1 /* 2 * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderDataGraph.hpp" 27 #include "classfile/metadataOnStackMark.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/icBuffer.hpp" 31 #include "compiler/oopMap.hpp" 32 #include "gc/g1/g1Allocator.inline.hpp" 33 #include "gc/g1/g1Arguments.hpp" 34 #include "gc/g1/g1BarrierSet.hpp" 35 #include "gc/g1/g1CollectedHeap.inline.hpp" 36 #include "gc/g1/g1CollectionSet.hpp" 37 #include "gc/g1/g1CollectorState.hpp" 38 #include "gc/g1/g1ConcurrentRefine.hpp" 39 #include "gc/g1/g1ConcurrentRefineThread.hpp" 40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp" 41 #include "gc/g1/g1DirtyCardQueue.hpp" 42 #include "gc/g1/g1EvacStats.inline.hpp" 43 #include "gc/g1/g1FullCollector.hpp" 44 #include "gc/g1/g1GCParPhaseTimesTracker.hpp" 45 #include "gc/g1/g1GCPhaseTimes.hpp" 46 #include "gc/g1/g1GCPauseType.hpp" 47 #include "gc/g1/g1HeapSizingPolicy.hpp" 48 #include "gc/g1/g1HeapTransition.hpp" 49 #include "gc/g1/g1HeapVerifier.hpp" 50 #include "gc/g1/g1HotCardCache.hpp" 51 #include "gc/g1/g1InitLogger.hpp" 52 #include "gc/g1/g1MemoryPool.hpp" 53 #include "gc/g1/g1OopClosures.inline.hpp" 54 #include "gc/g1/g1ParallelCleaning.hpp" 55 #include "gc/g1/g1ParScanThreadState.inline.hpp" 56 #include "gc/g1/g1PeriodicGCTask.hpp" 57 #include "gc/g1/g1Policy.hpp" 58 #include "gc/g1/g1RedirtyCardsQueue.hpp" 59 #include "gc/g1/g1RegionToSpaceMapper.hpp" 60 #include "gc/g1/g1RemSet.hpp" 61 #include "gc/g1/g1RootClosures.hpp" 62 #include "gc/g1/g1RootProcessor.hpp" 63 #include "gc/g1/g1SATBMarkQueueSet.hpp" 64 #include "gc/g1/g1ThreadLocalData.hpp" 65 #include "gc/g1/g1Trace.hpp" 66 #include "gc/g1/g1ServiceThread.hpp" 67 #include "gc/g1/g1UncommitRegionTask.hpp" 68 #include "gc/g1/g1VMOperations.hpp" 69 #include "gc/g1/g1YoungGCPostEvacuateTasks.hpp" 70 #include "gc/g1/heapRegion.inline.hpp" 71 #include "gc/g1/heapRegionRemSet.hpp" 72 #include "gc/g1/heapRegionSet.inline.hpp" 73 #include "gc/shared/concurrentGCBreakpoints.hpp" 74 #include "gc/shared/gcBehaviours.hpp" 75 #include "gc/shared/gcHeapSummary.hpp" 76 #include "gc/shared/gcId.hpp" 77 #include "gc/shared/gcLocker.hpp" 78 #include "gc/shared/gcTimer.hpp" 79 #include "gc/shared/gcTraceTime.inline.hpp" 80 #include "gc/shared/generationSpec.hpp" 81 #include "gc/shared/isGCActiveMark.hpp" 82 #include "gc/shared/locationPrinter.inline.hpp" 83 #include "gc/shared/oopStorageParState.hpp" 84 #include "gc/shared/preservedMarks.inline.hpp" 85 #include "gc/shared/suspendibleThreadSet.hpp" 86 #include "gc/shared/referenceProcessor.inline.hpp" 87 #include "gc/shared/taskTerminator.hpp" 88 #include "gc/shared/taskqueue.inline.hpp" 89 #include "gc/shared/tlab_globals.hpp" 90 #include "gc/shared/weakProcessor.inline.hpp" 91 #include "gc/shared/workerPolicy.hpp" 92 #include "logging/log.hpp" 93 #include "memory/allocation.hpp" 94 #include "memory/iterator.hpp" 95 #include "memory/heapInspection.hpp" 96 #include "memory/metaspaceUtils.hpp" 97 #include "memory/resourceArea.hpp" 98 #include "memory/universe.hpp" 99 #include "oops/access.inline.hpp" 100 #include "oops/compressedOops.inline.hpp" 101 #include "oops/oop.inline.hpp" 102 #include "runtime/atomic.hpp" 103 #include "runtime/handles.inline.hpp" 104 #include "runtime/init.hpp" 105 #include "runtime/java.hpp" 106 #include "runtime/orderAccess.hpp" 107 #include "runtime/threadSMR.hpp" 108 #include "runtime/vmThread.hpp" 109 #include "utilities/align.hpp" 110 #include "utilities/autoRestore.hpp" 111 #include "utilities/bitMap.inline.hpp" 112 #include "utilities/globalDefinitions.hpp" 113 #include "utilities/stack.inline.hpp" 114 115 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 116 117 // INVARIANTS/NOTES 118 // 119 // All allocation activity covered by the G1CollectedHeap interface is 120 // serialized by acquiring the HeapLock. This happens in mem_allocate 121 // and allocate_new_tlab, which are the "entry" points to the 122 // allocation code from the rest of the JVM. (Note that this does not 123 // apply to TLAB allocation, which is not part of this interface: it 124 // is done by clients of this interface.) 125 126 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 127 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); 128 } 129 130 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 131 // The from card cache is not the memory that is actually committed. So we cannot 132 // take advantage of the zero_filled parameter. 133 reset_from_card_cache(start_idx, num_regions); 134 } 135 136 Tickspan G1CollectedHeap::run_task_timed(AbstractGangTask* task) { 137 Ticks start = Ticks::now(); 138 workers()->run_task(task); 139 return Ticks::now() - start; 140 } 141 142 void G1CollectedHeap::run_batch_task(G1BatchedGangTask* cl) { 143 uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers())); 144 cl->set_max_workers(num_workers); 145 workers()->run_task(cl, num_workers); 146 } 147 148 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, 149 MemRegion mr) { 150 return new HeapRegion(hrs_index, bot(), mr); 151 } 152 153 // Private methods. 154 155 HeapRegion* G1CollectedHeap::new_region(size_t word_size, 156 HeapRegionType type, 157 bool do_expand, 158 uint node_index) { 159 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, 160 "the only time we use this to allocate a humongous region is " 161 "when we are allocating a single humongous region"); 162 163 HeapRegion* res = _hrm.allocate_free_region(type, node_index); 164 165 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 166 // Currently, only attempts to allocate GC alloc regions set 167 // do_expand to true. So, we should only reach here during a 168 // safepoint. If this assumption changes we might have to 169 // reconsider the use of _expand_heap_after_alloc_failure. 170 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 171 172 log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B", 173 word_size * HeapWordSize); 174 175 assert(word_size * HeapWordSize < HeapRegion::GrainBytes, 176 "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT, 177 word_size * HeapWordSize); 178 if (expand_single_region(node_index)) { 179 // Given that expand_single_region() succeeded in expanding the heap, and we 180 // always expand the heap by an amount aligned to the heap 181 // region size, the free list should in theory not be empty. 182 // In either case allocate_free_region() will check for NULL. 183 res = _hrm.allocate_free_region(type, node_index); 184 } else { 185 _expand_heap_after_alloc_failure = false; 186 } 187 } 188 return res; 189 } 190 191 HeapWord* 192 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr, 193 uint num_regions, 194 size_t word_size) { 195 assert(first_hr != NULL, "pre-condition"); 196 assert(is_humongous(word_size), "word_size should be humongous"); 197 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 198 199 // Index of last region in the series. 200 uint first = first_hr->hrm_index(); 201 uint last = first + num_regions - 1; 202 203 // We need to initialize the region(s) we just discovered. This is 204 // a bit tricky given that it can happen concurrently with 205 // refinement threads refining cards on these regions and 206 // potentially wanting to refine the BOT as they are scanning 207 // those cards (this can happen shortly after a cleanup; see CR 208 // 6991377). So we have to set up the region(s) carefully and in 209 // a specific order. 210 211 // The word size sum of all the regions we will allocate. 212 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 213 assert(word_size <= word_size_sum, "sanity"); 214 215 // The passed in hr will be the "starts humongous" region. The header 216 // of the new object will be placed at the bottom of this region. 217 HeapWord* new_obj = first_hr->bottom(); 218 // This will be the new top of the new object. 219 HeapWord* obj_top = new_obj + word_size; 220 221 // First, we need to zero the header of the space that we will be 222 // allocating. When we update top further down, some refinement 223 // threads might try to scan the region. By zeroing the header we 224 // ensure that any thread that will try to scan the region will 225 // come across the zero klass word and bail out. 226 // 227 // NOTE: It would not have been correct to have used 228 // CollectedHeap::fill_with_object() and make the space look like 229 // an int array. The thread that is doing the allocation will 230 // later update the object header to a potentially different array 231 // type and, for a very short period of time, the klass and length 232 // fields will be inconsistent. This could cause a refinement 233 // thread to calculate the object size incorrectly. 234 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 235 236 // Next, pad out the unused tail of the last region with filler 237 // objects, for improved usage accounting. 238 // How many words we use for filler objects. 239 size_t word_fill_size = word_size_sum - word_size; 240 241 // How many words memory we "waste" which cannot hold a filler object. 242 size_t words_not_fillable = 0; 243 244 if (word_fill_size >= min_fill_size()) { 245 fill_with_objects(obj_top, word_fill_size); 246 } else if (word_fill_size > 0) { 247 // We have space to fill, but we cannot fit an object there. 248 words_not_fillable = word_fill_size; 249 word_fill_size = 0; 250 } 251 252 // We will set up the first region as "starts humongous". This 253 // will also update the BOT covering all the regions to reflect 254 // that there is a single object that starts at the bottom of the 255 // first region. 256 first_hr->set_starts_humongous(obj_top, word_fill_size); 257 _policy->remset_tracker()->update_at_allocate(first_hr); 258 // Then, if there are any, we will set up the "continues 259 // humongous" regions. 260 HeapRegion* hr = NULL; 261 for (uint i = first + 1; i <= last; ++i) { 262 hr = region_at(i); 263 hr->set_continues_humongous(first_hr); 264 _policy->remset_tracker()->update_at_allocate(hr); 265 } 266 267 // Up to this point no concurrent thread would have been able to 268 // do any scanning on any region in this series. All the top 269 // fields still point to bottom, so the intersection between 270 // [bottom,top] and [card_start,card_end] will be empty. Before we 271 // update the top fields, we'll do a storestore to make sure that 272 // no thread sees the update to top before the zeroing of the 273 // object header and the BOT initialization. 274 OrderAccess::storestore(); 275 276 // Now, we will update the top fields of the "continues humongous" 277 // regions except the last one. 278 for (uint i = first; i < last; ++i) { 279 hr = region_at(i); 280 hr->set_top(hr->end()); 281 } 282 283 hr = region_at(last); 284 // If we cannot fit a filler object, we must set top to the end 285 // of the humongous object, otherwise we cannot iterate the heap 286 // and the BOT will not be complete. 287 hr->set_top(hr->end() - words_not_fillable); 288 289 assert(hr->bottom() < obj_top && obj_top <= hr->end(), 290 "obj_top should be in last region"); 291 292 _verifier->check_bitmaps("Humongous Region Allocation", first_hr); 293 294 assert(words_not_fillable == 0 || 295 first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), 296 "Miscalculation in humongous allocation"); 297 298 increase_used((word_size_sum - words_not_fillable) * HeapWordSize); 299 300 for (uint i = first; i <= last; ++i) { 301 hr = region_at(i); 302 _humongous_set.add(hr); 303 _hr_printer.alloc(hr); 304 } 305 306 return new_obj; 307 } 308 309 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { 310 assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size); 311 return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; 312 } 313 314 // If could fit into free regions w/o expansion, try. 315 // Otherwise, if can expand, do so. 316 // Otherwise, if using ex regions might help, try with ex given back. 317 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { 318 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 319 320 _verifier->verify_region_sets_optional(); 321 322 uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); 323 324 // Policy: First try to allocate a humongous object in the free list. 325 HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions); 326 if (humongous_start == NULL) { 327 // Policy: We could not find enough regions for the humongous object in the 328 // free list. Look through the heap to find a mix of free and uncommitted regions. 329 // If so, expand the heap and allocate the humongous object. 330 humongous_start = _hrm.expand_and_allocate_humongous(obj_regions); 331 if (humongous_start != NULL) { 332 // We managed to find a region by expanding the heap. 333 log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B", 334 word_size * HeapWordSize); 335 policy()->record_new_heap_size(num_regions()); 336 } else { 337 // Policy: Potentially trigger a defragmentation GC. 338 } 339 } 340 341 HeapWord* result = NULL; 342 if (humongous_start != NULL) { 343 result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size); 344 assert(result != NULL, "it should always return a valid result"); 345 346 // A successful humongous object allocation changes the used space 347 // information of the old generation so we need to recalculate the 348 // sizes and update the jstat counters here. 349 g1mm()->update_sizes(); 350 } 351 352 _verifier->verify_region_sets_optional(); 353 354 return result; 355 } 356 357 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size, 358 size_t requested_size, 359 size_t* actual_size) { 360 assert_heap_not_locked_and_not_at_safepoint(); 361 assert(!is_humongous(requested_size), "we do not allow humongous TLABs"); 362 363 return attempt_allocation(min_size, requested_size, actual_size); 364 } 365 366 HeapWord* 367 G1CollectedHeap::mem_allocate(size_t word_size, 368 bool* gc_overhead_limit_was_exceeded) { 369 assert_heap_not_locked_and_not_at_safepoint(); 370 371 if (is_humongous(word_size)) { 372 return attempt_allocation_humongous(word_size); 373 } 374 size_t dummy = 0; 375 return attempt_allocation(word_size, word_size, &dummy); 376 } 377 378 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) { 379 ResourceMark rm; // For retrieving the thread names in log messages. 380 381 // Make sure you read the note in attempt_allocation_humongous(). 382 383 assert_heap_not_locked_and_not_at_safepoint(); 384 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 385 "be called for humongous allocation requests"); 386 387 // We should only get here after the first-level allocation attempt 388 // (attempt_allocation()) failed to allocate. 389 390 // We will loop until a) we manage to successfully perform the 391 // allocation or b) we successfully schedule a collection which 392 // fails to perform the allocation. b) is the only case when we'll 393 // return NULL. 394 HeapWord* result = NULL; 395 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 396 bool should_try_gc; 397 bool preventive_collection_required = false; 398 uint gc_count_before; 399 400 { 401 MutexLocker x(Heap_lock); 402 403 // Now that we have the lock, we first retry the allocation in case another 404 // thread changed the region while we were waiting to acquire the lock. 405 size_t actual_size; 406 result = _allocator->attempt_allocation(word_size, word_size, &actual_size); 407 if (result != NULL) { 408 return result; 409 } 410 411 preventive_collection_required = policy()->preventive_collection_required(1); 412 if (!preventive_collection_required) { 413 // We've already attempted a lock-free allocation above, so we don't want to 414 // do it again. Let's jump straight to replacing the active region. 415 result = _allocator->attempt_allocation_using_new_region(word_size); 416 if (result != NULL) { 417 return result; 418 } 419 420 // If the GCLocker is active and we are bound for a GC, try expanding young gen. 421 // This is different to when only GCLocker::needs_gc() is set: try to avoid 422 // waiting because the GCLocker is active to not wait too long. 423 if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) { 424 // No need for an ergo message here, can_expand_young_list() does this when 425 // it returns true. 426 result = _allocator->attempt_allocation_force(word_size); 427 if (result != NULL) { 428 return result; 429 } 430 } 431 } 432 433 // Only try a GC if the GCLocker does not signal the need for a GC. Wait until 434 // the GCLocker initiated GC has been performed and then retry. This includes 435 // the case when the GC Locker is not active but has not been performed. 436 should_try_gc = !GCLocker::needs_gc(); 437 // Read the GC count while still holding the Heap_lock. 438 gc_count_before = total_collections(); 439 } 440 441 if (should_try_gc) { 442 GCCause::Cause gc_cause = preventive_collection_required ? GCCause::_g1_preventive_collection 443 : GCCause::_g1_inc_collection_pause; 444 bool succeeded; 445 result = do_collection_pause(word_size, gc_count_before, &succeeded, gc_cause); 446 if (result != NULL) { 447 assert(succeeded, "only way to get back a non-NULL result"); 448 log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, 449 Thread::current()->name(), p2i(result)); 450 return result; 451 } 452 453 if (succeeded) { 454 // We successfully scheduled a collection which failed to allocate. No 455 // point in trying to allocate further. We'll just return NULL. 456 log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " 457 SIZE_FORMAT " words", Thread::current()->name(), word_size); 458 return NULL; 459 } 460 log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words", 461 Thread::current()->name(), word_size); 462 } else { 463 // Failed to schedule a collection. 464 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 465 log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " 466 SIZE_FORMAT " words", Thread::current()->name(), word_size); 467 return NULL; 468 } 469 log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); 470 // The GCLocker is either active or the GCLocker initiated 471 // GC has not yet been performed. Stall until it is and 472 // then retry the allocation. 473 GCLocker::stall_until_clear(); 474 gclocker_retry_count += 1; 475 } 476 477 // We can reach here if we were unsuccessful in scheduling a 478 // collection (because another thread beat us to it) or if we were 479 // stalled due to the GC locker. In either can we should retry the 480 // allocation attempt in case another thread successfully 481 // performed a collection and reclaimed enough space. We do the 482 // first attempt (without holding the Heap_lock) here and the 483 // follow-on attempt will be at the start of the next loop 484 // iteration (after taking the Heap_lock). 485 size_t dummy = 0; 486 result = _allocator->attempt_allocation(word_size, word_size, &dummy); 487 if (result != NULL) { 488 return result; 489 } 490 491 // Give a warning if we seem to be looping forever. 492 if ((QueuedAllocationWarningCount > 0) && 493 (try_count % QueuedAllocationWarningCount == 0)) { 494 log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", 495 Thread::current()->name(), try_count, word_size); 496 } 497 } 498 499 ShouldNotReachHere(); 500 return NULL; 501 } 502 503 void G1CollectedHeap::begin_archive_alloc_range(bool open) { 504 assert_at_safepoint_on_vm_thread(); 505 if (_archive_allocator == NULL) { 506 _archive_allocator = G1ArchiveAllocator::create_allocator(this, open); 507 } 508 } 509 510 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) { 511 // Allocations in archive regions cannot be of a size that would be considered 512 // humongous even for a minimum-sized region, because G1 region sizes/boundaries 513 // may be different at archive-restore time. 514 return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words()); 515 } 516 517 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) { 518 assert_at_safepoint_on_vm_thread(); 519 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 520 if (is_archive_alloc_too_large(word_size)) { 521 return NULL; 522 } 523 return _archive_allocator->archive_mem_allocate(word_size); 524 } 525 526 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 527 size_t end_alignment_in_bytes) { 528 assert_at_safepoint_on_vm_thread(); 529 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 530 531 // Call complete_archive to do the real work, filling in the MemRegion 532 // array with the archive regions. 533 _archive_allocator->complete_archive(ranges, end_alignment_in_bytes); 534 delete _archive_allocator; 535 _archive_allocator = NULL; 536 } 537 538 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { 539 assert(ranges != NULL, "MemRegion array NULL"); 540 assert(count != 0, "No MemRegions provided"); 541 MemRegion reserved = _hrm.reserved(); 542 for (size_t i = 0; i < count; i++) { 543 if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { 544 return false; 545 } 546 } 547 return true; 548 } 549 550 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, 551 size_t count, 552 bool open) { 553 assert(!is_init_completed(), "Expect to be called at JVM init time"); 554 assert(ranges != NULL, "MemRegion array NULL"); 555 assert(count != 0, "No MemRegions provided"); 556 MutexLocker x(Heap_lock); 557 558 MemRegion reserved = _hrm.reserved(); 559 HeapWord* prev_last_addr = NULL; 560 HeapRegion* prev_last_region = NULL; 561 562 // Temporarily disable pretouching of heap pages. This interface is used 563 // when mmap'ing archived heap data in, so pre-touching is wasted. 564 FlagSetting fs(AlwaysPreTouch, false); 565 566 // For each specified MemRegion range, allocate the corresponding G1 567 // regions and mark them as archive regions. We expect the ranges 568 // in ascending starting address order, without overlap. 569 for (size_t i = 0; i < count; i++) { 570 MemRegion curr_range = ranges[i]; 571 HeapWord* start_address = curr_range.start(); 572 size_t word_size = curr_range.word_size(); 573 HeapWord* last_address = curr_range.last(); 574 size_t commits = 0; 575 576 guarantee(reserved.contains(start_address) && reserved.contains(last_address), 577 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 578 p2i(start_address), p2i(last_address)); 579 guarantee(start_address > prev_last_addr, 580 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 581 p2i(start_address), p2i(prev_last_addr)); 582 prev_last_addr = last_address; 583 584 // Check for ranges that start in the same G1 region in which the previous 585 // range ended, and adjust the start address so we don't try to allocate 586 // the same region again. If the current range is entirely within that 587 // region, skip it, just adjusting the recorded top. 588 HeapRegion* start_region = _hrm.addr_to_region(start_address); 589 if ((prev_last_region != NULL) && (start_region == prev_last_region)) { 590 start_address = start_region->end(); 591 if (start_address > last_address) { 592 increase_used(word_size * HeapWordSize); 593 start_region->set_top(last_address + 1); 594 continue; 595 } 596 start_region->set_top(start_address); 597 curr_range = MemRegion(start_address, last_address + 1); 598 start_region = _hrm.addr_to_region(start_address); 599 } 600 601 // Perform the actual region allocation, exiting if it fails. 602 // Then note how much new space we have allocated. 603 if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) { 604 return false; 605 } 606 increase_used(word_size * HeapWordSize); 607 if (commits != 0) { 608 log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B", 609 HeapRegion::GrainWords * HeapWordSize * commits); 610 611 } 612 613 // Mark each G1 region touched by the range as archive, add it to 614 // the old set, and set top. 615 HeapRegion* curr_region = _hrm.addr_to_region(start_address); 616 HeapRegion* last_region = _hrm.addr_to_region(last_address); 617 prev_last_region = last_region; 618 619 while (curr_region != NULL) { 620 assert(curr_region->is_empty() && !curr_region->is_pinned(), 621 "Region already in use (index %u)", curr_region->hrm_index()); 622 if (open) { 623 curr_region->set_open_archive(); 624 } else { 625 curr_region->set_closed_archive(); 626 } 627 _hr_printer.alloc(curr_region); 628 _archive_set.add(curr_region); 629 HeapWord* top; 630 HeapRegion* next_region; 631 if (curr_region != last_region) { 632 top = curr_region->end(); 633 next_region = _hrm.next_region_in_heap(curr_region); 634 } else { 635 top = last_address + 1; 636 next_region = NULL; 637 } 638 curr_region->set_top(top); 639 curr_region = next_region; 640 } 641 } 642 return true; 643 } 644 645 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) { 646 assert(!is_init_completed(), "Expect to be called at JVM init time"); 647 assert(ranges != NULL, "MemRegion array NULL"); 648 assert(count != 0, "No MemRegions provided"); 649 MemRegion reserved = _hrm.reserved(); 650 HeapWord *prev_last_addr = NULL; 651 HeapRegion* prev_last_region = NULL; 652 653 // For each MemRegion, create filler objects, if needed, in the G1 regions 654 // that contain the address range. The address range actually within the 655 // MemRegion will not be modified. That is assumed to have been initialized 656 // elsewhere, probably via an mmap of archived heap data. 657 MutexLocker x(Heap_lock); 658 for (size_t i = 0; i < count; i++) { 659 HeapWord* start_address = ranges[i].start(); 660 HeapWord* last_address = ranges[i].last(); 661 662 assert(reserved.contains(start_address) && reserved.contains(last_address), 663 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 664 p2i(start_address), p2i(last_address)); 665 assert(start_address > prev_last_addr, 666 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 667 p2i(start_address), p2i(prev_last_addr)); 668 669 HeapRegion* start_region = _hrm.addr_to_region(start_address); 670 HeapRegion* last_region = _hrm.addr_to_region(last_address); 671 HeapWord* bottom_address = start_region->bottom(); 672 673 // Check for a range beginning in the same region in which the 674 // previous one ended. 675 if (start_region == prev_last_region) { 676 bottom_address = prev_last_addr + 1; 677 } 678 679 // Verify that the regions were all marked as archive regions by 680 // alloc_archive_regions. 681 HeapRegion* curr_region = start_region; 682 while (curr_region != NULL) { 683 guarantee(curr_region->is_archive(), 684 "Expected archive region at index %u", curr_region->hrm_index()); 685 if (curr_region != last_region) { 686 curr_region = _hrm.next_region_in_heap(curr_region); 687 } else { 688 curr_region = NULL; 689 } 690 } 691 692 prev_last_addr = last_address; 693 prev_last_region = last_region; 694 695 // Fill the memory below the allocated range with dummy object(s), 696 // if the region bottom does not match the range start, or if the previous 697 // range ended within the same G1 region, and there is a gap. 698 assert(start_address >= bottom_address, "bottom address should not be greater than start address"); 699 if (start_address > bottom_address) { 700 size_t fill_size = pointer_delta(start_address, bottom_address); 701 G1CollectedHeap::fill_with_objects(bottom_address, fill_size); 702 increase_used(fill_size * HeapWordSize); 703 } 704 } 705 } 706 707 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size, 708 size_t desired_word_size, 709 size_t* actual_word_size) { 710 assert_heap_not_locked_and_not_at_safepoint(); 711 assert(!is_humongous(desired_word_size), "attempt_allocation() should not " 712 "be called for humongous allocation requests"); 713 714 HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size); 715 716 if (result == NULL) { 717 *actual_word_size = desired_word_size; 718 result = attempt_allocation_slow(desired_word_size); 719 } 720 721 assert_heap_not_locked(); 722 if (result != NULL) { 723 assert(*actual_word_size != 0, "Actual size must have been set here"); 724 dirty_young_block(result, *actual_word_size); 725 } else { 726 *actual_word_size = 0; 727 } 728 729 return result; 730 } 731 732 void G1CollectedHeap::populate_archive_regions_bot_part(MemRegion* ranges, size_t count) { 733 assert(!is_init_completed(), "Expect to be called at JVM init time"); 734 assert(ranges != NULL, "MemRegion array NULL"); 735 assert(count != 0, "No MemRegions provided"); 736 737 HeapWord* st = ranges[0].start(); 738 HeapWord* last = ranges[count-1].last(); 739 HeapRegion* hr_st = _hrm.addr_to_region(st); 740 HeapRegion* hr_last = _hrm.addr_to_region(last); 741 742 HeapRegion* hr_curr = hr_st; 743 while (hr_curr != NULL) { 744 hr_curr->update_bot(); 745 if (hr_curr != hr_last) { 746 hr_curr = _hrm.next_region_in_heap(hr_curr); 747 } else { 748 hr_curr = NULL; 749 } 750 } 751 } 752 753 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) { 754 assert(!is_init_completed(), "Expect to be called at JVM init time"); 755 assert(ranges != NULL, "MemRegion array NULL"); 756 assert(count != 0, "No MemRegions provided"); 757 MemRegion reserved = _hrm.reserved(); 758 HeapWord* prev_last_addr = NULL; 759 HeapRegion* prev_last_region = NULL; 760 size_t size_used = 0; 761 uint shrink_count = 0; 762 763 // For each Memregion, free the G1 regions that constitute it, and 764 // notify mark-sweep that the range is no longer to be considered 'archive.' 765 MutexLocker x(Heap_lock); 766 for (size_t i = 0; i < count; i++) { 767 HeapWord* start_address = ranges[i].start(); 768 HeapWord* last_address = ranges[i].last(); 769 770 assert(reserved.contains(start_address) && reserved.contains(last_address), 771 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 772 p2i(start_address), p2i(last_address)); 773 assert(start_address > prev_last_addr, 774 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 775 p2i(start_address), p2i(prev_last_addr)); 776 size_used += ranges[i].byte_size(); 777 prev_last_addr = last_address; 778 779 HeapRegion* start_region = _hrm.addr_to_region(start_address); 780 HeapRegion* last_region = _hrm.addr_to_region(last_address); 781 782 // Check for ranges that start in the same G1 region in which the previous 783 // range ended, and adjust the start address so we don't try to free 784 // the same region again. If the current range is entirely within that 785 // region, skip it. 786 if (start_region == prev_last_region) { 787 start_address = start_region->end(); 788 if (start_address > last_address) { 789 continue; 790 } 791 start_region = _hrm.addr_to_region(start_address); 792 } 793 prev_last_region = last_region; 794 795 // After verifying that each region was marked as an archive region by 796 // alloc_archive_regions, set it free and empty and uncommit it. 797 HeapRegion* curr_region = start_region; 798 while (curr_region != NULL) { 799 guarantee(curr_region->is_archive(), 800 "Expected archive region at index %u", curr_region->hrm_index()); 801 uint curr_index = curr_region->hrm_index(); 802 _archive_set.remove(curr_region); 803 curr_region->set_free(); 804 curr_region->set_top(curr_region->bottom()); 805 if (curr_region != last_region) { 806 curr_region = _hrm.next_region_in_heap(curr_region); 807 } else { 808 curr_region = NULL; 809 } 810 811 _hrm.shrink_at(curr_index, 1); 812 shrink_count++; 813 } 814 } 815 816 if (shrink_count != 0) { 817 log_debug(gc, ergo, heap)("Attempt heap shrinking (archive regions). Total size: " SIZE_FORMAT "B", 818 HeapRegion::GrainWords * HeapWordSize * shrink_count); 819 // Explicit uncommit. 820 uncommit_regions(shrink_count); 821 } 822 decrease_used(size_used); 823 } 824 825 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) { 826 ResourceMark rm; // For retrieving the thread names in log messages. 827 828 // The structure of this method has a lot of similarities to 829 // attempt_allocation_slow(). The reason these two were not merged 830 // into a single one is that such a method would require several "if 831 // allocation is not humongous do this, otherwise do that" 832 // conditional paths which would obscure its flow. In fact, an early 833 // version of this code did use a unified method which was harder to 834 // follow and, as a result, it had subtle bugs that were hard to 835 // track down. So keeping these two methods separate allows each to 836 // be more readable. It will be good to keep these two in sync as 837 // much as possible. 838 839 assert_heap_not_locked_and_not_at_safepoint(); 840 assert(is_humongous(word_size), "attempt_allocation_humongous() " 841 "should only be called for humongous allocations"); 842 843 // Humongous objects can exhaust the heap quickly, so we should check if we 844 // need to start a marking cycle at each humongous object allocation. We do 845 // the check before we do the actual allocation. The reason for doing it 846 // before the allocation is that we avoid having to keep track of the newly 847 // allocated memory while we do a GC. 848 if (policy()->need_to_start_conc_mark("concurrent humongous allocation", 849 word_size)) { 850 collect(GCCause::_g1_humongous_allocation); 851 } 852 853 // We will loop until a) we manage to successfully perform the 854 // allocation or b) we successfully schedule a collection which 855 // fails to perform the allocation. b) is the only case when we'll 856 // return NULL. 857 HeapWord* result = NULL; 858 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 859 bool should_try_gc; 860 bool preventive_collection_required = false; 861 uint gc_count_before; 862 863 864 { 865 MutexLocker x(Heap_lock); 866 867 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 868 preventive_collection_required = policy()->preventive_collection_required((uint)size_in_regions); 869 if (!preventive_collection_required) { 870 // Given that humongous objects are not allocated in young 871 // regions, we'll first try to do the allocation without doing a 872 // collection hoping that there's enough space in the heap. 873 result = humongous_obj_allocate(word_size); 874 if (result != NULL) { 875 policy()->old_gen_alloc_tracker()-> 876 add_allocated_humongous_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes); 877 return result; 878 } 879 } 880 881 // Only try a GC if the GCLocker does not signal the need for a GC. Wait until 882 // the GCLocker initiated GC has been performed and then retry. This includes 883 // the case when the GC Locker is not active but has not been performed. 884 should_try_gc = !GCLocker::needs_gc(); 885 // Read the GC count while still holding the Heap_lock. 886 gc_count_before = total_collections(); 887 } 888 889 if (should_try_gc) { 890 GCCause::Cause gc_cause = preventive_collection_required ? GCCause::_g1_preventive_collection 891 : GCCause::_g1_humongous_allocation; 892 bool succeeded; 893 result = do_collection_pause(word_size, gc_count_before, &succeeded, gc_cause); 894 if (result != NULL) { 895 assert(succeeded, "only way to get back a non-NULL result"); 896 log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, 897 Thread::current()->name(), p2i(result)); 898 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 899 policy()->old_gen_alloc_tracker()-> 900 record_collection_pause_humongous_allocation(size_in_regions * HeapRegion::GrainBytes); 901 return result; 902 } 903 904 if (succeeded) { 905 // We successfully scheduled a collection which failed to allocate. No 906 // point in trying to allocate further. We'll just return NULL. 907 log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " 908 SIZE_FORMAT " words", Thread::current()->name(), word_size); 909 return NULL; 910 } 911 log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "", 912 Thread::current()->name(), word_size); 913 } else { 914 // Failed to schedule a collection. 915 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 916 log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " 917 SIZE_FORMAT " words", Thread::current()->name(), word_size); 918 return NULL; 919 } 920 log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); 921 // The GCLocker is either active or the GCLocker initiated 922 // GC has not yet been performed. Stall until it is and 923 // then retry the allocation. 924 GCLocker::stall_until_clear(); 925 gclocker_retry_count += 1; 926 } 927 928 929 // We can reach here if we were unsuccessful in scheduling a 930 // collection (because another thread beat us to it) or if we were 931 // stalled due to the GC locker. In either can we should retry the 932 // allocation attempt in case another thread successfully 933 // performed a collection and reclaimed enough space. 934 // Humongous object allocation always needs a lock, so we wait for the retry 935 // in the next iteration of the loop, unlike for the regular iteration case. 936 // Give a warning if we seem to be looping forever. 937 938 if ((QueuedAllocationWarningCount > 0) && 939 (try_count % QueuedAllocationWarningCount == 0)) { 940 log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", 941 Thread::current()->name(), try_count, word_size); 942 } 943 } 944 945 ShouldNotReachHere(); 946 return NULL; 947 } 948 949 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 950 bool expect_null_mutator_alloc_region) { 951 assert_at_safepoint_on_vm_thread(); 952 assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region, 953 "the current alloc region was unexpectedly found to be non-NULL"); 954 955 if (!is_humongous(word_size)) { 956 return _allocator->attempt_allocation_locked(word_size); 957 } else { 958 HeapWord* result = humongous_obj_allocate(word_size); 959 if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) { 960 collector_state()->set_initiate_conc_mark_if_possible(true); 961 } 962 return result; 963 } 964 965 ShouldNotReachHere(); 966 } 967 968 class PostCompactionPrinterClosure: public HeapRegionClosure { 969 private: 970 G1HRPrinter* _hr_printer; 971 public: 972 bool do_heap_region(HeapRegion* hr) { 973 assert(!hr->is_young(), "not expecting to find young regions"); 974 _hr_printer->post_compaction(hr); 975 return false; 976 } 977 978 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 979 : _hr_printer(hr_printer) { } 980 }; 981 982 void G1CollectedHeap::print_hrm_post_compaction() { 983 if (_hr_printer.is_active()) { 984 PostCompactionPrinterClosure cl(hr_printer()); 985 heap_region_iterate(&cl); 986 } 987 } 988 989 void G1CollectedHeap::abort_concurrent_cycle() { 990 // If we start the compaction before the CM threads finish 991 // scanning the root regions we might trip them over as we'll 992 // be moving objects / updating references. So let's wait until 993 // they are done. By telling them to abort, they should complete 994 // early. 995 _cm->root_regions()->abort(); 996 _cm->root_regions()->wait_until_scan_finished(); 997 998 // Disable discovery and empty the discovered lists 999 // for the CM ref processor. 1000 _ref_processor_cm->disable_discovery(); 1001 _ref_processor_cm->abandon_partial_discovery(); 1002 _ref_processor_cm->verify_no_references_recorded(); 1003 1004 // Abandon current iterations of concurrent marking and concurrent 1005 // refinement, if any are in progress. 1006 concurrent_mark()->concurrent_cycle_abort(); 1007 } 1008 1009 void G1CollectedHeap::prepare_heap_for_full_collection() { 1010 // Make sure we'll choose a new allocation region afterwards. 1011 _allocator->release_mutator_alloc_regions(); 1012 _allocator->abandon_gc_alloc_regions(); 1013 1014 // We may have added regions to the current incremental collection 1015 // set between the last GC or pause and now. We need to clear the 1016 // incremental collection set and then start rebuilding it afresh 1017 // after this full GC. 1018 abandon_collection_set(collection_set()); 1019 1020 _hrm.remove_all_free_regions(); 1021 } 1022 1023 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) { 1024 assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant"); 1025 assert_used_and_recalculate_used_equal(this); 1026 _verifier->verify_region_sets_optional(); 1027 _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull); 1028 _verifier->check_bitmaps("Full GC Start"); 1029 } 1030 1031 void G1CollectedHeap::prepare_heap_for_mutators() { 1032 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1033 ClassLoaderDataGraph::purge(/*at_safepoint*/true); 1034 DEBUG_ONLY(MetaspaceUtils::verify();) 1035 1036 // Prepare heap for normal collections. 1037 assert(num_free_regions() == 0, "we should not have added any free regions"); 1038 rebuild_region_sets(false /* free_list_only */); 1039 abort_refinement(); 1040 resize_heap_if_necessary(); 1041 uncommit_regions_if_necessary(); 1042 1043 // Rebuild the strong code root lists for each region 1044 rebuild_strong_code_roots(); 1045 1046 // Purge code root memory 1047 purge_code_root_memory(); 1048 1049 // Start a new incremental collection set for the next pause 1050 start_new_collection_set(); 1051 1052 _allocator->init_mutator_alloc_regions(); 1053 1054 // Post collection state updates. 1055 MetaspaceGC::compute_new_size(); 1056 } 1057 1058 void G1CollectedHeap::abort_refinement() { 1059 if (_hot_card_cache->use_cache()) { 1060 _hot_card_cache->reset_hot_cache(); 1061 } 1062 1063 // Discard all remembered set updates and reset refinement statistics. 1064 G1BarrierSet::dirty_card_queue_set().abandon_logs(); 1065 assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0, 1066 "DCQS should be empty"); 1067 concurrent_refine()->get_and_reset_refinement_stats(); 1068 } 1069 1070 void G1CollectedHeap::verify_after_full_collection() { 1071 _hrm.verify_optional(); 1072 _verifier->verify_region_sets_optional(); 1073 _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull); 1074 1075 // This call implicitly verifies that the next bitmap is clear after Full GC. 1076 _verifier->check_bitmaps("Full GC End"); 1077 1078 // At this point there should be no regions in the 1079 // entire heap tagged as young. 1080 assert(check_young_list_empty(), "young list should be empty at this point"); 1081 1082 // Note: since we've just done a full GC, concurrent 1083 // marking is no longer active. Therefore we need not 1084 // re-enable reference discovery for the CM ref processor. 1085 // That will be done at the start of the next marking cycle. 1086 // We also know that the STW processor should no longer 1087 // discover any new references. 1088 assert(!_ref_processor_stw->discovery_enabled(), "Postcondition"); 1089 assert(!_ref_processor_cm->discovery_enabled(), "Postcondition"); 1090 _ref_processor_stw->verify_no_references_recorded(); 1091 _ref_processor_cm->verify_no_references_recorded(); 1092 } 1093 1094 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) { 1095 // Post collection logging. 1096 // We should do this after we potentially resize the heap so 1097 // that all the COMMIT / UNCOMMIT events are generated before 1098 // the compaction events. 1099 print_hrm_post_compaction(); 1100 heap_transition->print(); 1101 print_heap_after_gc(); 1102 print_heap_regions(); 1103 } 1104 1105 bool G1CollectedHeap::do_full_collection(bool explicit_gc, 1106 bool clear_all_soft_refs, 1107 bool do_maximum_compaction) { 1108 assert_at_safepoint_on_vm_thread(); 1109 1110 if (GCLocker::check_active_before_gc()) { 1111 // Full GC was not completed. 1112 return false; 1113 } 1114 1115 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1116 soft_ref_policy()->should_clear_all_soft_refs(); 1117 1118 G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs, do_maximum_compaction); 1119 GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true); 1120 1121 collector.prepare_collection(); 1122 collector.collect(); 1123 collector.complete_collection(); 1124 1125 // Full collection was successfully completed. 1126 return true; 1127 } 1128 1129 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1130 // Currently, there is no facility in the do_full_collection(bool) API to notify 1131 // the caller that the collection did not succeed (e.g., because it was locked 1132 // out by the GC locker). So, right now, we'll ignore the return value. 1133 // When clear_all_soft_refs is set we want to do a maximum compaction 1134 // not leaving any dead wood. 1135 bool do_maximum_compaction = clear_all_soft_refs; 1136 bool dummy = do_full_collection(true, /* explicit_gc */ 1137 clear_all_soft_refs, 1138 do_maximum_compaction); 1139 } 1140 1141 bool G1CollectedHeap::upgrade_to_full_collection() { 1142 GCCauseSetter compaction(this, GCCause::_g1_compaction_pause); 1143 log_info(gc, ergo)("Attempting full compaction clearing soft references"); 1144 bool success = do_full_collection(false /* explicit gc */, 1145 true /* clear_all_soft_refs */, 1146 false /* do_maximum_compaction */); 1147 // do_full_collection only fails if blocked by GC locker and that can't 1148 // be the case here since we only call this when already completed one gc. 1149 assert(success, "invariant"); 1150 return success; 1151 } 1152 1153 void G1CollectedHeap::resize_heap_if_necessary() { 1154 assert_at_safepoint_on_vm_thread(); 1155 1156 bool should_expand; 1157 size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand); 1158 1159 if (resize_amount == 0) { 1160 return; 1161 } else if (should_expand) { 1162 expand(resize_amount, _workers); 1163 } else { 1164 shrink(resize_amount); 1165 } 1166 } 1167 1168 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, 1169 bool do_gc, 1170 bool maximum_compaction, 1171 bool expect_null_mutator_alloc_region, 1172 bool* gc_succeeded) { 1173 *gc_succeeded = true; 1174 // Let's attempt the allocation first. 1175 HeapWord* result = 1176 attempt_allocation_at_safepoint(word_size, 1177 expect_null_mutator_alloc_region); 1178 if (result != NULL) { 1179 return result; 1180 } 1181 1182 // In a G1 heap, we're supposed to keep allocation from failing by 1183 // incremental pauses. Therefore, at least for now, we'll favor 1184 // expansion over collection. (This might change in the future if we can 1185 // do something smarter than full collection to satisfy a failed alloc.) 1186 result = expand_and_allocate(word_size); 1187 if (result != NULL) { 1188 return result; 1189 } 1190 1191 if (do_gc) { 1192 GCCauseSetter compaction(this, GCCause::_g1_compaction_pause); 1193 // Expansion didn't work, we'll try to do a Full GC. 1194 // If maximum_compaction is set we clear all soft references and don't 1195 // allow any dead wood to be left on the heap. 1196 if (maximum_compaction) { 1197 log_info(gc, ergo)("Attempting maximum full compaction clearing soft references"); 1198 } else { 1199 log_info(gc, ergo)("Attempting full compaction"); 1200 } 1201 *gc_succeeded = do_full_collection(false, /* explicit_gc */ 1202 maximum_compaction /* clear_all_soft_refs */ , 1203 maximum_compaction /* do_maximum_compaction */); 1204 } 1205 1206 return NULL; 1207 } 1208 1209 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1210 bool* succeeded) { 1211 assert_at_safepoint_on_vm_thread(); 1212 1213 // Attempts to allocate followed by Full GC. 1214 HeapWord* result = 1215 satisfy_failed_allocation_helper(word_size, 1216 true, /* do_gc */ 1217 false, /* maximum_collection */ 1218 false, /* expect_null_mutator_alloc_region */ 1219 succeeded); 1220 1221 if (result != NULL || !*succeeded) { 1222 return result; 1223 } 1224 1225 // Attempts to allocate followed by Full GC that will collect all soft references. 1226 result = satisfy_failed_allocation_helper(word_size, 1227 true, /* do_gc */ 1228 true, /* maximum_collection */ 1229 true, /* expect_null_mutator_alloc_region */ 1230 succeeded); 1231 1232 if (result != NULL || !*succeeded) { 1233 return result; 1234 } 1235 1236 // Attempts to allocate, no GC 1237 result = satisfy_failed_allocation_helper(word_size, 1238 false, /* do_gc */ 1239 false, /* maximum_collection */ 1240 true, /* expect_null_mutator_alloc_region */ 1241 succeeded); 1242 1243 if (result != NULL) { 1244 return result; 1245 } 1246 1247 assert(!soft_ref_policy()->should_clear_all_soft_refs(), 1248 "Flag should have been handled and cleared prior to this point"); 1249 1250 // What else? We might try synchronous finalization later. If the total 1251 // space available is large enough for the allocation, then a more 1252 // complete compaction phase than we've tried so far might be 1253 // appropriate. 1254 return NULL; 1255 } 1256 1257 // Attempting to expand the heap sufficiently 1258 // to support an allocation of the given "word_size". If 1259 // successful, perform the allocation and return the address of the 1260 // allocated block, or else "NULL". 1261 1262 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { 1263 assert_at_safepoint_on_vm_thread(); 1264 1265 _verifier->verify_region_sets_optional(); 1266 1267 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1268 log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B", 1269 word_size * HeapWordSize); 1270 1271 1272 if (expand(expand_bytes, _workers)) { 1273 _hrm.verify_optional(); 1274 _verifier->verify_region_sets_optional(); 1275 return attempt_allocation_at_safepoint(word_size, 1276 false /* expect_null_mutator_alloc_region */); 1277 } 1278 return NULL; 1279 } 1280 1281 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) { 1282 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1283 aligned_expand_bytes = align_up(aligned_expand_bytes, 1284 HeapRegion::GrainBytes); 1285 1286 log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B", 1287 expand_bytes, aligned_expand_bytes); 1288 1289 if (is_maximal_no_gc()) { 1290 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1291 return false; 1292 } 1293 1294 double expand_heap_start_time_sec = os::elapsedTime(); 1295 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1296 assert(regions_to_expand > 0, "Must expand by at least one region"); 1297 1298 uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers); 1299 if (expand_time_ms != NULL) { 1300 *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; 1301 } 1302 1303 if (expanded_by > 0) { 1304 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1305 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1306 policy()->record_new_heap_size(num_regions()); 1307 } else { 1308 log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)"); 1309 1310 // The expansion of the virtual storage space was unsuccessful. 1311 // Let's see if it was because we ran out of swap. 1312 if (G1ExitOnExpansionFailure && 1313 _hrm.available() >= regions_to_expand) { 1314 // We had head room... 1315 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1316 } 1317 } 1318 return regions_to_expand > 0; 1319 } 1320 1321 bool G1CollectedHeap::expand_single_region(uint node_index) { 1322 uint expanded_by = _hrm.expand_on_preferred_node(node_index); 1323 1324 if (expanded_by == 0) { 1325 assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm.available()); 1326 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1327 return false; 1328 } 1329 1330 policy()->record_new_heap_size(num_regions()); 1331 return true; 1332 } 1333 1334 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1335 size_t aligned_shrink_bytes = 1336 ReservedSpace::page_align_size_down(shrink_bytes); 1337 aligned_shrink_bytes = align_down(aligned_shrink_bytes, 1338 HeapRegion::GrainBytes); 1339 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1340 1341 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1342 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1343 1344 log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B", 1345 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1346 if (num_regions_removed > 0) { 1347 log_debug(gc, heap)("Uncommittable regions after shrink: %u", num_regions_removed); 1348 policy()->record_new_heap_size(num_regions()); 1349 } else { 1350 log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)"); 1351 } 1352 } 1353 1354 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1355 _verifier->verify_region_sets_optional(); 1356 1357 // We should only reach here at the end of a Full GC or during Remark which 1358 // means we should not not be holding to any GC alloc regions. The method 1359 // below will make sure of that and do any remaining clean up. 1360 _allocator->abandon_gc_alloc_regions(); 1361 1362 // Instead of tearing down / rebuilding the free lists here, we 1363 // could instead use the remove_all_pending() method on free_list to 1364 // remove only the ones that we need to remove. 1365 _hrm.remove_all_free_regions(); 1366 shrink_helper(shrink_bytes); 1367 rebuild_region_sets(true /* free_list_only */); 1368 1369 _hrm.verify_optional(); 1370 _verifier->verify_region_sets_optional(); 1371 } 1372 1373 class OldRegionSetChecker : public HeapRegionSetChecker { 1374 public: 1375 void check_mt_safety() { 1376 // Master Old Set MT safety protocol: 1377 // (a) If we're at a safepoint, operations on the master old set 1378 // should be invoked: 1379 // - by the VM thread (which will serialize them), or 1380 // - by the GC workers while holding the FreeList_lock, if we're 1381 // at a safepoint for an evacuation pause (this lock is taken 1382 // anyway when an GC alloc region is retired so that a new one 1383 // is allocated from the free list), or 1384 // - by the GC workers while holding the OldSets_lock, if we're at a 1385 // safepoint for a cleanup pause. 1386 // (b) If we're not at a safepoint, operations on the master old set 1387 // should be invoked while holding the Heap_lock. 1388 1389 if (SafepointSynchronize::is_at_safepoint()) { 1390 guarantee(Thread::current()->is_VM_thread() || 1391 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(), 1392 "master old set MT safety protocol at a safepoint"); 1393 } else { 1394 guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint"); 1395 } 1396 } 1397 bool is_correct_type(HeapRegion* hr) { return hr->is_old(); } 1398 const char* get_description() { return "Old Regions"; } 1399 }; 1400 1401 class ArchiveRegionSetChecker : public HeapRegionSetChecker { 1402 public: 1403 void check_mt_safety() { 1404 guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(), 1405 "May only change archive regions during initialization or safepoint."); 1406 } 1407 bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); } 1408 const char* get_description() { return "Archive Regions"; } 1409 }; 1410 1411 class HumongousRegionSetChecker : public HeapRegionSetChecker { 1412 public: 1413 void check_mt_safety() { 1414 // Humongous Set MT safety protocol: 1415 // (a) If we're at a safepoint, operations on the master humongous 1416 // set should be invoked by either the VM thread (which will 1417 // serialize them) or by the GC workers while holding the 1418 // OldSets_lock. 1419 // (b) If we're not at a safepoint, operations on the master 1420 // humongous set should be invoked while holding the Heap_lock. 1421 1422 if (SafepointSynchronize::is_at_safepoint()) { 1423 guarantee(Thread::current()->is_VM_thread() || 1424 OldSets_lock->owned_by_self(), 1425 "master humongous set MT safety protocol at a safepoint"); 1426 } else { 1427 guarantee(Heap_lock->owned_by_self(), 1428 "master humongous set MT safety protocol outside a safepoint"); 1429 } 1430 } 1431 bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); } 1432 const char* get_description() { return "Humongous Regions"; } 1433 }; 1434 1435 G1CollectedHeap::G1CollectedHeap() : 1436 CollectedHeap(), 1437 _service_thread(NULL), 1438 _periodic_gc_task(NULL), 1439 _workers(NULL), 1440 _card_table(NULL), 1441 _collection_pause_end(Ticks::now()), 1442 _soft_ref_policy(), 1443 _old_set("Old Region Set", new OldRegionSetChecker()), 1444 _archive_set("Archive Region Set", new ArchiveRegionSetChecker()), 1445 _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()), 1446 _bot(NULL), 1447 _listener(), 1448 _numa(G1NUMA::create()), 1449 _hrm(), 1450 _allocator(NULL), 1451 _verifier(NULL), 1452 _summary_bytes_used(0), 1453 _bytes_used_during_gc(0), 1454 _archive_allocator(NULL), 1455 _survivor_evac_stats("Young", YoungPLABSize, PLABWeight), 1456 _old_evac_stats("Old", OldPLABSize, PLABWeight), 1457 _expand_heap_after_alloc_failure(true), 1458 _g1mm(NULL), 1459 _humongous_reclaim_candidates(), 1460 _num_humongous_objects(0), 1461 _num_humongous_reclaim_candidates(0), 1462 _hr_printer(), 1463 _collector_state(), 1464 _old_marking_cycles_started(0), 1465 _old_marking_cycles_completed(0), 1466 _eden(), 1467 _survivor(), 1468 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1469 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1470 _policy(new G1Policy(_gc_timer_stw)), 1471 _heap_sizing_policy(NULL), 1472 _collection_set(this, _policy), 1473 _hot_card_cache(NULL), 1474 _rem_set(NULL), 1475 _cm(NULL), 1476 _cm_thread(NULL), 1477 _cr(NULL), 1478 _task_queues(NULL), 1479 _num_regions_failed_evacuation(0), 1480 _regions_failed_evacuation(NULL), 1481 _evacuation_failed_info_array(NULL), 1482 _preserved_marks_set(true /* in_c_heap */), 1483 #ifndef PRODUCT 1484 _evacuation_failure_alot_for_current_gc(false), 1485 _evacuation_failure_alot_gc_number(0), 1486 _evacuation_failure_alot_count(0), 1487 #endif 1488 _ref_processor_stw(NULL), 1489 _is_alive_closure_stw(this), 1490 _is_subject_to_discovery_stw(this), 1491 _ref_processor_cm(NULL), 1492 _is_alive_closure_cm(this), 1493 _is_subject_to_discovery_cm(this), 1494 _region_attr() { 1495 1496 _verifier = new G1HeapVerifier(this); 1497 1498 _allocator = new G1Allocator(this); 1499 1500 _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics()); 1501 1502 _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); 1503 1504 // Override the default _filler_array_max_size so that no humongous filler 1505 // objects are created. 1506 _filler_array_max_size = _humongous_object_threshold_in_words; 1507 1508 uint n_queues = ParallelGCThreads; 1509 _task_queues = new G1ScannerTasksQueueSet(n_queues); 1510 1511 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1512 1513 for (uint i = 0; i < n_queues; i++) { 1514 G1ScannerTasksQueue* q = new G1ScannerTasksQueue(); 1515 q->initialize(); 1516 _task_queues->register_queue(i, q); 1517 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1518 } 1519 1520 // Initialize the G1EvacuationFailureALot counters and flags. 1521 NOT_PRODUCT(reset_evacuation_should_fail();) 1522 _gc_tracer_stw->initialize(); 1523 1524 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1525 } 1526 1527 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, 1528 size_t size, 1529 size_t translation_factor) { 1530 size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); 1531 // Allocate a new reserved space, preferring to use large pages. 1532 ReservedSpace rs(size, preferred_page_size); 1533 size_t page_size = rs.page_size(); 1534 G1RegionToSpaceMapper* result = 1535 G1RegionToSpaceMapper::create_mapper(rs, 1536 size, 1537 page_size, 1538 HeapRegion::GrainBytes, 1539 translation_factor, 1540 mtGC); 1541 1542 os::trace_page_sizes_for_requested_size(description, 1543 size, 1544 page_size, 1545 preferred_page_size, 1546 rs.base(), 1547 rs.size()); 1548 1549 return result; 1550 } 1551 1552 jint G1CollectedHeap::initialize_concurrent_refinement() { 1553 jint ecode = JNI_OK; 1554 _cr = G1ConcurrentRefine::create(&ecode); 1555 return ecode; 1556 } 1557 1558 jint G1CollectedHeap::initialize_service_thread() { 1559 _service_thread = new G1ServiceThread(); 1560 if (_service_thread->osthread() == NULL) { 1561 vm_shutdown_during_initialization("Could not create G1ServiceThread"); 1562 return JNI_ENOMEM; 1563 } 1564 return JNI_OK; 1565 } 1566 1567 jint G1CollectedHeap::initialize() { 1568 1569 // Necessary to satisfy locking discipline assertions. 1570 1571 MutexLocker x(Heap_lock); 1572 1573 // While there are no constraints in the GC code that HeapWordSize 1574 // be any particular value, there are multiple other areas in the 1575 // system which believe this to be true (e.g. oop->object_size in some 1576 // cases incorrectly returns the size in wordSize units rather than 1577 // HeapWordSize). 1578 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1579 1580 size_t init_byte_size = InitialHeapSize; 1581 size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes(); 1582 1583 // Ensure that the sizes are properly aligned. 1584 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1585 Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1586 Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap"); 1587 1588 // Reserve the maximum. 1589 1590 // When compressed oops are enabled, the preferred heap base 1591 // is calculated by subtracting the requested size from the 1592 // 32Gb boundary and using the result as the base address for 1593 // heap reservation. If the requested size is not aligned to 1594 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1595 // into the ReservedHeapSpace constructor) then the actual 1596 // base of the reserved heap may end up differing from the 1597 // address that was requested (i.e. the preferred heap base). 1598 // If this happens then we could end up using a non-optimal 1599 // compressed oops mode. 1600 1601 ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size, 1602 HeapAlignment); 1603 1604 initialize_reserved_region(heap_rs); 1605 1606 // Create the barrier set for the entire reserved region. 1607 G1CardTable* ct = new G1CardTable(heap_rs.region()); 1608 ct->initialize(); 1609 G1BarrierSet* bs = new G1BarrierSet(ct); 1610 bs->initialize(); 1611 assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity"); 1612 BarrierSet::set_barrier_set(bs); 1613 _card_table = ct; 1614 1615 { 1616 G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set(); 1617 satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold); 1618 satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent); 1619 } 1620 1621 // Create the hot card cache. 1622 _hot_card_cache = new G1HotCardCache(this); 1623 1624 // Create space mappers. 1625 size_t page_size = heap_rs.page_size(); 1626 G1RegionToSpaceMapper* heap_storage = 1627 G1RegionToSpaceMapper::create_mapper(heap_rs, 1628 heap_rs.size(), 1629 page_size, 1630 HeapRegion::GrainBytes, 1631 1, 1632 mtJavaHeap); 1633 if(heap_storage == NULL) { 1634 vm_shutdown_during_initialization("Could not initialize G1 heap"); 1635 return JNI_ERR; 1636 } 1637 1638 os::trace_page_sizes("Heap", 1639 MinHeapSize, 1640 reserved_byte_size, 1641 page_size, 1642 heap_rs.base(), 1643 heap_rs.size()); 1644 heap_storage->set_mapping_changed_listener(&_listener); 1645 1646 // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps. 1647 G1RegionToSpaceMapper* bot_storage = 1648 create_aux_memory_mapper("Block Offset Table", 1649 G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize), 1650 G1BlockOffsetTable::heap_map_factor()); 1651 1652 G1RegionToSpaceMapper* cardtable_storage = 1653 create_aux_memory_mapper("Card Table", 1654 G1CardTable::compute_size(heap_rs.size() / HeapWordSize), 1655 G1CardTable::heap_map_factor()); 1656 1657 G1RegionToSpaceMapper* card_counts_storage = 1658 create_aux_memory_mapper("Card Counts Table", 1659 G1CardCounts::compute_size(heap_rs.size() / HeapWordSize), 1660 G1CardCounts::heap_map_factor()); 1661 1662 size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size()); 1663 G1RegionToSpaceMapper* prev_bitmap_storage = 1664 create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1665 G1RegionToSpaceMapper* next_bitmap_storage = 1666 create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1667 1668 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 1669 _card_table->initialize(cardtable_storage); 1670 1671 // Do later initialization work for concurrent refinement. 1672 _hot_card_cache->initialize(card_counts_storage); 1673 1674 // 6843694 - ensure that the maximum region index can fit 1675 // in the remembered set structures. 1676 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 1677 guarantee((max_reserved_regions() - 1) <= max_region_idx, "too many regions"); 1678 1679 // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not 1680 // start within the first card. 1681 guarantee(heap_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card."); 1682 G1FromCardCache::initialize(max_reserved_regions()); 1683 // Also create a G1 rem set. 1684 _rem_set = new G1RemSet(this, _card_table, _hot_card_cache); 1685 _rem_set->initialize(max_reserved_regions()); 1686 1687 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 1688 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 1689 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 1690 "too many cards per region"); 1691 1692 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 1693 1694 _bot = new G1BlockOffsetTable(reserved(), bot_storage); 1695 1696 { 1697 size_t granularity = HeapRegion::GrainBytes; 1698 1699 _region_attr.initialize(reserved(), granularity); 1700 _humongous_reclaim_candidates.initialize(reserved(), granularity); 1701 } 1702 1703 _workers = new WorkGang("GC Thread", ParallelGCThreads, 1704 true /* are_GC_task_threads */, 1705 false /* are_ConcurrentGC_threads */); 1706 if (_workers == NULL) { 1707 return JNI_ENOMEM; 1708 } 1709 _workers->initialize_workers(); 1710 1711 _numa->set_region_info(HeapRegion::GrainBytes, page_size); 1712 1713 // Create the G1ConcurrentMark data structure and thread. 1714 // (Must do this late, so that "max_[reserved_]regions" is defined.) 1715 _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 1716 _cm_thread = _cm->cm_thread(); 1717 1718 // Now expand into the initial heap size. 1719 if (!expand(init_byte_size, _workers)) { 1720 vm_shutdown_during_initialization("Failed to allocate initial heap."); 1721 return JNI_ENOMEM; 1722 } 1723 1724 // Perform any initialization actions delegated to the policy. 1725 policy()->init(this, &_collection_set); 1726 1727 jint ecode = initialize_concurrent_refinement(); 1728 if (ecode != JNI_OK) { 1729 return ecode; 1730 } 1731 1732 ecode = initialize_service_thread(); 1733 if (ecode != JNI_OK) { 1734 return ecode; 1735 } 1736 1737 // Initialize and schedule sampling task on service thread. 1738 _rem_set->initialize_sampling_task(service_thread()); 1739 1740 // Create and schedule the periodic gc task on the service thread. 1741 _periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task"); 1742 _service_thread->register_task(_periodic_gc_task); 1743 1744 { 1745 G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); 1746 dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone()); 1747 dcqs.set_max_cards(concurrent_refine()->red_zone()); 1748 } 1749 1750 // Here we allocate the dummy HeapRegion that is required by the 1751 // G1AllocRegion class. 1752 HeapRegion* dummy_region = _hrm.get_dummy_region(); 1753 1754 // We'll re-use the same region whether the alloc region will 1755 // require BOT updates or not and, if it doesn't, then a non-young 1756 // region will complain that it cannot support allocations without 1757 // BOT updates. So we'll tag the dummy region as eden to avoid that. 1758 dummy_region->set_eden(); 1759 // Make sure it's full. 1760 dummy_region->set_top(dummy_region->end()); 1761 G1AllocRegion::setup(this, dummy_region); 1762 1763 _allocator->init_mutator_alloc_regions(); 1764 1765 // Do create of the monitoring and management support so that 1766 // values in the heap have been properly initialized. 1767 _g1mm = new G1MonitoringSupport(this); 1768 1769 _preserved_marks_set.init(ParallelGCThreads); 1770 1771 _collection_set.initialize(max_reserved_regions()); 1772 1773 _regions_failed_evacuation = NEW_C_HEAP_ARRAY(volatile bool, max_regions(), mtGC); 1774 1775 G1InitLogger::print(); 1776 1777 return JNI_OK; 1778 } 1779 1780 void G1CollectedHeap::stop() { 1781 // Stop all concurrent threads. We do this to make sure these threads 1782 // do not continue to execute and access resources (e.g. logging) 1783 // that are destroyed during shutdown. 1784 _cr->stop(); 1785 _service_thread->stop(); 1786 _cm_thread->stop(); 1787 } 1788 1789 void G1CollectedHeap::safepoint_synchronize_begin() { 1790 SuspendibleThreadSet::synchronize(); 1791 } 1792 1793 void G1CollectedHeap::safepoint_synchronize_end() { 1794 SuspendibleThreadSet::desynchronize(); 1795 } 1796 1797 void G1CollectedHeap::post_initialize() { 1798 CollectedHeap::post_initialize(); 1799 ref_processing_init(); 1800 } 1801 1802 void G1CollectedHeap::ref_processing_init() { 1803 // Reference processing in G1 currently works as follows: 1804 // 1805 // * There are two reference processor instances. One is 1806 // used to record and process discovered references 1807 // during concurrent marking; the other is used to 1808 // record and process references during STW pauses 1809 // (both full and incremental). 1810 // * Both ref processors need to 'span' the entire heap as 1811 // the regions in the collection set may be dotted around. 1812 // 1813 // * For the concurrent marking ref processor: 1814 // * Reference discovery is enabled at concurrent start. 1815 // * Reference discovery is disabled and the discovered 1816 // references processed etc during remarking. 1817 // * Reference discovery is MT (see below). 1818 // * Reference discovery requires a barrier (see below). 1819 // * Reference processing may or may not be MT 1820 // (depending on the value of ParallelRefProcEnabled 1821 // and ParallelGCThreads). 1822 // * A full GC disables reference discovery by the CM 1823 // ref processor and abandons any entries on it's 1824 // discovered lists. 1825 // 1826 // * For the STW processor: 1827 // * Non MT discovery is enabled at the start of a full GC. 1828 // * Processing and enqueueing during a full GC is non-MT. 1829 // * During a full GC, references are processed after marking. 1830 // 1831 // * Discovery (may or may not be MT) is enabled at the start 1832 // of an incremental evacuation pause. 1833 // * References are processed near the end of a STW evacuation pause. 1834 // * For both types of GC: 1835 // * Discovery is atomic - i.e. not concurrent. 1836 // * Reference discovery will not need a barrier. 1837 1838 // Concurrent Mark ref processor 1839 _ref_processor_cm = 1840 new ReferenceProcessor(&_is_subject_to_discovery_cm, 1841 ParallelGCThreads, // degree of mt processing 1842 (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery 1843 MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery 1844 false, // Reference discovery is not atomic 1845 &_is_alive_closure_cm); // is alive closure 1846 1847 // STW ref processor 1848 _ref_processor_stw = 1849 new ReferenceProcessor(&_is_subject_to_discovery_stw, 1850 ParallelGCThreads, // degree of mt processing 1851 (ParallelGCThreads > 1), // mt discovery 1852 ParallelGCThreads, // degree of mt discovery 1853 true, // Reference discovery is atomic 1854 &_is_alive_closure_stw); // is alive closure 1855 } 1856 1857 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() { 1858 return &_soft_ref_policy; 1859 } 1860 1861 size_t G1CollectedHeap::capacity() const { 1862 return _hrm.length() * HeapRegion::GrainBytes; 1863 } 1864 1865 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const { 1866 return _hrm.total_free_bytes(); 1867 } 1868 1869 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) { 1870 _hot_card_cache->drain(cl, worker_id); 1871 } 1872 1873 // Computes the sum of the storage used by the various regions. 1874 size_t G1CollectedHeap::used() const { 1875 size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); 1876 if (_archive_allocator != NULL) { 1877 result += _archive_allocator->used(); 1878 } 1879 return result; 1880 } 1881 1882 size_t G1CollectedHeap::used_unlocked() const { 1883 return _summary_bytes_used; 1884 } 1885 1886 class SumUsedClosure: public HeapRegionClosure { 1887 size_t _used; 1888 public: 1889 SumUsedClosure() : _used(0) {} 1890 bool do_heap_region(HeapRegion* r) { 1891 _used += r->used(); 1892 return false; 1893 } 1894 size_t result() { return _used; } 1895 }; 1896 1897 size_t G1CollectedHeap::recalculate_used() const { 1898 SumUsedClosure blk; 1899 heap_region_iterate(&blk); 1900 return blk.result(); 1901 } 1902 1903 bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { 1904 switch (cause) { 1905 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 1906 case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; 1907 case GCCause::_wb_conc_mark: return true; 1908 default : return false; 1909 } 1910 } 1911 1912 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 1913 switch (cause) { 1914 case GCCause::_g1_humongous_allocation: return true; 1915 case GCCause::_g1_periodic_collection: return G1PeriodicGCInvokesConcurrent; 1916 case GCCause::_wb_breakpoint: return true; 1917 default: return is_user_requested_concurrent_full_gc(cause); 1918 } 1919 } 1920 1921 #ifndef PRODUCT 1922 void G1CollectedHeap::allocate_dummy_regions() { 1923 // Let's fill up most of the region 1924 size_t word_size = HeapRegion::GrainWords - 1024; 1925 // And as a result the region we'll allocate will be humongous. 1926 guarantee(is_humongous(word_size), "sanity"); 1927 1928 // _filler_array_max_size is set to humongous object threshold 1929 // but temporarily change it to use CollectedHeap::fill_with_object(). 1930 AutoModifyRestore<size_t> temporarily(_filler_array_max_size, word_size); 1931 1932 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 1933 // Let's use the existing mechanism for the allocation 1934 HeapWord* dummy_obj = humongous_obj_allocate(word_size); 1935 if (dummy_obj != NULL) { 1936 MemRegion mr(dummy_obj, word_size); 1937 CollectedHeap::fill_with_object(mr); 1938 } else { 1939 // If we can't allocate once, we probably cannot allocate 1940 // again. Let's get out of the loop. 1941 break; 1942 } 1943 } 1944 } 1945 #endif // !PRODUCT 1946 1947 void G1CollectedHeap::increment_old_marking_cycles_started() { 1948 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 1949 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 1950 "Wrong marking cycle count (started: %d, completed: %d)", 1951 _old_marking_cycles_started, _old_marking_cycles_completed); 1952 1953 _old_marking_cycles_started++; 1954 } 1955 1956 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent, 1957 bool whole_heap_examined) { 1958 MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag); 1959 1960 // We assume that if concurrent == true, then the caller is a 1961 // concurrent thread that was joined the Suspendible Thread 1962 // Set. If there's ever a cheap way to check this, we should add an 1963 // assert here. 1964 1965 // Given that this method is called at the end of a Full GC or of a 1966 // concurrent cycle, and those can be nested (i.e., a Full GC can 1967 // interrupt a concurrent cycle), the number of full collections 1968 // completed should be either one (in the case where there was no 1969 // nesting) or two (when a Full GC interrupted a concurrent cycle) 1970 // behind the number of full collections started. 1971 1972 // This is the case for the inner caller, i.e. a Full GC. 1973 assert(concurrent || 1974 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 1975 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 1976 "for inner caller (Full GC): _old_marking_cycles_started = %u " 1977 "is inconsistent with _old_marking_cycles_completed = %u", 1978 _old_marking_cycles_started, _old_marking_cycles_completed); 1979 1980 // This is the case for the outer caller, i.e. the concurrent cycle. 1981 assert(!concurrent || 1982 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 1983 "for outer caller (concurrent cycle): " 1984 "_old_marking_cycles_started = %u " 1985 "is inconsistent with _old_marking_cycles_completed = %u", 1986 _old_marking_cycles_started, _old_marking_cycles_completed); 1987 1988 _old_marking_cycles_completed += 1; 1989 if (whole_heap_examined) { 1990 // Signal that we have completed a visit to all live objects. 1991 record_whole_heap_examined_timestamp(); 1992 } 1993 1994 // We need to clear the "in_progress" flag in the CM thread before 1995 // we wake up any waiters (especially when ExplicitInvokesConcurrent 1996 // is set) so that if a waiter requests another System.gc() it doesn't 1997 // incorrectly see that a marking cycle is still in progress. 1998 if (concurrent) { 1999 _cm_thread->set_idle(); 2000 } 2001 2002 // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent) 2003 // for a full GC to finish that their wait is over. 2004 ml.notify_all(); 2005 } 2006 2007 void G1CollectedHeap::collect(GCCause::Cause cause) { 2008 try_collect(cause); 2009 } 2010 2011 // Return true if (x < y) with allowance for wraparound. 2012 static bool gc_counter_less_than(uint x, uint y) { 2013 return (x - y) > (UINT_MAX/2); 2014 } 2015 2016 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...) 2017 // Macro so msg printing is format-checked. 2018 #define LOG_COLLECT_CONCURRENTLY(cause, ...) \ 2019 do { \ 2020 LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt; \ 2021 if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) { \ 2022 ResourceMark rm; /* For thread name. */ \ 2023 LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \ 2024 LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \ 2025 Thread::current()->name(), \ 2026 GCCause::to_string(cause)); \ 2027 LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__); \ 2028 } \ 2029 } while (0) 2030 2031 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \ 2032 LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result)) 2033 2034 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause, 2035 uint gc_counter, 2036 uint old_marking_started_before) { 2037 assert_heap_not_locked(); 2038 assert(should_do_concurrent_full_gc(cause), 2039 "Non-concurrent cause %s", GCCause::to_string(cause)); 2040 2041 for (uint i = 1; true; ++i) { 2042 // Try to schedule concurrent start evacuation pause that will 2043 // start a concurrent cycle. 2044 LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i); 2045 VM_G1TryInitiateConcMark op(gc_counter, 2046 cause, 2047 policy()->max_pause_time_ms()); 2048 VMThread::execute(&op); 2049 2050 // Request is trivially finished. 2051 if (cause == GCCause::_g1_periodic_collection) { 2052 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded()); 2053 return op.gc_succeeded(); 2054 } 2055 2056 // If VMOp skipped initiating concurrent marking cycle because 2057 // we're terminating, then we're done. 2058 if (op.terminating()) { 2059 LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating"); 2060 return false; 2061 } 2062 2063 // Lock to get consistent set of values. 2064 uint old_marking_started_after; 2065 uint old_marking_completed_after; 2066 { 2067 MutexLocker ml(Heap_lock); 2068 // Update gc_counter for retrying VMOp if needed. Captured here to be 2069 // consistent with the values we use below for termination tests. If 2070 // a retry is needed after a possible wait, and another collection 2071 // occurs in the meantime, it will cause our retry to be skipped and 2072 // we'll recheck for termination with updated conditions from that 2073 // more recent collection. That's what we want, rather than having 2074 // our retry possibly perform an unnecessary collection. 2075 gc_counter = total_collections(); 2076 old_marking_started_after = _old_marking_cycles_started; 2077 old_marking_completed_after = _old_marking_cycles_completed; 2078 } 2079 2080 if (cause == GCCause::_wb_breakpoint) { 2081 if (op.gc_succeeded()) { 2082 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); 2083 return true; 2084 } 2085 // When _wb_breakpoint there can't be another cycle or deferred. 2086 assert(!op.cycle_already_in_progress(), "invariant"); 2087 assert(!op.whitebox_attached(), "invariant"); 2088 // Concurrent cycle attempt might have been cancelled by some other 2089 // collection, so retry. Unlike other cases below, we want to retry 2090 // even if cancelled by a STW full collection, because we really want 2091 // to start a concurrent cycle. 2092 if (old_marking_started_before != old_marking_started_after) { 2093 LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC"); 2094 old_marking_started_before = old_marking_started_after; 2095 } 2096 } else if (!GCCause::is_user_requested_gc(cause)) { 2097 // For an "automatic" (not user-requested) collection, we just need to 2098 // ensure that progress is made. 2099 // 2100 // Request is finished if any of 2101 // (1) the VMOp successfully performed a GC, 2102 // (2) a concurrent cycle was already in progress, 2103 // (3) whitebox is controlling concurrent cycles, 2104 // (4) a new cycle was started (by this thread or some other), or 2105 // (5) a Full GC was performed. 2106 // Cases (4) and (5) are detected together by a change to 2107 // _old_marking_cycles_started. 2108 // 2109 // Note that (1) does not imply (4). If we're still in the mixed 2110 // phase of an earlier concurrent collection, the request to make the 2111 // collection a concurrent start won't be honored. If we don't check for 2112 // both conditions we'll spin doing back-to-back collections. 2113 if (op.gc_succeeded() || 2114 op.cycle_already_in_progress() || 2115 op.whitebox_attached() || 2116 (old_marking_started_before != old_marking_started_after)) { 2117 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); 2118 return true; 2119 } 2120 } else { // User-requested GC. 2121 // For a user-requested collection, we want to ensure that a complete 2122 // full collection has been performed before returning, but without 2123 // waiting for more than needed. 2124 2125 // For user-requested GCs (unlike non-UR), a successful VMOp implies a 2126 // new cycle was started. That's good, because it's not clear what we 2127 // should do otherwise. Trying again just does back to back GCs. 2128 // Can't wait for someone else to start a cycle. And returning fails 2129 // to meet the goal of ensuring a full collection was performed. 2130 assert(!op.gc_succeeded() || 2131 (old_marking_started_before != old_marking_started_after), 2132 "invariant: succeeded %s, started before %u, started after %u", 2133 BOOL_TO_STR(op.gc_succeeded()), 2134 old_marking_started_before, old_marking_started_after); 2135 2136 // Request is finished if a full collection (concurrent or stw) 2137 // was started after this request and has completed, e.g. 2138 // started_before < completed_after. 2139 if (gc_counter_less_than(old_marking_started_before, 2140 old_marking_completed_after)) { 2141 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); 2142 return true; 2143 } 2144 2145 if (old_marking_started_after != old_marking_completed_after) { 2146 // If there is an in-progress cycle (possibly started by us), then 2147 // wait for that cycle to complete, e.g. 2148 // while completed_now < started_after. 2149 LOG_COLLECT_CONCURRENTLY(cause, "wait"); 2150 MonitorLocker ml(G1OldGCCount_lock); 2151 while (gc_counter_less_than(_old_marking_cycles_completed, 2152 old_marking_started_after)) { 2153 ml.wait(); 2154 } 2155 // Request is finished if the collection we just waited for was 2156 // started after this request. 2157 if (old_marking_started_before != old_marking_started_after) { 2158 LOG_COLLECT_CONCURRENTLY(cause, "complete after wait"); 2159 return true; 2160 } 2161 } 2162 2163 // If VMOp was successful then it started a new cycle that the above 2164 // wait &etc should have recognized as finishing this request. This 2165 // differs from a non-user-request, where gc_succeeded does not imply 2166 // a new cycle was started. 2167 assert(!op.gc_succeeded(), "invariant"); 2168 2169 if (op.cycle_already_in_progress()) { 2170 // If VMOp failed because a cycle was already in progress, it 2171 // is now complete. But it didn't finish this user-requested 2172 // GC, so try again. 2173 LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress"); 2174 continue; 2175 } else if (op.whitebox_attached()) { 2176 // If WhiteBox wants control, wait for notification of a state 2177 // change in the controller, then try again. Don't wait for 2178 // release of control, since collections may complete while in 2179 // control. Note: This won't recognize a STW full collection 2180 // while waiting; we can't wait on multiple monitors. 2181 LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall"); 2182 MonitorLocker ml(ConcurrentGCBreakpoints::monitor()); 2183 if (ConcurrentGCBreakpoints::is_controlled()) { 2184 ml.wait(); 2185 } 2186 continue; 2187 } 2188 } 2189 2190 // Collection failed and should be retried. 2191 assert(op.transient_failure(), "invariant"); 2192 2193 if (GCLocker::is_active_and_needs_gc()) { 2194 // If GCLocker is active, wait until clear before retrying. 2195 LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall"); 2196 GCLocker::stall_until_clear(); 2197 } 2198 2199 LOG_COLLECT_CONCURRENTLY(cause, "retry"); 2200 } 2201 } 2202 2203 bool G1CollectedHeap::try_collect(GCCause::Cause cause) { 2204 assert_heap_not_locked(); 2205 2206 // Lock to get consistent set of values. 2207 uint gc_count_before; 2208 uint full_gc_count_before; 2209 uint old_marking_started_before; 2210 { 2211 MutexLocker ml(Heap_lock); 2212 gc_count_before = total_collections(); 2213 full_gc_count_before = total_full_collections(); 2214 old_marking_started_before = _old_marking_cycles_started; 2215 } 2216 2217 if (should_do_concurrent_full_gc(cause)) { 2218 return try_collect_concurrently(cause, 2219 gc_count_before, 2220 old_marking_started_before); 2221 } else if (GCLocker::should_discard(cause, gc_count_before)) { 2222 // Indicate failure to be consistent with VMOp failure due to 2223 // another collection slipping in after our gc_count but before 2224 // our request is processed. 2225 return false; 2226 } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2227 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2228 2229 // Schedule a standard evacuation pause. We're setting word_size 2230 // to 0 which means that we are not requesting a post-GC allocation. 2231 VM_G1CollectForAllocation op(0, /* word_size */ 2232 gc_count_before, 2233 cause, 2234 policy()->max_pause_time_ms()); 2235 VMThread::execute(&op); 2236 return op.gc_succeeded(); 2237 } else { 2238 // Schedule a Full GC. 2239 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); 2240 VMThread::execute(&op); 2241 return op.gc_succeeded(); 2242 } 2243 } 2244 2245 bool G1CollectedHeap::is_in(const void* p) const { 2246 return is_in_reserved(p) && _hrm.is_available(addr_to_region((HeapWord*)p)); 2247 } 2248 2249 // Iteration functions. 2250 2251 // Iterates an ObjectClosure over all objects within a HeapRegion. 2252 2253 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2254 ObjectClosure* _cl; 2255 public: 2256 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2257 bool do_heap_region(HeapRegion* r) { 2258 if (!r->is_continues_humongous()) { 2259 r->object_iterate(_cl); 2260 } 2261 return false; 2262 } 2263 }; 2264 2265 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2266 IterateObjectClosureRegionClosure blk(cl); 2267 heap_region_iterate(&blk); 2268 } 2269 2270 class G1ParallelObjectIterator : public ParallelObjectIteratorImpl { 2271 private: 2272 G1CollectedHeap* _heap; 2273 HeapRegionClaimer _claimer; 2274 2275 public: 2276 G1ParallelObjectIterator(uint thread_num) : 2277 _heap(G1CollectedHeap::heap()), 2278 _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {} 2279 2280 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 2281 _heap->object_iterate_parallel(cl, worker_id, &_claimer); 2282 } 2283 }; 2284 2285 ParallelObjectIteratorImpl* G1CollectedHeap::parallel_object_iterator(uint thread_num) { 2286 return new G1ParallelObjectIterator(thread_num); 2287 } 2288 2289 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) { 2290 IterateObjectClosureRegionClosure blk(cl); 2291 heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id); 2292 } 2293 2294 void G1CollectedHeap::keep_alive(oop obj) { 2295 G1BarrierSet::enqueue_preloaded(obj); 2296 } 2297 2298 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2299 _hrm.iterate(cl); 2300 } 2301 2302 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, 2303 HeapRegionClaimer *hrclaimer, 2304 uint worker_id) const { 2305 _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id)); 2306 } 2307 2308 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl, 2309 HeapRegionClaimer *hrclaimer) const { 2310 _hrm.par_iterate(cl, hrclaimer, 0); 2311 } 2312 2313 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) { 2314 _collection_set.iterate(cl); 2315 } 2316 2317 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) { 2318 _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers()); 2319 } 2320 2321 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) { 2322 _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers()); 2323 } 2324 2325 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2326 HeapRegion* hr = heap_region_containing(addr); 2327 return hr->block_start(addr); 2328 } 2329 2330 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2331 HeapRegion* hr = heap_region_containing(addr); 2332 return hr->block_is_obj(addr); 2333 } 2334 2335 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2336 return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes; 2337 } 2338 2339 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2340 return _eden.length() * HeapRegion::GrainBytes; 2341 } 2342 2343 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2344 // must be equal to the humongous object limit. 2345 size_t G1CollectedHeap::max_tlab_size() const { 2346 return align_down(_humongous_object_threshold_in_words, MinObjAlignment); 2347 } 2348 2349 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2350 return _allocator->unsafe_max_tlab_alloc(); 2351 } 2352 2353 size_t G1CollectedHeap::max_capacity() const { 2354 return max_regions() * HeapRegion::GrainBytes; 2355 } 2356 2357 void G1CollectedHeap::prepare_for_verify() { 2358 _verifier->prepare_for_verify(); 2359 } 2360 2361 void G1CollectedHeap::verify(VerifyOption vo) { 2362 _verifier->verify(vo); 2363 } 2364 2365 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const { 2366 return true; 2367 } 2368 2369 bool G1CollectedHeap::is_archived_object(oop object) const { 2370 return object != NULL && heap_region_containing(object)->is_archive(); 2371 } 2372 2373 class PrintRegionClosure: public HeapRegionClosure { 2374 outputStream* _st; 2375 public: 2376 PrintRegionClosure(outputStream* st) : _st(st) {} 2377 bool do_heap_region(HeapRegion* r) { 2378 r->print_on(_st); 2379 return false; 2380 } 2381 }; 2382 2383 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2384 const HeapRegion* hr, 2385 const VerifyOption vo) const { 2386 switch (vo) { 2387 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 2388 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 2389 case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr); 2390 default: ShouldNotReachHere(); 2391 } 2392 return false; // keep some compilers happy 2393 } 2394 2395 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2396 const VerifyOption vo) const { 2397 switch (vo) { 2398 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 2399 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 2400 case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj); 2401 default: ShouldNotReachHere(); 2402 } 2403 return false; // keep some compilers happy 2404 } 2405 2406 void G1CollectedHeap::print_heap_regions() const { 2407 LogTarget(Trace, gc, heap, region) lt; 2408 if (lt.is_enabled()) { 2409 LogStream ls(lt); 2410 print_regions_on(&ls); 2411 } 2412 } 2413 2414 void G1CollectedHeap::print_on(outputStream* st) const { 2415 size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); 2416 st->print(" %-20s", "garbage-first heap"); 2417 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 2418 capacity()/K, heap_used/K); 2419 st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")", 2420 p2i(_hrm.reserved().start()), 2421 p2i(_hrm.reserved().end())); 2422 st->cr(); 2423 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 2424 uint young_regions = young_regions_count(); 2425 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 2426 (size_t) young_regions * HeapRegion::GrainBytes / K); 2427 uint survivor_regions = survivor_regions_count(); 2428 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 2429 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 2430 st->cr(); 2431 if (_numa->is_enabled()) { 2432 uint num_nodes = _numa->num_active_nodes(); 2433 st->print(" remaining free region(s) on each NUMA node: "); 2434 const int* node_ids = _numa->node_ids(); 2435 for (uint node_index = 0; node_index < num_nodes; node_index++) { 2436 uint num_free_regions = _hrm.num_free_regions(node_index); 2437 st->print("%d=%u ", node_ids[node_index], num_free_regions); 2438 } 2439 st->cr(); 2440 } 2441 MetaspaceUtils::print_on(st); 2442 } 2443 2444 void G1CollectedHeap::print_regions_on(outputStream* st) const { 2445 st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " 2446 "HS=humongous(starts), HC=humongous(continues), " 2447 "CS=collection set, F=free, " 2448 "OA=open archive, CA=closed archive, " 2449 "TAMS=top-at-mark-start (previous, next)"); 2450 PrintRegionClosure blk(st); 2451 heap_region_iterate(&blk); 2452 } 2453 2454 void G1CollectedHeap::print_extended_on(outputStream* st) const { 2455 print_on(st); 2456 2457 // Print the per-region information. 2458 st->cr(); 2459 print_regions_on(st); 2460 } 2461 2462 void G1CollectedHeap::print_on_error(outputStream* st) const { 2463 this->CollectedHeap::print_on_error(st); 2464 2465 if (_cm != NULL) { 2466 st->cr(); 2467 _cm->print_on_error(st); 2468 } 2469 } 2470 2471 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 2472 workers()->threads_do(tc); 2473 tc->do_thread(_cm_thread); 2474 _cm->threads_do(tc); 2475 _cr->threads_do(tc); 2476 tc->do_thread(_service_thread); 2477 } 2478 2479 void G1CollectedHeap::print_tracing_info() const { 2480 rem_set()->print_summary_info(); 2481 concurrent_mark()->print_summary_info(); 2482 } 2483 2484 #ifndef PRODUCT 2485 // Helpful for debugging RSet issues. 2486 2487 class PrintRSetsClosure : public HeapRegionClosure { 2488 private: 2489 const char* _msg; 2490 size_t _occupied_sum; 2491 2492 public: 2493 bool do_heap_region(HeapRegion* r) { 2494 HeapRegionRemSet* hrrs = r->rem_set(); 2495 size_t occupied = hrrs->occupied(); 2496 _occupied_sum += occupied; 2497 2498 tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r)); 2499 if (occupied == 0) { 2500 tty->print_cr(" RSet is empty"); 2501 } else { 2502 hrrs->print(); 2503 } 2504 tty->print_cr("----------"); 2505 return false; 2506 } 2507 2508 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 2509 tty->cr(); 2510 tty->print_cr("========================================"); 2511 tty->print_cr("%s", msg); 2512 tty->cr(); 2513 } 2514 2515 ~PrintRSetsClosure() { 2516 tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum); 2517 tty->print_cr("========================================"); 2518 tty->cr(); 2519 } 2520 }; 2521 2522 void G1CollectedHeap::print_cset_rsets() { 2523 PrintRSetsClosure cl("Printing CSet RSets"); 2524 collection_set_iterate_all(&cl); 2525 } 2526 2527 void G1CollectedHeap::print_all_rsets() { 2528 PrintRSetsClosure cl("Printing All RSets");; 2529 heap_region_iterate(&cl); 2530 } 2531 #endif // PRODUCT 2532 2533 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const { 2534 return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr); 2535 } 2536 2537 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { 2538 2539 size_t eden_used_bytes = _eden.used_bytes(); 2540 size_t survivor_used_bytes = _survivor.used_bytes(); 2541 size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); 2542 2543 size_t eden_capacity_bytes = 2544 (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; 2545 2546 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 2547 return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, 2548 eden_capacity_bytes, survivor_used_bytes, num_regions()); 2549 } 2550 2551 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { 2552 return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), 2553 stats->unused(), stats->used(), stats->region_end_waste(), 2554 stats->regions_filled(), stats->direct_allocated(), 2555 stats->failure_used(), stats->failure_waste()); 2556 } 2557 2558 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 2559 const G1HeapSummary& heap_summary = create_g1_heap_summary(); 2560 gc_tracer->report_gc_heap_summary(when, heap_summary); 2561 2562 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 2563 gc_tracer->report_metaspace_summary(when, metaspace_summary); 2564 } 2565 2566 void G1CollectedHeap::gc_prologue(bool full) { 2567 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 2568 2569 // This summary needs to be printed before incrementing total collections. 2570 rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections()); 2571 2572 // Update common counters. 2573 increment_total_collections(full /* full gc */); 2574 if (full || collector_state()->in_concurrent_start_gc()) { 2575 increment_old_marking_cycles_started(); 2576 } 2577 2578 // Fill TLAB's and such 2579 { 2580 Ticks start = Ticks::now(); 2581 ensure_parsability(true); 2582 Tickspan dt = Ticks::now() - start; 2583 phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS); 2584 } 2585 2586 if (!full) { 2587 // Flush dirty card queues to qset, so later phases don't need to account 2588 // for partially filled per-thread queues and such. Not needed for full 2589 // collections, which ignore those logs. 2590 Ticks start = Ticks::now(); 2591 G1BarrierSet::dirty_card_queue_set().concatenate_logs(); 2592 Tickspan dt = Ticks::now() - start; 2593 phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS); 2594 } 2595 } 2596 2597 void G1CollectedHeap::gc_epilogue(bool full) { 2598 // Update common counters. 2599 if (full) { 2600 // Update the number of full collections that have been completed. 2601 increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */); 2602 } 2603 2604 // We are at the end of the GC. Total collections has already been increased. 2605 rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1); 2606 2607 #if COMPILER2_OR_JVMCI 2608 assert(DerivedPointerTable::is_empty(), "derived pointer present"); 2609 #endif 2610 2611 double start = os::elapsedTime(); 2612 resize_all_tlabs(); 2613 phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0); 2614 2615 MemoryService::track_memory_usage(); 2616 // We have just completed a GC. Update the soft reference 2617 // policy with the new heap occupancy 2618 Universe::heap()->update_capacity_and_used_at_gc(); 2619 2620 // Print NUMA statistics. 2621 _numa->print_statistics(); 2622 2623 _collection_pause_end = Ticks::now(); 2624 } 2625 2626 uint G1CollectedHeap::uncommit_regions(uint region_limit) { 2627 return _hrm.uncommit_inactive_regions(region_limit); 2628 } 2629 2630 bool G1CollectedHeap::has_uncommittable_regions() { 2631 return _hrm.has_inactive_regions(); 2632 } 2633 2634 void G1CollectedHeap::uncommit_regions_if_necessary() { 2635 if (has_uncommittable_regions()) { 2636 G1UncommitRegionTask::enqueue(); 2637 } 2638 } 2639 2640 void G1CollectedHeap::verify_numa_regions(const char* desc) { 2641 LogTarget(Trace, gc, heap, verify) lt; 2642 2643 if (lt.is_enabled()) { 2644 LogStream ls(lt); 2645 // Iterate all heap regions to print matching between preferred numa id and actual numa id. 2646 G1NodeIndexCheckClosure cl(desc, _numa, &ls); 2647 heap_region_iterate(&cl); 2648 } 2649 } 2650 2651 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 2652 uint gc_count_before, 2653 bool* succeeded, 2654 GCCause::Cause gc_cause) { 2655 assert_heap_not_locked_and_not_at_safepoint(); 2656 VM_G1CollectForAllocation op(word_size, 2657 gc_count_before, 2658 gc_cause, 2659 policy()->max_pause_time_ms()); 2660 VMThread::execute(&op); 2661 2662 HeapWord* result = op.result(); 2663 bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded(); 2664 assert(result == NULL || ret_succeeded, 2665 "the result should be NULL if the VM did not succeed"); 2666 *succeeded = ret_succeeded; 2667 2668 assert_heap_not_locked(); 2669 return result; 2670 } 2671 2672 void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) { 2673 assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress"); 2674 2675 MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); 2676 if (concurrent_operation_is_full_mark) { 2677 _cm->post_concurrent_mark_start(); 2678 _cm_thread->start_full_mark(); 2679 } else { 2680 _cm->post_concurrent_undo_start(); 2681 _cm_thread->start_undo_mark(); 2682 } 2683 CGC_lock->notify(); 2684 } 2685 2686 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const { 2687 // We don't nominate objects with many remembered set entries, on 2688 // the assumption that such objects are likely still live. 2689 HeapRegionRemSet* rem_set = r->rem_set(); 2690 2691 return G1EagerReclaimHumongousObjectsWithStaleRefs ? 2692 rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold) : 2693 G1EagerReclaimHumongousObjects && rem_set->is_empty(); 2694 } 2695 2696 #ifndef PRODUCT 2697 void G1CollectedHeap::verify_region_attr_remset_update() { 2698 class VerifyRegionAttrRemSet : public HeapRegionClosure { 2699 public: 2700 virtual bool do_heap_region(HeapRegion* r) { 2701 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 2702 bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update(); 2703 assert(r->rem_set()->is_tracked() == needs_remset_update, 2704 "Region %u remset tracking status (%s) different to region attribute (%s)", 2705 r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update)); 2706 return false; 2707 } 2708 } cl; 2709 heap_region_iterate(&cl); 2710 } 2711 #endif 2712 2713 class VerifyRegionRemSetClosure : public HeapRegionClosure { 2714 public: 2715 bool do_heap_region(HeapRegion* hr) { 2716 if (!hr->is_archive() && !hr->is_continues_humongous()) { 2717 hr->verify_rem_set(); 2718 } 2719 return false; 2720 } 2721 }; 2722 2723 uint G1CollectedHeap::num_task_queues() const { 2724 return _task_queues->size(); 2725 } 2726 2727 #if TASKQUEUE_STATS 2728 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 2729 st->print_raw_cr("GC Task Stats"); 2730 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 2731 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 2732 } 2733 2734 void G1CollectedHeap::print_taskqueue_stats() const { 2735 if (!log_is_enabled(Trace, gc, task, stats)) { 2736 return; 2737 } 2738 Log(gc, task, stats) log; 2739 ResourceMark rm; 2740 LogStream ls(log.trace()); 2741 outputStream* st = &ls; 2742 2743 print_taskqueue_stats_hdr(st); 2744 2745 TaskQueueStats totals; 2746 const uint n = num_task_queues(); 2747 for (uint i = 0; i < n; ++i) { 2748 st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr(); 2749 totals += task_queue(i)->stats; 2750 } 2751 st->print_raw("tot "); totals.print(st); st->cr(); 2752 2753 DEBUG_ONLY(totals.verify()); 2754 } 2755 2756 void G1CollectedHeap::reset_taskqueue_stats() { 2757 const uint n = num_task_queues(); 2758 for (uint i = 0; i < n; ++i) { 2759 task_queue(i)->stats.reset(); 2760 } 2761 } 2762 #endif // TASKQUEUE_STATS 2763 2764 void G1CollectedHeap::wait_for_root_region_scanning() { 2765 double scan_wait_start = os::elapsedTime(); 2766 // We have to wait until the CM threads finish scanning the 2767 // root regions as it's the only way to ensure that all the 2768 // objects on them have been correctly scanned before we start 2769 // moving them during the GC. 2770 bool waited = _cm->root_regions()->wait_until_scan_finished(); 2771 double wait_time_ms = 0.0; 2772 if (waited) { 2773 double scan_wait_end = os::elapsedTime(); 2774 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 2775 } 2776 phase_times()->record_root_region_scan_wait_time(wait_time_ms); 2777 } 2778 2779 class G1PrintCollectionSetClosure : public HeapRegionClosure { 2780 private: 2781 G1HRPrinter* _hr_printer; 2782 public: 2783 G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { } 2784 2785 virtual bool do_heap_region(HeapRegion* r) { 2786 _hr_printer->cset(r); 2787 return false; 2788 } 2789 }; 2790 2791 void G1CollectedHeap::start_new_collection_set() { 2792 double start = os::elapsedTime(); 2793 2794 collection_set()->start_incremental_building(); 2795 2796 clear_region_attr(); 2797 2798 guarantee(_eden.length() == 0, "eden should have been cleared"); 2799 policy()->transfer_survivors_to_cset(survivor()); 2800 2801 // We redo the verification but now wrt to the new CSet which 2802 // has just got initialized after the previous CSet was freed. 2803 _cm->verify_no_collection_set_oops(); 2804 2805 phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0); 2806 } 2807 2808 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) { 2809 2810 _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor); 2811 evacuation_info.set_collectionset_regions(collection_set()->region_length() + 2812 collection_set()->optional_region_length()); 2813 2814 _cm->verify_no_collection_set_oops(); 2815 2816 if (_hr_printer.is_active()) { 2817 G1PrintCollectionSetClosure cl(&_hr_printer); 2818 _collection_set.iterate(&cl); 2819 _collection_set.iterate_optional(&cl); 2820 } 2821 } 2822 2823 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const { 2824 if (collector_state()->in_concurrent_start_gc()) { 2825 return G1HeapVerifier::G1VerifyConcurrentStart; 2826 } else if (collector_state()->in_young_only_phase()) { 2827 return G1HeapVerifier::G1VerifyYoungNormal; 2828 } else { 2829 return G1HeapVerifier::G1VerifyMixed; 2830 } 2831 } 2832 2833 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) { 2834 if (VerifyRememberedSets) { 2835 log_info(gc, verify)("[Verifying RemSets before GC]"); 2836 VerifyRegionRemSetClosure v_cl; 2837 heap_region_iterate(&v_cl); 2838 } 2839 _verifier->verify_before_gc(type); 2840 _verifier->check_bitmaps("GC Start"); 2841 verify_numa_regions("GC Start"); 2842 } 2843 2844 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) { 2845 if (VerifyRememberedSets) { 2846 log_info(gc, verify)("[Verifying RemSets after GC]"); 2847 VerifyRegionRemSetClosure v_cl; 2848 heap_region_iterate(&v_cl); 2849 } 2850 _verifier->verify_after_gc(type); 2851 _verifier->check_bitmaps("GC End"); 2852 verify_numa_regions("GC End"); 2853 } 2854 2855 void G1CollectedHeap::expand_heap_after_young_collection(){ 2856 size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount(); 2857 if (expand_bytes > 0) { 2858 // No need for an ergo logging here, 2859 // expansion_amount() does this when it returns a value > 0. 2860 double expand_ms = 0.0; 2861 if (!expand(expand_bytes, _workers, &expand_ms)) { 2862 // We failed to expand the heap. Cannot do anything about it. 2863 } 2864 phase_times()->record_expand_heap_time(expand_ms); 2865 } 2866 } 2867 2868 void G1CollectedHeap::set_young_gc_name(char* young_gc_name) { 2869 G1GCPauseType pause_type = 2870 // The strings for all Concurrent Start pauses are the same, so the parameter 2871 // does not matter here. 2872 collector_state()->young_gc_pause_type(false /* concurrent_operation_is_full_mark */); 2873 snprintf(young_gc_name, 2874 MaxYoungGCNameLength, 2875 "Pause Young (%s)", 2876 G1GCPauseTypeHelper::to_string(pause_type)); 2877 } 2878 2879 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 2880 assert_at_safepoint_on_vm_thread(); 2881 guarantee(!is_gc_active(), "collection is not reentrant"); 2882 2883 if (GCLocker::check_active_before_gc()) { 2884 return false; 2885 } 2886 2887 do_collection_pause_at_safepoint_helper(target_pause_time_ms); 2888 return true; 2889 } 2890 2891 void G1CollectedHeap::gc_tracer_report_gc_start() { 2892 _gc_timer_stw->register_gc_start(); 2893 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 2894 } 2895 2896 void G1CollectedHeap::gc_tracer_report_gc_end(bool concurrent_operation_is_full_mark, 2897 G1EvacuationInfo& evacuation_info) { 2898 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 2899 _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold()); 2900 2901 _gc_timer_stw->register_gc_end(); 2902 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), 2903 _gc_timer_stw->time_partitions()); 2904 } 2905 2906 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) { 2907 GCIdMark gc_id_mark; 2908 2909 SvcGCMarker sgcm(SvcGCMarker::MINOR); 2910 ResourceMark rm; 2911 2912 policy()->note_gc_start(); 2913 2914 gc_tracer_report_gc_start(); 2915 2916 wait_for_root_region_scanning(); 2917 2918 print_heap_before_gc(); 2919 print_heap_regions(); 2920 trace_heap_before_gc(_gc_tracer_stw); 2921 2922 _verifier->verify_region_sets_optional(); 2923 _verifier->verify_dirty_young_regions(); 2924 2925 // We should not be doing concurrent start unless the concurrent mark thread is running 2926 if (!_cm_thread->should_terminate()) { 2927 // This call will decide whether this pause is a concurrent start 2928 // pause. If it is, in_concurrent_start_gc() will return true 2929 // for the duration of this pause. 2930 policy()->decide_on_conc_mark_initiation(); 2931 } 2932 2933 // We do not allow concurrent start to be piggy-backed on a mixed GC. 2934 assert(!collector_state()->in_concurrent_start_gc() || 2935 collector_state()->in_young_only_phase(), "sanity"); 2936 // We also do not allow mixed GCs during marking. 2937 assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity"); 2938 2939 // Record whether this pause may need to trigger a concurrent operation. Later, 2940 // when we signal the G1ConcurrentMarkThread, the collector state has already 2941 // been reset for the next pause. 2942 bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc(); 2943 bool concurrent_operation_is_full_mark = false; 2944 2945 // Inner scope for scope based logging, timers, and stats collection 2946 { 2947 G1EvacuationInfo evacuation_info; 2948 2949 GCTraceCPUTime tcpu; 2950 2951 char young_gc_name[MaxYoungGCNameLength]; 2952 set_young_gc_name(young_gc_name); 2953 2954 GCTraceTime(Info, gc) tm(young_gc_name, NULL, gc_cause(), true); 2955 2956 uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(), 2957 workers()->active_workers(), 2958 Threads::number_of_non_daemon_threads()); 2959 active_workers = workers()->update_active_workers(active_workers); 2960 log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers()); 2961 2962 G1MonitoringScope ms(g1mm(), 2963 false /* full_gc */, 2964 collector_state()->in_mixed_phase() /* all_memory_pools_affected */); 2965 2966 G1HeapTransition heap_transition(this); 2967 2968 { 2969 IsGCActiveMark x; 2970 2971 gc_prologue(false); 2972 2973 G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type(); 2974 verify_before_young_collection(verify_type); 2975 2976 { 2977 // The elapsed time induced by the start time below deliberately elides 2978 // the possible verification above. 2979 double sample_start_time_sec = os::elapsedTime(); 2980 2981 // Please see comment in g1CollectedHeap.hpp and 2982 // G1CollectedHeap::ref_processing_init() to see how 2983 // reference processing currently works in G1. 2984 _ref_processor_stw->enable_discovery(); 2985 2986 // We want to temporarily turn off discovery by the 2987 // CM ref processor, if necessary, and turn it back on 2988 // on again later if we do. Using a scoped 2989 // NoRefDiscovery object will do this. 2990 NoRefDiscovery no_cm_discovery(_ref_processor_cm); 2991 2992 policy()->record_collection_pause_start(sample_start_time_sec); 2993 2994 // Forget the current allocation region (we might even choose it to be part 2995 // of the collection set!). 2996 _allocator->release_mutator_alloc_regions(); 2997 2998 calculate_collection_set(evacuation_info, target_pause_time_ms); 2999 3000 G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()); 3001 G1ParScanThreadStateSet per_thread_states(this, 3002 &rdcqs, 3003 workers()->active_workers(), 3004 collection_set()->young_region_length(), 3005 collection_set()->optional_region_length()); 3006 pre_evacuate_collection_set(evacuation_info, &per_thread_states); 3007 3008 bool may_do_optional_evacuation = _collection_set.optional_region_length() != 0; 3009 // Actually do the work... 3010 evacuate_initial_collection_set(&per_thread_states, may_do_optional_evacuation); 3011 3012 if (may_do_optional_evacuation) { 3013 evacuate_optional_collection_set(&per_thread_states); 3014 } 3015 post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states); 3016 3017 start_new_collection_set(); 3018 3019 _survivor_evac_stats.adjust_desired_plab_sz(); 3020 _old_evac_stats.adjust_desired_plab_sz(); 3021 3022 allocate_dummy_regions(); 3023 3024 _allocator->init_mutator_alloc_regions(); 3025 3026 expand_heap_after_young_collection(); 3027 3028 // Refine the type of a concurrent mark operation now that we did the 3029 // evacuation, eventually aborting it. 3030 concurrent_operation_is_full_mark = policy()->concurrent_operation_is_full_mark("Revise IHOP"); 3031 3032 // Need to report the collection pause now since record_collection_pause_end() 3033 // modifies it to the next state. 3034 _gc_tracer_stw->report_young_gc_pause(collector_state()->young_gc_pause_type(concurrent_operation_is_full_mark)); 3035 3036 double sample_end_time_sec = os::elapsedTime(); 3037 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 3038 policy()->record_collection_pause_end(pause_time_ms, concurrent_operation_is_full_mark); 3039 } 3040 3041 verify_after_young_collection(verify_type); 3042 3043 gc_epilogue(false); 3044 } 3045 3046 // Print the remainder of the GC log output. 3047 if (evacuation_failed()) { 3048 log_info(gc)("To-space exhausted"); 3049 } 3050 3051 policy()->print_phases(); 3052 heap_transition.print(); 3053 3054 _hrm.verify_optional(); 3055 _verifier->verify_region_sets_optional(); 3056 3057 TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); 3058 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 3059 3060 print_heap_after_gc(); 3061 print_heap_regions(); 3062 trace_heap_after_gc(_gc_tracer_stw); 3063 3064 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 3065 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 3066 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 3067 // before any GC notifications are raised. 3068 g1mm()->update_sizes(); 3069 3070 gc_tracer_report_gc_end(concurrent_operation_is_full_mark, evacuation_info); 3071 } 3072 // It should now be safe to tell the concurrent mark thread to start 3073 // without its logging output interfering with the logging output 3074 // that came from the pause. 3075 3076 if (should_start_concurrent_mark_operation) { 3077 // CAUTION: after the start_concurrent_cycle() call below, the concurrent marking 3078 // thread(s) could be running concurrently with us. Make sure that anything 3079 // after this point does not assume that we are the only GC thread running. 3080 // Note: of course, the actual marking work will not start until the safepoint 3081 // itself is released in SuspendibleThreadSet::desynchronize(). 3082 start_concurrent_cycle(concurrent_operation_is_full_mark); 3083 ConcurrentGCBreakpoints::notify_idle_to_active(); 3084 } 3085 } 3086 3087 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) { 3088 _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size()); 3089 _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m); 3090 } 3091 3092 bool G1ParEvacuateFollowersClosure::offer_termination() { 3093 EventGCPhaseParallel event; 3094 G1ParScanThreadState* const pss = par_scan_state(); 3095 start_term_time(); 3096 const bool res = (terminator() == nullptr) ? true : terminator()->offer_termination(); 3097 end_term_time(); 3098 event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination)); 3099 return res; 3100 } 3101 3102 void G1ParEvacuateFollowersClosure::do_void() { 3103 EventGCPhaseParallel event; 3104 G1ParScanThreadState* const pss = par_scan_state(); 3105 pss->trim_queue(); 3106 event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase)); 3107 do { 3108 EventGCPhaseParallel event; 3109 pss->steal_and_trim_queue(queues()); 3110 event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase)); 3111 } while (!offer_termination()); 3112 } 3113 3114 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive, 3115 bool class_unloading_occurred) { 3116 uint num_workers = workers()->active_workers(); 3117 G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred); 3118 workers()->run_task(&unlink_task); 3119 } 3120 3121 // Weak Reference Processing support 3122 3123 bool G1STWIsAliveClosure::do_object_b(oop p) { 3124 // An object is reachable if it is outside the collection set, 3125 // or is inside and copied. 3126 return !_g1h->is_in_cset(p) || p->is_forwarded(); 3127 } 3128 3129 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) { 3130 assert(obj != NULL, "must not be NULL"); 3131 assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj)); 3132 // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below 3133 // may falsely indicate that this is not the case here: however the collection set only 3134 // contains old regions when concurrent mark is not running. 3135 return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor(); 3136 } 3137 3138 // Non Copying Keep Alive closure 3139 class G1KeepAliveClosure: public OopClosure { 3140 G1CollectedHeap*_g1h; 3141 public: 3142 G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {} 3143 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 3144 void do_oop(oop* p) { 3145 oop obj = *p; 3146 assert(obj != NULL, "the caller should have filtered out NULL values"); 3147 3148 const G1HeapRegionAttr region_attr =_g1h->region_attr(obj); 3149 if (!region_attr.is_in_cset_or_humongous()) { 3150 return; 3151 } 3152 if (region_attr.is_in_cset()) { 3153 assert( obj->is_forwarded(), "invariant" ); 3154 *p = obj->forwardee(); 3155 } else { 3156 assert(!obj->is_forwarded(), "invariant" ); 3157 assert(region_attr.is_humongous(), 3158 "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type()); 3159 _g1h->set_humongous_is_live(obj); 3160 } 3161 } 3162 }; 3163 3164 // Copying Keep Alive closure - can be called from both 3165 // serial and parallel code as long as different worker 3166 // threads utilize different G1ParScanThreadState instances 3167 // and different queues. 3168 3169 class G1CopyingKeepAliveClosure: public OopClosure { 3170 G1CollectedHeap* _g1h; 3171 G1ParScanThreadState* _par_scan_state; 3172 3173 public: 3174 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 3175 G1ParScanThreadState* pss): 3176 _g1h(g1h), 3177 _par_scan_state(pss) 3178 {} 3179 3180 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 3181 virtual void do_oop( oop* p) { do_oop_work(p); } 3182 3183 template <class T> void do_oop_work(T* p) { 3184 oop obj = RawAccess<>::oop_load(p); 3185 3186 if (_g1h->is_in_cset_or_humongous(obj)) { 3187 // If the referent object has been forwarded (either copied 3188 // to a new location or to itself in the event of an 3189 // evacuation failure) then we need to update the reference 3190 // field and, if both reference and referent are in the G1 3191 // heap, update the RSet for the referent. 3192 // 3193 // If the referent has not been forwarded then we have to keep 3194 // it alive by policy. Therefore we have copy the referent. 3195 // 3196 // When the queue is drained (after each phase of reference processing) 3197 // the object and it's followers will be copied, the reference field set 3198 // to point to the new location, and the RSet updated. 3199 _par_scan_state->push_on_queue(ScannerTask(p)); 3200 } 3201 } 3202 }; 3203 3204 // Special closure for enqueuing discovered fields: during enqueue the card table 3205 // may not be in shape to properly handle normal barrier calls (e.g. card marks 3206 // in regions that failed evacuation, scribbling of various values by card table 3207 // scan code). Additionally the regular barrier enqueues into the "global" 3208 // DCQS, but during GC we need these to-be-refined entries in the GC local queue 3209 // so that after clearing the card table, the redirty cards phase will properly 3210 // mark all dirty cards to be picked up by refinement. 3211 class G1EnqueueDiscoveredFieldClosure : public EnqueueDiscoveredFieldClosure { 3212 G1CollectedHeap* _g1h; 3213 G1ParScanThreadState* _pss; 3214 3215 public: 3216 G1EnqueueDiscoveredFieldClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : _g1h(g1h), _pss(pss) { } 3217 3218 virtual void enqueue(HeapWord* discovered_field_addr, oop value) { 3219 assert(_g1h->is_in(discovered_field_addr), PTR_FORMAT " is not in heap ", p2i(discovered_field_addr)); 3220 // Store the value first, whatever it is. 3221 RawAccess<>::oop_store(discovered_field_addr, value); 3222 if (value == NULL) { 3223 return; 3224 } 3225 _pss->write_ref_field_post(discovered_field_addr, value); 3226 } 3227 }; 3228 3229 // Serial drain queue closure. Called as the 'complete_gc' 3230 // closure for each discovered list in some of the 3231 // reference processing phases. 3232 3233 class G1STWDrainQueueClosure: public VoidClosure { 3234 protected: 3235 G1CollectedHeap* _g1h; 3236 G1ParScanThreadState* _par_scan_state; 3237 3238 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 3239 3240 public: 3241 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 3242 _g1h(g1h), 3243 _par_scan_state(pss) 3244 { } 3245 3246 void do_void() { 3247 G1ParScanThreadState* const pss = par_scan_state(); 3248 pss->trim_queue(); 3249 } 3250 }; 3251 3252 class G1STWRefProcProxyTask : public RefProcProxyTask { 3253 G1CollectedHeap& _g1h; 3254 G1ParScanThreadStateSet& _pss; 3255 TaskTerminator _terminator; 3256 G1ScannerTasksQueueSet& _task_queues; 3257 3258 public: 3259 G1STWRefProcProxyTask(uint max_workers, G1CollectedHeap& g1h, G1ParScanThreadStateSet& pss, G1ScannerTasksQueueSet& task_queues) 3260 : RefProcProxyTask("G1STWRefProcProxyTask", max_workers), 3261 _g1h(g1h), 3262 _pss(pss), 3263 _terminator(max_workers, &task_queues), 3264 _task_queues(task_queues) {} 3265 3266 void work(uint worker_id) override { 3267 assert(worker_id < _max_workers, "sanity"); 3268 uint index = (_tm == RefProcThreadModel::Single) ? 0 : worker_id; 3269 _pss.state_for_worker(index)->set_ref_discoverer(nullptr); 3270 G1STWIsAliveClosure is_alive(&_g1h); 3271 G1CopyingKeepAliveClosure keep_alive(&_g1h, _pss.state_for_worker(index)); 3272 G1ParEvacuateFollowersClosure complete_gc(&_g1h, _pss.state_for_worker(index), &_task_queues, _tm == RefProcThreadModel::Single ? nullptr : &_terminator, G1GCPhaseTimes::ObjCopy); 3273 G1EnqueueDiscoveredFieldClosure enqueue(&_g1h, _pss.state_for_worker(index)); 3274 _rp_task->rp_work(worker_id, &is_alive, &keep_alive, &enqueue, &complete_gc); 3275 } 3276 3277 void prepare_run_task_hook() override { 3278 _terminator.reset_for_reuse(_queue_count); 3279 } 3280 }; 3281 3282 // End of weak reference support closures 3283 3284 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 3285 double ref_proc_start = os::elapsedTime(); 3286 3287 ReferenceProcessor* rp = _ref_processor_stw; 3288 assert(rp->discovery_enabled(), "should have been enabled"); 3289 3290 // Use only a single queue for this PSS. 3291 G1ParScanThreadState* pss = per_thread_states->state_for_worker(0); 3292 pss->set_ref_discoverer(NULL); 3293 assert(pss->queue_is_empty(), "pre-condition"); 3294 3295 // Setup the soft refs policy... 3296 rp->setup_policy(false); 3297 3298 ReferenceProcessorPhaseTimes& pt = *phase_times()->ref_phase_times(); 3299 3300 ReferenceProcessorStats stats; 3301 uint no_of_gc_workers = workers()->active_workers(); 3302 3303 // Parallel reference processing 3304 assert(no_of_gc_workers <= rp->max_num_queues(), 3305 "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u", 3306 no_of_gc_workers, rp->max_num_queues()); 3307 3308 rp->set_active_mt_degree(no_of_gc_workers); 3309 G1STWRefProcProxyTask task(rp->max_num_queues(), *this, *per_thread_states, *_task_queues); 3310 stats = rp->process_discovered_references(task, pt); 3311 3312 _gc_tracer_stw->report_gc_reference_stats(stats); 3313 3314 // We have completed copying any necessary live referent objects. 3315 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 3316 3317 make_pending_list_reachable(); 3318 3319 assert(!rp->discovery_enabled(), "Postcondition"); 3320 rp->verify_no_references_recorded(); 3321 3322 double ref_proc_time = os::elapsedTime() - ref_proc_start; 3323 phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 3324 } 3325 3326 void G1CollectedHeap::make_pending_list_reachable() { 3327 if (collector_state()->in_concurrent_start_gc()) { 3328 oop pll_head = Universe::reference_pending_list(); 3329 if (pll_head != NULL) { 3330 // Any valid worker id is fine here as we are in the VM thread and single-threaded. 3331 _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head); 3332 } 3333 } 3334 } 3335 3336 static bool do_humongous_object_logging() { 3337 return log_is_enabled(Debug, gc, humongous); 3338 } 3339 3340 bool G1CollectedHeap::should_do_eager_reclaim() const { 3341 // As eager reclaim logging also gives information about humongous objects in 3342 // the heap in general, always do the eager reclaim pass even without known 3343 // candidates. 3344 return (G1EagerReclaimHumongousObjects && 3345 (has_humongous_reclaim_candidates() || do_humongous_object_logging())); 3346 } 3347 3348 class G1PrepareEvacuationTask : public AbstractGangTask { 3349 class G1PrepareRegionsClosure : public HeapRegionClosure { 3350 G1CollectedHeap* _g1h; 3351 G1PrepareEvacuationTask* _parent_task; 3352 uint _worker_humongous_total; 3353 uint _worker_humongous_candidates; 3354 3355 bool humongous_region_is_candidate(HeapRegion* region) const { 3356 assert(region->is_starts_humongous(), "Must start a humongous object"); 3357 3358 oop obj = cast_to_oop(region->bottom()); 3359 3360 // Dead objects cannot be eager reclaim candidates. Due to class 3361 // unloading it is unsafe to query their classes so we return early. 3362 if (_g1h->is_obj_dead(obj, region)) { 3363 return false; 3364 } 3365 3366 // If we do not have a complete remembered set for the region, then we can 3367 // not be sure that we have all references to it. 3368 if (!region->rem_set()->is_complete()) { 3369 return false; 3370 } 3371 // Candidate selection must satisfy the following constraints 3372 // while concurrent marking is in progress: 3373 // 3374 // * In order to maintain SATB invariants, an object must not be 3375 // reclaimed if it was allocated before the start of marking and 3376 // has not had its references scanned. Such an object must have 3377 // its references (including type metadata) scanned to ensure no 3378 // live objects are missed by the marking process. Objects 3379 // allocated after the start of concurrent marking don't need to 3380 // be scanned. 3381 // 3382 // * An object must not be reclaimed if it is on the concurrent 3383 // mark stack. Objects allocated after the start of concurrent 3384 // marking are never pushed on the mark stack. 3385 // 3386 // Nominating only objects allocated after the start of concurrent 3387 // marking is sufficient to meet both constraints. This may miss 3388 // some objects that satisfy the constraints, but the marking data 3389 // structures don't support efficiently performing the needed 3390 // additional tests or scrubbing of the mark stack. 3391 // 3392 // However, we presently only nominate is_typeArray() objects. 3393 // A humongous object containing references induces remembered 3394 // set entries on other regions. In order to reclaim such an 3395 // object, those remembered sets would need to be cleaned up. 3396 // 3397 // We also treat is_typeArray() objects specially, allowing them 3398 // to be reclaimed even if allocated before the start of 3399 // concurrent mark. For this we rely on mark stack insertion to 3400 // exclude is_typeArray() objects, preventing reclaiming an object 3401 // that is in the mark stack. We also rely on the metadata for 3402 // such objects to be built-in and so ensured to be kept live. 3403 // Frequent allocation and drop of large binary blobs is an 3404 // important use case for eager reclaim, and this special handling 3405 // may reduce needed headroom. 3406 3407 return obj->is_typeArray() && 3408 _g1h->is_potential_eager_reclaim_candidate(region); 3409 } 3410 3411 public: 3412 G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) : 3413 _g1h(g1h), 3414 _parent_task(parent_task), 3415 _worker_humongous_total(0), 3416 _worker_humongous_candidates(0) { } 3417 3418 ~G1PrepareRegionsClosure() { 3419 _parent_task->add_humongous_candidates(_worker_humongous_candidates); 3420 _parent_task->add_humongous_total(_worker_humongous_total); 3421 } 3422 3423 virtual bool do_heap_region(HeapRegion* hr) { 3424 // First prepare the region for scanning 3425 _g1h->rem_set()->prepare_region_for_scan(hr); 3426 3427 // Now check if region is a humongous candidate 3428 if (!hr->is_starts_humongous()) { 3429 _g1h->register_region_with_region_attr(hr); 3430 return false; 3431 } 3432 3433 uint index = hr->hrm_index(); 3434 if (humongous_region_is_candidate(hr)) { 3435 _g1h->set_humongous_reclaim_candidate(index, true); 3436 _g1h->register_humongous_region_with_region_attr(index); 3437 _worker_humongous_candidates++; 3438 // We will later handle the remembered sets of these regions. 3439 } else { 3440 _g1h->set_humongous_reclaim_candidate(index, false); 3441 _g1h->register_region_with_region_attr(hr); 3442 } 3443 log_debug(gc, humongous)("Humongous region %u (object size " SIZE_FORMAT " @ " PTR_FORMAT ") remset " SIZE_FORMAT " code roots " SIZE_FORMAT " marked %d reclaim candidate %d type array %d", 3444 index, 3445 (size_t)cast_to_oop(hr->bottom())->size() * HeapWordSize, 3446 p2i(hr->bottom()), 3447 hr->rem_set()->occupied(), 3448 hr->rem_set()->strong_code_roots_list_length(), 3449 _g1h->concurrent_mark()->next_mark_bitmap()->is_marked(hr->bottom()), 3450 _g1h->is_humongous_reclaim_candidate(index), 3451 cast_to_oop(hr->bottom())->is_typeArray() 3452 ); 3453 _worker_humongous_total++; 3454 3455 return false; 3456 } 3457 }; 3458 3459 G1CollectedHeap* _g1h; 3460 HeapRegionClaimer _claimer; 3461 volatile uint _humongous_total; 3462 volatile uint _humongous_candidates; 3463 public: 3464 G1PrepareEvacuationTask(G1CollectedHeap* g1h) : 3465 AbstractGangTask("Prepare Evacuation"), 3466 _g1h(g1h), 3467 _claimer(_g1h->workers()->active_workers()), 3468 _humongous_total(0), 3469 _humongous_candidates(0) { } 3470 3471 void work(uint worker_id) { 3472 G1PrepareRegionsClosure cl(_g1h, this); 3473 _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id); 3474 } 3475 3476 void add_humongous_candidates(uint candidates) { 3477 Atomic::add(&_humongous_candidates, candidates); 3478 } 3479 3480 void add_humongous_total(uint total) { 3481 Atomic::add(&_humongous_total, total); 3482 } 3483 3484 uint humongous_candidates() { 3485 return _humongous_candidates; 3486 } 3487 3488 uint humongous_total() { 3489 return _humongous_total; 3490 } 3491 }; 3492 3493 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 3494 _bytes_used_during_gc = 0; 3495 3496 _expand_heap_after_alloc_failure = true; 3497 Atomic::store(&_num_regions_failed_evacuation, 0u); 3498 3499 memset((void*)_regions_failed_evacuation, false, sizeof(bool) * max_regions()); 3500 3501 // Disable the hot card cache. 3502 _hot_card_cache->reset_hot_cache_claimed_index(); 3503 _hot_card_cache->set_use_cache(false); 3504 3505 // Initialize the GC alloc regions. 3506 _allocator->init_gc_alloc_regions(evacuation_info); 3507 3508 { 3509 Ticks start = Ticks::now(); 3510 rem_set()->prepare_for_scan_heap_roots(); 3511 phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0); 3512 } 3513 3514 { 3515 G1PrepareEvacuationTask g1_prep_task(this); 3516 Tickspan task_time = run_task_timed(&g1_prep_task); 3517 3518 phase_times()->record_register_regions(task_time.seconds() * 1000.0); 3519 _num_humongous_objects = g1_prep_task.humongous_total(); 3520 _num_humongous_reclaim_candidates = g1_prep_task.humongous_candidates(); 3521 } 3522 3523 assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table."); 3524 _preserved_marks_set.assert_empty(); 3525 3526 #if COMPILER2_OR_JVMCI 3527 DerivedPointerTable::clear(); 3528 #endif 3529 3530 // Concurrent start needs claim bits to keep track of the marked-through CLDs. 3531 if (collector_state()->in_concurrent_start_gc()) { 3532 concurrent_mark()->pre_concurrent_start(gc_cause()); 3533 3534 double start_clear_claimed_marks = os::elapsedTime(); 3535 3536 ClassLoaderDataGraph::clear_claimed_marks(); 3537 3538 double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0; 3539 phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms); 3540 } 3541 3542 // Should G1EvacuationFailureALot be in effect for this GC? 3543 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 3544 } 3545 3546 class G1EvacuateRegionsBaseTask : public AbstractGangTask { 3547 protected: 3548 G1CollectedHeap* _g1h; 3549 G1ParScanThreadStateSet* _per_thread_states; 3550 G1ScannerTasksQueueSet* _task_queues; 3551 TaskTerminator _terminator; 3552 uint _num_workers; 3553 3554 void evacuate_live_objects(G1ParScanThreadState* pss, 3555 uint worker_id, 3556 G1GCPhaseTimes::GCParPhases objcopy_phase, 3557 G1GCPhaseTimes::GCParPhases termination_phase) { 3558 G1GCPhaseTimes* p = _g1h->phase_times(); 3559 3560 Ticks start = Ticks::now(); 3561 G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase); 3562 cl.do_void(); 3563 3564 assert(pss->queue_is_empty(), "should be empty"); 3565 3566 Tickspan evac_time = (Ticks::now() - start); 3567 p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time()); 3568 3569 if (termination_phase == G1GCPhaseTimes::Termination) { 3570 p->record_time_secs(termination_phase, worker_id, cl.term_time()); 3571 p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts()); 3572 } else { 3573 p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time()); 3574 p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts()); 3575 } 3576 assert(pss->trim_ticks().value() == 0, 3577 "Unexpected partial trimming during evacuation value " JLONG_FORMAT, 3578 pss->trim_ticks().value()); 3579 } 3580 3581 virtual void start_work(uint worker_id) { } 3582 3583 virtual void end_work(uint worker_id) { } 3584 3585 virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0; 3586 3587 virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0; 3588 3589 public: 3590 G1EvacuateRegionsBaseTask(const char* name, 3591 G1ParScanThreadStateSet* per_thread_states, 3592 G1ScannerTasksQueueSet* task_queues, 3593 uint num_workers) : 3594 AbstractGangTask(name), 3595 _g1h(G1CollectedHeap::heap()), 3596 _per_thread_states(per_thread_states), 3597 _task_queues(task_queues), 3598 _terminator(num_workers, _task_queues), 3599 _num_workers(num_workers) 3600 { } 3601 3602 void work(uint worker_id) { 3603 start_work(worker_id); 3604 3605 { 3606 ResourceMark rm; 3607 3608 G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id); 3609 pss->set_ref_discoverer(_g1h->ref_processor_stw()); 3610 3611 scan_roots(pss, worker_id); 3612 evacuate_live_objects(pss, worker_id); 3613 } 3614 3615 end_work(worker_id); 3616 } 3617 }; 3618 3619 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask { 3620 G1RootProcessor* _root_processor; 3621 bool _has_optional_evacuation_work; 3622 3623 void scan_roots(G1ParScanThreadState* pss, uint worker_id) { 3624 _root_processor->evacuate_roots(pss, worker_id); 3625 _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy, _has_optional_evacuation_work); 3626 _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy); 3627 } 3628 3629 void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) { 3630 G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination); 3631 } 3632 3633 void start_work(uint worker_id) { 3634 _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds()); 3635 } 3636 3637 void end_work(uint worker_id) { 3638 _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds()); 3639 } 3640 3641 public: 3642 G1EvacuateRegionsTask(G1CollectedHeap* g1h, 3643 G1ParScanThreadStateSet* per_thread_states, 3644 G1ScannerTasksQueueSet* task_queues, 3645 G1RootProcessor* root_processor, 3646 uint num_workers, 3647 bool has_optional_evacuation_work) : 3648 G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers), 3649 _root_processor(root_processor), 3650 _has_optional_evacuation_work(has_optional_evacuation_work) 3651 { } 3652 }; 3653 3654 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states, 3655 bool has_optional_evacuation_work) { 3656 G1GCPhaseTimes* p = phase_times(); 3657 3658 { 3659 Ticks start = Ticks::now(); 3660 rem_set()->merge_heap_roots(true /* initial_evacuation */); 3661 p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0); 3662 } 3663 3664 Tickspan task_time; 3665 const uint num_workers = workers()->active_workers(); 3666 3667 Ticks start_processing = Ticks::now(); 3668 { 3669 G1RootProcessor root_processor(this, num_workers); 3670 G1EvacuateRegionsTask g1_par_task(this, 3671 per_thread_states, 3672 _task_queues, 3673 &root_processor, 3674 num_workers, 3675 has_optional_evacuation_work); 3676 task_time = run_task_timed(&g1_par_task); 3677 // Closing the inner scope will execute the destructor for the G1RootProcessor object. 3678 // To extract its code root fixup time we measure total time of this scope and 3679 // subtract from the time the WorkGang task took. 3680 } 3681 Tickspan total_processing = Ticks::now() - start_processing; 3682 3683 p->record_initial_evac_time(task_time.seconds() * 1000.0); 3684 p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0); 3685 3686 rem_set()->complete_evac_phase(has_optional_evacuation_work); 3687 } 3688 3689 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask { 3690 3691 void scan_roots(G1ParScanThreadState* pss, uint worker_id) { 3692 _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy, true /* remember_already_scanned_cards */); 3693 _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy); 3694 } 3695 3696 void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) { 3697 G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination); 3698 } 3699 3700 public: 3701 G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states, 3702 G1ScannerTasksQueueSet* queues, 3703 uint num_workers) : 3704 G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) { 3705 } 3706 }; 3707 3708 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) { 3709 class G1MarkScope : public MarkScope { }; 3710 3711 Tickspan task_time; 3712 3713 Ticks start_processing = Ticks::now(); 3714 { 3715 G1MarkScope code_mark_scope; 3716 G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers()); 3717 task_time = run_task_timed(&task); 3718 // See comment in evacuate_collection_set() for the reason of the scope. 3719 } 3720 Tickspan total_processing = Ticks::now() - start_processing; 3721 3722 G1GCPhaseTimes* p = phase_times(); 3723 p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0); 3724 } 3725 3726 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) { 3727 const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0; 3728 3729 while (!evacuation_failed() && _collection_set.optional_region_length() > 0) { 3730 3731 double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms; 3732 double time_left_ms = MaxGCPauseMillis - time_used_ms; 3733 3734 if (time_left_ms < 0 || 3735 !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) { 3736 log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms", 3737 _collection_set.optional_region_length(), time_left_ms); 3738 break; 3739 } 3740 3741 { 3742 Ticks start = Ticks::now(); 3743 rem_set()->merge_heap_roots(false /* initial_evacuation */); 3744 phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0); 3745 } 3746 3747 { 3748 Ticks start = Ticks::now(); 3749 evacuate_next_optional_regions(per_thread_states); 3750 phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0); 3751 } 3752 3753 rem_set()->complete_evac_phase(true /* has_more_than_one_evacuation_phase */); 3754 } 3755 3756 _collection_set.abandon_optional_collection_set(per_thread_states); 3757 } 3758 3759 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, 3760 G1RedirtyCardsQueueSet* rdcqs, 3761 G1ParScanThreadStateSet* per_thread_states) { 3762 G1GCPhaseTimes* p = phase_times(); 3763 3764 // Process any discovered reference objects - we have 3765 // to do this _before_ we retire the GC alloc regions 3766 // as we may have to copy some 'reachable' referent 3767 // objects (and their reachable sub-graphs) that were 3768 // not copied during the pause. 3769 process_discovered_references(per_thread_states); 3770 3771 G1STWIsAliveClosure is_alive(this); 3772 G1KeepAliveClosure keep_alive(this); 3773 3774 WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times()); 3775 3776 _allocator->release_gc_alloc_regions(evacuation_info); 3777 3778 post_evacuate_cleanup_1(per_thread_states, rdcqs); 3779 3780 post_evacuate_cleanup_2(&_preserved_marks_set, rdcqs, &evacuation_info, per_thread_states->surviving_young_words()); 3781 3782 assert_used_and_recalculate_used_equal(this); 3783 3784 rebuild_free_region_list(); 3785 3786 record_obj_copy_mem_stats(); 3787 3788 evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before()); 3789 evacuation_info.set_bytes_used(_bytes_used_during_gc); 3790 3791 policy()->print_age_table(); 3792 } 3793 3794 void G1CollectedHeap::record_obj_copy_mem_stats() { 3795 policy()->old_gen_alloc_tracker()-> 3796 add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); 3797 3798 _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), 3799 create_g1_evac_summary(&_old_evac_stats)); 3800 } 3801 3802 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) { 3803 assert(!hr->is_free(), "the region should not be free"); 3804 assert(!hr->is_empty(), "the region should not be empty"); 3805 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 3806 3807 if (G1VerifyBitmaps) { 3808 MemRegion mr(hr->bottom(), hr->end()); 3809 concurrent_mark()->clear_range_in_prev_bitmap(mr); 3810 } 3811 3812 // Clear the card counts for this region. 3813 // Note: we only need to do this if the region is not young 3814 // (since we don't refine cards in young regions). 3815 if (!hr->is_young()) { 3816 _hot_card_cache->reset_card_counts(hr); 3817 } 3818 3819 // Reset region metadata to allow reuse. 3820 hr->hr_clear(true /* clear_space */); 3821 _policy->remset_tracker()->update_at_free(hr); 3822 3823 if (free_list != NULL) { 3824 free_list->add_ordered(hr); 3825 } 3826 } 3827 3828 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 3829 FreeRegionList* free_list) { 3830 assert(hr->is_humongous(), "this is only for humongous regions"); 3831 hr->clear_humongous(); 3832 free_region(hr, free_list); 3833 } 3834 3835 void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed, 3836 const uint archive_regions_removed, 3837 const uint humongous_regions_removed) { 3838 if (old_regions_removed > 0 || archive_regions_removed > 0 || humongous_regions_removed > 0) { 3839 MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag); 3840 _old_set.bulk_remove(old_regions_removed); 3841 _archive_set.bulk_remove(archive_regions_removed); 3842 _humongous_set.bulk_remove(humongous_regions_removed); 3843 } 3844 3845 } 3846 3847 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 3848 assert(list != NULL, "list can't be null"); 3849 if (!list->is_empty()) { 3850 MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag); 3851 _hrm.insert_list_into_free_list(list); 3852 } 3853 } 3854 3855 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 3856 decrease_used(bytes); 3857 } 3858 3859 void G1CollectedHeap::post_evacuate_cleanup_1(G1ParScanThreadStateSet* per_thread_states, 3860 G1RedirtyCardsQueueSet* rdcqs) { 3861 Ticks start = Ticks::now(); 3862 { 3863 G1PostEvacuateCollectionSetCleanupTask1 cl(per_thread_states, rdcqs); 3864 run_batch_task(&cl); 3865 } 3866 phase_times()->record_post_evacuate_cleanup_task_1_time((Ticks::now() - start).seconds() * 1000.0); 3867 } 3868 3869 void G1CollectedHeap::post_evacuate_cleanup_2(PreservedMarksSet* preserved_marks, 3870 G1RedirtyCardsQueueSet* rdcqs, 3871 G1EvacuationInfo* evacuation_info, 3872 const size_t* surviving_young_words) { 3873 Ticks start = Ticks::now(); 3874 { 3875 G1PostEvacuateCollectionSetCleanupTask2 cl(preserved_marks, rdcqs, evacuation_info, surviving_young_words); 3876 run_batch_task(&cl); 3877 } 3878 phase_times()->record_post_evacuate_cleanup_task_2_time((Ticks::now() - start).seconds() * 1000.0); 3879 } 3880 3881 void G1CollectedHeap::clear_eden() { 3882 _eden.clear(); 3883 } 3884 3885 void G1CollectedHeap::clear_collection_set() { 3886 collection_set()->clear(); 3887 } 3888 3889 void G1CollectedHeap::rebuild_free_region_list() { 3890 Ticks start = Ticks::now(); 3891 _hrm.rebuild_free_list(workers()); 3892 phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0); 3893 } 3894 3895 class G1AbandonCollectionSetClosure : public HeapRegionClosure { 3896 public: 3897 virtual bool do_heap_region(HeapRegion* r) { 3898 assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index()); 3899 G1CollectedHeap::heap()->clear_region_attr(r); 3900 r->clear_young_index_in_cset(); 3901 return false; 3902 } 3903 }; 3904 3905 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) { 3906 G1AbandonCollectionSetClosure cl; 3907 collection_set_iterate_all(&cl); 3908 3909 collection_set->clear(); 3910 collection_set->stop_incremental_building(); 3911 } 3912 3913 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { 3914 return _allocator->is_retained_old_region(hr); 3915 } 3916 3917 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 3918 _eden.add(hr); 3919 _policy->set_region_eden(hr); 3920 } 3921 3922 #ifdef ASSERT 3923 3924 class NoYoungRegionsClosure: public HeapRegionClosure { 3925 private: 3926 bool _success; 3927 public: 3928 NoYoungRegionsClosure() : _success(true) { } 3929 bool do_heap_region(HeapRegion* r) { 3930 if (r->is_young()) { 3931 log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", 3932 p2i(r->bottom()), p2i(r->end())); 3933 _success = false; 3934 } 3935 return false; 3936 } 3937 bool success() { return _success; } 3938 }; 3939 3940 bool G1CollectedHeap::check_young_list_empty() { 3941 bool ret = (young_regions_count() == 0); 3942 3943 NoYoungRegionsClosure closure; 3944 heap_region_iterate(&closure); 3945 ret = ret && closure.success(); 3946 3947 return ret; 3948 } 3949 3950 #endif // ASSERT 3951 3952 // Remove the given HeapRegion from the appropriate region set. 3953 void G1CollectedHeap::prepare_region_for_full_compaction(HeapRegion* hr) { 3954 if (hr->is_archive()) { 3955 _archive_set.remove(hr); 3956 } else if (hr->is_humongous()) { 3957 _humongous_set.remove(hr); 3958 } else if (hr->is_old()) { 3959 _old_set.remove(hr); 3960 } else if (hr->is_young()) { 3961 // Note that emptying the eden and survivor lists is postponed and instead 3962 // done as the first step when rebuilding the regions sets again. The reason 3963 // for this is that during a full GC string deduplication needs to know if 3964 // a collected region was young or old when the full GC was initiated. 3965 hr->uninstall_surv_rate_group(); 3966 } else { 3967 // We ignore free regions, we'll empty the free list afterwards. 3968 assert(hr->is_free(), "it cannot be another type"); 3969 } 3970 } 3971 3972 void G1CollectedHeap::increase_used(size_t bytes) { 3973 _summary_bytes_used += bytes; 3974 } 3975 3976 void G1CollectedHeap::decrease_used(size_t bytes) { 3977 assert(_summary_bytes_used >= bytes, 3978 "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, 3979 _summary_bytes_used, bytes); 3980 _summary_bytes_used -= bytes; 3981 } 3982 3983 void G1CollectedHeap::set_used(size_t bytes) { 3984 _summary_bytes_used = bytes; 3985 } 3986 3987 class RebuildRegionSetsClosure : public HeapRegionClosure { 3988 private: 3989 bool _free_list_only; 3990 3991 HeapRegionSet* _old_set; 3992 HeapRegionSet* _archive_set; 3993 HeapRegionSet* _humongous_set; 3994 3995 HeapRegionManager* _hrm; 3996 3997 size_t _total_used; 3998 3999 public: 4000 RebuildRegionSetsClosure(bool free_list_only, 4001 HeapRegionSet* old_set, 4002 HeapRegionSet* archive_set, 4003 HeapRegionSet* humongous_set, 4004 HeapRegionManager* hrm) : 4005 _free_list_only(free_list_only), _old_set(old_set), _archive_set(archive_set), 4006 _humongous_set(humongous_set), _hrm(hrm), _total_used(0) { 4007 assert(_hrm->num_free_regions() == 0, "pre-condition"); 4008 if (!free_list_only) { 4009 assert(_old_set->is_empty(), "pre-condition"); 4010 assert(_archive_set->is_empty(), "pre-condition"); 4011 assert(_humongous_set->is_empty(), "pre-condition"); 4012 } 4013 } 4014 4015 bool do_heap_region(HeapRegion* r) { 4016 if (r->is_empty()) { 4017 assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets."); 4018 // Add free regions to the free list 4019 r->set_free(); 4020 _hrm->insert_into_free_list(r); 4021 } else if (!_free_list_only) { 4022 assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared."); 4023 4024 if (r->is_humongous()) { 4025 _humongous_set->add(r); 4026 } else if (r->is_archive()) { 4027 _archive_set->add(r); 4028 } else { 4029 assert(r->is_young() || r->is_free() || r->is_old(), "invariant"); 4030 // We now move all (non-humongous, non-old, non-archive) regions to old gen, 4031 // and register them as such. 4032 r->move_to_old(); 4033 _old_set->add(r); 4034 } 4035 _total_used += r->used(); 4036 } 4037 4038 return false; 4039 } 4040 4041 size_t total_used() { 4042 return _total_used; 4043 } 4044 }; 4045 4046 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 4047 assert_at_safepoint_on_vm_thread(); 4048 4049 if (!free_list_only) { 4050 _eden.clear(); 4051 _survivor.clear(); 4052 } 4053 4054 RebuildRegionSetsClosure cl(free_list_only, 4055 &_old_set, &_archive_set, &_humongous_set, 4056 &_hrm); 4057 heap_region_iterate(&cl); 4058 4059 if (!free_list_only) { 4060 set_used(cl.total_used()); 4061 if (_archive_allocator != NULL) { 4062 _archive_allocator->clear_used(); 4063 } 4064 } 4065 assert_used_and_recalculate_used_equal(this); 4066 } 4067 4068 // Methods for the mutator alloc region 4069 4070 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 4071 bool force, 4072 uint node_index) { 4073 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 4074 bool should_allocate = policy()->should_allocate_mutator_region(); 4075 if (force || should_allocate) { 4076 HeapRegion* new_alloc_region = new_region(word_size, 4077 HeapRegionType::Eden, 4078 false /* do_expand */, 4079 node_index); 4080 if (new_alloc_region != NULL) { 4081 set_region_short_lived_locked(new_alloc_region); 4082 _hr_printer.alloc(new_alloc_region, !should_allocate); 4083 _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region); 4084 _policy->remset_tracker()->update_at_allocate(new_alloc_region); 4085 return new_alloc_region; 4086 } 4087 } 4088 return NULL; 4089 } 4090 4091 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 4092 size_t allocated_bytes) { 4093 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 4094 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 4095 4096 collection_set()->add_eden_region(alloc_region); 4097 increase_used(allocated_bytes); 4098 _eden.add_used_bytes(allocated_bytes); 4099 _hr_printer.retire(alloc_region); 4100 4101 // We update the eden sizes here, when the region is retired, 4102 // instead of when it's allocated, since this is the point that its 4103 // used space has been recorded in _summary_bytes_used. 4104 g1mm()->update_eden_size(); 4105 } 4106 4107 // Methods for the GC alloc regions 4108 4109 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) { 4110 if (dest.is_old()) { 4111 return true; 4112 } else { 4113 return survivor_regions_count() < policy()->max_survivor_regions(); 4114 } 4115 } 4116 4117 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) { 4118 assert(FreeList_lock->owned_by_self(), "pre-condition"); 4119 4120 if (!has_more_regions(dest)) { 4121 return NULL; 4122 } 4123 4124 HeapRegionType type; 4125 if (dest.is_young()) { 4126 type = HeapRegionType::Survivor; 4127 } else { 4128 type = HeapRegionType::Old; 4129 } 4130 4131 HeapRegion* new_alloc_region = new_region(word_size, 4132 type, 4133 true /* do_expand */, 4134 node_index); 4135 4136 if (new_alloc_region != NULL) { 4137 if (type.is_survivor()) { 4138 new_alloc_region->set_survivor(); 4139 _survivor.add(new_alloc_region); 4140 _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region); 4141 } else { 4142 new_alloc_region->set_old(); 4143 _verifier->check_bitmaps("Old Region Allocation", new_alloc_region); 4144 } 4145 _policy->remset_tracker()->update_at_allocate(new_alloc_region); 4146 register_region_with_region_attr(new_alloc_region); 4147 _hr_printer.alloc(new_alloc_region); 4148 return new_alloc_region; 4149 } 4150 return NULL; 4151 } 4152 4153 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 4154 size_t allocated_bytes, 4155 G1HeapRegionAttr dest) { 4156 _bytes_used_during_gc += allocated_bytes; 4157 if (dest.is_old()) { 4158 old_set_add(alloc_region); 4159 } else { 4160 assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type()); 4161 _survivor.add_used_bytes(allocated_bytes); 4162 } 4163 4164 bool const during_im = collector_state()->in_concurrent_start_gc(); 4165 if (during_im && allocated_bytes > 0) { 4166 _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top()); 4167 } 4168 _hr_printer.retire(alloc_region); 4169 } 4170 4171 HeapRegion* G1CollectedHeap::alloc_highest_free_region() { 4172 bool expanded = false; 4173 uint index = _hrm.find_highest_free(&expanded); 4174 4175 if (index != G1_NO_HRM_INDEX) { 4176 if (expanded) { 4177 log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", 4178 HeapRegion::GrainWords * HeapWordSize); 4179 } 4180 return _hrm.allocate_free_regions_starting_at(index, 1); 4181 } 4182 return NULL; 4183 } 4184 4185 // Optimized nmethod scanning 4186 4187 class RegisterNMethodOopClosure: public OopClosure { 4188 G1CollectedHeap* _g1h; 4189 nmethod* _nm; 4190 4191 template <class T> void do_oop_work(T* p) { 4192 T heap_oop = RawAccess<>::oop_load(p); 4193 if (!CompressedOops::is_null(heap_oop)) { 4194 oop obj = CompressedOops::decode_not_null(heap_oop); 4195 HeapRegion* hr = _g1h->heap_region_containing(obj); 4196 assert(!hr->is_continues_humongous(), 4197 "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 4198 " starting at " HR_FORMAT, 4199 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 4200 4201 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 4202 hr->add_strong_code_root_locked(_nm); 4203 } 4204 } 4205 4206 public: 4207 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 4208 _g1h(g1h), _nm(nm) {} 4209 4210 void do_oop(oop* p) { do_oop_work(p); } 4211 void do_oop(narrowOop* p) { do_oop_work(p); } 4212 }; 4213 4214 class UnregisterNMethodOopClosure: public OopClosure { 4215 G1CollectedHeap* _g1h; 4216 nmethod* _nm; 4217 4218 template <class T> void do_oop_work(T* p) { 4219 T heap_oop = RawAccess<>::oop_load(p); 4220 if (!CompressedOops::is_null(heap_oop)) { 4221 oop obj = CompressedOops::decode_not_null(heap_oop); 4222 HeapRegion* hr = _g1h->heap_region_containing(obj); 4223 assert(!hr->is_continues_humongous(), 4224 "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 4225 " starting at " HR_FORMAT, 4226 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 4227 4228 hr->remove_strong_code_root(_nm); 4229 } 4230 } 4231 4232 public: 4233 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 4234 _g1h(g1h), _nm(nm) {} 4235 4236 void do_oop(oop* p) { do_oop_work(p); } 4237 void do_oop(narrowOop* p) { do_oop_work(p); } 4238 }; 4239 4240 void G1CollectedHeap::register_nmethod(nmethod* nm) { 4241 guarantee(nm != NULL, "sanity"); 4242 RegisterNMethodOopClosure reg_cl(this, nm); 4243 nm->oops_do(®_cl); 4244 } 4245 4246 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 4247 guarantee(nm != NULL, "sanity"); 4248 UnregisterNMethodOopClosure reg_cl(this, nm); 4249 nm->oops_do(®_cl, true); 4250 } 4251 4252 void G1CollectedHeap::update_used_after_gc() { 4253 if (evacuation_failed()) { 4254 // Reset the G1EvacuationFailureALot counters and flags 4255 NOT_PRODUCT(reset_evacuation_should_fail();) 4256 4257 set_used(recalculate_used()); 4258 4259 if (_archive_allocator != NULL) { 4260 _archive_allocator->clear_used(); 4261 } 4262 for (uint i = 0; i < ParallelGCThreads; i++) { 4263 if (_evacuation_failed_info_array[i].has_failed()) { 4264 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 4265 } 4266 } 4267 } else { 4268 // The "used" of the the collection set have already been subtracted 4269 // when they were freed. Add in the bytes used. 4270 increase_used(_bytes_used_during_gc); 4271 } 4272 } 4273 4274 void G1CollectedHeap::reset_hot_card_cache() { 4275 _hot_card_cache->reset_hot_cache(); 4276 _hot_card_cache->set_use_cache(true); 4277 } 4278 4279 void G1CollectedHeap::purge_code_root_memory() { 4280 G1CodeRootSet::purge(); 4281 } 4282 4283 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 4284 G1CollectedHeap* _g1h; 4285 4286 public: 4287 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 4288 _g1h(g1h) {} 4289 4290 void do_code_blob(CodeBlob* cb) { 4291 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 4292 if (nm == NULL) { 4293 return; 4294 } 4295 4296 _g1h->register_nmethod(nm); 4297 } 4298 }; 4299 4300 void G1CollectedHeap::rebuild_strong_code_roots() { 4301 RebuildStrongCodeRootClosure blob_cl(this); 4302 CodeCache::blobs_do(&blob_cl); 4303 } 4304 4305 void G1CollectedHeap::initialize_serviceability() { 4306 _g1mm->initialize_serviceability(); 4307 } 4308 4309 MemoryUsage G1CollectedHeap::memory_usage() { 4310 return _g1mm->memory_usage(); 4311 } 4312 4313 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() { 4314 return _g1mm->memory_managers(); 4315 } 4316 4317 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() { 4318 return _g1mm->memory_pools(); 4319 }