1 /*
2 * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "c1/c1_Compilation.hpp"
27 #include "c1/c1_Defs.hpp"
28 #include "c1/c1_FrameMap.hpp"
29 #include "c1/c1_Instruction.hpp"
30 #include "c1/c1_LIRAssembler.hpp"
31 #include "c1/c1_LIRGenerator.hpp"
32 #include "c1/c1_ValueStack.hpp"
33 #include "ci/ciArrayKlass.hpp"
34 #include "ci/ciInstance.hpp"
35 #include "ci/ciObjArray.hpp"
36 #include "ci/ciUtilities.hpp"
37 #include "gc/shared/barrierSet.hpp"
38 #include "gc/shared/c1/barrierSetC1.hpp"
39 #include "oops/klass.inline.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 #include "runtime/stubRoutines.hpp"
42 #include "runtime/vm_version.hpp"
43 #include "utilities/bitMap.inline.hpp"
44 #include "utilities/macros.hpp"
45 #include "utilities/powerOfTwo.hpp"
46
47 #ifdef ASSERT
48 #define __ gen()->lir(__FILE__, __LINE__)->
49 #else
50 #define __ gen()->lir()->
51 #endif
52
53 #ifndef PATCHED_ADDR
54 #define PATCHED_ADDR (max_jint)
55 #endif
56
57 void PhiResolverState::reset() {
58 _virtual_operands.clear();
59 _other_operands.clear();
60 _vreg_table.clear();
61 }
62
63
64 //--------------------------------------------------------------
65 // PhiResolver
66
67 // Resolves cycles:
68 //
69 // r1 := r2 becomes temp := r1
70 // r2 := r1 r1 := r2
71 // r2 := temp
72 // and orders moves:
73 //
74 // r2 := r3 becomes r1 := r2
75 // r1 := r2 r2 := r3
76
77 PhiResolver::PhiResolver(LIRGenerator* gen)
78 : _gen(gen)
79 , _state(gen->resolver_state())
80 , _loop(nullptr)
81 , _temp(LIR_OprFact::illegalOpr)
82 {
83 // reinitialize the shared state arrays
84 _state.reset();
85 }
86
87
88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
89 assert(src->is_valid(), "");
90 assert(dest->is_valid(), "");
91 __ move(src, dest);
92 }
93
94
95 void PhiResolver::move_temp_to(LIR_Opr dest) {
96 assert(_temp->is_valid(), "");
97 emit_move(_temp, dest);
98 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
99 }
100
101
102 void PhiResolver::move_to_temp(LIR_Opr src) {
103 assert(_temp->is_illegal(), "");
104 _temp = _gen->new_register(src->type());
105 emit_move(src, _temp);
106 }
107
108
109 // Traverse assignment graph in depth first order and generate moves in post order
110 // ie. two assignments: b := c, a := b start with node c:
111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
112 // Generates moves in this order: move b to a and move c to b
113 // ie. cycle a := b, b := a start with node a
114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
115 // Generates moves in this order: move b to temp, move a to b, move temp to a
116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
117 if (!dest->visited()) {
118 dest->set_visited();
119 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
120 move(dest, dest->destination_at(i));
121 }
122 } else if (!dest->start_node()) {
123 // cylce in graph detected
124 assert(_loop == NULL, "only one loop valid!");
125 _loop = dest;
126 move_to_temp(src->operand());
127 return;
128 } // else dest is a start node
129
130 if (!dest->assigned()) {
131 if (_loop == dest) {
132 move_temp_to(dest->operand());
133 dest->set_assigned();
134 } else if (src != NULL) {
135 emit_move(src->operand(), dest->operand());
136 dest->set_assigned();
137 }
138 }
139 }
140
141
142 PhiResolver::~PhiResolver() {
143 int i;
144 // resolve any cycles in moves from and to virtual registers
145 for (i = virtual_operands().length() - 1; i >= 0; i --) {
146 ResolveNode* node = virtual_operands().at(i);
147 if (!node->visited()) {
148 _loop = NULL;
149 move(NULL, node);
150 node->set_start_node();
151 assert(_temp->is_illegal(), "move_temp_to() call missing");
152 }
153 }
154
155 // generate move for move from non virtual register to abitrary destination
156 for (i = other_operands().length() - 1; i >= 0; i --) {
157 ResolveNode* node = other_operands().at(i);
158 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
159 emit_move(node->operand(), node->destination_at(j)->operand());
160 }
161 }
162 }
163
164
165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
166 ResolveNode* node;
167 if (opr->is_virtual()) {
168 int vreg_num = opr->vreg_number();
169 node = vreg_table().at_grow(vreg_num, NULL);
170 assert(node == NULL || node->operand() == opr, "");
171 if (node == NULL) {
172 node = new ResolveNode(opr);
173 vreg_table().at_put(vreg_num, node);
174 }
175 // Make sure that all virtual operands show up in the list when
176 // they are used as the source of a move.
177 if (source && !virtual_operands().contains(node)) {
178 virtual_operands().append(node);
179 }
180 } else {
181 assert(source, "");
182 node = new ResolveNode(opr);
183 other_operands().append(node);
184 }
185 return node;
186 }
187
188
189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
190 assert(dest->is_virtual(), "");
191 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
192 assert(src->is_valid(), "");
193 assert(dest->is_valid(), "");
194 ResolveNode* source = source_node(src);
195 source->append(destination_node(dest));
196 }
197
198
199 //--------------------------------------------------------------
200 // LIRItem
201
202 void LIRItem::set_result(LIR_Opr opr) {
203 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
204 value()->set_operand(opr);
205
206 if (opr->is_virtual()) {
207 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
208 }
209
210 _result = opr;
211 }
212
213 void LIRItem::load_item() {
214 if (result()->is_illegal()) {
215 // update the items result
216 _result = value()->operand();
217 }
218 if (!result()->is_register()) {
219 LIR_Opr reg = _gen->new_register(value()->type());
220 __ move(result(), reg);
221 if (result()->is_constant()) {
222 _result = reg;
223 } else {
224 set_result(reg);
225 }
226 }
227 }
228
229
230 void LIRItem::load_for_store(BasicType type) {
231 if (_gen->can_store_as_constant(value(), type)) {
232 _result = value()->operand();
233 if (!_result->is_constant()) {
234 _result = LIR_OprFact::value_type(value()->type());
235 }
236 } else if (type == T_BYTE || type == T_BOOLEAN) {
237 load_byte_item();
238 } else {
239 load_item();
240 }
241 }
242
243 void LIRItem::load_item_force(LIR_Opr reg) {
244 LIR_Opr r = result();
245 if (r != reg) {
246 #if !defined(ARM) && !defined(E500V2)
247 if (r->type() != reg->type()) {
248 // moves between different types need an intervening spill slot
249 r = _gen->force_to_spill(r, reg->type());
250 }
251 #endif
252 __ move(r, reg);
253 _result = reg;
254 }
255 }
256
257 ciObject* LIRItem::get_jobject_constant() const {
258 ObjectType* oc = type()->as_ObjectType();
259 if (oc) {
260 return oc->constant_value();
261 }
262 return NULL;
263 }
264
265
266 jint LIRItem::get_jint_constant() const {
267 assert(is_constant() && value() != NULL, "");
268 assert(type()->as_IntConstant() != NULL, "type check");
269 return type()->as_IntConstant()->value();
270 }
271
272
273 jint LIRItem::get_address_constant() const {
274 assert(is_constant() && value() != NULL, "");
275 assert(type()->as_AddressConstant() != NULL, "type check");
276 return type()->as_AddressConstant()->value();
277 }
278
279
280 jfloat LIRItem::get_jfloat_constant() const {
281 assert(is_constant() && value() != NULL, "");
282 assert(type()->as_FloatConstant() != NULL, "type check");
283 return type()->as_FloatConstant()->value();
284 }
285
286
287 jdouble LIRItem::get_jdouble_constant() const {
288 assert(is_constant() && value() != NULL, "");
289 assert(type()->as_DoubleConstant() != NULL, "type check");
290 return type()->as_DoubleConstant()->value();
291 }
292
293
294 jlong LIRItem::get_jlong_constant() const {
295 assert(is_constant() && value() != NULL, "");
296 assert(type()->as_LongConstant() != NULL, "type check");
297 return type()->as_LongConstant()->value();
298 }
299
300
301
302 //--------------------------------------------------------------
303
304
305 void LIRGenerator::block_do_prolog(BlockBegin* block) {
306 #ifndef PRODUCT
307 if (PrintIRWithLIR) {
308 block->print();
309 }
310 #endif
311
312 // set up the list of LIR instructions
313 assert(block->lir() == NULL, "LIR list already computed for this block");
314 _lir = new LIR_List(compilation(), block);
315 block->set_lir(_lir);
316
317 __ branch_destination(block->label());
318
319 if (LIRTraceExecution &&
320 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
321 !block->is_set(BlockBegin::exception_entry_flag)) {
322 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
323 trace_block_entry(block);
324 }
325 }
326
327
328 void LIRGenerator::block_do_epilog(BlockBegin* block) {
329 #ifndef PRODUCT
330 if (PrintIRWithLIR) {
331 tty->cr();
332 }
333 #endif
334
335 // LIR_Opr for unpinned constants shouldn't be referenced by other
336 // blocks so clear them out after processing the block.
337 for (int i = 0; i < _unpinned_constants.length(); i++) {
338 _unpinned_constants.at(i)->clear_operand();
339 }
340 _unpinned_constants.trunc_to(0);
341
342 // clear our any registers for other local constants
343 _constants.trunc_to(0);
344 _reg_for_constants.trunc_to(0);
345 }
346
347
348 void LIRGenerator::block_do(BlockBegin* block) {
349 CHECK_BAILOUT();
350
351 block_do_prolog(block);
352 set_block(block);
353
354 for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
355 if (instr->is_pinned()) do_root(instr);
356 }
357
358 set_block(NULL);
359 block_do_epilog(block);
360 }
361
362
363 //-------------------------LIRGenerator-----------------------------
364
365 // This is where the tree-walk starts; instr must be root;
366 void LIRGenerator::do_root(Value instr) {
367 CHECK_BAILOUT();
368
369 InstructionMark im(compilation(), instr);
370
371 assert(instr->is_pinned(), "use only with roots");
372 assert(instr->subst() == instr, "shouldn't have missed substitution");
373
374 instr->visit(this);
375
376 assert(!instr->has_uses() || instr->operand()->is_valid() ||
377 instr->as_Constant() != NULL || bailed_out(), "invalid item set");
378 }
379
380
381 // This is called for each node in tree; the walk stops if a root is reached
382 void LIRGenerator::walk(Value instr) {
383 InstructionMark im(compilation(), instr);
384 //stop walk when encounter a root
385 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
386 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
387 } else {
388 assert(instr->subst() == instr, "shouldn't have missed substitution");
389 instr->visit(this);
390 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
391 }
392 }
393
394
395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
396 assert(state != NULL, "state must be defined");
397
398 #ifndef PRODUCT
399 state->verify();
400 #endif
401
402 ValueStack* s = state;
403 for_each_state(s) {
404 if (s->kind() == ValueStack::EmptyExceptionState) {
405 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
406 continue;
407 }
408
409 int index;
410 Value value;
411 for_each_stack_value(s, index, value) {
412 assert(value->subst() == value, "missed substitution");
413 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
414 walk(value);
415 assert(value->operand()->is_valid(), "must be evaluated now");
416 }
417 }
418
419 int bci = s->bci();
420 IRScope* scope = s->scope();
421 ciMethod* method = scope->method();
422
423 MethodLivenessResult liveness = method->liveness_at_bci(bci);
424 if (bci == SynchronizationEntryBCI) {
425 if (x->as_ExceptionObject() || x->as_Throw()) {
426 // all locals are dead on exit from the synthetic unlocker
427 liveness.clear();
428 } else {
429 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
430 }
431 }
432 if (!liveness.is_valid()) {
433 // Degenerate or breakpointed method.
434 bailout("Degenerate or breakpointed method");
435 } else {
436 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
437 for_each_local_value(s, index, value) {
438 assert(value->subst() == value, "missed substition");
439 if (liveness.at(index) && !value->type()->is_illegal()) {
440 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
441 walk(value);
442 assert(value->operand()->is_valid(), "must be evaluated now");
443 }
444 } else {
445 // NULL out this local so that linear scan can assume that all non-NULL values are live.
446 s->invalidate_local(index);
447 }
448 }
449 }
450 }
451
452 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
453 }
454
455
456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
457 return state_for(x, x->exception_state());
458 }
459
460
461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
462 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
463 * is active and the class hasn't yet been resolved we need to emit a patch that resolves
464 * the class. */
465 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
466 assert(info != NULL, "info must be set if class is not loaded");
467 __ klass2reg_patch(NULL, r, info);
468 } else {
469 // no patching needed
470 __ metadata2reg(obj->constant_encoding(), r);
471 }
472 }
473
474
475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
476 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
477 CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
478 if (index->is_constant()) {
479 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
480 index->as_jint(), null_check_info);
481 __ branch(lir_cond_belowEqual, stub); // forward branch
482 } else {
483 cmp_reg_mem(lir_cond_aboveEqual, index, array,
484 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
485 __ branch(lir_cond_aboveEqual, stub); // forward branch
486 }
487 }
488
489
490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
491 CodeStub* stub = new RangeCheckStub(info, index);
492 if (index->is_constant()) {
493 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
494 __ branch(lir_cond_belowEqual, stub); // forward branch
495 } else {
496 cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
497 java_nio_Buffer::limit_offset(), T_INT, info);
498 __ branch(lir_cond_aboveEqual, stub); // forward branch
499 }
500 __ move(index, result);
501 }
502
503
504
505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
506 LIR_Opr result_op = result;
507 LIR_Opr left_op = left;
508 LIR_Opr right_op = right;
509
510 if (TwoOperandLIRForm && left_op != result_op) {
511 assert(right_op != result_op, "malformed");
512 __ move(left_op, result_op);
513 left_op = result_op;
514 }
515
516 switch(code) {
517 case Bytecodes::_dadd:
518 case Bytecodes::_fadd:
519 case Bytecodes::_ladd:
520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
521 case Bytecodes::_fmul:
522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
523
524 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break;
525
526 case Bytecodes::_imul:
527 {
528 bool did_strength_reduce = false;
529
530 if (right->is_constant()) {
531 jint c = right->as_jint();
532 if (c > 0 && is_power_of_2(c)) {
533 // do not need tmp here
534 __ shift_left(left_op, exact_log2(c), result_op);
535 did_strength_reduce = true;
536 } else {
537 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
538 }
539 }
540 // we couldn't strength reduce so just emit the multiply
541 if (!did_strength_reduce) {
542 __ mul(left_op, right_op, result_op);
543 }
544 }
545 break;
546
547 case Bytecodes::_dsub:
548 case Bytecodes::_fsub:
549 case Bytecodes::_lsub:
550 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
551
552 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
553 // ldiv and lrem are implemented with a direct runtime call
554
555 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
556
557 case Bytecodes::_drem:
558 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
559
560 default: ShouldNotReachHere();
561 }
562 }
563
564
565 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
566 arithmetic_op(code, result, left, right, tmp);
567 }
568
569
570 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
571 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
572 }
573
574
575 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
576 arithmetic_op(code, result, left, right, tmp);
577 }
578
579
580 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
581
582 if (TwoOperandLIRForm && value != result_op
583 // Only 32bit right shifts require two operand form on S390.
584 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
585 assert(count != result_op, "malformed");
586 __ move(value, result_op);
587 value = result_op;
588 }
589
590 assert(count->is_constant() || count->is_register(), "must be");
591 switch(code) {
592 case Bytecodes::_ishl:
593 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
594 case Bytecodes::_ishr:
595 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
596 case Bytecodes::_iushr:
597 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
598 default: ShouldNotReachHere();
599 }
600 }
601
602
603 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
604 if (TwoOperandLIRForm && left_op != result_op) {
605 assert(right_op != result_op, "malformed");
606 __ move(left_op, result_op);
607 left_op = result_op;
608 }
609
610 switch(code) {
611 case Bytecodes::_iand:
612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
613
614 case Bytecodes::_ior:
615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
616
617 case Bytecodes::_ixor:
618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
619
620 default: ShouldNotReachHere();
621 }
622 }
623
624
625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
626 if (!GenerateSynchronizationCode) return;
627 // for slow path, use debug info for state after successful locking
628 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
629 __ load_stack_address_monitor(monitor_no, lock);
630 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
631 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
632 }
633
634
635 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
636 if (!GenerateSynchronizationCode) return;
637 // setup registers
638 LIR_Opr hdr = lock;
639 lock = new_hdr;
640 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
641 __ load_stack_address_monitor(monitor_no, lock);
642 __ unlock_object(hdr, object, lock, scratch, slow_path);
643 }
644
645 #ifndef PRODUCT
646 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
647 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
648 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
649 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
650 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
651 }
652 }
653 #endif
654
655 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
656 klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
657 // If klass is not loaded we do not know if the klass has finalizers:
658 if (UseFastNewInstance && klass->is_loaded()
659 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
660
661 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
662
663 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
664
665 assert(klass->is_loaded(), "must be loaded");
666 // allocate space for instance
667 assert(klass->size_helper() > 0, "illegal instance size");
668 const int instance_size = align_object_size(klass->size_helper());
669 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
670 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
671 } else {
672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
673 __ branch(lir_cond_always, slow_path);
674 __ branch_destination(slow_path->continuation());
675 }
676 }
677
678
679 static bool is_constant_zero(Instruction* inst) {
680 IntConstant* c = inst->type()->as_IntConstant();
681 if (c) {
682 return (c->value() == 0);
683 }
684 return false;
685 }
686
687
688 static bool positive_constant(Instruction* inst) {
689 IntConstant* c = inst->type()->as_IntConstant();
690 if (c) {
691 return (c->value() >= 0);
692 }
693 return false;
694 }
695
696
697 static ciArrayKlass* as_array_klass(ciType* type) {
698 if (type != NULL && type->is_array_klass() && type->is_loaded()) {
699 return (ciArrayKlass*)type;
700 } else {
701 return NULL;
702 }
703 }
704
705 static ciType* phi_declared_type(Phi* phi) {
706 ciType* t = phi->operand_at(0)->declared_type();
707 if (t == NULL) {
708 return NULL;
709 }
710 for(int i = 1; i < phi->operand_count(); i++) {
711 if (t != phi->operand_at(i)->declared_type()) {
712 return NULL;
713 }
714 }
715 return t;
716 }
717
718 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
719 Instruction* src = x->argument_at(0);
720 Instruction* src_pos = x->argument_at(1);
721 Instruction* dst = x->argument_at(2);
722 Instruction* dst_pos = x->argument_at(3);
723 Instruction* length = x->argument_at(4);
724
725 // first try to identify the likely type of the arrays involved
726 ciArrayKlass* expected_type = NULL;
727 bool is_exact = false, src_objarray = false, dst_objarray = false;
728 {
729 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
730 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
731 Phi* phi;
732 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
733 src_declared_type = as_array_klass(phi_declared_type(phi));
734 }
735 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
736 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
737 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
738 dst_declared_type = as_array_klass(phi_declared_type(phi));
739 }
740
741 if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
742 // the types exactly match so the type is fully known
743 is_exact = true;
744 expected_type = src_exact_type;
745 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
746 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
747 ciArrayKlass* src_type = NULL;
748 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
749 src_type = (ciArrayKlass*) src_exact_type;
750 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
751 src_type = (ciArrayKlass*) src_declared_type;
752 }
753 if (src_type != NULL) {
754 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
755 is_exact = true;
756 expected_type = dst_type;
757 }
758 }
759 }
760 // at least pass along a good guess
761 if (expected_type == NULL) expected_type = dst_exact_type;
762 if (expected_type == NULL) expected_type = src_declared_type;
763 if (expected_type == NULL) expected_type = dst_declared_type;
764
765 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
766 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
767 }
768
769 // if a probable array type has been identified, figure out if any
770 // of the required checks for a fast case can be elided.
771 int flags = LIR_OpArrayCopy::all_flags;
772
773 if (!src_objarray)
774 flags &= ~LIR_OpArrayCopy::src_objarray;
775 if (!dst_objarray)
776 flags &= ~LIR_OpArrayCopy::dst_objarray;
777
778 if (!x->arg_needs_null_check(0))
779 flags &= ~LIR_OpArrayCopy::src_null_check;
780 if (!x->arg_needs_null_check(2))
781 flags &= ~LIR_OpArrayCopy::dst_null_check;
782
783
784 if (expected_type != NULL) {
785 Value length_limit = NULL;
786
787 IfOp* ifop = length->as_IfOp();
788 if (ifop != NULL) {
789 // look for expressions like min(v, a.length) which ends up as
790 // x > y ? y : x or x >= y ? y : x
791 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
792 ifop->x() == ifop->fval() &&
793 ifop->y() == ifop->tval()) {
794 length_limit = ifop->y();
795 }
796 }
797
798 // try to skip null checks and range checks
799 NewArray* src_array = src->as_NewArray();
800 if (src_array != NULL) {
801 flags &= ~LIR_OpArrayCopy::src_null_check;
802 if (length_limit != NULL &&
803 src_array->length() == length_limit &&
804 is_constant_zero(src_pos)) {
805 flags &= ~LIR_OpArrayCopy::src_range_check;
806 }
807 }
808
809 NewArray* dst_array = dst->as_NewArray();
810 if (dst_array != NULL) {
811 flags &= ~LIR_OpArrayCopy::dst_null_check;
812 if (length_limit != NULL &&
813 dst_array->length() == length_limit &&
814 is_constant_zero(dst_pos)) {
815 flags &= ~LIR_OpArrayCopy::dst_range_check;
816 }
817 }
818
819 // check from incoming constant values
820 if (positive_constant(src_pos))
821 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
822 if (positive_constant(dst_pos))
823 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
824 if (positive_constant(length))
825 flags &= ~LIR_OpArrayCopy::length_positive_check;
826
827 // see if the range check can be elided, which might also imply
828 // that src or dst is non-null.
829 ArrayLength* al = length->as_ArrayLength();
830 if (al != NULL) {
831 if (al->array() == src) {
832 // it's the length of the source array
833 flags &= ~LIR_OpArrayCopy::length_positive_check;
834 flags &= ~LIR_OpArrayCopy::src_null_check;
835 if (is_constant_zero(src_pos))
836 flags &= ~LIR_OpArrayCopy::src_range_check;
837 }
838 if (al->array() == dst) {
839 // it's the length of the destination array
840 flags &= ~LIR_OpArrayCopy::length_positive_check;
841 flags &= ~LIR_OpArrayCopy::dst_null_check;
842 if (is_constant_zero(dst_pos))
843 flags &= ~LIR_OpArrayCopy::dst_range_check;
844 }
845 }
846 if (is_exact) {
847 flags &= ~LIR_OpArrayCopy::type_check;
848 }
849 }
850
851 IntConstant* src_int = src_pos->type()->as_IntConstant();
852 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
853 if (src_int && dst_int) {
854 int s_offs = src_int->value();
855 int d_offs = dst_int->value();
856 if (src_int->value() >= dst_int->value()) {
857 flags &= ~LIR_OpArrayCopy::overlapping;
858 }
859 if (expected_type != NULL) {
860 BasicType t = expected_type->element_type()->basic_type();
861 int element_size = type2aelembytes(t);
862 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
863 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
864 flags &= ~LIR_OpArrayCopy::unaligned;
865 }
866 }
867 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
868 // src and dest positions are the same, or dst is zero so assume
869 // nonoverlapping copy.
870 flags &= ~LIR_OpArrayCopy::overlapping;
871 }
872
873 if (src == dst) {
874 // moving within a single array so no type checks are needed
875 if (flags & LIR_OpArrayCopy::type_check) {
876 flags &= ~LIR_OpArrayCopy::type_check;
877 }
878 }
879 *flagsp = flags;
880 *expected_typep = (ciArrayKlass*)expected_type;
881 }
882
883
884 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
885 assert(opr->is_register(), "why spill if item is not register?");
886
887 if (strict_fp_requires_explicit_rounding) {
888 #ifdef IA32
889 if (UseSSE < 1 && opr->is_single_fpu()) {
890 LIR_Opr result = new_register(T_FLOAT);
891 set_vreg_flag(result, must_start_in_memory);
892 assert(opr->is_register(), "only a register can be spilled");
893 assert(opr->value_type()->is_float(), "rounding only for floats available");
894 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
895 return result;
896 }
897 #else
898 Unimplemented();
899 #endif // IA32
900 }
901 return opr;
902 }
903
904
905 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
906 assert(type2size[t] == type2size[value->type()],
907 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
908 if (!value->is_register()) {
909 // force into a register
910 LIR_Opr r = new_register(value->type());
911 __ move(value, r);
912 value = r;
913 }
914
915 // create a spill location
916 LIR_Opr tmp = new_register(t);
917 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
918
919 // move from register to spill
920 __ move(value, tmp);
921 return tmp;
922 }
923
924 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
925 if (if_instr->should_profile()) {
926 ciMethod* method = if_instr->profiled_method();
927 assert(method != NULL, "method should be set if branch is profiled");
928 ciMethodData* md = method->method_data_or_null();
929 assert(md != NULL, "Sanity");
930 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
931 assert(data != NULL, "must have profiling data");
932 assert(data->is_BranchData(), "need BranchData for two-way branches");
933 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
934 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
935 if (if_instr->is_swapped()) {
936 int t = taken_count_offset;
937 taken_count_offset = not_taken_count_offset;
938 not_taken_count_offset = t;
939 }
940
941 LIR_Opr md_reg = new_register(T_METADATA);
942 __ metadata2reg(md->constant_encoding(), md_reg);
943
944 LIR_Opr data_offset_reg = new_pointer_register();
945 __ cmove(lir_cond(cond),
946 LIR_OprFact::intptrConst(taken_count_offset),
947 LIR_OprFact::intptrConst(not_taken_count_offset),
948 data_offset_reg, as_BasicType(if_instr->x()->type()));
949
950 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
951 LIR_Opr data_reg = new_pointer_register();
952 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
953 __ move(data_addr, data_reg);
954 // Use leal instead of add to avoid destroying condition codes on x86
955 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
956 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
957 __ move(data_reg, data_addr);
958 }
959 }
960
961 // Phi technique:
962 // This is about passing live values from one basic block to the other.
963 // In code generated with Java it is rather rare that more than one
964 // value is on the stack from one basic block to the other.
965 // We optimize our technique for efficient passing of one value
966 // (of type long, int, double..) but it can be extended.
967 // When entering or leaving a basic block, all registers and all spill
968 // slots are release and empty. We use the released registers
969 // and spill slots to pass the live values from one block
970 // to the other. The topmost value, i.e., the value on TOS of expression
971 // stack is passed in registers. All other values are stored in spilling
972 // area. Every Phi has an index which designates its spill slot
973 // At exit of a basic block, we fill the register(s) and spill slots.
974 // At entry of a basic block, the block_prolog sets up the content of phi nodes
975 // and locks necessary registers and spilling slots.
976
977
978 // move current value to referenced phi function
979 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
980 Phi* phi = sux_val->as_Phi();
981 // cur_val can be null without phi being null in conjunction with inlining
982 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
983 if (phi->is_local()) {
984 for (int i = 0; i < phi->operand_count(); i++) {
985 Value op = phi->operand_at(i);
986 if (op != NULL && op->type()->is_illegal()) {
987 bailout("illegal phi operand");
988 }
989 }
990 }
991 Phi* cur_phi = cur_val->as_Phi();
992 if (cur_phi != NULL && cur_phi->is_illegal()) {
993 // Phi and local would need to get invalidated
994 // (which is unexpected for Linear Scan).
995 // But this case is very rare so we simply bail out.
996 bailout("propagation of illegal phi");
997 return;
998 }
999 LIR_Opr operand = cur_val->operand();
1000 if (operand->is_illegal()) {
1001 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1002 "these can be produced lazily");
1003 operand = operand_for_instruction(cur_val);
1004 }
1005 resolver->move(operand, operand_for_instruction(phi));
1006 }
1007 }
1008
1009
1010 // Moves all stack values into their PHI position
1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1012 BlockBegin* bb = block();
1013 if (bb->number_of_sux() == 1) {
1014 BlockBegin* sux = bb->sux_at(0);
1015 assert(sux->number_of_preds() > 0, "invalid CFG");
1016
1017 // a block with only one predecessor never has phi functions
1018 if (sux->number_of_preds() > 1) {
1019 PhiResolver resolver(this);
1020
1021 ValueStack* sux_state = sux->state();
1022 Value sux_value;
1023 int index;
1024
1025 assert(cur_state->scope() == sux_state->scope(), "not matching");
1026 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1027 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1028
1029 for_each_stack_value(sux_state, index, sux_value) {
1030 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1031 }
1032
1033 for_each_local_value(sux_state, index, sux_value) {
1034 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1035 }
1036
1037 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1038 }
1039 }
1040 }
1041
1042
1043 LIR_Opr LIRGenerator::new_register(BasicType type) {
1044 int vreg_num = _virtual_register_number;
1045 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1046 // a few extra registers before we really run out which helps to avoid to trip over assertions.
1047 if (vreg_num + 20 >= LIR_OprDesc::vreg_max) {
1048 bailout("out of virtual registers in LIR generator");
1049 if (vreg_num + 2 >= LIR_OprDesc::vreg_max) {
1050 // Wrap it around and continue until bailout really happens to avoid hitting assertions.
1051 _virtual_register_number = LIR_OprDesc::vreg_base;
1052 vreg_num = LIR_OprDesc::vreg_base;
1053 }
1054 }
1055 _virtual_register_number += 1;
1056 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1057 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1058 return vreg;
1059 }
1060
1061
1062 // Try to lock using register in hint
1063 LIR_Opr LIRGenerator::rlock(Value instr) {
1064 return new_register(instr->type());
1065 }
1066
1067
1068 // does an rlock and sets result
1069 LIR_Opr LIRGenerator::rlock_result(Value x) {
1070 LIR_Opr reg = rlock(x);
1071 set_result(x, reg);
1072 return reg;
1073 }
1074
1075
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1078 LIR_Opr reg;
1079 switch (type) {
1080 case T_BYTE:
1081 case T_BOOLEAN:
1082 reg = rlock_byte(type);
1083 break;
1084 default:
1085 reg = rlock(x);
1086 break;
1087 }
1088
1089 set_result(x, reg);
1090 return reg;
1091 }
1092
1093
1094 //---------------------------------------------------------------------
1095 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1096 ObjectType* oc = value->type()->as_ObjectType();
1097 if (oc) {
1098 return oc->constant_value();
1099 }
1100 return NULL;
1101 }
1102
1103
1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1105 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1106 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1107
1108 // no moves are created for phi functions at the begin of exception
1109 // handlers, so assign operands manually here
1110 for_each_phi_fun(block(), phi,
1111 if (!phi->is_illegal()) { operand_for_instruction(phi); });
1112
1113 LIR_Opr thread_reg = getThreadPointer();
1114 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1115 exceptionOopOpr());
1116 __ move_wide(LIR_OprFact::oopConst(NULL),
1117 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1118 __ move_wide(LIR_OprFact::oopConst(NULL),
1119 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1120
1121 LIR_Opr result = new_register(T_OBJECT);
1122 __ move(exceptionOopOpr(), result);
1123 set_result(x, result);
1124 }
1125
1126
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 // visitor functions
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136
1137 void LIRGenerator::do_Phi(Phi* x) {
1138 // phi functions are never visited directly
1139 ShouldNotReachHere();
1140 }
1141
1142
1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1144 void LIRGenerator::do_Constant(Constant* x) {
1145 if (x->state_before() != NULL) {
1146 // Any constant with a ValueStack requires patching so emit the patch here
1147 LIR_Opr reg = rlock_result(x);
1148 CodeEmitInfo* info = state_for(x, x->state_before());
1149 __ oop2reg_patch(NULL, reg, info);
1150 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1151 if (!x->is_pinned()) {
1152 // unpinned constants are handled specially so that they can be
1153 // put into registers when they are used multiple times within a
1154 // block. After the block completes their operand will be
1155 // cleared so that other blocks can't refer to that register.
1156 set_result(x, load_constant(x));
1157 } else {
1158 LIR_Opr res = x->operand();
1159 if (!res->is_valid()) {
1160 res = LIR_OprFact::value_type(x->type());
1161 }
1162 if (res->is_constant()) {
1163 LIR_Opr reg = rlock_result(x);
1164 __ move(res, reg);
1165 } else {
1166 set_result(x, res);
1167 }
1168 }
1169 } else {
1170 set_result(x, LIR_OprFact::value_type(x->type()));
1171 }
1172 }
1173
1174
1175 void LIRGenerator::do_Local(Local* x) {
1176 // operand_for_instruction has the side effect of setting the result
1177 // so there's no need to do it here.
1178 operand_for_instruction(x);
1179 }
1180
1181
1182 void LIRGenerator::do_Return(Return* x) {
1183 if (compilation()->env()->dtrace_method_probes()) {
1184 BasicTypeList signature;
1185 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1186 signature.append(T_METADATA); // Method*
1187 LIR_OprList* args = new LIR_OprList();
1188 args->append(getThreadPointer());
1189 LIR_Opr meth = new_register(T_METADATA);
1190 __ metadata2reg(method()->constant_encoding(), meth);
1191 args->append(meth);
1192 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1193 }
1194
1195 if (x->type()->is_void()) {
1196 __ return_op(LIR_OprFact::illegalOpr);
1197 } else {
1198 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1199 LIRItem result(x->result(), this);
1200
1201 result.load_item_force(reg);
1202 __ return_op(result.result());
1203 }
1204 set_no_result(x);
1205 }
1206
1207 // Examble: ref.get()
1208 // Combination of LoadField and g1 pre-write barrier
1209 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1210
1211 const int referent_offset = java_lang_ref_Reference::referent_offset();
1212
1213 assert(x->number_of_arguments() == 1, "wrong type");
1214
1215 LIRItem reference(x->argument_at(0), this);
1216 reference.load_item();
1217
1218 // need to perform the null check on the reference objecy
1219 CodeEmitInfo* info = NULL;
1220 if (x->needs_null_check()) {
1221 info = state_for(x);
1222 }
1223
1224 LIR_Opr result = rlock_result(x, T_OBJECT);
1225 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1226 reference, LIR_OprFact::intConst(referent_offset), result,
1227 nullptr, info);
1228 }
1229
1230 // Example: clazz.isInstance(object)
1231 void LIRGenerator::do_isInstance(Intrinsic* x) {
1232 assert(x->number_of_arguments() == 2, "wrong type");
1233
1234 // TODO could try to substitute this node with an equivalent InstanceOf
1235 // if clazz is known to be a constant Class. This will pick up newly found
1236 // constants after HIR construction. I'll leave this to a future change.
1237
1238 // as a first cut, make a simple leaf call to runtime to stay platform independent.
1239 // could follow the aastore example in a future change.
1240
1241 LIRItem clazz(x->argument_at(0), this);
1242 LIRItem object(x->argument_at(1), this);
1243 clazz.load_item();
1244 object.load_item();
1245 LIR_Opr result = rlock_result(x);
1246
1247 // need to perform null check on clazz
1248 if (x->needs_null_check()) {
1249 CodeEmitInfo* info = state_for(x);
1250 __ null_check(clazz.result(), info);
1251 }
1252
1253 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1254 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1255 x->type(),
1256 NULL); // NULL CodeEmitInfo results in a leaf call
1257 __ move(call_result, result);
1258 }
1259
1260 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) {
1261 __ load_klass(obj, klass, null_check_info);
1262 }
1263
1264 // Example: object.getClass ()
1265 void LIRGenerator::do_getClass(Intrinsic* x) {
1266 assert(x->number_of_arguments() == 1, "wrong type");
1267
1268 LIRItem rcvr(x->argument_at(0), this);
1269 rcvr.load_item();
1270 LIR_Opr temp = new_register(T_ADDRESS);
1271 LIR_Opr result = rlock_result(x);
1272
1273 // need to perform the null check on the rcvr
1274 CodeEmitInfo* info = NULL;
1275 if (x->needs_null_check()) {
1276 info = state_for(x);
1277 }
1278
1279 LIR_Opr klass = new_register(T_METADATA);
1280 load_klass(rcvr.result(), klass, info);
1281 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1282 // mirror = ((OopHandle)mirror)->resolve();
1283 access_load(IN_NATIVE, T_OBJECT,
1284 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1285 }
1286
1287 // java.lang.Class::isPrimitive()
1288 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1289 assert(x->number_of_arguments() == 1, "wrong type");
1290
1291 LIRItem rcvr(x->argument_at(0), this);
1292 rcvr.load_item();
1293 LIR_Opr temp = new_register(T_METADATA);
1294 LIR_Opr result = rlock_result(x);
1295
1296 CodeEmitInfo* info = NULL;
1297 if (x->needs_null_check()) {
1298 info = state_for(x);
1299 }
1300
1301 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1302 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1303 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1304 }
1305
1306 // Example: Foo.class.getModifiers()
1307 void LIRGenerator::do_getModifiers(Intrinsic* x) {
1308 assert(x->number_of_arguments() == 1, "wrong type");
1309
1310 LIRItem receiver(x->argument_at(0), this);
1311 receiver.load_item();
1312 LIR_Opr result = rlock_result(x);
1313
1314 CodeEmitInfo* info = NULL;
1315 if (x->needs_null_check()) {
1316 info = state_for(x);
1317 }
1318
1319 // While reading off the universal constant mirror is less efficient than doing
1320 // another branch and returning the constant answer, this branchless code runs into
1321 // much less risk of confusion for C1 register allocator. The choice of the universe
1322 // object here is correct as long as it returns the same modifiers we would expect
1323 // from the primitive class itself. See spec for Class.getModifiers that provides
1324 // the typed array klasses with similar modifiers as their component types.
1325
1326 Klass* univ_klass_obj = Universe::byteArrayKlassObj();
1327 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1328 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
1329
1330 LIR_Opr recv_klass = new_register(T_METADATA);
1331 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1332
1333 // Check if this is a Java mirror of primitive type, and select the appropriate klass.
1334 LIR_Opr klass = new_register(T_METADATA);
1335 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1336 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1337
1338 // Get the answer.
1339 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1340 }
1341
1342 // Example: Thread.currentThread()
1343 void LIRGenerator::do_currentThread(Intrinsic* x) {
1344 assert(x->number_of_arguments() == 0, "wrong type");
1345 LIR_Opr temp = new_register(T_ADDRESS);
1346 LIR_Opr reg = rlock_result(x);
1347 __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp);
1348 // threadObj = ((OopHandle)_threadObj)->resolve();
1349 access_load(IN_NATIVE, T_OBJECT,
1350 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1351 }
1352
1353 void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1354 assert(x->number_of_arguments() == 3, "wrong type");
1355 LIR_Opr result_reg = rlock_result(x);
1356
1357 LIRItem value(x->argument_at(2), this);
1358 value.load_item();
1359
1360 LIR_Opr klass = new_register(T_METADATA);
1361 load_klass(value.result(), klass, NULL);
1362 LIR_Opr layout = new_register(T_INT);
1363 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1364
1365 LabelObj* L_done = new LabelObj();
1366 LabelObj* L_array = new LabelObj();
1367
1368 __ cmp(lir_cond_lessEqual, layout, 0);
1369 __ branch(lir_cond_lessEqual, L_array->label());
1370
1371 // Instance case: the layout helper gives us instance size almost directly,
1372 // but we need to mask out the _lh_instance_slow_path_bit.
1373 __ convert(Bytecodes::_i2l, layout, result_reg);
1374
1375 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1376 jlong mask = ~(jlong) right_n_bits(LogBytesPerLong);
1377 __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg);
1378
1379 __ branch(lir_cond_always, L_done->label());
1380
1381 // Array case: size is round(header + element_size*arraylength).
1382 // Since arraylength is different for every array instance, we have to
1383 // compute the whole thing at runtime.
1384
1385 __ branch_destination(L_array->label());
1386
1387 int round_mask = MinObjAlignmentInBytes - 1;
1388
1389 // Figure out header sizes first.
1390 LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift);
1391 LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask);
1392
1393 LIR_Opr header_size = new_register(T_INT);
1394 __ move(layout, header_size);
1395 LIR_Opr tmp = new_register(T_INT);
1396 __ unsigned_shift_right(header_size, hss, header_size, tmp);
1397 __ logical_and(header_size, hsm, header_size);
1398 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1399
1400 // Figure out the array length in bytes
1401 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1402 LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask);
1403 __ logical_and(layout, l2esm, layout);
1404
1405 LIR_Opr length_int = new_register(T_INT);
1406 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1407
1408 #ifdef _LP64
1409 LIR_Opr length = new_register(T_LONG);
1410 __ convert(Bytecodes::_i2l, length_int, length);
1411 #endif
1412
1413 // Shift-left awkwardness. Normally it is just:
1414 // __ shift_left(length, layout, length);
1415 // But C1 cannot perform shift_left with non-constant count, so we end up
1416 // doing the per-bit loop dance here. x86_32 also does not know how to shift
1417 // longs, so we have to act on ints.
1418 LabelObj* L_shift_loop = new LabelObj();
1419 LabelObj* L_shift_exit = new LabelObj();
1420
1421 __ branch_destination(L_shift_loop->label());
1422 __ cmp(lir_cond_equal, layout, 0);
1423 __ branch(lir_cond_equal, L_shift_exit->label());
1424
1425 #ifdef _LP64
1426 __ shift_left(length, 1, length);
1427 #else
1428 __ shift_left(length_int, 1, length_int);
1429 #endif
1430
1431 __ sub(layout, LIR_OprFact::intConst(1), layout);
1432
1433 __ branch(lir_cond_always, L_shift_loop->label());
1434 __ branch_destination(L_shift_exit->label());
1435
1436 // Mix all up, round, and push to the result.
1437 #ifdef _LP64
1438 LIR_Opr header_size_long = new_register(T_LONG);
1439 __ convert(Bytecodes::_i2l, header_size, header_size_long);
1440 __ add(length, header_size_long, length);
1441 if (round_mask != 0) {
1442 __ logical_and(length, LIR_OprFact::longConst(~round_mask), length);
1443 }
1444 __ move(length, result_reg);
1445 #else
1446 __ add(length_int, header_size, length_int);
1447 if (round_mask != 0) {
1448 __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int);
1449 }
1450 __ convert(Bytecodes::_i2l, length_int, result_reg);
1451 #endif
1452
1453 __ branch_destination(L_done->label());
1454 }
1455
1456 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1457 assert(x->number_of_arguments() == 1, "wrong type");
1458 LIRItem receiver(x->argument_at(0), this);
1459
1460 receiver.load_item();
1461 BasicTypeList signature;
1462 signature.append(T_OBJECT); // receiver
1463 LIR_OprList* args = new LIR_OprList();
1464 args->append(receiver.result());
1465 CodeEmitInfo* info = state_for(x, x->state());
1466 call_runtime(&signature, args,
1467 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1468 voidType, info);
1469
1470 set_no_result(x);
1471 }
1472
1473
1474 //------------------------local access--------------------------------------
1475
1476 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1477 if (x->operand()->is_illegal()) {
1478 Constant* c = x->as_Constant();
1479 if (c != NULL) {
1480 x->set_operand(LIR_OprFact::value_type(c->type()));
1481 } else {
1482 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1483 // allocate a virtual register for this local or phi
1484 x->set_operand(rlock(x));
1485 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1486 }
1487 }
1488 return x->operand();
1489 }
1490
1491
1492 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1493 if (opr->is_virtual()) {
1494 return instruction_for_vreg(opr->vreg_number());
1495 }
1496 return NULL;
1497 }
1498
1499
1500 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1501 if (reg_num < _instruction_for_operand.length()) {
1502 return _instruction_for_operand.at(reg_num);
1503 }
1504 return NULL;
1505 }
1506
1507
1508 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1509 if (_vreg_flags.size_in_bits() == 0) {
1510 BitMap2D temp(100, num_vreg_flags);
1511 _vreg_flags = temp;
1512 }
1513 _vreg_flags.at_put_grow(vreg_num, f, true);
1514 }
1515
1516 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1517 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1518 return false;
1519 }
1520 return _vreg_flags.at(vreg_num, f);
1521 }
1522
1523
1524 // Block local constant handling. This code is useful for keeping
1525 // unpinned constants and constants which aren't exposed in the IR in
1526 // registers. Unpinned Constant instructions have their operands
1527 // cleared when the block is finished so that other blocks can't end
1528 // up referring to their registers.
1529
1530 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1531 assert(!x->is_pinned(), "only for unpinned constants");
1532 _unpinned_constants.append(x);
1533 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1534 }
1535
1536
1537 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1538 BasicType t = c->type();
1539 for (int i = 0; i < _constants.length(); i++) {
1540 LIR_Const* other = _constants.at(i);
1541 if (t == other->type()) {
1542 switch (t) {
1543 case T_INT:
1544 case T_FLOAT:
1545 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1546 break;
1547 case T_LONG:
1548 case T_DOUBLE:
1549 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1550 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1551 break;
1552 case T_OBJECT:
1553 if (c->as_jobject() != other->as_jobject()) continue;
1554 break;
1555 default:
1556 break;
1557 }
1558 return _reg_for_constants.at(i);
1559 }
1560 }
1561
1562 LIR_Opr result = new_register(t);
1563 __ move((LIR_Opr)c, result);
1564 _constants.append(c);
1565 _reg_for_constants.append(result);
1566 return result;
1567 }
1568
1569 //------------------------field access--------------------------------------
1570
1571 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1572 assert(x->number_of_arguments() == 4, "wrong type");
1573 LIRItem obj (x->argument_at(0), this); // object
1574 LIRItem offset(x->argument_at(1), this); // offset of field
1575 LIRItem cmp (x->argument_at(2), this); // value to compare with field
1576 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1577 assert(obj.type()->tag() == objectTag, "invalid type");
1578 assert(cmp.type()->tag() == type->tag(), "invalid type");
1579 assert(val.type()->tag() == type->tag(), "invalid type");
1580
1581 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1582 obj, offset, cmp, val);
1583 set_result(x, result);
1584 }
1585
1586 // Comment copied form templateTable_i486.cpp
1587 // ----------------------------------------------------------------------------
1588 // Volatile variables demand their effects be made known to all CPU's in
1589 // order. Store buffers on most chips allow reads & writes to reorder; the
1590 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1591 // memory barrier (i.e., it's not sufficient that the interpreter does not
1592 // reorder volatile references, the hardware also must not reorder them).
1593 //
1594 // According to the new Java Memory Model (JMM):
1595 // (1) All volatiles are serialized wrt to each other.
1596 // ALSO reads & writes act as aquire & release, so:
1597 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1598 // the read float up to before the read. It's OK for non-volatile memory refs
1599 // that happen before the volatile read to float down below it.
1600 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1601 // that happen BEFORE the write float down to after the write. It's OK for
1602 // non-volatile memory refs that happen after the volatile write to float up
1603 // before it.
1604 //
1605 // We only put in barriers around volatile refs (they are expensive), not
1606 // _between_ memory refs (that would require us to track the flavor of the
1607 // previous memory refs). Requirements (2) and (3) require some barriers
1608 // before volatile stores and after volatile loads. These nearly cover
1609 // requirement (1) but miss the volatile-store-volatile-load case. This final
1610 // case is placed after volatile-stores although it could just as well go
1611 // before volatile-loads.
1612
1613
1614 void LIRGenerator::do_StoreField(StoreField* x) {
1615 bool needs_patching = x->needs_patching();
1616 bool is_volatile = x->field()->is_volatile();
1617 BasicType field_type = x->field_type();
1618
1619 CodeEmitInfo* info = NULL;
1620 if (needs_patching) {
1621 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1622 info = state_for(x, x->state_before());
1623 } else if (x->needs_null_check()) {
1624 NullCheck* nc = x->explicit_null_check();
1625 if (nc == NULL) {
1626 info = state_for(x);
1627 } else {
1628 info = state_for(nc);
1629 }
1630 }
1631
1632 LIRItem object(x->obj(), this);
1633 LIRItem value(x->value(), this);
1634
1635 object.load_item();
1636
1637 if (is_volatile || needs_patching) {
1638 // load item if field is volatile (fewer special cases for volatiles)
1639 // load item if field not initialized
1640 // load item if field not constant
1641 // because of code patching we cannot inline constants
1642 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1643 value.load_byte_item();
1644 } else {
1645 value.load_item();
1646 }
1647 } else {
1648 value.load_for_store(field_type);
1649 }
1650
1651 set_no_result(x);
1652
1653 #ifndef PRODUCT
1654 if (PrintNotLoaded && needs_patching) {
1655 tty->print_cr(" ###class not loaded at store_%s bci %d",
1656 x->is_static() ? "static" : "field", x->printable_bci());
1657 }
1658 #endif
1659
1660 if (x->needs_null_check() &&
1661 (needs_patching ||
1662 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1663 // Emit an explicit null check because the offset is too large.
1664 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1665 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1666 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1667 }
1668
1669 DecoratorSet decorators = IN_HEAP;
1670 if (is_volatile) {
1671 decorators |= MO_SEQ_CST;
1672 }
1673 if (needs_patching) {
1674 decorators |= C1_NEEDS_PATCHING;
1675 }
1676
1677 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1678 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1679 }
1680
1681 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1682 assert(x->is_pinned(),"");
1683 bool needs_range_check = x->compute_needs_range_check();
1684 bool use_length = x->length() != NULL;
1685 bool obj_store = is_reference_type(x->elt_type());
1686 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1687 !get_jobject_constant(x->value())->is_null_object() ||
1688 x->should_profile());
1689
1690 LIRItem array(x->array(), this);
1691 LIRItem index(x->index(), this);
1692 LIRItem value(x->value(), this);
1693 LIRItem length(this);
1694
1695 array.load_item();
1696 index.load_nonconstant();
1697
1698 if (use_length && needs_range_check) {
1699 length.set_instruction(x->length());
1700 length.load_item();
1701
1702 }
1703 if (needs_store_check || x->check_boolean()) {
1704 value.load_item();
1705 } else {
1706 value.load_for_store(x->elt_type());
1707 }
1708
1709 set_no_result(x);
1710
1711 // the CodeEmitInfo must be duplicated for each different
1712 // LIR-instruction because spilling can occur anywhere between two
1713 // instructions and so the debug information must be different
1714 CodeEmitInfo* range_check_info = state_for(x);
1715 CodeEmitInfo* null_check_info = NULL;
1716 if (x->needs_null_check()) {
1717 null_check_info = new CodeEmitInfo(range_check_info);
1718 }
1719
1720 if (GenerateRangeChecks && needs_range_check) {
1721 if (use_length) {
1722 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1723 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1724 } else {
1725 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1726 // range_check also does the null check
1727 null_check_info = NULL;
1728 }
1729 }
1730
1731 if (GenerateArrayStoreCheck && needs_store_check) {
1732 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1733 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1734 }
1735
1736 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1737 if (x->check_boolean()) {
1738 decorators |= C1_MASK_BOOLEAN;
1739 }
1740
1741 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1742 NULL, null_check_info);
1743 }
1744
1745 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1746 LIRItem& base, LIR_Opr offset, LIR_Opr result,
1747 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1748 decorators |= ACCESS_READ;
1749 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1750 if (access.is_raw()) {
1751 _barrier_set->BarrierSetC1::load_at(access, result);
1752 } else {
1753 _barrier_set->load_at(access, result);
1754 }
1755 }
1756
1757 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1758 LIR_Opr addr, LIR_Opr result) {
1759 decorators |= ACCESS_READ;
1760 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1761 access.set_resolved_addr(addr);
1762 if (access.is_raw()) {
1763 _barrier_set->BarrierSetC1::load(access, result);
1764 } else {
1765 _barrier_set->load(access, result);
1766 }
1767 }
1768
1769 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1770 LIRItem& base, LIR_Opr offset, LIR_Opr value,
1771 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1772 decorators |= ACCESS_WRITE;
1773 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1774 if (access.is_raw()) {
1775 _barrier_set->BarrierSetC1::store_at(access, value);
1776 } else {
1777 _barrier_set->store_at(access, value);
1778 }
1779 }
1780
1781 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1782 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1783 decorators |= ACCESS_READ;
1784 decorators |= ACCESS_WRITE;
1785 // Atomic operations are SEQ_CST by default
1786 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1787 LIRAccess access(this, decorators, base, offset, type);
1788 if (access.is_raw()) {
1789 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1790 } else {
1791 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1792 }
1793 }
1794
1795 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1796 LIRItem& base, LIRItem& offset, LIRItem& value) {
1797 decorators |= ACCESS_READ;
1798 decorators |= ACCESS_WRITE;
1799 // Atomic operations are SEQ_CST by default
1800 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1801 LIRAccess access(this, decorators, base, offset, type);
1802 if (access.is_raw()) {
1803 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1804 } else {
1805 return _barrier_set->atomic_xchg_at(access, value);
1806 }
1807 }
1808
1809 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1810 LIRItem& base, LIRItem& offset, LIRItem& value) {
1811 decorators |= ACCESS_READ;
1812 decorators |= ACCESS_WRITE;
1813 // Atomic operations are SEQ_CST by default
1814 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1815 LIRAccess access(this, decorators, base, offset, type);
1816 if (access.is_raw()) {
1817 return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1818 } else {
1819 return _barrier_set->atomic_add_at(access, value);
1820 }
1821 }
1822
1823 void LIRGenerator::do_LoadField(LoadField* x) {
1824 bool needs_patching = x->needs_patching();
1825 bool is_volatile = x->field()->is_volatile();
1826 BasicType field_type = x->field_type();
1827
1828 CodeEmitInfo* info = NULL;
1829 if (needs_patching) {
1830 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1831 info = state_for(x, x->state_before());
1832 } else if (x->needs_null_check()) {
1833 NullCheck* nc = x->explicit_null_check();
1834 if (nc == NULL) {
1835 info = state_for(x);
1836 } else {
1837 info = state_for(nc);
1838 }
1839 }
1840
1841 LIRItem object(x->obj(), this);
1842
1843 object.load_item();
1844
1845 #ifndef PRODUCT
1846 if (PrintNotLoaded && needs_patching) {
1847 tty->print_cr(" ###class not loaded at load_%s bci %d",
1848 x->is_static() ? "static" : "field", x->printable_bci());
1849 }
1850 #endif
1851
1852 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1853 if (x->needs_null_check() &&
1854 (needs_patching ||
1855 MacroAssembler::needs_explicit_null_check(x->offset()) ||
1856 stress_deopt)) {
1857 LIR_Opr obj = object.result();
1858 if (stress_deopt) {
1859 obj = new_register(T_OBJECT);
1860 __ move(LIR_OprFact::oopConst(NULL), obj);
1861 }
1862 // Emit an explicit null check because the offset is too large.
1863 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1864 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1865 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1866 }
1867
1868 DecoratorSet decorators = IN_HEAP;
1869 if (is_volatile) {
1870 decorators |= MO_SEQ_CST;
1871 }
1872 if (needs_patching) {
1873 decorators |= C1_NEEDS_PATCHING;
1874 }
1875
1876 LIR_Opr result = rlock_result(x, field_type);
1877 access_load_at(decorators, field_type,
1878 object, LIR_OprFact::intConst(x->offset()), result,
1879 info ? new CodeEmitInfo(info) : NULL, info);
1880 }
1881
1882
1883 //------------------------java.nio.Buffer.checkIndex------------------------
1884
1885 // int java.nio.Buffer.checkIndex(int)
1886 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1887 // NOTE: by the time we are in checkIndex() we are guaranteed that
1888 // the buffer is non-null (because checkIndex is package-private and
1889 // only called from within other methods in the buffer).
1890 assert(x->number_of_arguments() == 2, "wrong type");
1891 LIRItem buf (x->argument_at(0), this);
1892 LIRItem index(x->argument_at(1), this);
1893 buf.load_item();
1894 index.load_item();
1895
1896 LIR_Opr result = rlock_result(x);
1897 if (GenerateRangeChecks) {
1898 CodeEmitInfo* info = state_for(x);
1899 CodeStub* stub = new RangeCheckStub(info, index.result());
1900 if (index.result()->is_constant()) {
1901 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1902 __ branch(lir_cond_belowEqual, stub);
1903 } else {
1904 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1905 java_nio_Buffer::limit_offset(), T_INT, info);
1906 __ branch(lir_cond_aboveEqual, stub);
1907 }
1908 __ move(index.result(), result);
1909 } else {
1910 // Just load the index into the result register
1911 __ move(index.result(), result);
1912 }
1913 }
1914
1915
1916 //------------------------array access--------------------------------------
1917
1918
1919 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1920 LIRItem array(x->array(), this);
1921 array.load_item();
1922 LIR_Opr reg = rlock_result(x);
1923
1924 CodeEmitInfo* info = NULL;
1925 if (x->needs_null_check()) {
1926 NullCheck* nc = x->explicit_null_check();
1927 if (nc == NULL) {
1928 info = state_for(x);
1929 } else {
1930 info = state_for(nc);
1931 }
1932 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1933 LIR_Opr obj = new_register(T_OBJECT);
1934 __ move(LIR_OprFact::oopConst(NULL), obj);
1935 __ null_check(obj, new CodeEmitInfo(info));
1936 }
1937 }
1938 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1939 }
1940
1941
1942 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1943 bool use_length = x->length() != NULL;
1944 LIRItem array(x->array(), this);
1945 LIRItem index(x->index(), this);
1946 LIRItem length(this);
1947 bool needs_range_check = x->compute_needs_range_check();
1948
1949 if (use_length && needs_range_check) {
1950 length.set_instruction(x->length());
1951 length.load_item();
1952 }
1953
1954 array.load_item();
1955 if (index.is_constant() && can_inline_as_constant(x->index())) {
1956 // let it be a constant
1957 index.dont_load_item();
1958 } else {
1959 index.load_item();
1960 }
1961
1962 CodeEmitInfo* range_check_info = state_for(x);
1963 CodeEmitInfo* null_check_info = NULL;
1964 if (x->needs_null_check()) {
1965 NullCheck* nc = x->explicit_null_check();
1966 if (nc != NULL) {
1967 null_check_info = state_for(nc);
1968 } else {
1969 null_check_info = range_check_info;
1970 }
1971 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1972 LIR_Opr obj = new_register(T_OBJECT);
1973 __ move(LIR_OprFact::oopConst(NULL), obj);
1974 __ null_check(obj, new CodeEmitInfo(null_check_info));
1975 }
1976 }
1977
1978 if (GenerateRangeChecks && needs_range_check) {
1979 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1980 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1981 } else if (use_length) {
1982 // TODO: use a (modified) version of array_range_check that does not require a
1983 // constant length to be loaded to a register
1984 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1985 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1986 } else {
1987 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1988 // The range check performs the null check, so clear it out for the load
1989 null_check_info = NULL;
1990 }
1991 }
1992
1993 DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1994
1995 LIR_Opr result = rlock_result(x, x->elt_type());
1996 access_load_at(decorators, x->elt_type(),
1997 array, index.result(), result,
1998 NULL, null_check_info);
1999 }
2000
2001
2002 void LIRGenerator::do_NullCheck(NullCheck* x) {
2003 if (x->can_trap()) {
2004 LIRItem value(x->obj(), this);
2005 value.load_item();
2006 CodeEmitInfo* info = state_for(x);
2007 __ null_check(value.result(), info);
2008 }
2009 }
2010
2011
2012 void LIRGenerator::do_TypeCast(TypeCast* x) {
2013 LIRItem value(x->obj(), this);
2014 value.load_item();
2015 // the result is the same as from the node we are casting
2016 set_result(x, value.result());
2017 }
2018
2019
2020 void LIRGenerator::do_Throw(Throw* x) {
2021 LIRItem exception(x->exception(), this);
2022 exception.load_item();
2023 set_no_result(x);
2024 LIR_Opr exception_opr = exception.result();
2025 CodeEmitInfo* info = state_for(x, x->state());
2026
2027 #ifndef PRODUCT
2028 if (PrintC1Statistics) {
2029 increment_counter(Runtime1::throw_count_address(), T_INT);
2030 }
2031 #endif
2032
2033 // check if the instruction has an xhandler in any of the nested scopes
2034 bool unwind = false;
2035 if (info->exception_handlers()->length() == 0) {
2036 // this throw is not inside an xhandler
2037 unwind = true;
2038 } else {
2039 // get some idea of the throw type
2040 bool type_is_exact = true;
2041 ciType* throw_type = x->exception()->exact_type();
2042 if (throw_type == NULL) {
2043 type_is_exact = false;
2044 throw_type = x->exception()->declared_type();
2045 }
2046 if (throw_type != NULL && throw_type->is_instance_klass()) {
2047 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2048 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2049 }
2050 }
2051
2052 // do null check before moving exception oop into fixed register
2053 // to avoid a fixed interval with an oop during the null check.
2054 // Use a copy of the CodeEmitInfo because debug information is
2055 // different for null_check and throw.
2056 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2057 // if the exception object wasn't created using new then it might be null.
2058 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2059 }
2060
2061 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2062 // we need to go through the exception lookup path to get JVMTI
2063 // notification done
2064 unwind = false;
2065 }
2066
2067 // move exception oop into fixed register
2068 __ move(exception_opr, exceptionOopOpr());
2069
2070 if (unwind) {
2071 __ unwind_exception(exceptionOopOpr());
2072 } else {
2073 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2074 }
2075 }
2076
2077
2078 void LIRGenerator::do_RoundFP(RoundFP* x) {
2079 assert(strict_fp_requires_explicit_rounding, "not required");
2080
2081 LIRItem input(x->input(), this);
2082 input.load_item();
2083 LIR_Opr input_opr = input.result();
2084 assert(input_opr->is_register(), "why round if value is not in a register?");
2085 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2086 if (input_opr->is_single_fpu()) {
2087 set_result(x, round_item(input_opr)); // This code path not currently taken
2088 } else {
2089 LIR_Opr result = new_register(T_DOUBLE);
2090 set_vreg_flag(result, must_start_in_memory);
2091 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2092 set_result(x, result);
2093 }
2094 }
2095
2096 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2097 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2098 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2099 LIRItem base(x->base(), this);
2100 LIRItem idx(this);
2101
2102 base.load_item();
2103 if (x->has_index()) {
2104 idx.set_instruction(x->index());
2105 idx.load_nonconstant();
2106 }
2107
2108 LIR_Opr reg = rlock_result(x, x->basic_type());
2109
2110 int log2_scale = 0;
2111 if (x->has_index()) {
2112 log2_scale = x->log2_scale();
2113 }
2114
2115 assert(!x->has_index() || idx.value() == x->index(), "should match");
2116
2117 LIR_Opr base_op = base.result();
2118 LIR_Opr index_op = idx.result();
2119 #ifndef _LP64
2120 if (base_op->type() == T_LONG) {
2121 base_op = new_register(T_INT);
2122 __ convert(Bytecodes::_l2i, base.result(), base_op);
2123 }
2124 if (x->has_index()) {
2125 if (index_op->type() == T_LONG) {
2126 LIR_Opr long_index_op = index_op;
2127 if (index_op->is_constant()) {
2128 long_index_op = new_register(T_LONG);
2129 __ move(index_op, long_index_op);
2130 }
2131 index_op = new_register(T_INT);
2132 __ convert(Bytecodes::_l2i, long_index_op, index_op);
2133 } else {
2134 assert(x->index()->type()->tag() == intTag, "must be");
2135 }
2136 }
2137 // At this point base and index should be all ints.
2138 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2139 assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2140 #else
2141 if (x->has_index()) {
2142 if (index_op->type() == T_INT) {
2143 if (!index_op->is_constant()) {
2144 index_op = new_register(T_LONG);
2145 __ convert(Bytecodes::_i2l, idx.result(), index_op);
2146 }
2147 } else {
2148 assert(index_op->type() == T_LONG, "must be");
2149 if (index_op->is_constant()) {
2150 index_op = new_register(T_LONG);
2151 __ move(idx.result(), index_op);
2152 }
2153 }
2154 }
2155 // At this point base is a long non-constant
2156 // Index is a long register or a int constant.
2157 // We allow the constant to stay an int because that would allow us a more compact encoding by
2158 // embedding an immediate offset in the address expression. If we have a long constant, we have to
2159 // move it into a register first.
2160 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2161 assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2162 (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2163 #endif
2164
2165 BasicType dst_type = x->basic_type();
2166
2167 LIR_Address* addr;
2168 if (index_op->is_constant()) {
2169 assert(log2_scale == 0, "must not have a scale");
2170 assert(index_op->type() == T_INT, "only int constants supported");
2171 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2172 } else {
2173 #ifdef X86
2174 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2175 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2176 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2177 #else
2178 if (index_op->is_illegal() || log2_scale == 0) {
2179 addr = new LIR_Address(base_op, index_op, dst_type);
2180 } else {
2181 LIR_Opr tmp = new_pointer_register();
2182 __ shift_left(index_op, log2_scale, tmp);
2183 addr = new LIR_Address(base_op, tmp, dst_type);
2184 }
2185 #endif
2186 }
2187
2188 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2189 __ unaligned_move(addr, reg);
2190 } else {
2191 if (dst_type == T_OBJECT && x->is_wide()) {
2192 __ move_wide(addr, reg);
2193 } else {
2194 __ move(addr, reg);
2195 }
2196 }
2197 }
2198
2199
2200 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2201 int log2_scale = 0;
2202 BasicType type = x->basic_type();
2203
2204 if (x->has_index()) {
2205 log2_scale = x->log2_scale();
2206 }
2207
2208 LIRItem base(x->base(), this);
2209 LIRItem value(x->value(), this);
2210 LIRItem idx(this);
2211
2212 base.load_item();
2213 if (x->has_index()) {
2214 idx.set_instruction(x->index());
2215 idx.load_item();
2216 }
2217
2218 if (type == T_BYTE || type == T_BOOLEAN) {
2219 value.load_byte_item();
2220 } else {
2221 value.load_item();
2222 }
2223
2224 set_no_result(x);
2225
2226 LIR_Opr base_op = base.result();
2227 LIR_Opr index_op = idx.result();
2228
2229 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2230 LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2231 #else
2232 #ifndef _LP64
2233 if (base_op->type() == T_LONG) {
2234 base_op = new_register(T_INT);
2235 __ convert(Bytecodes::_l2i, base.result(), base_op);
2236 }
2237 if (x->has_index()) {
2238 if (index_op->type() == T_LONG) {
2239 index_op = new_register(T_INT);
2240 __ convert(Bytecodes::_l2i, idx.result(), index_op);
2241 }
2242 }
2243 // At this point base and index should be all ints and not constants
2244 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2245 assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2246 #else
2247 if (x->has_index()) {
2248 if (index_op->type() == T_INT) {
2249 index_op = new_register(T_LONG);
2250 __ convert(Bytecodes::_i2l, idx.result(), index_op);
2251 }
2252 }
2253 // At this point base and index are long and non-constant
2254 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2255 assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2256 #endif
2257
2258 if (log2_scale != 0) {
2259 // temporary fix (platform dependent code without shift on Intel would be better)
2260 // TODO: ARM also allows embedded shift in the address
2261 LIR_Opr tmp = new_pointer_register();
2262 if (TwoOperandLIRForm) {
2263 __ move(index_op, tmp);
2264 index_op = tmp;
2265 }
2266 __ shift_left(index_op, log2_scale, tmp);
2267 if (!TwoOperandLIRForm) {
2268 index_op = tmp;
2269 }
2270 }
2271
2272 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2273 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2274 __ move(value.result(), addr);
2275 }
2276
2277
2278 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2279 BasicType type = x->basic_type();
2280 LIRItem src(x->object(), this);
2281 LIRItem off(x->offset(), this);
2282
2283 off.load_item();
2284 src.load_item();
2285
2286 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2287
2288 if (x->is_volatile()) {
2289 decorators |= MO_SEQ_CST;
2290 }
2291 if (type == T_BOOLEAN) {
2292 decorators |= C1_MASK_BOOLEAN;
2293 }
2294 if (is_reference_type(type)) {
2295 decorators |= ON_UNKNOWN_OOP_REF;
2296 }
2297
2298 LIR_Opr result = rlock_result(x, type);
2299 access_load_at(decorators, type,
2300 src, off.result(), result);
2301 }
2302
2303
2304 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2305 BasicType type = x->basic_type();
2306 LIRItem src(x->object(), this);
2307 LIRItem off(x->offset(), this);
2308 LIRItem data(x->value(), this);
2309
2310 src.load_item();
2311 if (type == T_BOOLEAN || type == T_BYTE) {
2312 data.load_byte_item();
2313 } else {
2314 data.load_item();
2315 }
2316 off.load_item();
2317
2318 set_no_result(x);
2319
2320 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2321 if (is_reference_type(type)) {
2322 decorators |= ON_UNKNOWN_OOP_REF;
2323 }
2324 if (x->is_volatile()) {
2325 decorators |= MO_SEQ_CST;
2326 }
2327 access_store_at(decorators, type, src, off.result(), data.result());
2328 }
2329
2330 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2331 BasicType type = x->basic_type();
2332 LIRItem src(x->object(), this);
2333 LIRItem off(x->offset(), this);
2334 LIRItem value(x->value(), this);
2335
2336 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2337
2338 if (is_reference_type(type)) {
2339 decorators |= ON_UNKNOWN_OOP_REF;
2340 }
2341
2342 LIR_Opr result;
2343 if (x->is_add()) {
2344 result = access_atomic_add_at(decorators, type, src, off, value);
2345 } else {
2346 result = access_atomic_xchg_at(decorators, type, src, off, value);
2347 }
2348 set_result(x, result);
2349 }
2350
2351 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2352 int lng = x->length();
2353
2354 for (int i = 0; i < lng; i++) {
2355 C1SwitchRange* one_range = x->at(i);
2356 int low_key = one_range->low_key();
2357 int high_key = one_range->high_key();
2358 BlockBegin* dest = one_range->sux();
2359 if (low_key == high_key) {
2360 __ cmp(lir_cond_equal, value, low_key);
2361 __ branch(lir_cond_equal, dest);
2362 } else if (high_key - low_key == 1) {
2363 __ cmp(lir_cond_equal, value, low_key);
2364 __ branch(lir_cond_equal, dest);
2365 __ cmp(lir_cond_equal, value, high_key);
2366 __ branch(lir_cond_equal, dest);
2367 } else {
2368 LabelObj* L = new LabelObj();
2369 __ cmp(lir_cond_less, value, low_key);
2370 __ branch(lir_cond_less, L->label());
2371 __ cmp(lir_cond_lessEqual, value, high_key);
2372 __ branch(lir_cond_lessEqual, dest);
2373 __ branch_destination(L->label());
2374 }
2375 }
2376 __ jump(default_sux);
2377 }
2378
2379
2380 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2381 SwitchRangeList* res = new SwitchRangeList();
2382 int len = x->length();
2383 if (len > 0) {
2384 BlockBegin* sux = x->sux_at(0);
2385 int key = x->lo_key();
2386 BlockBegin* default_sux = x->default_sux();
2387 C1SwitchRange* range = new C1SwitchRange(key, sux);
2388 for (int i = 0; i < len; i++, key++) {
2389 BlockBegin* new_sux = x->sux_at(i);
2390 if (sux == new_sux) {
2391 // still in same range
2392 range->set_high_key(key);
2393 } else {
2394 // skip tests which explicitly dispatch to the default
2395 if (sux != default_sux) {
2396 res->append(range);
2397 }
2398 range = new C1SwitchRange(key, new_sux);
2399 }
2400 sux = new_sux;
2401 }
2402 if (res->length() == 0 || res->last() != range) res->append(range);
2403 }
2404 return res;
2405 }
2406
2407
2408 // we expect the keys to be sorted by increasing value
2409 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2410 SwitchRangeList* res = new SwitchRangeList();
2411 int len = x->length();
2412 if (len > 0) {
2413 BlockBegin* default_sux = x->default_sux();
2414 int key = x->key_at(0);
2415 BlockBegin* sux = x->sux_at(0);
2416 C1SwitchRange* range = new C1SwitchRange(key, sux);
2417 for (int i = 1; i < len; i++) {
2418 int new_key = x->key_at(i);
2419 BlockBegin* new_sux = x->sux_at(i);
2420 if (key+1 == new_key && sux == new_sux) {
2421 // still in same range
2422 range->set_high_key(new_key);
2423 } else {
2424 // skip tests which explicitly dispatch to the default
2425 if (range->sux() != default_sux) {
2426 res->append(range);
2427 }
2428 range = new C1SwitchRange(new_key, new_sux);
2429 }
2430 key = new_key;
2431 sux = new_sux;
2432 }
2433 if (res->length() == 0 || res->last() != range) res->append(range);
2434 }
2435 return res;
2436 }
2437
2438
2439 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2440 LIRItem tag(x->tag(), this);
2441 tag.load_item();
2442 set_no_result(x);
2443
2444 if (x->is_safepoint()) {
2445 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2446 }
2447
2448 // move values into phi locations
2449 move_to_phi(x->state());
2450
2451 int lo_key = x->lo_key();
2452 int len = x->length();
2453 assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2454 LIR_Opr value = tag.result();
2455
2456 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2457 ciMethod* method = x->state()->scope()->method();
2458 ciMethodData* md = method->method_data_or_null();
2459 assert(md != NULL, "Sanity");
2460 ciProfileData* data = md->bci_to_data(x->state()->bci());
2461 assert(data != NULL, "must have profiling data");
2462 assert(data->is_MultiBranchData(), "bad profile data?");
2463 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2464 LIR_Opr md_reg = new_register(T_METADATA);
2465 __ metadata2reg(md->constant_encoding(), md_reg);
2466 LIR_Opr data_offset_reg = new_pointer_register();
2467 LIR_Opr tmp_reg = new_pointer_register();
2468
2469 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2470 for (int i = 0; i < len; i++) {
2471 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2472 __ cmp(lir_cond_equal, value, i + lo_key);
2473 __ move(data_offset_reg, tmp_reg);
2474 __ cmove(lir_cond_equal,
2475 LIR_OprFact::intptrConst(count_offset),
2476 tmp_reg,
2477 data_offset_reg, T_INT);
2478 }
2479
2480 LIR_Opr data_reg = new_pointer_register();
2481 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2482 __ move(data_addr, data_reg);
2483 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2484 __ move(data_reg, data_addr);
2485 }
2486
2487 if (UseTableRanges) {
2488 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2489 } else {
2490 for (int i = 0; i < len; i++) {
2491 __ cmp(lir_cond_equal, value, i + lo_key);
2492 __ branch(lir_cond_equal, x->sux_at(i));
2493 }
2494 __ jump(x->default_sux());
2495 }
2496 }
2497
2498
2499 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2500 LIRItem tag(x->tag(), this);
2501 tag.load_item();
2502 set_no_result(x);
2503
2504 if (x->is_safepoint()) {
2505 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2506 }
2507
2508 // move values into phi locations
2509 move_to_phi(x->state());
2510
2511 LIR_Opr value = tag.result();
2512 int len = x->length();
2513
2514 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2515 ciMethod* method = x->state()->scope()->method();
2516 ciMethodData* md = method->method_data_or_null();
2517 assert(md != NULL, "Sanity");
2518 ciProfileData* data = md->bci_to_data(x->state()->bci());
2519 assert(data != NULL, "must have profiling data");
2520 assert(data->is_MultiBranchData(), "bad profile data?");
2521 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2522 LIR_Opr md_reg = new_register(T_METADATA);
2523 __ metadata2reg(md->constant_encoding(), md_reg);
2524 LIR_Opr data_offset_reg = new_pointer_register();
2525 LIR_Opr tmp_reg = new_pointer_register();
2526
2527 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2528 for (int i = 0; i < len; i++) {
2529 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2530 __ cmp(lir_cond_equal, value, x->key_at(i));
2531 __ move(data_offset_reg, tmp_reg);
2532 __ cmove(lir_cond_equal,
2533 LIR_OprFact::intptrConst(count_offset),
2534 tmp_reg,
2535 data_offset_reg, T_INT);
2536 }
2537
2538 LIR_Opr data_reg = new_pointer_register();
2539 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2540 __ move(data_addr, data_reg);
2541 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2542 __ move(data_reg, data_addr);
2543 }
2544
2545 if (UseTableRanges) {
2546 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2547 } else {
2548 int len = x->length();
2549 for (int i = 0; i < len; i++) {
2550 __ cmp(lir_cond_equal, value, x->key_at(i));
2551 __ branch(lir_cond_equal, x->sux_at(i));
2552 }
2553 __ jump(x->default_sux());
2554 }
2555 }
2556
2557
2558 void LIRGenerator::do_Goto(Goto* x) {
2559 set_no_result(x);
2560
2561 if (block()->next()->as_OsrEntry()) {
2562 // need to free up storage used for OSR entry point
2563 LIR_Opr osrBuffer = block()->next()->operand();
2564 BasicTypeList signature;
2565 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2566 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2567 __ move(osrBuffer, cc->args()->at(0));
2568 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2569 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2570 }
2571
2572 if (x->is_safepoint()) {
2573 ValueStack* state = x->state_before() ? x->state_before() : x->state();
2574
2575 // increment backedge counter if needed
2576 CodeEmitInfo* info = state_for(x, state);
2577 increment_backedge_counter(info, x->profiled_bci());
2578 CodeEmitInfo* safepoint_info = state_for(x, state);
2579 __ safepoint(safepoint_poll_register(), safepoint_info);
2580 }
2581
2582 // Gotos can be folded Ifs, handle this case.
2583 if (x->should_profile()) {
2584 ciMethod* method = x->profiled_method();
2585 assert(method != NULL, "method should be set if branch is profiled");
2586 ciMethodData* md = method->method_data_or_null();
2587 assert(md != NULL, "Sanity");
2588 ciProfileData* data = md->bci_to_data(x->profiled_bci());
2589 assert(data != NULL, "must have profiling data");
2590 int offset;
2591 if (x->direction() == Goto::taken) {
2592 assert(data->is_BranchData(), "need BranchData for two-way branches");
2593 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2594 } else if (x->direction() == Goto::not_taken) {
2595 assert(data->is_BranchData(), "need BranchData for two-way branches");
2596 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2597 } else {
2598 assert(data->is_JumpData(), "need JumpData for branches");
2599 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2600 }
2601 LIR_Opr md_reg = new_register(T_METADATA);
2602 __ metadata2reg(md->constant_encoding(), md_reg);
2603
2604 increment_counter(new LIR_Address(md_reg, offset,
2605 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2606 }
2607
2608 // emit phi-instruction move after safepoint since this simplifies
2609 // describing the state as the safepoint.
2610 move_to_phi(x->state());
2611
2612 __ jump(x->default_sux());
2613 }
2614
2615 /**
2616 * Emit profiling code if needed for arguments, parameters, return value types
2617 *
2618 * @param md MDO the code will update at runtime
2619 * @param md_base_offset common offset in the MDO for this profile and subsequent ones
2620 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2621 * @param profiled_k current profile
2622 * @param obj IR node for the object to be profiled
2623 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2624 * Set once we find an update to make and use for next ones.
2625 * @param not_null true if we know obj cannot be null
2626 * @param signature_at_call_k signature at call for obj
2627 * @param callee_signature_k signature of callee for obj
2628 * at call and callee signatures differ at method handle call
2629 * @return the only klass we know will ever be seen at this profile point
2630 */
2631 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2632 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2633 ciKlass* callee_signature_k) {
2634 ciKlass* result = NULL;
2635 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2636 bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2637 // known not to be null or null bit already set and already set to
2638 // unknown: nothing we can do to improve profiling
2639 if (!do_null && !do_update) {
2640 return result;
2641 }
2642
2643 ciKlass* exact_klass = NULL;
2644 Compilation* comp = Compilation::current();
2645 if (do_update) {
2646 // try to find exact type, using CHA if possible, so that loading
2647 // the klass from the object can be avoided
2648 ciType* type = obj->exact_type();
2649 if (type == NULL) {
2650 type = obj->declared_type();
2651 type = comp->cha_exact_type(type);
2652 }
2653 assert(type == NULL || type->is_klass(), "type should be class");
2654 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2655
2656 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2657 }
2658
2659 if (!do_null && !do_update) {
2660 return result;
2661 }
2662
2663 ciKlass* exact_signature_k = NULL;
2664 if (do_update) {
2665 // Is the type from the signature exact (the only one possible)?
2666 exact_signature_k = signature_at_call_k->exact_klass();
2667 if (exact_signature_k == NULL) {
2668 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2669 } else {
2670 result = exact_signature_k;
2671 // Known statically. No need to emit any code: prevent
2672 // LIR_Assembler::emit_profile_type() from emitting useless code
2673 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2674 }
2675 // exact_klass and exact_signature_k can be both non NULL but
2676 // different if exact_klass is loaded after the ciObject for
2677 // exact_signature_k is created.
2678 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2679 // sometimes the type of the signature is better than the best type
2680 // the compiler has
2681 exact_klass = exact_signature_k;
2682 }
2683 if (callee_signature_k != NULL &&
2684 callee_signature_k != signature_at_call_k) {
2685 ciKlass* improved_klass = callee_signature_k->exact_klass();
2686 if (improved_klass == NULL) {
2687 improved_klass = comp->cha_exact_type(callee_signature_k);
2688 }
2689 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2690 exact_klass = exact_signature_k;
2691 }
2692 }
2693 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2694 }
2695
2696 if (!do_null && !do_update) {
2697 return result;
2698 }
2699
2700 if (mdp == LIR_OprFact::illegalOpr) {
2701 mdp = new_register(T_METADATA);
2702 __ metadata2reg(md->constant_encoding(), mdp);
2703 if (md_base_offset != 0) {
2704 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2705 mdp = new_pointer_register();
2706 __ leal(LIR_OprFact::address(base_type_address), mdp);
2707 }
2708 }
2709 LIRItem value(obj, this);
2710 value.load_item();
2711 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2712 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2713 return result;
2714 }
2715
2716 // profile parameters on entry to the root of the compilation
2717 void LIRGenerator::profile_parameters(Base* x) {
2718 if (compilation()->profile_parameters()) {
2719 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2720 ciMethodData* md = scope()->method()->method_data_or_null();
2721 assert(md != NULL, "Sanity");
2722
2723 if (md->parameters_type_data() != NULL) {
2724 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2725 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2726 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2727 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2728 LIR_Opr src = args->at(i);
2729 assert(!src->is_illegal(), "check");
2730 BasicType t = src->type();
2731 if (is_reference_type(t)) {
2732 intptr_t profiled_k = parameters->type(j);
2733 Local* local = x->state()->local_at(java_index)->as_Local();
2734 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2735 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2736 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2737 // If the profile is known statically set it once for all and do not emit any code
2738 if (exact != NULL) {
2739 md->set_parameter_type(j, exact);
2740 }
2741 j++;
2742 }
2743 java_index += type2size[t];
2744 }
2745 }
2746 }
2747 }
2748
2749 void LIRGenerator::do_Base(Base* x) {
2750 __ std_entry(LIR_OprFact::illegalOpr);
2751 // Emit moves from physical registers / stack slots to virtual registers
2752 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2753 IRScope* irScope = compilation()->hir()->top_scope();
2754 int java_index = 0;
2755 for (int i = 0; i < args->length(); i++) {
2756 LIR_Opr src = args->at(i);
2757 assert(!src->is_illegal(), "check");
2758 BasicType t = src->type();
2759
2760 // Types which are smaller than int are passed as int, so
2761 // correct the type which passed.
2762 switch (t) {
2763 case T_BYTE:
2764 case T_BOOLEAN:
2765 case T_SHORT:
2766 case T_CHAR:
2767 t = T_INT;
2768 break;
2769 default:
2770 break;
2771 }
2772
2773 LIR_Opr dest = new_register(t);
2774 __ move(src, dest);
2775
2776 // Assign new location to Local instruction for this local
2777 Local* local = x->state()->local_at(java_index)->as_Local();
2778 assert(local != NULL, "Locals for incoming arguments must have been created");
2779 #ifndef __SOFTFP__
2780 // The java calling convention passes double as long and float as int.
2781 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2782 #endif // __SOFTFP__
2783 local->set_operand(dest);
2784 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2785 java_index += type2size[t];
2786 }
2787
2788 if (compilation()->env()->dtrace_method_probes()) {
2789 BasicTypeList signature;
2790 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2791 signature.append(T_METADATA); // Method*
2792 LIR_OprList* args = new LIR_OprList();
2793 args->append(getThreadPointer());
2794 LIR_Opr meth = new_register(T_METADATA);
2795 __ metadata2reg(method()->constant_encoding(), meth);
2796 args->append(meth);
2797 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2798 }
2799
2800 if (method()->is_synchronized()) {
2801 LIR_Opr obj;
2802 if (method()->is_static()) {
2803 obj = new_register(T_OBJECT);
2804 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2805 } else {
2806 Local* receiver = x->state()->local_at(0)->as_Local();
2807 assert(receiver != NULL, "must already exist");
2808 obj = receiver->operand();
2809 }
2810 assert(obj->is_valid(), "must be valid");
2811
2812 if (method()->is_synchronized() && GenerateSynchronizationCode) {
2813 LIR_Opr lock = syncLockOpr();
2814 __ load_stack_address_monitor(0, lock);
2815
2816 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2817 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2818
2819 // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2820 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2821 }
2822 }
2823 if (compilation()->age_code()) {
2824 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2825 decrement_age(info);
2826 }
2827 // increment invocation counters if needed
2828 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2829 profile_parameters(x);
2830 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2831 increment_invocation_counter(info);
2832 }
2833
2834 // all blocks with a successor must end with an unconditional jump
2835 // to the successor even if they are consecutive
2836 __ jump(x->default_sux());
2837 }
2838
2839
2840 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2841 // construct our frame and model the production of incoming pointer
2842 // to the OSR buffer.
2843 __ osr_entry(LIR_Assembler::osrBufferPointer());
2844 LIR_Opr result = rlock_result(x);
2845 __ move(LIR_Assembler::osrBufferPointer(), result);
2846 }
2847
2848
2849 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2850 assert(args->length() == arg_list->length(),
2851 "args=%d, arg_list=%d", args->length(), arg_list->length());
2852 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2853 LIRItem* param = args->at(i);
2854 LIR_Opr loc = arg_list->at(i);
2855 if (loc->is_register()) {
2856 param->load_item_force(loc);
2857 } else {
2858 LIR_Address* addr = loc->as_address_ptr();
2859 param->load_for_store(addr->type());
2860 if (addr->type() == T_OBJECT) {
2861 __ move_wide(param->result(), addr);
2862 } else
2863 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2864 __ unaligned_move(param->result(), addr);
2865 } else {
2866 __ move(param->result(), addr);
2867 }
2868 }
2869 }
2870
2871 if (x->has_receiver()) {
2872 LIRItem* receiver = args->at(0);
2873 LIR_Opr loc = arg_list->at(0);
2874 if (loc->is_register()) {
2875 receiver->load_item_force(loc);
2876 } else {
2877 assert(loc->is_address(), "just checking");
2878 receiver->load_for_store(T_OBJECT);
2879 __ move_wide(receiver->result(), loc->as_address_ptr());
2880 }
2881 }
2882 }
2883
2884
2885 // Visits all arguments, returns appropriate items without loading them
2886 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2887 LIRItemList* argument_items = new LIRItemList();
2888 if (x->has_receiver()) {
2889 LIRItem* receiver = new LIRItem(x->receiver(), this);
2890 argument_items->append(receiver);
2891 }
2892 for (int i = 0; i < x->number_of_arguments(); i++) {
2893 LIRItem* param = new LIRItem(x->argument_at(i), this);
2894 argument_items->append(param);
2895 }
2896 return argument_items;
2897 }
2898
2899
2900 // The invoke with receiver has following phases:
2901 // a) traverse and load/lock receiver;
2902 // b) traverse all arguments -> item-array (invoke_visit_argument)
2903 // c) push receiver on stack
2904 // d) load each of the items and push on stack
2905 // e) unlock receiver
2906 // f) move receiver into receiver-register %o0
2907 // g) lock result registers and emit call operation
2908 //
2909 // Before issuing a call, we must spill-save all values on stack
2910 // that are in caller-save register. "spill-save" moves those registers
2911 // either in a free callee-save register or spills them if no free
2912 // callee save register is available.
2913 //
2914 // The problem is where to invoke spill-save.
2915 // - if invoked between e) and f), we may lock callee save
2916 // register in "spill-save" that destroys the receiver register
2917 // before f) is executed
2918 // - if we rearrange f) to be earlier (by loading %o0) it
2919 // may destroy a value on the stack that is currently in %o0
2920 // and is waiting to be spilled
2921 // - if we keep the receiver locked while doing spill-save,
2922 // we cannot spill it as it is spill-locked
2923 //
2924 void LIRGenerator::do_Invoke(Invoke* x) {
2925 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2926
2927 LIR_OprList* arg_list = cc->args();
2928 LIRItemList* args = invoke_visit_arguments(x);
2929 LIR_Opr receiver = LIR_OprFact::illegalOpr;
2930
2931 // setup result register
2932 LIR_Opr result_register = LIR_OprFact::illegalOpr;
2933 if (x->type() != voidType) {
2934 result_register = result_register_for(x->type());
2935 }
2936
2937 CodeEmitInfo* info = state_for(x, x->state());
2938
2939 invoke_load_arguments(x, args, arg_list);
2940
2941 if (x->has_receiver()) {
2942 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2943 receiver = args->at(0)->result();
2944 }
2945
2946 // emit invoke code
2947 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2948
2949 // JSR 292
2950 // Preserve the SP over MethodHandle call sites, if needed.
2951 ciMethod* target = x->target();
2952 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2953 target->is_method_handle_intrinsic() ||
2954 target->is_compiled_lambda_form());
2955 if (is_method_handle_invoke) {
2956 info->set_is_method_handle_invoke(true);
2957 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2958 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2959 }
2960 }
2961
2962 switch (x->code()) {
2963 case Bytecodes::_invokestatic:
2964 __ call_static(target, result_register,
2965 SharedRuntime::get_resolve_static_call_stub(),
2966 arg_list, info);
2967 break;
2968 case Bytecodes::_invokespecial:
2969 case Bytecodes::_invokevirtual:
2970 case Bytecodes::_invokeinterface:
2971 // for loaded and final (method or class) target we still produce an inline cache,
2972 // in order to be able to call mixed mode
2973 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2974 __ call_opt_virtual(target, receiver, result_register,
2975 SharedRuntime::get_resolve_opt_virtual_call_stub(),
2976 arg_list, info);
2977 } else {
2978 __ call_icvirtual(target, receiver, result_register,
2979 SharedRuntime::get_resolve_virtual_call_stub(),
2980 arg_list, info);
2981 }
2982 break;
2983 case Bytecodes::_invokedynamic: {
2984 __ call_dynamic(target, receiver, result_register,
2985 SharedRuntime::get_resolve_static_call_stub(),
2986 arg_list, info);
2987 break;
2988 }
2989 default:
2990 fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2991 break;
2992 }
2993
2994 // JSR 292
2995 // Restore the SP after MethodHandle call sites, if needed.
2996 if (is_method_handle_invoke
2997 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2998 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2999 }
3000
3001 if (result_register->is_valid()) {
3002 LIR_Opr result = rlock_result(x);
3003 __ move(result_register, result);
3004 }
3005 }
3006
3007
3008 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3009 assert(x->number_of_arguments() == 1, "wrong type");
3010 LIRItem value (x->argument_at(0), this);
3011 LIR_Opr reg = rlock_result(x);
3012 value.load_item();
3013 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3014 __ move(tmp, reg);
3015 }
3016
3017
3018
3019 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3020 void LIRGenerator::do_IfOp(IfOp* x) {
3021 #ifdef ASSERT
3022 {
3023 ValueTag xtag = x->x()->type()->tag();
3024 ValueTag ttag = x->tval()->type()->tag();
3025 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3026 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3027 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3028 }
3029 #endif
3030
3031 LIRItem left(x->x(), this);
3032 LIRItem right(x->y(), this);
3033 left.load_item();
3034 if (can_inline_as_constant(right.value())) {
3035 right.dont_load_item();
3036 } else {
3037 right.load_item();
3038 }
3039
3040 LIRItem t_val(x->tval(), this);
3041 LIRItem f_val(x->fval(), this);
3042 t_val.dont_load_item();
3043 f_val.dont_load_item();
3044 LIR_Opr reg = rlock_result(x);
3045
3046 __ cmp(lir_cond(x->cond()), left.result(), right.result());
3047 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3048 }
3049
3050 #ifdef JFR_HAVE_INTRINSICS
3051
3052 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3053 LabelObj* L_end = new LabelObj();
3054
3055 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
3056 // meaning of these two is mixed up (see JDK-8026837).
3057 LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3058 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3059 T_ADDRESS);
3060 LIR_Opr result = rlock_result(x);
3061 __ move(LIR_OprFact::oopConst(NULL), result);
3062 LIR_Opr jobj = new_register(T_METADATA);
3063 __ move_wide(jobj_addr, jobj);
3064 __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0));
3065 __ branch(lir_cond_equal, L_end->label());
3066
3067 access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3068
3069 __ branch_destination(L_end->label());
3070 }
3071
3072 #endif
3073
3074
3075 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3076 assert(x->number_of_arguments() == 0, "wrong type");
3077 // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3078 BasicTypeList signature;
3079 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3080 LIR_Opr reg = result_register_for(x->type());
3081 __ call_runtime_leaf(routine, getThreadTemp(),
3082 reg, new LIR_OprList());
3083 LIR_Opr result = rlock_result(x);
3084 __ move(reg, result);
3085 }
3086
3087
3088
3089 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3090 switch (x->id()) {
3091 case vmIntrinsics::_intBitsToFloat :
3092 case vmIntrinsics::_doubleToRawLongBits :
3093 case vmIntrinsics::_longBitsToDouble :
3094 case vmIntrinsics::_floatToRawIntBits : {
3095 do_FPIntrinsics(x);
3096 break;
3097 }
3098
3099 #ifdef JFR_HAVE_INTRINSICS
3100 case vmIntrinsics::_getEventWriter:
3101 do_getEventWriter(x);
3102 break;
3103 case vmIntrinsics::_counterTime:
3104 do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3105 break;
3106 #endif
3107
3108 case vmIntrinsics::_currentTimeMillis:
3109 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3110 break;
3111
3112 case vmIntrinsics::_nanoTime:
3113 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3114 break;
3115
3116 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
3117 case vmIntrinsics::_isInstance: do_isInstance(x); break;
3118 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break;
3119 case vmIntrinsics::_getModifiers: do_getModifiers(x); break;
3120 case vmIntrinsics::_getClass: do_getClass(x); break;
3121 case vmIntrinsics::_currentThread: do_currentThread(x); break;
3122 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break;
3123
3124 case vmIntrinsics::_dlog: // fall through
3125 case vmIntrinsics::_dlog10: // fall through
3126 case vmIntrinsics::_dabs: // fall through
3127 case vmIntrinsics::_dsqrt: // fall through
3128 case vmIntrinsics::_dtan: // fall through
3129 case vmIntrinsics::_dsin : // fall through
3130 case vmIntrinsics::_dcos : // fall through
3131 case vmIntrinsics::_dexp : // fall through
3132 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
3133 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
3134
3135 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break;
3136 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break;
3137
3138 // java.nio.Buffer.checkIndex
3139 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
3140
3141 case vmIntrinsics::_compareAndSetReference:
3142 do_CompareAndSwap(x, objectType);
3143 break;
3144 case vmIntrinsics::_compareAndSetInt:
3145 do_CompareAndSwap(x, intType);
3146 break;
3147 case vmIntrinsics::_compareAndSetLong:
3148 do_CompareAndSwap(x, longType);
3149 break;
3150
3151 case vmIntrinsics::_loadFence :
3152 __ membar_acquire();
3153 break;
3154 case vmIntrinsics::_storeFence:
3155 __ membar_release();
3156 break;
3157 case vmIntrinsics::_storeStoreFence:
3158 __ membar_storestore();
3159 break;
3160 case vmIntrinsics::_fullFence :
3161 __ membar();
3162 break;
3163 case vmIntrinsics::_onSpinWait:
3164 __ on_spin_wait();
3165 break;
3166 case vmIntrinsics::_Reference_get:
3167 do_Reference_get(x);
3168 break;
3169
3170 case vmIntrinsics::_updateCRC32:
3171 case vmIntrinsics::_updateBytesCRC32:
3172 case vmIntrinsics::_updateByteBufferCRC32:
3173 do_update_CRC32(x);
3174 break;
3175
3176 case vmIntrinsics::_updateBytesCRC32C:
3177 case vmIntrinsics::_updateDirectByteBufferCRC32C:
3178 do_update_CRC32C(x);
3179 break;
3180
3181 case vmIntrinsics::_vectorizedMismatch:
3182 do_vectorizedMismatch(x);
3183 break;
3184
3185 case vmIntrinsics::_blackhole:
3186 do_blackhole(x);
3187 break;
3188
3189 default: ShouldNotReachHere(); break;
3190 }
3191 }
3192
3193 void LIRGenerator::profile_arguments(ProfileCall* x) {
3194 if (compilation()->profile_arguments()) {
3195 int bci = x->bci_of_invoke();
3196 ciMethodData* md = x->method()->method_data_or_null();
3197 assert(md != NULL, "Sanity");
3198 ciProfileData* data = md->bci_to_data(bci);
3199 if (data != NULL) {
3200 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3201 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3202 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3203 int base_offset = md->byte_offset_of_slot(data, extra);
3204 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3205 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3206
3207 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3208 int start = 0;
3209 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3210 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3211 // first argument is not profiled at call (method handle invoke)
3212 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3213 start = 1;
3214 }
3215 ciSignature* callee_signature = x->callee()->signature();
3216 // method handle call to virtual method
3217 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3218 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3219
3220 bool ignored_will_link;
3221 ciSignature* signature_at_call = NULL;
3222 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3223 ciSignatureStream signature_at_call_stream(signature_at_call);
3224
3225 // if called through method handle invoke, some arguments may have been popped
3226 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3227 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3228 ciKlass* exact = profile_type(md, base_offset, off,
3229 args->type(i), x->profiled_arg_at(i+start), mdp,
3230 !x->arg_needs_null_check(i+start),
3231 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3232 if (exact != NULL) {
3233 md->set_argument_type(bci, i, exact);
3234 }
3235 }
3236 } else {
3237 #ifdef ASSERT
3238 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3239 int n = x->nb_profiled_args();
3240 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3241 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3242 "only at JSR292 bytecodes");
3243 #endif
3244 }
3245 }
3246 }
3247 }
3248
3249 // profile parameters on entry to an inlined method
3250 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3251 if (compilation()->profile_parameters() && x->inlined()) {
3252 ciMethodData* md = x->callee()->method_data_or_null();
3253 if (md != NULL) {
3254 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3255 if (parameters_type_data != NULL) {
3256 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3257 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3258 bool has_receiver = !x->callee()->is_static();
3259 ciSignature* sig = x->callee()->signature();
3260 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3261 int i = 0; // to iterate on the Instructions
3262 Value arg = x->recv();
3263 bool not_null = false;
3264 int bci = x->bci_of_invoke();
3265 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3266 // The first parameter is the receiver so that's what we start
3267 // with if it exists. One exception is method handle call to
3268 // virtual method: the receiver is in the args list
3269 if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3270 i = 1;
3271 arg = x->profiled_arg_at(0);
3272 not_null = !x->arg_needs_null_check(0);
3273 }
3274 int k = 0; // to iterate on the profile data
3275 for (;;) {
3276 intptr_t profiled_k = parameters->type(k);
3277 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3278 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3279 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3280 // If the profile is known statically set it once for all and do not emit any code
3281 if (exact != NULL) {
3282 md->set_parameter_type(k, exact);
3283 }
3284 k++;
3285 if (k >= parameters_type_data->number_of_parameters()) {
3286 #ifdef ASSERT
3287 int extra = 0;
3288 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3289 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3290 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3291 extra += 1;
3292 }
3293 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3294 #endif
3295 break;
3296 }
3297 arg = x->profiled_arg_at(i);
3298 not_null = !x->arg_needs_null_check(i);
3299 i++;
3300 }
3301 }
3302 }
3303 }
3304 }
3305
3306 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3307 // Need recv in a temporary register so it interferes with the other temporaries
3308 LIR_Opr recv = LIR_OprFact::illegalOpr;
3309 LIR_Opr mdo = new_register(T_METADATA);
3310 // tmp is used to hold the counters on SPARC
3311 LIR_Opr tmp = new_pointer_register();
3312
3313 if (x->nb_profiled_args() > 0) {
3314 profile_arguments(x);
3315 }
3316
3317 // profile parameters on inlined method entry including receiver
3318 if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3319 profile_parameters_at_call(x);
3320 }
3321
3322 if (x->recv() != NULL) {
3323 LIRItem value(x->recv(), this);
3324 value.load_item();
3325 recv = new_register(T_OBJECT);
3326 __ move(value.result(), recv);
3327 }
3328 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3329 }
3330
3331 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3332 int bci = x->bci_of_invoke();
3333 ciMethodData* md = x->method()->method_data_or_null();
3334 assert(md != NULL, "Sanity");
3335 ciProfileData* data = md->bci_to_data(bci);
3336 if (data != NULL) {
3337 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3338 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3339 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3340
3341 bool ignored_will_link;
3342 ciSignature* signature_at_call = NULL;
3343 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3344
3345 // The offset within the MDO of the entry to update may be too large
3346 // to be used in load/store instructions on some platforms. So have
3347 // profile_type() compute the address of the profile in a register.
3348 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3349 ret->type(), x->ret(), mdp,
3350 !x->needs_null_check(),
3351 signature_at_call->return_type()->as_klass(),
3352 x->callee()->signature()->return_type()->as_klass());
3353 if (exact != NULL) {
3354 md->set_return_type(bci, exact);
3355 }
3356 }
3357 }
3358
3359 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3360 // We can safely ignore accessors here, since c2 will inline them anyway,
3361 // accessors are also always mature.
3362 if (!x->inlinee()->is_accessor()) {
3363 CodeEmitInfo* info = state_for(x, x->state(), true);
3364 // Notify the runtime very infrequently only to take care of counter overflows
3365 int freq_log = Tier23InlineeNotifyFreqLog;
3366 double scale;
3367 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3368 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3369 }
3370 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3371 }
3372 }
3373
3374 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3375 if (compilation()->count_backedges()) {
3376 #if defined(X86) && !defined(_LP64)
3377 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3378 LIR_Opr left_copy = new_register(left->type());
3379 __ move(left, left_copy);
3380 __ cmp(cond, left_copy, right);
3381 #else
3382 __ cmp(cond, left, right);
3383 #endif
3384 LIR_Opr step = new_register(T_INT);
3385 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3386 LIR_Opr zero = LIR_OprFact::intConst(0);
3387 __ cmove(cond,
3388 (left_bci < bci) ? plus_one : zero,
3389 (right_bci < bci) ? plus_one : zero,
3390 step, left->type());
3391 increment_backedge_counter(info, step, bci);
3392 }
3393 }
3394
3395
3396 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3397 int freq_log = 0;
3398 int level = compilation()->env()->comp_level();
3399 if (level == CompLevel_limited_profile) {
3400 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3401 } else if (level == CompLevel_full_profile) {
3402 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3403 } else {
3404 ShouldNotReachHere();
3405 }
3406 // Increment the appropriate invocation/backedge counter and notify the runtime.
3407 double scale;
3408 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3409 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3410 }
3411 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3412 }
3413
3414 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3415 ciMethod* method = info->scope()->method();
3416 MethodCounters* mc_adr = method->ensure_method_counters();
3417 if (mc_adr != NULL) {
3418 LIR_Opr mc = new_pointer_register();
3419 __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3420 int offset = in_bytes(MethodCounters::nmethod_age_offset());
3421 LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3422 LIR_Opr result = new_register(T_INT);
3423 __ load(counter, result);
3424 __ sub(result, LIR_OprFact::intConst(1), result);
3425 __ store(result, counter);
3426 // DeoptimizeStub will reexecute from the current state in code info.
3427 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3428 Deoptimization::Action_make_not_entrant);
3429 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3430 __ branch(lir_cond_lessEqual, deopt);
3431 }
3432 }
3433
3434
3435 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3436 ciMethod *method, LIR_Opr step, int frequency,
3437 int bci, bool backedge, bool notify) {
3438 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3439 int level = _compilation->env()->comp_level();
3440 assert(level > CompLevel_simple, "Shouldn't be here");
3441
3442 int offset = -1;
3443 LIR_Opr counter_holder = NULL;
3444 if (level == CompLevel_limited_profile) {
3445 MethodCounters* counters_adr = method->ensure_method_counters();
3446 if (counters_adr == NULL) {
3447 bailout("method counters allocation failed");
3448 return;
3449 }
3450 counter_holder = new_pointer_register();
3451 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3452 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3453 MethodCounters::invocation_counter_offset());
3454 } else if (level == CompLevel_full_profile) {
3455 counter_holder = new_register(T_METADATA);
3456 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3457 MethodData::invocation_counter_offset());
3458 ciMethodData* md = method->method_data_or_null();
3459 assert(md != NULL, "Sanity");
3460 __ metadata2reg(md->constant_encoding(), counter_holder);
3461 } else {
3462 ShouldNotReachHere();
3463 }
3464 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3465 LIR_Opr result = new_register(T_INT);
3466 __ load(counter, result);
3467 __ add(result, step, result);
3468 __ store(result, counter);
3469 if (notify && (!backedge || UseOnStackReplacement)) {
3470 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3471 // The bci for info can point to cmp for if's we want the if bci
3472 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3473 int freq = frequency << InvocationCounter::count_shift;
3474 if (freq == 0) {
3475 if (!step->is_constant()) {
3476 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3477 __ branch(lir_cond_notEqual, overflow);
3478 } else {
3479 __ branch(lir_cond_always, overflow);
3480 }
3481 } else {
3482 LIR_Opr mask = load_immediate(freq, T_INT);
3483 if (!step->is_constant()) {
3484 // If step is 0, make sure the overflow check below always fails
3485 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3486 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3487 }
3488 __ logical_and(result, mask, result);
3489 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3490 __ branch(lir_cond_equal, overflow);
3491 }
3492 __ branch_destination(overflow->continuation());
3493 }
3494 }
3495
3496 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3497 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3498 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3499
3500 if (x->pass_thread()) {
3501 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3502 args->append(getThreadPointer());
3503 }
3504
3505 for (int i = 0; i < x->number_of_arguments(); i++) {
3506 Value a = x->argument_at(i);
3507 LIRItem* item = new LIRItem(a, this);
3508 item->load_item();
3509 args->append(item->result());
3510 signature->append(as_BasicType(a->type()));
3511 }
3512
3513 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3514 if (x->type() == voidType) {
3515 set_no_result(x);
3516 } else {
3517 __ move(result, rlock_result(x));
3518 }
3519 }
3520
3521 #ifdef ASSERT
3522 void LIRGenerator::do_Assert(Assert *x) {
3523 ValueTag tag = x->x()->type()->tag();
3524 If::Condition cond = x->cond();
3525
3526 LIRItem xitem(x->x(), this);
3527 LIRItem yitem(x->y(), this);
3528 LIRItem* xin = &xitem;
3529 LIRItem* yin = &yitem;
3530
3531 assert(tag == intTag, "Only integer assertions are valid!");
3532
3533 xin->load_item();
3534 yin->dont_load_item();
3535
3536 set_no_result(x);
3537
3538 LIR_Opr left = xin->result();
3539 LIR_Opr right = yin->result();
3540
3541 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3542 }
3543 #endif
3544
3545 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3546
3547
3548 Instruction *a = x->x();
3549 Instruction *b = x->y();
3550 if (!a || StressRangeCheckElimination) {
3551 assert(!b || StressRangeCheckElimination, "B must also be null");
3552
3553 CodeEmitInfo *info = state_for(x, x->state());
3554 CodeStub* stub = new PredicateFailedStub(info);
3555
3556 __ jump(stub);
3557 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3558 int a_int = a->type()->as_IntConstant()->value();
3559 int b_int = b->type()->as_IntConstant()->value();
3560
3561 bool ok = false;
3562
3563 switch(x->cond()) {
3564 case Instruction::eql: ok = (a_int == b_int); break;
3565 case Instruction::neq: ok = (a_int != b_int); break;
3566 case Instruction::lss: ok = (a_int < b_int); break;
3567 case Instruction::leq: ok = (a_int <= b_int); break;
3568 case Instruction::gtr: ok = (a_int > b_int); break;
3569 case Instruction::geq: ok = (a_int >= b_int); break;
3570 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3571 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3572 default: ShouldNotReachHere();
3573 }
3574
3575 if (ok) {
3576
3577 CodeEmitInfo *info = state_for(x, x->state());
3578 CodeStub* stub = new PredicateFailedStub(info);
3579
3580 __ jump(stub);
3581 }
3582 } else {
3583
3584 ValueTag tag = x->x()->type()->tag();
3585 If::Condition cond = x->cond();
3586 LIRItem xitem(x->x(), this);
3587 LIRItem yitem(x->y(), this);
3588 LIRItem* xin = &xitem;
3589 LIRItem* yin = &yitem;
3590
3591 assert(tag == intTag, "Only integer deoptimizations are valid!");
3592
3593 xin->load_item();
3594 yin->dont_load_item();
3595 set_no_result(x);
3596
3597 LIR_Opr left = xin->result();
3598 LIR_Opr right = yin->result();
3599
3600 CodeEmitInfo *info = state_for(x, x->state());
3601 CodeStub* stub = new PredicateFailedStub(info);
3602
3603 __ cmp(lir_cond(cond), left, right);
3604 __ branch(lir_cond(cond), stub);
3605 }
3606 }
3607
3608 void LIRGenerator::do_blackhole(Intrinsic *x) {
3609 assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3610 for (int c = 0; c < x->number_of_arguments(); c++) {
3611 // Load the argument
3612 LIRItem vitem(x->argument_at(c), this);
3613 vitem.load_item();
3614 // ...and leave it unused.
3615 }
3616 }
3617
3618 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3619 LIRItemList args(1);
3620 LIRItem value(arg1, this);
3621 args.append(&value);
3622 BasicTypeList signature;
3623 signature.append(as_BasicType(arg1->type()));
3624
3625 return call_runtime(&signature, &args, entry, result_type, info);
3626 }
3627
3628
3629 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3630 LIRItemList args(2);
3631 LIRItem value1(arg1, this);
3632 LIRItem value2(arg2, this);
3633 args.append(&value1);
3634 args.append(&value2);
3635 BasicTypeList signature;
3636 signature.append(as_BasicType(arg1->type()));
3637 signature.append(as_BasicType(arg2->type()));
3638
3639 return call_runtime(&signature, &args, entry, result_type, info);
3640 }
3641
3642
3643 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3644 address entry, ValueType* result_type, CodeEmitInfo* info) {
3645 // get a result register
3646 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3647 LIR_Opr result = LIR_OprFact::illegalOpr;
3648 if (result_type->tag() != voidTag) {
3649 result = new_register(result_type);
3650 phys_reg = result_register_for(result_type);
3651 }
3652
3653 // move the arguments into the correct location
3654 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3655 assert(cc->length() == args->length(), "argument mismatch");
3656 for (int i = 0; i < args->length(); i++) {
3657 LIR_Opr arg = args->at(i);
3658 LIR_Opr loc = cc->at(i);
3659 if (loc->is_register()) {
3660 __ move(arg, loc);
3661 } else {
3662 LIR_Address* addr = loc->as_address_ptr();
3663 // if (!can_store_as_constant(arg)) {
3664 // LIR_Opr tmp = new_register(arg->type());
3665 // __ move(arg, tmp);
3666 // arg = tmp;
3667 // }
3668 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3669 __ unaligned_move(arg, addr);
3670 } else {
3671 __ move(arg, addr);
3672 }
3673 }
3674 }
3675
3676 if (info) {
3677 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3678 } else {
3679 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3680 }
3681 if (result->is_valid()) {
3682 __ move(phys_reg, result);
3683 }
3684 return result;
3685 }
3686
3687
3688 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3689 address entry, ValueType* result_type, CodeEmitInfo* info) {
3690 // get a result register
3691 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3692 LIR_Opr result = LIR_OprFact::illegalOpr;
3693 if (result_type->tag() != voidTag) {
3694 result = new_register(result_type);
3695 phys_reg = result_register_for(result_type);
3696 }
3697
3698 // move the arguments into the correct location
3699 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3700
3701 assert(cc->length() == args->length(), "argument mismatch");
3702 for (int i = 0; i < args->length(); i++) {
3703 LIRItem* arg = args->at(i);
3704 LIR_Opr loc = cc->at(i);
3705 if (loc->is_register()) {
3706 arg->load_item_force(loc);
3707 } else {
3708 LIR_Address* addr = loc->as_address_ptr();
3709 arg->load_for_store(addr->type());
3710 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3711 __ unaligned_move(arg->result(), addr);
3712 } else {
3713 __ move(arg->result(), addr);
3714 }
3715 }
3716 }
3717
3718 if (info) {
3719 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3720 } else {
3721 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3722 }
3723 if (result->is_valid()) {
3724 __ move(phys_reg, result);
3725 }
3726 return result;
3727 }
3728
3729 void LIRGenerator::do_MemBar(MemBar* x) {
3730 LIR_Code code = x->code();
3731 switch(code) {
3732 case lir_membar_acquire : __ membar_acquire(); break;
3733 case lir_membar_release : __ membar_release(); break;
3734 case lir_membar : __ membar(); break;
3735 case lir_membar_loadload : __ membar_loadload(); break;
3736 case lir_membar_storestore: __ membar_storestore(); break;
3737 case lir_membar_loadstore : __ membar_loadstore(); break;
3738 case lir_membar_storeload : __ membar_storeload(); break;
3739 default : ShouldNotReachHere(); break;
3740 }
3741 }
3742
3743 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3744 LIR_Opr value_fixed = rlock_byte(T_BYTE);
3745 if (TwoOperandLIRForm) {
3746 __ move(value, value_fixed);
3747 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3748 } else {
3749 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3750 }
3751 LIR_Opr klass = new_register(T_METADATA);
3752 load_klass(array, klass, null_check_info);
3753 null_check_info = NULL;
3754 LIR_Opr layout = new_register(T_INT);
3755 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3756 int diffbit = Klass::layout_helper_boolean_diffbit();
3757 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3758 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3759 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3760 value = value_fixed;
3761 return value;
3762 }
3763
3764 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3765 if (x->check_boolean()) {
3766 value = mask_boolean(array, value, null_check_info);
3767 }
3768 return value;
3769 }