1 /* 2 * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_FrameMap.hpp" 29 #include "c1/c1_Instruction.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "ci/ciObjArray.hpp" 36 #include "ci/ciUtilities.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/c1/barrierSetC1.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "runtime/stubRoutines.hpp" 42 #include "runtime/vm_version.hpp" 43 #include "utilities/bitMap.inline.hpp" 44 #include "utilities/macros.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 #ifdef ASSERT 48 #define __ gen()->lir(__FILE__, __LINE__)-> 49 #else 50 #define __ gen()->lir()-> 51 #endif 52 53 #ifndef PATCHED_ADDR 54 #define PATCHED_ADDR (max_jint) 55 #endif 56 57 void PhiResolverState::reset() { 58 _virtual_operands.clear(); 59 _other_operands.clear(); 60 _vreg_table.clear(); 61 } 62 63 64 //-------------------------------------------------------------- 65 // PhiResolver 66 67 // Resolves cycles: 68 // 69 // r1 := r2 becomes temp := r1 70 // r2 := r1 r1 := r2 71 // r2 := temp 72 // and orders moves: 73 // 74 // r2 := r3 becomes r1 := r2 75 // r1 := r2 r2 := r3 76 77 PhiResolver::PhiResolver(LIRGenerator* gen) 78 : _gen(gen) 79 , _state(gen->resolver_state()) 80 , _temp(LIR_OprFact::illegalOpr) 81 { 82 // reinitialize the shared state arrays 83 _state.reset(); 84 } 85 86 87 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 88 assert(src->is_valid(), ""); 89 assert(dest->is_valid(), ""); 90 __ move(src, dest); 91 } 92 93 94 void PhiResolver::move_temp_to(LIR_Opr dest) { 95 assert(_temp->is_valid(), ""); 96 emit_move(_temp, dest); 97 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 98 } 99 100 101 void PhiResolver::move_to_temp(LIR_Opr src) { 102 assert(_temp->is_illegal(), ""); 103 _temp = _gen->new_register(src->type()); 104 emit_move(src, _temp); 105 } 106 107 108 // Traverse assignment graph in depth first order and generate moves in post order 109 // ie. two assignments: b := c, a := b start with node c: 110 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 111 // Generates moves in this order: move b to a and move c to b 112 // ie. cycle a := b, b := a start with node a 113 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 114 // Generates moves in this order: move b to temp, move a to b, move temp to a 115 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 116 if (!dest->visited()) { 117 dest->set_visited(); 118 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 119 move(dest, dest->destination_at(i)); 120 } 121 } else if (!dest->start_node()) { 122 // cylce in graph detected 123 assert(_loop == NULL, "only one loop valid!"); 124 _loop = dest; 125 move_to_temp(src->operand()); 126 return; 127 } // else dest is a start node 128 129 if (!dest->assigned()) { 130 if (_loop == dest) { 131 move_temp_to(dest->operand()); 132 dest->set_assigned(); 133 } else if (src != NULL) { 134 emit_move(src->operand(), dest->operand()); 135 dest->set_assigned(); 136 } 137 } 138 } 139 140 141 PhiResolver::~PhiResolver() { 142 int i; 143 // resolve any cycles in moves from and to virtual registers 144 for (i = virtual_operands().length() - 1; i >= 0; i --) { 145 ResolveNode* node = virtual_operands().at(i); 146 if (!node->visited()) { 147 _loop = NULL; 148 move(NULL, node); 149 node->set_start_node(); 150 assert(_temp->is_illegal(), "move_temp_to() call missing"); 151 } 152 } 153 154 // generate move for move from non virtual register to abitrary destination 155 for (i = other_operands().length() - 1; i >= 0; i --) { 156 ResolveNode* node = other_operands().at(i); 157 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 158 emit_move(node->operand(), node->destination_at(j)->operand()); 159 } 160 } 161 } 162 163 164 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 165 ResolveNode* node; 166 if (opr->is_virtual()) { 167 int vreg_num = opr->vreg_number(); 168 node = vreg_table().at_grow(vreg_num, NULL); 169 assert(node == NULL || node->operand() == opr, ""); 170 if (node == NULL) { 171 node = new ResolveNode(opr); 172 vreg_table().at_put(vreg_num, node); 173 } 174 // Make sure that all virtual operands show up in the list when 175 // they are used as the source of a move. 176 if (source && !virtual_operands().contains(node)) { 177 virtual_operands().append(node); 178 } 179 } else { 180 assert(source, ""); 181 node = new ResolveNode(opr); 182 other_operands().append(node); 183 } 184 return node; 185 } 186 187 188 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 189 assert(dest->is_virtual(), ""); 190 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 191 assert(src->is_valid(), ""); 192 assert(dest->is_valid(), ""); 193 ResolveNode* source = source_node(src); 194 source->append(destination_node(dest)); 195 } 196 197 198 //-------------------------------------------------------------- 199 // LIRItem 200 201 void LIRItem::set_result(LIR_Opr opr) { 202 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 203 value()->set_operand(opr); 204 205 if (opr->is_virtual()) { 206 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 207 } 208 209 _result = opr; 210 } 211 212 void LIRItem::load_item() { 213 if (result()->is_illegal()) { 214 // update the items result 215 _result = value()->operand(); 216 } 217 if (!result()->is_register()) { 218 LIR_Opr reg = _gen->new_register(value()->type()); 219 __ move(result(), reg); 220 if (result()->is_constant()) { 221 _result = reg; 222 } else { 223 set_result(reg); 224 } 225 } 226 } 227 228 229 void LIRItem::load_for_store(BasicType type) { 230 if (_gen->can_store_as_constant(value(), type)) { 231 _result = value()->operand(); 232 if (!_result->is_constant()) { 233 _result = LIR_OprFact::value_type(value()->type()); 234 } 235 } else if (type == T_BYTE || type == T_BOOLEAN) { 236 load_byte_item(); 237 } else { 238 load_item(); 239 } 240 } 241 242 void LIRItem::load_item_force(LIR_Opr reg) { 243 LIR_Opr r = result(); 244 if (r != reg) { 245 #if !defined(ARM) && !defined(E500V2) 246 if (r->type() != reg->type()) { 247 // moves between different types need an intervening spill slot 248 r = _gen->force_to_spill(r, reg->type()); 249 } 250 #endif 251 __ move(r, reg); 252 _result = reg; 253 } 254 } 255 256 ciObject* LIRItem::get_jobject_constant() const { 257 ObjectType* oc = type()->as_ObjectType(); 258 if (oc) { 259 return oc->constant_value(); 260 } 261 return NULL; 262 } 263 264 265 jint LIRItem::get_jint_constant() const { 266 assert(is_constant() && value() != NULL, ""); 267 assert(type()->as_IntConstant() != NULL, "type check"); 268 return type()->as_IntConstant()->value(); 269 } 270 271 272 jint LIRItem::get_address_constant() const { 273 assert(is_constant() && value() != NULL, ""); 274 assert(type()->as_AddressConstant() != NULL, "type check"); 275 return type()->as_AddressConstant()->value(); 276 } 277 278 279 jfloat LIRItem::get_jfloat_constant() const { 280 assert(is_constant() && value() != NULL, ""); 281 assert(type()->as_FloatConstant() != NULL, "type check"); 282 return type()->as_FloatConstant()->value(); 283 } 284 285 286 jdouble LIRItem::get_jdouble_constant() const { 287 assert(is_constant() && value() != NULL, ""); 288 assert(type()->as_DoubleConstant() != NULL, "type check"); 289 return type()->as_DoubleConstant()->value(); 290 } 291 292 293 jlong LIRItem::get_jlong_constant() const { 294 assert(is_constant() && value() != NULL, ""); 295 assert(type()->as_LongConstant() != NULL, "type check"); 296 return type()->as_LongConstant()->value(); 297 } 298 299 300 301 //-------------------------------------------------------------- 302 303 304 void LIRGenerator::block_do_prolog(BlockBegin* block) { 305 #ifndef PRODUCT 306 if (PrintIRWithLIR) { 307 block->print(); 308 } 309 #endif 310 311 // set up the list of LIR instructions 312 assert(block->lir() == NULL, "LIR list already computed for this block"); 313 _lir = new LIR_List(compilation(), block); 314 block->set_lir(_lir); 315 316 __ branch_destination(block->label()); 317 318 if (LIRTraceExecution && 319 Compilation::current()->hir()->start()->block_id() != block->block_id() && 320 !block->is_set(BlockBegin::exception_entry_flag)) { 321 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 322 trace_block_entry(block); 323 } 324 } 325 326 327 void LIRGenerator::block_do_epilog(BlockBegin* block) { 328 #ifndef PRODUCT 329 if (PrintIRWithLIR) { 330 tty->cr(); 331 } 332 #endif 333 334 // LIR_Opr for unpinned constants shouldn't be referenced by other 335 // blocks so clear them out after processing the block. 336 for (int i = 0; i < _unpinned_constants.length(); i++) { 337 _unpinned_constants.at(i)->clear_operand(); 338 } 339 _unpinned_constants.trunc_to(0); 340 341 // clear our any registers for other local constants 342 _constants.trunc_to(0); 343 _reg_for_constants.trunc_to(0); 344 } 345 346 347 void LIRGenerator::block_do(BlockBegin* block) { 348 CHECK_BAILOUT(); 349 350 block_do_prolog(block); 351 set_block(block); 352 353 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 354 if (instr->is_pinned()) do_root(instr); 355 } 356 357 set_block(NULL); 358 block_do_epilog(block); 359 } 360 361 362 //-------------------------LIRGenerator----------------------------- 363 364 // This is where the tree-walk starts; instr must be root; 365 void LIRGenerator::do_root(Value instr) { 366 CHECK_BAILOUT(); 367 368 InstructionMark im(compilation(), instr); 369 370 assert(instr->is_pinned(), "use only with roots"); 371 assert(instr->subst() == instr, "shouldn't have missed substitution"); 372 373 instr->visit(this); 374 375 assert(!instr->has_uses() || instr->operand()->is_valid() || 376 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 377 } 378 379 380 // This is called for each node in tree; the walk stops if a root is reached 381 void LIRGenerator::walk(Value instr) { 382 InstructionMark im(compilation(), instr); 383 //stop walk when encounter a root 384 if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) { 385 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 386 } else { 387 assert(instr->subst() == instr, "shouldn't have missed substitution"); 388 instr->visit(this); 389 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 390 } 391 } 392 393 394 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 395 assert(state != NULL, "state must be defined"); 396 397 #ifndef PRODUCT 398 state->verify(); 399 #endif 400 401 ValueStack* s = state; 402 for_each_state(s) { 403 if (s->kind() == ValueStack::EmptyExceptionState) { 404 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 405 continue; 406 } 407 408 int index; 409 Value value; 410 for_each_stack_value(s, index, value) { 411 assert(value->subst() == value, "missed substitution"); 412 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 413 walk(value); 414 assert(value->operand()->is_valid(), "must be evaluated now"); 415 } 416 } 417 418 int bci = s->bci(); 419 IRScope* scope = s->scope(); 420 ciMethod* method = scope->method(); 421 422 MethodLivenessResult liveness = method->liveness_at_bci(bci); 423 if (bci == SynchronizationEntryBCI) { 424 if (x->as_ExceptionObject() || x->as_Throw()) { 425 // all locals are dead on exit from the synthetic unlocker 426 liveness.clear(); 427 } else { 428 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 429 } 430 } 431 if (!liveness.is_valid()) { 432 // Degenerate or breakpointed method. 433 bailout("Degenerate or breakpointed method"); 434 } else { 435 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 436 for_each_local_value(s, index, value) { 437 assert(value->subst() == value, "missed substition"); 438 if (liveness.at(index) && !value->type()->is_illegal()) { 439 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 440 walk(value); 441 assert(value->operand()->is_valid(), "must be evaluated now"); 442 } 443 } else { 444 // NULL out this local so that linear scan can assume that all non-NULL values are live. 445 s->invalidate_local(index); 446 } 447 } 448 } 449 } 450 451 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 452 } 453 454 455 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 456 return state_for(x, x->exception_state()); 457 } 458 459 460 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 461 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation 462 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 463 * the class. */ 464 if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) { 465 assert(info != NULL, "info must be set if class is not loaded"); 466 __ klass2reg_patch(NULL, r, info); 467 } else { 468 // no patching needed 469 __ metadata2reg(obj->constant_encoding(), r); 470 } 471 } 472 473 474 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 475 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 476 CodeStub* stub = new RangeCheckStub(range_check_info, index, array); 477 if (index->is_constant()) { 478 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 479 index->as_jint(), null_check_info); 480 __ branch(lir_cond_belowEqual, stub); // forward branch 481 } else { 482 cmp_reg_mem(lir_cond_aboveEqual, index, array, 483 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 484 __ branch(lir_cond_aboveEqual, stub); // forward branch 485 } 486 } 487 488 489 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { 490 CodeStub* stub = new RangeCheckStub(info, index); 491 if (index->is_constant()) { 492 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); 493 __ branch(lir_cond_belowEqual, stub); // forward branch 494 } else { 495 cmp_reg_mem(lir_cond_aboveEqual, index, buffer, 496 java_nio_Buffer::limit_offset(), T_INT, info); 497 __ branch(lir_cond_aboveEqual, stub); // forward branch 498 } 499 __ move(index, result); 500 } 501 502 503 504 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) { 505 LIR_Opr result_op = result; 506 LIR_Opr left_op = left; 507 LIR_Opr right_op = right; 508 509 if (TwoOperandLIRForm && left_op != result_op) { 510 assert(right_op != result_op, "malformed"); 511 __ move(left_op, result_op); 512 left_op = result_op; 513 } 514 515 switch(code) { 516 case Bytecodes::_dadd: 517 case Bytecodes::_fadd: 518 case Bytecodes::_ladd: 519 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 520 case Bytecodes::_fmul: 521 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 522 523 case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break; 524 525 case Bytecodes::_imul: 526 { 527 bool did_strength_reduce = false; 528 529 if (right->is_constant()) { 530 jint c = right->as_jint(); 531 if (c > 0 && is_power_of_2(c)) { 532 // do not need tmp here 533 __ shift_left(left_op, exact_log2(c), result_op); 534 did_strength_reduce = true; 535 } else { 536 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 537 } 538 } 539 // we couldn't strength reduce so just emit the multiply 540 if (!did_strength_reduce) { 541 __ mul(left_op, right_op, result_op); 542 } 543 } 544 break; 545 546 case Bytecodes::_dsub: 547 case Bytecodes::_fsub: 548 case Bytecodes::_lsub: 549 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 550 551 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 552 // ldiv and lrem are implemented with a direct runtime call 553 554 case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break; 555 556 case Bytecodes::_drem: 557 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 558 559 default: ShouldNotReachHere(); 560 } 561 } 562 563 564 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 565 arithmetic_op(code, result, left, right, tmp); 566 } 567 568 569 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 570 arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info); 571 } 572 573 574 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 575 arithmetic_op(code, result, left, right, tmp); 576 } 577 578 579 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 580 581 if (TwoOperandLIRForm && value != result_op 582 // Only 32bit right shifts require two operand form on S390. 583 S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) { 584 assert(count != result_op, "malformed"); 585 __ move(value, result_op); 586 value = result_op; 587 } 588 589 assert(count->is_constant() || count->is_register(), "must be"); 590 switch(code) { 591 case Bytecodes::_ishl: 592 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 593 case Bytecodes::_ishr: 594 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 595 case Bytecodes::_iushr: 596 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 597 default: ShouldNotReachHere(); 598 } 599 } 600 601 602 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 603 if (TwoOperandLIRForm && left_op != result_op) { 604 assert(right_op != result_op, "malformed"); 605 __ move(left_op, result_op); 606 left_op = result_op; 607 } 608 609 switch(code) { 610 case Bytecodes::_iand: 611 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 612 613 case Bytecodes::_ior: 614 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 615 616 case Bytecodes::_ixor: 617 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 618 619 default: ShouldNotReachHere(); 620 } 621 } 622 623 624 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 625 if (!GenerateSynchronizationCode) return; 626 // for slow path, use debug info for state after successful locking 627 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 628 __ load_stack_address_monitor(monitor_no, lock); 629 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 630 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 631 } 632 633 634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 635 if (!GenerateSynchronizationCode) return; 636 // setup registers 637 LIR_Opr hdr = lock; 638 lock = new_hdr; 639 CodeStub* slow_path = new MonitorExitStub(lock, LockingMode != LM_MONITOR, monitor_no); 640 __ load_stack_address_monitor(monitor_no, lock); 641 __ unlock_object(hdr, object, lock, scratch, slow_path); 642 } 643 644 #ifndef PRODUCT 645 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 646 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 647 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 648 } else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) { 649 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 650 } 651 } 652 #endif 653 654 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 655 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 656 // If klass is not loaded we do not know if the klass has finalizers: 657 if (UseFastNewInstance && klass->is_loaded() 658 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 659 660 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 661 662 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 663 664 assert(klass->is_loaded(), "must be loaded"); 665 // allocate space for instance 666 assert(klass->size_helper() > 0, "illegal instance size"); 667 const int instance_size = align_object_size(klass->size_helper()); 668 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 669 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 670 } else { 671 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 672 __ branch(lir_cond_always, slow_path); 673 __ branch_destination(slow_path->continuation()); 674 } 675 } 676 677 678 static bool is_constant_zero(Instruction* inst) { 679 IntConstant* c = inst->type()->as_IntConstant(); 680 if (c) { 681 return (c->value() == 0); 682 } 683 return false; 684 } 685 686 687 static bool positive_constant(Instruction* inst) { 688 IntConstant* c = inst->type()->as_IntConstant(); 689 if (c) { 690 return (c->value() >= 0); 691 } 692 return false; 693 } 694 695 696 static ciArrayKlass* as_array_klass(ciType* type) { 697 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 698 return (ciArrayKlass*)type; 699 } else { 700 return NULL; 701 } 702 } 703 704 static ciType* phi_declared_type(Phi* phi) { 705 ciType* t = phi->operand_at(0)->declared_type(); 706 if (t == NULL) { 707 return NULL; 708 } 709 for(int i = 1; i < phi->operand_count(); i++) { 710 if (t != phi->operand_at(i)->declared_type()) { 711 return NULL; 712 } 713 } 714 return t; 715 } 716 717 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 718 Instruction* src = x->argument_at(0); 719 Instruction* src_pos = x->argument_at(1); 720 Instruction* dst = x->argument_at(2); 721 Instruction* dst_pos = x->argument_at(3); 722 Instruction* length = x->argument_at(4); 723 724 // first try to identify the likely type of the arrays involved 725 ciArrayKlass* expected_type = NULL; 726 bool is_exact = false, src_objarray = false, dst_objarray = false; 727 { 728 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 729 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 730 Phi* phi; 731 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 732 src_declared_type = as_array_klass(phi_declared_type(phi)); 733 } 734 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 735 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 736 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 737 dst_declared_type = as_array_klass(phi_declared_type(phi)); 738 } 739 740 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 741 // the types exactly match so the type is fully known 742 is_exact = true; 743 expected_type = src_exact_type; 744 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 745 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 746 ciArrayKlass* src_type = NULL; 747 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 748 src_type = (ciArrayKlass*) src_exact_type; 749 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 750 src_type = (ciArrayKlass*) src_declared_type; 751 } 752 if (src_type != NULL) { 753 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 754 is_exact = true; 755 expected_type = dst_type; 756 } 757 } 758 } 759 // at least pass along a good guess 760 if (expected_type == NULL) expected_type = dst_exact_type; 761 if (expected_type == NULL) expected_type = src_declared_type; 762 if (expected_type == NULL) expected_type = dst_declared_type; 763 764 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 765 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 766 } 767 768 // if a probable array type has been identified, figure out if any 769 // of the required checks for a fast case can be elided. 770 int flags = LIR_OpArrayCopy::all_flags; 771 772 if (!src_objarray) 773 flags &= ~LIR_OpArrayCopy::src_objarray; 774 if (!dst_objarray) 775 flags &= ~LIR_OpArrayCopy::dst_objarray; 776 777 if (!x->arg_needs_null_check(0)) 778 flags &= ~LIR_OpArrayCopy::src_null_check; 779 if (!x->arg_needs_null_check(2)) 780 flags &= ~LIR_OpArrayCopy::dst_null_check; 781 782 783 if (expected_type != NULL) { 784 Value length_limit = NULL; 785 786 IfOp* ifop = length->as_IfOp(); 787 if (ifop != NULL) { 788 // look for expressions like min(v, a.length) which ends up as 789 // x > y ? y : x or x >= y ? y : x 790 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 791 ifop->x() == ifop->fval() && 792 ifop->y() == ifop->tval()) { 793 length_limit = ifop->y(); 794 } 795 } 796 797 // try to skip null checks and range checks 798 NewArray* src_array = src->as_NewArray(); 799 if (src_array != NULL) { 800 flags &= ~LIR_OpArrayCopy::src_null_check; 801 if (length_limit != NULL && 802 src_array->length() == length_limit && 803 is_constant_zero(src_pos)) { 804 flags &= ~LIR_OpArrayCopy::src_range_check; 805 } 806 } 807 808 NewArray* dst_array = dst->as_NewArray(); 809 if (dst_array != NULL) { 810 flags &= ~LIR_OpArrayCopy::dst_null_check; 811 if (length_limit != NULL && 812 dst_array->length() == length_limit && 813 is_constant_zero(dst_pos)) { 814 flags &= ~LIR_OpArrayCopy::dst_range_check; 815 } 816 } 817 818 // check from incoming constant values 819 if (positive_constant(src_pos)) 820 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 821 if (positive_constant(dst_pos)) 822 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 823 if (positive_constant(length)) 824 flags &= ~LIR_OpArrayCopy::length_positive_check; 825 826 // see if the range check can be elided, which might also imply 827 // that src or dst is non-null. 828 ArrayLength* al = length->as_ArrayLength(); 829 if (al != NULL) { 830 if (al->array() == src) { 831 // it's the length of the source array 832 flags &= ~LIR_OpArrayCopy::length_positive_check; 833 flags &= ~LIR_OpArrayCopy::src_null_check; 834 if (is_constant_zero(src_pos)) 835 flags &= ~LIR_OpArrayCopy::src_range_check; 836 } 837 if (al->array() == dst) { 838 // it's the length of the destination array 839 flags &= ~LIR_OpArrayCopy::length_positive_check; 840 flags &= ~LIR_OpArrayCopy::dst_null_check; 841 if (is_constant_zero(dst_pos)) 842 flags &= ~LIR_OpArrayCopy::dst_range_check; 843 } 844 } 845 if (is_exact) { 846 flags &= ~LIR_OpArrayCopy::type_check; 847 } 848 } 849 850 IntConstant* src_int = src_pos->type()->as_IntConstant(); 851 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 852 if (src_int && dst_int) { 853 int s_offs = src_int->value(); 854 int d_offs = dst_int->value(); 855 if (src_int->value() >= dst_int->value()) { 856 flags &= ~LIR_OpArrayCopy::overlapping; 857 } 858 if (expected_type != NULL) { 859 BasicType t = expected_type->element_type()->basic_type(); 860 int element_size = type2aelembytes(t); 861 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 862 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 863 flags &= ~LIR_OpArrayCopy::unaligned; 864 } 865 } 866 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 867 // src and dest positions are the same, or dst is zero so assume 868 // nonoverlapping copy. 869 flags &= ~LIR_OpArrayCopy::overlapping; 870 } 871 872 if (src == dst) { 873 // moving within a single array so no type checks are needed 874 if (flags & LIR_OpArrayCopy::type_check) { 875 flags &= ~LIR_OpArrayCopy::type_check; 876 } 877 } 878 *flagsp = flags; 879 *expected_typep = (ciArrayKlass*)expected_type; 880 } 881 882 883 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 884 assert(opr->is_register(), "why spill if item is not register?"); 885 886 if (strict_fp_requires_explicit_rounding) { 887 #ifdef IA32 888 if (UseSSE < 1 && opr->is_single_fpu()) { 889 LIR_Opr result = new_register(T_FLOAT); 890 set_vreg_flag(result, must_start_in_memory); 891 assert(opr->is_register(), "only a register can be spilled"); 892 assert(opr->value_type()->is_float(), "rounding only for floats available"); 893 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 894 return result; 895 } 896 #else 897 Unimplemented(); 898 #endif // IA32 899 } 900 return opr; 901 } 902 903 904 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 905 assert(type2size[t] == type2size[value->type()], 906 "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())); 907 if (!value->is_register()) { 908 // force into a register 909 LIR_Opr r = new_register(value->type()); 910 __ move(value, r); 911 value = r; 912 } 913 914 // create a spill location 915 LIR_Opr tmp = new_register(t); 916 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 917 918 // move from register to spill 919 __ move(value, tmp); 920 return tmp; 921 } 922 923 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 924 if (if_instr->should_profile()) { 925 ciMethod* method = if_instr->profiled_method(); 926 assert(method != NULL, "method should be set if branch is profiled"); 927 ciMethodData* md = method->method_data_or_null(); 928 assert(md != NULL, "Sanity"); 929 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 930 assert(data != NULL, "must have profiling data"); 931 assert(data->is_BranchData(), "need BranchData for two-way branches"); 932 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 933 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 934 if (if_instr->is_swapped()) { 935 int t = taken_count_offset; 936 taken_count_offset = not_taken_count_offset; 937 not_taken_count_offset = t; 938 } 939 940 LIR_Opr md_reg = new_register(T_METADATA); 941 __ metadata2reg(md->constant_encoding(), md_reg); 942 943 LIR_Opr data_offset_reg = new_pointer_register(); 944 __ cmove(lir_cond(cond), 945 LIR_OprFact::intptrConst(taken_count_offset), 946 LIR_OprFact::intptrConst(not_taken_count_offset), 947 data_offset_reg, as_BasicType(if_instr->x()->type())); 948 949 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 950 LIR_Opr data_reg = new_pointer_register(); 951 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 952 __ move(data_addr, data_reg); 953 // Use leal instead of add to avoid destroying condition codes on x86 954 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 955 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 956 __ move(data_reg, data_addr); 957 } 958 } 959 960 // Phi technique: 961 // This is about passing live values from one basic block to the other. 962 // In code generated with Java it is rather rare that more than one 963 // value is on the stack from one basic block to the other. 964 // We optimize our technique for efficient passing of one value 965 // (of type long, int, double..) but it can be extended. 966 // When entering or leaving a basic block, all registers and all spill 967 // slots are release and empty. We use the released registers 968 // and spill slots to pass the live values from one block 969 // to the other. The topmost value, i.e., the value on TOS of expression 970 // stack is passed in registers. All other values are stored in spilling 971 // area. Every Phi has an index which designates its spill slot 972 // At exit of a basic block, we fill the register(s) and spill slots. 973 // At entry of a basic block, the block_prolog sets up the content of phi nodes 974 // and locks necessary registers and spilling slots. 975 976 977 // move current value to referenced phi function 978 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 979 Phi* phi = sux_val->as_Phi(); 980 // cur_val can be null without phi being null in conjunction with inlining 981 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 982 if (phi->is_local()) { 983 for (int i = 0; i < phi->operand_count(); i++) { 984 Value op = phi->operand_at(i); 985 if (op != NULL && op->type()->is_illegal()) { 986 bailout("illegal phi operand"); 987 } 988 } 989 } 990 Phi* cur_phi = cur_val->as_Phi(); 991 if (cur_phi != NULL && cur_phi->is_illegal()) { 992 // Phi and local would need to get invalidated 993 // (which is unexpected for Linear Scan). 994 // But this case is very rare so we simply bail out. 995 bailout("propagation of illegal phi"); 996 return; 997 } 998 LIR_Opr operand = cur_val->operand(); 999 if (operand->is_illegal()) { 1000 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 1001 "these can be produced lazily"); 1002 operand = operand_for_instruction(cur_val); 1003 } 1004 resolver->move(operand, operand_for_instruction(phi)); 1005 } 1006 } 1007 1008 1009 // Moves all stack values into their PHI position 1010 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1011 BlockBegin* bb = block(); 1012 if (bb->number_of_sux() == 1) { 1013 BlockBegin* sux = bb->sux_at(0); 1014 assert(sux->number_of_preds() > 0, "invalid CFG"); 1015 1016 // a block with only one predecessor never has phi functions 1017 if (sux->number_of_preds() > 1) { 1018 PhiResolver resolver(this); 1019 1020 ValueStack* sux_state = sux->state(); 1021 Value sux_value; 1022 int index; 1023 1024 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1025 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1026 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1027 1028 for_each_stack_value(sux_state, index, sux_value) { 1029 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1030 } 1031 1032 for_each_local_value(sux_state, index, sux_value) { 1033 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1034 } 1035 1036 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1037 } 1038 } 1039 } 1040 1041 1042 LIR_Opr LIRGenerator::new_register(BasicType type) { 1043 int vreg_num = _virtual_register_number; 1044 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 1045 // a few extra registers before we really run out which helps to avoid to trip over assertions. 1046 if (vreg_num + 20 >= LIR_OprDesc::vreg_max) { 1047 bailout("out of virtual registers in LIR generator"); 1048 if (vreg_num + 2 >= LIR_OprDesc::vreg_max) { 1049 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 1050 _virtual_register_number = LIR_OprDesc::vreg_base; 1051 vreg_num = LIR_OprDesc::vreg_base; 1052 } 1053 } 1054 _virtual_register_number += 1; 1055 LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type); 1056 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 1057 return vreg; 1058 } 1059 1060 1061 // Try to lock using register in hint 1062 LIR_Opr LIRGenerator::rlock(Value instr) { 1063 return new_register(instr->type()); 1064 } 1065 1066 1067 // does an rlock and sets result 1068 LIR_Opr LIRGenerator::rlock_result(Value x) { 1069 LIR_Opr reg = rlock(x); 1070 set_result(x, reg); 1071 return reg; 1072 } 1073 1074 1075 // does an rlock and sets result 1076 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1077 LIR_Opr reg; 1078 switch (type) { 1079 case T_BYTE: 1080 case T_BOOLEAN: 1081 reg = rlock_byte(type); 1082 break; 1083 default: 1084 reg = rlock(x); 1085 break; 1086 } 1087 1088 set_result(x, reg); 1089 return reg; 1090 } 1091 1092 1093 //--------------------------------------------------------------------- 1094 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1095 ObjectType* oc = value->type()->as_ObjectType(); 1096 if (oc) { 1097 return oc->constant_value(); 1098 } 1099 return NULL; 1100 } 1101 1102 1103 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1104 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1105 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1106 1107 // no moves are created for phi functions at the begin of exception 1108 // handlers, so assign operands manually here 1109 for_each_phi_fun(block(), phi, 1110 if (!phi->is_illegal()) { operand_for_instruction(phi); }); 1111 1112 LIR_Opr thread_reg = getThreadPointer(); 1113 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1114 exceptionOopOpr()); 1115 __ move_wide(LIR_OprFact::oopConst(NULL), 1116 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1117 __ move_wide(LIR_OprFact::oopConst(NULL), 1118 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1119 1120 LIR_Opr result = new_register(T_OBJECT); 1121 __ move(exceptionOopOpr(), result); 1122 set_result(x, result); 1123 } 1124 1125 1126 //---------------------------------------------------------------------- 1127 //---------------------------------------------------------------------- 1128 //---------------------------------------------------------------------- 1129 //---------------------------------------------------------------------- 1130 // visitor functions 1131 //---------------------------------------------------------------------- 1132 //---------------------------------------------------------------------- 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 1136 void LIRGenerator::do_Phi(Phi* x) { 1137 // phi functions are never visited directly 1138 ShouldNotReachHere(); 1139 } 1140 1141 1142 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1143 void LIRGenerator::do_Constant(Constant* x) { 1144 if (x->state_before() != NULL) { 1145 // Any constant with a ValueStack requires patching so emit the patch here 1146 LIR_Opr reg = rlock_result(x); 1147 CodeEmitInfo* info = state_for(x, x->state_before()); 1148 __ oop2reg_patch(NULL, reg, info); 1149 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1150 if (!x->is_pinned()) { 1151 // unpinned constants are handled specially so that they can be 1152 // put into registers when they are used multiple times within a 1153 // block. After the block completes their operand will be 1154 // cleared so that other blocks can't refer to that register. 1155 set_result(x, load_constant(x)); 1156 } else { 1157 LIR_Opr res = x->operand(); 1158 if (!res->is_valid()) { 1159 res = LIR_OprFact::value_type(x->type()); 1160 } 1161 if (res->is_constant()) { 1162 LIR_Opr reg = rlock_result(x); 1163 __ move(res, reg); 1164 } else { 1165 set_result(x, res); 1166 } 1167 } 1168 } else { 1169 set_result(x, LIR_OprFact::value_type(x->type())); 1170 } 1171 } 1172 1173 1174 void LIRGenerator::do_Local(Local* x) { 1175 // operand_for_instruction has the side effect of setting the result 1176 // so there's no need to do it here. 1177 operand_for_instruction(x); 1178 } 1179 1180 1181 void LIRGenerator::do_Return(Return* x) { 1182 if (compilation()->env()->dtrace_method_probes()) { 1183 BasicTypeList signature; 1184 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1185 signature.append(T_METADATA); // Method* 1186 LIR_OprList* args = new LIR_OprList(); 1187 args->append(getThreadPointer()); 1188 LIR_Opr meth = new_register(T_METADATA); 1189 __ metadata2reg(method()->constant_encoding(), meth); 1190 args->append(meth); 1191 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1192 } 1193 1194 if (x->type()->is_void()) { 1195 __ return_op(LIR_OprFact::illegalOpr); 1196 } else { 1197 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1198 LIRItem result(x->result(), this); 1199 1200 result.load_item_force(reg); 1201 __ return_op(result.result()); 1202 } 1203 set_no_result(x); 1204 } 1205 1206 // Examble: ref.get() 1207 // Combination of LoadField and g1 pre-write barrier 1208 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1209 1210 const int referent_offset = java_lang_ref_Reference::referent_offset(); 1211 1212 assert(x->number_of_arguments() == 1, "wrong type"); 1213 1214 LIRItem reference(x->argument_at(0), this); 1215 reference.load_item(); 1216 1217 // need to perform the null check on the reference objecy 1218 CodeEmitInfo* info = NULL; 1219 if (x->needs_null_check()) { 1220 info = state_for(x); 1221 } 1222 1223 LIR_Opr result = rlock_result(x, T_OBJECT); 1224 access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, 1225 reference, LIR_OprFact::intConst(referent_offset), result); 1226 } 1227 1228 // Example: clazz.isInstance(object) 1229 void LIRGenerator::do_isInstance(Intrinsic* x) { 1230 assert(x->number_of_arguments() == 2, "wrong type"); 1231 1232 // TODO could try to substitute this node with an equivalent InstanceOf 1233 // if clazz is known to be a constant Class. This will pick up newly found 1234 // constants after HIR construction. I'll leave this to a future change. 1235 1236 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1237 // could follow the aastore example in a future change. 1238 1239 LIRItem clazz(x->argument_at(0), this); 1240 LIRItem object(x->argument_at(1), this); 1241 clazz.load_item(); 1242 object.load_item(); 1243 LIR_Opr result = rlock_result(x); 1244 1245 // need to perform null check on clazz 1246 if (x->needs_null_check()) { 1247 CodeEmitInfo* info = state_for(x); 1248 __ null_check(clazz.result(), info); 1249 } 1250 1251 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1252 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1253 x->type(), 1254 NULL); // NULL CodeEmitInfo results in a leaf call 1255 __ move(call_result, result); 1256 } 1257 1258 void LIRGenerator::load_klass(LIR_Opr obj, LIR_Opr klass, CodeEmitInfo* null_check_info) { 1259 CodeStub* slow_path = UseCompactObjectHeaders ? new LoadKlassStub(klass) : NULL; 1260 __ load_klass(obj, klass, null_check_info, slow_path); 1261 } 1262 1263 // Example: object.getClass () 1264 void LIRGenerator::do_getClass(Intrinsic* x) { 1265 assert(x->number_of_arguments() == 1, "wrong type"); 1266 1267 LIRItem rcvr(x->argument_at(0), this); 1268 rcvr.load_item(); 1269 LIR_Opr temp = new_register(T_ADDRESS); 1270 LIR_Opr result = rlock_result(x); 1271 1272 // need to perform the null check on the rcvr 1273 CodeEmitInfo* info = NULL; 1274 if (x->needs_null_check()) { 1275 info = state_for(x); 1276 } 1277 1278 LIR_Opr klass = new_register(T_METADATA); 1279 load_klass(rcvr.result(), klass, info); 1280 __ move_wide(new LIR_Address(klass, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp); 1281 // mirror = ((OopHandle)mirror)->resolve(); 1282 access_load(IN_NATIVE, T_OBJECT, 1283 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result); 1284 } 1285 1286 // java.lang.Class::isPrimitive() 1287 void LIRGenerator::do_isPrimitive(Intrinsic* x) { 1288 assert(x->number_of_arguments() == 1, "wrong type"); 1289 1290 LIRItem rcvr(x->argument_at(0), this); 1291 rcvr.load_item(); 1292 LIR_Opr temp = new_register(T_METADATA); 1293 LIR_Opr result = rlock_result(x); 1294 1295 CodeEmitInfo* info = NULL; 1296 if (x->needs_null_check()) { 1297 info = state_for(x); 1298 } 1299 1300 __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info); 1301 __ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0)); 1302 __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN); 1303 } 1304 1305 // Example: Foo.class.getModifiers() 1306 void LIRGenerator::do_getModifiers(Intrinsic* x) { 1307 assert(x->number_of_arguments() == 1, "wrong type"); 1308 1309 LIRItem receiver(x->argument_at(0), this); 1310 receiver.load_item(); 1311 LIR_Opr result = rlock_result(x); 1312 1313 CodeEmitInfo* info = NULL; 1314 if (x->needs_null_check()) { 1315 info = state_for(x); 1316 } 1317 1318 // While reading off the universal constant mirror is less efficient than doing 1319 // another branch and returning the constant answer, this branchless code runs into 1320 // much less risk of confusion for C1 register allocator. The choice of the universe 1321 // object here is correct as long as it returns the same modifiers we would expect 1322 // from the primitive class itself. See spec for Class.getModifiers that provides 1323 // the typed array klasses with similar modifiers as their component types. 1324 1325 Klass* univ_klass_obj = Universe::byteArrayKlassObj(); 1326 assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity"); 1327 LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj); 1328 1329 LIR_Opr recv_klass = new_register(T_METADATA); 1330 __ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info); 1331 1332 // Check if this is a Java mirror of primitive type, and select the appropriate klass. 1333 LIR_Opr klass = new_register(T_METADATA); 1334 __ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0)); 1335 __ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS); 1336 1337 // Get the answer. 1338 __ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result); 1339 } 1340 1341 // Example: Thread.currentThread() 1342 void LIRGenerator::do_currentThread(Intrinsic* x) { 1343 assert(x->number_of_arguments() == 0, "wrong type"); 1344 LIR_Opr temp = new_register(T_ADDRESS); 1345 LIR_Opr reg = rlock_result(x); 1346 __ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp); 1347 // threadObj = ((OopHandle)_threadObj)->resolve(); 1348 access_load(IN_NATIVE, T_OBJECT, 1349 LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg); 1350 } 1351 1352 void LIRGenerator::do_getObjectSize(Intrinsic* x) { 1353 assert(x->number_of_arguments() == 3, "wrong type"); 1354 LIR_Opr result_reg = rlock_result(x); 1355 1356 LIRItem value(x->argument_at(2), this); 1357 value.load_item(); 1358 1359 LIR_Opr klass = new_register(T_METADATA); 1360 load_klass(value.result(), klass, NULL); 1361 LIR_Opr layout = new_register(T_INT); 1362 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 1363 1364 LabelObj* L_done = new LabelObj(); 1365 LabelObj* L_array = new LabelObj(); 1366 1367 __ cmp(lir_cond_lessEqual, layout, 0); 1368 __ branch(lir_cond_lessEqual, L_array->label()); 1369 1370 // Instance case: the layout helper gives us instance size almost directly, 1371 // but we need to mask out the _lh_instance_slow_path_bit. 1372 __ convert(Bytecodes::_i2l, layout, result_reg); 1373 1374 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 1375 jlong mask = ~(jlong) right_n_bits(LogBytesPerLong); 1376 __ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg); 1377 1378 __ branch(lir_cond_always, L_done->label()); 1379 1380 // Array case: size is round(header + element_size*arraylength). 1381 // Since arraylength is different for every array instance, we have to 1382 // compute the whole thing at runtime. 1383 1384 __ branch_destination(L_array->label()); 1385 1386 int round_mask = MinObjAlignmentInBytes - 1; 1387 1388 // Figure out header sizes first. 1389 LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift); 1390 LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask); 1391 1392 LIR_Opr header_size = new_register(T_INT); 1393 __ move(layout, header_size); 1394 LIR_Opr tmp = new_register(T_INT); 1395 __ unsigned_shift_right(header_size, hss, header_size, tmp); 1396 __ logical_and(header_size, hsm, header_size); 1397 __ add(header_size, LIR_OprFact::intConst(round_mask), header_size); 1398 1399 // Figure out the array length in bytes 1400 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 1401 LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask); 1402 __ logical_and(layout, l2esm, layout); 1403 1404 LIR_Opr length_int = new_register(T_INT); 1405 __ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int); 1406 1407 #ifdef _LP64 1408 LIR_Opr length = new_register(T_LONG); 1409 __ convert(Bytecodes::_i2l, length_int, length); 1410 #endif 1411 1412 // Shift-left awkwardness. Normally it is just: 1413 // __ shift_left(length, layout, length); 1414 // But C1 cannot perform shift_left with non-constant count, so we end up 1415 // doing the per-bit loop dance here. x86_32 also does not know how to shift 1416 // longs, so we have to act on ints. 1417 LabelObj* L_shift_loop = new LabelObj(); 1418 LabelObj* L_shift_exit = new LabelObj(); 1419 1420 __ branch_destination(L_shift_loop->label()); 1421 __ cmp(lir_cond_equal, layout, 0); 1422 __ branch(lir_cond_equal, L_shift_exit->label()); 1423 1424 #ifdef _LP64 1425 __ shift_left(length, 1, length); 1426 #else 1427 __ shift_left(length_int, 1, length_int); 1428 #endif 1429 1430 __ sub(layout, LIR_OprFact::intConst(1), layout); 1431 1432 __ branch(lir_cond_always, L_shift_loop->label()); 1433 __ branch_destination(L_shift_exit->label()); 1434 1435 // Mix all up, round, and push to the result. 1436 #ifdef _LP64 1437 LIR_Opr header_size_long = new_register(T_LONG); 1438 __ convert(Bytecodes::_i2l, header_size, header_size_long); 1439 __ add(length, header_size_long, length); 1440 if (round_mask != 0) { 1441 __ logical_and(length, LIR_OprFact::longConst(~round_mask), length); 1442 } 1443 __ move(length, result_reg); 1444 #else 1445 __ add(length_int, header_size, length_int); 1446 if (round_mask != 0) { 1447 __ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int); 1448 } 1449 __ convert(Bytecodes::_i2l, length_int, result_reg); 1450 #endif 1451 1452 __ branch_destination(L_done->label()); 1453 } 1454 1455 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1456 assert(x->number_of_arguments() == 1, "wrong type"); 1457 LIRItem receiver(x->argument_at(0), this); 1458 1459 receiver.load_item(); 1460 BasicTypeList signature; 1461 signature.append(T_OBJECT); // receiver 1462 LIR_OprList* args = new LIR_OprList(); 1463 args->append(receiver.result()); 1464 CodeEmitInfo* info = state_for(x, x->state()); 1465 call_runtime(&signature, args, 1466 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1467 voidType, info); 1468 1469 set_no_result(x); 1470 } 1471 1472 1473 //------------------------local access-------------------------------------- 1474 1475 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1476 if (x->operand()->is_illegal()) { 1477 Constant* c = x->as_Constant(); 1478 if (c != NULL) { 1479 x->set_operand(LIR_OprFact::value_type(c->type())); 1480 } else { 1481 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1482 // allocate a virtual register for this local or phi 1483 x->set_operand(rlock(x)); 1484 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1485 } 1486 } 1487 return x->operand(); 1488 } 1489 1490 1491 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1492 if (opr->is_virtual()) { 1493 return instruction_for_vreg(opr->vreg_number()); 1494 } 1495 return NULL; 1496 } 1497 1498 1499 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1500 if (reg_num < _instruction_for_operand.length()) { 1501 return _instruction_for_operand.at(reg_num); 1502 } 1503 return NULL; 1504 } 1505 1506 1507 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1508 if (_vreg_flags.size_in_bits() == 0) { 1509 BitMap2D temp(100, num_vreg_flags); 1510 _vreg_flags = temp; 1511 } 1512 _vreg_flags.at_put_grow(vreg_num, f, true); 1513 } 1514 1515 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1516 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1517 return false; 1518 } 1519 return _vreg_flags.at(vreg_num, f); 1520 } 1521 1522 1523 // Block local constant handling. This code is useful for keeping 1524 // unpinned constants and constants which aren't exposed in the IR in 1525 // registers. Unpinned Constant instructions have their operands 1526 // cleared when the block is finished so that other blocks can't end 1527 // up referring to their registers. 1528 1529 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1530 assert(!x->is_pinned(), "only for unpinned constants"); 1531 _unpinned_constants.append(x); 1532 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1533 } 1534 1535 1536 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1537 BasicType t = c->type(); 1538 for (int i = 0; i < _constants.length(); i++) { 1539 LIR_Const* other = _constants.at(i); 1540 if (t == other->type()) { 1541 switch (t) { 1542 case T_INT: 1543 case T_FLOAT: 1544 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1545 break; 1546 case T_LONG: 1547 case T_DOUBLE: 1548 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1549 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1550 break; 1551 case T_OBJECT: 1552 if (c->as_jobject() != other->as_jobject()) continue; 1553 break; 1554 default: 1555 break; 1556 } 1557 return _reg_for_constants.at(i); 1558 } 1559 } 1560 1561 LIR_Opr result = new_register(t); 1562 __ move((LIR_Opr)c, result); 1563 _constants.append(c); 1564 _reg_for_constants.append(result); 1565 return result; 1566 } 1567 1568 //------------------------field access-------------------------------------- 1569 1570 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 1571 assert(x->number_of_arguments() == 4, "wrong type"); 1572 LIRItem obj (x->argument_at(0), this); // object 1573 LIRItem offset(x->argument_at(1), this); // offset of field 1574 LIRItem cmp (x->argument_at(2), this); // value to compare with field 1575 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 1576 assert(obj.type()->tag() == objectTag, "invalid type"); 1577 assert(cmp.type()->tag() == type->tag(), "invalid type"); 1578 assert(val.type()->tag() == type->tag(), "invalid type"); 1579 1580 LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type), 1581 obj, offset, cmp, val); 1582 set_result(x, result); 1583 } 1584 1585 // Comment copied form templateTable_i486.cpp 1586 // ---------------------------------------------------------------------------- 1587 // Volatile variables demand their effects be made known to all CPU's in 1588 // order. Store buffers on most chips allow reads & writes to reorder; the 1589 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1590 // memory barrier (i.e., it's not sufficient that the interpreter does not 1591 // reorder volatile references, the hardware also must not reorder them). 1592 // 1593 // According to the new Java Memory Model (JMM): 1594 // (1) All volatiles are serialized wrt to each other. 1595 // ALSO reads & writes act as aquire & release, so: 1596 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1597 // the read float up to before the read. It's OK for non-volatile memory refs 1598 // that happen before the volatile read to float down below it. 1599 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1600 // that happen BEFORE the write float down to after the write. It's OK for 1601 // non-volatile memory refs that happen after the volatile write to float up 1602 // before it. 1603 // 1604 // We only put in barriers around volatile refs (they are expensive), not 1605 // _between_ memory refs (that would require us to track the flavor of the 1606 // previous memory refs). Requirements (2) and (3) require some barriers 1607 // before volatile stores and after volatile loads. These nearly cover 1608 // requirement (1) but miss the volatile-store-volatile-load case. This final 1609 // case is placed after volatile-stores although it could just as well go 1610 // before volatile-loads. 1611 1612 1613 void LIRGenerator::do_StoreField(StoreField* x) { 1614 bool needs_patching = x->needs_patching(); 1615 bool is_volatile = x->field()->is_volatile(); 1616 BasicType field_type = x->field_type(); 1617 1618 CodeEmitInfo* info = NULL; 1619 if (needs_patching) { 1620 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1621 info = state_for(x, x->state_before()); 1622 } else if (x->needs_null_check()) { 1623 NullCheck* nc = x->explicit_null_check(); 1624 if (nc == NULL) { 1625 info = state_for(x); 1626 } else { 1627 info = state_for(nc); 1628 } 1629 } 1630 1631 LIRItem object(x->obj(), this); 1632 LIRItem value(x->value(), this); 1633 1634 object.load_item(); 1635 1636 if (is_volatile || needs_patching) { 1637 // load item if field is volatile (fewer special cases for volatiles) 1638 // load item if field not initialized 1639 // load item if field not constant 1640 // because of code patching we cannot inline constants 1641 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1642 value.load_byte_item(); 1643 } else { 1644 value.load_item(); 1645 } 1646 } else { 1647 value.load_for_store(field_type); 1648 } 1649 1650 set_no_result(x); 1651 1652 #ifndef PRODUCT 1653 if (PrintNotLoaded && needs_patching) { 1654 tty->print_cr(" ###class not loaded at store_%s bci %d", 1655 x->is_static() ? "static" : "field", x->printable_bci()); 1656 } 1657 #endif 1658 1659 if (x->needs_null_check() && 1660 (needs_patching || 1661 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1662 // Emit an explicit null check because the offset is too large. 1663 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1664 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1665 __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1666 } 1667 1668 DecoratorSet decorators = IN_HEAP; 1669 if (is_volatile) { 1670 decorators |= MO_SEQ_CST; 1671 } 1672 if (needs_patching) { 1673 decorators |= C1_NEEDS_PATCHING; 1674 } 1675 1676 access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), 1677 value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info); 1678 } 1679 1680 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 1681 assert(x->is_pinned(),""); 1682 bool needs_range_check = x->compute_needs_range_check(); 1683 bool use_length = x->length() != NULL; 1684 bool obj_store = is_reference_type(x->elt_type()); 1685 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 1686 !get_jobject_constant(x->value())->is_null_object() || 1687 x->should_profile()); 1688 1689 LIRItem array(x->array(), this); 1690 LIRItem index(x->index(), this); 1691 LIRItem value(x->value(), this); 1692 LIRItem length(this); 1693 1694 array.load_item(); 1695 index.load_nonconstant(); 1696 1697 if (use_length && needs_range_check) { 1698 length.set_instruction(x->length()); 1699 length.load_item(); 1700 1701 } 1702 if (needs_store_check || x->check_boolean()) { 1703 value.load_item(); 1704 } else { 1705 value.load_for_store(x->elt_type()); 1706 } 1707 1708 set_no_result(x); 1709 1710 // the CodeEmitInfo must be duplicated for each different 1711 // LIR-instruction because spilling can occur anywhere between two 1712 // instructions and so the debug information must be different 1713 CodeEmitInfo* range_check_info = state_for(x); 1714 CodeEmitInfo* null_check_info = NULL; 1715 if (x->needs_null_check()) { 1716 null_check_info = new CodeEmitInfo(range_check_info); 1717 } 1718 1719 if (GenerateRangeChecks && needs_range_check) { 1720 if (use_length) { 1721 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1722 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1723 } else { 1724 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1725 // range_check also does the null check 1726 null_check_info = NULL; 1727 } 1728 } 1729 1730 if (GenerateArrayStoreCheck && needs_store_check) { 1731 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 1732 array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci()); 1733 } 1734 1735 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1736 if (x->check_boolean()) { 1737 decorators |= C1_MASK_BOOLEAN; 1738 } 1739 1740 access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), 1741 NULL, null_check_info); 1742 } 1743 1744 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type, 1745 LIRItem& base, LIR_Opr offset, LIR_Opr result, 1746 CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) { 1747 decorators |= ACCESS_READ; 1748 LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info); 1749 if (access.is_raw()) { 1750 _barrier_set->BarrierSetC1::load_at(access, result); 1751 } else { 1752 _barrier_set->load_at(access, result); 1753 } 1754 } 1755 1756 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type, 1757 LIR_Opr addr, LIR_Opr result) { 1758 decorators |= ACCESS_READ; 1759 LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type); 1760 access.set_resolved_addr(addr); 1761 if (access.is_raw()) { 1762 _barrier_set->BarrierSetC1::load(access, result); 1763 } else { 1764 _barrier_set->load(access, result); 1765 } 1766 } 1767 1768 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type, 1769 LIRItem& base, LIR_Opr offset, LIR_Opr value, 1770 CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) { 1771 decorators |= ACCESS_WRITE; 1772 LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info); 1773 if (access.is_raw()) { 1774 _barrier_set->BarrierSetC1::store_at(access, value); 1775 } else { 1776 _barrier_set->store_at(access, value); 1777 } 1778 } 1779 1780 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type, 1781 LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) { 1782 decorators |= ACCESS_READ; 1783 decorators |= ACCESS_WRITE; 1784 // Atomic operations are SEQ_CST by default 1785 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1786 LIRAccess access(this, decorators, base, offset, type); 1787 if (access.is_raw()) { 1788 return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value); 1789 } else { 1790 return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value); 1791 } 1792 } 1793 1794 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type, 1795 LIRItem& base, LIRItem& offset, LIRItem& value) { 1796 decorators |= ACCESS_READ; 1797 decorators |= ACCESS_WRITE; 1798 // Atomic operations are SEQ_CST by default 1799 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1800 LIRAccess access(this, decorators, base, offset, type); 1801 if (access.is_raw()) { 1802 return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value); 1803 } else { 1804 return _barrier_set->atomic_xchg_at(access, value); 1805 } 1806 } 1807 1808 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type, 1809 LIRItem& base, LIRItem& offset, LIRItem& value) { 1810 decorators |= ACCESS_READ; 1811 decorators |= ACCESS_WRITE; 1812 // Atomic operations are SEQ_CST by default 1813 decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0; 1814 LIRAccess access(this, decorators, base, offset, type); 1815 if (access.is_raw()) { 1816 return _barrier_set->BarrierSetC1::atomic_add_at(access, value); 1817 } else { 1818 return _barrier_set->atomic_add_at(access, value); 1819 } 1820 } 1821 1822 void LIRGenerator::do_LoadField(LoadField* x) { 1823 bool needs_patching = x->needs_patching(); 1824 bool is_volatile = x->field()->is_volatile(); 1825 BasicType field_type = x->field_type(); 1826 1827 CodeEmitInfo* info = NULL; 1828 if (needs_patching) { 1829 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1830 info = state_for(x, x->state_before()); 1831 } else if (x->needs_null_check()) { 1832 NullCheck* nc = x->explicit_null_check(); 1833 if (nc == NULL) { 1834 info = state_for(x); 1835 } else { 1836 info = state_for(nc); 1837 } 1838 } 1839 1840 LIRItem object(x->obj(), this); 1841 1842 object.load_item(); 1843 1844 #ifndef PRODUCT 1845 if (PrintNotLoaded && needs_patching) { 1846 tty->print_cr(" ###class not loaded at load_%s bci %d", 1847 x->is_static() ? "static" : "field", x->printable_bci()); 1848 } 1849 #endif 1850 1851 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1852 if (x->needs_null_check() && 1853 (needs_patching || 1854 MacroAssembler::needs_explicit_null_check(x->offset()) || 1855 stress_deopt)) { 1856 LIR_Opr obj = object.result(); 1857 if (stress_deopt) { 1858 obj = new_register(T_OBJECT); 1859 __ move(LIR_OprFact::oopConst(NULL), obj); 1860 } 1861 // Emit an explicit null check because the offset is too large. 1862 // If the class is not loaded and the object is NULL, we need to deoptimize to throw a 1863 // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code. 1864 __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching); 1865 } 1866 1867 DecoratorSet decorators = IN_HEAP; 1868 if (is_volatile) { 1869 decorators |= MO_SEQ_CST; 1870 } 1871 if (needs_patching) { 1872 decorators |= C1_NEEDS_PATCHING; 1873 } 1874 1875 LIR_Opr result = rlock_result(x, field_type); 1876 access_load_at(decorators, field_type, 1877 object, LIR_OprFact::intConst(x->offset()), result, 1878 info ? new CodeEmitInfo(info) : NULL, info); 1879 } 1880 1881 1882 //------------------------java.nio.Buffer.checkIndex------------------------ 1883 1884 // int java.nio.Buffer.checkIndex(int) 1885 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { 1886 // NOTE: by the time we are in checkIndex() we are guaranteed that 1887 // the buffer is non-null (because checkIndex is package-private and 1888 // only called from within other methods in the buffer). 1889 assert(x->number_of_arguments() == 2, "wrong type"); 1890 LIRItem buf (x->argument_at(0), this); 1891 LIRItem index(x->argument_at(1), this); 1892 buf.load_item(); 1893 index.load_item(); 1894 1895 LIR_Opr result = rlock_result(x); 1896 if (GenerateRangeChecks) { 1897 CodeEmitInfo* info = state_for(x); 1898 CodeStub* stub = new RangeCheckStub(info, index.result()); 1899 if (index.result()->is_constant()) { 1900 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); 1901 __ branch(lir_cond_belowEqual, stub); 1902 } else { 1903 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(), 1904 java_nio_Buffer::limit_offset(), T_INT, info); 1905 __ branch(lir_cond_aboveEqual, stub); 1906 } 1907 __ move(index.result(), result); 1908 } else { 1909 // Just load the index into the result register 1910 __ move(index.result(), result); 1911 } 1912 } 1913 1914 1915 //------------------------array access-------------------------------------- 1916 1917 1918 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1919 LIRItem array(x->array(), this); 1920 array.load_item(); 1921 LIR_Opr reg = rlock_result(x); 1922 1923 CodeEmitInfo* info = NULL; 1924 if (x->needs_null_check()) { 1925 NullCheck* nc = x->explicit_null_check(); 1926 if (nc == NULL) { 1927 info = state_for(x); 1928 } else { 1929 info = state_for(nc); 1930 } 1931 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1932 LIR_Opr obj = new_register(T_OBJECT); 1933 __ move(LIR_OprFact::oopConst(NULL), obj); 1934 __ null_check(obj, new CodeEmitInfo(info)); 1935 } 1936 } 1937 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1938 } 1939 1940 1941 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1942 bool use_length = x->length() != NULL; 1943 LIRItem array(x->array(), this); 1944 LIRItem index(x->index(), this); 1945 LIRItem length(this); 1946 bool needs_range_check = x->compute_needs_range_check(); 1947 1948 if (use_length && needs_range_check) { 1949 length.set_instruction(x->length()); 1950 length.load_item(); 1951 } 1952 1953 array.load_item(); 1954 if (index.is_constant() && can_inline_as_constant(x->index())) { 1955 // let it be a constant 1956 index.dont_load_item(); 1957 } else { 1958 index.load_item(); 1959 } 1960 1961 CodeEmitInfo* range_check_info = state_for(x); 1962 CodeEmitInfo* null_check_info = NULL; 1963 if (x->needs_null_check()) { 1964 NullCheck* nc = x->explicit_null_check(); 1965 if (nc != NULL) { 1966 null_check_info = state_for(nc); 1967 } else { 1968 null_check_info = range_check_info; 1969 } 1970 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1971 LIR_Opr obj = new_register(T_OBJECT); 1972 __ move(LIR_OprFact::oopConst(NULL), obj); 1973 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1974 } 1975 } 1976 1977 if (GenerateRangeChecks && needs_range_check) { 1978 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1979 __ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result())); 1980 } else if (use_length) { 1981 // TODO: use a (modified) version of array_range_check that does not require a 1982 // constant length to be loaded to a register 1983 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1984 __ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result())); 1985 } else { 1986 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1987 // The range check performs the null check, so clear it out for the load 1988 null_check_info = NULL; 1989 } 1990 } 1991 1992 DecoratorSet decorators = IN_HEAP | IS_ARRAY; 1993 1994 LIR_Opr result = rlock_result(x, x->elt_type()); 1995 access_load_at(decorators, x->elt_type(), 1996 array, index.result(), result, 1997 NULL, null_check_info); 1998 } 1999 2000 2001 void LIRGenerator::do_NullCheck(NullCheck* x) { 2002 if (x->can_trap()) { 2003 LIRItem value(x->obj(), this); 2004 value.load_item(); 2005 CodeEmitInfo* info = state_for(x); 2006 __ null_check(value.result(), info); 2007 } 2008 } 2009 2010 2011 void LIRGenerator::do_TypeCast(TypeCast* x) { 2012 LIRItem value(x->obj(), this); 2013 value.load_item(); 2014 // the result is the same as from the node we are casting 2015 set_result(x, value.result()); 2016 } 2017 2018 2019 void LIRGenerator::do_Throw(Throw* x) { 2020 LIRItem exception(x->exception(), this); 2021 exception.load_item(); 2022 set_no_result(x); 2023 LIR_Opr exception_opr = exception.result(); 2024 CodeEmitInfo* info = state_for(x, x->state()); 2025 2026 #ifndef PRODUCT 2027 if (PrintC1Statistics) { 2028 increment_counter(Runtime1::throw_count_address(), T_INT); 2029 } 2030 #endif 2031 2032 // check if the instruction has an xhandler in any of the nested scopes 2033 bool unwind = false; 2034 if (info->exception_handlers()->length() == 0) { 2035 // this throw is not inside an xhandler 2036 unwind = true; 2037 } else { 2038 // get some idea of the throw type 2039 bool type_is_exact = true; 2040 ciType* throw_type = x->exception()->exact_type(); 2041 if (throw_type == NULL) { 2042 type_is_exact = false; 2043 throw_type = x->exception()->declared_type(); 2044 } 2045 if (throw_type != NULL && throw_type->is_instance_klass()) { 2046 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2047 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2048 } 2049 } 2050 2051 // do null check before moving exception oop into fixed register 2052 // to avoid a fixed interval with an oop during the null check. 2053 // Use a copy of the CodeEmitInfo because debug information is 2054 // different for null_check and throw. 2055 if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) { 2056 // if the exception object wasn't created using new then it might be null. 2057 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2058 } 2059 2060 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2061 // we need to go through the exception lookup path to get JVMTI 2062 // notification done 2063 unwind = false; 2064 } 2065 2066 // move exception oop into fixed register 2067 __ move(exception_opr, exceptionOopOpr()); 2068 2069 if (unwind) { 2070 __ unwind_exception(exceptionOopOpr()); 2071 } else { 2072 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2073 } 2074 } 2075 2076 2077 void LIRGenerator::do_RoundFP(RoundFP* x) { 2078 assert(strict_fp_requires_explicit_rounding, "not required"); 2079 2080 LIRItem input(x->input(), this); 2081 input.load_item(); 2082 LIR_Opr input_opr = input.result(); 2083 assert(input_opr->is_register(), "why round if value is not in a register?"); 2084 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2085 if (input_opr->is_single_fpu()) { 2086 set_result(x, round_item(input_opr)); // This code path not currently taken 2087 } else { 2088 LIR_Opr result = new_register(T_DOUBLE); 2089 set_vreg_flag(result, must_start_in_memory); 2090 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2091 set_result(x, result); 2092 } 2093 } 2094 2095 // Here UnsafeGetRaw may have x->base() and x->index() be int or long 2096 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. 2097 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { 2098 LIRItem base(x->base(), this); 2099 LIRItem idx(this); 2100 2101 base.load_item(); 2102 if (x->has_index()) { 2103 idx.set_instruction(x->index()); 2104 idx.load_nonconstant(); 2105 } 2106 2107 LIR_Opr reg = rlock_result(x, x->basic_type()); 2108 2109 int log2_scale = 0; 2110 if (x->has_index()) { 2111 log2_scale = x->log2_scale(); 2112 } 2113 2114 assert(!x->has_index() || idx.value() == x->index(), "should match"); 2115 2116 LIR_Opr base_op = base.result(); 2117 LIR_Opr index_op = idx.result(); 2118 #ifndef _LP64 2119 if (base_op->type() == T_LONG) { 2120 base_op = new_register(T_INT); 2121 __ convert(Bytecodes::_l2i, base.result(), base_op); 2122 } 2123 if (x->has_index()) { 2124 if (index_op->type() == T_LONG) { 2125 LIR_Opr long_index_op = index_op; 2126 if (index_op->is_constant()) { 2127 long_index_op = new_register(T_LONG); 2128 __ move(index_op, long_index_op); 2129 } 2130 index_op = new_register(T_INT); 2131 __ convert(Bytecodes::_l2i, long_index_op, index_op); 2132 } else { 2133 assert(x->index()->type()->tag() == intTag, "must be"); 2134 } 2135 } 2136 // At this point base and index should be all ints. 2137 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2138 assert(!x->has_index() || index_op->type() == T_INT, "index should be an int"); 2139 #else 2140 if (x->has_index()) { 2141 if (index_op->type() == T_INT) { 2142 if (!index_op->is_constant()) { 2143 index_op = new_register(T_LONG); 2144 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2145 } 2146 } else { 2147 assert(index_op->type() == T_LONG, "must be"); 2148 if (index_op->is_constant()) { 2149 index_op = new_register(T_LONG); 2150 __ move(idx.result(), index_op); 2151 } 2152 } 2153 } 2154 // At this point base is a long non-constant 2155 // Index is a long register or a int constant. 2156 // We allow the constant to stay an int because that would allow us a more compact encoding by 2157 // embedding an immediate offset in the address expression. If we have a long constant, we have to 2158 // move it into a register first. 2159 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant"); 2160 assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || 2161 (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type"); 2162 #endif 2163 2164 BasicType dst_type = x->basic_type(); 2165 2166 LIR_Address* addr; 2167 if (index_op->is_constant()) { 2168 assert(log2_scale == 0, "must not have a scale"); 2169 assert(index_op->type() == T_INT, "only int constants supported"); 2170 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); 2171 } else { 2172 #ifdef X86 2173 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); 2174 #elif defined(GENERATE_ADDRESS_IS_PREFERRED) 2175 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); 2176 #else 2177 if (index_op->is_illegal() || log2_scale == 0) { 2178 addr = new LIR_Address(base_op, index_op, dst_type); 2179 } else { 2180 LIR_Opr tmp = new_pointer_register(); 2181 __ shift_left(index_op, log2_scale, tmp); 2182 addr = new LIR_Address(base_op, tmp, dst_type); 2183 } 2184 #endif 2185 } 2186 2187 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { 2188 __ unaligned_move(addr, reg); 2189 } else { 2190 if (dst_type == T_OBJECT && x->is_wide()) { 2191 __ move_wide(addr, reg); 2192 } else { 2193 __ move(addr, reg); 2194 } 2195 } 2196 } 2197 2198 2199 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { 2200 int log2_scale = 0; 2201 BasicType type = x->basic_type(); 2202 2203 if (x->has_index()) { 2204 log2_scale = x->log2_scale(); 2205 } 2206 2207 LIRItem base(x->base(), this); 2208 LIRItem value(x->value(), this); 2209 LIRItem idx(this); 2210 2211 base.load_item(); 2212 if (x->has_index()) { 2213 idx.set_instruction(x->index()); 2214 idx.load_item(); 2215 } 2216 2217 if (type == T_BYTE || type == T_BOOLEAN) { 2218 value.load_byte_item(); 2219 } else { 2220 value.load_item(); 2221 } 2222 2223 set_no_result(x); 2224 2225 LIR_Opr base_op = base.result(); 2226 LIR_Opr index_op = idx.result(); 2227 2228 #ifdef GENERATE_ADDRESS_IS_PREFERRED 2229 LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type()); 2230 #else 2231 #ifndef _LP64 2232 if (base_op->type() == T_LONG) { 2233 base_op = new_register(T_INT); 2234 __ convert(Bytecodes::_l2i, base.result(), base_op); 2235 } 2236 if (x->has_index()) { 2237 if (index_op->type() == T_LONG) { 2238 index_op = new_register(T_INT); 2239 __ convert(Bytecodes::_l2i, idx.result(), index_op); 2240 } 2241 } 2242 // At this point base and index should be all ints and not constants 2243 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2244 assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int"); 2245 #else 2246 if (x->has_index()) { 2247 if (index_op->type() == T_INT) { 2248 index_op = new_register(T_LONG); 2249 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2250 } 2251 } 2252 // At this point base and index are long and non-constant 2253 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long"); 2254 assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long"); 2255 #endif 2256 2257 if (log2_scale != 0) { 2258 // temporary fix (platform dependent code without shift on Intel would be better) 2259 // TODO: ARM also allows embedded shift in the address 2260 LIR_Opr tmp = new_pointer_register(); 2261 if (TwoOperandLIRForm) { 2262 __ move(index_op, tmp); 2263 index_op = tmp; 2264 } 2265 __ shift_left(index_op, log2_scale, tmp); 2266 if (!TwoOperandLIRForm) { 2267 index_op = tmp; 2268 } 2269 } 2270 2271 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); 2272 #endif // !GENERATE_ADDRESS_IS_PREFERRED 2273 __ move(value.result(), addr); 2274 } 2275 2276 2277 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { 2278 BasicType type = x->basic_type(); 2279 LIRItem src(x->object(), this); 2280 LIRItem off(x->offset(), this); 2281 2282 off.load_item(); 2283 src.load_item(); 2284 2285 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2286 2287 if (x->is_volatile()) { 2288 decorators |= MO_SEQ_CST; 2289 } 2290 if (type == T_BOOLEAN) { 2291 decorators |= C1_MASK_BOOLEAN; 2292 } 2293 if (is_reference_type(type)) { 2294 decorators |= ON_UNKNOWN_OOP_REF; 2295 } 2296 2297 LIR_Opr result = rlock_result(x, type); 2298 access_load_at(decorators, type, 2299 src, off.result(), result); 2300 } 2301 2302 2303 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { 2304 BasicType type = x->basic_type(); 2305 LIRItem src(x->object(), this); 2306 LIRItem off(x->offset(), this); 2307 LIRItem data(x->value(), this); 2308 2309 src.load_item(); 2310 if (type == T_BOOLEAN || type == T_BYTE) { 2311 data.load_byte_item(); 2312 } else { 2313 data.load_item(); 2314 } 2315 off.load_item(); 2316 2317 set_no_result(x); 2318 2319 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS; 2320 if (is_reference_type(type)) { 2321 decorators |= ON_UNKNOWN_OOP_REF; 2322 } 2323 if (x->is_volatile()) { 2324 decorators |= MO_SEQ_CST; 2325 } 2326 access_store_at(decorators, type, src, off.result(), data.result()); 2327 } 2328 2329 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { 2330 BasicType type = x->basic_type(); 2331 LIRItem src(x->object(), this); 2332 LIRItem off(x->offset(), this); 2333 LIRItem value(x->value(), this); 2334 2335 DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST; 2336 2337 if (is_reference_type(type)) { 2338 decorators |= ON_UNKNOWN_OOP_REF; 2339 } 2340 2341 LIR_Opr result; 2342 if (x->is_add()) { 2343 result = access_atomic_add_at(decorators, type, src, off, value); 2344 } else { 2345 result = access_atomic_xchg_at(decorators, type, src, off, value); 2346 } 2347 set_result(x, result); 2348 } 2349 2350 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2351 int lng = x->length(); 2352 2353 for (int i = 0; i < lng; i++) { 2354 C1SwitchRange* one_range = x->at(i); 2355 int low_key = one_range->low_key(); 2356 int high_key = one_range->high_key(); 2357 BlockBegin* dest = one_range->sux(); 2358 if (low_key == high_key) { 2359 __ cmp(lir_cond_equal, value, low_key); 2360 __ branch(lir_cond_equal, dest); 2361 } else if (high_key - low_key == 1) { 2362 __ cmp(lir_cond_equal, value, low_key); 2363 __ branch(lir_cond_equal, dest); 2364 __ cmp(lir_cond_equal, value, high_key); 2365 __ branch(lir_cond_equal, dest); 2366 } else { 2367 LabelObj* L = new LabelObj(); 2368 __ cmp(lir_cond_less, value, low_key); 2369 __ branch(lir_cond_less, L->label()); 2370 __ cmp(lir_cond_lessEqual, value, high_key); 2371 __ branch(lir_cond_lessEqual, dest); 2372 __ branch_destination(L->label()); 2373 } 2374 } 2375 __ jump(default_sux); 2376 } 2377 2378 2379 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2380 SwitchRangeList* res = new SwitchRangeList(); 2381 int len = x->length(); 2382 if (len > 0) { 2383 BlockBegin* sux = x->sux_at(0); 2384 int key = x->lo_key(); 2385 BlockBegin* default_sux = x->default_sux(); 2386 C1SwitchRange* range = new C1SwitchRange(key, sux); 2387 for (int i = 0; i < len; i++, key++) { 2388 BlockBegin* new_sux = x->sux_at(i); 2389 if (sux == new_sux) { 2390 // still in same range 2391 range->set_high_key(key); 2392 } else { 2393 // skip tests which explicitly dispatch to the default 2394 if (sux != default_sux) { 2395 res->append(range); 2396 } 2397 range = new C1SwitchRange(key, new_sux); 2398 } 2399 sux = new_sux; 2400 } 2401 if (res->length() == 0 || res->last() != range) res->append(range); 2402 } 2403 return res; 2404 } 2405 2406 2407 // we expect the keys to be sorted by increasing value 2408 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2409 SwitchRangeList* res = new SwitchRangeList(); 2410 int len = x->length(); 2411 if (len > 0) { 2412 BlockBegin* default_sux = x->default_sux(); 2413 int key = x->key_at(0); 2414 BlockBegin* sux = x->sux_at(0); 2415 C1SwitchRange* range = new C1SwitchRange(key, sux); 2416 for (int i = 1; i < len; i++) { 2417 int new_key = x->key_at(i); 2418 BlockBegin* new_sux = x->sux_at(i); 2419 if (key+1 == new_key && sux == new_sux) { 2420 // still in same range 2421 range->set_high_key(new_key); 2422 } else { 2423 // skip tests which explicitly dispatch to the default 2424 if (range->sux() != default_sux) { 2425 res->append(range); 2426 } 2427 range = new C1SwitchRange(new_key, new_sux); 2428 } 2429 key = new_key; 2430 sux = new_sux; 2431 } 2432 if (res->length() == 0 || res->last() != range) res->append(range); 2433 } 2434 return res; 2435 } 2436 2437 2438 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2439 LIRItem tag(x->tag(), this); 2440 tag.load_item(); 2441 set_no_result(x); 2442 2443 if (x->is_safepoint()) { 2444 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2445 } 2446 2447 // move values into phi locations 2448 move_to_phi(x->state()); 2449 2450 int lo_key = x->lo_key(); 2451 int len = x->length(); 2452 assert(lo_key <= (lo_key + (len - 1)), "integer overflow"); 2453 LIR_Opr value = tag.result(); 2454 2455 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2456 ciMethod* method = x->state()->scope()->method(); 2457 ciMethodData* md = method->method_data_or_null(); 2458 assert(md != NULL, "Sanity"); 2459 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2460 assert(data != NULL, "must have profiling data"); 2461 assert(data->is_MultiBranchData(), "bad profile data?"); 2462 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2463 LIR_Opr md_reg = new_register(T_METADATA); 2464 __ metadata2reg(md->constant_encoding(), md_reg); 2465 LIR_Opr data_offset_reg = new_pointer_register(); 2466 LIR_Opr tmp_reg = new_pointer_register(); 2467 2468 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2469 for (int i = 0; i < len; i++) { 2470 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2471 __ cmp(lir_cond_equal, value, i + lo_key); 2472 __ move(data_offset_reg, tmp_reg); 2473 __ cmove(lir_cond_equal, 2474 LIR_OprFact::intptrConst(count_offset), 2475 tmp_reg, 2476 data_offset_reg, T_INT); 2477 } 2478 2479 LIR_Opr data_reg = new_pointer_register(); 2480 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2481 __ move(data_addr, data_reg); 2482 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2483 __ move(data_reg, data_addr); 2484 } 2485 2486 if (UseTableRanges) { 2487 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2488 } else { 2489 for (int i = 0; i < len; i++) { 2490 __ cmp(lir_cond_equal, value, i + lo_key); 2491 __ branch(lir_cond_equal, x->sux_at(i)); 2492 } 2493 __ jump(x->default_sux()); 2494 } 2495 } 2496 2497 2498 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2499 LIRItem tag(x->tag(), this); 2500 tag.load_item(); 2501 set_no_result(x); 2502 2503 if (x->is_safepoint()) { 2504 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2505 } 2506 2507 // move values into phi locations 2508 move_to_phi(x->state()); 2509 2510 LIR_Opr value = tag.result(); 2511 int len = x->length(); 2512 2513 if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) { 2514 ciMethod* method = x->state()->scope()->method(); 2515 ciMethodData* md = method->method_data_or_null(); 2516 assert(md != NULL, "Sanity"); 2517 ciProfileData* data = md->bci_to_data(x->state()->bci()); 2518 assert(data != NULL, "must have profiling data"); 2519 assert(data->is_MultiBranchData(), "bad profile data?"); 2520 int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset()); 2521 LIR_Opr md_reg = new_register(T_METADATA); 2522 __ metadata2reg(md->constant_encoding(), md_reg); 2523 LIR_Opr data_offset_reg = new_pointer_register(); 2524 LIR_Opr tmp_reg = new_pointer_register(); 2525 2526 __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg); 2527 for (int i = 0; i < len; i++) { 2528 int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i)); 2529 __ cmp(lir_cond_equal, value, x->key_at(i)); 2530 __ move(data_offset_reg, tmp_reg); 2531 __ cmove(lir_cond_equal, 2532 LIR_OprFact::intptrConst(count_offset), 2533 tmp_reg, 2534 data_offset_reg, T_INT); 2535 } 2536 2537 LIR_Opr data_reg = new_pointer_register(); 2538 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 2539 __ move(data_addr, data_reg); 2540 __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg); 2541 __ move(data_reg, data_addr); 2542 } 2543 2544 if (UseTableRanges) { 2545 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2546 } else { 2547 int len = x->length(); 2548 for (int i = 0; i < len; i++) { 2549 __ cmp(lir_cond_equal, value, x->key_at(i)); 2550 __ branch(lir_cond_equal, x->sux_at(i)); 2551 } 2552 __ jump(x->default_sux()); 2553 } 2554 } 2555 2556 2557 void LIRGenerator::do_Goto(Goto* x) { 2558 set_no_result(x); 2559 2560 if (block()->next()->as_OsrEntry()) { 2561 // need to free up storage used for OSR entry point 2562 LIR_Opr osrBuffer = block()->next()->operand(); 2563 BasicTypeList signature; 2564 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2565 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2566 __ move(osrBuffer, cc->args()->at(0)); 2567 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2568 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2569 } 2570 2571 if (x->is_safepoint()) { 2572 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2573 2574 // increment backedge counter if needed 2575 CodeEmitInfo* info = state_for(x, state); 2576 increment_backedge_counter(info, x->profiled_bci()); 2577 CodeEmitInfo* safepoint_info = state_for(x, state); 2578 __ safepoint(safepoint_poll_register(), safepoint_info); 2579 } 2580 2581 // Gotos can be folded Ifs, handle this case. 2582 if (x->should_profile()) { 2583 ciMethod* method = x->profiled_method(); 2584 assert(method != NULL, "method should be set if branch is profiled"); 2585 ciMethodData* md = method->method_data_or_null(); 2586 assert(md != NULL, "Sanity"); 2587 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2588 assert(data != NULL, "must have profiling data"); 2589 int offset; 2590 if (x->direction() == Goto::taken) { 2591 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2592 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2593 } else if (x->direction() == Goto::not_taken) { 2594 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2595 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2596 } else { 2597 assert(data->is_JumpData(), "need JumpData for branches"); 2598 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2599 } 2600 LIR_Opr md_reg = new_register(T_METADATA); 2601 __ metadata2reg(md->constant_encoding(), md_reg); 2602 2603 increment_counter(new LIR_Address(md_reg, offset, 2604 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2605 } 2606 2607 // emit phi-instruction move after safepoint since this simplifies 2608 // describing the state as the safepoint. 2609 move_to_phi(x->state()); 2610 2611 __ jump(x->default_sux()); 2612 } 2613 2614 /** 2615 * Emit profiling code if needed for arguments, parameters, return value types 2616 * 2617 * @param md MDO the code will update at runtime 2618 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2619 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2620 * @param profiled_k current profile 2621 * @param obj IR node for the object to be profiled 2622 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2623 * Set once we find an update to make and use for next ones. 2624 * @param not_null true if we know obj cannot be null 2625 * @param signature_at_call_k signature at call for obj 2626 * @param callee_signature_k signature of callee for obj 2627 * at call and callee signatures differ at method handle call 2628 * @return the only klass we know will ever be seen at this profile point 2629 */ 2630 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2631 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2632 ciKlass* callee_signature_k) { 2633 ciKlass* result = NULL; 2634 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2635 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2636 // known not to be null or null bit already set and already set to 2637 // unknown: nothing we can do to improve profiling 2638 if (!do_null && !do_update) { 2639 return result; 2640 } 2641 2642 ciKlass* exact_klass = NULL; 2643 Compilation* comp = Compilation::current(); 2644 if (do_update) { 2645 // try to find exact type, using CHA if possible, so that loading 2646 // the klass from the object can be avoided 2647 ciType* type = obj->exact_type(); 2648 if (type == NULL) { 2649 type = obj->declared_type(); 2650 type = comp->cha_exact_type(type); 2651 } 2652 assert(type == NULL || type->is_klass(), "type should be class"); 2653 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2654 2655 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2656 } 2657 2658 if (!do_null && !do_update) { 2659 return result; 2660 } 2661 2662 ciKlass* exact_signature_k = NULL; 2663 if (do_update) { 2664 // Is the type from the signature exact (the only one possible)? 2665 exact_signature_k = signature_at_call_k->exact_klass(); 2666 if (exact_signature_k == NULL) { 2667 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2668 } else { 2669 result = exact_signature_k; 2670 // Known statically. No need to emit any code: prevent 2671 // LIR_Assembler::emit_profile_type() from emitting useless code 2672 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2673 } 2674 // exact_klass and exact_signature_k can be both non NULL but 2675 // different if exact_klass is loaded after the ciObject for 2676 // exact_signature_k is created. 2677 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2678 // sometimes the type of the signature is better than the best type 2679 // the compiler has 2680 exact_klass = exact_signature_k; 2681 } 2682 if (callee_signature_k != NULL && 2683 callee_signature_k != signature_at_call_k) { 2684 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2685 if (improved_klass == NULL) { 2686 improved_klass = comp->cha_exact_type(callee_signature_k); 2687 } 2688 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2689 exact_klass = exact_signature_k; 2690 } 2691 } 2692 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2693 } 2694 2695 if (!do_null && !do_update) { 2696 return result; 2697 } 2698 2699 if (mdp == LIR_OprFact::illegalOpr) { 2700 mdp = new_register(T_METADATA); 2701 __ metadata2reg(md->constant_encoding(), mdp); 2702 if (md_base_offset != 0) { 2703 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2704 mdp = new_pointer_register(); 2705 __ leal(LIR_OprFact::address(base_type_address), mdp); 2706 } 2707 } 2708 LIRItem value(obj, this); 2709 value.load_item(); 2710 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2711 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2712 return result; 2713 } 2714 2715 // profile parameters on entry to the root of the compilation 2716 void LIRGenerator::profile_parameters(Base* x) { 2717 if (compilation()->profile_parameters()) { 2718 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2719 ciMethodData* md = scope()->method()->method_data_or_null(); 2720 assert(md != NULL, "Sanity"); 2721 2722 if (md->parameters_type_data() != NULL) { 2723 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2724 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2725 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2726 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2727 LIR_Opr src = args->at(i); 2728 assert(!src->is_illegal(), "check"); 2729 BasicType t = src->type(); 2730 if (is_reference_type(t)) { 2731 intptr_t profiled_k = parameters->type(j); 2732 Local* local = x->state()->local_at(java_index)->as_Local(); 2733 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2734 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2735 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2736 // If the profile is known statically set it once for all and do not emit any code 2737 if (exact != NULL) { 2738 md->set_parameter_type(j, exact); 2739 } 2740 j++; 2741 } 2742 java_index += type2size[t]; 2743 } 2744 } 2745 } 2746 } 2747 2748 void LIRGenerator::do_Base(Base* x) { 2749 __ std_entry(LIR_OprFact::illegalOpr); 2750 // Emit moves from physical registers / stack slots to virtual registers 2751 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2752 IRScope* irScope = compilation()->hir()->top_scope(); 2753 int java_index = 0; 2754 for (int i = 0; i < args->length(); i++) { 2755 LIR_Opr src = args->at(i); 2756 assert(!src->is_illegal(), "check"); 2757 BasicType t = src->type(); 2758 2759 // Types which are smaller than int are passed as int, so 2760 // correct the type which passed. 2761 switch (t) { 2762 case T_BYTE: 2763 case T_BOOLEAN: 2764 case T_SHORT: 2765 case T_CHAR: 2766 t = T_INT; 2767 break; 2768 default: 2769 break; 2770 } 2771 2772 LIR_Opr dest = new_register(t); 2773 __ move(src, dest); 2774 2775 // Assign new location to Local instruction for this local 2776 Local* local = x->state()->local_at(java_index)->as_Local(); 2777 assert(local != NULL, "Locals for incoming arguments must have been created"); 2778 #ifndef __SOFTFP__ 2779 // The java calling convention passes double as long and float as int. 2780 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2781 #endif // __SOFTFP__ 2782 local->set_operand(dest); 2783 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 2784 java_index += type2size[t]; 2785 } 2786 2787 if (compilation()->env()->dtrace_method_probes()) { 2788 BasicTypeList signature; 2789 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2790 signature.append(T_METADATA); // Method* 2791 LIR_OprList* args = new LIR_OprList(); 2792 args->append(getThreadPointer()); 2793 LIR_Opr meth = new_register(T_METADATA); 2794 __ metadata2reg(method()->constant_encoding(), meth); 2795 args->append(meth); 2796 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 2797 } 2798 2799 if (method()->is_synchronized()) { 2800 LIR_Opr obj; 2801 if (method()->is_static()) { 2802 obj = new_register(T_OBJECT); 2803 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2804 } else { 2805 Local* receiver = x->state()->local_at(0)->as_Local(); 2806 assert(receiver != NULL, "must already exist"); 2807 obj = receiver->operand(); 2808 } 2809 assert(obj->is_valid(), "must be valid"); 2810 2811 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2812 LIR_Opr lock = syncLockOpr(); 2813 __ load_stack_address_monitor(0, lock); 2814 2815 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 2816 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2817 2818 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 2819 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 2820 } 2821 } 2822 if (compilation()->age_code()) { 2823 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 2824 decrement_age(info); 2825 } 2826 // increment invocation counters if needed 2827 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2828 profile_parameters(x); 2829 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 2830 increment_invocation_counter(info); 2831 } 2832 2833 // all blocks with a successor must end with an unconditional jump 2834 // to the successor even if they are consecutive 2835 __ jump(x->default_sux()); 2836 } 2837 2838 2839 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2840 // construct our frame and model the production of incoming pointer 2841 // to the OSR buffer. 2842 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2843 LIR_Opr result = rlock_result(x); 2844 __ move(LIR_Assembler::osrBufferPointer(), result); 2845 } 2846 2847 2848 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2849 assert(args->length() == arg_list->length(), 2850 "args=%d, arg_list=%d", args->length(), arg_list->length()); 2851 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2852 LIRItem* param = args->at(i); 2853 LIR_Opr loc = arg_list->at(i); 2854 if (loc->is_register()) { 2855 param->load_item_force(loc); 2856 } else { 2857 LIR_Address* addr = loc->as_address_ptr(); 2858 param->load_for_store(addr->type()); 2859 if (addr->type() == T_OBJECT) { 2860 __ move_wide(param->result(), addr); 2861 } else 2862 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 2863 __ unaligned_move(param->result(), addr); 2864 } else { 2865 __ move(param->result(), addr); 2866 } 2867 } 2868 } 2869 2870 if (x->has_receiver()) { 2871 LIRItem* receiver = args->at(0); 2872 LIR_Opr loc = arg_list->at(0); 2873 if (loc->is_register()) { 2874 receiver->load_item_force(loc); 2875 } else { 2876 assert(loc->is_address(), "just checking"); 2877 receiver->load_for_store(T_OBJECT); 2878 __ move_wide(receiver->result(), loc->as_address_ptr()); 2879 } 2880 } 2881 } 2882 2883 2884 // Visits all arguments, returns appropriate items without loading them 2885 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2886 LIRItemList* argument_items = new LIRItemList(); 2887 if (x->has_receiver()) { 2888 LIRItem* receiver = new LIRItem(x->receiver(), this); 2889 argument_items->append(receiver); 2890 } 2891 for (int i = 0; i < x->number_of_arguments(); i++) { 2892 LIRItem* param = new LIRItem(x->argument_at(i), this); 2893 argument_items->append(param); 2894 } 2895 return argument_items; 2896 } 2897 2898 2899 // The invoke with receiver has following phases: 2900 // a) traverse and load/lock receiver; 2901 // b) traverse all arguments -> item-array (invoke_visit_argument) 2902 // c) push receiver on stack 2903 // d) load each of the items and push on stack 2904 // e) unlock receiver 2905 // f) move receiver into receiver-register %o0 2906 // g) lock result registers and emit call operation 2907 // 2908 // Before issuing a call, we must spill-save all values on stack 2909 // that are in caller-save register. "spill-save" moves those registers 2910 // either in a free callee-save register or spills them if no free 2911 // callee save register is available. 2912 // 2913 // The problem is where to invoke spill-save. 2914 // - if invoked between e) and f), we may lock callee save 2915 // register in "spill-save" that destroys the receiver register 2916 // before f) is executed 2917 // - if we rearrange f) to be earlier (by loading %o0) it 2918 // may destroy a value on the stack that is currently in %o0 2919 // and is waiting to be spilled 2920 // - if we keep the receiver locked while doing spill-save, 2921 // we cannot spill it as it is spill-locked 2922 // 2923 void LIRGenerator::do_Invoke(Invoke* x) { 2924 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2925 2926 LIR_OprList* arg_list = cc->args(); 2927 LIRItemList* args = invoke_visit_arguments(x); 2928 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2929 2930 // setup result register 2931 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2932 if (x->type() != voidType) { 2933 result_register = result_register_for(x->type()); 2934 } 2935 2936 CodeEmitInfo* info = state_for(x, x->state()); 2937 2938 invoke_load_arguments(x, args, arg_list); 2939 2940 if (x->has_receiver()) { 2941 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2942 receiver = args->at(0)->result(); 2943 } 2944 2945 // emit invoke code 2946 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2947 2948 // JSR 292 2949 // Preserve the SP over MethodHandle call sites, if needed. 2950 ciMethod* target = x->target(); 2951 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2952 target->is_method_handle_intrinsic() || 2953 target->is_compiled_lambda_form()); 2954 if (is_method_handle_invoke) { 2955 info->set_is_method_handle_invoke(true); 2956 if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2957 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2958 } 2959 } 2960 2961 switch (x->code()) { 2962 case Bytecodes::_invokestatic: 2963 __ call_static(target, result_register, 2964 SharedRuntime::get_resolve_static_call_stub(), 2965 arg_list, info); 2966 break; 2967 case Bytecodes::_invokespecial: 2968 case Bytecodes::_invokevirtual: 2969 case Bytecodes::_invokeinterface: 2970 // for loaded and final (method or class) target we still produce an inline cache, 2971 // in order to be able to call mixed mode 2972 if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) { 2973 __ call_opt_virtual(target, receiver, result_register, 2974 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2975 arg_list, info); 2976 } else { 2977 __ call_icvirtual(target, receiver, result_register, 2978 SharedRuntime::get_resolve_virtual_call_stub(), 2979 arg_list, info); 2980 } 2981 break; 2982 case Bytecodes::_invokedynamic: { 2983 __ call_dynamic(target, receiver, result_register, 2984 SharedRuntime::get_resolve_static_call_stub(), 2985 arg_list, info); 2986 break; 2987 } 2988 default: 2989 fatal("unexpected bytecode: %s", Bytecodes::name(x->code())); 2990 break; 2991 } 2992 2993 // JSR 292 2994 // Restore the SP after MethodHandle call sites, if needed. 2995 if (is_method_handle_invoke 2996 && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) { 2997 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 2998 } 2999 3000 if (result_register->is_valid()) { 3001 LIR_Opr result = rlock_result(x); 3002 __ move(result_register, result); 3003 } 3004 } 3005 3006 3007 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3008 assert(x->number_of_arguments() == 1, "wrong type"); 3009 LIRItem value (x->argument_at(0), this); 3010 LIR_Opr reg = rlock_result(x); 3011 value.load_item(); 3012 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3013 __ move(tmp, reg); 3014 } 3015 3016 3017 3018 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3019 void LIRGenerator::do_IfOp(IfOp* x) { 3020 #ifdef ASSERT 3021 { 3022 ValueTag xtag = x->x()->type()->tag(); 3023 ValueTag ttag = x->tval()->type()->tag(); 3024 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3025 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3026 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3027 } 3028 #endif 3029 3030 LIRItem left(x->x(), this); 3031 LIRItem right(x->y(), this); 3032 left.load_item(); 3033 if (can_inline_as_constant(right.value())) { 3034 right.dont_load_item(); 3035 } else { 3036 right.load_item(); 3037 } 3038 3039 LIRItem t_val(x->tval(), this); 3040 LIRItem f_val(x->fval(), this); 3041 t_val.dont_load_item(); 3042 f_val.dont_load_item(); 3043 LIR_Opr reg = rlock_result(x); 3044 3045 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3046 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3047 } 3048 3049 #ifdef JFR_HAVE_INTRINSICS 3050 3051 void LIRGenerator::do_getEventWriter(Intrinsic* x) { 3052 LabelObj* L_end = new LabelObj(); 3053 3054 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 3055 // meaning of these two is mixed up (see JDK-8026837). 3056 LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(), 3057 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR), 3058 T_ADDRESS); 3059 LIR_Opr result = rlock_result(x); 3060 __ move(LIR_OprFact::oopConst(NULL), result); 3061 LIR_Opr jobj = new_register(T_METADATA); 3062 __ move_wide(jobj_addr, jobj); 3063 __ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0)); 3064 __ branch(lir_cond_equal, L_end->label()); 3065 3066 access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result); 3067 3068 __ branch_destination(L_end->label()); 3069 } 3070 3071 #endif 3072 3073 3074 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) { 3075 assert(x->number_of_arguments() == 0, "wrong type"); 3076 // Enforce computation of _reserved_argument_area_size which is required on some platforms. 3077 BasicTypeList signature; 3078 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 3079 LIR_Opr reg = result_register_for(x->type()); 3080 __ call_runtime_leaf(routine, getThreadTemp(), 3081 reg, new LIR_OprList()); 3082 LIR_Opr result = rlock_result(x); 3083 __ move(reg, result); 3084 } 3085 3086 3087 3088 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3089 switch (x->id()) { 3090 case vmIntrinsics::_intBitsToFloat : 3091 case vmIntrinsics::_doubleToRawLongBits : 3092 case vmIntrinsics::_longBitsToDouble : 3093 case vmIntrinsics::_floatToRawIntBits : { 3094 do_FPIntrinsics(x); 3095 break; 3096 } 3097 3098 #ifdef JFR_HAVE_INTRINSICS 3099 case vmIntrinsics::_getEventWriter: 3100 do_getEventWriter(x); 3101 break; 3102 case vmIntrinsics::_counterTime: 3103 do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x); 3104 break; 3105 #endif 3106 3107 case vmIntrinsics::_currentTimeMillis: 3108 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x); 3109 break; 3110 3111 case vmIntrinsics::_nanoTime: 3112 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x); 3113 break; 3114 3115 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3116 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3117 case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break; 3118 case vmIntrinsics::_getModifiers: do_getModifiers(x); break; 3119 case vmIntrinsics::_getClass: do_getClass(x); break; 3120 case vmIntrinsics::_currentThread: do_currentThread(x); break; 3121 case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break; 3122 3123 case vmIntrinsics::_dlog: // fall through 3124 case vmIntrinsics::_dlog10: // fall through 3125 case vmIntrinsics::_dabs: // fall through 3126 case vmIntrinsics::_dsqrt: // fall through 3127 case vmIntrinsics::_dtan: // fall through 3128 case vmIntrinsics::_dsin : // fall through 3129 case vmIntrinsics::_dcos : // fall through 3130 case vmIntrinsics::_dexp : // fall through 3131 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3132 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3133 3134 case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break; 3135 case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break; 3136 3137 // java.nio.Buffer.checkIndex 3138 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; 3139 3140 case vmIntrinsics::_compareAndSetReference: 3141 do_CompareAndSwap(x, objectType); 3142 break; 3143 case vmIntrinsics::_compareAndSetInt: 3144 do_CompareAndSwap(x, intType); 3145 break; 3146 case vmIntrinsics::_compareAndSetLong: 3147 do_CompareAndSwap(x, longType); 3148 break; 3149 3150 case vmIntrinsics::_loadFence : 3151 __ membar_acquire(); 3152 break; 3153 case vmIntrinsics::_storeFence: 3154 __ membar_release(); 3155 break; 3156 case vmIntrinsics::_storeStoreFence: 3157 __ membar_storestore(); 3158 break; 3159 case vmIntrinsics::_fullFence : 3160 __ membar(); 3161 break; 3162 case vmIntrinsics::_onSpinWait: 3163 __ on_spin_wait(); 3164 break; 3165 case vmIntrinsics::_Reference_get: 3166 do_Reference_get(x); 3167 break; 3168 3169 case vmIntrinsics::_updateCRC32: 3170 case vmIntrinsics::_updateBytesCRC32: 3171 case vmIntrinsics::_updateByteBufferCRC32: 3172 do_update_CRC32(x); 3173 break; 3174 3175 case vmIntrinsics::_updateBytesCRC32C: 3176 case vmIntrinsics::_updateDirectByteBufferCRC32C: 3177 do_update_CRC32C(x); 3178 break; 3179 3180 case vmIntrinsics::_vectorizedMismatch: 3181 do_vectorizedMismatch(x); 3182 break; 3183 3184 case vmIntrinsics::_blackhole: 3185 do_blackhole(x); 3186 break; 3187 3188 default: ShouldNotReachHere(); break; 3189 } 3190 } 3191 3192 void LIRGenerator::profile_arguments(ProfileCall* x) { 3193 if (compilation()->profile_arguments()) { 3194 int bci = x->bci_of_invoke(); 3195 ciMethodData* md = x->method()->method_data_or_null(); 3196 assert(md != NULL, "Sanity"); 3197 ciProfileData* data = md->bci_to_data(bci); 3198 if (data != NULL) { 3199 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3200 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3201 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3202 int base_offset = md->byte_offset_of_slot(data, extra); 3203 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3204 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3205 3206 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3207 int start = 0; 3208 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3209 if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3210 // first argument is not profiled at call (method handle invoke) 3211 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3212 start = 1; 3213 } 3214 ciSignature* callee_signature = x->callee()->signature(); 3215 // method handle call to virtual method 3216 bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3217 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3218 3219 bool ignored_will_link; 3220 ciSignature* signature_at_call = NULL; 3221 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3222 ciSignatureStream signature_at_call_stream(signature_at_call); 3223 3224 // if called through method handle invoke, some arguments may have been popped 3225 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3226 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3227 ciKlass* exact = profile_type(md, base_offset, off, 3228 args->type(i), x->profiled_arg_at(i+start), mdp, 3229 !x->arg_needs_null_check(i+start), 3230 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3231 if (exact != NULL) { 3232 md->set_argument_type(bci, i, exact); 3233 } 3234 } 3235 } else { 3236 #ifdef ASSERT 3237 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3238 int n = x->nb_profiled_args(); 3239 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3240 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3241 "only at JSR292 bytecodes"); 3242 #endif 3243 } 3244 } 3245 } 3246 } 3247 3248 // profile parameters on entry to an inlined method 3249 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3250 if (compilation()->profile_parameters() && x->inlined()) { 3251 ciMethodData* md = x->callee()->method_data_or_null(); 3252 if (md != NULL) { 3253 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3254 if (parameters_type_data != NULL) { 3255 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3256 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3257 bool has_receiver = !x->callee()->is_static(); 3258 ciSignature* sig = x->callee()->signature(); 3259 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3260 int i = 0; // to iterate on the Instructions 3261 Value arg = x->recv(); 3262 bool not_null = false; 3263 int bci = x->bci_of_invoke(); 3264 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3265 // The first parameter is the receiver so that's what we start 3266 // with if it exists. One exception is method handle call to 3267 // virtual method: the receiver is in the args list 3268 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3269 i = 1; 3270 arg = x->profiled_arg_at(0); 3271 not_null = !x->arg_needs_null_check(0); 3272 } 3273 int k = 0; // to iterate on the profile data 3274 for (;;) { 3275 intptr_t profiled_k = parameters->type(k); 3276 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3277 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3278 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3279 // If the profile is known statically set it once for all and do not emit any code 3280 if (exact != NULL) { 3281 md->set_parameter_type(k, exact); 3282 } 3283 k++; 3284 if (k >= parameters_type_data->number_of_parameters()) { 3285 #ifdef ASSERT 3286 int extra = 0; 3287 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3288 x->nb_profiled_args() >= TypeProfileParmsLimit && 3289 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3290 extra += 1; 3291 } 3292 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3293 #endif 3294 break; 3295 } 3296 arg = x->profiled_arg_at(i); 3297 not_null = !x->arg_needs_null_check(i); 3298 i++; 3299 } 3300 } 3301 } 3302 } 3303 } 3304 3305 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3306 // Need recv in a temporary register so it interferes with the other temporaries 3307 LIR_Opr recv = LIR_OprFact::illegalOpr; 3308 LIR_Opr mdo = new_register(T_METADATA); 3309 // tmp is used to hold the counters on SPARC 3310 LIR_Opr tmp = new_pointer_register(); 3311 3312 if (x->nb_profiled_args() > 0) { 3313 profile_arguments(x); 3314 } 3315 3316 // profile parameters on inlined method entry including receiver 3317 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3318 profile_parameters_at_call(x); 3319 } 3320 3321 if (x->recv() != NULL) { 3322 LIRItem value(x->recv(), this); 3323 value.load_item(); 3324 recv = new_register(T_OBJECT); 3325 __ move(value.result(), recv); 3326 } 3327 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3328 } 3329 3330 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3331 int bci = x->bci_of_invoke(); 3332 ciMethodData* md = x->method()->method_data_or_null(); 3333 assert(md != NULL, "Sanity"); 3334 ciProfileData* data = md->bci_to_data(bci); 3335 if (data != NULL) { 3336 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3337 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3338 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3339 3340 bool ignored_will_link; 3341 ciSignature* signature_at_call = NULL; 3342 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3343 3344 // The offset within the MDO of the entry to update may be too large 3345 // to be used in load/store instructions on some platforms. So have 3346 // profile_type() compute the address of the profile in a register. 3347 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3348 ret->type(), x->ret(), mdp, 3349 !x->needs_null_check(), 3350 signature_at_call->return_type()->as_klass(), 3351 x->callee()->signature()->return_type()->as_klass()); 3352 if (exact != NULL) { 3353 md->set_return_type(bci, exact); 3354 } 3355 } 3356 } 3357 3358 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3359 // We can safely ignore accessors here, since c2 will inline them anyway, 3360 // accessors are also always mature. 3361 if (!x->inlinee()->is_accessor()) { 3362 CodeEmitInfo* info = state_for(x, x->state(), true); 3363 // Notify the runtime very infrequently only to take care of counter overflows 3364 int freq_log = Tier23InlineeNotifyFreqLog; 3365 double scale; 3366 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3367 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3368 } 3369 increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true); 3370 } 3371 } 3372 3373 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) { 3374 if (compilation()->count_backedges()) { 3375 #if defined(X86) && !defined(_LP64) 3376 // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy. 3377 LIR_Opr left_copy = new_register(left->type()); 3378 __ move(left, left_copy); 3379 __ cmp(cond, left_copy, right); 3380 #else 3381 __ cmp(cond, left, right); 3382 #endif 3383 LIR_Opr step = new_register(T_INT); 3384 LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment); 3385 LIR_Opr zero = LIR_OprFact::intConst(0); 3386 __ cmove(cond, 3387 (left_bci < bci) ? plus_one : zero, 3388 (right_bci < bci) ? plus_one : zero, 3389 step, left->type()); 3390 increment_backedge_counter(info, step, bci); 3391 } 3392 } 3393 3394 3395 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) { 3396 int freq_log = 0; 3397 int level = compilation()->env()->comp_level(); 3398 if (level == CompLevel_limited_profile) { 3399 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3400 } else if (level == CompLevel_full_profile) { 3401 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3402 } else { 3403 ShouldNotReachHere(); 3404 } 3405 // Increment the appropriate invocation/backedge counter and notify the runtime. 3406 double scale; 3407 if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) { 3408 freq_log = CompilerConfig::scaled_freq_log(freq_log, scale); 3409 } 3410 increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true); 3411 } 3412 3413 void LIRGenerator::decrement_age(CodeEmitInfo* info) { 3414 ciMethod* method = info->scope()->method(); 3415 MethodCounters* mc_adr = method->ensure_method_counters(); 3416 if (mc_adr != NULL) { 3417 LIR_Opr mc = new_pointer_register(); 3418 __ move(LIR_OprFact::intptrConst(mc_adr), mc); 3419 int offset = in_bytes(MethodCounters::nmethod_age_offset()); 3420 LIR_Address* counter = new LIR_Address(mc, offset, T_INT); 3421 LIR_Opr result = new_register(T_INT); 3422 __ load(counter, result); 3423 __ sub(result, LIR_OprFact::intConst(1), result); 3424 __ store(result, counter); 3425 // DeoptimizeStub will reexecute from the current state in code info. 3426 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, 3427 Deoptimization::Action_make_not_entrant); 3428 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); 3429 __ branch(lir_cond_lessEqual, deopt); 3430 } 3431 } 3432 3433 3434 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3435 ciMethod *method, LIR_Opr step, int frequency, 3436 int bci, bool backedge, bool notify) { 3437 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3438 int level = _compilation->env()->comp_level(); 3439 assert(level > CompLevel_simple, "Shouldn't be here"); 3440 3441 int offset = -1; 3442 LIR_Opr counter_holder = NULL; 3443 if (level == CompLevel_limited_profile) { 3444 MethodCounters* counters_adr = method->ensure_method_counters(); 3445 if (counters_adr == NULL) { 3446 bailout("method counters allocation failed"); 3447 return; 3448 } 3449 counter_holder = new_pointer_register(); 3450 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3451 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3452 MethodCounters::invocation_counter_offset()); 3453 } else if (level == CompLevel_full_profile) { 3454 counter_holder = new_register(T_METADATA); 3455 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3456 MethodData::invocation_counter_offset()); 3457 ciMethodData* md = method->method_data_or_null(); 3458 assert(md != NULL, "Sanity"); 3459 __ metadata2reg(md->constant_encoding(), counter_holder); 3460 } else { 3461 ShouldNotReachHere(); 3462 } 3463 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3464 LIR_Opr result = new_register(T_INT); 3465 __ load(counter, result); 3466 __ add(result, step, result); 3467 __ store(result, counter); 3468 if (notify && (!backedge || UseOnStackReplacement)) { 3469 LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding()); 3470 // The bci for info can point to cmp for if's we want the if bci 3471 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3472 int freq = frequency << InvocationCounter::count_shift; 3473 if (freq == 0) { 3474 if (!step->is_constant()) { 3475 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3476 __ branch(lir_cond_notEqual, overflow); 3477 } else { 3478 __ branch(lir_cond_always, overflow); 3479 } 3480 } else { 3481 LIR_Opr mask = load_immediate(freq, T_INT); 3482 if (!step->is_constant()) { 3483 // If step is 0, make sure the overflow check below always fails 3484 __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0)); 3485 __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT); 3486 } 3487 __ logical_and(result, mask, result); 3488 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3489 __ branch(lir_cond_equal, overflow); 3490 } 3491 __ branch_destination(overflow->continuation()); 3492 } 3493 } 3494 3495 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3496 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3497 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3498 3499 if (x->pass_thread()) { 3500 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3501 args->append(getThreadPointer()); 3502 } 3503 3504 for (int i = 0; i < x->number_of_arguments(); i++) { 3505 Value a = x->argument_at(i); 3506 LIRItem* item = new LIRItem(a, this); 3507 item->load_item(); 3508 args->append(item->result()); 3509 signature->append(as_BasicType(a->type())); 3510 } 3511 3512 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3513 if (x->type() == voidType) { 3514 set_no_result(x); 3515 } else { 3516 __ move(result, rlock_result(x)); 3517 } 3518 } 3519 3520 #ifdef ASSERT 3521 void LIRGenerator::do_Assert(Assert *x) { 3522 ValueTag tag = x->x()->type()->tag(); 3523 If::Condition cond = x->cond(); 3524 3525 LIRItem xitem(x->x(), this); 3526 LIRItem yitem(x->y(), this); 3527 LIRItem* xin = &xitem; 3528 LIRItem* yin = &yitem; 3529 3530 assert(tag == intTag, "Only integer assertions are valid!"); 3531 3532 xin->load_item(); 3533 yin->dont_load_item(); 3534 3535 set_no_result(x); 3536 3537 LIR_Opr left = xin->result(); 3538 LIR_Opr right = yin->result(); 3539 3540 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3541 } 3542 #endif 3543 3544 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3545 3546 3547 Instruction *a = x->x(); 3548 Instruction *b = x->y(); 3549 if (!a || StressRangeCheckElimination) { 3550 assert(!b || StressRangeCheckElimination, "B must also be null"); 3551 3552 CodeEmitInfo *info = state_for(x, x->state()); 3553 CodeStub* stub = new PredicateFailedStub(info); 3554 3555 __ jump(stub); 3556 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3557 int a_int = a->type()->as_IntConstant()->value(); 3558 int b_int = b->type()->as_IntConstant()->value(); 3559 3560 bool ok = false; 3561 3562 switch(x->cond()) { 3563 case Instruction::eql: ok = (a_int == b_int); break; 3564 case Instruction::neq: ok = (a_int != b_int); break; 3565 case Instruction::lss: ok = (a_int < b_int); break; 3566 case Instruction::leq: ok = (a_int <= b_int); break; 3567 case Instruction::gtr: ok = (a_int > b_int); break; 3568 case Instruction::geq: ok = (a_int >= b_int); break; 3569 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3570 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3571 default: ShouldNotReachHere(); 3572 } 3573 3574 if (ok) { 3575 3576 CodeEmitInfo *info = state_for(x, x->state()); 3577 CodeStub* stub = new PredicateFailedStub(info); 3578 3579 __ jump(stub); 3580 } 3581 } else { 3582 3583 ValueTag tag = x->x()->type()->tag(); 3584 If::Condition cond = x->cond(); 3585 LIRItem xitem(x->x(), this); 3586 LIRItem yitem(x->y(), this); 3587 LIRItem* xin = &xitem; 3588 LIRItem* yin = &yitem; 3589 3590 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3591 3592 xin->load_item(); 3593 yin->dont_load_item(); 3594 set_no_result(x); 3595 3596 LIR_Opr left = xin->result(); 3597 LIR_Opr right = yin->result(); 3598 3599 CodeEmitInfo *info = state_for(x, x->state()); 3600 CodeStub* stub = new PredicateFailedStub(info); 3601 3602 __ cmp(lir_cond(cond), left, right); 3603 __ branch(lir_cond(cond), stub); 3604 } 3605 } 3606 3607 void LIRGenerator::do_blackhole(Intrinsic *x) { 3608 assert(!x->has_receiver(), "Should have been checked before: only static methods here"); 3609 for (int c = 0; c < x->number_of_arguments(); c++) { 3610 // Load the argument 3611 LIRItem vitem(x->argument_at(c), this); 3612 vitem.load_item(); 3613 // ...and leave it unused. 3614 } 3615 } 3616 3617 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3618 LIRItemList args(1); 3619 LIRItem value(arg1, this); 3620 args.append(&value); 3621 BasicTypeList signature; 3622 signature.append(as_BasicType(arg1->type())); 3623 3624 return call_runtime(&signature, &args, entry, result_type, info); 3625 } 3626 3627 3628 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3629 LIRItemList args(2); 3630 LIRItem value1(arg1, this); 3631 LIRItem value2(arg2, this); 3632 args.append(&value1); 3633 args.append(&value2); 3634 BasicTypeList signature; 3635 signature.append(as_BasicType(arg1->type())); 3636 signature.append(as_BasicType(arg2->type())); 3637 3638 return call_runtime(&signature, &args, entry, result_type, info); 3639 } 3640 3641 3642 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3643 address entry, ValueType* result_type, CodeEmitInfo* info) { 3644 // get a result register 3645 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3646 LIR_Opr result = LIR_OprFact::illegalOpr; 3647 if (result_type->tag() != voidTag) { 3648 result = new_register(result_type); 3649 phys_reg = result_register_for(result_type); 3650 } 3651 3652 // move the arguments into the correct location 3653 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3654 assert(cc->length() == args->length(), "argument mismatch"); 3655 for (int i = 0; i < args->length(); i++) { 3656 LIR_Opr arg = args->at(i); 3657 LIR_Opr loc = cc->at(i); 3658 if (loc->is_register()) { 3659 __ move(arg, loc); 3660 } else { 3661 LIR_Address* addr = loc->as_address_ptr(); 3662 // if (!can_store_as_constant(arg)) { 3663 // LIR_Opr tmp = new_register(arg->type()); 3664 // __ move(arg, tmp); 3665 // arg = tmp; 3666 // } 3667 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3668 __ unaligned_move(arg, addr); 3669 } else { 3670 __ move(arg, addr); 3671 } 3672 } 3673 } 3674 3675 if (info) { 3676 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3677 } else { 3678 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3679 } 3680 if (result->is_valid()) { 3681 __ move(phys_reg, result); 3682 } 3683 return result; 3684 } 3685 3686 3687 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3688 address entry, ValueType* result_type, CodeEmitInfo* info) { 3689 // get a result register 3690 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3691 LIR_Opr result = LIR_OprFact::illegalOpr; 3692 if (result_type->tag() != voidTag) { 3693 result = new_register(result_type); 3694 phys_reg = result_register_for(result_type); 3695 } 3696 3697 // move the arguments into the correct location 3698 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3699 3700 assert(cc->length() == args->length(), "argument mismatch"); 3701 for (int i = 0; i < args->length(); i++) { 3702 LIRItem* arg = args->at(i); 3703 LIR_Opr loc = cc->at(i); 3704 if (loc->is_register()) { 3705 arg->load_item_force(loc); 3706 } else { 3707 LIR_Address* addr = loc->as_address_ptr(); 3708 arg->load_for_store(addr->type()); 3709 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3710 __ unaligned_move(arg->result(), addr); 3711 } else { 3712 __ move(arg->result(), addr); 3713 } 3714 } 3715 } 3716 3717 if (info) { 3718 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3719 } else { 3720 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3721 } 3722 if (result->is_valid()) { 3723 __ move(phys_reg, result); 3724 } 3725 return result; 3726 } 3727 3728 void LIRGenerator::do_MemBar(MemBar* x) { 3729 LIR_Code code = x->code(); 3730 switch(code) { 3731 case lir_membar_acquire : __ membar_acquire(); break; 3732 case lir_membar_release : __ membar_release(); break; 3733 case lir_membar : __ membar(); break; 3734 case lir_membar_loadload : __ membar_loadload(); break; 3735 case lir_membar_storestore: __ membar_storestore(); break; 3736 case lir_membar_loadstore : __ membar_loadstore(); break; 3737 case lir_membar_storeload : __ membar_storeload(); break; 3738 default : ShouldNotReachHere(); break; 3739 } 3740 } 3741 3742 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3743 LIR_Opr value_fixed = rlock_byte(T_BYTE); 3744 if (TwoOperandLIRForm) { 3745 __ move(value, value_fixed); 3746 __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed); 3747 } else { 3748 __ logical_and(value, LIR_OprFact::intConst(1), value_fixed); 3749 } 3750 LIR_Opr klass = new_register(T_METADATA); 3751 load_klass(array, klass, null_check_info); 3752 null_check_info = NULL; 3753 LIR_Opr layout = new_register(T_INT); 3754 __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout); 3755 int diffbit = Klass::layout_helper_boolean_diffbit(); 3756 __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout); 3757 __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0)); 3758 __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE); 3759 value = value_fixed; 3760 return value; 3761 } 3762 3763 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) { 3764 if (x->check_boolean()) { 3765 value = mask_boolean(array, value, null_check_info); 3766 } 3767 return value; 3768 } --- EOF ---