1 /* 2 * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/c1/barrierSetC1.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "runtime/vm_version.hpp" 43 #include "utilities/bitMap.inline.hpp" 44 #include "utilities/macros.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 #ifdef ASSERT 48 #define __ gen()->lir(__FILE__, __LINE__)-> 49 #else 50 #define __ gen()->lir()-> 51 #endif 52 53 #ifndef PATCHED_ADDR 54 #define PATCHED_ADDR (max_jint) 55 #endif 56 57 void PhiResolverState::reset() { 58 _virtual_operands.clear(); 59 _other_operands.clear(); 60 _vreg_table.clear(); 61 } 62 63 64 //-------------------------------------------------------------- 65 // PhiResolver 66 67 // Resolves cycles: 68 // 69 // r1 := r2 becomes temp := r1 70 // r2 := r1 r1 := r2 71 // r2 := temp 72 // and orders moves: 73 // 74 // r2 := r3 becomes r1 := r2 75 // r1 := r2 r2 := r3 76 77 PhiResolver::PhiResolver(LIRGenerator* gen) 78 : _gen(gen) 79 , _state(gen->resolver_state()) 80 , _temp(LIR_OprFact::illegalOpr) 81 { 82 // reinitialize the shared state arrays 83 _state.reset(); 84 } 85 86 87 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 88 assert(src->is_valid(), ""); 89 assert(dest->is_valid(), ""); 90 __ move(src, dest); 91 } 92 93 94 void PhiResolver::move_temp_to(LIR_Opr dest) { 95 assert(_temp->is_valid(), ""); 96 emit_move(_temp, dest); 97 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 98 } 99 100 101 void PhiResolver::move_to_temp(LIR_Opr src) { 102 assert(_temp->is_illegal(), ""); 103 _temp = _gen->new_register(src->type()); 104 emit_move(src, _temp); 105 } 106 107 108 // Traverse assignment graph in depth first order and generate moves in post order 109 // ie. two assignments: b := c, a := b start with node c: 110 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 111 // Generates moves in this order: move b to a and move c to b 112 // ie. cycle a := b, b := a start with node a 113 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 114 // Generates moves in this order: move b to temp, move a to b, move temp to a 115 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 116 if (!dest->visited()) { 117 dest->set_visited(); 118 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 119 move(dest, dest->destination_at(i)); 120 } 121 } else if (!dest->start_node()) { 122 // cylce in graph detected 123 assert(_loop == NULL, "only one loop valid!"); 124 _loop = dest; 125 move_to_temp(src->operand()); 126 return; 127 } // else dest is a start node 128 129 if (!dest->assigned()) { 130 if (_loop == dest) { 131 move_temp_to(dest->operand()); 132 dest->set_assigned(); 133 } else if (src != NULL) { 134 emit_move(src->operand(), dest->operand()); 135 dest->set_assigned(); 136 } 137 } 138 } 139 140 141 PhiResolver::~PhiResolver() { 142 int i; 143 // resolve any cycles in moves from and to virtual registers 144 for (i = virtual_operands().length() - 1; i >= 0; i --) { 145 ResolveNode* node = virtual_operands().at(i); 146 if (!node->visited()) { 147 _loop = NULL; 148 move(NULL, node); 149 node->set_start_node(); 150 assert(_temp->is_illegal(), "move_temp_to() call missing"); 151 } 152 } 153 154 // generate move for move from non virtual register to abitrary destination 155 for (i = other_operands().length() - 1; i >= 0; i --) { 156 ResolveNode* node = other_operands().at(i); 157 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 158 emit_move(node->operand(), node->destination_at(j)->operand()); 159 } 160 } 161 } 162 163 164 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 165 ResolveNode* node; 166 if (opr->is_virtual()) { 167 int vreg_num = opr->vreg_number(); 168 node = vreg_table().at_grow(vreg_num, NULL); 169 assert(node == NULL || node->operand() == opr, ""); 170 if (node == NULL) { 171 node = new ResolveNode(opr); 172 vreg_table().at_put(vreg_num, node); 173 } 174 // Make sure that all virtual operands show up in the list when 175 // they are used as the source of a move. 176 if (source && !virtual_operands().contains(node)) { 177 virtual_operands().append(node); 178 } 179 } else { 180 assert(source, ""); 181 node = new ResolveNode(opr); 182 other_operands().append(node); 183 } 184 return node; 185 } 186 187 188 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 189 assert(dest->is_virtual(), ""); 190 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 191 assert(src->is_valid(), ""); 192 assert(dest->is_valid(), ""); 193 ResolveNode* source = source_node(src); 194 source->append(destination_node(dest)); 195 } 196 197 198 //-------------------------------------------------------------- 199 // LIRItem 200 201 void LIRItem::set_result(LIR_Opr opr) { 202 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 203 value()->set_operand(opr); 204 205 if (opr->is_virtual()) { 206 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 207 } 208 209 _result = opr; 210 } 211 212 void LIRItem::load_item() { 213 if (result()->is_illegal()) { 214 // update the items result 215 _result = value()->operand(); 216 } 217 if (!result()->is_register()) { 218 LIR_Opr reg = _gen->new_register(value()->type()); 219 __ move(result(), reg); 220 if (result()->is_constant()) { 221 _result = reg; 222 } else { 223 set_result(reg); 224 } 225 } 226 } 227 228 229 void LIRItem::load_for_store(BasicType type) { 230 if (_gen->can_store_as_constant(value(), type)) { 231 _result = value()->operand(); 232 if (!_result->is_constant()) { 233 _result = LIR_OprFact::value_type(value()->type()); 234 } 235 } else if (type == T_BYTE || type == T_BOOLEAN) { 236 load_byte_item(); 237 } else { 238 load_item(); 239 } 240 } 241 242 void LIRItem::load_item_force(LIR_Opr reg) { 243 LIR_Opr r = result(); 244 if (r != reg) { 245 #if !defined(ARM) && !defined(E500V2) 246 if (r->type() != reg->type()) { 247 // moves between different types need an intervening spill slot 248 r = _gen->force_to_spill(r, reg->type()); 249 } 250 #endif 251 __ move(r, reg); 252 _result = reg; 253 } 254 } 255 256 ciObject* LIRItem::get_jobject_constant() const { 257 ObjectType* oc = type()->as_ObjectType(); 258 if (oc) { 259 return oc->constant_value(); 260 } 261 return NULL; 262 } 263 264 265 jint LIRItem::get_jint_constant() const { 266 assert(is_constant() && value() != NULL, ""); 267 assert(type()->as_IntConstant() != NULL, "type check"); 268 return type()->as_IntConstant()->value(); 269 } 270 271 272 jint LIRItem::get_address_constant() const { 273 assert(is_constant() && value() != NULL, ""); 274 assert(type()->as_AddressConstant() != NULL, "type check"); 275 return type()->as_AddressConstant()->value(); 276 } 277 278 279 jfloat LIRItem::get_jfloat_constant() const { 280 assert(is_constant() && value() != NULL, ""); 281 assert(type()->as_FloatConstant() != NULL, "type check"); 282 return type()->as_FloatConstant()->value(); 283 } 284 285 286 jdouble LIRItem::get_jdouble_constant() const { 287 assert(is_constant() && value() != NULL, ""); 288 assert(type()->as_DoubleConstant() != NULL, "type check"); 289 return type()->as_DoubleConstant()->value(); 290 } 291 292 293 jlong LIRItem::get_jlong_constant() const { 294 assert(is_constant() && value() != NULL, ""); 295 assert(type()->as_LongConstant() != NULL, "type check"); 296 return type()->as_LongConstant()->value(); 297 } 298 299 300 301 //-------------------------------------------------------------- 302 303 304 void LIRGenerator::block_do_prolog(BlockBegin* block) { 305 #ifndef PRODUCT 306 if (PrintIRWithLIR) { 307 block->print(); 308 } 309 #endif 310 311 // set up the list of LIR instructions 312 assert(block->lir() == NULL, "LIR list already computed for this block"); 313 _lir = new LIR_List(compilation(), block); 314 block->set_lir(_lir); 315 316 __ branch_destination(block->label()); 317 318 if (LIRTraceExecution && 319 Compilation::current()->hir()->start()->block_id() != block->block_id() && 320 !block->is_set(BlockBegin::exception_entry_flag)) { 321 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 322 trace_block_entry(block); 323 } 324 } 325 326 327 void LIRGenerator::block_do_epilog(BlockBegin* block) { 328 #ifndef PRODUCT 329 if (PrintIRWithLIR) { 330 tty->cr(); 331 } 332 #endif 333 334 // LIR_Opr for unpinned constants shouldn't be referenced by other 335 // blocks so clear them out after processing the block. 336 for (int i = 0; i < _unpinned_constants.length(); i++) { 337 _unpinned_constants.at(i)->clear_operand(); 338 } 339 _unpinned_constants.trunc_to(0); 340 341 // clear our any registers for other local constants 342 _constants.trunc_to(0); 343 _reg_for_constants.trunc_to(0); 344 } 345 346 347 void LIRGenerator::block_do(BlockBegin* block) { 348 CHECK_BAILOUT(); 349 350 block_do_prolog(block); 351 set_block(block); 352 353 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 354 if (instr->is_pinned()) do_root(instr); 355 } 356 357 set_block(NULL); 358 block_do_epilog(block); 359 } 360 361 362 //-------------------------LIRGenerator----------------------------- 363 364 // This is where the tree-walk starts; instr must be root; 365 void LIRGenerator::do_root(Value instr) { 366 CHECK_BAILOUT(); 367 368 InstructionMark im(compilation(), instr); 369 370 assert(instr->is_pinned(), "use only with roots"); 371 assert(instr->subst() == instr, "shouldn't have missed substitution"); 372 373 instr->visit(this); 374 375 assert(!instr->has_uses() || instr->operand()->is_valid() || 376 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 377 } 378 379 380 // This is called for each node in tree; the walk stops if a root is reached 381 void LIRGenerator::walk(Value instr) { 382 InstructionMark im(compilation(), instr); 383 //stop walk when encounter a root 384 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { 385 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 386 } else { 387 assert(instr->subst() == instr, "shouldn't have missed substitution"); 388 instr->visit(this); 389 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 390 } 391 } 392 393 394 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 395 assert(state != NULL, "state must be defined"); 396 397 #ifndef PRODUCT 398 state->verify(); 399 #endif 400 401 ValueStack* s = state; 402 for_each_state(s) { 403 if (s->kind() == ValueStack::EmptyExceptionState) { 404 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 405 continue; 406 } 407 408 int index; 409 Value value; 410 for_each_stack_value(s, index, value) { 411 assert(value->subst() == value, "missed substitution"); 412 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 413 walk(value); 414 assert(value->operand()->is_valid(), "must be evaluated now"); 415 } 416 } 417 418 int bci = s->bci(); 419 IRScope* scope = s->scope(); 420 ciMethod* method = scope->method(); 421 422 MethodLivenessResult liveness = method->liveness_at_bci(bci); 423 if (bci == SynchronizationEntryBCI) { 424 if (x->as_ExceptionObject() || x->as_Throw()) { 425 // all locals are dead on exit from the synthetic unlocker 426 liveness.clear(); 427 } else { 428 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 429 } 430 } 431 if (!liveness.is_valid()) { 432 // Degenerate or breakpointed method. 433 bailout("Degenerate or breakpointed method"); 434 } else { 435 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 436 for_each_local_value(s, index, value) { 437 assert(value->subst() == value, "missed substition"); 438 if (liveness.at(index) && !value->type()->is_illegal()) { 439 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 440 walk(value); 441 assert(value->operand()->is_valid(), "must be evaluated now"); 442 } 443 } else { 444 // NULL out this local so that linear scan can assume that all non-NULL values are live. 445 s->invalidate_local(index); 446 } 447 } 448 } 449 } 450 451 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 452 } 453 454 455 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 456 return state_for(x, x->exception_state()); 457 } 458 459 460 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 461 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 462 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 463 * the class. */ 464 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 465 assert(info != NULL, "info must be set if class is not loaded"); 466 __ klass2reg_patch(NULL, r, info); 467 } else { 468 // no patching needed 469 __ metadata2reg(obj->constant_encoding(), r); 470 } 471 } 472 473 474 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 475 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 476 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 477 if (index->is_constant()) { 478 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 479 index->as_jint(), null_check_info); 480 __ branch(lir_cond_belowEqual, stub); // forward branch 481 } else { 482 cmp_reg_mem(lir_cond_aboveEqual, index, array, 483 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 484 __ branch(lir_cond_aboveEqual, stub); // forward branch 485 } 486 } 487 488 489 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { 490 CodeStub* stub = new RangeCheckStub(info, index); 491 if (index->is_constant()) { 492 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); 493 __ branch(lir_cond_belowEqual, stub); // forward branch 494 } else { 495 cmp_reg_mem(lir_cond_aboveEqual, index, buffer, 496 java_nio_Buffer::limit_offset(), T_INT, info); 497 __ branch(lir_cond_aboveEqual, stub); // forward branch 498 } 499 __ move(index, result); 500 } 501 502 503 504 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 505 LIR_Opr result_op = result; 506 LIR_Opr left_op = left; 507 LIR_Opr right_op = right; 508 509 if (TwoOperandLIRForm && left_op != result_op) { 510 assert(right_op != result_op, "malformed"); 511 __ move(left_op, result_op); 512 left_op = result_op; 513 } 514 515 switch(code) { 516 case Bytecodes::_dadd: 517 case Bytecodes::_fadd: 518 case Bytecodes::_ladd: 519 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 520 case Bytecodes::_fmul: 521 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 522 523 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 524 525 case Bytecodes::_imul: 526 { 527 bool did_strength_reduce = false; 528 529 if (right->is_constant()) { 530 jint c = right->as_jint(); 531 if (c > 0 && is_power_of_2(c)) { 532 // do not need tmp here 533 __ shift_left(left_op, exact_log2(c), result_op); 534 did_strength_reduce = true; 535 } else { 536 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 537 } 538 } 539 // we couldn't strength reduce so just emit the multiply 540 if (!did_strength_reduce) { 541 __ mul(left_op, right_op, result_op); 542 } 543 } 544 break; 545 546 case Bytecodes::_dsub: 547 case Bytecodes::_fsub: 548 case Bytecodes::_lsub: 549 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 550 551 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 552 // ldiv and lrem are implemented with a direct runtime call 553 554 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 555 556 case Bytecodes::_drem: 557 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 558 559 default: ShouldNotReachHere(); 560 } 561 } 562 563 564 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 565 arithmetic_op(code, result, left, right, tmp); 566 } 567 568 569 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 570 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 571 } 572 573 574 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 575 arithmetic_op(code, result, left, right, tmp); 576 } 577 578 579 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 580 581 if (TwoOperandLIRForm && value != result_op 582 // Only 32bit right shifts require two operand form on S390. 583 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 584 assert(count != result_op, "malformed"); 585 __ move(value, result_op); 586 value = result_op; 587 } 588 589 assert(count->is_constant() || count->is_register(), "must be"); 590 switch(code) { 591 case Bytecodes::_ishl: 592 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 593 case Bytecodes::_ishr: 594 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 595 case Bytecodes::_iushr: 596 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 597 default: ShouldNotReachHere(); 598 } 599 } 600 601 602 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 603 if (TwoOperandLIRForm && left_op != result_op) { 604 assert(right_op != result_op, "malformed"); 605 __ move(left_op, result_op); 606 left_op = result_op; 607 } 608 609 switch(code) { 610 case Bytecodes::_iand: 611 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 612 613 case Bytecodes::_ior: 614 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 615 616 case Bytecodes::_ixor: 617 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 618 619 default: ShouldNotReachHere(); 620 } 621 } 622 623 624 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 625 if (!GenerateSynchronizationCode) return; 626 // for slow path, use debug info for state after successful locking 627 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 628 __ load_stack_address_monitor(monitor_no, lock); 629 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 630 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 631 } 632 633 634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 635 if (!GenerateSynchronizationCode) return; 636 // setup registers 637 LIR_Opr hdr = lock; 638 lock = new_hdr; 639 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); 640 __ load_stack_address_monitor(monitor_no, lock); 641 __ unlock_object(hdr, object, lock, scratch, slow_path); 642 } 643 644 #ifndef PRODUCT 645 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 646 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 647 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 648 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 649 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 650 } 651 } 652 #endif 653 654 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 655 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 656 // If klass is not loaded we do not know if the klass has finalizers: 657 if (UseFastNewInstance && klass->is_loaded() 658 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 659 660 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 661 662 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 663 664 assert(klass->is_loaded(), "must be loaded"); 665 // allocate space for instance 666 assert(klass->size_helper() > 0, "illegal instance size"); 667 const int instance_size = align_object_size(klass->size_helper()); 668 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 669 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 670 } else { 671 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 672 __ branch(lir_cond_always, slow_path); 673 __ branch_destination(slow_path->continuation()); 674 } 675 } 676 677 678 static bool is_constant_zero(Instruction* inst) { 679 IntConstant* c = inst->type()->as_IntConstant(); 680 if (c) { 681 return (c->value() == 0); 682 } 683 return false; 684 } 685 686 687 static bool positive_constant(Instruction* inst) { 688 IntConstant* c = inst->type()->as_IntConstant(); 689 if (c) { 690 return (c->value() >= 0); 691 } 692 return false; 693 } 694 695 696 static ciArrayKlass* as_array_klass(ciType* type) { 697 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 698 return (ciArrayKlass*)type; 699 } else { 700 return NULL; 701 } 702 } 703 704 static ciType* phi_declared_type(Phi* phi) { 705 ciType* t = phi->operand_at(0)->declared_type(); 706 if (t == NULL) { 707 return NULL; 708 } 709 for(int i = 1; i < phi->operand_count(); i++) { 710 if (t != phi->operand_at(i)->declared_type()) { 711 return NULL; 712 } 713 } 714 return t; 715 } 716 717 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 718 Instruction* src = x->argument_at(0); 719 Instruction* src_pos = x->argument_at(1); 720 Instruction* dst = x->argument_at(2); 721 Instruction* dst_pos = x->argument_at(3); 722 Instruction* length = x->argument_at(4); 723 724 // first try to identify the likely type of the arrays involved 725 ciArrayKlass* expected_type = NULL; 726 bool is_exact = false, src_objarray = false, dst_objarray = false; 727 { 728 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 729 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 730 Phi* phi; 731 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 732 src_declared_type = as_array_klass(phi_declared_type(phi)); 733 } 734 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 735 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 736 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 737 dst_declared_type = as_array_klass(phi_declared_type(phi)); 738 } 739 740 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 741 // the types exactly match so the type is fully known 742 is_exact = true; 743 expected_type = src_exact_type; 744 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 745 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 746 ciArrayKlass* src_type = NULL; 747 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 748 src_type = (ciArrayKlass*) src_exact_type; 749 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 750 src_type = (ciArrayKlass*) src_declared_type; 751 } 752 if (src_type != NULL) { 753 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 754 is_exact = true; 755 expected_type = dst_type; 756 } 757 } 758 } 759 // at least pass along a good guess 760 if (expected_type == NULL) expected_type = dst_exact_type; 761 if (expected_type == NULL) expected_type = src_declared_type; 762 if (expected_type == NULL) expected_type = dst_declared_type; 763 764 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 765 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 766 } 767 768 // if a probable array type has been identified, figure out if any 769 // of the required checks for a fast case can be elided. 770 int flags = LIR_OpArrayCopy::all_flags; 771 772 if (!src_objarray) 773 flags &= ~LIR_OpArrayCopy::src_objarray; 774 if (!dst_objarray) 775 flags &= ~LIR_OpArrayCopy::dst_objarray; 776 777 if (!x->arg_needs_null_check(0)) 778 flags &= ~LIR_OpArrayCopy::src_null_check; 779 if (!x->arg_needs_null_check(2)) 780 flags &= ~LIR_OpArrayCopy::dst_null_check; 781 782 783 if (expected_type != NULL) { 784 Value length_limit = NULL; 785 786 IfOp* ifop = length->as_IfOp(); 787 if (ifop != NULL) { 788 // look for expressions like min(v, a.length) which ends up as 789 // x > y ? y : x or x >= y ? y : x 790 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 791 ifop->x() == ifop->fval() && 792 ifop->y() == ifop->tval()) { 793 length_limit = ifop->y(); 794 } 795 } 796 797 // try to skip null checks and range checks 798 NewArray* src_array = src->as_NewArray(); 799 if (src_array != NULL) { 800 flags &= ~LIR_OpArrayCopy::src_null_check; 801 if (length_limit != NULL && 802 src_array->length() == length_limit && 803 is_constant_zero(src_pos)) { 804 flags &= ~LIR_OpArrayCopy::src_range_check; 805 } 806 } 807 808 NewArray* dst_array = dst->as_NewArray(); 809 if (dst_array != NULL) { 810 flags &= ~LIR_OpArrayCopy::dst_null_check; 811 if (length_limit != NULL && 812 dst_array->length() == length_limit && 813 is_constant_zero(dst_pos)) { 814 flags &= ~LIR_OpArrayCopy::dst_range_check; 815 } 816 } 817 818 // check from incoming constant values 819 if (positive_constant(src_pos)) 820 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 821 if (positive_constant(dst_pos)) 822 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 823 if (positive_constant(length)) 824 flags &= ~LIR_OpArrayCopy::length_positive_check; 825 826 // see if the range check can be elided, which might also imply 827 // that src or dst is non-null. 828 ArrayLength* al = length->as_ArrayLength(); 829 if (al != NULL) { 830 if (al->array() == src) { 831 // it's the length of the source array 832 flags &= ~LIR_OpArrayCopy::length_positive_check; 833 flags &= ~LIR_OpArrayCopy::src_null_check; 834 if (is_constant_zero(src_pos)) 835 flags &= ~LIR_OpArrayCopy::src_range_check; 836 } 837 if (al->array() == dst) { 838 // it's the length of the destination array 839 flags &= ~LIR_OpArrayCopy::length_positive_check; 840 flags &= ~LIR_OpArrayCopy::dst_null_check; 841 if (is_constant_zero(dst_pos)) 842 flags &= ~LIR_OpArrayCopy::dst_range_check; 843 } 844 } 845 if (is_exact) { 846 flags &= ~LIR_OpArrayCopy::type_check; 847 } 848 } 849 850 IntConstant* src_int = src_pos->type()->as_IntConstant(); 851 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 852 if (src_int && dst_int) { 853 int s_offs = src_int->value(); 854 int d_offs = dst_int->value(); 855 if (src_int->value() >= dst_int->value()) { 856 flags &= ~LIR_OpArrayCopy::overlapping; 857 } 858 if (expected_type != NULL) { 859 BasicType t = expected_type->element_type()->basic_type(); 860 int element_size = type2aelembytes(t); 861 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 862 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 863 flags &= ~LIR_OpArrayCopy::unaligned; 864 } 865 } 866 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 867 // src and dest positions are the same, or dst is zero so assume 868 // nonoverlapping copy. 869 flags &= ~LIR_OpArrayCopy::overlapping; 870 } 871 872 if (src == dst) { 873 // moving within a single array so no type checks are needed 874 if (flags & LIR_OpArrayCopy::type_check) { 875 flags &= ~LIR_OpArrayCopy::type_check; 876 } 877 } 878 *flagsp = flags; 879 *expected_typep = (ciArrayKlass*)expected_type; 880 } 881 882 883 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 884 assert(opr->is_register(), "why spill if item is not register?"); 885 886 if (strict_fp_requires_explicit_rounding) { 887 #ifdef IA32 888 if (UseSSE < 1 && opr->is_single_fpu()) { 889 LIR_Opr result = new_register(T_FLOAT); 890 set_vreg_flag(result, must_start_in_memory); 891 assert(opr->is_register(), "only a register can be spilled"); 892 assert(opr->value_type()->is_float(), "rounding only for floats available"); 893 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 894 return result; 895 } 896 #else 897 Unimplemented(); 898 #endif // IA32 899 } 900 return opr; 901 } 902 903 904 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 905 assert(type2size[t] == type2size[value->type()], 906 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 907 if (!value->is_register()) { 908 // force into a register 909 LIR_Opr r = new_register(value->type()); 910 __ move(value, r); 911 value = r; 912 } 913 914 // create a spill location 915 LIR_Opr tmp = new_register(t); 916 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 917 918 // move from register to spill 919 __ move(value, tmp); 920 return tmp; 921 } 922 923 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 924 if (if_instr->should_profile()) { 925 ciMethod* method = if_instr->profiled_method(); 926 assert(method != NULL, "method should be set if branch is profiled"); 927 ciMethodData* md = method->method_data_or_null(); 928 assert(md != NULL, "Sanity"); 929 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 930 assert(data != NULL, "must have profiling data"); 931 assert(data->is_BranchData(), "need BranchData for two-way branches"); 932 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 933 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 934 if (if_instr->is_swapped()) { 935 int t = taken_count_offset; 936 taken_count_offset = not_taken_count_offset; 937 not_taken_count_offset = t; 938 } 939 940 LIR_Opr md_reg = new_register(T_METADATA); 941 __ metadata2reg(md->constant_encoding(), md_reg); 942 943 LIR_Opr data_offset_reg = new_pointer_register(); 944 __ cmove(lir_cond(cond), 945 LIR_OprFact::intptrConst(taken_count_offset), 946 LIR_OprFact::intptrConst(not_taken_count_offset), 947 data_offset_reg, as_BasicType(if_instr->x()->type())); 948 949 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 950 LIR_Opr data_reg = new_pointer_register(); 951 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 952 __ move(data_addr, data_reg); 953 // Use leal instead of add to avoid destroying condition codes on x86 954 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 955 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 956 __ move(data_reg, data_addr); 957 } 958 } 959 960 // Phi technique: 961 // This is about passing live values from one basic block to the other. 962 // In code generated with Java it is rather rare that more than one 963 // value is on the stack from one basic block to the other. 964 // We optimize our technique for efficient passing of one value 965 // (of type long, int, double..) but it can be extended. 966 // When entering or leaving a basic block, all registers and all spill 967 // slots are release and empty. We use the released registers 968 // and spill slots to pass the live values from one block 969 // to the other. The topmost value, i.e., the value on TOS of expression 970 // stack is passed in registers. All other values are stored in spilling 971 // area. Every Phi has an index which designates its spill slot 972 // At exit of a basic block, we fill the register(s) and spill slots. 973 // At entry of a basic block, the block_prolog sets up the content of phi nodes 974 // and locks necessary registers and spilling slots. 975 976 977 // move current value to referenced phi function 978 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 979 Phi* phi = sux_val->as_Phi(); 980 // cur_val can be null without phi being null in conjunction with inlining 981 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 982 if (phi->is_local()) { 983 for (int i = 0; i < phi->operand_count(); i++) { 984 Value op = phi->operand_at(i); 985 if (op != NULL && op->type()->is_illegal()) { 986 bailout("illegal phi operand"); 987 } 988 } 989 } 990 Phi* cur_phi = cur_val->as_Phi(); 991 if (cur_phi != NULL && cur_phi->is_illegal()) { 992 // Phi and local would need to get invalidated 993 // (which is unexpected for Linear Scan). 994 // But this case is very rare so we simply bail out. 995 bailout("propagation of illegal phi"); 996 return; 997 } 998 LIR_Opr operand = cur_val->operand(); 999 if (operand->is_illegal()) { 1000 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 1001 "these can be produced lazily"); 1002 operand = operand_for_instruction(cur_val); 1003 } 1004 resolver->move(operand, operand_for_instruction(phi)); 1005 } 1006 } 1007 1008 1009 // Moves all stack values into their PHI position 1010 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1011 BlockBegin* bb = block(); 1012 if (bb->number_of_sux() == 1) { 1013 BlockBegin* sux = bb->sux_at(0); 1014 assert(sux->number_of_preds() > 0, "invalid CFG"); 1015 1016 // a block with only one predecessor never has phi functions 1017 if (sux->number_of_preds() > 1) { 1018 PhiResolver resolver(this); 1019 1020 ValueStack* sux_state = sux->state(); 1021 Value sux_value; 1022 int index; 1023 1024 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1025 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1026 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1027 1028 for_each_stack_value(sux_state, index, sux_value) { 1029 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1030 } 1031 1032 for_each_local_value(sux_state, index, sux_value) { 1033 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1034 } 1035 1036 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1037 } 1038 } 1039 } 1040 1041 1042 LIR_Opr LIRGenerator::new_register(BasicType type) { 1043 int vreg_num = _virtual_register_number; 1044 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1045 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1046 if (vreg_num + 20 >= LIR_OprDesc::vreg_max) { 1047 bailout("out of virtual registers in LIR generator"); 1048 if (vreg_num + 2 >= LIR_OprDesc::vreg_max) { 1049 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1050 _virtual_register_number = LIR_OprDesc::vreg_base; 1051 vreg_num = LIR_OprDesc::vreg_base; 1052 } 1053 } 1054 _virtual_register_number += 1; 1055 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1056 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1057 return vreg; 1058 } 1059 1060 1061 // Try to lock using register in hint 1062 LIR_Opr LIRGenerator::rlock(Value instr) { 1063 return new_register(instr->type()); 1064 } 1065 1066 1067 // does an rlock and sets result 1068 LIR_Opr LIRGenerator::rlock_result(Value x) { 1069 LIR_Opr reg = rlock(x); 1070 set_result(x, reg); 1071 return reg; 1072 } 1073 1074 1075 // does an rlock and sets result 1076 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1077 LIR_Opr reg; 1078 switch (type) { 1079 case T_BYTE: 1080 case T_BOOLEAN: 1081 reg = rlock_byte(type); 1082 break; 1083 default: 1084 reg = rlock(x); 1085 break; 1086 } 1087 1088 set_result(x, reg); 1089 return reg; 1090 } 1091 1092 1093 //--------------------------------------------------------------------- 1094 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1095 ObjectType* oc = value->type()->as_ObjectType(); 1096 if (oc) { 1097 return oc->constant_value(); 1098 } 1099 return NULL; 1100 } 1101 1102 1103 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1104 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1105 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1106 1107 // no moves are created for phi functions at the begin of exception 1108 // handlers, so assign operands manually here 1109 for_each_phi_fun(block(), phi, 1110 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1111 1112 LIR_Opr thread_reg = getThreadPointer(); 1113 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1114 exceptionOopOpr()); 1115 __ move_wide(LIR_OprFact::oopConst(NULL), 1116 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1117 __ move_wide(LIR_OprFact::oopConst(NULL), 1118 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1119 1120 LIR_Opr result = new_register(T_OBJECT); 1121 __ move(exceptionOopOpr(), result); 1122 set_result(x, result); 1123 } 1124 1125 1126 //---------------------------------------------------------------------- 1127 //---------------------------------------------------------------------- 1128 //---------------------------------------------------------------------- 1129 //---------------------------------------------------------------------- 1130 // visitor functions 1131 //---------------------------------------------------------------------- 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 1136 void LIRGenerator::do_Phi(Phi* x) { 1137 // phi functions are never visited directly 1138 ShouldNotReachHere(); 1139 } 1140 1141 1142 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1143 void LIRGenerator::do_Constant(Constant* x) { 1144 if (x->state_before() != NULL) { 1145 // Any constant with a ValueStack requires patching so emit the patch here 1146 LIR_Opr reg = rlock_result(x); 1147 CodeEmitInfo* info = state_for(x, x->state_before()); 1148 __ oop2reg_patch(NULL, reg, info); 1149 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1150 if (!x->is_pinned()) { 1151 // unpinned constants are handled specially so that they can be 1152 // put into registers when they are used multiple times within a 1153 // block. After the block completes their operand will be 1154 // cleared so that other blocks can't refer to that register. 1155 set_result(x, load_constant(x)); 1156 } else { 1157 LIR_Opr res = x->operand(); 1158 if (!res->is_valid()) { 1159 res = LIR_OprFact::value_type(x->type()); 1160 } 1161 if (res->is_constant()) { 1162 LIR_Opr reg = rlock_result(x); 1163 __ move(res, reg); 1164 } else { 1165 set_result(x, res); 1166 } 1167 } 1168 } else { 1169 set_result(x, LIR_OprFact::value_type(x->type())); 1170 } 1171 } 1172 1173 1174 void LIRGenerator::do_Local(Local* x) { 1175 // operand_for_instruction has the side effect of setting the result 1176 // so there's no need to do it here. 1177 operand_for_instruction(x); 1178 } 1179 1180 1181 void LIRGenerator::do_Return(Return* x) { 1182 if (compilation()->env()->dtrace_method_probes()) { 1183 BasicTypeList signature; 1184 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1185 signature.append(T_METADATA); // Method* 1186 LIR_OprList* args = new LIR_OprList(); 1187 args->append(getThreadPointer()); 1188 LIR_Opr meth = new_register(T_METADATA); 1189 __ metadata2reg(method()->constant_encoding(), meth); 1190 args->append(meth); 1191 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1192 } 1193 1194 if (x->type()->is_void()) { 1195 __ return_op(LIR_OprFact::illegalOpr); 1196 } else { 1197 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1198 LIRItem result(x->result(), this); 1199 1200 result.load_item_force(reg); 1201 __ return_op(result.result()); 1202 } 1203 set_no_result(x); 1204 } 1205 1206 // Examble: ref.get() 1207 // Combination of LoadField and g1 pre-write barrier 1208 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1209 1210 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1211 1212 assert(x->number_of_arguments() == 1, "wrong type"); 1213 1214 LIRItem reference(x->argument_at(0), this); 1215 reference.load_item(); 1216 1217 // need to perform the null check on the reference objecy 1218 CodeEmitInfo* info = NULL; 1219 if (x->needs_null_check()) { 1220 info = state_for(x); 1221 } 1222 1223 LIR_Opr result = rlock_result(x, T_OBJECT); 1224 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1225 reference, LIR_OprFact::intConst(referent_offset), result); 1226 } 1227 1228 // Example: clazz.isInstance(object) 1229 void LIRGenerator::do_isInstance(Intrinsic* x) { 1230 assert(x->number_of_arguments() == 2, "wrong type"); 1231 1232 // TODO could try to substitute this node with an equivalent InstanceOf 1233 // if clazz is known to be a constant Class. This will pick up newly found 1234 // constants after HIR construction. I'll leave this to a future change. 1235 1236 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1237 // could follow the aastore example in a future change. 1238 1239 LIRItem clazz(x->argument_at(0), this); 1240 LIRItem object(x->argument_at(1), this); 1241 clazz.load_item(); 1242 object.load_item(); 1243 LIR_Opr result = rlock_result(x); 1244 1245 // need to perform null check on clazz 1246 if (x->needs_null_check()) { 1247 CodeEmitInfo* info = state_for(x); 1248 __ null_check(clazz.result(), info); 1249 } 1250 1251 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1252 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1253 x->type(), 1254 NULL); // NULL CodeEmitInfo results in a leaf call 1255 __ move(call_result, result); 1256 } 1257 1258 // Example: object.getClass () 1259 void LIRGenerator::do_getClass(Intrinsic* x) { 1260 assert(x->number_of_arguments() == 1, "wrong type"); 1261 1262 LIRItem rcvr(x->argument_at(0), this); 1263 rcvr.load_item(); 1264 LIR_Opr temp = new_register(T_METADATA); 1265 LIR_Opr result = rlock_result(x); 1266 1267 // need to perform the null check on the rcvr 1268 CodeEmitInfo* info = NULL; 1269 if (x->needs_null_check()) { 1270 info = state_for(x); 1271 } 1272 1273 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 1274 // meaning of these two is mixed up (see JDK-8026837). 1275 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info); 1276 __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1277 // mirror = ((OopHandle)mirror)->resolve(); 1278 access_load(IN_NATIVE, T_OBJECT, 1279 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1280 } 1281 1282 // java.lang.Class::isPrimitive() 1283 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1284 assert(x->number_of_arguments() == 1, "wrong type"); 1285 1286 LIRItem rcvr(x->argument_at(0), this); 1287 rcvr.load_item(); 1288 LIR_Opr temp = new_register(T_METADATA); 1289 LIR_Opr result = rlock_result(x); 1290 1291 CodeEmitInfo* info = NULL; 1292 if (x->needs_null_check()) { 1293 info = state_for(x); 1294 } 1295 1296 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1297 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1298 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1299 } 1300 1301 // Example: Foo.class.getModifiers() 1302 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1303 assert(x->number_of_arguments() == 1, "wrong type"); 1304 1305 LIRItem receiver(x->argument_at(0), this); 1306 receiver.load_item(); 1307 LIR_Opr result = rlock_result(x); 1308 1309 CodeEmitInfo* info = NULL; 1310 if (x->needs_null_check()) { 1311 info = state_for(x); 1312 } 1313 1314 // While reading off the universal constant mirror is less efficient than doing 1315 // another branch and returning the constant answer, this branchless code runs into 1316 // much less risk of confusion for C1 register allocator. The choice of the universe 1317 // object here is correct as long as it returns the same modifiers we would expect 1318 // from the primitive class itself. See spec for Class.getModifiers that provides 1319 // the typed array klasses with similar modifiers as their component types. 1320 1321 Klass* univ_klass_obj = Universe::byteArrayKlassObj(); 1322 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1323 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj); 1324 1325 LIR_Opr recv_klass = new_register(T_METADATA); 1326 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1327 1328 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1329 LIR_Opr klass = new_register(T_METADATA); 1330 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0)); 1331 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1332 1333 // Get the answer. 1334 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1335 } 1336 1337 // Example: Thread.currentThread() 1338 void LIRGenerator::do_currentThread(Intrinsic* x) { 1339 assert(x->number_of_arguments() == 0, "wrong type"); 1340 LIR_Opr temp = new_register(T_ADDRESS); 1341 LIR_Opr reg = rlock_result(x); 1342 __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp); 1343 // threadObj = ((OopHandle)_threadObj)->resolve(); 1344 access_load(IN_NATIVE, T_OBJECT, 1345 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1346 } 1347 1348 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1349 assert(x->number_of_arguments() == 3, "wrong type"); 1350 LIR_Opr result_reg = rlock_result(x); 1351 1352 LIRItem value(x->argument_at(2), this); 1353 value.load_item(); 1354 1355 LIR_Opr klass = new_register(T_METADATA); 1356 __ move(new LIR_Address(value.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, NULL); 1357 LIR_Opr layout = new_register(T_INT); 1358 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1359 1360 LabelObj* L_done = new LabelObj(); 1361 LabelObj* L_array = new LabelObj(); 1362 1363 __ cmp(lir_cond_lessEqual, layout, 0); 1364 __ branch(lir_cond_lessEqual, L_array->label()); 1365 1366 // Instance case: the layout helper gives us instance size almost directly, 1367 // but we need to mask out the _lh_instance_slow_path_bit. 1368 __ convert(Bytecodes::_i2l, layout, result_reg); 1369 1370 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1371 jlong mask = ~(jlong) right_n_bits(LogBytesPerLong); 1372 __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg); 1373 1374 __ branch(lir_cond_always, L_done->label()); 1375 1376 // Array case: size is round(header + element_size*arraylength). 1377 // Since arraylength is different for every array instance, we have to 1378 // compute the whole thing at runtime. 1379 1380 __ branch_destination(L_array->label()); 1381 1382 int round_mask = MinObjAlignmentInBytes - 1; 1383 1384 // Figure out header sizes first. 1385 LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift); 1386 LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask); 1387 1388 LIR_Opr header_size = new_register(T_INT); 1389 __ move(layout, header_size); 1390 LIR_Opr tmp = new_register(T_INT); 1391 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1392 __ logical_and(header_size, hsm, header_size); 1393 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1394 1395 // Figure out the array length in bytes 1396 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1397 LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask); 1398 __ logical_and(layout, l2esm, layout); 1399 1400 LIR_Opr length_int = new_register(T_INT); 1401 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1402 1403 #ifdef _LP64 1404 LIR_Opr length = new_register(T_LONG); 1405 __ convert(Bytecodes::_i2l, length_int, length); 1406 #endif 1407 1408 // Shift-left awkwardness. Normally it is just: 1409 // __ shift_left(length, layout, length); 1410 // But C1 cannot perform shift_left with non-constant count, so we end up 1411 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1412 // longs, so we have to act on ints. 1413 LabelObj* L_shift_loop = new LabelObj(); 1414 LabelObj* L_shift_exit = new LabelObj(); 1415 1416 __ branch_destination(L_shift_loop->label()); 1417 __ cmp(lir_cond_equal, layout, 0); 1418 __ branch(lir_cond_equal, L_shift_exit->label()); 1419 1420 #ifdef _LP64 1421 __ shift_left(length, 1, length); 1422 #else 1423 __ shift_left(length_int, 1, length_int); 1424 #endif 1425 1426 __ sub(layout, LIR_OprFact::intConst(1), layout); 1427 1428 __ branch(lir_cond_always, L_shift_loop->label()); 1429 __ branch_destination(L_shift_exit->label()); 1430 1431 // Mix all up, round, and push to the result. 1432 #ifdef _LP64 1433 LIR_Opr header_size_long = new_register(T_LONG); 1434 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1435 __ add(length, header_size_long, length); 1436 if (round_mask != 0) { 1437 __ logical_and(length, LIR_OprFact::longConst(~round_mask), length); 1438 } 1439 __ move(length, result_reg); 1440 #else 1441 __ add(length_int, header_size, length_int); 1442 if (round_mask != 0) { 1443 __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int); 1444 } 1445 __ convert(Bytecodes::_i2l, length_int, result_reg); 1446 #endif 1447 1448 __ branch_destination(L_done->label()); 1449 } 1450 1451 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1452 assert(x->number_of_arguments() == 1, "wrong type"); 1453 LIRItem receiver(x->argument_at(0), this); 1454 1455 receiver.load_item(); 1456 BasicTypeList signature; 1457 signature.append(T_OBJECT); // receiver 1458 LIR_OprList* args = new LIR_OprList(); 1459 args->append(receiver.result()); 1460 CodeEmitInfo* info = state_for(x, x->state()); 1461 call_runtime(&signature, args, 1462 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1463 voidType, info); 1464 1465 set_no_result(x); 1466 } 1467 1468 1469 //------------------------local access-------------------------------------- 1470 1471 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1472 if (x->operand()->is_illegal()) { 1473 Constant* c = x->as_Constant(); 1474 if (c != NULL) { 1475 x->set_operand(LIR_OprFact::value_type(c->type())); 1476 } else { 1477 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1478 // allocate a virtual register for this local or phi 1479 x->set_operand(rlock(x)); 1480 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1481 } 1482 } 1483 return x->operand(); 1484 } 1485 1486 1487 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1488 if (opr->is_virtual()) { 1489 return instruction_for_vreg(opr->vreg_number()); 1490 } 1491 return NULL; 1492 } 1493 1494 1495 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1496 if (reg_num < _instruction_for_operand.length()) { 1497 return _instruction_for_operand.at(reg_num); 1498 } 1499 return NULL; 1500 } 1501 1502 1503 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1504 if (_vreg_flags.size_in_bits() == 0) { 1505 BitMap2D temp(100, num_vreg_flags); 1506 _vreg_flags = temp; 1507 } 1508 _vreg_flags.at_put_grow(vreg_num, f, true); 1509 } 1510 1511 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1512 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1513 return false; 1514 } 1515 return _vreg_flags.at(vreg_num, f); 1516 } 1517 1518 1519 // Block local constant handling. This code is useful for keeping 1520 // unpinned constants and constants which aren't exposed in the IR in 1521 // registers. Unpinned Constant instructions have their operands 1522 // cleared when the block is finished so that other blocks can't end 1523 // up referring to their registers. 1524 1525 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1526 assert(!x->is_pinned(), "only for unpinned constants"); 1527 _unpinned_constants.append(x); 1528 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1529 } 1530 1531 1532 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1533 BasicType t = c->type(); 1534 for (int i = 0; i < _constants.length(); i++) { 1535 LIR_Const* other = _constants.at(i); 1536 if (t == other->type()) { 1537 switch (t) { 1538 case T_INT: 1539 case T_FLOAT: 1540 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1541 break; 1542 case T_LONG: 1543 case T_DOUBLE: 1544 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1545 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1546 break; 1547 case T_OBJECT: 1548 if (c->as_jobject() != other->as_jobject()) continue; 1549 break; 1550 default: 1551 break; 1552 } 1553 return _reg_for_constants.at(i); 1554 } 1555 } 1556 1557 LIR_Opr result = new_register(t); 1558 __ move((LIR_Opr)c, result); 1559 _constants.append(c); 1560 _reg_for_constants.append(result); 1561 return result; 1562 } 1563 1564 //------------------------field access-------------------------------------- 1565 1566 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1567 assert(x->number_of_arguments() == 4, "wrong type"); 1568 LIRItem obj (x->argument_at(0), this); // object 1569 LIRItem offset(x->argument_at(1), this); // offset of field 1570 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1571 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1572 assert(obj.type()->tag() == objectTag, "invalid type"); 1573 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1574 assert(val.type()->tag() == type->tag(), "invalid type"); 1575 1576 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1577 obj, offset, cmp, val); 1578 set_result(x, result); 1579 } 1580 1581 // Comment copied form templateTable_i486.cpp 1582 // ---------------------------------------------------------------------------- 1583 // Volatile variables demand their effects be made known to all CPU's in 1584 // order. Store buffers on most chips allow reads & writes to reorder; the 1585 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1586 // memory barrier (i.e., it's not sufficient that the interpreter does not 1587 // reorder volatile references, the hardware also must not reorder them). 1588 // 1589 // According to the new Java Memory Model (JMM): 1590 // (1) All volatiles are serialized wrt to each other. 1591 // ALSO reads & writes act as aquire & release, so: 1592 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1593 // the read float up to before the read. It's OK for non-volatile memory refs 1594 // that happen before the volatile read to float down below it. 1595 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1596 // that happen BEFORE the write float down to after the write. It's OK for 1597 // non-volatile memory refs that happen after the volatile write to float up 1598 // before it. 1599 // 1600 // We only put in barriers around volatile refs (they are expensive), not 1601 // _between_ memory refs (that would require us to track the flavor of the 1602 // previous memory refs). Requirements (2) and (3) require some barriers 1603 // before volatile stores and after volatile loads. These nearly cover 1604 // requirement (1) but miss the volatile-store-volatile-load case. This final 1605 // case is placed after volatile-stores although it could just as well go 1606 // before volatile-loads. 1607 1608 1609 void LIRGenerator::do_StoreField(StoreField* x) { 1610 bool needs_patching = x->needs_patching(); 1611 bool is_volatile = x->field()->is_volatile(); 1612 BasicType field_type = x->field_type(); 1613 1614 CodeEmitInfo* info = NULL; 1615 if (needs_patching) { 1616 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1617 info = state_for(x, x->state_before()); 1618 } else if (x->needs_null_check()) { 1619 NullCheck* nc = x->explicit_null_check(); 1620 if (nc == NULL) { 1621 info = state_for(x); 1622 } else { 1623 info = state_for(nc); 1624 } 1625 } 1626 1627 LIRItem object(x->obj(), this); 1628 LIRItem value(x->value(), this); 1629 1630 object.load_item(); 1631 1632 if (is_volatile || needs_patching) { 1633 // load item if field is volatile (fewer special cases for volatiles) 1634 // load item if field not initialized 1635 // load item if field not constant 1636 // because of code patching we cannot inline constants 1637 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1638 value.load_byte_item(); 1639 } else { 1640 value.load_item(); 1641 } 1642 } else { 1643 value.load_for_store(field_type); 1644 } 1645 1646 set_no_result(x); 1647 1648 #ifndef PRODUCT 1649 if (PrintNotLoaded && needs_patching) { 1650 tty->print_cr(" ###class not loaded at store_%s bci %d", 1651 x->is_static() ? "static" : "field", x->printable_bci()); 1652 } 1653 #endif 1654 1655 if (x->needs_null_check() && 1656 (needs_patching || 1657 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1658 // Emit an explicit null check because the offset is too large. 1659 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1660 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1661 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1662 } 1663 1664 DecoratorSet decorators = IN_HEAP; 1665 if (is_volatile) { 1666 decorators |= MO_SEQ_CST; 1667 } 1668 if (needs_patching) { 1669 decorators |= C1_NEEDS_PATCHING; 1670 } 1671 1672 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1673 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); 1674 } 1675 1676 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1677 assert(x->is_pinned(),""); 1678 bool needs_range_check = x->compute_needs_range_check(); 1679 bool use_length = x->length() != NULL; 1680 bool obj_store = is_reference_type(x->elt_type()); 1681 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 1682 !get_jobject_constant(x->value())->is_null_object() || 1683 x->should_profile()); 1684 1685 LIRItem array(x->array(), this); 1686 LIRItem index(x->index(), this); 1687 LIRItem value(x->value(), this); 1688 LIRItem length(this); 1689 1690 array.load_item(); 1691 index.load_nonconstant(); 1692 1693 if (use_length && needs_range_check) { 1694 length.set_instruction(x->length()); 1695 length.load_item(); 1696 1697 } 1698 if (needs_store_check || x->check_boolean()) { 1699 value.load_item(); 1700 } else { 1701 value.load_for_store(x->elt_type()); 1702 } 1703 1704 set_no_result(x); 1705 1706 // the CodeEmitInfo must be duplicated for each different 1707 // LIR-instruction because spilling can occur anywhere between two 1708 // instructions and so the debug information must be different 1709 CodeEmitInfo* range_check_info = state_for(x); 1710 CodeEmitInfo* null_check_info = NULL; 1711 if (x->needs_null_check()) { 1712 null_check_info = new CodeEmitInfo(range_check_info); 1713 } 1714 1715 if (GenerateRangeChecks && needs_range_check) { 1716 if (use_length) { 1717 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1718 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1719 } else { 1720 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1721 // range_check also does the null check 1722 null_check_info = NULL; 1723 } 1724 } 1725 1726 if (GenerateArrayStoreCheck && needs_store_check) { 1727 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1728 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1729 } 1730 1731 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1732 if (x->check_boolean()) { 1733 decorators |= C1_MASK_BOOLEAN; 1734 } 1735 1736 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1737 NULL, null_check_info); 1738 } 1739 1740 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1741 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1742 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1743 decorators |= ACCESS_READ; 1744 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1745 if (access.is_raw()) { 1746 _barrier_set->BarrierSetC1::load_at(access, result); 1747 } else { 1748 _barrier_set->load_at(access, result); 1749 } 1750 } 1751 1752 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1753 LIR_Opr addr, LIR_Opr result) { 1754 decorators |= ACCESS_READ; 1755 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1756 access.set_resolved_addr(addr); 1757 if (access.is_raw()) { 1758 _barrier_set->BarrierSetC1::load(access, result); 1759 } else { 1760 _barrier_set->load(access, result); 1761 } 1762 } 1763 1764 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1765 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1766 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1767 decorators |= ACCESS_WRITE; 1768 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1769 if (access.is_raw()) { 1770 _barrier_set->BarrierSetC1::store_at(access, value); 1771 } else { 1772 _barrier_set->store_at(access, value); 1773 } 1774 } 1775 1776 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1777 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1778 decorators |= ACCESS_READ; 1779 decorators |= ACCESS_WRITE; 1780 // Atomic operations are SEQ_CST by default 1781 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1782 LIRAccess access(this, decorators, base, offset, type); 1783 if (access.is_raw()) { 1784 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1785 } else { 1786 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1787 } 1788 } 1789 1790 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1791 LIRItem& base, LIRItem& offset, LIRItem& value) { 1792 decorators |= ACCESS_READ; 1793 decorators |= ACCESS_WRITE; 1794 // Atomic operations are SEQ_CST by default 1795 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1796 LIRAccess access(this, decorators, base, offset, type); 1797 if (access.is_raw()) { 1798 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1799 } else { 1800 return _barrier_set->atomic_xchg_at(access, value); 1801 } 1802 } 1803 1804 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1805 LIRItem& base, LIRItem& offset, LIRItem& value) { 1806 decorators |= ACCESS_READ; 1807 decorators |= ACCESS_WRITE; 1808 // Atomic operations are SEQ_CST by default 1809 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1810 LIRAccess access(this, decorators, base, offset, type); 1811 if (access.is_raw()) { 1812 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1813 } else { 1814 return _barrier_set->atomic_add_at(access, value); 1815 } 1816 } 1817 1818 void LIRGenerator::do_LoadField(LoadField* x) { 1819 bool needs_patching = x->needs_patching(); 1820 bool is_volatile = x->field()->is_volatile(); 1821 BasicType field_type = x->field_type(); 1822 1823 CodeEmitInfo* info = NULL; 1824 if (needs_patching) { 1825 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1826 info = state_for(x, x->state_before()); 1827 } else if (x->needs_null_check()) { 1828 NullCheck* nc = x->explicit_null_check(); 1829 if (nc == NULL) { 1830 info = state_for(x); 1831 } else { 1832 info = state_for(nc); 1833 } 1834 } 1835 1836 LIRItem object(x->obj(), this); 1837 1838 object.load_item(); 1839 1840 #ifndef PRODUCT 1841 if (PrintNotLoaded && needs_patching) { 1842 tty->print_cr(" ###class not loaded at load_%s bci %d", 1843 x->is_static() ? "static" : "field", x->printable_bci()); 1844 } 1845 #endif 1846 1847 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1848 if (x->needs_null_check() && 1849 (needs_patching || 1850 MacroAssembler::needs_explicit_null_check(x->offset()) || 1851 stress_deopt)) { 1852 LIR_Opr obj = object.result(); 1853 if (stress_deopt) { 1854 obj = new_register(T_OBJECT); 1855 __ move(LIR_OprFact::oopConst(NULL), obj); 1856 } 1857 // Emit an explicit null check because the offset is too large. 1858 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1859 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1860 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1861 } 1862 1863 DecoratorSet decorators = IN_HEAP; 1864 if (is_volatile) { 1865 decorators |= MO_SEQ_CST; 1866 } 1867 if (needs_patching) { 1868 decorators |= C1_NEEDS_PATCHING; 1869 } 1870 1871 LIR_Opr result = rlock_result(x, field_type); 1872 access_load_at(decorators, field_type, 1873 object, LIR_OprFact::intConst(x->offset()), result, 1874 info ? new CodeEmitInfo(info) : NULL, info); 1875 } 1876 1877 1878 //------------------------java.nio.Buffer.checkIndex------------------------ 1879 1880 // int java.nio.Buffer.checkIndex(int) 1881 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { 1882 // NOTE: by the time we are in checkIndex() we are guaranteed that 1883 // the buffer is non-null (because checkIndex is package-private and 1884 // only called from within other methods in the buffer). 1885 assert(x->number_of_arguments() == 2, "wrong type"); 1886 LIRItem buf (x->argument_at(0), this); 1887 LIRItem index(x->argument_at(1), this); 1888 buf.load_item(); 1889 index.load_item(); 1890 1891 LIR_Opr result = rlock_result(x); 1892 if (GenerateRangeChecks) { 1893 CodeEmitInfo* info = state_for(x); 1894 CodeStub* stub = new RangeCheckStub(info, index.result()); 1895 if (index.result()->is_constant()) { 1896 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); 1897 __ branch(lir_cond_belowEqual, stub); 1898 } else { 1899 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(), 1900 java_nio_Buffer::limit_offset(), T_INT, info); 1901 __ branch(lir_cond_aboveEqual, stub); 1902 } 1903 __ move(index.result(), result); 1904 } else { 1905 // Just load the index into the result register 1906 __ move(index.result(), result); 1907 } 1908 } 1909 1910 1911 //------------------------array access-------------------------------------- 1912 1913 1914 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1915 LIRItem array(x->array(), this); 1916 array.load_item(); 1917 LIR_Opr reg = rlock_result(x); 1918 1919 CodeEmitInfo* info = NULL; 1920 if (x->needs_null_check()) { 1921 NullCheck* nc = x->explicit_null_check(); 1922 if (nc == NULL) { 1923 info = state_for(x); 1924 } else { 1925 info = state_for(nc); 1926 } 1927 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1928 LIR_Opr obj = new_register(T_OBJECT); 1929 __ move(LIR_OprFact::oopConst(NULL), obj); 1930 __ null_check(obj, new CodeEmitInfo(info)); 1931 } 1932 } 1933 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1934 } 1935 1936 1937 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1938 bool use_length = x->length() != NULL; 1939 LIRItem array(x->array(), this); 1940 LIRItem index(x->index(), this); 1941 LIRItem length(this); 1942 bool needs_range_check = x->compute_needs_range_check(); 1943 1944 if (use_length && needs_range_check) { 1945 length.set_instruction(x->length()); 1946 length.load_item(); 1947 } 1948 1949 array.load_item(); 1950 if (index.is_constant() && can_inline_as_constant(x->index())) { 1951 // let it be a constant 1952 index.dont_load_item(); 1953 } else { 1954 index.load_item(); 1955 } 1956 1957 CodeEmitInfo* range_check_info = state_for(x); 1958 CodeEmitInfo* null_check_info = NULL; 1959 if (x->needs_null_check()) { 1960 NullCheck* nc = x->explicit_null_check(); 1961 if (nc != NULL) { 1962 null_check_info = state_for(nc); 1963 } else { 1964 null_check_info = range_check_info; 1965 } 1966 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1967 LIR_Opr obj = new_register(T_OBJECT); 1968 __ move(LIR_OprFact::oopConst(NULL), obj); 1969 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1970 } 1971 } 1972 1973 if (GenerateRangeChecks && needs_range_check) { 1974 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1975 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1976 } else if (use_length) { 1977 // TODO: use a (modified) version of array_range_check that does not require a 1978 // constant length to be loaded to a register 1979 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1980 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1981 } else { 1982 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1983 // The range check performs the null check, so clear it out for the load 1984 null_check_info = NULL; 1985 } 1986 } 1987 1988 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1989 1990 LIR_Opr result = rlock_result(x, x->elt_type()); 1991 access_load_at(decorators, x->elt_type(), 1992 array, index.result(), result, 1993 NULL, null_check_info); 1994 } 1995 1996 1997 void LIRGenerator::do_NullCheck(NullCheck* x) { 1998 if (x->can_trap()) { 1999 LIRItem value(x->obj(), this); 2000 value.load_item(); 2001 CodeEmitInfo* info = state_for(x); 2002 __ null_check(value.result(), info); 2003 } 2004 } 2005 2006 2007 void LIRGenerator::do_TypeCast(TypeCast* x) { 2008 LIRItem value(x->obj(), this); 2009 value.load_item(); 2010 // the result is the same as from the node we are casting 2011 set_result(x, value.result()); 2012 } 2013 2014 2015 void LIRGenerator::do_Throw(Throw* x) { 2016 LIRItem exception(x->exception(), this); 2017 exception.load_item(); 2018 set_no_result(x); 2019 LIR_Opr exception_opr = exception.result(); 2020 CodeEmitInfo* info = state_for(x, x->state()); 2021 2022 #ifndef PRODUCT 2023 if (PrintC1Statistics) { 2024 increment_counter(Runtime1::throw_count_address(), T_INT); 2025 } 2026 #endif 2027 2028 // check if the instruction has an xhandler in any of the nested scopes 2029 bool unwind = false; 2030 if (info->exception_handlers()->length() == 0) { 2031 // this throw is not inside an xhandler 2032 unwind = true; 2033 } else { 2034 // get some idea of the throw type 2035 bool type_is_exact = true; 2036 ciType* throw_type = x->exception()->exact_type(); 2037 if (throw_type == NULL) { 2038 type_is_exact = false; 2039 throw_type = x->exception()->declared_type(); 2040 } 2041 if (throw_type != NULL && throw_type->is_instance_klass()) { 2042 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2043 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2044 } 2045 } 2046 2047 // do null check before moving exception oop into fixed register 2048 // to avoid a fixed interval with an oop during the null check. 2049 // Use a copy of the CodeEmitInfo because debug information is 2050 // different for null_check and throw. 2051 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { 2052 // if the exception object wasn't created using new then it might be null. 2053 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2054 } 2055 2056 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2057 // we need to go through the exception lookup path to get JVMTI 2058 // notification done 2059 unwind = false; 2060 } 2061 2062 // move exception oop into fixed register 2063 __ move(exception_opr, exceptionOopOpr()); 2064 2065 if (unwind) { 2066 __ unwind_exception(exceptionOopOpr()); 2067 } else { 2068 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2069 } 2070 } 2071 2072 2073 void LIRGenerator::do_RoundFP(RoundFP* x) { 2074 assert(strict_fp_requires_explicit_rounding, "not required"); 2075 2076 LIRItem input(x->input(), this); 2077 input.load_item(); 2078 LIR_Opr input_opr = input.result(); 2079 assert(input_opr->is_register(), "why round if value is not in a register?"); 2080 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2081 if (input_opr->is_single_fpu()) { 2082 set_result(x, round_item(input_opr)); // This code path not currently taken 2083 } else { 2084 LIR_Opr result = new_register(T_DOUBLE); 2085 set_vreg_flag(result, must_start_in_memory); 2086 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2087 set_result(x, result); 2088 } 2089 } 2090 2091 // Here UnsafeGetRaw may have x->base() and x->index() be int or long 2092 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. 2093 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { 2094 LIRItem base(x->base(), this); 2095 LIRItem idx(this); 2096 2097 base.load_item(); 2098 if (x->has_index()) { 2099 idx.set_instruction(x->index()); 2100 idx.load_nonconstant(); 2101 } 2102 2103 LIR_Opr reg = rlock_result(x, x->basic_type()); 2104 2105 int log2_scale = 0; 2106 if (x->has_index()) { 2107 log2_scale = x->log2_scale(); 2108 } 2109 2110 assert(!x->has_index() || idx.value() == x->index(), "should match"); 2111 2112 LIR_Opr base_op = base.result(); 2113 LIR_Opr index_op = idx.result(); 2114 #ifndef _LP64 2115 if (base_op->type() == T_LONG) { 2116 base_op = new_register(T_INT); 2117 __ convert(Bytecodes::_l2i, base.result(), base_op); 2118 } 2119 if (x->has_index()) { 2120 if (index_op->type() == T_LONG) { 2121 LIR_Opr long_index_op = index_op; 2122 if (index_op->is_constant()) { 2123 long_index_op = new_register(T_LONG); 2124 __ move(index_op, long_index_op); 2125 } 2126 index_op = new_register(T_INT); 2127 __ convert(Bytecodes::_l2i, long_index_op, index_op); 2128 } else { 2129 assert(x->index()->type()->tag() == intTag, "must be"); 2130 } 2131 } 2132 // At this point base and index should be all ints. 2133 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2134 assert(!x->has_index() || index_op->type() == T_INT, "index should be an int"); 2135 #else 2136 if (x->has_index()) { 2137 if (index_op->type() == T_INT) { 2138 if (!index_op->is_constant()) { 2139 index_op = new_register(T_LONG); 2140 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2141 } 2142 } else { 2143 assert(index_op->type() == T_LONG, "must be"); 2144 if (index_op->is_constant()) { 2145 index_op = new_register(T_LONG); 2146 __ move(idx.result(), index_op); 2147 } 2148 } 2149 } 2150 // At this point base is a long non-constant 2151 // Index is a long register or a int constant. 2152 // We allow the constant to stay an int because that would allow us a more compact encoding by 2153 // embedding an immediate offset in the address expression. If we have a long constant, we have to 2154 // move it into a register first. 2155 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant"); 2156 assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || 2157 (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type"); 2158 #endif 2159 2160 BasicType dst_type = x->basic_type(); 2161 2162 LIR_Address* addr; 2163 if (index_op->is_constant()) { 2164 assert(log2_scale == 0, "must not have a scale"); 2165 assert(index_op->type() == T_INT, "only int constants supported"); 2166 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); 2167 } else { 2168 #ifdef X86 2169 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); 2170 #elif defined(GENERATE_ADDRESS_IS_PREFERRED) 2171 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); 2172 #else 2173 if (index_op->is_illegal() || log2_scale == 0) { 2174 addr = new LIR_Address(base_op, index_op, dst_type); 2175 } else { 2176 LIR_Opr tmp = new_pointer_register(); 2177 __ shift_left(index_op, log2_scale, tmp); 2178 addr = new LIR_Address(base_op, tmp, dst_type); 2179 } 2180 #endif 2181 } 2182 2183 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { 2184 __ unaligned_move(addr, reg); 2185 } else { 2186 if (dst_type == T_OBJECT && x->is_wide()) { 2187 __ move_wide(addr, reg); 2188 } else { 2189 __ move(addr, reg); 2190 } 2191 } 2192 } 2193 2194 2195 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { 2196 int log2_scale = 0; 2197 BasicType type = x->basic_type(); 2198 2199 if (x->has_index()) { 2200 log2_scale = x->log2_scale(); 2201 } 2202 2203 LIRItem base(x->base(), this); 2204 LIRItem value(x->value(), this); 2205 LIRItem idx(this); 2206 2207 base.load_item(); 2208 if (x->has_index()) { 2209 idx.set_instruction(x->index()); 2210 idx.load_item(); 2211 } 2212 2213 if (type == T_BYTE || type == T_BOOLEAN) { 2214 value.load_byte_item(); 2215 } else { 2216 value.load_item(); 2217 } 2218 2219 set_no_result(x); 2220 2221 LIR_Opr base_op = base.result(); 2222 LIR_Opr index_op = idx.result(); 2223 2224 #ifdef GENERATE_ADDRESS_IS_PREFERRED 2225 LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type()); 2226 #else 2227 #ifndef _LP64 2228 if (base_op->type() == T_LONG) { 2229 base_op = new_register(T_INT); 2230 __ convert(Bytecodes::_l2i, base.result(), base_op); 2231 } 2232 if (x->has_index()) { 2233 if (index_op->type() == T_LONG) { 2234 index_op = new_register(T_INT); 2235 __ convert(Bytecodes::_l2i, idx.result(), index_op); 2236 } 2237 } 2238 // At this point base and index should be all ints and not constants 2239 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2240 assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int"); 2241 #else 2242 if (x->has_index()) { 2243 if (index_op->type() == T_INT) { 2244 index_op = new_register(T_LONG); 2245 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2246 } 2247 } 2248 // At this point base and index are long and non-constant 2249 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long"); 2250 assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long"); 2251 #endif 2252 2253 if (log2_scale != 0) { 2254 // temporary fix (platform dependent code without shift on Intel would be better) 2255 // TODO: ARM also allows embedded shift in the address 2256 LIR_Opr tmp = new_pointer_register(); 2257 if (TwoOperandLIRForm) { 2258 __ move(index_op, tmp); 2259 index_op = tmp; 2260 } 2261 __ shift_left(index_op, log2_scale, tmp); 2262 if (!TwoOperandLIRForm) { 2263 index_op = tmp; 2264 } 2265 } 2266 2267 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); 2268 #endif // !GENERATE_ADDRESS_IS_PREFERRED 2269 __ move(value.result(), addr); 2270 } 2271 2272 2273 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { 2274 BasicType type = x->basic_type(); 2275 LIRItem src(x->object(), this); 2276 LIRItem off(x->offset(), this); 2277 2278 off.load_item(); 2279 src.load_item(); 2280 2281 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2282 2283 if (x->is_volatile()) { 2284 decorators |= MO_SEQ_CST; 2285 } 2286 if (type == T_BOOLEAN) { 2287 decorators |= C1_MASK_BOOLEAN; 2288 } 2289 if (is_reference_type(type)) { 2290 decorators |= ON_UNKNOWN_OOP_REF; 2291 } 2292 2293 LIR_Opr result = rlock_result(x, type); 2294 access_load_at(decorators, type, 2295 src, off.result(), result); 2296 } 2297 2298 2299 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { 2300 BasicType type = x->basic_type(); 2301 LIRItem src(x->object(), this); 2302 LIRItem off(x->offset(), this); 2303 LIRItem data(x->value(), this); 2304 2305 src.load_item(); 2306 if (type == T_BOOLEAN || type == T_BYTE) { 2307 data.load_byte_item(); 2308 } else { 2309 data.load_item(); 2310 } 2311 off.load_item(); 2312 2313 set_no_result(x); 2314 2315 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2316 if (is_reference_type(type)) { 2317 decorators |= ON_UNKNOWN_OOP_REF; 2318 } 2319 if (x->is_volatile()) { 2320 decorators |= MO_SEQ_CST; 2321 } 2322 access_store_at(decorators, type, src, off.result(), data.result()); 2323 } 2324 2325 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { 2326 BasicType type = x->basic_type(); 2327 LIRItem src(x->object(), this); 2328 LIRItem off(x->offset(), this); 2329 LIRItem value(x->value(), this); 2330 2331 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2332 2333 if (is_reference_type(type)) { 2334 decorators |= ON_UNKNOWN_OOP_REF; 2335 } 2336 2337 LIR_Opr result; 2338 if (x->is_add()) { 2339 result = access_atomic_add_at(decorators, type, src, off, value); 2340 } else { 2341 result = access_atomic_xchg_at(decorators, type, src, off, value); 2342 } 2343 set_result(x, result); 2344 } 2345 2346 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2347 int lng = x->length(); 2348 2349 for (int i = 0; i < lng; i++) { 2350 C1SwitchRange* one_range = x->at(i); 2351 int low_key = one_range->low_key(); 2352 int high_key = one_range->high_key(); 2353 BlockBegin* dest = one_range->sux(); 2354 if (low_key == high_key) { 2355 __ cmp(lir_cond_equal, value, low_key); 2356 __ branch(lir_cond_equal, dest); 2357 } else if (high_key - low_key == 1) { 2358 __ cmp(lir_cond_equal, value, low_key); 2359 __ branch(lir_cond_equal, dest); 2360 __ cmp(lir_cond_equal, value, high_key); 2361 __ branch(lir_cond_equal, dest); 2362 } else { 2363 LabelObj* L = new LabelObj(); 2364 __ cmp(lir_cond_less, value, low_key); 2365 __ branch(lir_cond_less, L->label()); 2366 __ cmp(lir_cond_lessEqual, value, high_key); 2367 __ branch(lir_cond_lessEqual, dest); 2368 __ branch_destination(L->label()); 2369 } 2370 } 2371 __ jump(default_sux); 2372 } 2373 2374 2375 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2376 SwitchRangeList* res = new SwitchRangeList(); 2377 int len = x->length(); 2378 if (len > 0) { 2379 BlockBegin* sux = x->sux_at(0); 2380 int key = x->lo_key(); 2381 BlockBegin* default_sux = x->default_sux(); 2382 C1SwitchRange* range = new C1SwitchRange(key, sux); 2383 for (int i = 0; i < len; i++, key++) { 2384 BlockBegin* new_sux = x->sux_at(i); 2385 if (sux == new_sux) { 2386 // still in same range 2387 range->set_high_key(key); 2388 } else { 2389 // skip tests which explicitly dispatch to the default 2390 if (sux != default_sux) { 2391 res->append(range); 2392 } 2393 range = new C1SwitchRange(key, new_sux); 2394 } 2395 sux = new_sux; 2396 } 2397 if (res->length() == 0 || res->last() != range) res->append(range); 2398 } 2399 return res; 2400 } 2401 2402 2403 // we expect the keys to be sorted by increasing value 2404 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2405 SwitchRangeList* res = new SwitchRangeList(); 2406 int len = x->length(); 2407 if (len > 0) { 2408 BlockBegin* default_sux = x->default_sux(); 2409 int key = x->key_at(0); 2410 BlockBegin* sux = x->sux_at(0); 2411 C1SwitchRange* range = new C1SwitchRange(key, sux); 2412 for (int i = 1; i < len; i++) { 2413 int new_key = x->key_at(i); 2414 BlockBegin* new_sux = x->sux_at(i); 2415 if (key+1 == new_key && sux == new_sux) { 2416 // still in same range 2417 range->set_high_key(new_key); 2418 } else { 2419 // skip tests which explicitly dispatch to the default 2420 if (range->sux() != default_sux) { 2421 res->append(range); 2422 } 2423 range = new C1SwitchRange(new_key, new_sux); 2424 } 2425 key = new_key; 2426 sux = new_sux; 2427 } 2428 if (res->length() == 0 || res->last() != range) res->append(range); 2429 } 2430 return res; 2431 } 2432 2433 2434 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2435 LIRItem tag(x->tag(), this); 2436 tag.load_item(); 2437 set_no_result(x); 2438 2439 if (x->is_safepoint()) { 2440 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2441 } 2442 2443 // move values into phi locations 2444 move_to_phi(x->state()); 2445 2446 int lo_key = x->lo_key(); 2447 int len = x->length(); 2448 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2449 LIR_Opr value = tag.result(); 2450 2451 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2452 ciMethod* method = x->state()->scope()->method(); 2453 ciMethodData* md = method->method_data_or_null(); 2454 assert(md != NULL, "Sanity"); 2455 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2456 assert(data != NULL, "must have profiling data"); 2457 assert(data->is_MultiBranchData(), "bad profile data?"); 2458 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2459 LIR_Opr md_reg = new_register(T_METADATA); 2460 __ metadata2reg(md->constant_encoding(), md_reg); 2461 LIR_Opr data_offset_reg = new_pointer_register(); 2462 LIR_Opr tmp_reg = new_pointer_register(); 2463 2464 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2465 for (int i = 0; i < len; i++) { 2466 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2467 __ cmp(lir_cond_equal, value, i + lo_key); 2468 __ move(data_offset_reg, tmp_reg); 2469 __ cmove(lir_cond_equal, 2470 LIR_OprFact::intptrConst(count_offset), 2471 tmp_reg, 2472 data_offset_reg, T_INT); 2473 } 2474 2475 LIR_Opr data_reg = new_pointer_register(); 2476 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2477 __ move(data_addr, data_reg); 2478 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2479 __ move(data_reg, data_addr); 2480 } 2481 2482 if (UseTableRanges) { 2483 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2484 } else { 2485 for (int i = 0; i < len; i++) { 2486 __ cmp(lir_cond_equal, value, i + lo_key); 2487 __ branch(lir_cond_equal, x->sux_at(i)); 2488 } 2489 __ jump(x->default_sux()); 2490 } 2491 } 2492 2493 2494 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2495 LIRItem tag(x->tag(), this); 2496 tag.load_item(); 2497 set_no_result(x); 2498 2499 if (x->is_safepoint()) { 2500 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2501 } 2502 2503 // move values into phi locations 2504 move_to_phi(x->state()); 2505 2506 LIR_Opr value = tag.result(); 2507 int len = x->length(); 2508 2509 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2510 ciMethod* method = x->state()->scope()->method(); 2511 ciMethodData* md = method->method_data_or_null(); 2512 assert(md != NULL, "Sanity"); 2513 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2514 assert(data != NULL, "must have profiling data"); 2515 assert(data->is_MultiBranchData(), "bad profile data?"); 2516 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2517 LIR_Opr md_reg = new_register(T_METADATA); 2518 __ metadata2reg(md->constant_encoding(), md_reg); 2519 LIR_Opr data_offset_reg = new_pointer_register(); 2520 LIR_Opr tmp_reg = new_pointer_register(); 2521 2522 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2523 for (int i = 0; i < len; i++) { 2524 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2525 __ cmp(lir_cond_equal, value, x->key_at(i)); 2526 __ move(data_offset_reg, tmp_reg); 2527 __ cmove(lir_cond_equal, 2528 LIR_OprFact::intptrConst(count_offset), 2529 tmp_reg, 2530 data_offset_reg, T_INT); 2531 } 2532 2533 LIR_Opr data_reg = new_pointer_register(); 2534 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2535 __ move(data_addr, data_reg); 2536 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2537 __ move(data_reg, data_addr); 2538 } 2539 2540 if (UseTableRanges) { 2541 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2542 } else { 2543 int len = x->length(); 2544 for (int i = 0; i < len; i++) { 2545 __ cmp(lir_cond_equal, value, x->key_at(i)); 2546 __ branch(lir_cond_equal, x->sux_at(i)); 2547 } 2548 __ jump(x->default_sux()); 2549 } 2550 } 2551 2552 2553 void LIRGenerator::do_Goto(Goto* x) { 2554 set_no_result(x); 2555 2556 if (block()->next()->as_OsrEntry()) { 2557 // need to free up storage used for OSR entry point 2558 LIR_Opr osrBuffer = block()->next()->operand(); 2559 BasicTypeList signature; 2560 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2561 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2562 __ move(osrBuffer, cc->args()->at(0)); 2563 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2564 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2565 } 2566 2567 if (x->is_safepoint()) { 2568 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2569 2570 // increment backedge counter if needed 2571 CodeEmitInfo* info = state_for(x, state); 2572 increment_backedge_counter(info, x->profiled_bci()); 2573 CodeEmitInfo* safepoint_info = state_for(x, state); 2574 __ safepoint(safepoint_poll_register(), safepoint_info); 2575 } 2576 2577 // Gotos can be folded Ifs, handle this case. 2578 if (x->should_profile()) { 2579 ciMethod* method = x->profiled_method(); 2580 assert(method != NULL, "method should be set if branch is profiled"); 2581 ciMethodData* md = method->method_data_or_null(); 2582 assert(md != NULL, "Sanity"); 2583 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2584 assert(data != NULL, "must have profiling data"); 2585 int offset; 2586 if (x->direction() == Goto::taken) { 2587 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2588 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2589 } else if (x->direction() == Goto::not_taken) { 2590 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2591 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2592 } else { 2593 assert(data->is_JumpData(), "need JumpData for branches"); 2594 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2595 } 2596 LIR_Opr md_reg = new_register(T_METADATA); 2597 __ metadata2reg(md->constant_encoding(), md_reg); 2598 2599 increment_counter(new LIR_Address(md_reg, offset, 2600 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2601 } 2602 2603 // emit phi-instruction move after safepoint since this simplifies 2604 // describing the state as the safepoint. 2605 move_to_phi(x->state()); 2606 2607 __ jump(x->default_sux()); 2608 } 2609 2610 /** 2611 * Emit profiling code if needed for arguments, parameters, return value types 2612 * 2613 * @param md MDO the code will update at runtime 2614 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2615 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2616 * @param profiled_k current profile 2617 * @param obj IR node for the object to be profiled 2618 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2619 * Set once we find an update to make and use for next ones. 2620 * @param not_null true if we know obj cannot be null 2621 * @param signature_at_call_k signature at call for obj 2622 * @param callee_signature_k signature of callee for obj 2623 * at call and callee signatures differ at method handle call 2624 * @return the only klass we know will ever be seen at this profile point 2625 */ 2626 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2627 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2628 ciKlass* callee_signature_k) { 2629 ciKlass* result = NULL; 2630 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2631 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2632 // known not to be null or null bit already set and already set to 2633 // unknown: nothing we can do to improve profiling 2634 if (!do_null && !do_update) { 2635 return result; 2636 } 2637 2638 ciKlass* exact_klass = NULL; 2639 Compilation* comp = Compilation::current(); 2640 if (do_update) { 2641 // try to find exact type, using CHA if possible, so that loading 2642 // the klass from the object can be avoided 2643 ciType* type = obj->exact_type(); 2644 if (type == NULL) { 2645 type = obj->declared_type(); 2646 type = comp->cha_exact_type(type); 2647 } 2648 assert(type == NULL || type->is_klass(), "type should be class"); 2649 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2650 2651 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2652 } 2653 2654 if (!do_null && !do_update) { 2655 return result; 2656 } 2657 2658 ciKlass* exact_signature_k = NULL; 2659 if (do_update) { 2660 // Is the type from the signature exact (the only one possible)? 2661 exact_signature_k = signature_at_call_k->exact_klass(); 2662 if (exact_signature_k == NULL) { 2663 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2664 } else { 2665 result = exact_signature_k; 2666 // Known statically. No need to emit any code: prevent 2667 // LIR_Assembler::emit_profile_type() from emitting useless code 2668 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2669 } 2670 // exact_klass and exact_signature_k can be both non NULL but 2671 // different if exact_klass is loaded after the ciObject for 2672 // exact_signature_k is created. 2673 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2674 // sometimes the type of the signature is better than the best type 2675 // the compiler has 2676 exact_klass = exact_signature_k; 2677 } 2678 if (callee_signature_k != NULL && 2679 callee_signature_k != signature_at_call_k) { 2680 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2681 if (improved_klass == NULL) { 2682 improved_klass = comp->cha_exact_type(callee_signature_k); 2683 } 2684 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2685 exact_klass = exact_signature_k; 2686 } 2687 } 2688 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2689 } 2690 2691 if (!do_null && !do_update) { 2692 return result; 2693 } 2694 2695 if (mdp == LIR_OprFact::illegalOpr) { 2696 mdp = new_register(T_METADATA); 2697 __ metadata2reg(md->constant_encoding(), mdp); 2698 if (md_base_offset != 0) { 2699 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2700 mdp = new_pointer_register(); 2701 __ leal(LIR_OprFact::address(base_type_address), mdp); 2702 } 2703 } 2704 LIRItem value(obj, this); 2705 value.load_item(); 2706 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2707 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2708 return result; 2709 } 2710 2711 // profile parameters on entry to the root of the compilation 2712 void LIRGenerator::profile_parameters(Base* x) { 2713 if (compilation()->profile_parameters()) { 2714 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2715 ciMethodData* md = scope()->method()->method_data_or_null(); 2716 assert(md != NULL, "Sanity"); 2717 2718 if (md->parameters_type_data() != NULL) { 2719 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2720 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2721 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2722 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2723 LIR_Opr src = args->at(i); 2724 assert(!src->is_illegal(), "check"); 2725 BasicType t = src->type(); 2726 if (is_reference_type(t)) { 2727 intptr_t profiled_k = parameters->type(j); 2728 Local* local = x->state()->local_at(java_index)->as_Local(); 2729 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2730 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2731 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2732 // If the profile is known statically set it once for all and do not emit any code 2733 if (exact != NULL) { 2734 md->set_parameter_type(j, exact); 2735 } 2736 j++; 2737 } 2738 java_index += type2size[t]; 2739 } 2740 } 2741 } 2742 } 2743 2744 void LIRGenerator::do_Base(Base* x) { 2745 __ std_entry(LIR_OprFact::illegalOpr); 2746 // Emit moves from physical registers / stack slots to virtual registers 2747 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2748 IRScope* irScope = compilation()->hir()->top_scope(); 2749 int java_index = 0; 2750 for (int i = 0; i < args->length(); i++) { 2751 LIR_Opr src = args->at(i); 2752 assert(!src->is_illegal(), "check"); 2753 BasicType t = src->type(); 2754 2755 // Types which are smaller than int are passed as int, so 2756 // correct the type which passed. 2757 switch (t) { 2758 case T_BYTE: 2759 case T_BOOLEAN: 2760 case T_SHORT: 2761 case T_CHAR: 2762 t = T_INT; 2763 break; 2764 default: 2765 break; 2766 } 2767 2768 LIR_Opr dest = new_register(t); 2769 __ move(src, dest); 2770 2771 // Assign new location to Local instruction for this local 2772 Local* local = x->state()->local_at(java_index)->as_Local(); 2773 assert(local != NULL, "Locals for incoming arguments must have been created"); 2774 #ifndef __SOFTFP__ 2775 // The java calling convention passes double as long and float as int. 2776 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2777 #endif // __SOFTFP__ 2778 local->set_operand(dest); 2779 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 2780 java_index += type2size[t]; 2781 } 2782 2783 if (compilation()->env()->dtrace_method_probes()) { 2784 BasicTypeList signature; 2785 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2786 signature.append(T_METADATA); // Method* 2787 LIR_OprList* args = new LIR_OprList(); 2788 args->append(getThreadPointer()); 2789 LIR_Opr meth = new_register(T_METADATA); 2790 __ metadata2reg(method()->constant_encoding(), meth); 2791 args->append(meth); 2792 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 2793 } 2794 2795 if (method()->is_synchronized()) { 2796 LIR_Opr obj; 2797 if (method()->is_static()) { 2798 obj = new_register(T_OBJECT); 2799 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2800 } else { 2801 Local* receiver = x->state()->local_at(0)->as_Local(); 2802 assert(receiver != NULL, "must already exist"); 2803 obj = receiver->operand(); 2804 } 2805 assert(obj->is_valid(), "must be valid"); 2806 2807 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2808 LIR_Opr lock = syncLockOpr(); 2809 __ load_stack_address_monitor(0, lock); 2810 2811 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 2812 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2813 2814 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 2815 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 2816 } 2817 } 2818 if (compilation()->age_code()) { 2819 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 2820 decrement_age(info); 2821 } 2822 // increment invocation counters if needed 2823 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2824 profile_parameters(x); 2825 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 2826 increment_invocation_counter(info); 2827 } 2828 2829 // all blocks with a successor must end with an unconditional jump 2830 // to the successor even if they are consecutive 2831 __ jump(x->default_sux()); 2832 } 2833 2834 2835 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2836 // construct our frame and model the production of incoming pointer 2837 // to the OSR buffer. 2838 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2839 LIR_Opr result = rlock_result(x); 2840 __ move(LIR_Assembler::osrBufferPointer(), result); 2841 } 2842 2843 2844 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2845 assert(args->length() == arg_list->length(), 2846 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2847 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2848 LIRItem* param = args->at(i); 2849 LIR_Opr loc = arg_list->at(i); 2850 if (loc->is_register()) { 2851 param->load_item_force(loc); 2852 } else { 2853 LIR_Address* addr = loc->as_address_ptr(); 2854 param->load_for_store(addr->type()); 2855 if (addr->type() == T_OBJECT) { 2856 __ move_wide(param->result(), addr); 2857 } else 2858 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 2859 __ unaligned_move(param->result(), addr); 2860 } else { 2861 __ move(param->result(), addr); 2862 } 2863 } 2864 } 2865 2866 if (x->has_receiver()) { 2867 LIRItem* receiver = args->at(0); 2868 LIR_Opr loc = arg_list->at(0); 2869 if (loc->is_register()) { 2870 receiver->load_item_force(loc); 2871 } else { 2872 assert(loc->is_address(), "just checking"); 2873 receiver->load_for_store(T_OBJECT); 2874 __ move_wide(receiver->result(), loc->as_address_ptr()); 2875 } 2876 } 2877 } 2878 2879 2880 // Visits all arguments, returns appropriate items without loading them 2881 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2882 LIRItemList* argument_items = new LIRItemList(); 2883 if (x->has_receiver()) { 2884 LIRItem* receiver = new LIRItem(x->receiver(), this); 2885 argument_items->append(receiver); 2886 } 2887 for (int i = 0; i < x->number_of_arguments(); i++) { 2888 LIRItem* param = new LIRItem(x->argument_at(i), this); 2889 argument_items->append(param); 2890 } 2891 return argument_items; 2892 } 2893 2894 2895 // The invoke with receiver has following phases: 2896 // a) traverse and load/lock receiver; 2897 // b) traverse all arguments -> item-array (invoke_visit_argument) 2898 // c) push receiver on stack 2899 // d) load each of the items and push on stack 2900 // e) unlock receiver 2901 // f) move receiver into receiver-register %o0 2902 // g) lock result registers and emit call operation 2903 // 2904 // Before issuing a call, we must spill-save all values on stack 2905 // that are in caller-save register. "spill-save" moves those registers 2906 // either in a free callee-save register or spills them if no free 2907 // callee save register is available. 2908 // 2909 // The problem is where to invoke spill-save. 2910 // - if invoked between e) and f), we may lock callee save 2911 // register in "spill-save" that destroys the receiver register 2912 // before f) is executed 2913 // - if we rearrange f) to be earlier (by loading %o0) it 2914 // may destroy a value on the stack that is currently in %o0 2915 // and is waiting to be spilled 2916 // - if we keep the receiver locked while doing spill-save, 2917 // we cannot spill it as it is spill-locked 2918 // 2919 void LIRGenerator::do_Invoke(Invoke* x) { 2920 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2921 2922 LIR_OprList* arg_list = cc->args(); 2923 LIRItemList* args = invoke_visit_arguments(x); 2924 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2925 2926 // setup result register 2927 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2928 if (x->type() != voidType) { 2929 result_register = result_register_for(x->type()); 2930 } 2931 2932 CodeEmitInfo* info = state_for(x, x->state()); 2933 2934 invoke_load_arguments(x, args, arg_list); 2935 2936 if (x->has_receiver()) { 2937 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2938 receiver = args->at(0)->result(); 2939 } 2940 2941 // emit invoke code 2942 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2943 2944 // JSR 292 2945 // Preserve the SP over MethodHandle call sites, if needed. 2946 ciMethod* target = x->target(); 2947 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2948 target->is_method_handle_intrinsic() || 2949 target->is_compiled_lambda_form()); 2950 if (is_method_handle_invoke) { 2951 info->set_is_method_handle_invoke(true); 2952 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2953 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2954 } 2955 } 2956 2957 switch (x->code()) { 2958 case Bytecodes::_invokestatic: 2959 __ call_static(target, result_register, 2960 SharedRuntime::get_resolve_static_call_stub(), 2961 arg_list, info); 2962 break; 2963 case Bytecodes::_invokespecial: 2964 case Bytecodes::_invokevirtual: 2965 case Bytecodes::_invokeinterface: 2966 // for loaded and final (method or class) target we still produce an inline cache, 2967 // in order to be able to call mixed mode 2968 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2969 __ call_opt_virtual(target, receiver, result_register, 2970 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2971 arg_list, info); 2972 } else { 2973 __ call_icvirtual(target, receiver, result_register, 2974 SharedRuntime::get_resolve_virtual_call_stub(), 2975 arg_list, info); 2976 } 2977 break; 2978 case Bytecodes::_invokedynamic: { 2979 __ call_dynamic(target, receiver, result_register, 2980 SharedRuntime::get_resolve_static_call_stub(), 2981 arg_list, info); 2982 break; 2983 } 2984 default: 2985 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2986 break; 2987 } 2988 2989 // JSR 292 2990 // Restore the SP after MethodHandle call sites, if needed. 2991 if (is_method_handle_invoke 2992 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2993 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2994 } 2995 2996 if (result_register->is_valid()) { 2997 LIR_Opr result = rlock_result(x); 2998 __ move(result_register, result); 2999 } 3000 } 3001 3002 3003 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3004 assert(x->number_of_arguments() == 1, "wrong type"); 3005 LIRItem value (x->argument_at(0), this); 3006 LIR_Opr reg = rlock_result(x); 3007 value.load_item(); 3008 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3009 __ move(tmp, reg); 3010 } 3011 3012 3013 3014 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3015 void LIRGenerator::do_IfOp(IfOp* x) { 3016 #ifdef ASSERT 3017 { 3018 ValueTag xtag = x->x()->type()->tag(); 3019 ValueTag ttag = x->tval()->type()->tag(); 3020 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3021 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3022 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3023 } 3024 #endif 3025 3026 LIRItem left(x->x(), this); 3027 LIRItem right(x->y(), this); 3028 left.load_item(); 3029 if (can_inline_as_constant(right.value())) { 3030 right.dont_load_item(); 3031 } else { 3032 right.load_item(); 3033 } 3034 3035 LIRItem t_val(x->tval(), this); 3036 LIRItem f_val(x->fval(), this); 3037 t_val.dont_load_item(); 3038 f_val.dont_load_item(); 3039 LIR_Opr reg = rlock_result(x); 3040 3041 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3042 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3043 } 3044 3045 #ifdef JFR_HAVE_INTRINSICS 3046 3047 void LIRGenerator::do_getEventWriter(Intrinsic* x) { 3048 LabelObj* L_end = new LabelObj(); 3049 3050 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 3051 // meaning of these two is mixed up (see JDK-8026837). 3052 LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), 3053 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), 3054 T_ADDRESS); 3055 LIR_Opr result = rlock_result(x); 3056 __ move(LIR_OprFact::oopConst(NULL), result); 3057 LIR_Opr jobj = new_register(T_METADATA); 3058 __ move_wide(jobj_addr, jobj); 3059 __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0)); 3060 __ branch(lir_cond_equal, L_end->label()); 3061 3062 access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); 3063 3064 __ branch_destination(L_end->label()); 3065 } 3066 3067 #endif 3068 3069 3070 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3071 assert(x->number_of_arguments() == 0, "wrong type"); 3072 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3073 BasicTypeList signature; 3074 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3075 LIR_Opr reg = result_register_for(x->type()); 3076 __ call_runtime_leaf(routine, getThreadTemp(), 3077 reg, new LIR_OprList()); 3078 LIR_Opr result = rlock_result(x); 3079 __ move(reg, result); 3080 } 3081 3082 3083 3084 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3085 switch (x->id()) { 3086 case vmIntrinsics::_intBitsToFloat : 3087 case vmIntrinsics::_doubleToRawLongBits : 3088 case vmIntrinsics::_longBitsToDouble : 3089 case vmIntrinsics::_floatToRawIntBits : { 3090 do_FPIntrinsics(x); 3091 break; 3092 } 3093 3094 #ifdef JFR_HAVE_INTRINSICS 3095 case vmIntrinsics::_getEventWriter: 3096 do_getEventWriter(x); 3097 break; 3098 case vmIntrinsics::_counterTime: 3099 do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); 3100 break; 3101 #endif 3102 3103 case vmIntrinsics::_currentTimeMillis: 3104 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3105 break; 3106 3107 case vmIntrinsics::_nanoTime: 3108 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3109 break; 3110 3111 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3112 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3113 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 3114 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 3115 case vmIntrinsics::_getClass: do_getClass(x); break; 3116 case vmIntrinsics::_currentThread: do_currentThread(x); break; 3117 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 3118 3119 case vmIntrinsics::_dlog: // fall through 3120 case vmIntrinsics::_dlog10: // fall through 3121 case vmIntrinsics::_dabs: // fall through 3122 case vmIntrinsics::_dsqrt: // fall through 3123 case vmIntrinsics::_dtan: // fall through 3124 case vmIntrinsics::_dsin : // fall through 3125 case vmIntrinsics::_dcos : // fall through 3126 case vmIntrinsics::_dexp : // fall through 3127 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3128 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3129 3130 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3131 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3132 3133 // java.nio.Buffer.checkIndex 3134 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; 3135 3136 case vmIntrinsics::_compareAndSetReference: 3137 do_CompareAndSwap(x, objectType); 3138 break; 3139 case vmIntrinsics::_compareAndSetInt: 3140 do_CompareAndSwap(x, intType); 3141 break; 3142 case vmIntrinsics::_compareAndSetLong: 3143 do_CompareAndSwap(x, longType); 3144 break; 3145 3146 case vmIntrinsics::_loadFence : 3147 __ membar_acquire(); 3148 break; 3149 case vmIntrinsics::_storeFence: 3150 __ membar_release(); 3151 break; 3152 case vmIntrinsics::_storeStoreFence: 3153 __ membar_storestore(); 3154 break; 3155 case vmIntrinsics::_fullFence : 3156 __ membar(); 3157 break; 3158 case vmIntrinsics::_onSpinWait: 3159 __ on_spin_wait(); 3160 break; 3161 case vmIntrinsics::_Reference_get: 3162 do_Reference_get(x); 3163 break; 3164 3165 case vmIntrinsics::_updateCRC32: 3166 case vmIntrinsics::_updateBytesCRC32: 3167 case vmIntrinsics::_updateByteBufferCRC32: 3168 do_update_CRC32(x); 3169 break; 3170 3171 case vmIntrinsics::_updateBytesCRC32C: 3172 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3173 do_update_CRC32C(x); 3174 break; 3175 3176 case vmIntrinsics::_vectorizedMismatch: 3177 do_vectorizedMismatch(x); 3178 break; 3179 3180 case vmIntrinsics::_blackhole: 3181 do_blackhole(x); 3182 break; 3183 3184 default: ShouldNotReachHere(); break; 3185 } 3186 } 3187 3188 void LIRGenerator::profile_arguments(ProfileCall* x) { 3189 if (compilation()->profile_arguments()) { 3190 int bci = x->bci_of_invoke(); 3191 ciMethodData* md = x->method()->method_data_or_null(); 3192 assert(md != NULL, "Sanity"); 3193 ciProfileData* data = md->bci_to_data(bci); 3194 if (data != NULL) { 3195 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3196 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3197 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3198 int base_offset = md->byte_offset_of_slot(data, extra); 3199 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3200 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3201 3202 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3203 int start = 0; 3204 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3205 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3206 // first argument is not profiled at call (method handle invoke) 3207 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3208 start = 1; 3209 } 3210 ciSignature* callee_signature = x->callee()->signature(); 3211 // method handle call to virtual method 3212 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3213 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3214 3215 bool ignored_will_link; 3216 ciSignature* signature_at_call = NULL; 3217 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3218 ciSignatureStream signature_at_call_stream(signature_at_call); 3219 3220 // if called through method handle invoke, some arguments may have been popped 3221 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3222 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3223 ciKlass* exact = profile_type(md, base_offset, off, 3224 args->type(i), x->profiled_arg_at(i+start), mdp, 3225 !x->arg_needs_null_check(i+start), 3226 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3227 if (exact != NULL) { 3228 md->set_argument_type(bci, i, exact); 3229 } 3230 } 3231 } else { 3232 #ifdef ASSERT 3233 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3234 int n = x->nb_profiled_args(); 3235 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3236 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3237 "only at JSR292 bytecodes"); 3238 #endif 3239 } 3240 } 3241 } 3242 } 3243 3244 // profile parameters on entry to an inlined method 3245 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3246 if (compilation()->profile_parameters() && x->inlined()) { 3247 ciMethodData* md = x->callee()->method_data_or_null(); 3248 if (md != NULL) { 3249 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3250 if (parameters_type_data != NULL) { 3251 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3252 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3253 bool has_receiver = !x->callee()->is_static(); 3254 ciSignature* sig = x->callee()->signature(); 3255 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3256 int i = 0; // to iterate on the Instructions 3257 Value arg = x->recv(); 3258 bool not_null = false; 3259 int bci = x->bci_of_invoke(); 3260 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3261 // The first parameter is the receiver so that's what we start 3262 // with if it exists. One exception is method handle call to 3263 // virtual method: the receiver is in the args list 3264 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3265 i = 1; 3266 arg = x->profiled_arg_at(0); 3267 not_null = !x->arg_needs_null_check(0); 3268 } 3269 int k = 0; // to iterate on the profile data 3270 for (;;) { 3271 intptr_t profiled_k = parameters->type(k); 3272 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3273 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3274 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3275 // If the profile is known statically set it once for all and do not emit any code 3276 if (exact != NULL) { 3277 md->set_parameter_type(k, exact); 3278 } 3279 k++; 3280 if (k >= parameters_type_data->number_of_parameters()) { 3281 #ifdef ASSERT 3282 int extra = 0; 3283 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3284 x->nb_profiled_args() >= TypeProfileParmsLimit && 3285 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3286 extra += 1; 3287 } 3288 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3289 #endif 3290 break; 3291 } 3292 arg = x->profiled_arg_at(i); 3293 not_null = !x->arg_needs_null_check(i); 3294 i++; 3295 } 3296 } 3297 } 3298 } 3299 } 3300 3301 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3302 // Need recv in a temporary register so it interferes with the other temporaries 3303 LIR_Opr recv = LIR_OprFact::illegalOpr; 3304 LIR_Opr mdo = new_register(T_METADATA); 3305 // tmp is used to hold the counters on SPARC 3306 LIR_Opr tmp = new_pointer_register(); 3307 3308 if (x->nb_profiled_args() > 0) { 3309 profile_arguments(x); 3310 } 3311 3312 // profile parameters on inlined method entry including receiver 3313 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3314 profile_parameters_at_call(x); 3315 } 3316 3317 if (x->recv() != NULL) { 3318 LIRItem value(x->recv(), this); 3319 value.load_item(); 3320 recv = new_register(T_OBJECT); 3321 __ move(value.result(), recv); 3322 } 3323 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3324 } 3325 3326 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3327 int bci = x->bci_of_invoke(); 3328 ciMethodData* md = x->method()->method_data_or_null(); 3329 assert(md != NULL, "Sanity"); 3330 ciProfileData* data = md->bci_to_data(bci); 3331 if (data != NULL) { 3332 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3333 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3334 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3335 3336 bool ignored_will_link; 3337 ciSignature* signature_at_call = NULL; 3338 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3339 3340 // The offset within the MDO of the entry to update may be too large 3341 // to be used in load/store instructions on some platforms. So have 3342 // profile_type() compute the address of the profile in a register. 3343 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3344 ret->type(), x->ret(), mdp, 3345 !x->needs_null_check(), 3346 signature_at_call->return_type()->as_klass(), 3347 x->callee()->signature()->return_type()->as_klass()); 3348 if (exact != NULL) { 3349 md->set_return_type(bci, exact); 3350 } 3351 } 3352 } 3353 3354 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3355 // We can safely ignore accessors here, since c2 will inline them anyway, 3356 // accessors are also always mature. 3357 if (!x->inlinee()->is_accessor()) { 3358 CodeEmitInfo* info = state_for(x, x->state(), true); 3359 // Notify the runtime very infrequently only to take care of counter overflows 3360 int freq_log = Tier23InlineeNotifyFreqLog; 3361 double scale; 3362 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3363 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3364 } 3365 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3366 } 3367 } 3368 3369 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3370 if (compilation()->count_backedges()) { 3371 #if defined(X86) && !defined(_LP64) 3372 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3373 LIR_Opr left_copy = new_register(left->type()); 3374 __ move(left, left_copy); 3375 __ cmp(cond, left_copy, right); 3376 #else 3377 __ cmp(cond, left, right); 3378 #endif 3379 LIR_Opr step = new_register(T_INT); 3380 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3381 LIR_Opr zero = LIR_OprFact::intConst(0); 3382 __ cmove(cond, 3383 (left_bci < bci) ? plus_one : zero, 3384 (right_bci < bci) ? plus_one : zero, 3385 step, left->type()); 3386 increment_backedge_counter(info, step, bci); 3387 } 3388 } 3389 3390 3391 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3392 int freq_log = 0; 3393 int level = compilation()->env()->comp_level(); 3394 if (level == CompLevel_limited_profile) { 3395 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3396 } else if (level == CompLevel_full_profile) { 3397 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3398 } else { 3399 ShouldNotReachHere(); 3400 } 3401 // Increment the appropriate invocation/backedge counter and notify the runtime. 3402 double scale; 3403 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3404 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3405 } 3406 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3407 } 3408 3409 void LIRGenerator::decrement_age(CodeEmitInfo* info) { 3410 ciMethod* method = info->scope()->method(); 3411 MethodCounters* mc_adr = method->ensure_method_counters(); 3412 if (mc_adr != NULL) { 3413 LIR_Opr mc = new_pointer_register(); 3414 __ move(LIR_OprFact::intptrConst(mc_adr), mc); 3415 int offset = in_bytes(MethodCounters::nmethod_age_offset()); 3416 LIR_Address* counter = new LIR_Address(mc, offset, T_INT); 3417 LIR_Opr result = new_register(T_INT); 3418 __ load(counter, result); 3419 __ sub(result, LIR_OprFact::intConst(1), result); 3420 __ store(result, counter); 3421 // DeoptimizeStub will reexecute from the current state in code info. 3422 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, 3423 Deoptimization::Action_make_not_entrant); 3424 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); 3425 __ branch(lir_cond_lessEqual, deopt); 3426 } 3427 } 3428 3429 3430 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3431 ciMethod *method, LIR_Opr step, int frequency, 3432 int bci, bool backedge, bool notify) { 3433 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3434 int level = _compilation->env()->comp_level(); 3435 assert(level > CompLevel_simple, "Shouldn't be here"); 3436 3437 int offset = -1; 3438 LIR_Opr counter_holder = NULL; 3439 if (level == CompLevel_limited_profile) { 3440 MethodCounters* counters_adr = method->ensure_method_counters(); 3441 if (counters_adr == NULL) { 3442 bailout("method counters allocation failed"); 3443 return; 3444 } 3445 counter_holder = new_pointer_register(); 3446 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3447 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3448 MethodCounters::invocation_counter_offset()); 3449 } else if (level == CompLevel_full_profile) { 3450 counter_holder = new_register(T_METADATA); 3451 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3452 MethodData::invocation_counter_offset()); 3453 ciMethodData* md = method->method_data_or_null(); 3454 assert(md != NULL, "Sanity"); 3455 __ metadata2reg(md->constant_encoding(), counter_holder); 3456 } else { 3457 ShouldNotReachHere(); 3458 } 3459 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3460 LIR_Opr result = new_register(T_INT); 3461 __ load(counter, result); 3462 __ add(result, step, result); 3463 __ store(result, counter); 3464 if (notify && (!backedge || UseOnStackReplacement)) { 3465 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3466 // The bci for info can point to cmp for if's we want the if bci 3467 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3468 int freq = frequency << InvocationCounter::count_shift; 3469 if (freq == 0) { 3470 if (!step->is_constant()) { 3471 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3472 __ branch(lir_cond_notEqual, overflow); 3473 } else { 3474 __ branch(lir_cond_always, overflow); 3475 } 3476 } else { 3477 LIR_Opr mask = load_immediate(freq, T_INT); 3478 if (!step->is_constant()) { 3479 // If step is 0, make sure the overflow check below always fails 3480 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3481 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3482 } 3483 __ logical_and(result, mask, result); 3484 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3485 __ branch(lir_cond_equal, overflow); 3486 } 3487 __ branch_destination(overflow->continuation()); 3488 } 3489 } 3490 3491 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3492 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3493 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3494 3495 if (x->pass_thread()) { 3496 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3497 args->append(getThreadPointer()); 3498 } 3499 3500 for (int i = 0; i < x->number_of_arguments(); i++) { 3501 Value a = x->argument_at(i); 3502 LIRItem* item = new LIRItem(a, this); 3503 item->load_item(); 3504 args->append(item->result()); 3505 signature->append(as_BasicType(a->type())); 3506 } 3507 3508 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3509 if (x->type() == voidType) { 3510 set_no_result(x); 3511 } else { 3512 __ move(result, rlock_result(x)); 3513 } 3514 } 3515 3516 #ifdef ASSERT 3517 void LIRGenerator::do_Assert(Assert *x) { 3518 ValueTag tag = x->x()->type()->tag(); 3519 If::Condition cond = x->cond(); 3520 3521 LIRItem xitem(x->x(), this); 3522 LIRItem yitem(x->y(), this); 3523 LIRItem* xin = &xitem; 3524 LIRItem* yin = &yitem; 3525 3526 assert(tag == intTag, "Only integer assertions are valid!"); 3527 3528 xin->load_item(); 3529 yin->dont_load_item(); 3530 3531 set_no_result(x); 3532 3533 LIR_Opr left = xin->result(); 3534 LIR_Opr right = yin->result(); 3535 3536 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3537 } 3538 #endif 3539 3540 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3541 3542 3543 Instruction *a = x->x(); 3544 Instruction *b = x->y(); 3545 if (!a || StressRangeCheckElimination) { 3546 assert(!b || StressRangeCheckElimination, "B must also be null"); 3547 3548 CodeEmitInfo *info = state_for(x, x->state()); 3549 CodeStub* stub = new PredicateFailedStub(info); 3550 3551 __ jump(stub); 3552 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3553 int a_int = a->type()->as_IntConstant()->value(); 3554 int b_int = b->type()->as_IntConstant()->value(); 3555 3556 bool ok = false; 3557 3558 switch(x->cond()) { 3559 case Instruction::eql: ok = (a_int == b_int); break; 3560 case Instruction::neq: ok = (a_int != b_int); break; 3561 case Instruction::lss: ok = (a_int < b_int); break; 3562 case Instruction::leq: ok = (a_int <= b_int); break; 3563 case Instruction::gtr: ok = (a_int > b_int); break; 3564 case Instruction::geq: ok = (a_int >= b_int); break; 3565 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3566 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3567 default: ShouldNotReachHere(); 3568 } 3569 3570 if (ok) { 3571 3572 CodeEmitInfo *info = state_for(x, x->state()); 3573 CodeStub* stub = new PredicateFailedStub(info); 3574 3575 __ jump(stub); 3576 } 3577 } else { 3578 3579 ValueTag tag = x->x()->type()->tag(); 3580 If::Condition cond = x->cond(); 3581 LIRItem xitem(x->x(), this); 3582 LIRItem yitem(x->y(), this); 3583 LIRItem* xin = &xitem; 3584 LIRItem* yin = &yitem; 3585 3586 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3587 3588 xin->load_item(); 3589 yin->dont_load_item(); 3590 set_no_result(x); 3591 3592 LIR_Opr left = xin->result(); 3593 LIR_Opr right = yin->result(); 3594 3595 CodeEmitInfo *info = state_for(x, x->state()); 3596 CodeStub* stub = new PredicateFailedStub(info); 3597 3598 __ cmp(lir_cond(cond), left, right); 3599 __ branch(lir_cond(cond), stub); 3600 } 3601 } 3602 3603 void LIRGenerator::do_blackhole(Intrinsic *x) { 3604 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3605 for (int c = 0; c < x->number_of_arguments(); c++) { 3606 // Load the argument 3607 LIRItem vitem(x->argument_at(c), this); 3608 vitem.load_item(); 3609 // ...and leave it unused. 3610 } 3611 } 3612 3613 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3614 LIRItemList args(1); 3615 LIRItem value(arg1, this); 3616 args.append(&value); 3617 BasicTypeList signature; 3618 signature.append(as_BasicType(arg1->type())); 3619 3620 return call_runtime(&signature, &args, entry, result_type, info); 3621 } 3622 3623 3624 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3625 LIRItemList args(2); 3626 LIRItem value1(arg1, this); 3627 LIRItem value2(arg2, this); 3628 args.append(&value1); 3629 args.append(&value2); 3630 BasicTypeList signature; 3631 signature.append(as_BasicType(arg1->type())); 3632 signature.append(as_BasicType(arg2->type())); 3633 3634 return call_runtime(&signature, &args, entry, result_type, info); 3635 } 3636 3637 3638 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3639 address entry, ValueType* result_type, CodeEmitInfo* info) { 3640 // get a result register 3641 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3642 LIR_Opr result = LIR_OprFact::illegalOpr; 3643 if (result_type->tag() != voidTag) { 3644 result = new_register(result_type); 3645 phys_reg = result_register_for(result_type); 3646 } 3647 3648 // move the arguments into the correct location 3649 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3650 assert(cc->length() == args->length(), "argument mismatch"); 3651 for (int i = 0; i < args->length(); i++) { 3652 LIR_Opr arg = args->at(i); 3653 LIR_Opr loc = cc->at(i); 3654 if (loc->is_register()) { 3655 __ move(arg, loc); 3656 } else { 3657 LIR_Address* addr = loc->as_address_ptr(); 3658 // if (!can_store_as_constant(arg)) { 3659 // LIR_Opr tmp = new_register(arg->type()); 3660 // __ move(arg, tmp); 3661 // arg = tmp; 3662 // } 3663 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3664 __ unaligned_move(arg, addr); 3665 } else { 3666 __ move(arg, addr); 3667 } 3668 } 3669 } 3670 3671 if (info) { 3672 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3673 } else { 3674 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3675 } 3676 if (result->is_valid()) { 3677 __ move(phys_reg, result); 3678 } 3679 return result; 3680 } 3681 3682 3683 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3684 address entry, ValueType* result_type, CodeEmitInfo* info) { 3685 // get a result register 3686 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3687 LIR_Opr result = LIR_OprFact::illegalOpr; 3688 if (result_type->tag() != voidTag) { 3689 result = new_register(result_type); 3690 phys_reg = result_register_for(result_type); 3691 } 3692 3693 // move the arguments into the correct location 3694 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3695 3696 assert(cc->length() == args->length(), "argument mismatch"); 3697 for (int i = 0; i < args->length(); i++) { 3698 LIRItem* arg = args->at(i); 3699 LIR_Opr loc = cc->at(i); 3700 if (loc->is_register()) { 3701 arg->load_item_force(loc); 3702 } else { 3703 LIR_Address* addr = loc->as_address_ptr(); 3704 arg->load_for_store(addr->type()); 3705 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3706 __ unaligned_move(arg->result(), addr); 3707 } else { 3708 __ move(arg->result(), addr); 3709 } 3710 } 3711 } 3712 3713 if (info) { 3714 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3715 } else { 3716 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3717 } 3718 if (result->is_valid()) { 3719 __ move(phys_reg, result); 3720 } 3721 return result; 3722 } 3723 3724 void LIRGenerator::do_MemBar(MemBar* x) { 3725 LIR_Code code = x->code(); 3726 switch(code) { 3727 case lir_membar_acquire : __ membar_acquire(); break; 3728 case lir_membar_release : __ membar_release(); break; 3729 case lir_membar : __ membar(); break; 3730 case lir_membar_loadload : __ membar_loadload(); break; 3731 case lir_membar_storestore: __ membar_storestore(); break; 3732 case lir_membar_loadstore : __ membar_loadstore(); break; 3733 case lir_membar_storeload : __ membar_storeload(); break; 3734 default : ShouldNotReachHere(); break; 3735 } 3736 } 3737 3738 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3739 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3740 if (TwoOperandLIRForm) { 3741 __ move(value, value_fixed); 3742 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3743 } else { 3744 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3745 } 3746 LIR_Opr klass = new_register(T_METADATA); 3747 __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info); 3748 null_check_info = NULL; 3749 LIR_Opr layout = new_register(T_INT); 3750 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3751 int diffbit = Klass::layout_helper_boolean_diffbit(); 3752 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3753 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3754 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3755 value = value_fixed; 3756 return value; 3757 } 3758 3759 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3760 if (x->check_boolean()) { 3761 value = mask_boolean(array, value, null_check_info); 3762 } 3763 return value; 3764 } --- EOF ---