1 /* 2 * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/c1/barrierSetC1.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "runtime/vm_version.hpp" 43 #include "utilities/bitMap.inline.hpp" 44 #include "utilities/macros.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 #ifdef ASSERT 48 #define __ gen()->lir(__FILE__, __LINE__)-> 49 #else 50 #define __ gen()->lir()-> 51 #endif 52 53 #ifndef PATCHED_ADDR 54 #define PATCHED_ADDR (max_jint) 55 #endif 56 57 void PhiResolverState::reset() { 58 _virtual_operands.clear(); 59 _other_operands.clear(); 60 _vreg_table.clear(); 61 } 62 63 64 //-------------------------------------------------------------- 65 // PhiResolver 66 67 // Resolves cycles: 68 // 69 // r1 := r2 becomes temp := r1 70 // r2 := r1 r1 := r2 71 // r2 := temp 72 // and orders moves: 73 // 74 // r2 := r3 becomes r1 := r2 75 // r1 := r2 r2 := r3 76 77 PhiResolver::PhiResolver(LIRGenerator* gen) 78 : _gen(gen) 79 , _state(gen->resolver_state()) 80 , _loop(nullptr) 81 , _temp(LIR_OprFact::illegalOpr) 82 { 83 // reinitialize the shared state arrays 84 _state.reset(); 85 } 86 87 88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 89 assert(src->is_valid(), ""); 90 assert(dest->is_valid(), ""); 91 __ move(src, dest); 92 } 93 94 95 void PhiResolver::move_temp_to(LIR_Opr dest) { 96 assert(_temp->is_valid(), ""); 97 emit_move(_temp, dest); 98 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 99 } 100 101 102 void PhiResolver::move_to_temp(LIR_Opr src) { 103 assert(_temp->is_illegal(), ""); 104 _temp = _gen->new_register(src->type()); 105 emit_move(src, _temp); 106 } 107 108 109 // Traverse assignment graph in depth first order and generate moves in post order 110 // ie. two assignments: b := c, a := b start with node c: 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 112 // Generates moves in this order: move b to a and move c to b 113 // ie. cycle a := b, b := a start with node a 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 115 // Generates moves in this order: move b to temp, move a to b, move temp to a 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 117 if (!dest->visited()) { 118 dest->set_visited(); 119 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 120 move(dest, dest->destination_at(i)); 121 } 122 } else if (!dest->start_node()) { 123 // cylce in graph detected 124 assert(_loop == NULL, "only one loop valid!"); 125 _loop = dest; 126 move_to_temp(src->operand()); 127 return; 128 } // else dest is a start node 129 130 if (!dest->assigned()) { 131 if (_loop == dest) { 132 move_temp_to(dest->operand()); 133 dest->set_assigned(); 134 } else if (src != NULL) { 135 emit_move(src->operand(), dest->operand()); 136 dest->set_assigned(); 137 } 138 } 139 } 140 141 142 PhiResolver::~PhiResolver() { 143 int i; 144 // resolve any cycles in moves from and to virtual registers 145 for (i = virtual_operands().length() - 1; i >= 0; i --) { 146 ResolveNode* node = virtual_operands().at(i); 147 if (!node->visited()) { 148 _loop = NULL; 149 move(NULL, node); 150 node->set_start_node(); 151 assert(_temp->is_illegal(), "move_temp_to() call missing"); 152 } 153 } 154 155 // generate move for move from non virtual register to abitrary destination 156 for (i = other_operands().length() - 1; i >= 0; i --) { 157 ResolveNode* node = other_operands().at(i); 158 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 159 emit_move(node->operand(), node->destination_at(j)->operand()); 160 } 161 } 162 } 163 164 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 166 ResolveNode* node; 167 if (opr->is_virtual()) { 168 int vreg_num = opr->vreg_number(); 169 node = vreg_table().at_grow(vreg_num, NULL); 170 assert(node == NULL || node->operand() == opr, ""); 171 if (node == NULL) { 172 node = new ResolveNode(opr); 173 vreg_table().at_put(vreg_num, node); 174 } 175 // Make sure that all virtual operands show up in the list when 176 // they are used as the source of a move. 177 if (source && !virtual_operands().contains(node)) { 178 virtual_operands().append(node); 179 } 180 } else { 181 assert(source, ""); 182 node = new ResolveNode(opr); 183 other_operands().append(node); 184 } 185 return node; 186 } 187 188 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 190 assert(dest->is_virtual(), ""); 191 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 192 assert(src->is_valid(), ""); 193 assert(dest->is_valid(), ""); 194 ResolveNode* source = source_node(src); 195 source->append(destination_node(dest)); 196 } 197 198 199 //-------------------------------------------------------------- 200 // LIRItem 201 202 void LIRItem::set_result(LIR_Opr opr) { 203 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 204 value()->set_operand(opr); 205 206 if (opr->is_virtual()) { 207 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 208 } 209 210 _result = opr; 211 } 212 213 void LIRItem::load_item() { 214 if (result()->is_illegal()) { 215 // update the items result 216 _result = value()->operand(); 217 } 218 if (!result()->is_register()) { 219 LIR_Opr reg = _gen->new_register(value()->type()); 220 __ move(result(), reg); 221 if (result()->is_constant()) { 222 _result = reg; 223 } else { 224 set_result(reg); 225 } 226 } 227 } 228 229 230 void LIRItem::load_for_store(BasicType type) { 231 if (_gen->can_store_as_constant(value(), type)) { 232 _result = value()->operand(); 233 if (!_result->is_constant()) { 234 _result = LIR_OprFact::value_type(value()->type()); 235 } 236 } else if (type == T_BYTE || type == T_BOOLEAN) { 237 load_byte_item(); 238 } else { 239 load_item(); 240 } 241 } 242 243 void LIRItem::load_item_force(LIR_Opr reg) { 244 LIR_Opr r = result(); 245 if (r != reg) { 246 #if !defined(ARM) && !defined(E500V2) 247 if (r->type() != reg->type()) { 248 // moves between different types need an intervening spill slot 249 r = _gen->force_to_spill(r, reg->type()); 250 } 251 #endif 252 __ move(r, reg); 253 _result = reg; 254 } 255 } 256 257 ciObject* LIRItem::get_jobject_constant() const { 258 ObjectType* oc = type()->as_ObjectType(); 259 if (oc) { 260 return oc->constant_value(); 261 } 262 return NULL; 263 } 264 265 266 jint LIRItem::get_jint_constant() const { 267 assert(is_constant() && value() != NULL, ""); 268 assert(type()->as_IntConstant() != NULL, "type check"); 269 return type()->as_IntConstant()->value(); 270 } 271 272 273 jint LIRItem::get_address_constant() const { 274 assert(is_constant() && value() != NULL, ""); 275 assert(type()->as_AddressConstant() != NULL, "type check"); 276 return type()->as_AddressConstant()->value(); 277 } 278 279 280 jfloat LIRItem::get_jfloat_constant() const { 281 assert(is_constant() && value() != NULL, ""); 282 assert(type()->as_FloatConstant() != NULL, "type check"); 283 return type()->as_FloatConstant()->value(); 284 } 285 286 287 jdouble LIRItem::get_jdouble_constant() const { 288 assert(is_constant() && value() != NULL, ""); 289 assert(type()->as_DoubleConstant() != NULL, "type check"); 290 return type()->as_DoubleConstant()->value(); 291 } 292 293 294 jlong LIRItem::get_jlong_constant() const { 295 assert(is_constant() && value() != NULL, ""); 296 assert(type()->as_LongConstant() != NULL, "type check"); 297 return type()->as_LongConstant()->value(); 298 } 299 300 301 302 //-------------------------------------------------------------- 303 304 305 void LIRGenerator::block_do_prolog(BlockBegin* block) { 306 #ifndef PRODUCT 307 if (PrintIRWithLIR) { 308 block->print(); 309 } 310 #endif 311 312 // set up the list of LIR instructions 313 assert(block->lir() == NULL, "LIR list already computed for this block"); 314 _lir = new LIR_List(compilation(), block); 315 block->set_lir(_lir); 316 317 __ branch_destination(block->label()); 318 319 if (LIRTraceExecution && 320 Compilation::current()->hir()->start()->block_id() != block->block_id() && 321 !block->is_set(BlockBegin::exception_entry_flag)) { 322 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 323 trace_block_entry(block); 324 } 325 } 326 327 328 void LIRGenerator::block_do_epilog(BlockBegin* block) { 329 #ifndef PRODUCT 330 if (PrintIRWithLIR) { 331 tty->cr(); 332 } 333 #endif 334 335 // LIR_Opr for unpinned constants shouldn't be referenced by other 336 // blocks so clear them out after processing the block. 337 for (int i = 0; i < _unpinned_constants.length(); i++) { 338 _unpinned_constants.at(i)->clear_operand(); 339 } 340 _unpinned_constants.trunc_to(0); 341 342 // clear our any registers for other local constants 343 _constants.trunc_to(0); 344 _reg_for_constants.trunc_to(0); 345 } 346 347 348 void LIRGenerator::block_do(BlockBegin* block) { 349 CHECK_BAILOUT(); 350 351 block_do_prolog(block); 352 set_block(block); 353 354 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 355 if (instr->is_pinned()) do_root(instr); 356 } 357 358 set_block(NULL); 359 block_do_epilog(block); 360 } 361 362 363 //-------------------------LIRGenerator----------------------------- 364 365 // This is where the tree-walk starts; instr must be root; 366 void LIRGenerator::do_root(Value instr) { 367 CHECK_BAILOUT(); 368 369 InstructionMark im(compilation(), instr); 370 371 assert(instr->is_pinned(), "use only with roots"); 372 assert(instr->subst() == instr, "shouldn't have missed substitution"); 373 374 instr->visit(this); 375 376 assert(!instr->has_uses() || instr->operand()->is_valid() || 377 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 378 } 379 380 381 // This is called for each node in tree; the walk stops if a root is reached 382 void LIRGenerator::walk(Value instr) { 383 InstructionMark im(compilation(), instr); 384 //stop walk when encounter a root 385 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { 386 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 387 } else { 388 assert(instr->subst() == instr, "shouldn't have missed substitution"); 389 instr->visit(this); 390 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 391 } 392 } 393 394 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 396 assert(state != NULL, "state must be defined"); 397 398 #ifndef PRODUCT 399 state->verify(); 400 #endif 401 402 ValueStack* s = state; 403 for_each_state(s) { 404 if (s->kind() == ValueStack::EmptyExceptionState) { 405 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 406 continue; 407 } 408 409 int index; 410 Value value; 411 for_each_stack_value(s, index, value) { 412 assert(value->subst() == value, "missed substitution"); 413 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 414 walk(value); 415 assert(value->operand()->is_valid(), "must be evaluated now"); 416 } 417 } 418 419 int bci = s->bci(); 420 IRScope* scope = s->scope(); 421 ciMethod* method = scope->method(); 422 423 MethodLivenessResult liveness = method->liveness_at_bci(bci); 424 if (bci == SynchronizationEntryBCI) { 425 if (x->as_ExceptionObject() || x->as_Throw()) { 426 // all locals are dead on exit from the synthetic unlocker 427 liveness.clear(); 428 } else { 429 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 430 } 431 } 432 if (!liveness.is_valid()) { 433 // Degenerate or breakpointed method. 434 bailout("Degenerate or breakpointed method"); 435 } else { 436 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 437 for_each_local_value(s, index, value) { 438 assert(value->subst() == value, "missed substition"); 439 if (liveness.at(index) && !value->type()->is_illegal()) { 440 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 441 walk(value); 442 assert(value->operand()->is_valid(), "must be evaluated now"); 443 } 444 } else { 445 // NULL out this local so that linear scan can assume that all non-NULL values are live. 446 s->invalidate_local(index); 447 } 448 } 449 } 450 } 451 452 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 453 } 454 455 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 457 return state_for(x, x->exception_state()); 458 } 459 460 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 462 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 463 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 464 * the class. */ 465 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 466 assert(info != NULL, "info must be set if class is not loaded"); 467 __ klass2reg_patch(NULL, r, info); 468 } else { 469 // no patching needed 470 __ metadata2reg(obj->constant_encoding(), r); 471 } 472 } 473 474 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 476 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 477 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 478 if (index->is_constant()) { 479 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 480 index->as_jint(), null_check_info); 481 __ branch(lir_cond_belowEqual, stub); // forward branch 482 } else { 483 cmp_reg_mem(lir_cond_aboveEqual, index, array, 484 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 485 __ branch(lir_cond_aboveEqual, stub); // forward branch 486 } 487 } 488 489 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { 491 CodeStub* stub = new RangeCheckStub(info, index); 492 if (index->is_constant()) { 493 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); 494 __ branch(lir_cond_belowEqual, stub); // forward branch 495 } else { 496 cmp_reg_mem(lir_cond_aboveEqual, index, buffer, 497 java_nio_Buffer::limit_offset(), T_INT, info); 498 __ branch(lir_cond_aboveEqual, stub); // forward branch 499 } 500 __ move(index, result); 501 } 502 503 504 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 506 LIR_Opr result_op = result; 507 LIR_Opr left_op = left; 508 LIR_Opr right_op = right; 509 510 if (TwoOperandLIRForm && left_op != result_op) { 511 assert(right_op != result_op, "malformed"); 512 __ move(left_op, result_op); 513 left_op = result_op; 514 } 515 516 switch(code) { 517 case Bytecodes::_dadd: 518 case Bytecodes::_fadd: 519 case Bytecodes::_ladd: 520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 521 case Bytecodes::_fmul: 522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 523 524 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 525 526 case Bytecodes::_imul: 527 { 528 bool did_strength_reduce = false; 529 530 if (right->is_constant()) { 531 jint c = right->as_jint(); 532 if (c > 0 && is_power_of_2(c)) { 533 // do not need tmp here 534 __ shift_left(left_op, exact_log2(c), result_op); 535 did_strength_reduce = true; 536 } else { 537 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 538 } 539 } 540 // we couldn't strength reduce so just emit the multiply 541 if (!did_strength_reduce) { 542 __ mul(left_op, right_op, result_op); 543 } 544 } 545 break; 546 547 case Bytecodes::_dsub: 548 case Bytecodes::_fsub: 549 case Bytecodes::_lsub: 550 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 551 552 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 553 // ldiv and lrem are implemented with a direct runtime call 554 555 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 556 557 case Bytecodes::_drem: 558 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 559 560 default: ShouldNotReachHere(); 561 } 562 } 563 564 565 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 566 arithmetic_op(code, result, left, right, tmp); 567 } 568 569 570 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 571 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 572 } 573 574 575 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 576 arithmetic_op(code, result, left, right, tmp); 577 } 578 579 580 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 581 582 if (TwoOperandLIRForm && value != result_op 583 // Only 32bit right shifts require two operand form on S390. 584 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 585 assert(count != result_op, "malformed"); 586 __ move(value, result_op); 587 value = result_op; 588 } 589 590 assert(count->is_constant() || count->is_register(), "must be"); 591 switch(code) { 592 case Bytecodes::_ishl: 593 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 594 case Bytecodes::_ishr: 595 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 596 case Bytecodes::_iushr: 597 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 598 default: ShouldNotReachHere(); 599 } 600 } 601 602 603 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 604 if (TwoOperandLIRForm && left_op != result_op) { 605 assert(right_op != result_op, "malformed"); 606 __ move(left_op, result_op); 607 left_op = result_op; 608 } 609 610 switch(code) { 611 case Bytecodes::_iand: 612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 613 614 case Bytecodes::_ior: 615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 616 617 case Bytecodes::_ixor: 618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 619 620 default: ShouldNotReachHere(); 621 } 622 } 623 624 625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 626 if (!GenerateSynchronizationCode) return; 627 // for slow path, use debug info for state after successful locking 628 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 629 __ load_stack_address_monitor(monitor_no, lock); 630 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 631 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 632 } 633 634 635 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 636 if (!GenerateSynchronizationCode) return; 637 // setup registers 638 LIR_Opr hdr = lock; 639 lock = new_hdr; 640 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); 641 __ load_stack_address_monitor(monitor_no, lock); 642 __ unlock_object(hdr, object, lock, scratch, slow_path); 643 } 644 645 #ifndef PRODUCT 646 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 647 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 648 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 649 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 650 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 651 } 652 } 653 #endif 654 655 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 656 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 657 // If klass is not loaded we do not know if the klass has finalizers: 658 if (UseFastNewInstance && klass->is_loaded() 659 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 660 661 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 662 663 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 664 665 assert(klass->is_loaded(), "must be loaded"); 666 // allocate space for instance 667 assert(klass->size_helper() > 0, "illegal instance size"); 668 const int instance_size = align_object_size(klass->size_helper()); 669 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 670 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 671 } else { 672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 673 __ branch(lir_cond_always, slow_path); 674 __ branch_destination(slow_path->continuation()); 675 } 676 } 677 678 679 static bool is_constant_zero(Instruction* inst) { 680 IntConstant* c = inst->type()->as_IntConstant(); 681 if (c) { 682 return (c->value() == 0); 683 } 684 return false; 685 } 686 687 688 static bool positive_constant(Instruction* inst) { 689 IntConstant* c = inst->type()->as_IntConstant(); 690 if (c) { 691 return (c->value() >= 0); 692 } 693 return false; 694 } 695 696 697 static ciArrayKlass* as_array_klass(ciType* type) { 698 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 699 return (ciArrayKlass*)type; 700 } else { 701 return NULL; 702 } 703 } 704 705 static ciType* phi_declared_type(Phi* phi) { 706 ciType* t = phi->operand_at(0)->declared_type(); 707 if (t == NULL) { 708 return NULL; 709 } 710 for(int i = 1; i < phi->operand_count(); i++) { 711 if (t != phi->operand_at(i)->declared_type()) { 712 return NULL; 713 } 714 } 715 return t; 716 } 717 718 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 719 Instruction* src = x->argument_at(0); 720 Instruction* src_pos = x->argument_at(1); 721 Instruction* dst = x->argument_at(2); 722 Instruction* dst_pos = x->argument_at(3); 723 Instruction* length = x->argument_at(4); 724 725 // first try to identify the likely type of the arrays involved 726 ciArrayKlass* expected_type = NULL; 727 bool is_exact = false, src_objarray = false, dst_objarray = false; 728 { 729 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 730 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 731 Phi* phi; 732 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 733 src_declared_type = as_array_klass(phi_declared_type(phi)); 734 } 735 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 736 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 737 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 738 dst_declared_type = as_array_klass(phi_declared_type(phi)); 739 } 740 741 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 742 // the types exactly match so the type is fully known 743 is_exact = true; 744 expected_type = src_exact_type; 745 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 746 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 747 ciArrayKlass* src_type = NULL; 748 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 749 src_type = (ciArrayKlass*) src_exact_type; 750 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 751 src_type = (ciArrayKlass*) src_declared_type; 752 } 753 if (src_type != NULL) { 754 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 755 is_exact = true; 756 expected_type = dst_type; 757 } 758 } 759 } 760 // at least pass along a good guess 761 if (expected_type == NULL) expected_type = dst_exact_type; 762 if (expected_type == NULL) expected_type = src_declared_type; 763 if (expected_type == NULL) expected_type = dst_declared_type; 764 765 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 766 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 767 } 768 769 // if a probable array type has been identified, figure out if any 770 // of the required checks for a fast case can be elided. 771 int flags = LIR_OpArrayCopy::all_flags; 772 773 if (!src_objarray) 774 flags &= ~LIR_OpArrayCopy::src_objarray; 775 if (!dst_objarray) 776 flags &= ~LIR_OpArrayCopy::dst_objarray; 777 778 if (!x->arg_needs_null_check(0)) 779 flags &= ~LIR_OpArrayCopy::src_null_check; 780 if (!x->arg_needs_null_check(2)) 781 flags &= ~LIR_OpArrayCopy::dst_null_check; 782 783 784 if (expected_type != NULL) { 785 Value length_limit = NULL; 786 787 IfOp* ifop = length->as_IfOp(); 788 if (ifop != NULL) { 789 // look for expressions like min(v, a.length) which ends up as 790 // x > y ? y : x or x >= y ? y : x 791 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 792 ifop->x() == ifop->fval() && 793 ifop->y() == ifop->tval()) { 794 length_limit = ifop->y(); 795 } 796 } 797 798 // try to skip null checks and range checks 799 NewArray* src_array = src->as_NewArray(); 800 if (src_array != NULL) { 801 flags &= ~LIR_OpArrayCopy::src_null_check; 802 if (length_limit != NULL && 803 src_array->length() == length_limit && 804 is_constant_zero(src_pos)) { 805 flags &= ~LIR_OpArrayCopy::src_range_check; 806 } 807 } 808 809 NewArray* dst_array = dst->as_NewArray(); 810 if (dst_array != NULL) { 811 flags &= ~LIR_OpArrayCopy::dst_null_check; 812 if (length_limit != NULL && 813 dst_array->length() == length_limit && 814 is_constant_zero(dst_pos)) { 815 flags &= ~LIR_OpArrayCopy::dst_range_check; 816 } 817 } 818 819 // check from incoming constant values 820 if (positive_constant(src_pos)) 821 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 822 if (positive_constant(dst_pos)) 823 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 824 if (positive_constant(length)) 825 flags &= ~LIR_OpArrayCopy::length_positive_check; 826 827 // see if the range check can be elided, which might also imply 828 // that src or dst is non-null. 829 ArrayLength* al = length->as_ArrayLength(); 830 if (al != NULL) { 831 if (al->array() == src) { 832 // it's the length of the source array 833 flags &= ~LIR_OpArrayCopy::length_positive_check; 834 flags &= ~LIR_OpArrayCopy::src_null_check; 835 if (is_constant_zero(src_pos)) 836 flags &= ~LIR_OpArrayCopy::src_range_check; 837 } 838 if (al->array() == dst) { 839 // it's the length of the destination array 840 flags &= ~LIR_OpArrayCopy::length_positive_check; 841 flags &= ~LIR_OpArrayCopy::dst_null_check; 842 if (is_constant_zero(dst_pos)) 843 flags &= ~LIR_OpArrayCopy::dst_range_check; 844 } 845 } 846 if (is_exact) { 847 flags &= ~LIR_OpArrayCopy::type_check; 848 } 849 } 850 851 IntConstant* src_int = src_pos->type()->as_IntConstant(); 852 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 853 if (src_int && dst_int) { 854 int s_offs = src_int->value(); 855 int d_offs = dst_int->value(); 856 if (src_int->value() >= dst_int->value()) { 857 flags &= ~LIR_OpArrayCopy::overlapping; 858 } 859 if (expected_type != NULL) { 860 BasicType t = expected_type->element_type()->basic_type(); 861 int element_size = type2aelembytes(t); 862 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 863 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 864 flags &= ~LIR_OpArrayCopy::unaligned; 865 } 866 } 867 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 868 // src and dest positions are the same, or dst is zero so assume 869 // nonoverlapping copy. 870 flags &= ~LIR_OpArrayCopy::overlapping; 871 } 872 873 if (src == dst) { 874 // moving within a single array so no type checks are needed 875 if (flags & LIR_OpArrayCopy::type_check) { 876 flags &= ~LIR_OpArrayCopy::type_check; 877 } 878 } 879 *flagsp = flags; 880 *expected_typep = (ciArrayKlass*)expected_type; 881 } 882 883 884 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 885 assert(opr->is_register(), "why spill if item is not register?"); 886 887 if (strict_fp_requires_explicit_rounding) { 888 #ifdef IA32 889 if (UseSSE < 1 && opr->is_single_fpu()) { 890 LIR_Opr result = new_register(T_FLOAT); 891 set_vreg_flag(result, must_start_in_memory); 892 assert(opr->is_register(), "only a register can be spilled"); 893 assert(opr->value_type()->is_float(), "rounding only for floats available"); 894 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 895 return result; 896 } 897 #else 898 Unimplemented(); 899 #endif // IA32 900 } 901 return opr; 902 } 903 904 905 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 906 assert(type2size[t] == type2size[value->type()], 907 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 908 if (!value->is_register()) { 909 // force into a register 910 LIR_Opr r = new_register(value->type()); 911 __ move(value, r); 912 value = r; 913 } 914 915 // create a spill location 916 LIR_Opr tmp = new_register(t); 917 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 918 919 // move from register to spill 920 __ move(value, tmp); 921 return tmp; 922 } 923 924 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 925 if (if_instr->should_profile()) { 926 ciMethod* method = if_instr->profiled_method(); 927 assert(method != NULL, "method should be set if branch is profiled"); 928 ciMethodData* md = method->method_data_or_null(); 929 assert(md != NULL, "Sanity"); 930 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 931 assert(data != NULL, "must have profiling data"); 932 assert(data->is_BranchData(), "need BranchData for two-way branches"); 933 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 934 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 935 if (if_instr->is_swapped()) { 936 int t = taken_count_offset; 937 taken_count_offset = not_taken_count_offset; 938 not_taken_count_offset = t; 939 } 940 941 LIR_Opr md_reg = new_register(T_METADATA); 942 __ metadata2reg(md->constant_encoding(), md_reg); 943 944 LIR_Opr data_offset_reg = new_pointer_register(); 945 __ cmove(lir_cond(cond), 946 LIR_OprFact::intptrConst(taken_count_offset), 947 LIR_OprFact::intptrConst(not_taken_count_offset), 948 data_offset_reg, as_BasicType(if_instr->x()->type())); 949 950 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 951 LIR_Opr data_reg = new_pointer_register(); 952 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 953 __ move(data_addr, data_reg); 954 // Use leal instead of add to avoid destroying condition codes on x86 955 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 956 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 957 __ move(data_reg, data_addr); 958 } 959 } 960 961 // Phi technique: 962 // This is about passing live values from one basic block to the other. 963 // In code generated with Java it is rather rare that more than one 964 // value is on the stack from one basic block to the other. 965 // We optimize our technique for efficient passing of one value 966 // (of type long, int, double..) but it can be extended. 967 // When entering or leaving a basic block, all registers and all spill 968 // slots are release and empty. We use the released registers 969 // and spill slots to pass the live values from one block 970 // to the other. The topmost value, i.e., the value on TOS of expression 971 // stack is passed in registers. All other values are stored in spilling 972 // area. Every Phi has an index which designates its spill slot 973 // At exit of a basic block, we fill the register(s) and spill slots. 974 // At entry of a basic block, the block_prolog sets up the content of phi nodes 975 // and locks necessary registers and spilling slots. 976 977 978 // move current value to referenced phi function 979 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 980 Phi* phi = sux_val->as_Phi(); 981 // cur_val can be null without phi being null in conjunction with inlining 982 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 983 if (phi->is_local()) { 984 for (int i = 0; i < phi->operand_count(); i++) { 985 Value op = phi->operand_at(i); 986 if (op != NULL && op->type()->is_illegal()) { 987 bailout("illegal phi operand"); 988 } 989 } 990 } 991 Phi* cur_phi = cur_val->as_Phi(); 992 if (cur_phi != NULL && cur_phi->is_illegal()) { 993 // Phi and local would need to get invalidated 994 // (which is unexpected for Linear Scan). 995 // But this case is very rare so we simply bail out. 996 bailout("propagation of illegal phi"); 997 return; 998 } 999 LIR_Opr operand = cur_val->operand(); 1000 if (operand->is_illegal()) { 1001 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 1002 "these can be produced lazily"); 1003 operand = operand_for_instruction(cur_val); 1004 } 1005 resolver->move(operand, operand_for_instruction(phi)); 1006 } 1007 } 1008 1009 1010 // Moves all stack values into their PHI position 1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1012 BlockBegin* bb = block(); 1013 if (bb->number_of_sux() == 1) { 1014 BlockBegin* sux = bb->sux_at(0); 1015 assert(sux->number_of_preds() > 0, "invalid CFG"); 1016 1017 // a block with only one predecessor never has phi functions 1018 if (sux->number_of_preds() > 1) { 1019 PhiResolver resolver(this); 1020 1021 ValueStack* sux_state = sux->state(); 1022 Value sux_value; 1023 int index; 1024 1025 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1026 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1027 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1028 1029 for_each_stack_value(sux_state, index, sux_value) { 1030 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1031 } 1032 1033 for_each_local_value(sux_state, index, sux_value) { 1034 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1035 } 1036 1037 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1038 } 1039 } 1040 } 1041 1042 1043 LIR_Opr LIRGenerator::new_register(BasicType type) { 1044 int vreg_num = _virtual_register_number; 1045 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1046 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1047 if (vreg_num + 20 >= LIR_OprDesc::vreg_max) { 1048 bailout("out of virtual registers in LIR generator"); 1049 if (vreg_num + 2 >= LIR_OprDesc::vreg_max) { 1050 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1051 _virtual_register_number = LIR_OprDesc::vreg_base; 1052 vreg_num = LIR_OprDesc::vreg_base; 1053 } 1054 } 1055 _virtual_register_number += 1; 1056 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1057 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1058 return vreg; 1059 } 1060 1061 1062 // Try to lock using register in hint 1063 LIR_Opr LIRGenerator::rlock(Value instr) { 1064 return new_register(instr->type()); 1065 } 1066 1067 1068 // does an rlock and sets result 1069 LIR_Opr LIRGenerator::rlock_result(Value x) { 1070 LIR_Opr reg = rlock(x); 1071 set_result(x, reg); 1072 return reg; 1073 } 1074 1075 1076 // does an rlock and sets result 1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1078 LIR_Opr reg; 1079 switch (type) { 1080 case T_BYTE: 1081 case T_BOOLEAN: 1082 reg = rlock_byte(type); 1083 break; 1084 default: 1085 reg = rlock(x); 1086 break; 1087 } 1088 1089 set_result(x, reg); 1090 return reg; 1091 } 1092 1093 1094 //--------------------------------------------------------------------- 1095 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1096 ObjectType* oc = value->type()->as_ObjectType(); 1097 if (oc) { 1098 return oc->constant_value(); 1099 } 1100 return NULL; 1101 } 1102 1103 1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1105 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1106 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1107 1108 // no moves are created for phi functions at the begin of exception 1109 // handlers, so assign operands manually here 1110 for_each_phi_fun(block(), phi, 1111 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1112 1113 LIR_Opr thread_reg = getThreadPointer(); 1114 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1115 exceptionOopOpr()); 1116 __ move_wide(LIR_OprFact::oopConst(NULL), 1117 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1118 __ move_wide(LIR_OprFact::oopConst(NULL), 1119 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1120 1121 LIR_Opr result = new_register(T_OBJECT); 1122 __ move(exceptionOopOpr(), result); 1123 set_result(x, result); 1124 } 1125 1126 1127 //---------------------------------------------------------------------- 1128 //---------------------------------------------------------------------- 1129 //---------------------------------------------------------------------- 1130 //---------------------------------------------------------------------- 1131 // visitor functions 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 1137 void LIRGenerator::do_Phi(Phi* x) { 1138 // phi functions are never visited directly 1139 ShouldNotReachHere(); 1140 } 1141 1142 1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1144 void LIRGenerator::do_Constant(Constant* x) { 1145 if (x->state_before() != NULL) { 1146 // Any constant with a ValueStack requires patching so emit the patch here 1147 LIR_Opr reg = rlock_result(x); 1148 CodeEmitInfo* info = state_for(x, x->state_before()); 1149 __ oop2reg_patch(NULL, reg, info); 1150 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1151 if (!x->is_pinned()) { 1152 // unpinned constants are handled specially so that they can be 1153 // put into registers when they are used multiple times within a 1154 // block. After the block completes their operand will be 1155 // cleared so that other blocks can't refer to that register. 1156 set_result(x, load_constant(x)); 1157 } else { 1158 LIR_Opr res = x->operand(); 1159 if (!res->is_valid()) { 1160 res = LIR_OprFact::value_type(x->type()); 1161 } 1162 if (res->is_constant()) { 1163 LIR_Opr reg = rlock_result(x); 1164 __ move(res, reg); 1165 } else { 1166 set_result(x, res); 1167 } 1168 } 1169 } else { 1170 set_result(x, LIR_OprFact::value_type(x->type())); 1171 } 1172 } 1173 1174 1175 void LIRGenerator::do_Local(Local* x) { 1176 // operand_for_instruction has the side effect of setting the result 1177 // so there's no need to do it here. 1178 operand_for_instruction(x); 1179 } 1180 1181 1182 void LIRGenerator::do_Return(Return* x) { 1183 if (compilation()->env()->dtrace_method_probes()) { 1184 BasicTypeList signature; 1185 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1186 signature.append(T_METADATA); // Method* 1187 LIR_OprList* args = new LIR_OprList(); 1188 args->append(getThreadPointer()); 1189 LIR_Opr meth = new_register(T_METADATA); 1190 __ metadata2reg(method()->constant_encoding(), meth); 1191 args->append(meth); 1192 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1193 } 1194 1195 if (x->type()->is_void()) { 1196 __ return_op(LIR_OprFact::illegalOpr); 1197 } else { 1198 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1199 LIRItem result(x->result(), this); 1200 1201 result.load_item_force(reg); 1202 __ return_op(result.result()); 1203 } 1204 set_no_result(x); 1205 } 1206 1207 // Examble: ref.get() 1208 // Combination of LoadField and g1 pre-write barrier 1209 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1210 1211 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1212 1213 assert(x->number_of_arguments() == 1, "wrong type"); 1214 1215 LIRItem reference(x->argument_at(0), this); 1216 reference.load_item(); 1217 1218 // need to perform the null check on the reference objecy 1219 CodeEmitInfo* info = NULL; 1220 if (x->needs_null_check()) { 1221 info = state_for(x); 1222 } 1223 1224 LIR_Opr result = rlock_result(x, T_OBJECT); 1225 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1226 reference, LIR_OprFact::intConst(referent_offset), result, 1227 nullptr, info); 1228 } 1229 1230 // Example: clazz.isInstance(object) 1231 void LIRGenerator::do_isInstance(Intrinsic* x) { 1232 assert(x->number_of_arguments() == 2, "wrong type"); 1233 1234 // TODO could try to substitute this node with an equivalent InstanceOf 1235 // if clazz is known to be a constant Class. This will pick up newly found 1236 // constants after HIR construction. I'll leave this to a future change. 1237 1238 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1239 // could follow the aastore example in a future change. 1240 1241 LIRItem clazz(x->argument_at(0), this); 1242 LIRItem object(x->argument_at(1), this); 1243 clazz.load_item(); 1244 object.load_item(); 1245 LIR_Opr result = rlock_result(x); 1246 1247 // need to perform null check on clazz 1248 if (x->needs_null_check()) { 1249 CodeEmitInfo* info = state_for(x); 1250 __ null_check(clazz.result(), info); 1251 } 1252 1253 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1254 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1255 x->type(), 1256 NULL); // NULL CodeEmitInfo results in a leaf call 1257 __ move(call_result, result); 1258 } 1259 1260 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1261 __ load_klass(obj, klass, null_check_info); 1262 } 1263 1264 // Example: object.getClass () 1265 void LIRGenerator::do_getClass(Intrinsic* x) { 1266 assert(x->number_of_arguments() == 1, "wrong type"); 1267 1268 LIRItem rcvr(x->argument_at(0), this); 1269 rcvr.load_item(); 1270 LIR_Opr temp = new_register(T_ADDRESS); 1271 LIR_Opr result = rlock_result(x); 1272 1273 // need to perform the null check on the rcvr 1274 CodeEmitInfo* info = NULL; 1275 if (x->needs_null_check()) { 1276 info = state_for(x); 1277 } 1278 1279 LIR_Opr klass = new_register(T_METADATA); 1280 load_klass(rcvr.result(), klass, info); 1281 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1282 // mirror = ((OopHandle)mirror)->resolve(); 1283 access_load(IN_NATIVE, T_OBJECT, 1284 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1285 } 1286 1287 // java.lang.Class::isPrimitive() 1288 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1289 assert(x->number_of_arguments() == 1, "wrong type"); 1290 1291 LIRItem rcvr(x->argument_at(0), this); 1292 rcvr.load_item(); 1293 LIR_Opr temp = new_register(T_METADATA); 1294 LIR_Opr result = rlock_result(x); 1295 1296 CodeEmitInfo* info = NULL; 1297 if (x->needs_null_check()) { 1298 info = state_for(x); 1299 } 1300 1301 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1302 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1303 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1304 } 1305 1306 // Example: Foo.class.getModifiers() 1307 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1308 assert(x->number_of_arguments() == 1, "wrong type"); 1309 1310 LIRItem receiver(x->argument_at(0), this); 1311 receiver.load_item(); 1312 LIR_Opr result = rlock_result(x); 1313 1314 CodeEmitInfo* info = NULL; 1315 if (x->needs_null_check()) { 1316 info = state_for(x); 1317 } 1318 1319 // While reading off the universal constant mirror is less efficient than doing 1320 // another branch and returning the constant answer, this branchless code runs into 1321 // much less risk of confusion for C1 register allocator. The choice of the universe 1322 // object here is correct as long as it returns the same modifiers we would expect 1323 // from the primitive class itself. See spec for Class.getModifiers that provides 1324 // the typed array klasses with similar modifiers as their component types. 1325 1326 Klass* univ_klass_obj = Universe::byteArrayKlassObj(); 1327 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1328 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj); 1329 1330 LIR_Opr recv_klass = new_register(T_METADATA); 1331 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1332 1333 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1334 LIR_Opr klass = new_register(T_METADATA); 1335 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0)); 1336 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1337 1338 // Get the answer. 1339 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1340 } 1341 1342 // Example: Thread.currentThread() 1343 void LIRGenerator::do_currentThread(Intrinsic* x) { 1344 assert(x->number_of_arguments() == 0, "wrong type"); 1345 LIR_Opr temp = new_register(T_ADDRESS); 1346 LIR_Opr reg = rlock_result(x); 1347 __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp); 1348 // threadObj = ((OopHandle)_threadObj)->resolve(); 1349 access_load(IN_NATIVE, T_OBJECT, 1350 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1351 } 1352 1353 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1354 assert(x->number_of_arguments() == 3, "wrong type"); 1355 LIR_Opr result_reg = rlock_result(x); 1356 1357 LIRItem value(x->argument_at(2), this); 1358 value.load_item(); 1359 1360 LIR_Opr klass = new_register(T_METADATA); 1361 load_klass(value.result(), klass, NULL); 1362 LIR_Opr layout = new_register(T_INT); 1363 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1364 1365 LabelObj* L_done = new LabelObj(); 1366 LabelObj* L_array = new LabelObj(); 1367 1368 __ cmp(lir_cond_lessEqual, layout, 0); 1369 __ branch(lir_cond_lessEqual, L_array->label()); 1370 1371 // Instance case: the layout helper gives us instance size almost directly, 1372 // but we need to mask out the _lh_instance_slow_path_bit. 1373 __ convert(Bytecodes::_i2l, layout, result_reg); 1374 1375 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1376 jlong mask = ~(jlong) right_n_bits(LogBytesPerLong); 1377 __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg); 1378 1379 __ branch(lir_cond_always, L_done->label()); 1380 1381 // Array case: size is round(header + element_size*arraylength). 1382 // Since arraylength is different for every array instance, we have to 1383 // compute the whole thing at runtime. 1384 1385 __ branch_destination(L_array->label()); 1386 1387 int round_mask = MinObjAlignmentInBytes - 1; 1388 1389 // Figure out header sizes first. 1390 LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift); 1391 LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask); 1392 1393 LIR_Opr header_size = new_register(T_INT); 1394 __ move(layout, header_size); 1395 LIR_Opr tmp = new_register(T_INT); 1396 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1397 __ logical_and(header_size, hsm, header_size); 1398 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1399 1400 // Figure out the array length in bytes 1401 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1402 LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask); 1403 __ logical_and(layout, l2esm, layout); 1404 1405 LIR_Opr length_int = new_register(T_INT); 1406 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1407 1408 #ifdef _LP64 1409 LIR_Opr length = new_register(T_LONG); 1410 __ convert(Bytecodes::_i2l, length_int, length); 1411 #endif 1412 1413 // Shift-left awkwardness. Normally it is just: 1414 // __ shift_left(length, layout, length); 1415 // But C1 cannot perform shift_left with non-constant count, so we end up 1416 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1417 // longs, so we have to act on ints. 1418 LabelObj* L_shift_loop = new LabelObj(); 1419 LabelObj* L_shift_exit = new LabelObj(); 1420 1421 __ branch_destination(L_shift_loop->label()); 1422 __ cmp(lir_cond_equal, layout, 0); 1423 __ branch(lir_cond_equal, L_shift_exit->label()); 1424 1425 #ifdef _LP64 1426 __ shift_left(length, 1, length); 1427 #else 1428 __ shift_left(length_int, 1, length_int); 1429 #endif 1430 1431 __ sub(layout, LIR_OprFact::intConst(1), layout); 1432 1433 __ branch(lir_cond_always, L_shift_loop->label()); 1434 __ branch_destination(L_shift_exit->label()); 1435 1436 // Mix all up, round, and push to the result. 1437 #ifdef _LP64 1438 LIR_Opr header_size_long = new_register(T_LONG); 1439 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1440 __ add(length, header_size_long, length); 1441 if (round_mask != 0) { 1442 __ logical_and(length, LIR_OprFact::longConst(~round_mask), length); 1443 } 1444 __ move(length, result_reg); 1445 #else 1446 __ add(length_int, header_size, length_int); 1447 if (round_mask != 0) { 1448 __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int); 1449 } 1450 __ convert(Bytecodes::_i2l, length_int, result_reg); 1451 #endif 1452 1453 __ branch_destination(L_done->label()); 1454 } 1455 1456 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1457 assert(x->number_of_arguments() == 1, "wrong type"); 1458 LIRItem receiver(x->argument_at(0), this); 1459 1460 receiver.load_item(); 1461 BasicTypeList signature; 1462 signature.append(T_OBJECT); // receiver 1463 LIR_OprList* args = new LIR_OprList(); 1464 args->append(receiver.result()); 1465 CodeEmitInfo* info = state_for(x, x->state()); 1466 call_runtime(&signature, args, 1467 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1468 voidType, info); 1469 1470 set_no_result(x); 1471 } 1472 1473 1474 //------------------------local access-------------------------------------- 1475 1476 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1477 if (x->operand()->is_illegal()) { 1478 Constant* c = x->as_Constant(); 1479 if (c != NULL) { 1480 x->set_operand(LIR_OprFact::value_type(c->type())); 1481 } else { 1482 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1483 // allocate a virtual register for this local or phi 1484 x->set_operand(rlock(x)); 1485 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1486 } 1487 } 1488 return x->operand(); 1489 } 1490 1491 1492 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1493 if (opr->is_virtual()) { 1494 return instruction_for_vreg(opr->vreg_number()); 1495 } 1496 return NULL; 1497 } 1498 1499 1500 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1501 if (reg_num < _instruction_for_operand.length()) { 1502 return _instruction_for_operand.at(reg_num); 1503 } 1504 return NULL; 1505 } 1506 1507 1508 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1509 if (_vreg_flags.size_in_bits() == 0) { 1510 BitMap2D temp(100, num_vreg_flags); 1511 _vreg_flags = temp; 1512 } 1513 _vreg_flags.at_put_grow(vreg_num, f, true); 1514 } 1515 1516 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1517 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1518 return false; 1519 } 1520 return _vreg_flags.at(vreg_num, f); 1521 } 1522 1523 1524 // Block local constant handling. This code is useful for keeping 1525 // unpinned constants and constants which aren't exposed in the IR in 1526 // registers. Unpinned Constant instructions have their operands 1527 // cleared when the block is finished so that other blocks can't end 1528 // up referring to their registers. 1529 1530 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1531 assert(!x->is_pinned(), "only for unpinned constants"); 1532 _unpinned_constants.append(x); 1533 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1534 } 1535 1536 1537 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1538 BasicType t = c->type(); 1539 for (int i = 0; i < _constants.length(); i++) { 1540 LIR_Const* other = _constants.at(i); 1541 if (t == other->type()) { 1542 switch (t) { 1543 case T_INT: 1544 case T_FLOAT: 1545 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1546 break; 1547 case T_LONG: 1548 case T_DOUBLE: 1549 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1550 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1551 break; 1552 case T_OBJECT: 1553 if (c->as_jobject() != other->as_jobject()) continue; 1554 break; 1555 default: 1556 break; 1557 } 1558 return _reg_for_constants.at(i); 1559 } 1560 } 1561 1562 LIR_Opr result = new_register(t); 1563 __ move((LIR_Opr)c, result); 1564 _constants.append(c); 1565 _reg_for_constants.append(result); 1566 return result; 1567 } 1568 1569 //------------------------field access-------------------------------------- 1570 1571 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1572 assert(x->number_of_arguments() == 4, "wrong type"); 1573 LIRItem obj (x->argument_at(0), this); // object 1574 LIRItem offset(x->argument_at(1), this); // offset of field 1575 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1576 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1577 assert(obj.type()->tag() == objectTag, "invalid type"); 1578 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1579 assert(val.type()->tag() == type->tag(), "invalid type"); 1580 1581 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1582 obj, offset, cmp, val); 1583 set_result(x, result); 1584 } 1585 1586 // Comment copied form templateTable_i486.cpp 1587 // ---------------------------------------------------------------------------- 1588 // Volatile variables demand their effects be made known to all CPU's in 1589 // order. Store buffers on most chips allow reads & writes to reorder; the 1590 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1591 // memory barrier (i.e., it's not sufficient that the interpreter does not 1592 // reorder volatile references, the hardware also must not reorder them). 1593 // 1594 // According to the new Java Memory Model (JMM): 1595 // (1) All volatiles are serialized wrt to each other. 1596 // ALSO reads & writes act as aquire & release, so: 1597 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1598 // the read float up to before the read. It's OK for non-volatile memory refs 1599 // that happen before the volatile read to float down below it. 1600 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1601 // that happen BEFORE the write float down to after the write. It's OK for 1602 // non-volatile memory refs that happen after the volatile write to float up 1603 // before it. 1604 // 1605 // We only put in barriers around volatile refs (they are expensive), not 1606 // _between_ memory refs (that would require us to track the flavor of the 1607 // previous memory refs). Requirements (2) and (3) require some barriers 1608 // before volatile stores and after volatile loads. These nearly cover 1609 // requirement (1) but miss the volatile-store-volatile-load case. This final 1610 // case is placed after volatile-stores although it could just as well go 1611 // before volatile-loads. 1612 1613 1614 void LIRGenerator::do_StoreField(StoreField* x) { 1615 bool needs_patching = x->needs_patching(); 1616 bool is_volatile = x->field()->is_volatile(); 1617 BasicType field_type = x->field_type(); 1618 1619 CodeEmitInfo* info = NULL; 1620 if (needs_patching) { 1621 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1622 info = state_for(x, x->state_before()); 1623 } else if (x->needs_null_check()) { 1624 NullCheck* nc = x->explicit_null_check(); 1625 if (nc == NULL) { 1626 info = state_for(x); 1627 } else { 1628 info = state_for(nc); 1629 } 1630 } 1631 1632 LIRItem object(x->obj(), this); 1633 LIRItem value(x->value(), this); 1634 1635 object.load_item(); 1636 1637 if (is_volatile || needs_patching) { 1638 // load item if field is volatile (fewer special cases for volatiles) 1639 // load item if field not initialized 1640 // load item if field not constant 1641 // because of code patching we cannot inline constants 1642 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1643 value.load_byte_item(); 1644 } else { 1645 value.load_item(); 1646 } 1647 } else { 1648 value.load_for_store(field_type); 1649 } 1650 1651 set_no_result(x); 1652 1653 #ifndef PRODUCT 1654 if (PrintNotLoaded && needs_patching) { 1655 tty->print_cr(" ###class not loaded at store_%s bci %d", 1656 x->is_static() ? "static" : "field", x->printable_bci()); 1657 } 1658 #endif 1659 1660 if (x->needs_null_check() && 1661 (needs_patching || 1662 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1663 // Emit an explicit null check because the offset is too large. 1664 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1665 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1666 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1667 } 1668 1669 DecoratorSet decorators = IN_HEAP; 1670 if (is_volatile) { 1671 decorators |= MO_SEQ_CST; 1672 } 1673 if (needs_patching) { 1674 decorators |= C1_NEEDS_PATCHING; 1675 } 1676 1677 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1678 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); 1679 } 1680 1681 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1682 assert(x->is_pinned(),""); 1683 bool needs_range_check = x->compute_needs_range_check(); 1684 bool use_length = x->length() != NULL; 1685 bool obj_store = is_reference_type(x->elt_type()); 1686 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 1687 !get_jobject_constant(x->value())->is_null_object() || 1688 x->should_profile()); 1689 1690 LIRItem array(x->array(), this); 1691 LIRItem index(x->index(), this); 1692 LIRItem value(x->value(), this); 1693 LIRItem length(this); 1694 1695 array.load_item(); 1696 index.load_nonconstant(); 1697 1698 if (use_length && needs_range_check) { 1699 length.set_instruction(x->length()); 1700 length.load_item(); 1701 1702 } 1703 if (needs_store_check || x->check_boolean()) { 1704 value.load_item(); 1705 } else { 1706 value.load_for_store(x->elt_type()); 1707 } 1708 1709 set_no_result(x); 1710 1711 // the CodeEmitInfo must be duplicated for each different 1712 // LIR-instruction because spilling can occur anywhere between two 1713 // instructions and so the debug information must be different 1714 CodeEmitInfo* range_check_info = state_for(x); 1715 CodeEmitInfo* null_check_info = NULL; 1716 if (x->needs_null_check()) { 1717 null_check_info = new CodeEmitInfo(range_check_info); 1718 } 1719 1720 if (GenerateRangeChecks && needs_range_check) { 1721 if (use_length) { 1722 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1723 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1724 } else { 1725 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1726 // range_check also does the null check 1727 null_check_info = NULL; 1728 } 1729 } 1730 1731 if (GenerateArrayStoreCheck && needs_store_check) { 1732 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1733 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1734 } 1735 1736 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1737 if (x->check_boolean()) { 1738 decorators |= C1_MASK_BOOLEAN; 1739 } 1740 1741 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1742 NULL, null_check_info); 1743 } 1744 1745 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1746 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1747 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1748 decorators |= ACCESS_READ; 1749 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1750 if (access.is_raw()) { 1751 _barrier_set->BarrierSetC1::load_at(access, result); 1752 } else { 1753 _barrier_set->load_at(access, result); 1754 } 1755 } 1756 1757 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1758 LIR_Opr addr, LIR_Opr result) { 1759 decorators |= ACCESS_READ; 1760 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1761 access.set_resolved_addr(addr); 1762 if (access.is_raw()) { 1763 _barrier_set->BarrierSetC1::load(access, result); 1764 } else { 1765 _barrier_set->load(access, result); 1766 } 1767 } 1768 1769 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1770 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1771 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1772 decorators |= ACCESS_WRITE; 1773 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1774 if (access.is_raw()) { 1775 _barrier_set->BarrierSetC1::store_at(access, value); 1776 } else { 1777 _barrier_set->store_at(access, value); 1778 } 1779 } 1780 1781 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1782 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1783 decorators |= ACCESS_READ; 1784 decorators |= ACCESS_WRITE; 1785 // Atomic operations are SEQ_CST by default 1786 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1787 LIRAccess access(this, decorators, base, offset, type); 1788 if (access.is_raw()) { 1789 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1790 } else { 1791 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1792 } 1793 } 1794 1795 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1796 LIRItem& base, LIRItem& offset, LIRItem& value) { 1797 decorators |= ACCESS_READ; 1798 decorators |= ACCESS_WRITE; 1799 // Atomic operations are SEQ_CST by default 1800 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1801 LIRAccess access(this, decorators, base, offset, type); 1802 if (access.is_raw()) { 1803 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1804 } else { 1805 return _barrier_set->atomic_xchg_at(access, value); 1806 } 1807 } 1808 1809 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1810 LIRItem& base, LIRItem& offset, LIRItem& value) { 1811 decorators |= ACCESS_READ; 1812 decorators |= ACCESS_WRITE; 1813 // Atomic operations are SEQ_CST by default 1814 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1815 LIRAccess access(this, decorators, base, offset, type); 1816 if (access.is_raw()) { 1817 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1818 } else { 1819 return _barrier_set->atomic_add_at(access, value); 1820 } 1821 } 1822 1823 void LIRGenerator::do_LoadField(LoadField* x) { 1824 bool needs_patching = x->needs_patching(); 1825 bool is_volatile = x->field()->is_volatile(); 1826 BasicType field_type = x->field_type(); 1827 1828 CodeEmitInfo* info = NULL; 1829 if (needs_patching) { 1830 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1831 info = state_for(x, x->state_before()); 1832 } else if (x->needs_null_check()) { 1833 NullCheck* nc = x->explicit_null_check(); 1834 if (nc == NULL) { 1835 info = state_for(x); 1836 } else { 1837 info = state_for(nc); 1838 } 1839 } 1840 1841 LIRItem object(x->obj(), this); 1842 1843 object.load_item(); 1844 1845 #ifndef PRODUCT 1846 if (PrintNotLoaded && needs_patching) { 1847 tty->print_cr(" ###class not loaded at load_%s bci %d", 1848 x->is_static() ? "static" : "field", x->printable_bci()); 1849 } 1850 #endif 1851 1852 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1853 if (x->needs_null_check() && 1854 (needs_patching || 1855 MacroAssembler::needs_explicit_null_check(x->offset()) || 1856 stress_deopt)) { 1857 LIR_Opr obj = object.result(); 1858 if (stress_deopt) { 1859 obj = new_register(T_OBJECT); 1860 __ move(LIR_OprFact::oopConst(NULL), obj); 1861 } 1862 // Emit an explicit null check because the offset is too large. 1863 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1864 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1865 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1866 } 1867 1868 DecoratorSet decorators = IN_HEAP; 1869 if (is_volatile) { 1870 decorators |= MO_SEQ_CST; 1871 } 1872 if (needs_patching) { 1873 decorators |= C1_NEEDS_PATCHING; 1874 } 1875 1876 LIR_Opr result = rlock_result(x, field_type); 1877 access_load_at(decorators, field_type, 1878 object, LIR_OprFact::intConst(x->offset()), result, 1879 info ? new CodeEmitInfo(info) : NULL, info); 1880 } 1881 1882 1883 //------------------------java.nio.Buffer.checkIndex------------------------ 1884 1885 // int java.nio.Buffer.checkIndex(int) 1886 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { 1887 // NOTE: by the time we are in checkIndex() we are guaranteed that 1888 // the buffer is non-null (because checkIndex is package-private and 1889 // only called from within other methods in the buffer). 1890 assert(x->number_of_arguments() == 2, "wrong type"); 1891 LIRItem buf (x->argument_at(0), this); 1892 LIRItem index(x->argument_at(1), this); 1893 buf.load_item(); 1894 index.load_item(); 1895 1896 LIR_Opr result = rlock_result(x); 1897 if (GenerateRangeChecks) { 1898 CodeEmitInfo* info = state_for(x); 1899 CodeStub* stub = new RangeCheckStub(info, index.result()); 1900 if (index.result()->is_constant()) { 1901 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); 1902 __ branch(lir_cond_belowEqual, stub); 1903 } else { 1904 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(), 1905 java_nio_Buffer::limit_offset(), T_INT, info); 1906 __ branch(lir_cond_aboveEqual, stub); 1907 } 1908 __ move(index.result(), result); 1909 } else { 1910 // Just load the index into the result register 1911 __ move(index.result(), result); 1912 } 1913 } 1914 1915 1916 //------------------------array access-------------------------------------- 1917 1918 1919 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1920 LIRItem array(x->array(), this); 1921 array.load_item(); 1922 LIR_Opr reg = rlock_result(x); 1923 1924 CodeEmitInfo* info = NULL; 1925 if (x->needs_null_check()) { 1926 NullCheck* nc = x->explicit_null_check(); 1927 if (nc == NULL) { 1928 info = state_for(x); 1929 } else { 1930 info = state_for(nc); 1931 } 1932 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1933 LIR_Opr obj = new_register(T_OBJECT); 1934 __ move(LIR_OprFact::oopConst(NULL), obj); 1935 __ null_check(obj, new CodeEmitInfo(info)); 1936 } 1937 } 1938 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1939 } 1940 1941 1942 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1943 bool use_length = x->length() != NULL; 1944 LIRItem array(x->array(), this); 1945 LIRItem index(x->index(), this); 1946 LIRItem length(this); 1947 bool needs_range_check = x->compute_needs_range_check(); 1948 1949 if (use_length && needs_range_check) { 1950 length.set_instruction(x->length()); 1951 length.load_item(); 1952 } 1953 1954 array.load_item(); 1955 if (index.is_constant() && can_inline_as_constant(x->index())) { 1956 // let it be a constant 1957 index.dont_load_item(); 1958 } else { 1959 index.load_item(); 1960 } 1961 1962 CodeEmitInfo* range_check_info = state_for(x); 1963 CodeEmitInfo* null_check_info = NULL; 1964 if (x->needs_null_check()) { 1965 NullCheck* nc = x->explicit_null_check(); 1966 if (nc != NULL) { 1967 null_check_info = state_for(nc); 1968 } else { 1969 null_check_info = range_check_info; 1970 } 1971 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1972 LIR_Opr obj = new_register(T_OBJECT); 1973 __ move(LIR_OprFact::oopConst(NULL), obj); 1974 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1975 } 1976 } 1977 1978 if (GenerateRangeChecks && needs_range_check) { 1979 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1980 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1981 } else if (use_length) { 1982 // TODO: use a (modified) version of array_range_check that does not require a 1983 // constant length to be loaded to a register 1984 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1985 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1986 } else { 1987 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1988 // The range check performs the null check, so clear it out for the load 1989 null_check_info = NULL; 1990 } 1991 } 1992 1993 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1994 1995 LIR_Opr result = rlock_result(x, x->elt_type()); 1996 access_load_at(decorators, x->elt_type(), 1997 array, index.result(), result, 1998 NULL, null_check_info); 1999 } 2000 2001 2002 void LIRGenerator::do_NullCheck(NullCheck* x) { 2003 if (x->can_trap()) { 2004 LIRItem value(x->obj(), this); 2005 value.load_item(); 2006 CodeEmitInfo* info = state_for(x); 2007 __ null_check(value.result(), info); 2008 } 2009 } 2010 2011 2012 void LIRGenerator::do_TypeCast(TypeCast* x) { 2013 LIRItem value(x->obj(), this); 2014 value.load_item(); 2015 // the result is the same as from the node we are casting 2016 set_result(x, value.result()); 2017 } 2018 2019 2020 void LIRGenerator::do_Throw(Throw* x) { 2021 LIRItem exception(x->exception(), this); 2022 exception.load_item(); 2023 set_no_result(x); 2024 LIR_Opr exception_opr = exception.result(); 2025 CodeEmitInfo* info = state_for(x, x->state()); 2026 2027 #ifndef PRODUCT 2028 if (PrintC1Statistics) { 2029 increment_counter(Runtime1::throw_count_address(), T_INT); 2030 } 2031 #endif 2032 2033 // check if the instruction has an xhandler in any of the nested scopes 2034 bool unwind = false; 2035 if (info->exception_handlers()->length() == 0) { 2036 // this throw is not inside an xhandler 2037 unwind = true; 2038 } else { 2039 // get some idea of the throw type 2040 bool type_is_exact = true; 2041 ciType* throw_type = x->exception()->exact_type(); 2042 if (throw_type == NULL) { 2043 type_is_exact = false; 2044 throw_type = x->exception()->declared_type(); 2045 } 2046 if (throw_type != NULL && throw_type->is_instance_klass()) { 2047 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2048 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2049 } 2050 } 2051 2052 // do null check before moving exception oop into fixed register 2053 // to avoid a fixed interval with an oop during the null check. 2054 // Use a copy of the CodeEmitInfo because debug information is 2055 // different for null_check and throw. 2056 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { 2057 // if the exception object wasn't created using new then it might be null. 2058 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2059 } 2060 2061 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2062 // we need to go through the exception lookup path to get JVMTI 2063 // notification done 2064 unwind = false; 2065 } 2066 2067 // move exception oop into fixed register 2068 __ move(exception_opr, exceptionOopOpr()); 2069 2070 if (unwind) { 2071 __ unwind_exception(exceptionOopOpr()); 2072 } else { 2073 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2074 } 2075 } 2076 2077 2078 void LIRGenerator::do_RoundFP(RoundFP* x) { 2079 assert(strict_fp_requires_explicit_rounding, "not required"); 2080 2081 LIRItem input(x->input(), this); 2082 input.load_item(); 2083 LIR_Opr input_opr = input.result(); 2084 assert(input_opr->is_register(), "why round if value is not in a register?"); 2085 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2086 if (input_opr->is_single_fpu()) { 2087 set_result(x, round_item(input_opr)); // This code path not currently taken 2088 } else { 2089 LIR_Opr result = new_register(T_DOUBLE); 2090 set_vreg_flag(result, must_start_in_memory); 2091 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2092 set_result(x, result); 2093 } 2094 } 2095 2096 // Here UnsafeGetRaw may have x->base() and x->index() be int or long 2097 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. 2098 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { 2099 LIRItem base(x->base(), this); 2100 LIRItem idx(this); 2101 2102 base.load_item(); 2103 if (x->has_index()) { 2104 idx.set_instruction(x->index()); 2105 idx.load_nonconstant(); 2106 } 2107 2108 LIR_Opr reg = rlock_result(x, x->basic_type()); 2109 2110 int log2_scale = 0; 2111 if (x->has_index()) { 2112 log2_scale = x->log2_scale(); 2113 } 2114 2115 assert(!x->has_index() || idx.value() == x->index(), "should match"); 2116 2117 LIR_Opr base_op = base.result(); 2118 LIR_Opr index_op = idx.result(); 2119 #ifndef _LP64 2120 if (base_op->type() == T_LONG) { 2121 base_op = new_register(T_INT); 2122 __ convert(Bytecodes::_l2i, base.result(), base_op); 2123 } 2124 if (x->has_index()) { 2125 if (index_op->type() == T_LONG) { 2126 LIR_Opr long_index_op = index_op; 2127 if (index_op->is_constant()) { 2128 long_index_op = new_register(T_LONG); 2129 __ move(index_op, long_index_op); 2130 } 2131 index_op = new_register(T_INT); 2132 __ convert(Bytecodes::_l2i, long_index_op, index_op); 2133 } else { 2134 assert(x->index()->type()->tag() == intTag, "must be"); 2135 } 2136 } 2137 // At this point base and index should be all ints. 2138 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2139 assert(!x->has_index() || index_op->type() == T_INT, "index should be an int"); 2140 #else 2141 if (x->has_index()) { 2142 if (index_op->type() == T_INT) { 2143 if (!index_op->is_constant()) { 2144 index_op = new_register(T_LONG); 2145 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2146 } 2147 } else { 2148 assert(index_op->type() == T_LONG, "must be"); 2149 if (index_op->is_constant()) { 2150 index_op = new_register(T_LONG); 2151 __ move(idx.result(), index_op); 2152 } 2153 } 2154 } 2155 // At this point base is a long non-constant 2156 // Index is a long register or a int constant. 2157 // We allow the constant to stay an int because that would allow us a more compact encoding by 2158 // embedding an immediate offset in the address expression. If we have a long constant, we have to 2159 // move it into a register first. 2160 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant"); 2161 assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || 2162 (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type"); 2163 #endif 2164 2165 BasicType dst_type = x->basic_type(); 2166 2167 LIR_Address* addr; 2168 if (index_op->is_constant()) { 2169 assert(log2_scale == 0, "must not have a scale"); 2170 assert(index_op->type() == T_INT, "only int constants supported"); 2171 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); 2172 } else { 2173 #ifdef X86 2174 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); 2175 #elif defined(GENERATE_ADDRESS_IS_PREFERRED) 2176 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); 2177 #else 2178 if (index_op->is_illegal() || log2_scale == 0) { 2179 addr = new LIR_Address(base_op, index_op, dst_type); 2180 } else { 2181 LIR_Opr tmp = new_pointer_register(); 2182 __ shift_left(index_op, log2_scale, tmp); 2183 addr = new LIR_Address(base_op, tmp, dst_type); 2184 } 2185 #endif 2186 } 2187 2188 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { 2189 __ unaligned_move(addr, reg); 2190 } else { 2191 if (dst_type == T_OBJECT && x->is_wide()) { 2192 __ move_wide(addr, reg); 2193 } else { 2194 __ move(addr, reg); 2195 } 2196 } 2197 } 2198 2199 2200 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { 2201 int log2_scale = 0; 2202 BasicType type = x->basic_type(); 2203 2204 if (x->has_index()) { 2205 log2_scale = x->log2_scale(); 2206 } 2207 2208 LIRItem base(x->base(), this); 2209 LIRItem value(x->value(), this); 2210 LIRItem idx(this); 2211 2212 base.load_item(); 2213 if (x->has_index()) { 2214 idx.set_instruction(x->index()); 2215 idx.load_item(); 2216 } 2217 2218 if (type == T_BYTE || type == T_BOOLEAN) { 2219 value.load_byte_item(); 2220 } else { 2221 value.load_item(); 2222 } 2223 2224 set_no_result(x); 2225 2226 LIR_Opr base_op = base.result(); 2227 LIR_Opr index_op = idx.result(); 2228 2229 #ifdef GENERATE_ADDRESS_IS_PREFERRED 2230 LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type()); 2231 #else 2232 #ifndef _LP64 2233 if (base_op->type() == T_LONG) { 2234 base_op = new_register(T_INT); 2235 __ convert(Bytecodes::_l2i, base.result(), base_op); 2236 } 2237 if (x->has_index()) { 2238 if (index_op->type() == T_LONG) { 2239 index_op = new_register(T_INT); 2240 __ convert(Bytecodes::_l2i, idx.result(), index_op); 2241 } 2242 } 2243 // At this point base and index should be all ints and not constants 2244 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2245 assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int"); 2246 #else 2247 if (x->has_index()) { 2248 if (index_op->type() == T_INT) { 2249 index_op = new_register(T_LONG); 2250 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2251 } 2252 } 2253 // At this point base and index are long and non-constant 2254 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long"); 2255 assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long"); 2256 #endif 2257 2258 if (log2_scale != 0) { 2259 // temporary fix (platform dependent code without shift on Intel would be better) 2260 // TODO: ARM also allows embedded shift in the address 2261 LIR_Opr tmp = new_pointer_register(); 2262 if (TwoOperandLIRForm) { 2263 __ move(index_op, tmp); 2264 index_op = tmp; 2265 } 2266 __ shift_left(index_op, log2_scale, tmp); 2267 if (!TwoOperandLIRForm) { 2268 index_op = tmp; 2269 } 2270 } 2271 2272 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); 2273 #endif // !GENERATE_ADDRESS_IS_PREFERRED 2274 __ move(value.result(), addr); 2275 } 2276 2277 2278 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { 2279 BasicType type = x->basic_type(); 2280 LIRItem src(x->object(), this); 2281 LIRItem off(x->offset(), this); 2282 2283 off.load_item(); 2284 src.load_item(); 2285 2286 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2287 2288 if (x->is_volatile()) { 2289 decorators |= MO_SEQ_CST; 2290 } 2291 if (type == T_BOOLEAN) { 2292 decorators |= C1_MASK_BOOLEAN; 2293 } 2294 if (is_reference_type(type)) { 2295 decorators |= ON_UNKNOWN_OOP_REF; 2296 } 2297 2298 LIR_Opr result = rlock_result(x, type); 2299 access_load_at(decorators, type, 2300 src, off.result(), result); 2301 } 2302 2303 2304 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { 2305 BasicType type = x->basic_type(); 2306 LIRItem src(x->object(), this); 2307 LIRItem off(x->offset(), this); 2308 LIRItem data(x->value(), this); 2309 2310 src.load_item(); 2311 if (type == T_BOOLEAN || type == T_BYTE) { 2312 data.load_byte_item(); 2313 } else { 2314 data.load_item(); 2315 } 2316 off.load_item(); 2317 2318 set_no_result(x); 2319 2320 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2321 if (is_reference_type(type)) { 2322 decorators |= ON_UNKNOWN_OOP_REF; 2323 } 2324 if (x->is_volatile()) { 2325 decorators |= MO_SEQ_CST; 2326 } 2327 access_store_at(decorators, type, src, off.result(), data.result()); 2328 } 2329 2330 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { 2331 BasicType type = x->basic_type(); 2332 LIRItem src(x->object(), this); 2333 LIRItem off(x->offset(), this); 2334 LIRItem value(x->value(), this); 2335 2336 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2337 2338 if (is_reference_type(type)) { 2339 decorators |= ON_UNKNOWN_OOP_REF; 2340 } 2341 2342 LIR_Opr result; 2343 if (x->is_add()) { 2344 result = access_atomic_add_at(decorators, type, src, off, value); 2345 } else { 2346 result = access_atomic_xchg_at(decorators, type, src, off, value); 2347 } 2348 set_result(x, result); 2349 } 2350 2351 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2352 int lng = x->length(); 2353 2354 for (int i = 0; i < lng; i++) { 2355 C1SwitchRange* one_range = x->at(i); 2356 int low_key = one_range->low_key(); 2357 int high_key = one_range->high_key(); 2358 BlockBegin* dest = one_range->sux(); 2359 if (low_key == high_key) { 2360 __ cmp(lir_cond_equal, value, low_key); 2361 __ branch(lir_cond_equal, dest); 2362 } else if (high_key - low_key == 1) { 2363 __ cmp(lir_cond_equal, value, low_key); 2364 __ branch(lir_cond_equal, dest); 2365 __ cmp(lir_cond_equal, value, high_key); 2366 __ branch(lir_cond_equal, dest); 2367 } else { 2368 LabelObj* L = new LabelObj(); 2369 __ cmp(lir_cond_less, value, low_key); 2370 __ branch(lir_cond_less, L->label()); 2371 __ cmp(lir_cond_lessEqual, value, high_key); 2372 __ branch(lir_cond_lessEqual, dest); 2373 __ branch_destination(L->label()); 2374 } 2375 } 2376 __ jump(default_sux); 2377 } 2378 2379 2380 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2381 SwitchRangeList* res = new SwitchRangeList(); 2382 int len = x->length(); 2383 if (len > 0) { 2384 BlockBegin* sux = x->sux_at(0); 2385 int key = x->lo_key(); 2386 BlockBegin* default_sux = x->default_sux(); 2387 C1SwitchRange* range = new C1SwitchRange(key, sux); 2388 for (int i = 0; i < len; i++, key++) { 2389 BlockBegin* new_sux = x->sux_at(i); 2390 if (sux == new_sux) { 2391 // still in same range 2392 range->set_high_key(key); 2393 } else { 2394 // skip tests which explicitly dispatch to the default 2395 if (sux != default_sux) { 2396 res->append(range); 2397 } 2398 range = new C1SwitchRange(key, new_sux); 2399 } 2400 sux = new_sux; 2401 } 2402 if (res->length() == 0 || res->last() != range) res->append(range); 2403 } 2404 return res; 2405 } 2406 2407 2408 // we expect the keys to be sorted by increasing value 2409 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2410 SwitchRangeList* res = new SwitchRangeList(); 2411 int len = x->length(); 2412 if (len > 0) { 2413 BlockBegin* default_sux = x->default_sux(); 2414 int key = x->key_at(0); 2415 BlockBegin* sux = x->sux_at(0); 2416 C1SwitchRange* range = new C1SwitchRange(key, sux); 2417 for (int i = 1; i < len; i++) { 2418 int new_key = x->key_at(i); 2419 BlockBegin* new_sux = x->sux_at(i); 2420 if (key+1 == new_key && sux == new_sux) { 2421 // still in same range 2422 range->set_high_key(new_key); 2423 } else { 2424 // skip tests which explicitly dispatch to the default 2425 if (range->sux() != default_sux) { 2426 res->append(range); 2427 } 2428 range = new C1SwitchRange(new_key, new_sux); 2429 } 2430 key = new_key; 2431 sux = new_sux; 2432 } 2433 if (res->length() == 0 || res->last() != range) res->append(range); 2434 } 2435 return res; 2436 } 2437 2438 2439 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2440 LIRItem tag(x->tag(), this); 2441 tag.load_item(); 2442 set_no_result(x); 2443 2444 if (x->is_safepoint()) { 2445 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2446 } 2447 2448 // move values into phi locations 2449 move_to_phi(x->state()); 2450 2451 int lo_key = x->lo_key(); 2452 int len = x->length(); 2453 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2454 LIR_Opr value = tag.result(); 2455 2456 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2457 ciMethod* method = x->state()->scope()->method(); 2458 ciMethodData* md = method->method_data_or_null(); 2459 assert(md != NULL, "Sanity"); 2460 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2461 assert(data != NULL, "must have profiling data"); 2462 assert(data->is_MultiBranchData(), "bad profile data?"); 2463 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2464 LIR_Opr md_reg = new_register(T_METADATA); 2465 __ metadata2reg(md->constant_encoding(), md_reg); 2466 LIR_Opr data_offset_reg = new_pointer_register(); 2467 LIR_Opr tmp_reg = new_pointer_register(); 2468 2469 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2470 for (int i = 0; i < len; i++) { 2471 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2472 __ cmp(lir_cond_equal, value, i + lo_key); 2473 __ move(data_offset_reg, tmp_reg); 2474 __ cmove(lir_cond_equal, 2475 LIR_OprFact::intptrConst(count_offset), 2476 tmp_reg, 2477 data_offset_reg, T_INT); 2478 } 2479 2480 LIR_Opr data_reg = new_pointer_register(); 2481 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2482 __ move(data_addr, data_reg); 2483 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2484 __ move(data_reg, data_addr); 2485 } 2486 2487 if (UseTableRanges) { 2488 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2489 } else { 2490 for (int i = 0; i < len; i++) { 2491 __ cmp(lir_cond_equal, value, i + lo_key); 2492 __ branch(lir_cond_equal, x->sux_at(i)); 2493 } 2494 __ jump(x->default_sux()); 2495 } 2496 } 2497 2498 2499 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2500 LIRItem tag(x->tag(), this); 2501 tag.load_item(); 2502 set_no_result(x); 2503 2504 if (x->is_safepoint()) { 2505 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2506 } 2507 2508 // move values into phi locations 2509 move_to_phi(x->state()); 2510 2511 LIR_Opr value = tag.result(); 2512 int len = x->length(); 2513 2514 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2515 ciMethod* method = x->state()->scope()->method(); 2516 ciMethodData* md = method->method_data_or_null(); 2517 assert(md != NULL, "Sanity"); 2518 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2519 assert(data != NULL, "must have profiling data"); 2520 assert(data->is_MultiBranchData(), "bad profile data?"); 2521 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2522 LIR_Opr md_reg = new_register(T_METADATA); 2523 __ metadata2reg(md->constant_encoding(), md_reg); 2524 LIR_Opr data_offset_reg = new_pointer_register(); 2525 LIR_Opr tmp_reg = new_pointer_register(); 2526 2527 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2528 for (int i = 0; i < len; i++) { 2529 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2530 __ cmp(lir_cond_equal, value, x->key_at(i)); 2531 __ move(data_offset_reg, tmp_reg); 2532 __ cmove(lir_cond_equal, 2533 LIR_OprFact::intptrConst(count_offset), 2534 tmp_reg, 2535 data_offset_reg, T_INT); 2536 } 2537 2538 LIR_Opr data_reg = new_pointer_register(); 2539 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2540 __ move(data_addr, data_reg); 2541 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2542 __ move(data_reg, data_addr); 2543 } 2544 2545 if (UseTableRanges) { 2546 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2547 } else { 2548 int len = x->length(); 2549 for (int i = 0; i < len; i++) { 2550 __ cmp(lir_cond_equal, value, x->key_at(i)); 2551 __ branch(lir_cond_equal, x->sux_at(i)); 2552 } 2553 __ jump(x->default_sux()); 2554 } 2555 } 2556 2557 2558 void LIRGenerator::do_Goto(Goto* x) { 2559 set_no_result(x); 2560 2561 if (block()->next()->as_OsrEntry()) { 2562 // need to free up storage used for OSR entry point 2563 LIR_Opr osrBuffer = block()->next()->operand(); 2564 BasicTypeList signature; 2565 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2566 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2567 __ move(osrBuffer, cc->args()->at(0)); 2568 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2569 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2570 } 2571 2572 if (x->is_safepoint()) { 2573 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2574 2575 // increment backedge counter if needed 2576 CodeEmitInfo* info = state_for(x, state); 2577 increment_backedge_counter(info, x->profiled_bci()); 2578 CodeEmitInfo* safepoint_info = state_for(x, state); 2579 __ safepoint(safepoint_poll_register(), safepoint_info); 2580 } 2581 2582 // Gotos can be folded Ifs, handle this case. 2583 if (x->should_profile()) { 2584 ciMethod* method = x->profiled_method(); 2585 assert(method != NULL, "method should be set if branch is profiled"); 2586 ciMethodData* md = method->method_data_or_null(); 2587 assert(md != NULL, "Sanity"); 2588 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2589 assert(data != NULL, "must have profiling data"); 2590 int offset; 2591 if (x->direction() == Goto::taken) { 2592 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2593 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2594 } else if (x->direction() == Goto::not_taken) { 2595 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2596 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2597 } else { 2598 assert(data->is_JumpData(), "need JumpData for branches"); 2599 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2600 } 2601 LIR_Opr md_reg = new_register(T_METADATA); 2602 __ metadata2reg(md->constant_encoding(), md_reg); 2603 2604 increment_counter(new LIR_Address(md_reg, offset, 2605 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2606 } 2607 2608 // emit phi-instruction move after safepoint since this simplifies 2609 // describing the state as the safepoint. 2610 move_to_phi(x->state()); 2611 2612 __ jump(x->default_sux()); 2613 } 2614 2615 /** 2616 * Emit profiling code if needed for arguments, parameters, return value types 2617 * 2618 * @param md MDO the code will update at runtime 2619 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2620 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2621 * @param profiled_k current profile 2622 * @param obj IR node for the object to be profiled 2623 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2624 * Set once we find an update to make and use for next ones. 2625 * @param not_null true if we know obj cannot be null 2626 * @param signature_at_call_k signature at call for obj 2627 * @param callee_signature_k signature of callee for obj 2628 * at call and callee signatures differ at method handle call 2629 * @return the only klass we know will ever be seen at this profile point 2630 */ 2631 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2632 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2633 ciKlass* callee_signature_k) { 2634 ciKlass* result = NULL; 2635 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2636 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2637 // known not to be null or null bit already set and already set to 2638 // unknown: nothing we can do to improve profiling 2639 if (!do_null && !do_update) { 2640 return result; 2641 } 2642 2643 ciKlass* exact_klass = NULL; 2644 Compilation* comp = Compilation::current(); 2645 if (do_update) { 2646 // try to find exact type, using CHA if possible, so that loading 2647 // the klass from the object can be avoided 2648 ciType* type = obj->exact_type(); 2649 if (type == NULL) { 2650 type = obj->declared_type(); 2651 type = comp->cha_exact_type(type); 2652 } 2653 assert(type == NULL || type->is_klass(), "type should be class"); 2654 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2655 2656 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2657 } 2658 2659 if (!do_null && !do_update) { 2660 return result; 2661 } 2662 2663 ciKlass* exact_signature_k = NULL; 2664 if (do_update) { 2665 // Is the type from the signature exact (the only one possible)? 2666 exact_signature_k = signature_at_call_k->exact_klass(); 2667 if (exact_signature_k == NULL) { 2668 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2669 } else { 2670 result = exact_signature_k; 2671 // Known statically. No need to emit any code: prevent 2672 // LIR_Assembler::emit_profile_type() from emitting useless code 2673 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2674 } 2675 // exact_klass and exact_signature_k can be both non NULL but 2676 // different if exact_klass is loaded after the ciObject for 2677 // exact_signature_k is created. 2678 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2679 // sometimes the type of the signature is better than the best type 2680 // the compiler has 2681 exact_klass = exact_signature_k; 2682 } 2683 if (callee_signature_k != NULL && 2684 callee_signature_k != signature_at_call_k) { 2685 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2686 if (improved_klass == NULL) { 2687 improved_klass = comp->cha_exact_type(callee_signature_k); 2688 } 2689 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2690 exact_klass = exact_signature_k; 2691 } 2692 } 2693 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2694 } 2695 2696 if (!do_null && !do_update) { 2697 return result; 2698 } 2699 2700 if (mdp == LIR_OprFact::illegalOpr) { 2701 mdp = new_register(T_METADATA); 2702 __ metadata2reg(md->constant_encoding(), mdp); 2703 if (md_base_offset != 0) { 2704 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2705 mdp = new_pointer_register(); 2706 __ leal(LIR_OprFact::address(base_type_address), mdp); 2707 } 2708 } 2709 LIRItem value(obj, this); 2710 value.load_item(); 2711 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2712 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2713 return result; 2714 } 2715 2716 // profile parameters on entry to the root of the compilation 2717 void LIRGenerator::profile_parameters(Base* x) { 2718 if (compilation()->profile_parameters()) { 2719 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2720 ciMethodData* md = scope()->method()->method_data_or_null(); 2721 assert(md != NULL, "Sanity"); 2722 2723 if (md->parameters_type_data() != NULL) { 2724 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2725 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2726 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2727 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2728 LIR_Opr src = args->at(i); 2729 assert(!src->is_illegal(), "check"); 2730 BasicType t = src->type(); 2731 if (is_reference_type(t)) { 2732 intptr_t profiled_k = parameters->type(j); 2733 Local* local = x->state()->local_at(java_index)->as_Local(); 2734 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2735 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2736 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2737 // If the profile is known statically set it once for all and do not emit any code 2738 if (exact != NULL) { 2739 md->set_parameter_type(j, exact); 2740 } 2741 j++; 2742 } 2743 java_index += type2size[t]; 2744 } 2745 } 2746 } 2747 } 2748 2749 void LIRGenerator::do_Base(Base* x) { 2750 __ std_entry(LIR_OprFact::illegalOpr); 2751 // Emit moves from physical registers / stack slots to virtual registers 2752 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2753 IRScope* irScope = compilation()->hir()->top_scope(); 2754 int java_index = 0; 2755 for (int i = 0; i < args->length(); i++) { 2756 LIR_Opr src = args->at(i); 2757 assert(!src->is_illegal(), "check"); 2758 BasicType t = src->type(); 2759 2760 // Types which are smaller than int are passed as int, so 2761 // correct the type which passed. 2762 switch (t) { 2763 case T_BYTE: 2764 case T_BOOLEAN: 2765 case T_SHORT: 2766 case T_CHAR: 2767 t = T_INT; 2768 break; 2769 default: 2770 break; 2771 } 2772 2773 LIR_Opr dest = new_register(t); 2774 __ move(src, dest); 2775 2776 // Assign new location to Local instruction for this local 2777 Local* local = x->state()->local_at(java_index)->as_Local(); 2778 assert(local != NULL, "Locals for incoming arguments must have been created"); 2779 #ifndef __SOFTFP__ 2780 // The java calling convention passes double as long and float as int. 2781 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2782 #endif // __SOFTFP__ 2783 local->set_operand(dest); 2784 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 2785 java_index += type2size[t]; 2786 } 2787 2788 if (compilation()->env()->dtrace_method_probes()) { 2789 BasicTypeList signature; 2790 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2791 signature.append(T_METADATA); // Method* 2792 LIR_OprList* args = new LIR_OprList(); 2793 args->append(getThreadPointer()); 2794 LIR_Opr meth = new_register(T_METADATA); 2795 __ metadata2reg(method()->constant_encoding(), meth); 2796 args->append(meth); 2797 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 2798 } 2799 2800 if (method()->is_synchronized()) { 2801 LIR_Opr obj; 2802 if (method()->is_static()) { 2803 obj = new_register(T_OBJECT); 2804 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2805 } else { 2806 Local* receiver = x->state()->local_at(0)->as_Local(); 2807 assert(receiver != NULL, "must already exist"); 2808 obj = receiver->operand(); 2809 } 2810 assert(obj->is_valid(), "must be valid"); 2811 2812 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2813 LIR_Opr lock = syncLockOpr(); 2814 __ load_stack_address_monitor(0, lock); 2815 2816 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 2817 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2818 2819 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 2820 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 2821 } 2822 } 2823 if (compilation()->age_code()) { 2824 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 2825 decrement_age(info); 2826 } 2827 // increment invocation counters if needed 2828 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2829 profile_parameters(x); 2830 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 2831 increment_invocation_counter(info); 2832 } 2833 2834 // all blocks with a successor must end with an unconditional jump 2835 // to the successor even if they are consecutive 2836 __ jump(x->default_sux()); 2837 } 2838 2839 2840 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2841 // construct our frame and model the production of incoming pointer 2842 // to the OSR buffer. 2843 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2844 LIR_Opr result = rlock_result(x); 2845 __ move(LIR_Assembler::osrBufferPointer(), result); 2846 } 2847 2848 2849 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2850 assert(args->length() == arg_list->length(), 2851 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2852 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2853 LIRItem* param = args->at(i); 2854 LIR_Opr loc = arg_list->at(i); 2855 if (loc->is_register()) { 2856 param->load_item_force(loc); 2857 } else { 2858 LIR_Address* addr = loc->as_address_ptr(); 2859 param->load_for_store(addr->type()); 2860 if (addr->type() == T_OBJECT) { 2861 __ move_wide(param->result(), addr); 2862 } else 2863 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 2864 __ unaligned_move(param->result(), addr); 2865 } else { 2866 __ move(param->result(), addr); 2867 } 2868 } 2869 } 2870 2871 if (x->has_receiver()) { 2872 LIRItem* receiver = args->at(0); 2873 LIR_Opr loc = arg_list->at(0); 2874 if (loc->is_register()) { 2875 receiver->load_item_force(loc); 2876 } else { 2877 assert(loc->is_address(), "just checking"); 2878 receiver->load_for_store(T_OBJECT); 2879 __ move_wide(receiver->result(), loc->as_address_ptr()); 2880 } 2881 } 2882 } 2883 2884 2885 // Visits all arguments, returns appropriate items without loading them 2886 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2887 LIRItemList* argument_items = new LIRItemList(); 2888 if (x->has_receiver()) { 2889 LIRItem* receiver = new LIRItem(x->receiver(), this); 2890 argument_items->append(receiver); 2891 } 2892 for (int i = 0; i < x->number_of_arguments(); i++) { 2893 LIRItem* param = new LIRItem(x->argument_at(i), this); 2894 argument_items->append(param); 2895 } 2896 return argument_items; 2897 } 2898 2899 2900 // The invoke with receiver has following phases: 2901 // a) traverse and load/lock receiver; 2902 // b) traverse all arguments -> item-array (invoke_visit_argument) 2903 // c) push receiver on stack 2904 // d) load each of the items and push on stack 2905 // e) unlock receiver 2906 // f) move receiver into receiver-register %o0 2907 // g) lock result registers and emit call operation 2908 // 2909 // Before issuing a call, we must spill-save all values on stack 2910 // that are in caller-save register. "spill-save" moves those registers 2911 // either in a free callee-save register or spills them if no free 2912 // callee save register is available. 2913 // 2914 // The problem is where to invoke spill-save. 2915 // - if invoked between e) and f), we may lock callee save 2916 // register in "spill-save" that destroys the receiver register 2917 // before f) is executed 2918 // - if we rearrange f) to be earlier (by loading %o0) it 2919 // may destroy a value on the stack that is currently in %o0 2920 // and is waiting to be spilled 2921 // - if we keep the receiver locked while doing spill-save, 2922 // we cannot spill it as it is spill-locked 2923 // 2924 void LIRGenerator::do_Invoke(Invoke* x) { 2925 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2926 2927 LIR_OprList* arg_list = cc->args(); 2928 LIRItemList* args = invoke_visit_arguments(x); 2929 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2930 2931 // setup result register 2932 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2933 if (x->type() != voidType) { 2934 result_register = result_register_for(x->type()); 2935 } 2936 2937 CodeEmitInfo* info = state_for(x, x->state()); 2938 2939 invoke_load_arguments(x, args, arg_list); 2940 2941 if (x->has_receiver()) { 2942 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2943 receiver = args->at(0)->result(); 2944 } 2945 2946 // emit invoke code 2947 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2948 2949 // JSR 292 2950 // Preserve the SP over MethodHandle call sites, if needed. 2951 ciMethod* target = x->target(); 2952 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2953 target->is_method_handle_intrinsic() || 2954 target->is_compiled_lambda_form()); 2955 if (is_method_handle_invoke) { 2956 info->set_is_method_handle_invoke(true); 2957 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2958 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2959 } 2960 } 2961 2962 switch (x->code()) { 2963 case Bytecodes::_invokestatic: 2964 __ call_static(target, result_register, 2965 SharedRuntime::get_resolve_static_call_stub(), 2966 arg_list, info); 2967 break; 2968 case Bytecodes::_invokespecial: 2969 case Bytecodes::_invokevirtual: 2970 case Bytecodes::_invokeinterface: 2971 // for loaded and final (method or class) target we still produce an inline cache, 2972 // in order to be able to call mixed mode 2973 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2974 __ call_opt_virtual(target, receiver, result_register, 2975 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2976 arg_list, info); 2977 } else { 2978 __ call_icvirtual(target, receiver, result_register, 2979 SharedRuntime::get_resolve_virtual_call_stub(), 2980 arg_list, info); 2981 } 2982 break; 2983 case Bytecodes::_invokedynamic: { 2984 __ call_dynamic(target, receiver, result_register, 2985 SharedRuntime::get_resolve_static_call_stub(), 2986 arg_list, info); 2987 break; 2988 } 2989 default: 2990 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2991 break; 2992 } 2993 2994 // JSR 292 2995 // Restore the SP after MethodHandle call sites, if needed. 2996 if (is_method_handle_invoke 2997 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2998 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2999 } 3000 3001 if (result_register->is_valid()) { 3002 LIR_Opr result = rlock_result(x); 3003 __ move(result_register, result); 3004 } 3005 } 3006 3007 3008 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3009 assert(x->number_of_arguments() == 1, "wrong type"); 3010 LIRItem value (x->argument_at(0), this); 3011 LIR_Opr reg = rlock_result(x); 3012 value.load_item(); 3013 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3014 __ move(tmp, reg); 3015 } 3016 3017 3018 3019 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3020 void LIRGenerator::do_IfOp(IfOp* x) { 3021 #ifdef ASSERT 3022 { 3023 ValueTag xtag = x->x()->type()->tag(); 3024 ValueTag ttag = x->tval()->type()->tag(); 3025 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3026 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3027 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3028 } 3029 #endif 3030 3031 LIRItem left(x->x(), this); 3032 LIRItem right(x->y(), this); 3033 left.load_item(); 3034 if (can_inline_as_constant(right.value())) { 3035 right.dont_load_item(); 3036 } else { 3037 right.load_item(); 3038 } 3039 3040 LIRItem t_val(x->tval(), this); 3041 LIRItem f_val(x->fval(), this); 3042 t_val.dont_load_item(); 3043 f_val.dont_load_item(); 3044 LIR_Opr reg = rlock_result(x); 3045 3046 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3047 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3048 } 3049 3050 #ifdef JFR_HAVE_INTRINSICS 3051 3052 void LIRGenerator::do_getEventWriter(Intrinsic* x) { 3053 LabelObj* L_end = new LabelObj(); 3054 3055 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 3056 // meaning of these two is mixed up (see JDK-8026837). 3057 LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), 3058 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), 3059 T_ADDRESS); 3060 LIR_Opr result = rlock_result(x); 3061 __ move(LIR_OprFact::oopConst(NULL), result); 3062 LIR_Opr jobj = new_register(T_METADATA); 3063 __ move_wide(jobj_addr, jobj); 3064 __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0)); 3065 __ branch(lir_cond_equal, L_end->label()); 3066 3067 access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); 3068 3069 __ branch_destination(L_end->label()); 3070 } 3071 3072 #endif 3073 3074 3075 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3076 assert(x->number_of_arguments() == 0, "wrong type"); 3077 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3078 BasicTypeList signature; 3079 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3080 LIR_Opr reg = result_register_for(x->type()); 3081 __ call_runtime_leaf(routine, getThreadTemp(), 3082 reg, new LIR_OprList()); 3083 LIR_Opr result = rlock_result(x); 3084 __ move(reg, result); 3085 } 3086 3087 3088 3089 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3090 switch (x->id()) { 3091 case vmIntrinsics::_intBitsToFloat : 3092 case vmIntrinsics::_doubleToRawLongBits : 3093 case vmIntrinsics::_longBitsToDouble : 3094 case vmIntrinsics::_floatToRawIntBits : { 3095 do_FPIntrinsics(x); 3096 break; 3097 } 3098 3099 #ifdef JFR_HAVE_INTRINSICS 3100 case vmIntrinsics::_getEventWriter: 3101 do_getEventWriter(x); 3102 break; 3103 case vmIntrinsics::_counterTime: 3104 do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); 3105 break; 3106 #endif 3107 3108 case vmIntrinsics::_currentTimeMillis: 3109 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3110 break; 3111 3112 case vmIntrinsics::_nanoTime: 3113 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3114 break; 3115 3116 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3117 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3118 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 3119 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 3120 case vmIntrinsics::_getClass: do_getClass(x); break; 3121 case vmIntrinsics::_currentThread: do_currentThread(x); break; 3122 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 3123 3124 case vmIntrinsics::_dlog: // fall through 3125 case vmIntrinsics::_dlog10: // fall through 3126 case vmIntrinsics::_dabs: // fall through 3127 case vmIntrinsics::_dsqrt: // fall through 3128 case vmIntrinsics::_dtan: // fall through 3129 case vmIntrinsics::_dsin : // fall through 3130 case vmIntrinsics::_dcos : // fall through 3131 case vmIntrinsics::_dexp : // fall through 3132 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3133 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3134 3135 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3136 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3137 3138 // java.nio.Buffer.checkIndex 3139 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; 3140 3141 case vmIntrinsics::_compareAndSetReference: 3142 do_CompareAndSwap(x, objectType); 3143 break; 3144 case vmIntrinsics::_compareAndSetInt: 3145 do_CompareAndSwap(x, intType); 3146 break; 3147 case vmIntrinsics::_compareAndSetLong: 3148 do_CompareAndSwap(x, longType); 3149 break; 3150 3151 case vmIntrinsics::_loadFence : 3152 __ membar_acquire(); 3153 break; 3154 case vmIntrinsics::_storeFence: 3155 __ membar_release(); 3156 break; 3157 case vmIntrinsics::_storeStoreFence: 3158 __ membar_storestore(); 3159 break; 3160 case vmIntrinsics::_fullFence : 3161 __ membar(); 3162 break; 3163 case vmIntrinsics::_onSpinWait: 3164 __ on_spin_wait(); 3165 break; 3166 case vmIntrinsics::_Reference_get: 3167 do_Reference_get(x); 3168 break; 3169 3170 case vmIntrinsics::_updateCRC32: 3171 case vmIntrinsics::_updateBytesCRC32: 3172 case vmIntrinsics::_updateByteBufferCRC32: 3173 do_update_CRC32(x); 3174 break; 3175 3176 case vmIntrinsics::_updateBytesCRC32C: 3177 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3178 do_update_CRC32C(x); 3179 break; 3180 3181 case vmIntrinsics::_vectorizedMismatch: 3182 do_vectorizedMismatch(x); 3183 break; 3184 3185 case vmIntrinsics::_blackhole: 3186 do_blackhole(x); 3187 break; 3188 3189 default: ShouldNotReachHere(); break; 3190 } 3191 } 3192 3193 void LIRGenerator::profile_arguments(ProfileCall* x) { 3194 if (compilation()->profile_arguments()) { 3195 int bci = x->bci_of_invoke(); 3196 ciMethodData* md = x->method()->method_data_or_null(); 3197 assert(md != NULL, "Sanity"); 3198 ciProfileData* data = md->bci_to_data(bci); 3199 if (data != NULL) { 3200 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3201 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3202 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3203 int base_offset = md->byte_offset_of_slot(data, extra); 3204 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3205 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3206 3207 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3208 int start = 0; 3209 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3210 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3211 // first argument is not profiled at call (method handle invoke) 3212 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3213 start = 1; 3214 } 3215 ciSignature* callee_signature = x->callee()->signature(); 3216 // method handle call to virtual method 3217 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3218 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3219 3220 bool ignored_will_link; 3221 ciSignature* signature_at_call = NULL; 3222 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3223 ciSignatureStream signature_at_call_stream(signature_at_call); 3224 3225 // if called through method handle invoke, some arguments may have been popped 3226 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3227 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3228 ciKlass* exact = profile_type(md, base_offset, off, 3229 args->type(i), x->profiled_arg_at(i+start), mdp, 3230 !x->arg_needs_null_check(i+start), 3231 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3232 if (exact != NULL) { 3233 md->set_argument_type(bci, i, exact); 3234 } 3235 } 3236 } else { 3237 #ifdef ASSERT 3238 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3239 int n = x->nb_profiled_args(); 3240 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3241 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3242 "only at JSR292 bytecodes"); 3243 #endif 3244 } 3245 } 3246 } 3247 } 3248 3249 // profile parameters on entry to an inlined method 3250 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3251 if (compilation()->profile_parameters() && x->inlined()) { 3252 ciMethodData* md = x->callee()->method_data_or_null(); 3253 if (md != NULL) { 3254 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3255 if (parameters_type_data != NULL) { 3256 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3257 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3258 bool has_receiver = !x->callee()->is_static(); 3259 ciSignature* sig = x->callee()->signature(); 3260 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3261 int i = 0; // to iterate on the Instructions 3262 Value arg = x->recv(); 3263 bool not_null = false; 3264 int bci = x->bci_of_invoke(); 3265 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3266 // The first parameter is the receiver so that's what we start 3267 // with if it exists. One exception is method handle call to 3268 // virtual method: the receiver is in the args list 3269 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3270 i = 1; 3271 arg = x->profiled_arg_at(0); 3272 not_null = !x->arg_needs_null_check(0); 3273 } 3274 int k = 0; // to iterate on the profile data 3275 for (;;) { 3276 intptr_t profiled_k = parameters->type(k); 3277 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3278 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3279 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3280 // If the profile is known statically set it once for all and do not emit any code 3281 if (exact != NULL) { 3282 md->set_parameter_type(k, exact); 3283 } 3284 k++; 3285 if (k >= parameters_type_data->number_of_parameters()) { 3286 #ifdef ASSERT 3287 int extra = 0; 3288 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3289 x->nb_profiled_args() >= TypeProfileParmsLimit && 3290 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3291 extra += 1; 3292 } 3293 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3294 #endif 3295 break; 3296 } 3297 arg = x->profiled_arg_at(i); 3298 not_null = !x->arg_needs_null_check(i); 3299 i++; 3300 } 3301 } 3302 } 3303 } 3304 } 3305 3306 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3307 // Need recv in a temporary register so it interferes with the other temporaries 3308 LIR_Opr recv = LIR_OprFact::illegalOpr; 3309 LIR_Opr mdo = new_register(T_METADATA); 3310 // tmp is used to hold the counters on SPARC 3311 LIR_Opr tmp = new_pointer_register(); 3312 3313 if (x->nb_profiled_args() > 0) { 3314 profile_arguments(x); 3315 } 3316 3317 // profile parameters on inlined method entry including receiver 3318 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3319 profile_parameters_at_call(x); 3320 } 3321 3322 if (x->recv() != NULL) { 3323 LIRItem value(x->recv(), this); 3324 value.load_item(); 3325 recv = new_register(T_OBJECT); 3326 __ move(value.result(), recv); 3327 } 3328 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3329 } 3330 3331 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3332 int bci = x->bci_of_invoke(); 3333 ciMethodData* md = x->method()->method_data_or_null(); 3334 assert(md != NULL, "Sanity"); 3335 ciProfileData* data = md->bci_to_data(bci); 3336 if (data != NULL) { 3337 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3338 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3339 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3340 3341 bool ignored_will_link; 3342 ciSignature* signature_at_call = NULL; 3343 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3344 3345 // The offset within the MDO of the entry to update may be too large 3346 // to be used in load/store instructions on some platforms. So have 3347 // profile_type() compute the address of the profile in a register. 3348 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3349 ret->type(), x->ret(), mdp, 3350 !x->needs_null_check(), 3351 signature_at_call->return_type()->as_klass(), 3352 x->callee()->signature()->return_type()->as_klass()); 3353 if (exact != NULL) { 3354 md->set_return_type(bci, exact); 3355 } 3356 } 3357 } 3358 3359 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3360 // We can safely ignore accessors here, since c2 will inline them anyway, 3361 // accessors are also always mature. 3362 if (!x->inlinee()->is_accessor()) { 3363 CodeEmitInfo* info = state_for(x, x->state(), true); 3364 // Notify the runtime very infrequently only to take care of counter overflows 3365 int freq_log = Tier23InlineeNotifyFreqLog; 3366 double scale; 3367 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3368 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3369 } 3370 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3371 } 3372 } 3373 3374 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3375 if (compilation()->count_backedges()) { 3376 #if defined(X86) && !defined(_LP64) 3377 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3378 LIR_Opr left_copy = new_register(left->type()); 3379 __ move(left, left_copy); 3380 __ cmp(cond, left_copy, right); 3381 #else 3382 __ cmp(cond, left, right); 3383 #endif 3384 LIR_Opr step = new_register(T_INT); 3385 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3386 LIR_Opr zero = LIR_OprFact::intConst(0); 3387 __ cmove(cond, 3388 (left_bci < bci) ? plus_one : zero, 3389 (right_bci < bci) ? plus_one : zero, 3390 step, left->type()); 3391 increment_backedge_counter(info, step, bci); 3392 } 3393 } 3394 3395 3396 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3397 int freq_log = 0; 3398 int level = compilation()->env()->comp_level(); 3399 if (level == CompLevel_limited_profile) { 3400 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3401 } else if (level == CompLevel_full_profile) { 3402 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3403 } else { 3404 ShouldNotReachHere(); 3405 } 3406 // Increment the appropriate invocation/backedge counter and notify the runtime. 3407 double scale; 3408 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3409 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3410 } 3411 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3412 } 3413 3414 void LIRGenerator::decrement_age(CodeEmitInfo* info) { 3415 ciMethod* method = info->scope()->method(); 3416 MethodCounters* mc_adr = method->ensure_method_counters(); 3417 if (mc_adr != NULL) { 3418 LIR_Opr mc = new_pointer_register(); 3419 __ move(LIR_OprFact::intptrConst(mc_adr), mc); 3420 int offset = in_bytes(MethodCounters::nmethod_age_offset()); 3421 LIR_Address* counter = new LIR_Address(mc, offset, T_INT); 3422 LIR_Opr result = new_register(T_INT); 3423 __ load(counter, result); 3424 __ sub(result, LIR_OprFact::intConst(1), result); 3425 __ store(result, counter); 3426 // DeoptimizeStub will reexecute from the current state in code info. 3427 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, 3428 Deoptimization::Action_make_not_entrant); 3429 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); 3430 __ branch(lir_cond_lessEqual, deopt); 3431 } 3432 } 3433 3434 3435 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3436 ciMethod *method, LIR_Opr step, int frequency, 3437 int bci, bool backedge, bool notify) { 3438 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3439 int level = _compilation->env()->comp_level(); 3440 assert(level > CompLevel_simple, "Shouldn't be here"); 3441 3442 int offset = -1; 3443 LIR_Opr counter_holder = NULL; 3444 if (level == CompLevel_limited_profile) { 3445 MethodCounters* counters_adr = method->ensure_method_counters(); 3446 if (counters_adr == NULL) { 3447 bailout("method counters allocation failed"); 3448 return; 3449 } 3450 counter_holder = new_pointer_register(); 3451 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3452 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3453 MethodCounters::invocation_counter_offset()); 3454 } else if (level == CompLevel_full_profile) { 3455 counter_holder = new_register(T_METADATA); 3456 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3457 MethodData::invocation_counter_offset()); 3458 ciMethodData* md = method->method_data_or_null(); 3459 assert(md != NULL, "Sanity"); 3460 __ metadata2reg(md->constant_encoding(), counter_holder); 3461 } else { 3462 ShouldNotReachHere(); 3463 } 3464 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3465 LIR_Opr result = new_register(T_INT); 3466 __ load(counter, result); 3467 __ add(result, step, result); 3468 __ store(result, counter); 3469 if (notify && (!backedge || UseOnStackReplacement)) { 3470 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3471 // The bci for info can point to cmp for if's we want the if bci 3472 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3473 int freq = frequency << InvocationCounter::count_shift; 3474 if (freq == 0) { 3475 if (!step->is_constant()) { 3476 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3477 __ branch(lir_cond_notEqual, overflow); 3478 } else { 3479 __ branch(lir_cond_always, overflow); 3480 } 3481 } else { 3482 LIR_Opr mask = load_immediate(freq, T_INT); 3483 if (!step->is_constant()) { 3484 // If step is 0, make sure the overflow check below always fails 3485 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3486 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3487 } 3488 __ logical_and(result, mask, result); 3489 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3490 __ branch(lir_cond_equal, overflow); 3491 } 3492 __ branch_destination(overflow->continuation()); 3493 } 3494 } 3495 3496 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3497 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3498 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3499 3500 if (x->pass_thread()) { 3501 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3502 args->append(getThreadPointer()); 3503 } 3504 3505 for (int i = 0; i < x->number_of_arguments(); i++) { 3506 Value a = x->argument_at(i); 3507 LIRItem* item = new LIRItem(a, this); 3508 item->load_item(); 3509 args->append(item->result()); 3510 signature->append(as_BasicType(a->type())); 3511 } 3512 3513 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3514 if (x->type() == voidType) { 3515 set_no_result(x); 3516 } else { 3517 __ move(result, rlock_result(x)); 3518 } 3519 } 3520 3521 #ifdef ASSERT 3522 void LIRGenerator::do_Assert(Assert *x) { 3523 ValueTag tag = x->x()->type()->tag(); 3524 If::Condition cond = x->cond(); 3525 3526 LIRItem xitem(x->x(), this); 3527 LIRItem yitem(x->y(), this); 3528 LIRItem* xin = &xitem; 3529 LIRItem* yin = &yitem; 3530 3531 assert(tag == intTag, "Only integer assertions are valid!"); 3532 3533 xin->load_item(); 3534 yin->dont_load_item(); 3535 3536 set_no_result(x); 3537 3538 LIR_Opr left = xin->result(); 3539 LIR_Opr right = yin->result(); 3540 3541 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3542 } 3543 #endif 3544 3545 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3546 3547 3548 Instruction *a = x->x(); 3549 Instruction *b = x->y(); 3550 if (!a || StressRangeCheckElimination) { 3551 assert(!b || StressRangeCheckElimination, "B must also be null"); 3552 3553 CodeEmitInfo *info = state_for(x, x->state()); 3554 CodeStub* stub = new PredicateFailedStub(info); 3555 3556 __ jump(stub); 3557 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3558 int a_int = a->type()->as_IntConstant()->value(); 3559 int b_int = b->type()->as_IntConstant()->value(); 3560 3561 bool ok = false; 3562 3563 switch(x->cond()) { 3564 case Instruction::eql: ok = (a_int == b_int); break; 3565 case Instruction::neq: ok = (a_int != b_int); break; 3566 case Instruction::lss: ok = (a_int < b_int); break; 3567 case Instruction::leq: ok = (a_int <= b_int); break; 3568 case Instruction::gtr: ok = (a_int > b_int); break; 3569 case Instruction::geq: ok = (a_int >= b_int); break; 3570 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3571 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3572 default: ShouldNotReachHere(); 3573 } 3574 3575 if (ok) { 3576 3577 CodeEmitInfo *info = state_for(x, x->state()); 3578 CodeStub* stub = new PredicateFailedStub(info); 3579 3580 __ jump(stub); 3581 } 3582 } else { 3583 3584 ValueTag tag = x->x()->type()->tag(); 3585 If::Condition cond = x->cond(); 3586 LIRItem xitem(x->x(), this); 3587 LIRItem yitem(x->y(), this); 3588 LIRItem* xin = &xitem; 3589 LIRItem* yin = &yitem; 3590 3591 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3592 3593 xin->load_item(); 3594 yin->dont_load_item(); 3595 set_no_result(x); 3596 3597 LIR_Opr left = xin->result(); 3598 LIR_Opr right = yin->result(); 3599 3600 CodeEmitInfo *info = state_for(x, x->state()); 3601 CodeStub* stub = new PredicateFailedStub(info); 3602 3603 __ cmp(lir_cond(cond), left, right); 3604 __ branch(lir_cond(cond), stub); 3605 } 3606 } 3607 3608 void LIRGenerator::do_blackhole(Intrinsic *x) { 3609 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3610 for (int c = 0; c < x->number_of_arguments(); c++) { 3611 // Load the argument 3612 LIRItem vitem(x->argument_at(c), this); 3613 vitem.load_item(); 3614 // ...and leave it unused. 3615 } 3616 } 3617 3618 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3619 LIRItemList args(1); 3620 LIRItem value(arg1, this); 3621 args.append(&value); 3622 BasicTypeList signature; 3623 signature.append(as_BasicType(arg1->type())); 3624 3625 return call_runtime(&signature, &args, entry, result_type, info); 3626 } 3627 3628 3629 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3630 LIRItemList args(2); 3631 LIRItem value1(arg1, this); 3632 LIRItem value2(arg2, this); 3633 args.append(&value1); 3634 args.append(&value2); 3635 BasicTypeList signature; 3636 signature.append(as_BasicType(arg1->type())); 3637 signature.append(as_BasicType(arg2->type())); 3638 3639 return call_runtime(&signature, &args, entry, result_type, info); 3640 } 3641 3642 3643 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3644 address entry, ValueType* result_type, CodeEmitInfo* info) { 3645 // get a result register 3646 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3647 LIR_Opr result = LIR_OprFact::illegalOpr; 3648 if (result_type->tag() != voidTag) { 3649 result = new_register(result_type); 3650 phys_reg = result_register_for(result_type); 3651 } 3652 3653 // move the arguments into the correct location 3654 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3655 assert(cc->length() == args->length(), "argument mismatch"); 3656 for (int i = 0; i < args->length(); i++) { 3657 LIR_Opr arg = args->at(i); 3658 LIR_Opr loc = cc->at(i); 3659 if (loc->is_register()) { 3660 __ move(arg, loc); 3661 } else { 3662 LIR_Address* addr = loc->as_address_ptr(); 3663 // if (!can_store_as_constant(arg)) { 3664 // LIR_Opr tmp = new_register(arg->type()); 3665 // __ move(arg, tmp); 3666 // arg = tmp; 3667 // } 3668 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3669 __ unaligned_move(arg, addr); 3670 } else { 3671 __ move(arg, addr); 3672 } 3673 } 3674 } 3675 3676 if (info) { 3677 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3678 } else { 3679 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3680 } 3681 if (result->is_valid()) { 3682 __ move(phys_reg, result); 3683 } 3684 return result; 3685 } 3686 3687 3688 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3689 address entry, ValueType* result_type, CodeEmitInfo* info) { 3690 // get a result register 3691 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3692 LIR_Opr result = LIR_OprFact::illegalOpr; 3693 if (result_type->tag() != voidTag) { 3694 result = new_register(result_type); 3695 phys_reg = result_register_for(result_type); 3696 } 3697 3698 // move the arguments into the correct location 3699 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3700 3701 assert(cc->length() == args->length(), "argument mismatch"); 3702 for (int i = 0; i < args->length(); i++) { 3703 LIRItem* arg = args->at(i); 3704 LIR_Opr loc = cc->at(i); 3705 if (loc->is_register()) { 3706 arg->load_item_force(loc); 3707 } else { 3708 LIR_Address* addr = loc->as_address_ptr(); 3709 arg->load_for_store(addr->type()); 3710 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3711 __ unaligned_move(arg->result(), addr); 3712 } else { 3713 __ move(arg->result(), addr); 3714 } 3715 } 3716 } 3717 3718 if (info) { 3719 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3720 } else { 3721 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3722 } 3723 if (result->is_valid()) { 3724 __ move(phys_reg, result); 3725 } 3726 return result; 3727 } 3728 3729 void LIRGenerator::do_MemBar(MemBar* x) { 3730 LIR_Code code = x->code(); 3731 switch(code) { 3732 case lir_membar_acquire : __ membar_acquire(); break; 3733 case lir_membar_release : __ membar_release(); break; 3734 case lir_membar : __ membar(); break; 3735 case lir_membar_loadload : __ membar_loadload(); break; 3736 case lir_membar_storestore: __ membar_storestore(); break; 3737 case lir_membar_loadstore : __ membar_loadstore(); break; 3738 case lir_membar_storeload : __ membar_storeload(); break; 3739 default : ShouldNotReachHere(); break; 3740 } 3741 } 3742 3743 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3744 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3745 if (TwoOperandLIRForm) { 3746 __ move(value, value_fixed); 3747 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3748 } else { 3749 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3750 } 3751 LIR_Opr klass = new_register(T_METADATA); 3752 load_klass(array, klass, null_check_info); 3753 null_check_info = NULL; 3754 LIR_Opr layout = new_register(T_INT); 3755 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3756 int diffbit = Klass::layout_helper_boolean_diffbit(); 3757 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3758 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3759 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3760 value = value_fixed; 3761 return value; 3762 } 3763 3764 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3765 if (x->check_boolean()) { 3766 value = mask_boolean(array, value, null_check_info); 3767 } 3768 return value; 3769 }