 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2306 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2307 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); }
2308 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_div, left, right, res, info)); }
2309 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); }
2310 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2311
2312 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2313 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2314
2315 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2316
2317 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2318 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2319 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2320 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2321 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2322
2323 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2324 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2325 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2326 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2327
2328 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2329 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2330
2331 // jump is an unconditional branch
2332 void jump(BlockBegin* block) {
2333 append(new LIR_OpBranch(lir_cond_always, block));
2334 }
2335 void jump(CodeStub* stub) {
2336 append(new LIR_OpBranch(lir_cond_always, stub));
2337 }
2338 void branch(LIR_Condition cond, Label* lbl) {
2339 append(new LIR_OpBranch(cond, lbl));
2340 }
2341 // Should not be used for fp comparisons
2342 void branch(LIR_Condition cond, BlockBegin* block) {
2343 append(new LIR_OpBranch(cond, block));
2344 }
2345 // Should not be used for fp comparisons
2346 void branch(LIR_Condition cond, CodeStub* stub) {
2347 append(new LIR_OpBranch(cond, stub));
2348 }
2349 // Should only be used for fp comparisons
2350 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) {
2351 append(new LIR_OpBranch(cond, block, unordered));
2352 }
2353
2354 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2355 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2356 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2357
2358 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2359 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2360 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2361
2362 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); }
2363 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2364
2365 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2366 append(new LIR_OpRTCall(routine, tmp, result, arguments));
2367 }
2368
2369 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2370 LIR_OprList* arguments, CodeEmitInfo* info) {
2371 append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2372 }
2373
2374 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2375 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2376 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2377
2378 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); }
2379
2380 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2381
2382 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2383
2384 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2385 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2386
2387 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2388 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2389 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2390 ciMethod* profiled_method, int profiled_bci);
2391 // MethodData* profiling
2392 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2393 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2394 }
2395 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2396 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2397 }
2398
2399 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2400 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2401
2402 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub) { append(new LIR_OpLoadKlass(obj, result, info, stub)); }
2403
2404 #ifdef ASSERT
2405 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2406 #endif
2407 };
2408
2409 void print_LIR(BlockList* blocks);
2410
2411 class LIR_InsertionBuffer : public CompilationResourceObj {
2412 private:
2413 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2414
2415 // list of insertion points. index and count are stored alternately:
2416 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted
2417 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2418 intStack _index_and_count;
2419
2420 // the LIR_Ops to be inserted
2421 LIR_OpList _ops;
2422
2423 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); }
2424 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); }
2425 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); }
2426
2427 #ifdef ASSERT
2428 void verify();
2429 #endif
2430 public:
2431 LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2432
2433 // must be called before using the insertion buffer
2434 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2435 bool initialized() const { return _lir != NULL; }
2436 // called automatically when the buffer is appended to the LIR_List
2437 void finish() { _lir = NULL; }
2438
2439 // accessors
2440 LIR_List* lir_list() const { return _lir; }
2441 int number_of_insertion_points() const { return _index_and_count.length() >> 1; }
2442 int index_at(int i) const { return _index_and_count.at((i << 1)); }
2443 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); }
2444
2445 int number_of_ops() const { return _ops.length(); }
2446 LIR_Op* op_at(int i) const { return _ops.at(i); }
2447
2448 // append an instruction to the buffer
2449 void append(int index, LIR_Op* op);
2450
2451 // instruction
2452 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2453 };
2454
2455
2456 //
2457 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2458 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2459 // information about the input, output and temporaries used by the
2460 // op to be recorded. It also records whether the op has call semantics
2461 // and also records all the CodeEmitInfos used by this op.
2462 //
2463
2464
2465 class LIR_OpVisitState: public StackObj {
2466 public:
2467 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2468
2469 enum {
2470 maxNumberOfOperands = 21,
2471 maxNumberOfInfos = 4
2472 };
2473
2474 private:
2475 LIR_Op* _op;
2476
2477 // optimization: the operands and infos are not stored in a variable-length
2478 // list, but in a fixed-size array to save time of size checks and resizing
2479 int _oprs_len[numModes];
2480 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands];
2481 int _info_len;
2482 CodeEmitInfo* _info_new[maxNumberOfInfos];
2483
2484 bool _has_call;
2485 bool _has_slow_case;
2486
2487
2488 // only include register operands
2489 // addresses are decomposed to the base and index registers
2490 // constants and stack operands are ignored
2491 void append(LIR_Opr& opr, OprMode mode) {
2492 assert(opr->is_valid(), "should not call this otherwise");
2493 assert(mode >= 0 && mode < numModes, "bad mode");
2494
2495 if (opr->is_register()) {
2496 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2497 _oprs_new[mode][_oprs_len[mode]++] = &opr;
2498
2499 } else if (opr->is_pointer()) {
2500 LIR_Address* address = opr->as_address_ptr();
2501 if (address != NULL) {
2502 // special handling for addresses: add base and index register of the address
2503 // both are always input operands or temp if we want to extend
2504 // their liveness!
2505 if (mode == outputMode) {
2506 mode = inputMode;
2507 }
2508 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2509 if (address->_base->is_valid()) {
2510 assert(address->_base->is_register(), "must be");
2511 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2512 _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2513 }
2514 if (address->_index->is_valid()) {
2515 assert(address->_index->is_register(), "must be");
2516 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2517 _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2518 }
2519
2520 } else {
2521 assert(opr->is_constant(), "constant operands are not processed");
2522 }
2523 } else {
2524 assert(opr->is_stack(), "stack operands are not processed");
2525 }
2526 }
2527
2528 void append(CodeEmitInfo* info) {
2529 assert(info != NULL, "should not call this otherwise");
2530 assert(_info_len < maxNumberOfInfos, "array overflow");
2531 _info_new[_info_len++] = info;
2532 }
2533
2534 public:
2535 LIR_OpVisitState() { reset(); }
2536
2537 LIR_Op* op() const { return _op; }
2538 void set_op(LIR_Op* op) { reset(); _op = op; }
2539
2540 bool has_call() const { return _has_call; }
2541 bool has_slow_case() const { return _has_slow_case; }
2542
2543 void reset() {
2544 _op = NULL;
2545 _has_call = false;
2546 _has_slow_case = false;
2547
2548 _oprs_len[inputMode] = 0;
2549 _oprs_len[tempMode] = 0;
2550 _oprs_len[outputMode] = 0;
2551 _info_len = 0;
2552 }
2553
2554
2555 int opr_count(OprMode mode) const {
2556 assert(mode >= 0 && mode < numModes, "bad mode");
2557 return _oprs_len[mode];
2558 }
2559
2560 LIR_Opr opr_at(OprMode mode, int index) const {
2561 assert(mode >= 0 && mode < numModes, "bad mode");
2562 assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2563 return *_oprs_new[mode][index];
2564 }
2565
2566 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2567 assert(mode >= 0 && mode < numModes, "bad mode");
2568 assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2569 *_oprs_new[mode][index] = opr;
2570 }
2571
2572 int info_count() const {
2573 return _info_len;
2574 }
2575
2576 CodeEmitInfo* info_at(int index) const {
2577 assert(index < _info_len, "index out of bounds");
2578 return _info_new[index];
2579 }
2580
2581 XHandlers* all_xhandler();
2582
2583 // collects all register operands of the instruction
2584 void visit(LIR_Op* op);
2585
2586 #ifdef ASSERT
2587 // check that an operation has no operands
2588 bool no_operands(LIR_Op* op);
2589 #endif
2590
2591 // LIR_Op visitor functions use these to fill in the state
2592 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); }
2593 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); }
2594 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); }
2595 void do_info(CodeEmitInfo* info) { append(info); }
2596
2597 void do_stub(CodeStub* stub);
2598 void do_call() { _has_call = true; }
2599 void do_slow_case() { _has_slow_case = true; }
2600 void do_slow_case(CodeEmitInfo* info) {
2601 _has_slow_case = true;
2602 append(info);
2603 }
2604 };
2605
2606
2607 inline LIR_Opr LIR_OprDesc::illegalOpr() { return LIR_OprFact::illegalOpr; };
2608
2609 #endif // SHARE_C1_C1_LIR_HPP