1 /* 2 * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_C1_C1_LIR_HPP 26 #define SHARE_C1_C1_LIR_HPP 27 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_ValueType.hpp" 30 #include "oops/method.hpp" 31 #include "utilities/globalDefinitions.hpp" 32 33 class BlockBegin; 34 class BlockList; 35 class LIR_Assembler; 36 class CodeEmitInfo; 37 class CodeStub; 38 class CodeStubList; 39 class C1SafepointPollStub; 40 class ArrayCopyStub; 41 class LIR_Op; 42 class ciType; 43 class ValueType; 44 class LIR_OpVisitState; 45 class FpuStackSim; 46 47 //--------------------------------------------------------------------- 48 // LIR Operands 49 // LIR_OprDesc 50 // LIR_OprPtr 51 // LIR_Const 52 // LIR_Address 53 //--------------------------------------------------------------------- 54 class LIR_OprDesc; 55 class LIR_OprPtr; 56 class LIR_Const; 57 class LIR_Address; 58 class LIR_OprVisitor; 59 60 61 typedef LIR_OprDesc* LIR_Opr; 62 typedef int RegNr; 63 64 typedef GrowableArray<LIR_Opr> LIR_OprList; 65 typedef GrowableArray<LIR_Op*> LIR_OpArray; 66 typedef GrowableArray<LIR_Op*> LIR_OpList; 67 68 // define LIR_OprPtr early so LIR_OprDesc can refer to it 69 class LIR_OprPtr: public CompilationResourceObj { 70 public: 71 bool is_oop_pointer() const { return (type() == T_OBJECT); } 72 bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } 73 74 virtual LIR_Const* as_constant() { return NULL; } 75 virtual LIR_Address* as_address() { return NULL; } 76 virtual BasicType type() const = 0; 77 virtual void print_value_on(outputStream* out) const = 0; 78 }; 79 80 81 82 // LIR constants 83 class LIR_Const: public LIR_OprPtr { 84 private: 85 JavaValue _value; 86 87 void type_check(BasicType t) const { assert(type() == t, "type check"); } 88 void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } 89 void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); } 90 91 public: 92 LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); } 93 LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } 94 LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } 95 LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } 96 LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } 97 LIR_Const(void* p) { 98 #ifdef _LP64 99 assert(sizeof(jlong) >= sizeof(p), "too small");; 100 _value.set_type(T_LONG); _value.set_jlong((jlong)p); 101 #else 102 assert(sizeof(jint) >= sizeof(p), "too small");; 103 _value.set_type(T_INT); _value.set_jint((jint)p); 104 #endif 105 } 106 LIR_Const(Metadata* m) { 107 _value.set_type(T_METADATA); 108 #ifdef _LP64 109 _value.set_jlong((jlong)m); 110 #else 111 _value.set_jint((jint)m); 112 #endif // _LP64 113 } 114 115 virtual BasicType type() const { return _value.get_type(); } 116 virtual LIR_Const* as_constant() { return this; } 117 118 jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); } 119 jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } 120 jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } 121 jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } 122 jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } 123 jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } 124 jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } 125 126 #ifdef _LP64 127 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } 128 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); } 129 #else 130 address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } 131 Metadata* as_metadata() const { type_check(T_METADATA); return (Metadata*)_value.get_jint(); } 132 #endif 133 134 135 jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); } 136 jint as_jint_lo_bits() const { 137 if (type() == T_DOUBLE) { 138 return low(jlong_cast(_value.get_jdouble())); 139 } else { 140 return as_jint_lo(); 141 } 142 } 143 jint as_jint_hi_bits() const { 144 if (type() == T_DOUBLE) { 145 return high(jlong_cast(_value.get_jdouble())); 146 } else { 147 return as_jint_hi(); 148 } 149 } 150 jlong as_jlong_bits() const { 151 if (type() == T_DOUBLE) { 152 return jlong_cast(_value.get_jdouble()); 153 } else { 154 return as_jlong(); 155 } 156 } 157 158 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 159 160 161 bool is_zero_float() { 162 jfloat f = as_jfloat(); 163 jfloat ok = 0.0f; 164 return jint_cast(f) == jint_cast(ok); 165 } 166 167 bool is_one_float() { 168 jfloat f = as_jfloat(); 169 return !g_isnan(f) && g_isfinite(f) && f == 1.0; 170 } 171 172 bool is_zero_double() { 173 jdouble d = as_jdouble(); 174 jdouble ok = 0.0; 175 return jlong_cast(d) == jlong_cast(ok); 176 } 177 178 bool is_one_double() { 179 jdouble d = as_jdouble(); 180 return !g_isnan(d) && g_isfinite(d) && d == 1.0; 181 } 182 }; 183 184 185 //---------------------LIR Operand descriptor------------------------------------ 186 // 187 // The class LIR_OprDesc represents a LIR instruction operand; 188 // it can be a register (ALU/FPU), stack location or a constant; 189 // Constants and addresses are represented as resource area allocated 190 // structures (see above). 191 // Registers and stack locations are inlined into the this pointer 192 // (see value function). 193 194 class LIR_OprDesc: public CompilationResourceObj { 195 public: 196 // value structure: 197 // data opr-type opr-kind 198 // +--------------+-------+-------+ 199 // [max...........|7 6 5 4|3 2 1 0] 200 // ^ 201 // is_pointer bit 202 // 203 // lowest bit cleared, means it is a structure pointer 204 // we need 4 bits to represent types 205 206 private: 207 friend class LIR_OprFact; 208 209 // Conversion 210 intptr_t value() const { return (intptr_t) this; } 211 212 bool check_value_mask(intptr_t mask, intptr_t masked_value) const { 213 return (value() & mask) == masked_value; 214 } 215 216 enum OprKind { 217 pointer_value = 0 218 , stack_value = 1 219 , cpu_register = 3 220 , fpu_register = 5 221 , illegal_value = 7 222 }; 223 224 enum OprBits { 225 pointer_bits = 1 226 , kind_bits = 3 227 , type_bits = 4 228 , size_bits = 2 229 , destroys_bits = 1 230 , virtual_bits = 1 231 , is_xmm_bits = 1 232 , last_use_bits = 1 233 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation 234 , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + virtual_bits 235 + is_xmm_bits + last_use_bits + is_fpu_stack_offset_bits 236 , data_bits = BitsPerInt - non_data_bits 237 , reg_bits = data_bits / 2 // for two registers in one value encoding 238 }; 239 240 enum OprShift : uintptr_t { 241 kind_shift = 0 242 , type_shift = kind_shift + kind_bits 243 , size_shift = type_shift + type_bits 244 , destroys_shift = size_shift + size_bits 245 , last_use_shift = destroys_shift + destroys_bits 246 , is_fpu_stack_offset_shift = last_use_shift + last_use_bits 247 , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits 248 , is_xmm_shift = virtual_shift + virtual_bits 249 , data_shift = is_xmm_shift + is_xmm_bits 250 , reg1_shift = data_shift 251 , reg2_shift = data_shift + reg_bits 252 253 }; 254 255 enum OprSize { 256 single_size = 0 << size_shift 257 , double_size = 1 << size_shift 258 }; 259 260 enum OprMask { 261 kind_mask = right_n_bits(kind_bits) 262 , type_mask = right_n_bits(type_bits) << type_shift 263 , size_mask = right_n_bits(size_bits) << size_shift 264 , last_use_mask = right_n_bits(last_use_bits) << last_use_shift 265 , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift 266 , virtual_mask = right_n_bits(virtual_bits) << virtual_shift 267 , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift 268 , pointer_mask = right_n_bits(pointer_bits) 269 , lower_reg_mask = right_n_bits(reg_bits) 270 , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask)) 271 }; 272 273 uint32_t data() const { return (uint32_t)value() >> data_shift; } 274 int lo_reg_half() const { return data() & lower_reg_mask; } 275 int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } 276 OprKind kind_field() const { return (OprKind)(value() & kind_mask); } 277 OprSize size_field() const { return (OprSize)(value() & size_mask); } 278 279 static char type_char(BasicType t); 280 281 public: 282 enum { 283 vreg_base = ConcreteRegisterImpl::number_of_registers, 284 data_max = (1 << data_bits) - 1, // max unsigned value for data bit field 285 vreg_limit = 10000, // choose a reasonable limit, 286 vreg_max = MIN2(vreg_limit, data_max) // and make sure if fits in the bit field 287 }; 288 289 static inline LIR_Opr illegalOpr(); 290 291 enum OprType { 292 unknown_type = 0 << type_shift // means: not set (catch uninitialized types) 293 , int_type = 1 << type_shift 294 , long_type = 2 << type_shift 295 , object_type = 3 << type_shift 296 , address_type = 4 << type_shift 297 , float_type = 5 << type_shift 298 , double_type = 6 << type_shift 299 , metadata_type = 7 << type_shift 300 }; 301 friend OprType as_OprType(BasicType t); 302 friend BasicType as_BasicType(OprType t); 303 304 OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } 305 OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } 306 307 static OprSize size_for(BasicType t) { 308 switch (t) { 309 case T_LONG: 310 case T_DOUBLE: 311 return double_size; 312 break; 313 314 case T_FLOAT: 315 case T_BOOLEAN: 316 case T_CHAR: 317 case T_BYTE: 318 case T_SHORT: 319 case T_INT: 320 case T_ADDRESS: 321 case T_OBJECT: 322 case T_ARRAY: 323 case T_METADATA: 324 return single_size; 325 break; 326 327 default: 328 ShouldNotReachHere(); 329 return single_size; 330 } 331 } 332 333 334 void validate_type() const PRODUCT_RETURN; 335 336 BasicType type() const { 337 if (is_pointer()) { 338 return pointer()->type(); 339 } 340 return as_BasicType(type_field()); 341 } 342 343 344 ValueType* value_type() const { return as_ValueType(type()); } 345 346 char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } 347 348 bool is_equal(LIR_Opr opr) const { return this == opr; } 349 // checks whether types are same 350 bool is_same_type(LIR_Opr opr) const { 351 assert(type_field() != unknown_type && 352 opr->type_field() != unknown_type, "shouldn't see unknown_type"); 353 return type_field() == opr->type_field(); 354 } 355 bool is_same_register(LIR_Opr opr) { 356 return (is_register() && opr->is_register() && 357 kind_field() == opr->kind_field() && 358 (value() & no_type_mask) == (opr->value() & no_type_mask)); 359 } 360 361 bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } 362 bool is_illegal() const { return kind_field() == illegal_value; } 363 bool is_valid() const { return kind_field() != illegal_value; } 364 365 bool is_register() const { return is_cpu_register() || is_fpu_register(); } 366 bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } 367 368 bool is_constant() const { return is_pointer() && pointer()->as_constant() != NULL; } 369 bool is_address() const { return is_pointer() && pointer()->as_address() != NULL; } 370 371 bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } 372 bool is_oop() const; 373 374 // semantic for fpu- and xmm-registers: 375 // * is_float and is_double return true for xmm_registers 376 // (so is_single_fpu and is_single_xmm are true) 377 // * So you must always check for is_???_xmm prior to is_???_fpu to 378 // distinguish between fpu- and xmm-registers 379 380 bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } 381 bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } 382 bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } 383 384 bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } 385 bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } 386 bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } 387 bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } 388 bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } 389 390 bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } 391 bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } 392 bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } 393 bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } 394 bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } 395 396 bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } 397 bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } 398 bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } 399 400 // fast accessor functions for special bits that do not work for pointers 401 // (in this functions, the check for is_pointer() is omitted) 402 bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } 403 bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } 404 bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } 405 bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } 406 BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } 407 408 bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } 409 bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; } 410 LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } 411 LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); } 412 413 414 int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } 415 int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } 416 RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } 417 RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 418 RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 419 RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } 420 RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 421 RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 422 RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } 423 RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } 424 RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } 425 int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } 426 427 LIR_OprPtr* pointer() const { assert(is_pointer(), "type check"); return (LIR_OprPtr*)this; } 428 LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } 429 LIR_Address* as_address_ptr() const { return pointer()->as_address(); } 430 431 Register as_register() const; 432 Register as_register_lo() const; 433 Register as_register_hi() const; 434 435 Register as_pointer_register() { 436 #ifdef _LP64 437 if (is_double_cpu()) { 438 assert(as_register_lo() == as_register_hi(), "should be a single register"); 439 return as_register_lo(); 440 } 441 #endif 442 return as_register(); 443 } 444 445 FloatRegister as_float_reg () const; 446 FloatRegister as_double_reg () const; 447 #ifdef X86 448 XMMRegister as_xmm_float_reg () const; 449 XMMRegister as_xmm_double_reg() const; 450 // for compatibility with RInfo 451 int fpu() const { return lo_reg_half(); } 452 #endif 453 454 jint as_jint() const { return as_constant_ptr()->as_jint(); } 455 jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } 456 jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } 457 jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } 458 jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } 459 460 void print() const PRODUCT_RETURN; 461 void print(outputStream* out) const PRODUCT_RETURN; 462 }; 463 464 465 inline LIR_OprDesc::OprType as_OprType(BasicType type) { 466 switch (type) { 467 case T_INT: return LIR_OprDesc::int_type; 468 case T_LONG: return LIR_OprDesc::long_type; 469 case T_FLOAT: return LIR_OprDesc::float_type; 470 case T_DOUBLE: return LIR_OprDesc::double_type; 471 case T_OBJECT: 472 case T_ARRAY: return LIR_OprDesc::object_type; 473 case T_ADDRESS: return LIR_OprDesc::address_type; 474 case T_METADATA: return LIR_OprDesc::metadata_type; 475 case T_ILLEGAL: // fall through 476 default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type; 477 } 478 } 479 480 inline BasicType as_BasicType(LIR_OprDesc::OprType t) { 481 switch (t) { 482 case LIR_OprDesc::int_type: return T_INT; 483 case LIR_OprDesc::long_type: return T_LONG; 484 case LIR_OprDesc::float_type: return T_FLOAT; 485 case LIR_OprDesc::double_type: return T_DOUBLE; 486 case LIR_OprDesc::object_type: return T_OBJECT; 487 case LIR_OprDesc::address_type: return T_ADDRESS; 488 case LIR_OprDesc::metadata_type:return T_METADATA; 489 case LIR_OprDesc::unknown_type: // fall through 490 default: ShouldNotReachHere(); return T_ILLEGAL; 491 } 492 } 493 494 495 // LIR_Address 496 class LIR_Address: public LIR_OprPtr { 497 friend class LIR_OpVisitState; 498 499 public: 500 // NOTE: currently these must be the log2 of the scale factor (and 501 // must also be equivalent to the ScaleFactor enum in 502 // assembler_i486.hpp) 503 enum Scale { 504 times_1 = 0, 505 times_2 = 1, 506 times_4 = 2, 507 times_8 = 3 508 }; 509 510 private: 511 LIR_Opr _base; 512 LIR_Opr _index; 513 Scale _scale; 514 intx _disp; 515 BasicType _type; 516 517 public: 518 LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): 519 _base(base) 520 , _index(index) 521 , _scale(times_1) 522 , _disp(0) 523 , _type(type) { verify(); } 524 525 LIR_Address(LIR_Opr base, intx disp, BasicType type): 526 _base(base) 527 , _index(LIR_OprDesc::illegalOpr()) 528 , _scale(times_1) 529 , _disp(disp) 530 , _type(type) { verify(); } 531 532 LIR_Address(LIR_Opr base, BasicType type): 533 _base(base) 534 , _index(LIR_OprDesc::illegalOpr()) 535 , _scale(times_1) 536 , _disp(0) 537 , _type(type) { verify(); } 538 539 LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type): 540 _base(base) 541 , _index(index) 542 , _scale(times_1) 543 , _disp(disp) 544 , _type(type) { verify(); } 545 546 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type): 547 _base(base) 548 , _index(index) 549 , _scale(scale) 550 , _disp(disp) 551 , _type(type) { verify(); } 552 553 LIR_Opr base() const { return _base; } 554 LIR_Opr index() const { return _index; } 555 Scale scale() const { return _scale; } 556 intx disp() const { return _disp; } 557 558 bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } 559 560 virtual LIR_Address* as_address() { return this; } 561 virtual BasicType type() const { return _type; } 562 virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; 563 564 void verify() const PRODUCT_RETURN; 565 566 static Scale scale(BasicType type); 567 }; 568 569 570 // operand factory 571 class LIR_OprFact: public AllStatic { 572 public: 573 574 static LIR_Opr illegalOpr; 575 576 static LIR_Opr single_cpu(int reg) { 577 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 578 LIR_OprDesc::int_type | 579 LIR_OprDesc::cpu_register | 580 LIR_OprDesc::single_size); 581 } 582 static LIR_Opr single_cpu_oop(int reg) { 583 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 584 LIR_OprDesc::object_type | 585 LIR_OprDesc::cpu_register | 586 LIR_OprDesc::single_size); 587 } 588 static LIR_Opr single_cpu_address(int reg) { 589 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 590 LIR_OprDesc::address_type | 591 LIR_OprDesc::cpu_register | 592 LIR_OprDesc::single_size); 593 } 594 static LIR_Opr single_cpu_metadata(int reg) { 595 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 596 LIR_OprDesc::metadata_type | 597 LIR_OprDesc::cpu_register | 598 LIR_OprDesc::single_size); 599 } 600 static LIR_Opr double_cpu(int reg1, int reg2) { 601 LP64_ONLY(assert(reg1 == reg2, "must be identical")); 602 return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) | 603 (reg2 << LIR_OprDesc::reg2_shift) | 604 LIR_OprDesc::long_type | 605 LIR_OprDesc::cpu_register | 606 LIR_OprDesc::double_size); 607 } 608 609 static LIR_Opr single_fpu(int reg) { 610 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 611 LIR_OprDesc::float_type | 612 LIR_OprDesc::fpu_register | 613 LIR_OprDesc::single_size); 614 } 615 616 // Platform dependant. 617 static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/); 618 619 #ifdef ARM32 620 static LIR_Opr single_softfp(int reg) { 621 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 622 LIR_OprDesc::float_type | 623 LIR_OprDesc::cpu_register | 624 LIR_OprDesc::single_size); 625 } 626 static LIR_Opr double_softfp(int reg1, int reg2) { 627 return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) | 628 (reg2 << LIR_OprDesc::reg2_shift) | 629 LIR_OprDesc::double_type | 630 LIR_OprDesc::cpu_register | 631 LIR_OprDesc::double_size); 632 } 633 #endif // ARM32 634 635 #if defined(X86) 636 static LIR_Opr single_xmm(int reg) { 637 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 638 LIR_OprDesc::float_type | 639 LIR_OprDesc::fpu_register | 640 LIR_OprDesc::single_size | 641 LIR_OprDesc::is_xmm_mask); 642 } 643 static LIR_Opr double_xmm(int reg) { 644 return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | 645 (reg << LIR_OprDesc::reg2_shift) | 646 LIR_OprDesc::double_type | 647 LIR_OprDesc::fpu_register | 648 LIR_OprDesc::double_size | 649 LIR_OprDesc::is_xmm_mask); 650 } 651 #endif // X86 652 653 static LIR_Opr virtual_register(int index, BasicType type) { 654 if (index > LIR_OprDesc::vreg_max) { 655 // Running out of virtual registers. Caller should bailout. 656 return illegalOpr; 657 } 658 659 LIR_Opr res; 660 switch (type) { 661 case T_OBJECT: // fall through 662 case T_ARRAY: 663 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 664 LIR_OprDesc::object_type | 665 LIR_OprDesc::cpu_register | 666 LIR_OprDesc::single_size | 667 LIR_OprDesc::virtual_mask); 668 break; 669 670 case T_METADATA: 671 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 672 LIR_OprDesc::metadata_type| 673 LIR_OprDesc::cpu_register | 674 LIR_OprDesc::single_size | 675 LIR_OprDesc::virtual_mask); 676 break; 677 678 case T_INT: 679 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 680 LIR_OprDesc::int_type | 681 LIR_OprDesc::cpu_register | 682 LIR_OprDesc::single_size | 683 LIR_OprDesc::virtual_mask); 684 break; 685 686 case T_ADDRESS: 687 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 688 LIR_OprDesc::address_type | 689 LIR_OprDesc::cpu_register | 690 LIR_OprDesc::single_size | 691 LIR_OprDesc::virtual_mask); 692 break; 693 694 case T_LONG: 695 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 696 LIR_OprDesc::long_type | 697 LIR_OprDesc::cpu_register | 698 LIR_OprDesc::double_size | 699 LIR_OprDesc::virtual_mask); 700 break; 701 702 #ifdef __SOFTFP__ 703 case T_FLOAT: 704 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 705 LIR_OprDesc::float_type | 706 LIR_OprDesc::cpu_register | 707 LIR_OprDesc::single_size | 708 LIR_OprDesc::virtual_mask); 709 break; 710 case T_DOUBLE: 711 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 712 LIR_OprDesc::double_type | 713 LIR_OprDesc::cpu_register | 714 LIR_OprDesc::double_size | 715 LIR_OprDesc::virtual_mask); 716 break; 717 #else // __SOFTFP__ 718 case T_FLOAT: 719 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 720 LIR_OprDesc::float_type | 721 LIR_OprDesc::fpu_register | 722 LIR_OprDesc::single_size | 723 LIR_OprDesc::virtual_mask); 724 break; 725 726 case 727 T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 728 LIR_OprDesc::double_type | 729 LIR_OprDesc::fpu_register | 730 LIR_OprDesc::double_size | 731 LIR_OprDesc::virtual_mask); 732 break; 733 #endif // __SOFTFP__ 734 default: ShouldNotReachHere(); res = illegalOpr; 735 } 736 737 #ifdef ASSERT 738 res->validate_type(); 739 assert(res->vreg_number() == index, "conversion check"); 740 assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base"); 741 742 // old-style calculation; check if old and new method are equal 743 LIR_OprDesc::OprType t = as_OprType(type); 744 #ifdef __SOFTFP__ 745 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 746 t | 747 LIR_OprDesc::cpu_register | 748 LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask); 749 #else // __SOFTFP__ 750 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t | 751 ((type == T_FLOAT || type == T_DOUBLE) ? LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) | 752 LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask); 753 assert(res == old_res, "old and new method not equal"); 754 #endif // __SOFTFP__ 755 #endif // ASSERT 756 757 return res; 758 } 759 760 // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as 761 // the index is platform independent; a double stack useing indeces 2 and 3 has always 762 // index 2. 763 static LIR_Opr stack(int index, BasicType type) { 764 LIR_Opr res; 765 switch (type) { 766 case T_OBJECT: // fall through 767 case T_ARRAY: 768 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 769 LIR_OprDesc::object_type | 770 LIR_OprDesc::stack_value | 771 LIR_OprDesc::single_size); 772 break; 773 774 case T_METADATA: 775 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 776 LIR_OprDesc::metadata_type | 777 LIR_OprDesc::stack_value | 778 LIR_OprDesc::single_size); 779 break; 780 case T_INT: 781 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 782 LIR_OprDesc::int_type | 783 LIR_OprDesc::stack_value | 784 LIR_OprDesc::single_size); 785 break; 786 787 case T_ADDRESS: 788 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 789 LIR_OprDesc::address_type | 790 LIR_OprDesc::stack_value | 791 LIR_OprDesc::single_size); 792 break; 793 794 case T_LONG: 795 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 796 LIR_OprDesc::long_type | 797 LIR_OprDesc::stack_value | 798 LIR_OprDesc::double_size); 799 break; 800 801 case T_FLOAT: 802 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 803 LIR_OprDesc::float_type | 804 LIR_OprDesc::stack_value | 805 LIR_OprDesc::single_size); 806 break; 807 case T_DOUBLE: 808 res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 809 LIR_OprDesc::double_type | 810 LIR_OprDesc::stack_value | 811 LIR_OprDesc::double_size); 812 break; 813 814 default: ShouldNotReachHere(); res = illegalOpr; 815 } 816 817 #ifdef ASSERT 818 assert(index >= 0, "index must be positive"); 819 assert(index == (int)res->data(), "conversion check"); 820 821 LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | 822 LIR_OprDesc::stack_value | 823 as_OprType(type) | 824 LIR_OprDesc::size_for(type)); 825 assert(res == old_res, "old and new method not equal"); 826 #endif 827 828 return res; 829 } 830 831 static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } 832 static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } 833 static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } 834 static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } 835 static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } 836 static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } 837 static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } 838 static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } 839 static LIR_Opr illegal() { return (LIR_Opr)-1; } 840 static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); } 841 static LIR_Opr metadataConst(Metadata* m) { return (LIR_Opr)(new LIR_Const(m)); } 842 843 static LIR_Opr value_type(ValueType* type); 844 }; 845 846 847 //------------------------------------------------------------------------------- 848 // LIR Instructions 849 //------------------------------------------------------------------------------- 850 // 851 // Note: 852 // - every instruction has a result operand 853 // - every instruction has an CodeEmitInfo operand (can be revisited later) 854 // - every instruction has a LIR_OpCode operand 855 // - LIR_OpN, means an instruction that has N input operands 856 // 857 // class hierarchy: 858 // 859 class LIR_Op; 860 class LIR_Op0; 861 class LIR_OpLabel; 862 class LIR_Op1; 863 class LIR_OpBranch; 864 class LIR_OpConvert; 865 class LIR_OpAllocObj; 866 class LIR_OpReturn; 867 class LIR_OpRoundFP; 868 class LIR_Op2; 869 class LIR_OpDelay; 870 class LIR_Op3; 871 class LIR_OpAllocArray; 872 class LIR_OpCall; 873 class LIR_OpJavaCall; 874 class LIR_OpRTCall; 875 class LIR_OpArrayCopy; 876 class LIR_OpUpdateCRC32; 877 class LIR_OpLock; 878 class LIR_OpTypeCheck; 879 class LIR_OpCompareAndSwap; 880 class LIR_OpLoadKlass; 881 class LIR_OpProfileCall; 882 class LIR_OpProfileType; 883 #ifdef ASSERT 884 class LIR_OpAssert; 885 #endif 886 887 // LIR operation codes 888 enum LIR_Code { 889 lir_none 890 , begin_op0 891 , lir_label 892 , lir_nop 893 , lir_backwardbranch_target 894 , lir_std_entry 895 , lir_osr_entry 896 , lir_fpop_raw 897 , lir_breakpoint 898 , lir_rtcall 899 , lir_membar 900 , lir_membar_acquire 901 , lir_membar_release 902 , lir_membar_loadload 903 , lir_membar_storestore 904 , lir_membar_loadstore 905 , lir_membar_storeload 906 , lir_get_thread 907 , lir_on_spin_wait 908 , end_op0 909 , begin_op1 910 , lir_fxch 911 , lir_fld 912 , lir_push 913 , lir_pop 914 , lir_null_check 915 , lir_return 916 , lir_leal 917 , lir_branch 918 , lir_cond_float_branch 919 , lir_move 920 , lir_convert 921 , lir_alloc_object 922 , lir_monaddr 923 , lir_roundfp 924 , lir_safepoint 925 , lir_unwind 926 , lir_load_klass 927 , end_op1 928 , begin_op2 929 , lir_cmp 930 , lir_cmp_l2i 931 , lir_ucmp_fd2i 932 , lir_cmp_fd2i 933 , lir_cmove 934 , lir_add 935 , lir_sub 936 , lir_mul 937 , lir_div 938 , lir_rem 939 , lir_sqrt 940 , lir_abs 941 , lir_neg 942 , lir_tan 943 , lir_log10 944 , lir_logic_and 945 , lir_logic_or 946 , lir_logic_xor 947 , lir_shl 948 , lir_shr 949 , lir_ushr 950 , lir_alloc_array 951 , lir_throw 952 , lir_xadd 953 , lir_xchg 954 , end_op2 955 , begin_op3 956 , lir_idiv 957 , lir_irem 958 , lir_fmad 959 , lir_fmaf 960 , end_op3 961 , begin_opJavaCall 962 , lir_static_call 963 , lir_optvirtual_call 964 , lir_icvirtual_call 965 , lir_dynamic_call 966 , end_opJavaCall 967 , begin_opArrayCopy 968 , lir_arraycopy 969 , end_opArrayCopy 970 , begin_opUpdateCRC32 971 , lir_updatecrc32 972 , end_opUpdateCRC32 973 , begin_opLock 974 , lir_lock 975 , lir_unlock 976 , end_opLock 977 , begin_delay_slot 978 , lir_delay_slot 979 , end_delay_slot 980 , begin_opTypeCheck 981 , lir_instanceof 982 , lir_checkcast 983 , lir_store_check 984 , end_opTypeCheck 985 , begin_opCompareAndSwap 986 , lir_cas_long 987 , lir_cas_obj 988 , lir_cas_int 989 , end_opCompareAndSwap 990 , begin_opMDOProfile 991 , lir_profile_call 992 , lir_profile_type 993 , end_opMDOProfile 994 , begin_opAssert 995 , lir_assert 996 , end_opAssert 997 }; 998 999 1000 enum LIR_Condition { 1001 lir_cond_equal 1002 , lir_cond_notEqual 1003 , lir_cond_less 1004 , lir_cond_lessEqual 1005 , lir_cond_greaterEqual 1006 , lir_cond_greater 1007 , lir_cond_belowEqual 1008 , lir_cond_aboveEqual 1009 , lir_cond_always 1010 , lir_cond_unknown = -1 1011 }; 1012 1013 1014 enum LIR_PatchCode { 1015 lir_patch_none, 1016 lir_patch_low, 1017 lir_patch_high, 1018 lir_patch_normal 1019 }; 1020 1021 1022 enum LIR_MoveKind { 1023 lir_move_normal, 1024 lir_move_volatile, 1025 lir_move_unaligned, 1026 lir_move_wide, 1027 lir_move_max_flag 1028 }; 1029 1030 1031 // -------------------------------------------------- 1032 // LIR_Op 1033 // -------------------------------------------------- 1034 class LIR_Op: public CompilationResourceObj { 1035 friend class LIR_OpVisitState; 1036 1037 #ifdef ASSERT 1038 private: 1039 const char * _file; 1040 int _line; 1041 #endif 1042 1043 protected: 1044 LIR_Opr _result; 1045 unsigned short _code; 1046 unsigned short _flags; 1047 CodeEmitInfo* _info; 1048 int _id; // value id for register allocation 1049 int _fpu_pop_count; 1050 Instruction* _source; // for debugging 1051 1052 static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; 1053 1054 protected: 1055 static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } 1056 1057 public: 1058 LIR_Op() 1059 : 1060 #ifdef ASSERT 1061 _file(NULL) 1062 , _line(0), 1063 #endif 1064 _result(LIR_OprFact::illegalOpr) 1065 , _code(lir_none) 1066 , _flags(0) 1067 , _info(NULL) 1068 , _id(-1) 1069 , _fpu_pop_count(0) 1070 , _source(NULL) {} 1071 1072 LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) 1073 : 1074 #ifdef ASSERT 1075 _file(NULL) 1076 , _line(0), 1077 #endif 1078 _result(result) 1079 , _code(code) 1080 , _flags(0) 1081 , _info(info) 1082 , _id(-1) 1083 , _fpu_pop_count(0) 1084 , _source(NULL) {} 1085 1086 CodeEmitInfo* info() const { return _info; } 1087 LIR_Code code() const { return (LIR_Code)_code; } 1088 LIR_Opr result_opr() const { return _result; } 1089 void set_result_opr(LIR_Opr opr) { _result = opr; } 1090 1091 #ifdef ASSERT 1092 void set_file_and_line(const char * file, int line) { 1093 _file = file; 1094 _line = line; 1095 } 1096 #endif 1097 1098 virtual const char * name() const PRODUCT_RETURN0; 1099 virtual void visit(LIR_OpVisitState* state); 1100 1101 int id() const { return _id; } 1102 void set_id(int id) { _id = id; } 1103 1104 // FPU stack simulation helpers -- only used on Intel 1105 void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; } 1106 int fpu_pop_count() const { return _fpu_pop_count; } 1107 bool pop_fpu_stack() { return _fpu_pop_count > 0; } 1108 1109 Instruction* source() const { return _source; } 1110 void set_source(Instruction* ins) { _source = ins; } 1111 1112 virtual void emit_code(LIR_Assembler* masm) = 0; 1113 virtual void print_instr(outputStream* out) const = 0; 1114 virtual void print_on(outputStream* st) const PRODUCT_RETURN; 1115 1116 virtual bool is_patching() { return false; } 1117 virtual LIR_OpCall* as_OpCall() { return NULL; } 1118 virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; } 1119 virtual LIR_OpLabel* as_OpLabel() { return NULL; } 1120 virtual LIR_OpDelay* as_OpDelay() { return NULL; } 1121 virtual LIR_OpLock* as_OpLock() { return NULL; } 1122 virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; } 1123 virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; } 1124 virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; } 1125 virtual LIR_OpBranch* as_OpBranch() { return NULL; } 1126 virtual LIR_OpReturn* as_OpReturn() { return NULL; } 1127 virtual LIR_OpRTCall* as_OpRTCall() { return NULL; } 1128 virtual LIR_OpConvert* as_OpConvert() { return NULL; } 1129 virtual LIR_Op0* as_Op0() { return NULL; } 1130 virtual LIR_Op1* as_Op1() { return NULL; } 1131 virtual LIR_Op2* as_Op2() { return NULL; } 1132 virtual LIR_Op3* as_Op3() { return NULL; } 1133 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; } 1134 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; } 1135 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; } 1136 virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; } 1137 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return NULL; } 1138 virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; } 1139 virtual LIR_OpProfileType* as_OpProfileType() { return NULL; } 1140 #ifdef ASSERT 1141 virtual LIR_OpAssert* as_OpAssert() { return NULL; } 1142 #endif 1143 1144 virtual void verify() const {} 1145 }; 1146 1147 // for calls 1148 class LIR_OpCall: public LIR_Op { 1149 friend class LIR_OpVisitState; 1150 1151 protected: 1152 address _addr; 1153 LIR_OprList* _arguments; 1154 protected: 1155 LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, 1156 LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1157 : LIR_Op(code, result, info) 1158 , _addr(addr) 1159 , _arguments(arguments) {} 1160 1161 public: 1162 address addr() const { return _addr; } 1163 const LIR_OprList* arguments() const { return _arguments; } 1164 virtual LIR_OpCall* as_OpCall() { return this; } 1165 }; 1166 1167 1168 // -------------------------------------------------- 1169 // LIR_OpJavaCall 1170 // -------------------------------------------------- 1171 class LIR_OpJavaCall: public LIR_OpCall { 1172 friend class LIR_OpVisitState; 1173 1174 private: 1175 ciMethod* _method; 1176 LIR_Opr _receiver; 1177 LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr. 1178 1179 public: 1180 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1181 LIR_Opr receiver, LIR_Opr result, 1182 address addr, LIR_OprList* arguments, 1183 CodeEmitInfo* info) 1184 : LIR_OpCall(code, addr, result, arguments, info) 1185 , _method(method) 1186 , _receiver(receiver) 1187 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1188 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1189 1190 LIR_OpJavaCall(LIR_Code code, ciMethod* method, 1191 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, 1192 LIR_OprList* arguments, CodeEmitInfo* info) 1193 : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) 1194 , _method(method) 1195 , _receiver(receiver) 1196 , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr) 1197 { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } 1198 1199 LIR_Opr receiver() const { return _receiver; } 1200 ciMethod* method() const { return _method; } 1201 1202 // JSR 292 support. 1203 bool is_invokedynamic() const { return code() == lir_dynamic_call; } 1204 bool is_method_handle_invoke() const { 1205 return method()->is_compiled_lambda_form() || // Java-generated lambda form 1206 method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic 1207 } 1208 1209 virtual void emit_code(LIR_Assembler* masm); 1210 virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } 1211 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1212 }; 1213 1214 // -------------------------------------------------- 1215 // LIR_OpLabel 1216 // -------------------------------------------------- 1217 // Location where a branch can continue 1218 class LIR_OpLabel: public LIR_Op { 1219 friend class LIR_OpVisitState; 1220 1221 private: 1222 Label* _label; 1223 public: 1224 LIR_OpLabel(Label* lbl) 1225 : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL) 1226 , _label(lbl) {} 1227 Label* label() const { return _label; } 1228 1229 virtual void emit_code(LIR_Assembler* masm); 1230 virtual LIR_OpLabel* as_OpLabel() { return this; } 1231 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1232 }; 1233 1234 // LIR_OpArrayCopy 1235 class LIR_OpArrayCopy: public LIR_Op { 1236 friend class LIR_OpVisitState; 1237 1238 private: 1239 ArrayCopyStub* _stub; 1240 LIR_Opr _src; 1241 LIR_Opr _src_pos; 1242 LIR_Opr _dst; 1243 LIR_Opr _dst_pos; 1244 LIR_Opr _length; 1245 LIR_Opr _tmp; 1246 ciArrayKlass* _expected_type; 1247 int _flags; 1248 1249 public: 1250 enum Flags { 1251 src_null_check = 1 << 0, 1252 dst_null_check = 1 << 1, 1253 src_pos_positive_check = 1 << 2, 1254 dst_pos_positive_check = 1 << 3, 1255 length_positive_check = 1 << 4, 1256 src_range_check = 1 << 5, 1257 dst_range_check = 1 << 6, 1258 type_check = 1 << 7, 1259 overlapping = 1 << 8, 1260 unaligned = 1 << 9, 1261 src_objarray = 1 << 10, 1262 dst_objarray = 1 << 11, 1263 all_flags = (1 << 12) - 1 1264 }; 1265 1266 LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, 1267 ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); 1268 1269 LIR_Opr src() const { return _src; } 1270 LIR_Opr src_pos() const { return _src_pos; } 1271 LIR_Opr dst() const { return _dst; } 1272 LIR_Opr dst_pos() const { return _dst_pos; } 1273 LIR_Opr length() const { return _length; } 1274 LIR_Opr tmp() const { return _tmp; } 1275 int flags() const { return _flags; } 1276 ciArrayKlass* expected_type() const { return _expected_type; } 1277 ArrayCopyStub* stub() const { return _stub; } 1278 1279 virtual void emit_code(LIR_Assembler* masm); 1280 virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } 1281 void print_instr(outputStream* out) const PRODUCT_RETURN; 1282 }; 1283 1284 // LIR_OpUpdateCRC32 1285 class LIR_OpUpdateCRC32: public LIR_Op { 1286 friend class LIR_OpVisitState; 1287 1288 private: 1289 LIR_Opr _crc; 1290 LIR_Opr _val; 1291 1292 public: 1293 1294 LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res); 1295 1296 LIR_Opr crc() const { return _crc; } 1297 LIR_Opr val() const { return _val; } 1298 1299 virtual void emit_code(LIR_Assembler* masm); 1300 virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return this; } 1301 void print_instr(outputStream* out) const PRODUCT_RETURN; 1302 }; 1303 1304 // -------------------------------------------------- 1305 // LIR_Op0 1306 // -------------------------------------------------- 1307 class LIR_Op0: public LIR_Op { 1308 friend class LIR_OpVisitState; 1309 1310 public: 1311 LIR_Op0(LIR_Code code) 1312 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1313 LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL) 1314 : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } 1315 1316 virtual void emit_code(LIR_Assembler* masm); 1317 virtual LIR_Op0* as_Op0() { return this; } 1318 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1319 }; 1320 1321 1322 // -------------------------------------------------- 1323 // LIR_Op1 1324 // -------------------------------------------------- 1325 1326 class LIR_Op1: public LIR_Op { 1327 friend class LIR_OpVisitState; 1328 1329 protected: 1330 LIR_Opr _opr; // input operand 1331 BasicType _type; // Operand types 1332 LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) 1333 1334 static void print_patch_code(outputStream* out, LIR_PatchCode code); 1335 1336 void set_kind(LIR_MoveKind kind) { 1337 assert(code() == lir_move, "must be"); 1338 _flags = kind; 1339 } 1340 1341 public: 1342 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL) 1343 : LIR_Op(code, result, info) 1344 , _opr(opr) 1345 , _type(type) 1346 , _patch(patch) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1347 1348 LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) 1349 : LIR_Op(code, result, info) 1350 , _opr(opr) 1351 , _type(type) 1352 , _patch(patch) { 1353 assert(code == lir_move, "must be"); 1354 set_kind(kind); 1355 } 1356 1357 LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) 1358 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1359 , _opr(opr) 1360 , _type(T_ILLEGAL) 1361 , _patch(lir_patch_none) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } 1362 1363 LIR_Opr in_opr() const { return _opr; } 1364 LIR_PatchCode patch_code() const { return _patch; } 1365 BasicType type() const { return _type; } 1366 1367 LIR_MoveKind move_kind() const { 1368 assert(code() == lir_move, "must be"); 1369 return (LIR_MoveKind)_flags; 1370 } 1371 1372 virtual bool is_patching() { return _patch != lir_patch_none; } 1373 virtual void emit_code(LIR_Assembler* masm); 1374 virtual LIR_Op1* as_Op1() { return this; } 1375 virtual const char * name() const PRODUCT_RETURN0; 1376 1377 void set_in_opr(LIR_Opr opr) { _opr = opr; } 1378 1379 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1380 virtual void verify() const; 1381 }; 1382 1383 1384 // for runtime calls 1385 class LIR_OpRTCall: public LIR_OpCall { 1386 friend class LIR_OpVisitState; 1387 1388 private: 1389 LIR_Opr _tmp; 1390 public: 1391 LIR_OpRTCall(address addr, LIR_Opr tmp, 1392 LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL) 1393 : LIR_OpCall(lir_rtcall, addr, result, arguments, info) 1394 , _tmp(tmp) {} 1395 1396 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1397 virtual void emit_code(LIR_Assembler* masm); 1398 virtual LIR_OpRTCall* as_OpRTCall() { return this; } 1399 1400 LIR_Opr tmp() const { return _tmp; } 1401 1402 virtual void verify() const; 1403 }; 1404 1405 1406 class LIR_OpBranch: public LIR_Op { 1407 friend class LIR_OpVisitState; 1408 1409 private: 1410 LIR_Condition _cond; 1411 Label* _label; 1412 BlockBegin* _block; // if this is a branch to a block, this is the block 1413 BlockBegin* _ublock; // if this is a float-branch, this is the unorderd block 1414 CodeStub* _stub; // if this is a branch to a stub, this is the stub 1415 1416 public: 1417 LIR_OpBranch(LIR_Condition cond, Label* lbl) 1418 : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL) 1419 , _cond(cond) 1420 , _label(lbl) 1421 , _block(NULL) 1422 , _ublock(NULL) 1423 , _stub(NULL) { } 1424 1425 LIR_OpBranch(LIR_Condition cond, BlockBegin* block); 1426 LIR_OpBranch(LIR_Condition cond, CodeStub* stub); 1427 1428 // for unordered comparisons 1429 LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock); 1430 1431 LIR_Condition cond() const { return _cond; } 1432 Label* label() const { return _label; } 1433 BlockBegin* block() const { return _block; } 1434 BlockBegin* ublock() const { return _ublock; } 1435 CodeStub* stub() const { return _stub; } 1436 1437 void change_block(BlockBegin* b); 1438 void change_ublock(BlockBegin* b); 1439 void negate_cond(); 1440 1441 virtual void emit_code(LIR_Assembler* masm); 1442 virtual LIR_OpBranch* as_OpBranch() { return this; } 1443 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1444 }; 1445 1446 class LIR_OpReturn: public LIR_Op1 { 1447 friend class LIR_OpVisitState; 1448 1449 private: 1450 C1SafepointPollStub* _stub; 1451 1452 public: 1453 LIR_OpReturn(LIR_Opr opr); 1454 1455 C1SafepointPollStub* stub() const { return _stub; } 1456 virtual LIR_OpReturn* as_OpReturn() { return this; } 1457 }; 1458 1459 class ConversionStub; 1460 1461 class LIR_OpConvert: public LIR_Op1 { 1462 friend class LIR_OpVisitState; 1463 1464 private: 1465 Bytecodes::Code _bytecode; 1466 ConversionStub* _stub; 1467 1468 public: 1469 LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) 1470 : LIR_Op1(lir_convert, opr, result) 1471 , _bytecode(code) 1472 , _stub(stub) {} 1473 1474 Bytecodes::Code bytecode() const { return _bytecode; } 1475 ConversionStub* stub() const { return _stub; } 1476 1477 virtual void emit_code(LIR_Assembler* masm); 1478 virtual LIR_OpConvert* as_OpConvert() { return this; } 1479 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1480 1481 static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; 1482 }; 1483 1484 1485 // LIR_OpAllocObj 1486 class LIR_OpAllocObj : public LIR_Op1 { 1487 friend class LIR_OpVisitState; 1488 1489 private: 1490 LIR_Opr _tmp1; 1491 LIR_Opr _tmp2; 1492 LIR_Opr _tmp3; 1493 LIR_Opr _tmp4; 1494 int _hdr_size; 1495 int _obj_size; 1496 CodeStub* _stub; 1497 bool _init_check; 1498 1499 public: 1500 LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, 1501 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1502 int hdr_size, int obj_size, bool init_check, CodeStub* stub) 1503 : LIR_Op1(lir_alloc_object, klass, result) 1504 , _tmp1(t1) 1505 , _tmp2(t2) 1506 , _tmp3(t3) 1507 , _tmp4(t4) 1508 , _hdr_size(hdr_size) 1509 , _obj_size(obj_size) 1510 , _stub(stub) 1511 , _init_check(init_check) { } 1512 1513 LIR_Opr klass() const { return in_opr(); } 1514 LIR_Opr obj() const { return result_opr(); } 1515 LIR_Opr tmp1() const { return _tmp1; } 1516 LIR_Opr tmp2() const { return _tmp2; } 1517 LIR_Opr tmp3() const { return _tmp3; } 1518 LIR_Opr tmp4() const { return _tmp4; } 1519 int header_size() const { return _hdr_size; } 1520 int object_size() const { return _obj_size; } 1521 bool init_check() const { return _init_check; } 1522 CodeStub* stub() const { return _stub; } 1523 1524 virtual void emit_code(LIR_Assembler* masm); 1525 virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } 1526 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1527 }; 1528 1529 1530 // LIR_OpRoundFP 1531 class LIR_OpRoundFP : public LIR_Op1 { 1532 friend class LIR_OpVisitState; 1533 1534 private: 1535 LIR_Opr _tmp; 1536 1537 public: 1538 LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) 1539 : LIR_Op1(lir_roundfp, reg, result) 1540 , _tmp(stack_loc_temp) {} 1541 1542 LIR_Opr tmp() const { return _tmp; } 1543 virtual LIR_OpRoundFP* as_OpRoundFP() { return this; } 1544 void print_instr(outputStream* out) const PRODUCT_RETURN; 1545 }; 1546 1547 // LIR_OpTypeCheck 1548 class LIR_OpTypeCheck: public LIR_Op { 1549 friend class LIR_OpVisitState; 1550 1551 private: 1552 LIR_Opr _object; 1553 LIR_Opr _array; 1554 ciKlass* _klass; 1555 LIR_Opr _tmp1; 1556 LIR_Opr _tmp2; 1557 LIR_Opr _tmp3; 1558 bool _fast_check; 1559 CodeEmitInfo* _info_for_patch; 1560 CodeEmitInfo* _info_for_exception; 1561 CodeStub* _stub; 1562 ciMethod* _profiled_method; 1563 int _profiled_bci; 1564 bool _should_profile; 1565 1566 public: 1567 LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 1568 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1569 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub); 1570 LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, 1571 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); 1572 1573 LIR_Opr object() const { return _object; } 1574 LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } 1575 LIR_Opr tmp1() const { return _tmp1; } 1576 LIR_Opr tmp2() const { return _tmp2; } 1577 LIR_Opr tmp3() const { return _tmp3; } 1578 ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } 1579 bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } 1580 CodeEmitInfo* info_for_patch() const { return _info_for_patch; } 1581 CodeEmitInfo* info_for_exception() const { return _info_for_exception; } 1582 CodeStub* stub() const { return _stub; } 1583 1584 // MethodData* profiling 1585 void set_profiled_method(ciMethod *method) { _profiled_method = method; } 1586 void set_profiled_bci(int bci) { _profiled_bci = bci; } 1587 void set_should_profile(bool b) { _should_profile = b; } 1588 ciMethod* profiled_method() const { return _profiled_method; } 1589 int profiled_bci() const { return _profiled_bci; } 1590 bool should_profile() const { return _should_profile; } 1591 1592 virtual bool is_patching() { return _info_for_patch != NULL; } 1593 virtual void emit_code(LIR_Assembler* masm); 1594 virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } 1595 void print_instr(outputStream* out) const PRODUCT_RETURN; 1596 }; 1597 1598 // LIR_Op2 1599 class LIR_Op2: public LIR_Op { 1600 friend class LIR_OpVisitState; 1601 1602 int _fpu_stack_size; // for sin/cos implementation on Intel 1603 1604 protected: 1605 LIR_Opr _opr1; 1606 LIR_Opr _opr2; 1607 BasicType _type; 1608 LIR_Opr _tmp1; 1609 LIR_Opr _tmp2; 1610 LIR_Opr _tmp3; 1611 LIR_Opr _tmp4; 1612 LIR_Opr _tmp5; 1613 LIR_Condition _condition; 1614 1615 void verify() const; 1616 1617 public: 1618 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL) 1619 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1620 , _fpu_stack_size(0) 1621 , _opr1(opr1) 1622 , _opr2(opr2) 1623 , _type(T_ILLEGAL) 1624 , _tmp1(LIR_OprFact::illegalOpr) 1625 , _tmp2(LIR_OprFact::illegalOpr) 1626 , _tmp3(LIR_OprFact::illegalOpr) 1627 , _tmp4(LIR_OprFact::illegalOpr) 1628 , _tmp5(LIR_OprFact::illegalOpr) 1629 , _condition(condition) { 1630 assert(code == lir_cmp || code == lir_assert, "code check"); 1631 } 1632 1633 LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) 1634 : LIR_Op(code, result, NULL) 1635 , _fpu_stack_size(0) 1636 , _opr1(opr1) 1637 , _opr2(opr2) 1638 , _type(type) 1639 , _tmp1(LIR_OprFact::illegalOpr) 1640 , _tmp2(LIR_OprFact::illegalOpr) 1641 , _tmp3(LIR_OprFact::illegalOpr) 1642 , _tmp4(LIR_OprFact::illegalOpr) 1643 , _tmp5(LIR_OprFact::illegalOpr) 1644 , _condition(condition) { 1645 assert(code == lir_cmove, "code check"); 1646 assert(type != T_ILLEGAL, "cmove should have type"); 1647 } 1648 1649 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, 1650 CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL) 1651 : LIR_Op(code, result, info) 1652 , _fpu_stack_size(0) 1653 , _opr1(opr1) 1654 , _opr2(opr2) 1655 , _type(type) 1656 , _tmp1(LIR_OprFact::illegalOpr) 1657 , _tmp2(LIR_OprFact::illegalOpr) 1658 , _tmp3(LIR_OprFact::illegalOpr) 1659 , _tmp4(LIR_OprFact::illegalOpr) 1660 , _tmp5(LIR_OprFact::illegalOpr) 1661 , _condition(lir_cond_unknown) { 1662 assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check"); 1663 } 1664 1665 LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr, 1666 LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr) 1667 : LIR_Op(code, result, NULL) 1668 , _fpu_stack_size(0) 1669 , _opr1(opr1) 1670 , _opr2(opr2) 1671 , _type(T_ILLEGAL) 1672 , _tmp1(tmp1) 1673 , _tmp2(tmp2) 1674 , _tmp3(tmp3) 1675 , _tmp4(tmp4) 1676 , _tmp5(tmp5) 1677 , _condition(lir_cond_unknown) { 1678 assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check"); 1679 } 1680 1681 LIR_Opr in_opr1() const { return _opr1; } 1682 LIR_Opr in_opr2() const { return _opr2; } 1683 BasicType type() const { return _type; } 1684 LIR_Opr tmp1_opr() const { return _tmp1; } 1685 LIR_Opr tmp2_opr() const { return _tmp2; } 1686 LIR_Opr tmp3_opr() const { return _tmp3; } 1687 LIR_Opr tmp4_opr() const { return _tmp4; } 1688 LIR_Opr tmp5_opr() const { return _tmp5; } 1689 LIR_Condition condition() const { 1690 assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition; 1691 } 1692 void set_condition(LIR_Condition condition) { 1693 assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); _condition = condition; 1694 } 1695 1696 void set_fpu_stack_size(int size) { _fpu_stack_size = size; } 1697 int fpu_stack_size() const { return _fpu_stack_size; } 1698 1699 void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } 1700 void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } 1701 1702 virtual void emit_code(LIR_Assembler* masm); 1703 virtual LIR_Op2* as_Op2() { return this; } 1704 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1705 }; 1706 1707 class LIR_OpAllocArray : public LIR_Op { 1708 friend class LIR_OpVisitState; 1709 1710 private: 1711 LIR_Opr _klass; 1712 LIR_Opr _len; 1713 LIR_Opr _tmp1; 1714 LIR_Opr _tmp2; 1715 LIR_Opr _tmp3; 1716 LIR_Opr _tmp4; 1717 BasicType _type; 1718 CodeStub* _stub; 1719 1720 public: 1721 LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub) 1722 : LIR_Op(lir_alloc_array, result, NULL) 1723 , _klass(klass) 1724 , _len(len) 1725 , _tmp1(t1) 1726 , _tmp2(t2) 1727 , _tmp3(t3) 1728 , _tmp4(t4) 1729 , _type(type) 1730 , _stub(stub) {} 1731 1732 LIR_Opr klass() const { return _klass; } 1733 LIR_Opr len() const { return _len; } 1734 LIR_Opr obj() const { return result_opr(); } 1735 LIR_Opr tmp1() const { return _tmp1; } 1736 LIR_Opr tmp2() const { return _tmp2; } 1737 LIR_Opr tmp3() const { return _tmp3; } 1738 LIR_Opr tmp4() const { return _tmp4; } 1739 BasicType type() const { return _type; } 1740 CodeStub* stub() const { return _stub; } 1741 1742 virtual void emit_code(LIR_Assembler* masm); 1743 virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } 1744 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1745 }; 1746 1747 1748 class LIR_Op3: public LIR_Op { 1749 friend class LIR_OpVisitState; 1750 1751 private: 1752 LIR_Opr _opr1; 1753 LIR_Opr _opr2; 1754 LIR_Opr _opr3; 1755 public: 1756 LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL) 1757 : LIR_Op(code, result, info) 1758 , _opr1(opr1) 1759 , _opr2(opr2) 1760 , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } 1761 LIR_Opr in_opr1() const { return _opr1; } 1762 LIR_Opr in_opr2() const { return _opr2; } 1763 LIR_Opr in_opr3() const { return _opr3; } 1764 1765 virtual void emit_code(LIR_Assembler* masm); 1766 virtual LIR_Op3* as_Op3() { return this; } 1767 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1768 }; 1769 1770 1771 //-------------------------------- 1772 class LabelObj: public CompilationResourceObj { 1773 private: 1774 Label _label; 1775 public: 1776 LabelObj() {} 1777 Label* label() { return &_label; } 1778 }; 1779 1780 1781 class LIR_OpLock: public LIR_Op { 1782 friend class LIR_OpVisitState; 1783 1784 private: 1785 LIR_Opr _hdr; 1786 LIR_Opr _obj; 1787 LIR_Opr _lock; 1788 LIR_Opr _scratch; 1789 CodeStub* _stub; 1790 public: 1791 LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) 1792 : LIR_Op(code, LIR_OprFact::illegalOpr, info) 1793 , _hdr(hdr) 1794 , _obj(obj) 1795 , _lock(lock) 1796 , _scratch(scratch) 1797 , _stub(stub) {} 1798 1799 LIR_Opr hdr_opr() const { return _hdr; } 1800 LIR_Opr obj_opr() const { return _obj; } 1801 LIR_Opr lock_opr() const { return _lock; } 1802 LIR_Opr scratch_opr() const { return _scratch; } 1803 CodeStub* stub() const { return _stub; } 1804 1805 virtual void emit_code(LIR_Assembler* masm); 1806 virtual LIR_OpLock* as_OpLock() { return this; } 1807 void print_instr(outputStream* out) const PRODUCT_RETURN; 1808 }; 1809 1810 class LIR_OpLoadKlass: public LIR_Op { 1811 friend class LIR_OpVisitState; 1812 1813 private: 1814 LIR_Opr _obj; 1815 CodeStub* _stub; 1816 public: 1817 LIR_OpLoadKlass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub) 1818 : LIR_Op(lir_load_klass, result, info) 1819 , _obj(obj) 1820 , _stub(stub) {} 1821 1822 LIR_Opr obj() const { return _obj; } 1823 CodeStub* stub() const { return _stub; } 1824 1825 virtual LIR_OpLoadKlass* as_OpLoadKlass() { return this; } 1826 virtual void emit_code(LIR_Assembler* masm); 1827 void print_instr(outputStream* out) const PRODUCT_RETURN; 1828 }; 1829 1830 class LIR_OpDelay: public LIR_Op { 1831 friend class LIR_OpVisitState; 1832 1833 private: 1834 LIR_Op* _op; 1835 1836 public: 1837 LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): 1838 LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), 1839 _op(op) { 1840 assert(op->code() == lir_nop, "should be filling with nops"); 1841 } 1842 virtual void emit_code(LIR_Assembler* masm); 1843 virtual LIR_OpDelay* as_OpDelay() { return this; } 1844 void print_instr(outputStream* out) const PRODUCT_RETURN; 1845 LIR_Op* delay_op() const { return _op; } 1846 CodeEmitInfo* call_info() const { return info(); } 1847 }; 1848 1849 #ifdef ASSERT 1850 // LIR_OpAssert 1851 class LIR_OpAssert : public LIR_Op2 { 1852 friend class LIR_OpVisitState; 1853 1854 private: 1855 const char* _msg; 1856 bool _halt; 1857 1858 public: 1859 LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) 1860 : LIR_Op2(lir_assert, condition, opr1, opr2) 1861 , _msg(msg) 1862 , _halt(halt) { 1863 } 1864 1865 const char* msg() const { return _msg; } 1866 bool halt() const { return _halt; } 1867 1868 virtual void emit_code(LIR_Assembler* masm); 1869 virtual LIR_OpAssert* as_OpAssert() { return this; } 1870 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1871 }; 1872 #endif 1873 1874 // LIR_OpCompareAndSwap 1875 class LIR_OpCompareAndSwap : public LIR_Op { 1876 friend class LIR_OpVisitState; 1877 1878 private: 1879 LIR_Opr _addr; 1880 LIR_Opr _cmp_value; 1881 LIR_Opr _new_value; 1882 LIR_Opr _tmp1; 1883 LIR_Opr _tmp2; 1884 1885 public: 1886 LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1887 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) 1888 : LIR_Op(code, result, NULL) // no result, no info 1889 , _addr(addr) 1890 , _cmp_value(cmp_value) 1891 , _new_value(new_value) 1892 , _tmp1(t1) 1893 , _tmp2(t2) { } 1894 1895 LIR_Opr addr() const { return _addr; } 1896 LIR_Opr cmp_value() const { return _cmp_value; } 1897 LIR_Opr new_value() const { return _new_value; } 1898 LIR_Opr tmp1() const { return _tmp1; } 1899 LIR_Opr tmp2() const { return _tmp2; } 1900 1901 virtual void emit_code(LIR_Assembler* masm); 1902 virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } 1903 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1904 }; 1905 1906 // LIR_OpProfileCall 1907 class LIR_OpProfileCall : public LIR_Op { 1908 friend class LIR_OpVisitState; 1909 1910 private: 1911 ciMethod* _profiled_method; 1912 int _profiled_bci; 1913 ciMethod* _profiled_callee; 1914 LIR_Opr _mdo; 1915 LIR_Opr _recv; 1916 LIR_Opr _tmp1; 1917 ciKlass* _known_holder; 1918 1919 public: 1920 // Destroys recv 1921 LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) 1922 : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL) // no result, no info 1923 , _profiled_method(profiled_method) 1924 , _profiled_bci(profiled_bci) 1925 , _profiled_callee(profiled_callee) 1926 , _mdo(mdo) 1927 , _recv(recv) 1928 , _tmp1(t1) 1929 , _known_holder(known_holder) { } 1930 1931 ciMethod* profiled_method() const { return _profiled_method; } 1932 int profiled_bci() const { return _profiled_bci; } 1933 ciMethod* profiled_callee() const { return _profiled_callee; } 1934 LIR_Opr mdo() const { return _mdo; } 1935 LIR_Opr recv() const { return _recv; } 1936 LIR_Opr tmp1() const { return _tmp1; } 1937 ciKlass* known_holder() const { return _known_holder; } 1938 1939 virtual void emit_code(LIR_Assembler* masm); 1940 virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } 1941 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1942 bool should_profile_receiver_type() const { 1943 bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static(); 1944 Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci); 1945 bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface; 1946 return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static; 1947 } 1948 }; 1949 1950 // LIR_OpProfileType 1951 class LIR_OpProfileType : public LIR_Op { 1952 friend class LIR_OpVisitState; 1953 1954 private: 1955 LIR_Opr _mdp; 1956 LIR_Opr _obj; 1957 LIR_Opr _tmp; 1958 ciKlass* _exact_klass; // non NULL if we know the klass statically (no need to load it from _obj) 1959 intptr_t _current_klass; // what the profiling currently reports 1960 bool _not_null; // true if we know statically that _obj cannot be null 1961 bool _no_conflict; // true if we're profling parameters, _exact_klass is not NULL and we know 1962 // _exact_klass it the only possible type for this parameter in any context. 1963 1964 public: 1965 // Destroys recv 1966 LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) 1967 : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL) // no result, no info 1968 , _mdp(mdp) 1969 , _obj(obj) 1970 , _tmp(tmp) 1971 , _exact_klass(exact_klass) 1972 , _current_klass(current_klass) 1973 , _not_null(not_null) 1974 , _no_conflict(no_conflict) { } 1975 1976 LIR_Opr mdp() const { return _mdp; } 1977 LIR_Opr obj() const { return _obj; } 1978 LIR_Opr tmp() const { return _tmp; } 1979 ciKlass* exact_klass() const { return _exact_klass; } 1980 intptr_t current_klass() const { return _current_klass; } 1981 bool not_null() const { return _not_null; } 1982 bool no_conflict() const { return _no_conflict; } 1983 1984 virtual void emit_code(LIR_Assembler* masm); 1985 virtual LIR_OpProfileType* as_OpProfileType() { return this; } 1986 virtual void print_instr(outputStream* out) const PRODUCT_RETURN; 1987 }; 1988 1989 class LIR_InsertionBuffer; 1990 1991 //--------------------------------LIR_List--------------------------------------------------- 1992 // Maintains a list of LIR instructions (one instance of LIR_List per basic block) 1993 // The LIR instructions are appended by the LIR_List class itself; 1994 // 1995 // Notes: 1996 // - all offsets are(should be) in bytes 1997 // - local positions are specified with an offset, with offset 0 being local 0 1998 1999 class LIR_List: public CompilationResourceObj { 2000 private: 2001 LIR_OpList _operations; 2002 2003 Compilation* _compilation; 2004 #ifndef PRODUCT 2005 BlockBegin* _block; 2006 #endif 2007 #ifdef ASSERT 2008 const char * _file; 2009 int _line; 2010 #endif 2011 2012 public: 2013 void append(LIR_Op* op) { 2014 if (op->source() == NULL) 2015 op->set_source(_compilation->current_instruction()); 2016 #ifndef PRODUCT 2017 if (PrintIRWithLIR) { 2018 _compilation->maybe_print_current_instruction(); 2019 op->print(); tty->cr(); 2020 } 2021 #endif // PRODUCT 2022 2023 _operations.append(op); 2024 2025 #ifdef ASSERT 2026 op->verify(); 2027 op->set_file_and_line(_file, _line); 2028 _file = NULL; 2029 _line = 0; 2030 #endif 2031 } 2032 2033 LIR_List(Compilation* compilation, BlockBegin* block = NULL); 2034 2035 #ifdef ASSERT 2036 void set_file_and_line(const char * file, int line); 2037 #endif 2038 2039 //---------- accessors --------------- 2040 LIR_OpList* instructions_list() { return &_operations; } 2041 int length() const { return _operations.length(); } 2042 LIR_Op* at(int i) const { return _operations.at(i); } 2043 2044 NOT_PRODUCT(BlockBegin* block() const { return _block; }); 2045 2046 // insert LIR_Ops in buffer to right places in LIR_List 2047 void append(LIR_InsertionBuffer* buffer); 2048 2049 //---------- mutators --------------- 2050 void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } 2051 void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } 2052 void remove_at(int i) { _operations.remove_at(i); } 2053 2054 //---------- printing ------------- 2055 void print_instructions() PRODUCT_RETURN; 2056 2057 2058 //---------- instructions ------------- 2059 void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2060 address dest, LIR_OprList* arguments, 2061 CodeEmitInfo* info) { 2062 append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); 2063 } 2064 void call_static(ciMethod* method, LIR_Opr result, 2065 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2066 append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); 2067 } 2068 void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2069 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2070 append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); 2071 } 2072 void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result, 2073 address dest, LIR_OprList* arguments, CodeEmitInfo* info) { 2074 append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info)); 2075 } 2076 2077 void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } 2078 void membar() { append(new LIR_Op0(lir_membar)); } 2079 void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } 2080 void membar_release() { append(new LIR_Op0(lir_membar_release)); } 2081 void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); } 2082 void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); } 2083 void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); } 2084 void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); } 2085 2086 void nop() { append(new LIR_Op0(lir_nop)); } 2087 2088 void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } 2089 void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } 2090 2091 void on_spin_wait() { append(new LIR_Op0(lir_on_spin_wait)); } 2092 2093 void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } 2094 2095 void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); } 2096 2097 // result is a stack location for old backend and vreg for UseLinearScan 2098 // stack_loc_temp is an illegal register for old backend 2099 void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); } 2100 void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); } 2101 void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); } 2102 void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); } 2103 void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2104 void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } 2105 void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } 2106 void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { 2107 if (UseCompressedOops) { 2108 append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide)); 2109 } else { 2110 move(src, dst, info); 2111 } 2112 } 2113 void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { 2114 if (UseCompressedOops) { 2115 append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide)); 2116 } else { 2117 move(src, dst, info); 2118 } 2119 } 2120 void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } 2121 2122 void oop2reg (jobject o, LIR_Opr reg) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } 2123 void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); 2124 2125 void metadata2reg (Metadata* o, LIR_Opr reg) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg)); } 2126 void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info); 2127 2128 void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } 2129 void return_op(LIR_Opr result) { append(new LIR_OpReturn(result)); } 2130 2131 void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } 2132 2133 void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } 2134 void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } 2135 void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } 2136 2137 void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false); 2138 void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2139 append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); 2140 } 2141 void unwind_exception(LIR_Opr exceptionOop) { 2142 append(new LIR_Op1(lir_unwind, exceptionOop)); 2143 } 2144 2145 void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } 2146 void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } 2147 2148 void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) { 2149 append(new LIR_Op2(lir_cmp, condition, left, right, info)); 2150 } 2151 void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) { 2152 cmp(condition, left, LIR_OprFact::intConst(right), info); 2153 } 2154 2155 void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); 2156 void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); 2157 2158 void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) { 2159 append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type)); 2160 } 2161 2162 void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2163 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2164 void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2165 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2166 void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 2167 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr); 2168 2169 void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); } 2170 void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr) { append(new LIR_Op2(lir_neg, from, tmp, to)); } 2171 void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); } 2172 void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); } 2173 void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); } 2174 void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); } 2175 void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); } 2176 2177 void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } 2178 void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); } 2179 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } 2180 void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul, left, right, res, tmp)); } 2181 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_div, left, right, res, info)); } 2182 void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div, left, right, res, tmp)); } 2183 void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_rem, left, right, res, info)); } 2184 2185 void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2186 void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2187 2188 void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2189 2190 void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2191 void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2192 void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); 2193 void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); 2194 void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); 2195 2196 void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2197 void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2198 void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2199 void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); 2200 2201 void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); 2202 void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub); 2203 2204 // jump is an unconditional branch 2205 void jump(BlockBegin* block) { 2206 append(new LIR_OpBranch(lir_cond_always, block)); 2207 } 2208 void jump(CodeStub* stub) { 2209 append(new LIR_OpBranch(lir_cond_always, stub)); 2210 } 2211 void branch(LIR_Condition cond, Label* lbl) { 2212 append(new LIR_OpBranch(cond, lbl)); 2213 } 2214 // Should not be used for fp comparisons 2215 void branch(LIR_Condition cond, BlockBegin* block) { 2216 append(new LIR_OpBranch(cond, block)); 2217 } 2218 // Should not be used for fp comparisons 2219 void branch(LIR_Condition cond, CodeStub* stub) { 2220 append(new LIR_OpBranch(cond, stub)); 2221 } 2222 // Should only be used for fp comparisons 2223 void branch(LIR_Condition cond, BlockBegin* block, BlockBegin* unordered) { 2224 append(new LIR_OpBranch(cond, block, unordered)); 2225 } 2226 2227 void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2228 void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2229 void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); 2230 2231 void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2232 void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2233 void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } 2234 2235 void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } 2236 void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); 2237 2238 void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { 2239 append(new LIR_OpRTCall(routine, tmp, result, arguments)); 2240 } 2241 2242 void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, 2243 LIR_OprList* arguments, CodeEmitInfo* info) { 2244 append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); 2245 } 2246 2247 void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } 2248 void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub); 2249 void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info); 2250 2251 void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } 2252 2253 void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } 2254 2255 void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) { append(new LIR_OpUpdateCRC32(crc, val, res)); } 2256 2257 void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci); 2258 void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); 2259 2260 void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 2261 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 2262 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 2263 ciMethod* profiled_method, int profiled_bci); 2264 // MethodData* profiling 2265 void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { 2266 append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass)); 2267 } 2268 void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) { 2269 append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict)); 2270 } 2271 2272 void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); } 2273 void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); } 2274 2275 void load_klass(LIR_Opr obj, LIR_Opr result, CodeEmitInfo* info, CodeStub* stub) { append(new LIR_OpLoadKlass(obj, result, info, stub)); } 2276 2277 #ifdef ASSERT 2278 void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); } 2279 #endif 2280 }; 2281 2282 void print_LIR(BlockList* blocks); 2283 2284 class LIR_InsertionBuffer : public CompilationResourceObj { 2285 private: 2286 LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (NULL when uninitialized) 2287 2288 // list of insertion points. index and count are stored alternately: 2289 // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted 2290 // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index 2291 intStack _index_and_count; 2292 2293 // the LIR_Ops to be inserted 2294 LIR_OpList _ops; 2295 2296 void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } 2297 void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } 2298 void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } 2299 2300 #ifdef ASSERT 2301 void verify(); 2302 #endif 2303 public: 2304 LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { } 2305 2306 // must be called before using the insertion buffer 2307 void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } 2308 bool initialized() const { return _lir != NULL; } 2309 // called automatically when the buffer is appended to the LIR_List 2310 void finish() { _lir = NULL; } 2311 2312 // accessors 2313 LIR_List* lir_list() const { return _lir; } 2314 int number_of_insertion_points() const { return _index_and_count.length() >> 1; } 2315 int index_at(int i) const { return _index_and_count.at((i << 1)); } 2316 int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } 2317 2318 int number_of_ops() const { return _ops.length(); } 2319 LIR_Op* op_at(int i) const { return _ops.at(i); } 2320 2321 // append an instruction to the buffer 2322 void append(int index, LIR_Op* op); 2323 2324 // instruction 2325 void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } 2326 }; 2327 2328 2329 // 2330 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. 2331 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes 2332 // information about the input, output and temporaries used by the 2333 // op to be recorded. It also records whether the op has call semantics 2334 // and also records all the CodeEmitInfos used by this op. 2335 // 2336 2337 2338 class LIR_OpVisitState: public StackObj { 2339 public: 2340 typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; 2341 2342 enum { 2343 maxNumberOfOperands = 21, 2344 maxNumberOfInfos = 4 2345 }; 2346 2347 private: 2348 LIR_Op* _op; 2349 2350 // optimization: the operands and infos are not stored in a variable-length 2351 // list, but in a fixed-size array to save time of size checks and resizing 2352 int _oprs_len[numModes]; 2353 LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; 2354 int _info_len; 2355 CodeEmitInfo* _info_new[maxNumberOfInfos]; 2356 2357 bool _has_call; 2358 bool _has_slow_case; 2359 2360 2361 // only include register operands 2362 // addresses are decomposed to the base and index registers 2363 // constants and stack operands are ignored 2364 void append(LIR_Opr& opr, OprMode mode) { 2365 assert(opr->is_valid(), "should not call this otherwise"); 2366 assert(mode >= 0 && mode < numModes, "bad mode"); 2367 2368 if (opr->is_register()) { 2369 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2370 _oprs_new[mode][_oprs_len[mode]++] = &opr; 2371 2372 } else if (opr->is_pointer()) { 2373 LIR_Address* address = opr->as_address_ptr(); 2374 if (address != NULL) { 2375 // special handling for addresses: add base and index register of the address 2376 // both are always input operands or temp if we want to extend 2377 // their liveness! 2378 if (mode == outputMode) { 2379 mode = inputMode; 2380 } 2381 assert (mode == inputMode || mode == tempMode, "input or temp only for addresses"); 2382 if (address->_base->is_valid()) { 2383 assert(address->_base->is_register(), "must be"); 2384 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2385 _oprs_new[mode][_oprs_len[mode]++] = &address->_base; 2386 } 2387 if (address->_index->is_valid()) { 2388 assert(address->_index->is_register(), "must be"); 2389 assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); 2390 _oprs_new[mode][_oprs_len[mode]++] = &address->_index; 2391 } 2392 2393 } else { 2394 assert(opr->is_constant(), "constant operands are not processed"); 2395 } 2396 } else { 2397 assert(opr->is_stack(), "stack operands are not processed"); 2398 } 2399 } 2400 2401 void append(CodeEmitInfo* info) { 2402 assert(info != NULL, "should not call this otherwise"); 2403 assert(_info_len < maxNumberOfInfos, "array overflow"); 2404 _info_new[_info_len++] = info; 2405 } 2406 2407 public: 2408 LIR_OpVisitState() { reset(); } 2409 2410 LIR_Op* op() const { return _op; } 2411 void set_op(LIR_Op* op) { reset(); _op = op; } 2412 2413 bool has_call() const { return _has_call; } 2414 bool has_slow_case() const { return _has_slow_case; } 2415 2416 void reset() { 2417 _op = NULL; 2418 _has_call = false; 2419 _has_slow_case = false; 2420 2421 _oprs_len[inputMode] = 0; 2422 _oprs_len[tempMode] = 0; 2423 _oprs_len[outputMode] = 0; 2424 _info_len = 0; 2425 } 2426 2427 2428 int opr_count(OprMode mode) const { 2429 assert(mode >= 0 && mode < numModes, "bad mode"); 2430 return _oprs_len[mode]; 2431 } 2432 2433 LIR_Opr opr_at(OprMode mode, int index) const { 2434 assert(mode >= 0 && mode < numModes, "bad mode"); 2435 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2436 return *_oprs_new[mode][index]; 2437 } 2438 2439 void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { 2440 assert(mode >= 0 && mode < numModes, "bad mode"); 2441 assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); 2442 *_oprs_new[mode][index] = opr; 2443 } 2444 2445 int info_count() const { 2446 return _info_len; 2447 } 2448 2449 CodeEmitInfo* info_at(int index) const { 2450 assert(index < _info_len, "index out of bounds"); 2451 return _info_new[index]; 2452 } 2453 2454 XHandlers* all_xhandler(); 2455 2456 // collects all register operands of the instruction 2457 void visit(LIR_Op* op); 2458 2459 #ifdef ASSERT 2460 // check that an operation has no operands 2461 bool no_operands(LIR_Op* op); 2462 #endif 2463 2464 // LIR_Op visitor functions use these to fill in the state 2465 void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } 2466 void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } 2467 void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } 2468 void do_info(CodeEmitInfo* info) { append(info); } 2469 2470 void do_stub(CodeStub* stub); 2471 void do_call() { _has_call = true; } 2472 void do_slow_case() { _has_slow_case = true; } 2473 void do_slow_case(CodeEmitInfo* info) { 2474 _has_slow_case = true; 2475 append(info); 2476 } 2477 }; 2478 2479 2480 inline LIR_Opr LIR_OprDesc::illegalOpr() { return LIR_OprFact::illegalOpr; }; 2481 2482 #endif // SHARE_C1_C1_LIR_HPP --- EOF ---