1 /* 2 * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/c1/barrierSetC1.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "runtime/vm_version.hpp" 43 #include "utilities/bitMap.inline.hpp" 44 #include "utilities/macros.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 #ifdef ASSERT 48 #define __ gen()->lir(__FILE__, __LINE__)-> 49 #else 50 #define __ gen()->lir()-> 51 #endif 52 53 #ifndef PATCHED_ADDR 54 #define PATCHED_ADDR (max_jint) 55 #endif 56 57 void PhiResolverState::reset() { 58 _virtual_operands.clear(); 59 _other_operands.clear(); 60 _vreg_table.clear(); 61 } 62 63 64 //-------------------------------------------------------------- 65 // PhiResolver 66 67 // Resolves cycles: 68 // 69 // r1 := r2 becomes temp := r1 70 // r2 := r1 r1 := r2 71 // r2 := temp 72 // and orders moves: 73 // 74 // r2 := r3 becomes r1 := r2 75 // r1 := r2 r2 := r3 76 77 PhiResolver::PhiResolver(LIRGenerator* gen) 78 : _gen(gen) 79 , _state(gen->resolver_state()) 80 , _loop(nullptr) 81 , _temp(LIR_OprFact::illegalOpr) 82 { 83 // reinitialize the shared state arrays 84 _state.reset(); 85 } 86 87 88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 89 assert(src->is_valid(), ""); 90 assert(dest->is_valid(), ""); 91 __ move(src, dest); 92 } 93 94 95 void PhiResolver::move_temp_to(LIR_Opr dest) { 96 assert(_temp->is_valid(), ""); 97 emit_move(_temp, dest); 98 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 99 } 100 101 102 void PhiResolver::move_to_temp(LIR_Opr src) { 103 assert(_temp->is_illegal(), ""); 104 _temp = _gen->new_register(src->type()); 105 emit_move(src, _temp); 106 } 107 108 109 // Traverse assignment graph in depth first order and generate moves in post order 110 // ie. two assignments: b := c, a := b start with node c: 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 112 // Generates moves in this order: move b to a and move c to b 113 // ie. cycle a := b, b := a start with node a 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 115 // Generates moves in this order: move b to temp, move a to b, move temp to a 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 117 if (!dest->visited()) { 118 dest->set_visited(); 119 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 120 move(dest, dest->destination_at(i)); 121 } 122 } else if (!dest->start_node()) { 123 // cylce in graph detected 124 assert(_loop == NULL, "only one loop valid!"); 125 _loop = dest; 126 move_to_temp(src->operand()); 127 return; 128 } // else dest is a start node 129 130 if (!dest->assigned()) { 131 if (_loop == dest) { 132 move_temp_to(dest->operand()); 133 dest->set_assigned(); 134 } else if (src != NULL) { 135 emit_move(src->operand(), dest->operand()); 136 dest->set_assigned(); 137 } 138 } 139 } 140 141 142 PhiResolver::~PhiResolver() { 143 int i; 144 // resolve any cycles in moves from and to virtual registers 145 for (i = virtual_operands().length() - 1; i >= 0; i --) { 146 ResolveNode* node = virtual_operands().at(i); 147 if (!node->visited()) { 148 _loop = NULL; 149 move(NULL, node); 150 node->set_start_node(); 151 assert(_temp->is_illegal(), "move_temp_to() call missing"); 152 } 153 } 154 155 // generate move for move from non virtual register to abitrary destination 156 for (i = other_operands().length() - 1; i >= 0; i --) { 157 ResolveNode* node = other_operands().at(i); 158 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 159 emit_move(node->operand(), node->destination_at(j)->operand()); 160 } 161 } 162 } 163 164 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 166 ResolveNode* node; 167 if (opr->is_virtual()) { 168 int vreg_num = opr->vreg_number(); 169 node = vreg_table().at_grow(vreg_num, NULL); 170 assert(node == NULL || node->operand() == opr, ""); 171 if (node == NULL) { 172 node = new ResolveNode(opr); 173 vreg_table().at_put(vreg_num, node); 174 } 175 // Make sure that all virtual operands show up in the list when 176 // they are used as the source of a move. 177 if (source && !virtual_operands().contains(node)) { 178 virtual_operands().append(node); 179 } 180 } else { 181 assert(source, ""); 182 node = new ResolveNode(opr); 183 other_operands().append(node); 184 } 185 return node; 186 } 187 188 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 190 assert(dest->is_virtual(), ""); 191 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 192 assert(src->is_valid(), ""); 193 assert(dest->is_valid(), ""); 194 ResolveNode* source = source_node(src); 195 source->append(destination_node(dest)); 196 } 197 198 199 //-------------------------------------------------------------- 200 // LIRItem 201 202 void LIRItem::set_result(LIR_Opr opr) { 203 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 204 value()->set_operand(opr); 205 206 if (opr->is_virtual()) { 207 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 208 } 209 210 _result = opr; 211 } 212 213 void LIRItem::load_item() { 214 if (result()->is_illegal()) { 215 // update the items result 216 _result = value()->operand(); 217 } 218 if (!result()->is_register()) { 219 LIR_Opr reg = _gen->new_register(value()->type()); 220 __ move(result(), reg); 221 if (result()->is_constant()) { 222 _result = reg; 223 } else { 224 set_result(reg); 225 } 226 } 227 } 228 229 230 void LIRItem::load_for_store(BasicType type) { 231 if (_gen->can_store_as_constant(value(), type)) { 232 _result = value()->operand(); 233 if (!_result->is_constant()) { 234 _result = LIR_OprFact::value_type(value()->type()); 235 } 236 } else if (type == T_BYTE || type == T_BOOLEAN) { 237 load_byte_item(); 238 } else { 239 load_item(); 240 } 241 } 242 243 void LIRItem::load_item_force(LIR_Opr reg) { 244 LIR_Opr r = result(); 245 if (r != reg) { 246 #if !defined(ARM) && !defined(E500V2) 247 if (r->type() != reg->type()) { 248 // moves between different types need an intervening spill slot 249 r = _gen->force_to_spill(r, reg->type()); 250 } 251 #endif 252 __ move(r, reg); 253 _result = reg; 254 } 255 } 256 257 ciObject* LIRItem::get_jobject_constant() const { 258 ObjectType* oc = type()->as_ObjectType(); 259 if (oc) { 260 return oc->constant_value(); 261 } 262 return NULL; 263 } 264 265 266 jint LIRItem::get_jint_constant() const { 267 assert(is_constant() && value() != NULL, ""); 268 assert(type()->as_IntConstant() != NULL, "type check"); 269 return type()->as_IntConstant()->value(); 270 } 271 272 273 jint LIRItem::get_address_constant() const { 274 assert(is_constant() && value() != NULL, ""); 275 assert(type()->as_AddressConstant() != NULL, "type check"); 276 return type()->as_AddressConstant()->value(); 277 } 278 279 280 jfloat LIRItem::get_jfloat_constant() const { 281 assert(is_constant() && value() != NULL, ""); 282 assert(type()->as_FloatConstant() != NULL, "type check"); 283 return type()->as_FloatConstant()->value(); 284 } 285 286 287 jdouble LIRItem::get_jdouble_constant() const { 288 assert(is_constant() && value() != NULL, ""); 289 assert(type()->as_DoubleConstant() != NULL, "type check"); 290 return type()->as_DoubleConstant()->value(); 291 } 292 293 294 jlong LIRItem::get_jlong_constant() const { 295 assert(is_constant() && value() != NULL, ""); 296 assert(type()->as_LongConstant() != NULL, "type check"); 297 return type()->as_LongConstant()->value(); 298 } 299 300 301 302 //-------------------------------------------------------------- 303 304 305 void LIRGenerator::block_do_prolog(BlockBegin* block) { 306 #ifndef PRODUCT 307 if (PrintIRWithLIR) { 308 block->print(); 309 } 310 #endif 311 312 // set up the list of LIR instructions 313 assert(block->lir() == NULL, "LIR list already computed for this block"); 314 _lir = new LIR_List(compilation(), block); 315 block->set_lir(_lir); 316 317 __ branch_destination(block->label()); 318 319 if (LIRTraceExecution && 320 Compilation::current()->hir()->start()->block_id() != block->block_id() && 321 !block->is_set(BlockBegin::exception_entry_flag)) { 322 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 323 trace_block_entry(block); 324 } 325 } 326 327 328 void LIRGenerator::block_do_epilog(BlockBegin* block) { 329 #ifndef PRODUCT 330 if (PrintIRWithLIR) { 331 tty->cr(); 332 } 333 #endif 334 335 // LIR_Opr for unpinned constants shouldn't be referenced by other 336 // blocks so clear them out after processing the block. 337 for (int i = 0; i < _unpinned_constants.length(); i++) { 338 _unpinned_constants.at(i)->clear_operand(); 339 } 340 _unpinned_constants.trunc_to(0); 341 342 // clear our any registers for other local constants 343 _constants.trunc_to(0); 344 _reg_for_constants.trunc_to(0); 345 } 346 347 348 void LIRGenerator::block_do(BlockBegin* block) { 349 CHECK_BAILOUT(); 350 351 block_do_prolog(block); 352 set_block(block); 353 354 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 355 if (instr->is_pinned()) do_root(instr); 356 } 357 358 set_block(NULL); 359 block_do_epilog(block); 360 } 361 362 363 //-------------------------LIRGenerator----------------------------- 364 365 // This is where the tree-walk starts; instr must be root; 366 void LIRGenerator::do_root(Value instr) { 367 CHECK_BAILOUT(); 368 369 InstructionMark im(compilation(), instr); 370 371 assert(instr->is_pinned(), "use only with roots"); 372 assert(instr->subst() == instr, "shouldn't have missed substitution"); 373 374 instr->visit(this); 375 376 assert(!instr->has_uses() || instr->operand()->is_valid() || 377 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 378 } 379 380 381 // This is called for each node in tree; the walk stops if a root is reached 382 void LIRGenerator::walk(Value instr) { 383 InstructionMark im(compilation(), instr); 384 //stop walk when encounter a root 385 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { 386 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 387 } else { 388 assert(instr->subst() == instr, "shouldn't have missed substitution"); 389 instr->visit(this); 390 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 391 } 392 } 393 394 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 396 assert(state != NULL, "state must be defined"); 397 398 #ifndef PRODUCT 399 state->verify(); 400 #endif 401 402 ValueStack* s = state; 403 for_each_state(s) { 404 if (s->kind() == ValueStack::EmptyExceptionState) { 405 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 406 continue; 407 } 408 409 int index; 410 Value value; 411 for_each_stack_value(s, index, value) { 412 assert(value->subst() == value, "missed substitution"); 413 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 414 walk(value); 415 assert(value->operand()->is_valid(), "must be evaluated now"); 416 } 417 } 418 419 int bci = s->bci(); 420 IRScope* scope = s->scope(); 421 ciMethod* method = scope->method(); 422 423 MethodLivenessResult liveness = method->liveness_at_bci(bci); 424 if (bci == SynchronizationEntryBCI) { 425 if (x->as_ExceptionObject() || x->as_Throw()) { 426 // all locals are dead on exit from the synthetic unlocker 427 liveness.clear(); 428 } else { 429 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 430 } 431 } 432 if (!liveness.is_valid()) { 433 // Degenerate or breakpointed method. 434 bailout("Degenerate or breakpointed method"); 435 } else { 436 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 437 for_each_local_value(s, index, value) { 438 assert(value->subst() == value, "missed substition"); 439 if (liveness.at(index) && !value->type()->is_illegal()) { 440 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 441 walk(value); 442 assert(value->operand()->is_valid(), "must be evaluated now"); 443 } 444 } else { 445 // NULL out this local so that linear scan can assume that all non-NULL values are live. 446 s->invalidate_local(index); 447 } 448 } 449 } 450 } 451 452 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 453 } 454 455 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 457 return state_for(x, x->exception_state()); 458 } 459 460 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 462 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 463 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 464 * the class. */ 465 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 466 assert(info != NULL, "info must be set if class is not loaded"); 467 __ klass2reg_patch(NULL, r, info); 468 } else { 469 // no patching needed 470 __ metadata2reg(obj->constant_encoding(), r); 471 } 472 } 473 474 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 476 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 477 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 478 if (index->is_constant()) { 479 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 480 index->as_jint(), null_check_info); 481 __ branch(lir_cond_belowEqual, stub); // forward branch 482 } else { 483 cmp_reg_mem(lir_cond_aboveEqual, index, array, 484 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 485 __ branch(lir_cond_aboveEqual, stub); // forward branch 486 } 487 } 488 489 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { 491 CodeStub* stub = new RangeCheckStub(info, index); 492 if (index->is_constant()) { 493 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); 494 __ branch(lir_cond_belowEqual, stub); // forward branch 495 } else { 496 cmp_reg_mem(lir_cond_aboveEqual, index, buffer, 497 java_nio_Buffer::limit_offset(), T_INT, info); 498 __ branch(lir_cond_aboveEqual, stub); // forward branch 499 } 500 __ move(index, result); 501 } 502 503 504 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 506 LIR_Opr result_op = result; 507 LIR_Opr left_op = left; 508 LIR_Opr right_op = right; 509 510 if (TwoOperandLIRForm && left_op != result_op) { 511 assert(right_op != result_op, "malformed"); 512 __ move(left_op, result_op); 513 left_op = result_op; 514 } 515 516 switch(code) { 517 case Bytecodes::_dadd: 518 case Bytecodes::_fadd: 519 case Bytecodes::_ladd: 520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 521 case Bytecodes::_fmul: 522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 523 524 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 525 526 case Bytecodes::_imul: 527 { 528 bool did_strength_reduce = false; 529 530 if (right->is_constant()) { 531 jint c = right->as_jint(); 532 if (c > 0 && is_power_of_2(c)) { 533 // do not need tmp here 534 __ shift_left(left_op, exact_log2(c), result_op); 535 did_strength_reduce = true; 536 } else { 537 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 538 } 539 } 540 // we couldn't strength reduce so just emit the multiply 541 if (!did_strength_reduce) { 542 __ mul(left_op, right_op, result_op); 543 } 544 } 545 break; 546 547 case Bytecodes::_dsub: 548 case Bytecodes::_fsub: 549 case Bytecodes::_lsub: 550 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 551 552 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 553 // ldiv and lrem are implemented with a direct runtime call 554 555 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 556 557 case Bytecodes::_drem: 558 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 559 560 default: ShouldNotReachHere(); 561 } 562 } 563 564 565 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 566 arithmetic_op(code, result, left, right, tmp); 567 } 568 569 570 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 571 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 572 } 573 574 575 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 576 arithmetic_op(code, result, left, right, tmp); 577 } 578 579 580 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 581 582 if (TwoOperandLIRForm && value != result_op 583 // Only 32bit right shifts require two operand form on S390. 584 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 585 assert(count != result_op, "malformed"); 586 __ move(value, result_op); 587 value = result_op; 588 } 589 590 assert(count->is_constant() || count->is_register(), "must be"); 591 switch(code) { 592 case Bytecodes::_ishl: 593 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 594 case Bytecodes::_ishr: 595 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 596 case Bytecodes::_iushr: 597 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 598 default: ShouldNotReachHere(); 599 } 600 } 601 602 603 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 604 if (TwoOperandLIRForm && left_op != result_op) { 605 assert(right_op != result_op, "malformed"); 606 __ move(left_op, result_op); 607 left_op = result_op; 608 } 609 610 switch(code) { 611 case Bytecodes::_iand: 612 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 613 614 case Bytecodes::_ior: 615 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 616 617 case Bytecodes::_ixor: 618 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 619 620 default: ShouldNotReachHere(); 621 } 622 } 623 624 625 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 626 if (!GenerateSynchronizationCode) return; 627 // for slow path, use debug info for state after successful locking 628 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 629 __ load_stack_address_monitor(monitor_no, lock); 630 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 631 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 632 } 633 634 635 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 636 if (!GenerateSynchronizationCode) return; 637 // setup registers 638 LIR_Opr hdr = lock; 639 lock = new_hdr; 640 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 641 __ load_stack_address_monitor(monitor_no, lock); 642 __ unlock_object(hdr, object, lock, scratch, slow_path); 643 } 644 645 #ifndef PRODUCT 646 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 647 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 648 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 649 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 650 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 651 } 652 } 653 #endif 654 655 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 656 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 657 // If klass is not loaded we do not know if the klass has finalizers: 658 if (UseFastNewInstance && klass->is_loaded() 659 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 660 661 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 662 663 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 664 665 assert(klass->is_loaded(), "must be loaded"); 666 // allocate space for instance 667 assert(klass->size_helper() > 0, "illegal instance size"); 668 const int instance_size = align_object_size(klass->size_helper()); 669 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 670 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 671 } else { 672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 673 __ branch(lir_cond_always, slow_path); 674 __ branch_destination(slow_path->continuation()); 675 } 676 } 677 678 679 static bool is_constant_zero(Instruction* inst) { 680 IntConstant* c = inst->type()->as_IntConstant(); 681 if (c) { 682 return (c->value() == 0); 683 } 684 return false; 685 } 686 687 688 static bool positive_constant(Instruction* inst) { 689 IntConstant* c = inst->type()->as_IntConstant(); 690 if (c) { 691 return (c->value() >= 0); 692 } 693 return false; 694 } 695 696 697 static ciArrayKlass* as_array_klass(ciType* type) { 698 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 699 return (ciArrayKlass*)type; 700 } else { 701 return NULL; 702 } 703 } 704 705 static ciType* phi_declared_type(Phi* phi) { 706 ciType* t = phi->operand_at(0)->declared_type(); 707 if (t == NULL) { 708 return NULL; 709 } 710 for(int i = 1; i < phi->operand_count(); i++) { 711 if (t != phi->operand_at(i)->declared_type()) { 712 return NULL; 713 } 714 } 715 return t; 716 } 717 718 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 719 Instruction* src = x->argument_at(0); 720 Instruction* src_pos = x->argument_at(1); 721 Instruction* dst = x->argument_at(2); 722 Instruction* dst_pos = x->argument_at(3); 723 Instruction* length = x->argument_at(4); 724 725 // first try to identify the likely type of the arrays involved 726 ciArrayKlass* expected_type = NULL; 727 bool is_exact = false, src_objarray = false, dst_objarray = false; 728 { 729 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 730 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 731 Phi* phi; 732 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 733 src_declared_type = as_array_klass(phi_declared_type(phi)); 734 } 735 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 736 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 737 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 738 dst_declared_type = as_array_klass(phi_declared_type(phi)); 739 } 740 741 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 742 // the types exactly match so the type is fully known 743 is_exact = true; 744 expected_type = src_exact_type; 745 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 746 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 747 ciArrayKlass* src_type = NULL; 748 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 749 src_type = (ciArrayKlass*) src_exact_type; 750 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 751 src_type = (ciArrayKlass*) src_declared_type; 752 } 753 if (src_type != NULL) { 754 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 755 is_exact = true; 756 expected_type = dst_type; 757 } 758 } 759 } 760 // at least pass along a good guess 761 if (expected_type == NULL) expected_type = dst_exact_type; 762 if (expected_type == NULL) expected_type = src_declared_type; 763 if (expected_type == NULL) expected_type = dst_declared_type; 764 765 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 766 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 767 } 768 769 // if a probable array type has been identified, figure out if any 770 // of the required checks for a fast case can be elided. 771 int flags = LIR_OpArrayCopy::all_flags; 772 773 if (!src_objarray) 774 flags &= ~LIR_OpArrayCopy::src_objarray; 775 if (!dst_objarray) 776 flags &= ~LIR_OpArrayCopy::dst_objarray; 777 778 if (!x->arg_needs_null_check(0)) 779 flags &= ~LIR_OpArrayCopy::src_null_check; 780 if (!x->arg_needs_null_check(2)) 781 flags &= ~LIR_OpArrayCopy::dst_null_check; 782 783 784 if (expected_type != NULL) { 785 Value length_limit = NULL; 786 787 IfOp* ifop = length->as_IfOp(); 788 if (ifop != NULL) { 789 // look for expressions like min(v, a.length) which ends up as 790 // x > y ? y : x or x >= y ? y : x 791 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 792 ifop->x() == ifop->fval() && 793 ifop->y() == ifop->tval()) { 794 length_limit = ifop->y(); 795 } 796 } 797 798 // try to skip null checks and range checks 799 NewArray* src_array = src->as_NewArray(); 800 if (src_array != NULL) { 801 flags &= ~LIR_OpArrayCopy::src_null_check; 802 if (length_limit != NULL && 803 src_array->length() == length_limit && 804 is_constant_zero(src_pos)) { 805 flags &= ~LIR_OpArrayCopy::src_range_check; 806 } 807 } 808 809 NewArray* dst_array = dst->as_NewArray(); 810 if (dst_array != NULL) { 811 flags &= ~LIR_OpArrayCopy::dst_null_check; 812 if (length_limit != NULL && 813 dst_array->length() == length_limit && 814 is_constant_zero(dst_pos)) { 815 flags &= ~LIR_OpArrayCopy::dst_range_check; 816 } 817 } 818 819 // check from incoming constant values 820 if (positive_constant(src_pos)) 821 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 822 if (positive_constant(dst_pos)) 823 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 824 if (positive_constant(length)) 825 flags &= ~LIR_OpArrayCopy::length_positive_check; 826 827 // see if the range check can be elided, which might also imply 828 // that src or dst is non-null. 829 ArrayLength* al = length->as_ArrayLength(); 830 if (al != NULL) { 831 if (al->array() == src) { 832 // it's the length of the source array 833 flags &= ~LIR_OpArrayCopy::length_positive_check; 834 flags &= ~LIR_OpArrayCopy::src_null_check; 835 if (is_constant_zero(src_pos)) 836 flags &= ~LIR_OpArrayCopy::src_range_check; 837 } 838 if (al->array() == dst) { 839 // it's the length of the destination array 840 flags &= ~LIR_OpArrayCopy::length_positive_check; 841 flags &= ~LIR_OpArrayCopy::dst_null_check; 842 if (is_constant_zero(dst_pos)) 843 flags &= ~LIR_OpArrayCopy::dst_range_check; 844 } 845 } 846 if (is_exact) { 847 flags &= ~LIR_OpArrayCopy::type_check; 848 } 849 } 850 851 IntConstant* src_int = src_pos->type()->as_IntConstant(); 852 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 853 if (src_int && dst_int) { 854 int s_offs = src_int->value(); 855 int d_offs = dst_int->value(); 856 if (src_int->value() >= dst_int->value()) { 857 flags &= ~LIR_OpArrayCopy::overlapping; 858 } 859 if (expected_type != NULL) { 860 BasicType t = expected_type->element_type()->basic_type(); 861 int element_size = type2aelembytes(t); 862 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 863 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 864 flags &= ~LIR_OpArrayCopy::unaligned; 865 } 866 } 867 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 868 // src and dest positions are the same, or dst is zero so assume 869 // nonoverlapping copy. 870 flags &= ~LIR_OpArrayCopy::overlapping; 871 } 872 873 if (src == dst) { 874 // moving within a single array so no type checks are needed 875 if (flags & LIR_OpArrayCopy::type_check) { 876 flags &= ~LIR_OpArrayCopy::type_check; 877 } 878 } 879 *flagsp = flags; 880 *expected_typep = (ciArrayKlass*)expected_type; 881 } 882 883 884 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 885 assert(opr->is_register(), "why spill if item is not register?"); 886 887 if (strict_fp_requires_explicit_rounding) { 888 #ifdef IA32 889 if (UseSSE < 1 && opr->is_single_fpu()) { 890 LIR_Opr result = new_register(T_FLOAT); 891 set_vreg_flag(result, must_start_in_memory); 892 assert(opr->is_register(), "only a register can be spilled"); 893 assert(opr->value_type()->is_float(), "rounding only for floats available"); 894 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 895 return result; 896 } 897 #else 898 Unimplemented(); 899 #endif // IA32 900 } 901 return opr; 902 } 903 904 905 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 906 assert(type2size[t] == type2size[value->type()], 907 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 908 if (!value->is_register()) { 909 // force into a register 910 LIR_Opr r = new_register(value->type()); 911 __ move(value, r); 912 value = r; 913 } 914 915 // create a spill location 916 LIR_Opr tmp = new_register(t); 917 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 918 919 // move from register to spill 920 __ move(value, tmp); 921 return tmp; 922 } 923 924 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 925 if (if_instr->should_profile()) { 926 ciMethod* method = if_instr->profiled_method(); 927 assert(method != NULL, "method should be set if branch is profiled"); 928 ciMethodData* md = method->method_data_or_null(); 929 assert(md != NULL, "Sanity"); 930 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 931 assert(data != NULL, "must have profiling data"); 932 assert(data->is_BranchData(), "need BranchData for two-way branches"); 933 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 934 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 935 if (if_instr->is_swapped()) { 936 int t = taken_count_offset; 937 taken_count_offset = not_taken_count_offset; 938 not_taken_count_offset = t; 939 } 940 941 LIR_Opr md_reg = new_register(T_METADATA); 942 __ metadata2reg(md->constant_encoding(), md_reg); 943 944 LIR_Opr data_offset_reg = new_pointer_register(); 945 __ cmove(lir_cond(cond), 946 LIR_OprFact::intptrConst(taken_count_offset), 947 LIR_OprFact::intptrConst(not_taken_count_offset), 948 data_offset_reg, as_BasicType(if_instr->x()->type())); 949 950 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 951 LIR_Opr data_reg = new_pointer_register(); 952 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 953 __ move(data_addr, data_reg); 954 // Use leal instead of add to avoid destroying condition codes on x86 955 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 956 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 957 __ move(data_reg, data_addr); 958 } 959 } 960 961 // Phi technique: 962 // This is about passing live values from one basic block to the other. 963 // In code generated with Java it is rather rare that more than one 964 // value is on the stack from one basic block to the other. 965 // We optimize our technique for efficient passing of one value 966 // (of type long, int, double..) but it can be extended. 967 // When entering or leaving a basic block, all registers and all spill 968 // slots are release and empty. We use the released registers 969 // and spill slots to pass the live values from one block 970 // to the other. The topmost value, i.e., the value on TOS of expression 971 // stack is passed in registers. All other values are stored in spilling 972 // area. Every Phi has an index which designates its spill slot 973 // At exit of a basic block, we fill the register(s) and spill slots. 974 // At entry of a basic block, the block_prolog sets up the content of phi nodes 975 // and locks necessary registers and spilling slots. 976 977 978 // move current value to referenced phi function 979 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 980 Phi* phi = sux_val->as_Phi(); 981 // cur_val can be null without phi being null in conjunction with inlining 982 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 983 if (phi->is_local()) { 984 for (int i = 0; i < phi->operand_count(); i++) { 985 Value op = phi->operand_at(i); 986 if (op != NULL && op->type()->is_illegal()) { 987 bailout("illegal phi operand"); 988 } 989 } 990 } 991 Phi* cur_phi = cur_val->as_Phi(); 992 if (cur_phi != NULL && cur_phi->is_illegal()) { 993 // Phi and local would need to get invalidated 994 // (which is unexpected for Linear Scan). 995 // But this case is very rare so we simply bail out. 996 bailout("propagation of illegal phi"); 997 return; 998 } 999 LIR_Opr operand = cur_val->operand(); 1000 if (operand->is_illegal()) { 1001 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 1002 "these can be produced lazily"); 1003 operand = operand_for_instruction(cur_val); 1004 } 1005 resolver->move(operand, operand_for_instruction(phi)); 1006 } 1007 } 1008 1009 1010 // Moves all stack values into their PHI position 1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1012 BlockBegin* bb = block(); 1013 if (bb->number_of_sux() == 1) { 1014 BlockBegin* sux = bb->sux_at(0); 1015 assert(sux->number_of_preds() > 0, "invalid CFG"); 1016 1017 // a block with only one predecessor never has phi functions 1018 if (sux->number_of_preds() > 1) { 1019 PhiResolver resolver(this); 1020 1021 ValueStack* sux_state = sux->state(); 1022 Value sux_value; 1023 int index; 1024 1025 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1026 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1027 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1028 1029 for_each_stack_value(sux_state, index, sux_value) { 1030 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1031 } 1032 1033 for_each_local_value(sux_state, index, sux_value) { 1034 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1035 } 1036 1037 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1038 } 1039 } 1040 } 1041 1042 1043 LIR_Opr LIRGenerator::new_register(BasicType type) { 1044 int vreg_num = _virtual_register_number; 1045 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1046 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1047 if (vreg_num + 20 >= LIR_OprDesc::vreg_max) { 1048 bailout("out of virtual registers in LIR generator"); 1049 if (vreg_num + 2 >= LIR_OprDesc::vreg_max) { 1050 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1051 _virtual_register_number = LIR_OprDesc::vreg_base; 1052 vreg_num = LIR_OprDesc::vreg_base; 1053 } 1054 } 1055 _virtual_register_number += 1; 1056 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1057 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1058 return vreg; 1059 } 1060 1061 1062 // Try to lock using register in hint 1063 LIR_Opr LIRGenerator::rlock(Value instr) { 1064 return new_register(instr->type()); 1065 } 1066 1067 1068 // does an rlock and sets result 1069 LIR_Opr LIRGenerator::rlock_result(Value x) { 1070 LIR_Opr reg = rlock(x); 1071 set_result(x, reg); 1072 return reg; 1073 } 1074 1075 1076 // does an rlock and sets result 1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1078 LIR_Opr reg; 1079 switch (type) { 1080 case T_BYTE: 1081 case T_BOOLEAN: 1082 reg = rlock_byte(type); 1083 break; 1084 default: 1085 reg = rlock(x); 1086 break; 1087 } 1088 1089 set_result(x, reg); 1090 return reg; 1091 } 1092 1093 1094 //--------------------------------------------------------------------- 1095 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1096 ObjectType* oc = value->type()->as_ObjectType(); 1097 if (oc) { 1098 return oc->constant_value(); 1099 } 1100 return NULL; 1101 } 1102 1103 1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1105 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1106 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1107 1108 // no moves are created for phi functions at the begin of exception 1109 // handlers, so assign operands manually here 1110 for_each_phi_fun(block(), phi, 1111 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1112 1113 LIR_Opr thread_reg = getThreadPointer(); 1114 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1115 exceptionOopOpr()); 1116 __ move_wide(LIR_OprFact::oopConst(NULL), 1117 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1118 __ move_wide(LIR_OprFact::oopConst(NULL), 1119 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1120 1121 LIR_Opr result = new_register(T_OBJECT); 1122 __ move(exceptionOopOpr(), result); 1123 set_result(x, result); 1124 } 1125 1126 1127 //---------------------------------------------------------------------- 1128 //---------------------------------------------------------------------- 1129 //---------------------------------------------------------------------- 1130 //---------------------------------------------------------------------- 1131 // visitor functions 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 1137 void LIRGenerator::do_Phi(Phi* x) { 1138 // phi functions are never visited directly 1139 ShouldNotReachHere(); 1140 } 1141 1142 1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1144 void LIRGenerator::do_Constant(Constant* x) { 1145 if (x->state_before() != NULL) { 1146 // Any constant with a ValueStack requires patching so emit the patch here 1147 LIR_Opr reg = rlock_result(x); 1148 CodeEmitInfo* info = state_for(x, x->state_before()); 1149 __ oop2reg_patch(NULL, reg, info); 1150 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1151 if (!x->is_pinned()) { 1152 // unpinned constants are handled specially so that they can be 1153 // put into registers when they are used multiple times within a 1154 // block. After the block completes their operand will be 1155 // cleared so that other blocks can't refer to that register. 1156 set_result(x, load_constant(x)); 1157 } else { 1158 LIR_Opr res = x->operand(); 1159 if (!res->is_valid()) { 1160 res = LIR_OprFact::value_type(x->type()); 1161 } 1162 if (res->is_constant()) { 1163 LIR_Opr reg = rlock_result(x); 1164 __ move(res, reg); 1165 } else { 1166 set_result(x, res); 1167 } 1168 } 1169 } else { 1170 set_result(x, LIR_OprFact::value_type(x->type())); 1171 } 1172 } 1173 1174 1175 void LIRGenerator::do_Local(Local* x) { 1176 // operand_for_instruction has the side effect of setting the result 1177 // so there's no need to do it here. 1178 operand_for_instruction(x); 1179 } 1180 1181 1182 void LIRGenerator::do_Return(Return* x) { 1183 if (compilation()->env()->dtrace_method_probes()) { 1184 BasicTypeList signature; 1185 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1186 signature.append(T_METADATA); // Method* 1187 LIR_OprList* args = new LIR_OprList(); 1188 args->append(getThreadPointer()); 1189 LIR_Opr meth = new_register(T_METADATA); 1190 __ metadata2reg(method()->constant_encoding(), meth); 1191 args->append(meth); 1192 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1193 } 1194 1195 if (x->type()->is_void()) { 1196 __ return_op(LIR_OprFact::illegalOpr); 1197 } else { 1198 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1199 LIRItem result(x->result(), this); 1200 1201 result.load_item_force(reg); 1202 __ return_op(result.result()); 1203 } 1204 set_no_result(x); 1205 } 1206 1207 // Examble: ref.get() 1208 // Combination of LoadField and g1 pre-write barrier 1209 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1210 1211 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1212 1213 assert(x->number_of_arguments() == 1, "wrong type"); 1214 1215 LIRItem reference(x->argument_at(0), this); 1216 reference.load_item(); 1217 1218 // need to perform the null check on the reference objecy 1219 CodeEmitInfo* info = NULL; 1220 if (x->needs_null_check()) { 1221 info = state_for(x); 1222 } 1223 1224 LIR_Opr result = rlock_result(x, T_OBJECT); 1225 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1226 reference, LIR_OprFact::intConst(referent_offset), result, 1227 nullptr, info); 1228 } 1229 1230 // Example: clazz.isInstance(object) 1231 void LIRGenerator::do_isInstance(Intrinsic* x) { 1232 assert(x->number_of_arguments() == 2, "wrong type"); 1233 1234 // TODO could try to substitute this node with an equivalent InstanceOf 1235 // if clazz is known to be a constant Class. This will pick up newly found 1236 // constants after HIR construction. I'll leave this to a future change. 1237 1238 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1239 // could follow the aastore example in a future change. 1240 1241 LIRItem clazz(x->argument_at(0), this); 1242 LIRItem object(x->argument_at(1), this); 1243 clazz.load_item(); 1244 object.load_item(); 1245 LIR_Opr result = rlock_result(x); 1246 1247 // need to perform null check on clazz 1248 if (x->needs_null_check()) { 1249 CodeEmitInfo* info = state_for(x); 1250 __ null_check(clazz.result(), info); 1251 } 1252 1253 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1254 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1255 x->type(), 1256 NULL); // NULL CodeEmitInfo results in a leaf call 1257 __ move(call_result, result); 1258 } 1259 1260 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1261 CodeStub* slow_path = UseCompactObjectHeaders ? new LoadKlassStub(klass) : NULL; 1262 __ load_klass(obj, klass, null_check_info, slow_path); 1263 } 1264 1265 // Example: object.getClass () 1266 void LIRGenerator::do_getClass(Intrinsic* x) { 1267 assert(x->number_of_arguments() == 1, "wrong type"); 1268 1269 LIRItem rcvr(x->argument_at(0), this); 1270 rcvr.load_item(); 1271 LIR_Opr temp = new_register(T_ADDRESS); 1272 LIR_Opr result = rlock_result(x); 1273 1274 // need to perform the null check on the rcvr 1275 CodeEmitInfo* info = NULL; 1276 if (x->needs_null_check()) { 1277 info = state_for(x); 1278 } 1279 1280 LIR_Opr klass = new_register(T_METADATA); 1281 load_klass(rcvr.result(), klass, info); 1282 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1283 // mirror = ((OopHandle)mirror)->resolve(); 1284 access_load(IN_NATIVE, T_OBJECT, 1285 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1286 } 1287 1288 // java.lang.Class::isPrimitive() 1289 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1290 assert(x->number_of_arguments() == 1, "wrong type"); 1291 1292 LIRItem rcvr(x->argument_at(0), this); 1293 rcvr.load_item(); 1294 LIR_Opr temp = new_register(T_METADATA); 1295 LIR_Opr result = rlock_result(x); 1296 1297 CodeEmitInfo* info = NULL; 1298 if (x->needs_null_check()) { 1299 info = state_for(x); 1300 } 1301 1302 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1303 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1304 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1305 } 1306 1307 // Example: Foo.class.getModifiers() 1308 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1309 assert(x->number_of_arguments() == 1, "wrong type"); 1310 1311 LIRItem receiver(x->argument_at(0), this); 1312 receiver.load_item(); 1313 LIR_Opr result = rlock_result(x); 1314 1315 CodeEmitInfo* info = NULL; 1316 if (x->needs_null_check()) { 1317 info = state_for(x); 1318 } 1319 1320 // While reading off the universal constant mirror is less efficient than doing 1321 // another branch and returning the constant answer, this branchless code runs into 1322 // much less risk of confusion for C1 register allocator. The choice of the universe 1323 // object here is correct as long as it returns the same modifiers we would expect 1324 // from the primitive class itself. See spec for Class.getModifiers that provides 1325 // the typed array klasses with similar modifiers as their component types. 1326 1327 Klass* univ_klass_obj = Universe::byteArrayKlassObj(); 1328 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1329 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj); 1330 1331 LIR_Opr recv_klass = new_register(T_METADATA); 1332 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1333 1334 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1335 LIR_Opr klass = new_register(T_METADATA); 1336 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0)); 1337 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1338 1339 // Get the answer. 1340 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1341 } 1342 1343 // Example: Thread.currentThread() 1344 void LIRGenerator::do_currentThread(Intrinsic* x) { 1345 assert(x->number_of_arguments() == 0, "wrong type"); 1346 LIR_Opr temp = new_register(T_ADDRESS); 1347 LIR_Opr reg = rlock_result(x); 1348 __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp); 1349 // threadObj = ((OopHandle)_threadObj)->resolve(); 1350 access_load(IN_NATIVE, T_OBJECT, 1351 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1352 } 1353 1354 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1355 assert(x->number_of_arguments() == 3, "wrong type"); 1356 LIR_Opr result_reg = rlock_result(x); 1357 1358 LIRItem value(x->argument_at(2), this); 1359 value.load_item(); 1360 1361 LIR_Opr klass = new_register(T_METADATA); 1362 load_klass(value.result(), klass, NULL); 1363 LIR_Opr layout = new_register(T_INT); 1364 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1365 1366 LabelObj* L_done = new LabelObj(); 1367 LabelObj* L_array = new LabelObj(); 1368 1369 __ cmp(lir_cond_lessEqual, layout, 0); 1370 __ branch(lir_cond_lessEqual, L_array->label()); 1371 1372 // Instance case: the layout helper gives us instance size almost directly, 1373 // but we need to mask out the _lh_instance_slow_path_bit. 1374 __ convert(Bytecodes::_i2l, layout, result_reg); 1375 1376 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1377 jlong mask = ~(jlong) right_n_bits(LogBytesPerLong); 1378 __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg); 1379 1380 __ branch(lir_cond_always, L_done->label()); 1381 1382 // Array case: size is round(header + element_size*arraylength). 1383 // Since arraylength is different for every array instance, we have to 1384 // compute the whole thing at runtime. 1385 1386 __ branch_destination(L_array->label()); 1387 1388 int round_mask = MinObjAlignmentInBytes - 1; 1389 1390 // Figure out header sizes first. 1391 LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift); 1392 LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask); 1393 1394 LIR_Opr header_size = new_register(T_INT); 1395 __ move(layout, header_size); 1396 LIR_Opr tmp = new_register(T_INT); 1397 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1398 __ logical_and(header_size, hsm, header_size); 1399 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1400 1401 // Figure out the array length in bytes 1402 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1403 LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask); 1404 __ logical_and(layout, l2esm, layout); 1405 1406 LIR_Opr length_int = new_register(T_INT); 1407 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1408 1409 #ifdef _LP64 1410 LIR_Opr length = new_register(T_LONG); 1411 __ convert(Bytecodes::_i2l, length_int, length); 1412 #endif 1413 1414 // Shift-left awkwardness. Normally it is just: 1415 // __ shift_left(length, layout, length); 1416 // But C1 cannot perform shift_left with non-constant count, so we end up 1417 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1418 // longs, so we have to act on ints. 1419 LabelObj* L_shift_loop = new LabelObj(); 1420 LabelObj* L_shift_exit = new LabelObj(); 1421 1422 __ branch_destination(L_shift_loop->label()); 1423 __ cmp(lir_cond_equal, layout, 0); 1424 __ branch(lir_cond_equal, L_shift_exit->label()); 1425 1426 #ifdef _LP64 1427 __ shift_left(length, 1, length); 1428 #else 1429 __ shift_left(length_int, 1, length_int); 1430 #endif 1431 1432 __ sub(layout, LIR_OprFact::intConst(1), layout); 1433 1434 __ branch(lir_cond_always, L_shift_loop->label()); 1435 __ branch_destination(L_shift_exit->label()); 1436 1437 // Mix all up, round, and push to the result. 1438 #ifdef _LP64 1439 LIR_Opr header_size_long = new_register(T_LONG); 1440 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1441 __ add(length, header_size_long, length); 1442 if (round_mask != 0) { 1443 __ logical_and(length, LIR_OprFact::longConst(~round_mask), length); 1444 } 1445 __ move(length, result_reg); 1446 #else 1447 __ add(length_int, header_size, length_int); 1448 if (round_mask != 0) { 1449 __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int); 1450 } 1451 __ convert(Bytecodes::_i2l, length_int, result_reg); 1452 #endif 1453 1454 __ branch_destination(L_done->label()); 1455 } 1456 1457 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1458 assert(x->number_of_arguments() == 1, "wrong type"); 1459 LIRItem receiver(x->argument_at(0), this); 1460 1461 receiver.load_item(); 1462 BasicTypeList signature; 1463 signature.append(T_OBJECT); // receiver 1464 LIR_OprList* args = new LIR_OprList(); 1465 args->append(receiver.result()); 1466 CodeEmitInfo* info = state_for(x, x->state()); 1467 call_runtime(&signature, args, 1468 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1469 voidType, info); 1470 1471 set_no_result(x); 1472 } 1473 1474 1475 //------------------------local access-------------------------------------- 1476 1477 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1478 if (x->operand()->is_illegal()) { 1479 Constant* c = x->as_Constant(); 1480 if (c != NULL) { 1481 x->set_operand(LIR_OprFact::value_type(c->type())); 1482 } else { 1483 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1484 // allocate a virtual register for this local or phi 1485 x->set_operand(rlock(x)); 1486 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1487 } 1488 } 1489 return x->operand(); 1490 } 1491 1492 1493 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1494 if (opr->is_virtual()) { 1495 return instruction_for_vreg(opr->vreg_number()); 1496 } 1497 return NULL; 1498 } 1499 1500 1501 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1502 if (reg_num < _instruction_for_operand.length()) { 1503 return _instruction_for_operand.at(reg_num); 1504 } 1505 return NULL; 1506 } 1507 1508 1509 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1510 if (_vreg_flags.size_in_bits() == 0) { 1511 BitMap2D temp(100, num_vreg_flags); 1512 _vreg_flags = temp; 1513 } 1514 _vreg_flags.at_put_grow(vreg_num, f, true); 1515 } 1516 1517 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1518 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1519 return false; 1520 } 1521 return _vreg_flags.at(vreg_num, f); 1522 } 1523 1524 1525 // Block local constant handling. This code is useful for keeping 1526 // unpinned constants and constants which aren't exposed in the IR in 1527 // registers. Unpinned Constant instructions have their operands 1528 // cleared when the block is finished so that other blocks can't end 1529 // up referring to their registers. 1530 1531 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1532 assert(!x->is_pinned(), "only for unpinned constants"); 1533 _unpinned_constants.append(x); 1534 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1535 } 1536 1537 1538 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1539 BasicType t = c->type(); 1540 for (int i = 0; i < _constants.length(); i++) { 1541 LIR_Const* other = _constants.at(i); 1542 if (t == other->type()) { 1543 switch (t) { 1544 case T_INT: 1545 case T_FLOAT: 1546 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1547 break; 1548 case T_LONG: 1549 case T_DOUBLE: 1550 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1551 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1552 break; 1553 case T_OBJECT: 1554 if (c->as_jobject() != other->as_jobject()) continue; 1555 break; 1556 default: 1557 break; 1558 } 1559 return _reg_for_constants.at(i); 1560 } 1561 } 1562 1563 LIR_Opr result = new_register(t); 1564 __ move((LIR_Opr)c, result); 1565 _constants.append(c); 1566 _reg_for_constants.append(result); 1567 return result; 1568 } 1569 1570 //------------------------field access-------------------------------------- 1571 1572 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1573 assert(x->number_of_arguments() == 4, "wrong type"); 1574 LIRItem obj (x->argument_at(0), this); // object 1575 LIRItem offset(x->argument_at(1), this); // offset of field 1576 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1577 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1578 assert(obj.type()->tag() == objectTag, "invalid type"); 1579 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1580 assert(val.type()->tag() == type->tag(), "invalid type"); 1581 1582 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1583 obj, offset, cmp, val); 1584 set_result(x, result); 1585 } 1586 1587 // Comment copied form templateTable_i486.cpp 1588 // ---------------------------------------------------------------------------- 1589 // Volatile variables demand their effects be made known to all CPU's in 1590 // order. Store buffers on most chips allow reads & writes to reorder; the 1591 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1592 // memory barrier (i.e., it's not sufficient that the interpreter does not 1593 // reorder volatile references, the hardware also must not reorder them). 1594 // 1595 // According to the new Java Memory Model (JMM): 1596 // (1) All volatiles are serialized wrt to each other. 1597 // ALSO reads & writes act as aquire & release, so: 1598 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1599 // the read float up to before the read. It's OK for non-volatile memory refs 1600 // that happen before the volatile read to float down below it. 1601 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1602 // that happen BEFORE the write float down to after the write. It's OK for 1603 // non-volatile memory refs that happen after the volatile write to float up 1604 // before it. 1605 // 1606 // We only put in barriers around volatile refs (they are expensive), not 1607 // _between_ memory refs (that would require us to track the flavor of the 1608 // previous memory refs). Requirements (2) and (3) require some barriers 1609 // before volatile stores and after volatile loads. These nearly cover 1610 // requirement (1) but miss the volatile-store-volatile-load case. This final 1611 // case is placed after volatile-stores although it could just as well go 1612 // before volatile-loads. 1613 1614 1615 void LIRGenerator::do_StoreField(StoreField* x) { 1616 bool needs_patching = x->needs_patching(); 1617 bool is_volatile = x->field()->is_volatile(); 1618 BasicType field_type = x->field_type(); 1619 1620 CodeEmitInfo* info = NULL; 1621 if (needs_patching) { 1622 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1623 info = state_for(x, x->state_before()); 1624 } else if (x->needs_null_check()) { 1625 NullCheck* nc = x->explicit_null_check(); 1626 if (nc == NULL) { 1627 info = state_for(x); 1628 } else { 1629 info = state_for(nc); 1630 } 1631 } 1632 1633 LIRItem object(x->obj(), this); 1634 LIRItem value(x->value(), this); 1635 1636 object.load_item(); 1637 1638 if (is_volatile || needs_patching) { 1639 // load item if field is volatile (fewer special cases for volatiles) 1640 // load item if field not initialized 1641 // load item if field not constant 1642 // because of code patching we cannot inline constants 1643 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1644 value.load_byte_item(); 1645 } else { 1646 value.load_item(); 1647 } 1648 } else { 1649 value.load_for_store(field_type); 1650 } 1651 1652 set_no_result(x); 1653 1654 #ifndef PRODUCT 1655 if (PrintNotLoaded && needs_patching) { 1656 tty->print_cr(" ###class not loaded at store_%s bci %d", 1657 x->is_static() ? "static" : "field", x->printable_bci()); 1658 } 1659 #endif 1660 1661 if (x->needs_null_check() && 1662 (needs_patching || 1663 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1664 // Emit an explicit null check because the offset is too large. 1665 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1666 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1667 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1668 } 1669 1670 DecoratorSet decorators = IN_HEAP; 1671 if (is_volatile) { 1672 decorators |= MO_SEQ_CST; 1673 } 1674 if (needs_patching) { 1675 decorators |= C1_NEEDS_PATCHING; 1676 } 1677 1678 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1679 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); 1680 } 1681 1682 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1683 assert(x->is_pinned(),""); 1684 bool needs_range_check = x->compute_needs_range_check(); 1685 bool use_length = x->length() != NULL; 1686 bool obj_store = is_reference_type(x->elt_type()); 1687 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 1688 !get_jobject_constant(x->value())->is_null_object() || 1689 x->should_profile()); 1690 1691 LIRItem array(x->array(), this); 1692 LIRItem index(x->index(), this); 1693 LIRItem value(x->value(), this); 1694 LIRItem length(this); 1695 1696 array.load_item(); 1697 index.load_nonconstant(); 1698 1699 if (use_length && needs_range_check) { 1700 length.set_instruction(x->length()); 1701 length.load_item(); 1702 1703 } 1704 if (needs_store_check || x->check_boolean()) { 1705 value.load_item(); 1706 } else { 1707 value.load_for_store(x->elt_type()); 1708 } 1709 1710 set_no_result(x); 1711 1712 // the CodeEmitInfo must be duplicated for each different 1713 // LIR-instruction because spilling can occur anywhere between two 1714 // instructions and so the debug information must be different 1715 CodeEmitInfo* range_check_info = state_for(x); 1716 CodeEmitInfo* null_check_info = NULL; 1717 if (x->needs_null_check()) { 1718 null_check_info = new CodeEmitInfo(range_check_info); 1719 } 1720 1721 if (GenerateRangeChecks && needs_range_check) { 1722 if (use_length) { 1723 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1724 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1725 } else { 1726 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1727 // range_check also does the null check 1728 null_check_info = NULL; 1729 } 1730 } 1731 1732 if (GenerateArrayStoreCheck && needs_store_check) { 1733 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1734 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1735 } 1736 1737 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1738 if (x->check_boolean()) { 1739 decorators |= C1_MASK_BOOLEAN; 1740 } 1741 1742 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1743 NULL, null_check_info); 1744 } 1745 1746 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1747 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1748 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1749 decorators |= ACCESS_READ; 1750 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1751 if (access.is_raw()) { 1752 _barrier_set->BarrierSetC1::load_at(access, result); 1753 } else { 1754 _barrier_set->load_at(access, result); 1755 } 1756 } 1757 1758 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1759 LIR_Opr addr, LIR_Opr result) { 1760 decorators |= ACCESS_READ; 1761 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1762 access.set_resolved_addr(addr); 1763 if (access.is_raw()) { 1764 _barrier_set->BarrierSetC1::load(access, result); 1765 } else { 1766 _barrier_set->load(access, result); 1767 } 1768 } 1769 1770 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1771 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1772 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1773 decorators |= ACCESS_WRITE; 1774 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1775 if (access.is_raw()) { 1776 _barrier_set->BarrierSetC1::store_at(access, value); 1777 } else { 1778 _barrier_set->store_at(access, value); 1779 } 1780 } 1781 1782 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1783 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1784 decorators |= ACCESS_READ; 1785 decorators |= ACCESS_WRITE; 1786 // Atomic operations are SEQ_CST by default 1787 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1788 LIRAccess access(this, decorators, base, offset, type); 1789 if (access.is_raw()) { 1790 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1791 } else { 1792 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1793 } 1794 } 1795 1796 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1797 LIRItem& base, LIRItem& offset, LIRItem& value) { 1798 decorators |= ACCESS_READ; 1799 decorators |= ACCESS_WRITE; 1800 // Atomic operations are SEQ_CST by default 1801 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1802 LIRAccess access(this, decorators, base, offset, type); 1803 if (access.is_raw()) { 1804 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1805 } else { 1806 return _barrier_set->atomic_xchg_at(access, value); 1807 } 1808 } 1809 1810 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1811 LIRItem& base, LIRItem& offset, LIRItem& value) { 1812 decorators |= ACCESS_READ; 1813 decorators |= ACCESS_WRITE; 1814 // Atomic operations are SEQ_CST by default 1815 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1816 LIRAccess access(this, decorators, base, offset, type); 1817 if (access.is_raw()) { 1818 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1819 } else { 1820 return _barrier_set->atomic_add_at(access, value); 1821 } 1822 } 1823 1824 void LIRGenerator::do_LoadField(LoadField* x) { 1825 bool needs_patching = x->needs_patching(); 1826 bool is_volatile = x->field()->is_volatile(); 1827 BasicType field_type = x->field_type(); 1828 1829 CodeEmitInfo* info = NULL; 1830 if (needs_patching) { 1831 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1832 info = state_for(x, x->state_before()); 1833 } else if (x->needs_null_check()) { 1834 NullCheck* nc = x->explicit_null_check(); 1835 if (nc == NULL) { 1836 info = state_for(x); 1837 } else { 1838 info = state_for(nc); 1839 } 1840 } 1841 1842 LIRItem object(x->obj(), this); 1843 1844 object.load_item(); 1845 1846 #ifndef PRODUCT 1847 if (PrintNotLoaded && needs_patching) { 1848 tty->print_cr(" ###class not loaded at load_%s bci %d", 1849 x->is_static() ? "static" : "field", x->printable_bci()); 1850 } 1851 #endif 1852 1853 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1854 if (x->needs_null_check() && 1855 (needs_patching || 1856 MacroAssembler::needs_explicit_null_check(x->offset()) || 1857 stress_deopt)) { 1858 LIR_Opr obj = object.result(); 1859 if (stress_deopt) { 1860 obj = new_register(T_OBJECT); 1861 __ move(LIR_OprFact::oopConst(NULL), obj); 1862 } 1863 // Emit an explicit null check because the offset is too large. 1864 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1865 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1866 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1867 } 1868 1869 DecoratorSet decorators = IN_HEAP; 1870 if (is_volatile) { 1871 decorators |= MO_SEQ_CST; 1872 } 1873 if (needs_patching) { 1874 decorators |= C1_NEEDS_PATCHING; 1875 } 1876 1877 LIR_Opr result = rlock_result(x, field_type); 1878 access_load_at(decorators, field_type, 1879 object, LIR_OprFact::intConst(x->offset()), result, 1880 info ? new CodeEmitInfo(info) : NULL, info); 1881 } 1882 1883 1884 //------------------------java.nio.Buffer.checkIndex------------------------ 1885 1886 // int java.nio.Buffer.checkIndex(int) 1887 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { 1888 // NOTE: by the time we are in checkIndex() we are guaranteed that 1889 // the buffer is non-null (because checkIndex is package-private and 1890 // only called from within other methods in the buffer). 1891 assert(x->number_of_arguments() == 2, "wrong type"); 1892 LIRItem buf (x->argument_at(0), this); 1893 LIRItem index(x->argument_at(1), this); 1894 buf.load_item(); 1895 index.load_item(); 1896 1897 LIR_Opr result = rlock_result(x); 1898 if (GenerateRangeChecks) { 1899 CodeEmitInfo* info = state_for(x); 1900 CodeStub* stub = new RangeCheckStub(info, index.result()); 1901 if (index.result()->is_constant()) { 1902 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); 1903 __ branch(lir_cond_belowEqual, stub); 1904 } else { 1905 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(), 1906 java_nio_Buffer::limit_offset(), T_INT, info); 1907 __ branch(lir_cond_aboveEqual, stub); 1908 } 1909 __ move(index.result(), result); 1910 } else { 1911 // Just load the index into the result register 1912 __ move(index.result(), result); 1913 } 1914 } 1915 1916 1917 //------------------------array access-------------------------------------- 1918 1919 1920 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1921 LIRItem array(x->array(), this); 1922 array.load_item(); 1923 LIR_Opr reg = rlock_result(x); 1924 1925 CodeEmitInfo* info = NULL; 1926 if (x->needs_null_check()) { 1927 NullCheck* nc = x->explicit_null_check(); 1928 if (nc == NULL) { 1929 info = state_for(x); 1930 } else { 1931 info = state_for(nc); 1932 } 1933 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1934 LIR_Opr obj = new_register(T_OBJECT); 1935 __ move(LIR_OprFact::oopConst(NULL), obj); 1936 __ null_check(obj, new CodeEmitInfo(info)); 1937 } 1938 } 1939 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1940 } 1941 1942 1943 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1944 bool use_length = x->length() != NULL; 1945 LIRItem array(x->array(), this); 1946 LIRItem index(x->index(), this); 1947 LIRItem length(this); 1948 bool needs_range_check = x->compute_needs_range_check(); 1949 1950 if (use_length && needs_range_check) { 1951 length.set_instruction(x->length()); 1952 length.load_item(); 1953 } 1954 1955 array.load_item(); 1956 if (index.is_constant() && can_inline_as_constant(x->index())) { 1957 // let it be a constant 1958 index.dont_load_item(); 1959 } else { 1960 index.load_item(); 1961 } 1962 1963 CodeEmitInfo* range_check_info = state_for(x); 1964 CodeEmitInfo* null_check_info = NULL; 1965 if (x->needs_null_check()) { 1966 NullCheck* nc = x->explicit_null_check(); 1967 if (nc != NULL) { 1968 null_check_info = state_for(nc); 1969 } else { 1970 null_check_info = range_check_info; 1971 } 1972 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1973 LIR_Opr obj = new_register(T_OBJECT); 1974 __ move(LIR_OprFact::oopConst(NULL), obj); 1975 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1976 } 1977 } 1978 1979 if (GenerateRangeChecks && needs_range_check) { 1980 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1981 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1982 } else if (use_length) { 1983 // TODO: use a (modified) version of array_range_check that does not require a 1984 // constant length to be loaded to a register 1985 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1986 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1987 } else { 1988 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1989 // The range check performs the null check, so clear it out for the load 1990 null_check_info = NULL; 1991 } 1992 } 1993 1994 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1995 1996 LIR_Opr result = rlock_result(x, x->elt_type()); 1997 access_load_at(decorators, x->elt_type(), 1998 array, index.result(), result, 1999 NULL, null_check_info); 2000 } 2001 2002 2003 void LIRGenerator::do_NullCheck(NullCheck* x) { 2004 if (x->can_trap()) { 2005 LIRItem value(x->obj(), this); 2006 value.load_item(); 2007 CodeEmitInfo* info = state_for(x); 2008 __ null_check(value.result(), info); 2009 } 2010 } 2011 2012 2013 void LIRGenerator::do_TypeCast(TypeCast* x) { 2014 LIRItem value(x->obj(), this); 2015 value.load_item(); 2016 // the result is the same as from the node we are casting 2017 set_result(x, value.result()); 2018 } 2019 2020 2021 void LIRGenerator::do_Throw(Throw* x) { 2022 LIRItem exception(x->exception(), this); 2023 exception.load_item(); 2024 set_no_result(x); 2025 LIR_Opr exception_opr = exception.result(); 2026 CodeEmitInfo* info = state_for(x, x->state()); 2027 2028 #ifndef PRODUCT 2029 if (PrintC1Statistics) { 2030 increment_counter(Runtime1::throw_count_address(), T_INT); 2031 } 2032 #endif 2033 2034 // check if the instruction has an xhandler in any of the nested scopes 2035 bool unwind = false; 2036 if (info->exception_handlers()->length() == 0) { 2037 // this throw is not inside an xhandler 2038 unwind = true; 2039 } else { 2040 // get some idea of the throw type 2041 bool type_is_exact = true; 2042 ciType* throw_type = x->exception()->exact_type(); 2043 if (throw_type == NULL) { 2044 type_is_exact = false; 2045 throw_type = x->exception()->declared_type(); 2046 } 2047 if (throw_type != NULL && throw_type->is_instance_klass()) { 2048 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2049 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2050 } 2051 } 2052 2053 // do null check before moving exception oop into fixed register 2054 // to avoid a fixed interval with an oop during the null check. 2055 // Use a copy of the CodeEmitInfo because debug information is 2056 // different for null_check and throw. 2057 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { 2058 // if the exception object wasn't created using new then it might be null. 2059 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2060 } 2061 2062 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2063 // we need to go through the exception lookup path to get JVMTI 2064 // notification done 2065 unwind = false; 2066 } 2067 2068 // move exception oop into fixed register 2069 __ move(exception_opr, exceptionOopOpr()); 2070 2071 if (unwind) { 2072 __ unwind_exception(exceptionOopOpr()); 2073 } else { 2074 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2075 } 2076 } 2077 2078 2079 void LIRGenerator::do_RoundFP(RoundFP* x) { 2080 assert(strict_fp_requires_explicit_rounding, "not required"); 2081 2082 LIRItem input(x->input(), this); 2083 input.load_item(); 2084 LIR_Opr input_opr = input.result(); 2085 assert(input_opr->is_register(), "why round if value is not in a register?"); 2086 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2087 if (input_opr->is_single_fpu()) { 2088 set_result(x, round_item(input_opr)); // This code path not currently taken 2089 } else { 2090 LIR_Opr result = new_register(T_DOUBLE); 2091 set_vreg_flag(result, must_start_in_memory); 2092 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2093 set_result(x, result); 2094 } 2095 } 2096 2097 // Here UnsafeGetRaw may have x->base() and x->index() be int or long 2098 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. 2099 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { 2100 LIRItem base(x->base(), this); 2101 LIRItem idx(this); 2102 2103 base.load_item(); 2104 if (x->has_index()) { 2105 idx.set_instruction(x->index()); 2106 idx.load_nonconstant(); 2107 } 2108 2109 LIR_Opr reg = rlock_result(x, x->basic_type()); 2110 2111 int log2_scale = 0; 2112 if (x->has_index()) { 2113 log2_scale = x->log2_scale(); 2114 } 2115 2116 assert(!x->has_index() || idx.value() == x->index(), "should match"); 2117 2118 LIR_Opr base_op = base.result(); 2119 LIR_Opr index_op = idx.result(); 2120 #ifndef _LP64 2121 if (base_op->type() == T_LONG) { 2122 base_op = new_register(T_INT); 2123 __ convert(Bytecodes::_l2i, base.result(), base_op); 2124 } 2125 if (x->has_index()) { 2126 if (index_op->type() == T_LONG) { 2127 LIR_Opr long_index_op = index_op; 2128 if (index_op->is_constant()) { 2129 long_index_op = new_register(T_LONG); 2130 __ move(index_op, long_index_op); 2131 } 2132 index_op = new_register(T_INT); 2133 __ convert(Bytecodes::_l2i, long_index_op, index_op); 2134 } else { 2135 assert(x->index()->type()->tag() == intTag, "must be"); 2136 } 2137 } 2138 // At this point base and index should be all ints. 2139 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2140 assert(!x->has_index() || index_op->type() == T_INT, "index should be an int"); 2141 #else 2142 if (x->has_index()) { 2143 if (index_op->type() == T_INT) { 2144 if (!index_op->is_constant()) { 2145 index_op = new_register(T_LONG); 2146 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2147 } 2148 } else { 2149 assert(index_op->type() == T_LONG, "must be"); 2150 if (index_op->is_constant()) { 2151 index_op = new_register(T_LONG); 2152 __ move(idx.result(), index_op); 2153 } 2154 } 2155 } 2156 // At this point base is a long non-constant 2157 // Index is a long register or a int constant. 2158 // We allow the constant to stay an int because that would allow us a more compact encoding by 2159 // embedding an immediate offset in the address expression. If we have a long constant, we have to 2160 // move it into a register first. 2161 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant"); 2162 assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || 2163 (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type"); 2164 #endif 2165 2166 BasicType dst_type = x->basic_type(); 2167 2168 LIR_Address* addr; 2169 if (index_op->is_constant()) { 2170 assert(log2_scale == 0, "must not have a scale"); 2171 assert(index_op->type() == T_INT, "only int constants supported"); 2172 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); 2173 } else { 2174 #ifdef X86 2175 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); 2176 #elif defined(GENERATE_ADDRESS_IS_PREFERRED) 2177 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); 2178 #else 2179 if (index_op->is_illegal() || log2_scale == 0) { 2180 addr = new LIR_Address(base_op, index_op, dst_type); 2181 } else { 2182 LIR_Opr tmp = new_pointer_register(); 2183 __ shift_left(index_op, log2_scale, tmp); 2184 addr = new LIR_Address(base_op, tmp, dst_type); 2185 } 2186 #endif 2187 } 2188 2189 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { 2190 __ unaligned_move(addr, reg); 2191 } else { 2192 if (dst_type == T_OBJECT && x->is_wide()) { 2193 __ move_wide(addr, reg); 2194 } else { 2195 __ move(addr, reg); 2196 } 2197 } 2198 } 2199 2200 2201 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { 2202 int log2_scale = 0; 2203 BasicType type = x->basic_type(); 2204 2205 if (x->has_index()) { 2206 log2_scale = x->log2_scale(); 2207 } 2208 2209 LIRItem base(x->base(), this); 2210 LIRItem value(x->value(), this); 2211 LIRItem idx(this); 2212 2213 base.load_item(); 2214 if (x->has_index()) { 2215 idx.set_instruction(x->index()); 2216 idx.load_item(); 2217 } 2218 2219 if (type == T_BYTE || type == T_BOOLEAN) { 2220 value.load_byte_item(); 2221 } else { 2222 value.load_item(); 2223 } 2224 2225 set_no_result(x); 2226 2227 LIR_Opr base_op = base.result(); 2228 LIR_Opr index_op = idx.result(); 2229 2230 #ifdef GENERATE_ADDRESS_IS_PREFERRED 2231 LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type()); 2232 #else 2233 #ifndef _LP64 2234 if (base_op->type() == T_LONG) { 2235 base_op = new_register(T_INT); 2236 __ convert(Bytecodes::_l2i, base.result(), base_op); 2237 } 2238 if (x->has_index()) { 2239 if (index_op->type() == T_LONG) { 2240 index_op = new_register(T_INT); 2241 __ convert(Bytecodes::_l2i, idx.result(), index_op); 2242 } 2243 } 2244 // At this point base and index should be all ints and not constants 2245 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2246 assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int"); 2247 #else 2248 if (x->has_index()) { 2249 if (index_op->type() == T_INT) { 2250 index_op = new_register(T_LONG); 2251 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2252 } 2253 } 2254 // At this point base and index are long and non-constant 2255 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long"); 2256 assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long"); 2257 #endif 2258 2259 if (log2_scale != 0) { 2260 // temporary fix (platform dependent code without shift on Intel would be better) 2261 // TODO: ARM also allows embedded shift in the address 2262 LIR_Opr tmp = new_pointer_register(); 2263 if (TwoOperandLIRForm) { 2264 __ move(index_op, tmp); 2265 index_op = tmp; 2266 } 2267 __ shift_left(index_op, log2_scale, tmp); 2268 if (!TwoOperandLIRForm) { 2269 index_op = tmp; 2270 } 2271 } 2272 2273 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); 2274 #endif // !GENERATE_ADDRESS_IS_PREFERRED 2275 __ move(value.result(), addr); 2276 } 2277 2278 2279 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { 2280 BasicType type = x->basic_type(); 2281 LIRItem src(x->object(), this); 2282 LIRItem off(x->offset(), this); 2283 2284 off.load_item(); 2285 src.load_item(); 2286 2287 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2288 2289 if (x->is_volatile()) { 2290 decorators |= MO_SEQ_CST; 2291 } 2292 if (type == T_BOOLEAN) { 2293 decorators |= C1_MASK_BOOLEAN; 2294 } 2295 if (is_reference_type(type)) { 2296 decorators |= ON_UNKNOWN_OOP_REF; 2297 } 2298 2299 LIR_Opr result = rlock_result(x, type); 2300 access_load_at(decorators, type, 2301 src, off.result(), result); 2302 } 2303 2304 2305 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { 2306 BasicType type = x->basic_type(); 2307 LIRItem src(x->object(), this); 2308 LIRItem off(x->offset(), this); 2309 LIRItem data(x->value(), this); 2310 2311 src.load_item(); 2312 if (type == T_BOOLEAN || type == T_BYTE) { 2313 data.load_byte_item(); 2314 } else { 2315 data.load_item(); 2316 } 2317 off.load_item(); 2318 2319 set_no_result(x); 2320 2321 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2322 if (is_reference_type(type)) { 2323 decorators |= ON_UNKNOWN_OOP_REF; 2324 } 2325 if (x->is_volatile()) { 2326 decorators |= MO_SEQ_CST; 2327 } 2328 access_store_at(decorators, type, src, off.result(), data.result()); 2329 } 2330 2331 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { 2332 BasicType type = x->basic_type(); 2333 LIRItem src(x->object(), this); 2334 LIRItem off(x->offset(), this); 2335 LIRItem value(x->value(), this); 2336 2337 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2338 2339 if (is_reference_type(type)) { 2340 decorators |= ON_UNKNOWN_OOP_REF; 2341 } 2342 2343 LIR_Opr result; 2344 if (x->is_add()) { 2345 result = access_atomic_add_at(decorators, type, src, off, value); 2346 } else { 2347 result = access_atomic_xchg_at(decorators, type, src, off, value); 2348 } 2349 set_result(x, result); 2350 } 2351 2352 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2353 int lng = x->length(); 2354 2355 for (int i = 0; i < lng; i++) { 2356 C1SwitchRange* one_range = x->at(i); 2357 int low_key = one_range->low_key(); 2358 int high_key = one_range->high_key(); 2359 BlockBegin* dest = one_range->sux(); 2360 if (low_key == high_key) { 2361 __ cmp(lir_cond_equal, value, low_key); 2362 __ branch(lir_cond_equal, dest); 2363 } else if (high_key - low_key == 1) { 2364 __ cmp(lir_cond_equal, value, low_key); 2365 __ branch(lir_cond_equal, dest); 2366 __ cmp(lir_cond_equal, value, high_key); 2367 __ branch(lir_cond_equal, dest); 2368 } else { 2369 LabelObj* L = new LabelObj(); 2370 __ cmp(lir_cond_less, value, low_key); 2371 __ branch(lir_cond_less, L->label()); 2372 __ cmp(lir_cond_lessEqual, value, high_key); 2373 __ branch(lir_cond_lessEqual, dest); 2374 __ branch_destination(L->label()); 2375 } 2376 } 2377 __ jump(default_sux); 2378 } 2379 2380 2381 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2382 SwitchRangeList* res = new SwitchRangeList(); 2383 int len = x->length(); 2384 if (len > 0) { 2385 BlockBegin* sux = x->sux_at(0); 2386 int key = x->lo_key(); 2387 BlockBegin* default_sux = x->default_sux(); 2388 C1SwitchRange* range = new C1SwitchRange(key, sux); 2389 for (int i = 0; i < len; i++, key++) { 2390 BlockBegin* new_sux = x->sux_at(i); 2391 if (sux == new_sux) { 2392 // still in same range 2393 range->set_high_key(key); 2394 } else { 2395 // skip tests which explicitly dispatch to the default 2396 if (sux != default_sux) { 2397 res->append(range); 2398 } 2399 range = new C1SwitchRange(key, new_sux); 2400 } 2401 sux = new_sux; 2402 } 2403 if (res->length() == 0 || res->last() != range) res->append(range); 2404 } 2405 return res; 2406 } 2407 2408 2409 // we expect the keys to be sorted by increasing value 2410 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2411 SwitchRangeList* res = new SwitchRangeList(); 2412 int len = x->length(); 2413 if (len > 0) { 2414 BlockBegin* default_sux = x->default_sux(); 2415 int key = x->key_at(0); 2416 BlockBegin* sux = x->sux_at(0); 2417 C1SwitchRange* range = new C1SwitchRange(key, sux); 2418 for (int i = 1; i < len; i++) { 2419 int new_key = x->key_at(i); 2420 BlockBegin* new_sux = x->sux_at(i); 2421 if (key+1 == new_key && sux == new_sux) { 2422 // still in same range 2423 range->set_high_key(new_key); 2424 } else { 2425 // skip tests which explicitly dispatch to the default 2426 if (range->sux() != default_sux) { 2427 res->append(range); 2428 } 2429 range = new C1SwitchRange(new_key, new_sux); 2430 } 2431 key = new_key; 2432 sux = new_sux; 2433 } 2434 if (res->length() == 0 || res->last() != range) res->append(range); 2435 } 2436 return res; 2437 } 2438 2439 2440 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2441 LIRItem tag(x->tag(), this); 2442 tag.load_item(); 2443 set_no_result(x); 2444 2445 if (x->is_safepoint()) { 2446 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2447 } 2448 2449 // move values into phi locations 2450 move_to_phi(x->state()); 2451 2452 int lo_key = x->lo_key(); 2453 int len = x->length(); 2454 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2455 LIR_Opr value = tag.result(); 2456 2457 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2458 ciMethod* method = x->state()->scope()->method(); 2459 ciMethodData* md = method->method_data_or_null(); 2460 assert(md != NULL, "Sanity"); 2461 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2462 assert(data != NULL, "must have profiling data"); 2463 assert(data->is_MultiBranchData(), "bad profile data?"); 2464 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2465 LIR_Opr md_reg = new_register(T_METADATA); 2466 __ metadata2reg(md->constant_encoding(), md_reg); 2467 LIR_Opr data_offset_reg = new_pointer_register(); 2468 LIR_Opr tmp_reg = new_pointer_register(); 2469 2470 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2471 for (int i = 0; i < len; i++) { 2472 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2473 __ cmp(lir_cond_equal, value, i + lo_key); 2474 __ move(data_offset_reg, tmp_reg); 2475 __ cmove(lir_cond_equal, 2476 LIR_OprFact::intptrConst(count_offset), 2477 tmp_reg, 2478 data_offset_reg, T_INT); 2479 } 2480 2481 LIR_Opr data_reg = new_pointer_register(); 2482 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2483 __ move(data_addr, data_reg); 2484 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2485 __ move(data_reg, data_addr); 2486 } 2487 2488 if (UseTableRanges) { 2489 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2490 } else { 2491 for (int i = 0; i < len; i++) { 2492 __ cmp(lir_cond_equal, value, i + lo_key); 2493 __ branch(lir_cond_equal, x->sux_at(i)); 2494 } 2495 __ jump(x->default_sux()); 2496 } 2497 } 2498 2499 2500 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2501 LIRItem tag(x->tag(), this); 2502 tag.load_item(); 2503 set_no_result(x); 2504 2505 if (x->is_safepoint()) { 2506 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2507 } 2508 2509 // move values into phi locations 2510 move_to_phi(x->state()); 2511 2512 LIR_Opr value = tag.result(); 2513 int len = x->length(); 2514 2515 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2516 ciMethod* method = x->state()->scope()->method(); 2517 ciMethodData* md = method->method_data_or_null(); 2518 assert(md != NULL, "Sanity"); 2519 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2520 assert(data != NULL, "must have profiling data"); 2521 assert(data->is_MultiBranchData(), "bad profile data?"); 2522 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2523 LIR_Opr md_reg = new_register(T_METADATA); 2524 __ metadata2reg(md->constant_encoding(), md_reg); 2525 LIR_Opr data_offset_reg = new_pointer_register(); 2526 LIR_Opr tmp_reg = new_pointer_register(); 2527 2528 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2529 for (int i = 0; i < len; i++) { 2530 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2531 __ cmp(lir_cond_equal, value, x->key_at(i)); 2532 __ move(data_offset_reg, tmp_reg); 2533 __ cmove(lir_cond_equal, 2534 LIR_OprFact::intptrConst(count_offset), 2535 tmp_reg, 2536 data_offset_reg, T_INT); 2537 } 2538 2539 LIR_Opr data_reg = new_pointer_register(); 2540 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2541 __ move(data_addr, data_reg); 2542 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2543 __ move(data_reg, data_addr); 2544 } 2545 2546 if (UseTableRanges) { 2547 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2548 } else { 2549 int len = x->length(); 2550 for (int i = 0; i < len; i++) { 2551 __ cmp(lir_cond_equal, value, x->key_at(i)); 2552 __ branch(lir_cond_equal, x->sux_at(i)); 2553 } 2554 __ jump(x->default_sux()); 2555 } 2556 } 2557 2558 2559 void LIRGenerator::do_Goto(Goto* x) { 2560 set_no_result(x); 2561 2562 if (block()->next()->as_OsrEntry()) { 2563 // need to free up storage used for OSR entry point 2564 LIR_Opr osrBuffer = block()->next()->operand(); 2565 BasicTypeList signature; 2566 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2567 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2568 __ move(osrBuffer, cc->args()->at(0)); 2569 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2570 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2571 } 2572 2573 if (x->is_safepoint()) { 2574 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2575 2576 // increment backedge counter if needed 2577 CodeEmitInfo* info = state_for(x, state); 2578 increment_backedge_counter(info, x->profiled_bci()); 2579 CodeEmitInfo* safepoint_info = state_for(x, state); 2580 __ safepoint(safepoint_poll_register(), safepoint_info); 2581 } 2582 2583 // Gotos can be folded Ifs, handle this case. 2584 if (x->should_profile()) { 2585 ciMethod* method = x->profiled_method(); 2586 assert(method != NULL, "method should be set if branch is profiled"); 2587 ciMethodData* md = method->method_data_or_null(); 2588 assert(md != NULL, "Sanity"); 2589 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2590 assert(data != NULL, "must have profiling data"); 2591 int offset; 2592 if (x->direction() == Goto::taken) { 2593 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2594 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2595 } else if (x->direction() == Goto::not_taken) { 2596 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2597 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2598 } else { 2599 assert(data->is_JumpData(), "need JumpData for branches"); 2600 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2601 } 2602 LIR_Opr md_reg = new_register(T_METADATA); 2603 __ metadata2reg(md->constant_encoding(), md_reg); 2604 2605 increment_counter(new LIR_Address(md_reg, offset, 2606 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2607 } 2608 2609 // emit phi-instruction move after safepoint since this simplifies 2610 // describing the state as the safepoint. 2611 move_to_phi(x->state()); 2612 2613 __ jump(x->default_sux()); 2614 } 2615 2616 /** 2617 * Emit profiling code if needed for arguments, parameters, return value types 2618 * 2619 * @param md MDO the code will update at runtime 2620 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2621 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2622 * @param profiled_k current profile 2623 * @param obj IR node for the object to be profiled 2624 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2625 * Set once we find an update to make and use for next ones. 2626 * @param not_null true if we know obj cannot be null 2627 * @param signature_at_call_k signature at call for obj 2628 * @param callee_signature_k signature of callee for obj 2629 * at call and callee signatures differ at method handle call 2630 * @return the only klass we know will ever be seen at this profile point 2631 */ 2632 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2633 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2634 ciKlass* callee_signature_k) { 2635 ciKlass* result = NULL; 2636 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2637 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2638 // known not to be null or null bit already set and already set to 2639 // unknown: nothing we can do to improve profiling 2640 if (!do_null && !do_update) { 2641 return result; 2642 } 2643 2644 ciKlass* exact_klass = NULL; 2645 Compilation* comp = Compilation::current(); 2646 if (do_update) { 2647 // try to find exact type, using CHA if possible, so that loading 2648 // the klass from the object can be avoided 2649 ciType* type = obj->exact_type(); 2650 if (type == NULL) { 2651 type = obj->declared_type(); 2652 type = comp->cha_exact_type(type); 2653 } 2654 assert(type == NULL || type->is_klass(), "type should be class"); 2655 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2656 2657 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2658 } 2659 2660 if (!do_null && !do_update) { 2661 return result; 2662 } 2663 2664 ciKlass* exact_signature_k = NULL; 2665 if (do_update) { 2666 // Is the type from the signature exact (the only one possible)? 2667 exact_signature_k = signature_at_call_k->exact_klass(); 2668 if (exact_signature_k == NULL) { 2669 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2670 } else { 2671 result = exact_signature_k; 2672 // Known statically. No need to emit any code: prevent 2673 // LIR_Assembler::emit_profile_type() from emitting useless code 2674 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2675 } 2676 // exact_klass and exact_signature_k can be both non NULL but 2677 // different if exact_klass is loaded after the ciObject for 2678 // exact_signature_k is created. 2679 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2680 // sometimes the type of the signature is better than the best type 2681 // the compiler has 2682 exact_klass = exact_signature_k; 2683 } 2684 if (callee_signature_k != NULL && 2685 callee_signature_k != signature_at_call_k) { 2686 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2687 if (improved_klass == NULL) { 2688 improved_klass = comp->cha_exact_type(callee_signature_k); 2689 } 2690 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2691 exact_klass = exact_signature_k; 2692 } 2693 } 2694 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2695 } 2696 2697 if (!do_null && !do_update) { 2698 return result; 2699 } 2700 2701 if (mdp == LIR_OprFact::illegalOpr) { 2702 mdp = new_register(T_METADATA); 2703 __ metadata2reg(md->constant_encoding(), mdp); 2704 if (md_base_offset != 0) { 2705 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2706 mdp = new_pointer_register(); 2707 __ leal(LIR_OprFact::address(base_type_address), mdp); 2708 } 2709 } 2710 LIRItem value(obj, this); 2711 value.load_item(); 2712 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2713 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2714 return result; 2715 } 2716 2717 // profile parameters on entry to the root of the compilation 2718 void LIRGenerator::profile_parameters(Base* x) { 2719 if (compilation()->profile_parameters()) { 2720 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2721 ciMethodData* md = scope()->method()->method_data_or_null(); 2722 assert(md != NULL, "Sanity"); 2723 2724 if (md->parameters_type_data() != NULL) { 2725 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2726 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2727 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2728 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2729 LIR_Opr src = args->at(i); 2730 assert(!src->is_illegal(), "check"); 2731 BasicType t = src->type(); 2732 if (is_reference_type(t)) { 2733 intptr_t profiled_k = parameters->type(j); 2734 Local* local = x->state()->local_at(java_index)->as_Local(); 2735 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2736 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2737 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2738 // If the profile is known statically set it once for all and do not emit any code 2739 if (exact != NULL) { 2740 md->set_parameter_type(j, exact); 2741 } 2742 j++; 2743 } 2744 java_index += type2size[t]; 2745 } 2746 } 2747 } 2748 } 2749 2750 void LIRGenerator::do_Base(Base* x) { 2751 __ std_entry(LIR_OprFact::illegalOpr); 2752 // Emit moves from physical registers / stack slots to virtual registers 2753 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2754 IRScope* irScope = compilation()->hir()->top_scope(); 2755 int java_index = 0; 2756 for (int i = 0; i < args->length(); i++) { 2757 LIR_Opr src = args->at(i); 2758 assert(!src->is_illegal(), "check"); 2759 BasicType t = src->type(); 2760 2761 // Types which are smaller than int are passed as int, so 2762 // correct the type which passed. 2763 switch (t) { 2764 case T_BYTE: 2765 case T_BOOLEAN: 2766 case T_SHORT: 2767 case T_CHAR: 2768 t = T_INT; 2769 break; 2770 default: 2771 break; 2772 } 2773 2774 LIR_Opr dest = new_register(t); 2775 __ move(src, dest); 2776 2777 // Assign new location to Local instruction for this local 2778 Local* local = x->state()->local_at(java_index)->as_Local(); 2779 assert(local != NULL, "Locals for incoming arguments must have been created"); 2780 #ifndef __SOFTFP__ 2781 // The java calling convention passes double as long and float as int. 2782 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2783 #endif // __SOFTFP__ 2784 local->set_operand(dest); 2785 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 2786 java_index += type2size[t]; 2787 } 2788 2789 if (compilation()->env()->dtrace_method_probes()) { 2790 BasicTypeList signature; 2791 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2792 signature.append(T_METADATA); // Method* 2793 LIR_OprList* args = new LIR_OprList(); 2794 args->append(getThreadPointer()); 2795 LIR_Opr meth = new_register(T_METADATA); 2796 __ metadata2reg(method()->constant_encoding(), meth); 2797 args->append(meth); 2798 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 2799 } 2800 2801 if (method()->is_synchronized()) { 2802 LIR_Opr obj; 2803 if (method()->is_static()) { 2804 obj = new_register(T_OBJECT); 2805 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2806 } else { 2807 Local* receiver = x->state()->local_at(0)->as_Local(); 2808 assert(receiver != NULL, "must already exist"); 2809 obj = receiver->operand(); 2810 } 2811 assert(obj->is_valid(), "must be valid"); 2812 2813 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2814 LIR_Opr lock = syncLockOpr(); 2815 __ load_stack_address_monitor(0, lock); 2816 2817 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 2818 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2819 2820 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 2821 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 2822 } 2823 } 2824 if (compilation()->age_code()) { 2825 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 2826 decrement_age(info); 2827 } 2828 // increment invocation counters if needed 2829 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2830 profile_parameters(x); 2831 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 2832 increment_invocation_counter(info); 2833 } 2834 2835 // all blocks with a successor must end with an unconditional jump 2836 // to the successor even if they are consecutive 2837 __ jump(x->default_sux()); 2838 } 2839 2840 2841 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2842 // construct our frame and model the production of incoming pointer 2843 // to the OSR buffer. 2844 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2845 LIR_Opr result = rlock_result(x); 2846 __ move(LIR_Assembler::osrBufferPointer(), result); 2847 } 2848 2849 2850 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2851 assert(args->length() == arg_list->length(), 2852 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2853 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2854 LIRItem* param = args->at(i); 2855 LIR_Opr loc = arg_list->at(i); 2856 if (loc->is_register()) { 2857 param->load_item_force(loc); 2858 } else { 2859 LIR_Address* addr = loc->as_address_ptr(); 2860 param->load_for_store(addr->type()); 2861 if (addr->type() == T_OBJECT) { 2862 __ move_wide(param->result(), addr); 2863 } else 2864 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 2865 __ unaligned_move(param->result(), addr); 2866 } else { 2867 __ move(param->result(), addr); 2868 } 2869 } 2870 } 2871 2872 if (x->has_receiver()) { 2873 LIRItem* receiver = args->at(0); 2874 LIR_Opr loc = arg_list->at(0); 2875 if (loc->is_register()) { 2876 receiver->load_item_force(loc); 2877 } else { 2878 assert(loc->is_address(), "just checking"); 2879 receiver->load_for_store(T_OBJECT); 2880 __ move_wide(receiver->result(), loc->as_address_ptr()); 2881 } 2882 } 2883 } 2884 2885 2886 // Visits all arguments, returns appropriate items without loading them 2887 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2888 LIRItemList* argument_items = new LIRItemList(); 2889 if (x->has_receiver()) { 2890 LIRItem* receiver = new LIRItem(x->receiver(), this); 2891 argument_items->append(receiver); 2892 } 2893 for (int i = 0; i < x->number_of_arguments(); i++) { 2894 LIRItem* param = new LIRItem(x->argument_at(i), this); 2895 argument_items->append(param); 2896 } 2897 return argument_items; 2898 } 2899 2900 2901 // The invoke with receiver has following phases: 2902 // a) traverse and load/lock receiver; 2903 // b) traverse all arguments -> item-array (invoke_visit_argument) 2904 // c) push receiver on stack 2905 // d) load each of the items and push on stack 2906 // e) unlock receiver 2907 // f) move receiver into receiver-register %o0 2908 // g) lock result registers and emit call operation 2909 // 2910 // Before issuing a call, we must spill-save all values on stack 2911 // that are in caller-save register. "spill-save" moves those registers 2912 // either in a free callee-save register or spills them if no free 2913 // callee save register is available. 2914 // 2915 // The problem is where to invoke spill-save. 2916 // - if invoked between e) and f), we may lock callee save 2917 // register in "spill-save" that destroys the receiver register 2918 // before f) is executed 2919 // - if we rearrange f) to be earlier (by loading %o0) it 2920 // may destroy a value on the stack that is currently in %o0 2921 // and is waiting to be spilled 2922 // - if we keep the receiver locked while doing spill-save, 2923 // we cannot spill it as it is spill-locked 2924 // 2925 void LIRGenerator::do_Invoke(Invoke* x) { 2926 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2927 2928 LIR_OprList* arg_list = cc->args(); 2929 LIRItemList* args = invoke_visit_arguments(x); 2930 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2931 2932 // setup result register 2933 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2934 if (x->type() != voidType) { 2935 result_register = result_register_for(x->type()); 2936 } 2937 2938 CodeEmitInfo* info = state_for(x, x->state()); 2939 2940 invoke_load_arguments(x, args, arg_list); 2941 2942 if (x->has_receiver()) { 2943 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2944 receiver = args->at(0)->result(); 2945 } 2946 2947 // emit invoke code 2948 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2949 2950 // JSR 292 2951 // Preserve the SP over MethodHandle call sites, if needed. 2952 ciMethod* target = x->target(); 2953 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2954 target->is_method_handle_intrinsic() || 2955 target->is_compiled_lambda_form()); 2956 if (is_method_handle_invoke) { 2957 info->set_is_method_handle_invoke(true); 2958 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2959 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2960 } 2961 } 2962 2963 switch (x->code()) { 2964 case Bytecodes::_invokestatic: 2965 __ call_static(target, result_register, 2966 SharedRuntime::get_resolve_static_call_stub(), 2967 arg_list, info); 2968 break; 2969 case Bytecodes::_invokespecial: 2970 case Bytecodes::_invokevirtual: 2971 case Bytecodes::_invokeinterface: 2972 // for loaded and final (method or class) target we still produce an inline cache, 2973 // in order to be able to call mixed mode 2974 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2975 __ call_opt_virtual(target, receiver, result_register, 2976 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2977 arg_list, info); 2978 } else { 2979 __ call_icvirtual(target, receiver, result_register, 2980 SharedRuntime::get_resolve_virtual_call_stub(), 2981 arg_list, info); 2982 } 2983 break; 2984 case Bytecodes::_invokedynamic: { 2985 __ call_dynamic(target, receiver, result_register, 2986 SharedRuntime::get_resolve_static_call_stub(), 2987 arg_list, info); 2988 break; 2989 } 2990 default: 2991 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2992 break; 2993 } 2994 2995 // JSR 292 2996 // Restore the SP after MethodHandle call sites, if needed. 2997 if (is_method_handle_invoke 2998 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2999 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 3000 } 3001 3002 if (result_register->is_valid()) { 3003 LIR_Opr result = rlock_result(x); 3004 __ move(result_register, result); 3005 } 3006 } 3007 3008 3009 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3010 assert(x->number_of_arguments() == 1, "wrong type"); 3011 LIRItem value (x->argument_at(0), this); 3012 LIR_Opr reg = rlock_result(x); 3013 value.load_item(); 3014 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3015 __ move(tmp, reg); 3016 } 3017 3018 3019 3020 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3021 void LIRGenerator::do_IfOp(IfOp* x) { 3022 #ifdef ASSERT 3023 { 3024 ValueTag xtag = x->x()->type()->tag(); 3025 ValueTag ttag = x->tval()->type()->tag(); 3026 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3027 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3028 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3029 } 3030 #endif 3031 3032 LIRItem left(x->x(), this); 3033 LIRItem right(x->y(), this); 3034 left.load_item(); 3035 if (can_inline_as_constant(right.value())) { 3036 right.dont_load_item(); 3037 } else { 3038 right.load_item(); 3039 } 3040 3041 LIRItem t_val(x->tval(), this); 3042 LIRItem f_val(x->fval(), this); 3043 t_val.dont_load_item(); 3044 f_val.dont_load_item(); 3045 LIR_Opr reg = rlock_result(x); 3046 3047 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3048 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3049 } 3050 3051 #ifdef JFR_HAVE_INTRINSICS 3052 3053 void LIRGenerator::do_getEventWriter(Intrinsic* x) { 3054 LabelObj* L_end = new LabelObj(); 3055 3056 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 3057 // meaning of these two is mixed up (see JDK-8026837). 3058 LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), 3059 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), 3060 T_ADDRESS); 3061 LIR_Opr result = rlock_result(x); 3062 __ move(LIR_OprFact::oopConst(NULL), result); 3063 LIR_Opr jobj = new_register(T_METADATA); 3064 __ move_wide(jobj_addr, jobj); 3065 __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0)); 3066 __ branch(lir_cond_equal, L_end->label()); 3067 3068 access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); 3069 3070 __ branch_destination(L_end->label()); 3071 } 3072 3073 #endif 3074 3075 3076 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3077 assert(x->number_of_arguments() == 0, "wrong type"); 3078 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3079 BasicTypeList signature; 3080 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3081 LIR_Opr reg = result_register_for(x->type()); 3082 __ call_runtime_leaf(routine, getThreadTemp(), 3083 reg, new LIR_OprList()); 3084 LIR_Opr result = rlock_result(x); 3085 __ move(reg, result); 3086 } 3087 3088 3089 3090 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3091 switch (x->id()) { 3092 case vmIntrinsics::_intBitsToFloat : 3093 case vmIntrinsics::_doubleToRawLongBits : 3094 case vmIntrinsics::_longBitsToDouble : 3095 case vmIntrinsics::_floatToRawIntBits : { 3096 do_FPIntrinsics(x); 3097 break; 3098 } 3099 3100 #ifdef JFR_HAVE_INTRINSICS 3101 case vmIntrinsics::_getEventWriter: 3102 do_getEventWriter(x); 3103 break; 3104 case vmIntrinsics::_counterTime: 3105 do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); 3106 break; 3107 #endif 3108 3109 case vmIntrinsics::_currentTimeMillis: 3110 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3111 break; 3112 3113 case vmIntrinsics::_nanoTime: 3114 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3115 break; 3116 3117 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3118 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3119 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 3120 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 3121 case vmIntrinsics::_getClass: do_getClass(x); break; 3122 case vmIntrinsics::_currentThread: do_currentThread(x); break; 3123 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 3124 3125 case vmIntrinsics::_dlog: // fall through 3126 case vmIntrinsics::_dlog10: // fall through 3127 case vmIntrinsics::_dabs: // fall through 3128 case vmIntrinsics::_dsqrt: // fall through 3129 case vmIntrinsics::_dtan: // fall through 3130 case vmIntrinsics::_dsin : // fall through 3131 case vmIntrinsics::_dcos : // fall through 3132 case vmIntrinsics::_dexp : // fall through 3133 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3134 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3135 3136 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3137 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3138 3139 // java.nio.Buffer.checkIndex 3140 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; 3141 3142 case vmIntrinsics::_compareAndSetReference: 3143 do_CompareAndSwap(x, objectType); 3144 break; 3145 case vmIntrinsics::_compareAndSetInt: 3146 do_CompareAndSwap(x, intType); 3147 break; 3148 case vmIntrinsics::_compareAndSetLong: 3149 do_CompareAndSwap(x, longType); 3150 break; 3151 3152 case vmIntrinsics::_loadFence : 3153 __ membar_acquire(); 3154 break; 3155 case vmIntrinsics::_storeFence: 3156 __ membar_release(); 3157 break; 3158 case vmIntrinsics::_storeStoreFence: 3159 __ membar_storestore(); 3160 break; 3161 case vmIntrinsics::_fullFence : 3162 __ membar(); 3163 break; 3164 case vmIntrinsics::_onSpinWait: 3165 __ on_spin_wait(); 3166 break; 3167 case vmIntrinsics::_Reference_get: 3168 do_Reference_get(x); 3169 break; 3170 3171 case vmIntrinsics::_updateCRC32: 3172 case vmIntrinsics::_updateBytesCRC32: 3173 case vmIntrinsics::_updateByteBufferCRC32: 3174 do_update_CRC32(x); 3175 break; 3176 3177 case vmIntrinsics::_updateBytesCRC32C: 3178 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3179 do_update_CRC32C(x); 3180 break; 3181 3182 case vmIntrinsics::_vectorizedMismatch: 3183 do_vectorizedMismatch(x); 3184 break; 3185 3186 case vmIntrinsics::_blackhole: 3187 do_blackhole(x); 3188 break; 3189 3190 default: ShouldNotReachHere(); break; 3191 } 3192 } 3193 3194 void LIRGenerator::profile_arguments(ProfileCall* x) { 3195 if (compilation()->profile_arguments()) { 3196 int bci = x->bci_of_invoke(); 3197 ciMethodData* md = x->method()->method_data_or_null(); 3198 assert(md != NULL, "Sanity"); 3199 ciProfileData* data = md->bci_to_data(bci); 3200 if (data != NULL) { 3201 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3202 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3203 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3204 int base_offset = md->byte_offset_of_slot(data, extra); 3205 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3206 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3207 3208 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3209 int start = 0; 3210 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3211 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3212 // first argument is not profiled at call (method handle invoke) 3213 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3214 start = 1; 3215 } 3216 ciSignature* callee_signature = x->callee()->signature(); 3217 // method handle call to virtual method 3218 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3219 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3220 3221 bool ignored_will_link; 3222 ciSignature* signature_at_call = NULL; 3223 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3224 ciSignatureStream signature_at_call_stream(signature_at_call); 3225 3226 // if called through method handle invoke, some arguments may have been popped 3227 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3228 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3229 ciKlass* exact = profile_type(md, base_offset, off, 3230 args->type(i), x->profiled_arg_at(i+start), mdp, 3231 !x->arg_needs_null_check(i+start), 3232 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3233 if (exact != NULL) { 3234 md->set_argument_type(bci, i, exact); 3235 } 3236 } 3237 } else { 3238 #ifdef ASSERT 3239 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3240 int n = x->nb_profiled_args(); 3241 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3242 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3243 "only at JSR292 bytecodes"); 3244 #endif 3245 } 3246 } 3247 } 3248 } 3249 3250 // profile parameters on entry to an inlined method 3251 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3252 if (compilation()->profile_parameters() && x->inlined()) { 3253 ciMethodData* md = x->callee()->method_data_or_null(); 3254 if (md != NULL) { 3255 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3256 if (parameters_type_data != NULL) { 3257 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3258 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3259 bool has_receiver = !x->callee()->is_static(); 3260 ciSignature* sig = x->callee()->signature(); 3261 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3262 int i = 0; // to iterate on the Instructions 3263 Value arg = x->recv(); 3264 bool not_null = false; 3265 int bci = x->bci_of_invoke(); 3266 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3267 // The first parameter is the receiver so that's what we start 3268 // with if it exists. One exception is method handle call to 3269 // virtual method: the receiver is in the args list 3270 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3271 i = 1; 3272 arg = x->profiled_arg_at(0); 3273 not_null = !x->arg_needs_null_check(0); 3274 } 3275 int k = 0; // to iterate on the profile data 3276 for (;;) { 3277 intptr_t profiled_k = parameters->type(k); 3278 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3279 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3280 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3281 // If the profile is known statically set it once for all and do not emit any code 3282 if (exact != NULL) { 3283 md->set_parameter_type(k, exact); 3284 } 3285 k++; 3286 if (k >= parameters_type_data->number_of_parameters()) { 3287 #ifdef ASSERT 3288 int extra = 0; 3289 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3290 x->nb_profiled_args() >= TypeProfileParmsLimit && 3291 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3292 extra += 1; 3293 } 3294 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3295 #endif 3296 break; 3297 } 3298 arg = x->profiled_arg_at(i); 3299 not_null = !x->arg_needs_null_check(i); 3300 i++; 3301 } 3302 } 3303 } 3304 } 3305 } 3306 3307 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3308 // Need recv in a temporary register so it interferes with the other temporaries 3309 LIR_Opr recv = LIR_OprFact::illegalOpr; 3310 LIR_Opr mdo = new_register(T_METADATA); 3311 // tmp is used to hold the counters on SPARC 3312 LIR_Opr tmp = new_pointer_register(); 3313 3314 if (x->nb_profiled_args() > 0) { 3315 profile_arguments(x); 3316 } 3317 3318 // profile parameters on inlined method entry including receiver 3319 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3320 profile_parameters_at_call(x); 3321 } 3322 3323 if (x->recv() != NULL) { 3324 LIRItem value(x->recv(), this); 3325 value.load_item(); 3326 recv = new_register(T_OBJECT); 3327 __ move(value.result(), recv); 3328 } 3329 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3330 } 3331 3332 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3333 int bci = x->bci_of_invoke(); 3334 ciMethodData* md = x->method()->method_data_or_null(); 3335 assert(md != NULL, "Sanity"); 3336 ciProfileData* data = md->bci_to_data(bci); 3337 if (data != NULL) { 3338 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3339 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3340 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3341 3342 bool ignored_will_link; 3343 ciSignature* signature_at_call = NULL; 3344 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3345 3346 // The offset within the MDO of the entry to update may be too large 3347 // to be used in load/store instructions on some platforms. So have 3348 // profile_type() compute the address of the profile in a register. 3349 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3350 ret->type(), x->ret(), mdp, 3351 !x->needs_null_check(), 3352 signature_at_call->return_type()->as_klass(), 3353 x->callee()->signature()->return_type()->as_klass()); 3354 if (exact != NULL) { 3355 md->set_return_type(bci, exact); 3356 } 3357 } 3358 } 3359 3360 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3361 // We can safely ignore accessors here, since c2 will inline them anyway, 3362 // accessors are also always mature. 3363 if (!x->inlinee()->is_accessor()) { 3364 CodeEmitInfo* info = state_for(x, x->state(), true); 3365 // Notify the runtime very infrequently only to take care of counter overflows 3366 int freq_log = Tier23InlineeNotifyFreqLog; 3367 double scale; 3368 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3369 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3370 } 3371 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3372 } 3373 } 3374 3375 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3376 if (compilation()->count_backedges()) { 3377 #if defined(X86) && !defined(_LP64) 3378 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3379 LIR_Opr left_copy = new_register(left->type()); 3380 __ move(left, left_copy); 3381 __ cmp(cond, left_copy, right); 3382 #else 3383 __ cmp(cond, left, right); 3384 #endif 3385 LIR_Opr step = new_register(T_INT); 3386 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3387 LIR_Opr zero = LIR_OprFact::intConst(0); 3388 __ cmove(cond, 3389 (left_bci < bci) ? plus_one : zero, 3390 (right_bci < bci) ? plus_one : zero, 3391 step, left->type()); 3392 increment_backedge_counter(info, step, bci); 3393 } 3394 } 3395 3396 3397 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3398 int freq_log = 0; 3399 int level = compilation()->env()->comp_level(); 3400 if (level == CompLevel_limited_profile) { 3401 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3402 } else if (level == CompLevel_full_profile) { 3403 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3404 } else { 3405 ShouldNotReachHere(); 3406 } 3407 // Increment the appropriate invocation/backedge counter and notify the runtime. 3408 double scale; 3409 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3410 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3411 } 3412 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3413 } 3414 3415 void LIRGenerator::decrement_age(CodeEmitInfo* info) { 3416 ciMethod* method = info->scope()->method(); 3417 MethodCounters* mc_adr = method->ensure_method_counters(); 3418 if (mc_adr != NULL) { 3419 LIR_Opr mc = new_pointer_register(); 3420 __ move(LIR_OprFact::intptrConst(mc_adr), mc); 3421 int offset = in_bytes(MethodCounters::nmethod_age_offset()); 3422 LIR_Address* counter = new LIR_Address(mc, offset, T_INT); 3423 LIR_Opr result = new_register(T_INT); 3424 __ load(counter, result); 3425 __ sub(result, LIR_OprFact::intConst(1), result); 3426 __ store(result, counter); 3427 // DeoptimizeStub will reexecute from the current state in code info. 3428 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, 3429 Deoptimization::Action_make_not_entrant); 3430 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); 3431 __ branch(lir_cond_lessEqual, deopt); 3432 } 3433 } 3434 3435 3436 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3437 ciMethod *method, LIR_Opr step, int frequency, 3438 int bci, bool backedge, bool notify) { 3439 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3440 int level = _compilation->env()->comp_level(); 3441 assert(level > CompLevel_simple, "Shouldn't be here"); 3442 3443 int offset = -1; 3444 LIR_Opr counter_holder = NULL; 3445 if (level == CompLevel_limited_profile) { 3446 MethodCounters* counters_adr = method->ensure_method_counters(); 3447 if (counters_adr == NULL) { 3448 bailout("method counters allocation failed"); 3449 return; 3450 } 3451 counter_holder = new_pointer_register(); 3452 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3453 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3454 MethodCounters::invocation_counter_offset()); 3455 } else if (level == CompLevel_full_profile) { 3456 counter_holder = new_register(T_METADATA); 3457 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3458 MethodData::invocation_counter_offset()); 3459 ciMethodData* md = method->method_data_or_null(); 3460 assert(md != NULL, "Sanity"); 3461 __ metadata2reg(md->constant_encoding(), counter_holder); 3462 } else { 3463 ShouldNotReachHere(); 3464 } 3465 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3466 LIR_Opr result = new_register(T_INT); 3467 __ load(counter, result); 3468 __ add(result, step, result); 3469 __ store(result, counter); 3470 if (notify && (!backedge || UseOnStackReplacement)) { 3471 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3472 // The bci for info can point to cmp for if's we want the if bci 3473 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3474 int freq = frequency << InvocationCounter::count_shift; 3475 if (freq == 0) { 3476 if (!step->is_constant()) { 3477 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3478 __ branch(lir_cond_notEqual, overflow); 3479 } else { 3480 __ branch(lir_cond_always, overflow); 3481 } 3482 } else { 3483 LIR_Opr mask = load_immediate(freq, T_INT); 3484 if (!step->is_constant()) { 3485 // If step is 0, make sure the overflow check below always fails 3486 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3487 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3488 } 3489 __ logical_and(result, mask, result); 3490 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3491 __ branch(lir_cond_equal, overflow); 3492 } 3493 __ branch_destination(overflow->continuation()); 3494 } 3495 } 3496 3497 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3498 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3499 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3500 3501 if (x->pass_thread()) { 3502 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3503 args->append(getThreadPointer()); 3504 } 3505 3506 for (int i = 0; i < x->number_of_arguments(); i++) { 3507 Value a = x->argument_at(i); 3508 LIRItem* item = new LIRItem(a, this); 3509 item->load_item(); 3510 args->append(item->result()); 3511 signature->append(as_BasicType(a->type())); 3512 } 3513 3514 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3515 if (x->type() == voidType) { 3516 set_no_result(x); 3517 } else { 3518 __ move(result, rlock_result(x)); 3519 } 3520 } 3521 3522 #ifdef ASSERT 3523 void LIRGenerator::do_Assert(Assert *x) { 3524 ValueTag tag = x->x()->type()->tag(); 3525 If::Condition cond = x->cond(); 3526 3527 LIRItem xitem(x->x(), this); 3528 LIRItem yitem(x->y(), this); 3529 LIRItem* xin = &xitem; 3530 LIRItem* yin = &yitem; 3531 3532 assert(tag == intTag, "Only integer assertions are valid!"); 3533 3534 xin->load_item(); 3535 yin->dont_load_item(); 3536 3537 set_no_result(x); 3538 3539 LIR_Opr left = xin->result(); 3540 LIR_Opr right = yin->result(); 3541 3542 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3543 } 3544 #endif 3545 3546 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3547 3548 3549 Instruction *a = x->x(); 3550 Instruction *b = x->y(); 3551 if (!a || StressRangeCheckElimination) { 3552 assert(!b || StressRangeCheckElimination, "B must also be null"); 3553 3554 CodeEmitInfo *info = state_for(x, x->state()); 3555 CodeStub* stub = new PredicateFailedStub(info); 3556 3557 __ jump(stub); 3558 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3559 int a_int = a->type()->as_IntConstant()->value(); 3560 int b_int = b->type()->as_IntConstant()->value(); 3561 3562 bool ok = false; 3563 3564 switch(x->cond()) { 3565 case Instruction::eql: ok = (a_int == b_int); break; 3566 case Instruction::neq: ok = (a_int != b_int); break; 3567 case Instruction::lss: ok = (a_int < b_int); break; 3568 case Instruction::leq: ok = (a_int <= b_int); break; 3569 case Instruction::gtr: ok = (a_int > b_int); break; 3570 case Instruction::geq: ok = (a_int >= b_int); break; 3571 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3572 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3573 default: ShouldNotReachHere(); 3574 } 3575 3576 if (ok) { 3577 3578 CodeEmitInfo *info = state_for(x, x->state()); 3579 CodeStub* stub = new PredicateFailedStub(info); 3580 3581 __ jump(stub); 3582 } 3583 } else { 3584 3585 ValueTag tag = x->x()->type()->tag(); 3586 If::Condition cond = x->cond(); 3587 LIRItem xitem(x->x(), this); 3588 LIRItem yitem(x->y(), this); 3589 LIRItem* xin = &xitem; 3590 LIRItem* yin = &yitem; 3591 3592 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3593 3594 xin->load_item(); 3595 yin->dont_load_item(); 3596 set_no_result(x); 3597 3598 LIR_Opr left = xin->result(); 3599 LIR_Opr right = yin->result(); 3600 3601 CodeEmitInfo *info = state_for(x, x->state()); 3602 CodeStub* stub = new PredicateFailedStub(info); 3603 3604 __ cmp(lir_cond(cond), left, right); 3605 __ branch(lir_cond(cond), stub); 3606 } 3607 } 3608 3609 void LIRGenerator::do_blackhole(Intrinsic *x) { 3610 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3611 for (int c = 0; c < x->number_of_arguments(); c++) { 3612 // Load the argument 3613 LIRItem vitem(x->argument_at(c), this); 3614 vitem.load_item(); 3615 // ...and leave it unused. 3616 } 3617 } 3618 3619 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3620 LIRItemList args(1); 3621 LIRItem value(arg1, this); 3622 args.append(&value); 3623 BasicTypeList signature; 3624 signature.append(as_BasicType(arg1->type())); 3625 3626 return call_runtime(&signature, &args, entry, result_type, info); 3627 } 3628 3629 3630 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3631 LIRItemList args(2); 3632 LIRItem value1(arg1, this); 3633 LIRItem value2(arg2, this); 3634 args.append(&value1); 3635 args.append(&value2); 3636 BasicTypeList signature; 3637 signature.append(as_BasicType(arg1->type())); 3638 signature.append(as_BasicType(arg2->type())); 3639 3640 return call_runtime(&signature, &args, entry, result_type, info); 3641 } 3642 3643 3644 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3645 address entry, ValueType* result_type, CodeEmitInfo* info) { 3646 // get a result register 3647 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3648 LIR_Opr result = LIR_OprFact::illegalOpr; 3649 if (result_type->tag() != voidTag) { 3650 result = new_register(result_type); 3651 phys_reg = result_register_for(result_type); 3652 } 3653 3654 // move the arguments into the correct location 3655 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3656 assert(cc->length() == args->length(), "argument mismatch"); 3657 for (int i = 0; i < args->length(); i++) { 3658 LIR_Opr arg = args->at(i); 3659 LIR_Opr loc = cc->at(i); 3660 if (loc->is_register()) { 3661 __ move(arg, loc); 3662 } else { 3663 LIR_Address* addr = loc->as_address_ptr(); 3664 // if (!can_store_as_constant(arg)) { 3665 // LIR_Opr tmp = new_register(arg->type()); 3666 // __ move(arg, tmp); 3667 // arg = tmp; 3668 // } 3669 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3670 __ unaligned_move(arg, addr); 3671 } else { 3672 __ move(arg, addr); 3673 } 3674 } 3675 } 3676 3677 if (info) { 3678 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3679 } else { 3680 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3681 } 3682 if (result->is_valid()) { 3683 __ move(phys_reg, result); 3684 } 3685 return result; 3686 } 3687 3688 3689 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3690 address entry, ValueType* result_type, CodeEmitInfo* info) { 3691 // get a result register 3692 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3693 LIR_Opr result = LIR_OprFact::illegalOpr; 3694 if (result_type->tag() != voidTag) { 3695 result = new_register(result_type); 3696 phys_reg = result_register_for(result_type); 3697 } 3698 3699 // move the arguments into the correct location 3700 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3701 3702 assert(cc->length() == args->length(), "argument mismatch"); 3703 for (int i = 0; i < args->length(); i++) { 3704 LIRItem* arg = args->at(i); 3705 LIR_Opr loc = cc->at(i); 3706 if (loc->is_register()) { 3707 arg->load_item_force(loc); 3708 } else { 3709 LIR_Address* addr = loc->as_address_ptr(); 3710 arg->load_for_store(addr->type()); 3711 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3712 __ unaligned_move(arg->result(), addr); 3713 } else { 3714 __ move(arg->result(), addr); 3715 } 3716 } 3717 } 3718 3719 if (info) { 3720 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3721 } else { 3722 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3723 } 3724 if (result->is_valid()) { 3725 __ move(phys_reg, result); 3726 } 3727 return result; 3728 } 3729 3730 void LIRGenerator::do_MemBar(MemBar* x) { 3731 LIR_Code code = x->code(); 3732 switch(code) { 3733 case lir_membar_acquire : __ membar_acquire(); break; 3734 case lir_membar_release : __ membar_release(); break; 3735 case lir_membar : __ membar(); break; 3736 case lir_membar_loadload : __ membar_loadload(); break; 3737 case lir_membar_storestore: __ membar_storestore(); break; 3738 case lir_membar_loadstore : __ membar_loadstore(); break; 3739 case lir_membar_storeload : __ membar_storeload(); break; 3740 default : ShouldNotReachHere(); break; 3741 } 3742 } 3743 3744 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3745 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3746 if (TwoOperandLIRForm) { 3747 __ move(value, value_fixed); 3748 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3749 } else { 3750 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3751 } 3752 LIR_Opr klass = new_register(T_METADATA); 3753 load_klass(array, klass, null_check_info); 3754 null_check_info = NULL; 3755 LIR_Opr layout = new_register(T_INT); 3756 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3757 int diffbit = Klass::layout_helper_boolean_diffbit(); 3758 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3759 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3760 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3761 value = value_fixed; 3762 return value; 3763 } 3764 3765 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3766 if (x->check_boolean()) { 3767 value = mask_boolean(array, value, null_check_info); 3768 } 3769 return value; 3770 }