1 /* 2 * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderDataGraph.hpp" 27 #include "classfile/metadataOnStackMark.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "code/codeCache.hpp" 30 #include "code/icBuffer.hpp" 31 #include "compiler/oopMap.hpp" 32 #include "gc/g1/g1Allocator.inline.hpp" 33 #include "gc/g1/g1Arguments.hpp" 34 #include "gc/g1/g1BarrierSet.hpp" 35 #include "gc/g1/g1CollectedHeap.inline.hpp" 36 #include "gc/g1/g1CollectionSet.hpp" 37 #include "gc/g1/g1CollectorState.hpp" 38 #include "gc/g1/g1ConcurrentRefine.hpp" 39 #include "gc/g1/g1ConcurrentRefineThread.hpp" 40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp" 41 #include "gc/g1/g1DirtyCardQueue.hpp" 42 #include "gc/g1/g1EvacStats.inline.hpp" 43 #include "gc/g1/g1FullCollector.hpp" 44 #include "gc/g1/g1GCParPhaseTimesTracker.hpp" 45 #include "gc/g1/g1GCPhaseTimes.hpp" 46 #include "gc/g1/g1GCPauseType.hpp" 47 #include "gc/g1/g1HeapSizingPolicy.hpp" 48 #include "gc/g1/g1HeapTransition.hpp" 49 #include "gc/g1/g1HeapVerifier.hpp" 50 #include "gc/g1/g1HotCardCache.hpp" 51 #include "gc/g1/g1InitLogger.hpp" 52 #include "gc/g1/g1MemoryPool.hpp" 53 #include "gc/g1/g1OopClosures.inline.hpp" 54 #include "gc/g1/g1ParallelCleaning.hpp" 55 #include "gc/g1/g1ParScanThreadState.inline.hpp" 56 #include "gc/g1/g1PeriodicGCTask.hpp" 57 #include "gc/g1/g1Policy.hpp" 58 #include "gc/g1/g1RedirtyCardsQueue.hpp" 59 #include "gc/g1/g1RegionToSpaceMapper.hpp" 60 #include "gc/g1/g1RemSet.hpp" 61 #include "gc/g1/g1RootClosures.hpp" 62 #include "gc/g1/g1RootProcessor.hpp" 63 #include "gc/g1/g1SATBMarkQueueSet.hpp" 64 #include "gc/g1/g1ThreadLocalData.hpp" 65 #include "gc/g1/g1Trace.hpp" 66 #include "gc/g1/g1ServiceThread.hpp" 67 #include "gc/g1/g1UncommitRegionTask.hpp" 68 #include "gc/g1/g1VMOperations.hpp" 69 #include "gc/g1/g1YoungGCPostEvacuateTasks.hpp" 70 #include "gc/g1/heapRegion.inline.hpp" 71 #include "gc/g1/heapRegionRemSet.hpp" 72 #include "gc/g1/heapRegionSet.inline.hpp" 73 #include "gc/shared/concurrentGCBreakpoints.hpp" 74 #include "gc/shared/gcBehaviours.hpp" 75 #include "gc/shared/gcHeapSummary.hpp" 76 #include "gc/shared/gcId.hpp" 77 #include "gc/shared/gcLocker.hpp" 78 #include "gc/shared/gcTimer.hpp" 79 #include "gc/shared/gcTraceTime.inline.hpp" 80 #include "gc/shared/generationSpec.hpp" 81 #include "gc/shared/isGCActiveMark.hpp" 82 #include "gc/shared/locationPrinter.inline.hpp" 83 #include "gc/shared/oopStorageParState.hpp" 84 #include "gc/shared/preservedMarks.inline.hpp" 85 #include "gc/shared/slidingForwarding.hpp" 86 #include "gc/shared/suspendibleThreadSet.hpp" 87 #include "gc/shared/referenceProcessor.inline.hpp" 88 #include "gc/shared/taskTerminator.hpp" 89 #include "gc/shared/taskqueue.inline.hpp" 90 #include "gc/shared/tlab_globals.hpp" 91 #include "gc/shared/weakProcessor.inline.hpp" 92 #include "gc/shared/workerPolicy.hpp" 93 #include "logging/log.hpp" 94 #include "memory/allocation.hpp" 95 #include "memory/iterator.hpp" 96 #include "memory/heapInspection.hpp" 97 #include "memory/metaspaceUtils.hpp" 98 #include "memory/resourceArea.hpp" 99 #include "memory/universe.hpp" 100 #include "oops/access.inline.hpp" 101 #include "oops/compressedOops.inline.hpp" 102 #include "oops/oop.inline.hpp" 103 #include "runtime/atomic.hpp" 104 #include "runtime/handles.inline.hpp" 105 #include "runtime/init.hpp" 106 #include "runtime/java.hpp" 107 #include "runtime/orderAccess.hpp" 108 #include "runtime/threadSMR.hpp" 109 #include "runtime/vmThread.hpp" 110 #include "utilities/align.hpp" 111 #include "utilities/autoRestore.hpp" 112 #include "utilities/bitMap.inline.hpp" 113 #include "utilities/globalDefinitions.hpp" 114 #include "utilities/stack.inline.hpp" 115 116 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 117 118 // INVARIANTS/NOTES 119 // 120 // All allocation activity covered by the G1CollectedHeap interface is 121 // serialized by acquiring the HeapLock. This happens in mem_allocate 122 // and allocate_new_tlab, which are the "entry" points to the 123 // allocation code from the rest of the JVM. (Note that this does not 124 // apply to TLAB allocation, which is not part of this interface: it 125 // is done by clients of this interface.) 126 127 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 128 HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); 129 } 130 131 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 132 // The from card cache is not the memory that is actually committed. So we cannot 133 // take advantage of the zero_filled parameter. 134 reset_from_card_cache(start_idx, num_regions); 135 } 136 137 Tickspan G1CollectedHeap::run_task_timed(AbstractGangTask* task) { 138 Ticks start = Ticks::now(); 139 workers()->run_task(task); 140 return Ticks::now() - start; 141 } 142 143 void G1CollectedHeap::run_batch_task(G1BatchedGangTask* cl) { 144 uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers())); 145 cl->set_max_workers(num_workers); 146 workers()->run_task(cl, num_workers); 147 } 148 149 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, 150 MemRegion mr) { 151 return new HeapRegion(hrs_index, bot(), mr); 152 } 153 154 // Private methods. 155 156 HeapRegion* G1CollectedHeap::new_region(size_t word_size, 157 HeapRegionType type, 158 bool do_expand, 159 uint node_index) { 160 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, 161 "the only time we use this to allocate a humongous region is " 162 "when we are allocating a single humongous region"); 163 164 HeapRegion* res = _hrm.allocate_free_region(type, node_index); 165 166 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 167 // Currently, only attempts to allocate GC alloc regions set 168 // do_expand to true. So, we should only reach here during a 169 // safepoint. If this assumption changes we might have to 170 // reconsider the use of _expand_heap_after_alloc_failure. 171 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 172 173 log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B", 174 word_size * HeapWordSize); 175 176 assert(word_size * HeapWordSize < HeapRegion::GrainBytes, 177 "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT, 178 word_size * HeapWordSize); 179 if (expand_single_region(node_index)) { 180 // Given that expand_single_region() succeeded in expanding the heap, and we 181 // always expand the heap by an amount aligned to the heap 182 // region size, the free list should in theory not be empty. 183 // In either case allocate_free_region() will check for NULL. 184 res = _hrm.allocate_free_region(type, node_index); 185 } else { 186 _expand_heap_after_alloc_failure = false; 187 } 188 } 189 return res; 190 } 191 192 HeapWord* 193 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr, 194 uint num_regions, 195 size_t word_size) { 196 assert(first_hr != NULL, "pre-condition"); 197 assert(is_humongous(word_size), "word_size should be humongous"); 198 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 199 200 // Index of last region in the series. 201 uint first = first_hr->hrm_index(); 202 uint last = first + num_regions - 1; 203 204 // We need to initialize the region(s) we just discovered. This is 205 // a bit tricky given that it can happen concurrently with 206 // refinement threads refining cards on these regions and 207 // potentially wanting to refine the BOT as they are scanning 208 // those cards (this can happen shortly after a cleanup; see CR 209 // 6991377). So we have to set up the region(s) carefully and in 210 // a specific order. 211 212 // The word size sum of all the regions we will allocate. 213 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 214 assert(word_size <= word_size_sum, "sanity"); 215 216 // The passed in hr will be the "starts humongous" region. The header 217 // of the new object will be placed at the bottom of this region. 218 HeapWord* new_obj = first_hr->bottom(); 219 // This will be the new top of the new object. 220 HeapWord* obj_top = new_obj + word_size; 221 222 // First, we need to zero the header of the space that we will be 223 // allocating. When we update top further down, some refinement 224 // threads might try to scan the region. By zeroing the header we 225 // ensure that any thread that will try to scan the region will 226 // come across the zero klass word and bail out. 227 // 228 // NOTE: It would not have been correct to have used 229 // CollectedHeap::fill_with_object() and make the space look like 230 // an int array. The thread that is doing the allocation will 231 // later update the object header to a potentially different array 232 // type and, for a very short period of time, the klass and length 233 // fields will be inconsistent. This could cause a refinement 234 // thread to calculate the object size incorrectly. 235 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 236 237 // Next, pad out the unused tail of the last region with filler 238 // objects, for improved usage accounting. 239 // How many words we use for filler objects. 240 size_t word_fill_size = word_size_sum - word_size; 241 242 // How many words memory we "waste" which cannot hold a filler object. 243 size_t words_not_fillable = 0; 244 245 if (word_fill_size >= min_fill_size()) { 246 fill_with_objects(obj_top, word_fill_size); 247 } else if (word_fill_size > 0) { 248 // We have space to fill, but we cannot fit an object there. 249 words_not_fillable = word_fill_size; 250 word_fill_size = 0; 251 } 252 253 // We will set up the first region as "starts humongous". This 254 // will also update the BOT covering all the regions to reflect 255 // that there is a single object that starts at the bottom of the 256 // first region. 257 first_hr->set_starts_humongous(obj_top, word_fill_size); 258 _policy->remset_tracker()->update_at_allocate(first_hr); 259 // Then, if there are any, we will set up the "continues 260 // humongous" regions. 261 HeapRegion* hr = NULL; 262 for (uint i = first + 1; i <= last; ++i) { 263 hr = region_at(i); 264 hr->set_continues_humongous(first_hr); 265 _policy->remset_tracker()->update_at_allocate(hr); 266 } 267 268 // Up to this point no concurrent thread would have been able to 269 // do any scanning on any region in this series. All the top 270 // fields still point to bottom, so the intersection between 271 // [bottom,top] and [card_start,card_end] will be empty. Before we 272 // update the top fields, we'll do a storestore to make sure that 273 // no thread sees the update to top before the zeroing of the 274 // object header and the BOT initialization. 275 OrderAccess::storestore(); 276 277 // Now, we will update the top fields of the "continues humongous" 278 // regions except the last one. 279 for (uint i = first; i < last; ++i) { 280 hr = region_at(i); 281 hr->set_top(hr->end()); 282 } 283 284 hr = region_at(last); 285 // If we cannot fit a filler object, we must set top to the end 286 // of the humongous object, otherwise we cannot iterate the heap 287 // and the BOT will not be complete. 288 hr->set_top(hr->end() - words_not_fillable); 289 290 assert(hr->bottom() < obj_top && obj_top <= hr->end(), 291 "obj_top should be in last region"); 292 293 _verifier->check_bitmaps("Humongous Region Allocation", first_hr); 294 295 assert(words_not_fillable == 0 || 296 first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), 297 "Miscalculation in humongous allocation"); 298 299 increase_used((word_size_sum - words_not_fillable) * HeapWordSize); 300 301 for (uint i = first; i <= last; ++i) { 302 hr = region_at(i); 303 _humongous_set.add(hr); 304 _hr_printer.alloc(hr); 305 } 306 307 return new_obj; 308 } 309 310 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { 311 assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size); 312 return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; 313 } 314 315 // If could fit into free regions w/o expansion, try. 316 // Otherwise, if can expand, do so. 317 // Otherwise, if using ex regions might help, try with ex given back. 318 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { 319 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 320 321 _verifier->verify_region_sets_optional(); 322 323 uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); 324 325 // Policy: First try to allocate a humongous object in the free list. 326 HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions); 327 if (humongous_start == NULL) { 328 // Policy: We could not find enough regions for the humongous object in the 329 // free list. Look through the heap to find a mix of free and uncommitted regions. 330 // If so, expand the heap and allocate the humongous object. 331 humongous_start = _hrm.expand_and_allocate_humongous(obj_regions); 332 if (humongous_start != NULL) { 333 // We managed to find a region by expanding the heap. 334 log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B", 335 word_size * HeapWordSize); 336 policy()->record_new_heap_size(num_regions()); 337 } else { 338 // Policy: Potentially trigger a defragmentation GC. 339 } 340 } 341 342 HeapWord* result = NULL; 343 if (humongous_start != NULL) { 344 result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size); 345 assert(result != NULL, "it should always return a valid result"); 346 347 // A successful humongous object allocation changes the used space 348 // information of the old generation so we need to recalculate the 349 // sizes and update the jstat counters here. 350 g1mm()->update_sizes(); 351 } 352 353 _verifier->verify_region_sets_optional(); 354 355 return result; 356 } 357 358 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size, 359 size_t requested_size, 360 size_t* actual_size) { 361 assert_heap_not_locked_and_not_at_safepoint(); 362 assert(!is_humongous(requested_size), "we do not allow humongous TLABs"); 363 364 return attempt_allocation(min_size, requested_size, actual_size); 365 } 366 367 HeapWord* 368 G1CollectedHeap::mem_allocate(size_t word_size, 369 bool* gc_overhead_limit_was_exceeded) { 370 assert_heap_not_locked_and_not_at_safepoint(); 371 372 if (is_humongous(word_size)) { 373 return attempt_allocation_humongous(word_size); 374 } 375 size_t dummy = 0; 376 return attempt_allocation(word_size, word_size, &dummy); 377 } 378 379 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) { 380 ResourceMark rm; // For retrieving the thread names in log messages. 381 382 // Make sure you read the note in attempt_allocation_humongous(). 383 384 assert_heap_not_locked_and_not_at_safepoint(); 385 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 386 "be called for humongous allocation requests"); 387 388 // We should only get here after the first-level allocation attempt 389 // (attempt_allocation()) failed to allocate. 390 391 // We will loop until a) we manage to successfully perform the 392 // allocation or b) we successfully schedule a collection which 393 // fails to perform the allocation. b) is the only case when we'll 394 // return NULL. 395 HeapWord* result = NULL; 396 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 397 bool should_try_gc; 398 bool preventive_collection_required = false; 399 uint gc_count_before; 400 401 { 402 MutexLocker x(Heap_lock); 403 404 // Now that we have the lock, we first retry the allocation in case another 405 // thread changed the region while we were waiting to acquire the lock. 406 size_t actual_size; 407 result = _allocator->attempt_allocation(word_size, word_size, &actual_size); 408 if (result != NULL) { 409 return result; 410 } 411 412 preventive_collection_required = policy()->preventive_collection_required(1); 413 if (!preventive_collection_required) { 414 // We've already attempted a lock-free allocation above, so we don't want to 415 // do it again. Let's jump straight to replacing the active region. 416 result = _allocator->attempt_allocation_using_new_region(word_size); 417 if (result != NULL) { 418 return result; 419 } 420 421 // If the GCLocker is active and we are bound for a GC, try expanding young gen. 422 // This is different to when only GCLocker::needs_gc() is set: try to avoid 423 // waiting because the GCLocker is active to not wait too long. 424 if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) { 425 // No need for an ergo message here, can_expand_young_list() does this when 426 // it returns true. 427 result = _allocator->attempt_allocation_force(word_size); 428 if (result != NULL) { 429 return result; 430 } 431 } 432 } 433 434 // Only try a GC if the GCLocker does not signal the need for a GC. Wait until 435 // the GCLocker initiated GC has been performed and then retry. This includes 436 // the case when the GC Locker is not active but has not been performed. 437 should_try_gc = !GCLocker::needs_gc(); 438 // Read the GC count while still holding the Heap_lock. 439 gc_count_before = total_collections(); 440 } 441 442 if (should_try_gc) { 443 GCCause::Cause gc_cause = preventive_collection_required ? GCCause::_g1_preventive_collection 444 : GCCause::_g1_inc_collection_pause; 445 bool succeeded; 446 result = do_collection_pause(word_size, gc_count_before, &succeeded, gc_cause); 447 if (result != NULL) { 448 assert(succeeded, "only way to get back a non-NULL result"); 449 log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, 450 Thread::current()->name(), p2i(result)); 451 return result; 452 } 453 454 if (succeeded) { 455 // We successfully scheduled a collection which failed to allocate. No 456 // point in trying to allocate further. We'll just return NULL. 457 log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " 458 SIZE_FORMAT " words", Thread::current()->name(), word_size); 459 return NULL; 460 } 461 log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words", 462 Thread::current()->name(), word_size); 463 } else { 464 // Failed to schedule a collection. 465 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 466 log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " 467 SIZE_FORMAT " words", Thread::current()->name(), word_size); 468 return NULL; 469 } 470 log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); 471 // The GCLocker is either active or the GCLocker initiated 472 // GC has not yet been performed. Stall until it is and 473 // then retry the allocation. 474 GCLocker::stall_until_clear(); 475 gclocker_retry_count += 1; 476 } 477 478 // We can reach here if we were unsuccessful in scheduling a 479 // collection (because another thread beat us to it) or if we were 480 // stalled due to the GC locker. In either can we should retry the 481 // allocation attempt in case another thread successfully 482 // performed a collection and reclaimed enough space. We do the 483 // first attempt (without holding the Heap_lock) here and the 484 // follow-on attempt will be at the start of the next loop 485 // iteration (after taking the Heap_lock). 486 size_t dummy = 0; 487 result = _allocator->attempt_allocation(word_size, word_size, &dummy); 488 if (result != NULL) { 489 return result; 490 } 491 492 // Give a warning if we seem to be looping forever. 493 if ((QueuedAllocationWarningCount > 0) && 494 (try_count % QueuedAllocationWarningCount == 0)) { 495 log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", 496 Thread::current()->name(), try_count, word_size); 497 } 498 } 499 500 ShouldNotReachHere(); 501 return NULL; 502 } 503 504 void G1CollectedHeap::begin_archive_alloc_range(bool open) { 505 assert_at_safepoint_on_vm_thread(); 506 if (_archive_allocator == NULL) { 507 _archive_allocator = G1ArchiveAllocator::create_allocator(this, open); 508 } 509 } 510 511 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) { 512 // Allocations in archive regions cannot be of a size that would be considered 513 // humongous even for a minimum-sized region, because G1 region sizes/boundaries 514 // may be different at archive-restore time. 515 return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words()); 516 } 517 518 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) { 519 assert_at_safepoint_on_vm_thread(); 520 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 521 if (is_archive_alloc_too_large(word_size)) { 522 return NULL; 523 } 524 return _archive_allocator->archive_mem_allocate(word_size); 525 } 526 527 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 528 size_t end_alignment_in_bytes) { 529 assert_at_safepoint_on_vm_thread(); 530 assert(_archive_allocator != NULL, "_archive_allocator not initialized"); 531 532 // Call complete_archive to do the real work, filling in the MemRegion 533 // array with the archive regions. 534 _archive_allocator->complete_archive(ranges, end_alignment_in_bytes); 535 delete _archive_allocator; 536 _archive_allocator = NULL; 537 } 538 539 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) { 540 assert(ranges != NULL, "MemRegion array NULL"); 541 assert(count != 0, "No MemRegions provided"); 542 MemRegion reserved = _hrm.reserved(); 543 for (size_t i = 0; i < count; i++) { 544 if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) { 545 return false; 546 } 547 } 548 return true; 549 } 550 551 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, 552 size_t count, 553 bool open) { 554 assert(!is_init_completed(), "Expect to be called at JVM init time"); 555 assert(ranges != NULL, "MemRegion array NULL"); 556 assert(count != 0, "No MemRegions provided"); 557 MutexLocker x(Heap_lock); 558 559 MemRegion reserved = _hrm.reserved(); 560 HeapWord* prev_last_addr = NULL; 561 HeapRegion* prev_last_region = NULL; 562 563 // Temporarily disable pretouching of heap pages. This interface is used 564 // when mmap'ing archived heap data in, so pre-touching is wasted. 565 FlagSetting fs(AlwaysPreTouch, false); 566 567 // For each specified MemRegion range, allocate the corresponding G1 568 // regions and mark them as archive regions. We expect the ranges 569 // in ascending starting address order, without overlap. 570 for (size_t i = 0; i < count; i++) { 571 MemRegion curr_range = ranges[i]; 572 HeapWord* start_address = curr_range.start(); 573 size_t word_size = curr_range.word_size(); 574 HeapWord* last_address = curr_range.last(); 575 size_t commits = 0; 576 577 guarantee(reserved.contains(start_address) && reserved.contains(last_address), 578 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 579 p2i(start_address), p2i(last_address)); 580 guarantee(start_address > prev_last_addr, 581 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 582 p2i(start_address), p2i(prev_last_addr)); 583 prev_last_addr = last_address; 584 585 // Check for ranges that start in the same G1 region in which the previous 586 // range ended, and adjust the start address so we don't try to allocate 587 // the same region again. If the current range is entirely within that 588 // region, skip it, just adjusting the recorded top. 589 HeapRegion* start_region = _hrm.addr_to_region(start_address); 590 if ((prev_last_region != NULL) && (start_region == prev_last_region)) { 591 start_address = start_region->end(); 592 if (start_address > last_address) { 593 increase_used(word_size * HeapWordSize); 594 start_region->set_top(last_address + 1); 595 continue; 596 } 597 start_region->set_top(start_address); 598 curr_range = MemRegion(start_address, last_address + 1); 599 start_region = _hrm.addr_to_region(start_address); 600 } 601 602 // Perform the actual region allocation, exiting if it fails. 603 // Then note how much new space we have allocated. 604 if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) { 605 return false; 606 } 607 increase_used(word_size * HeapWordSize); 608 if (commits != 0) { 609 log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B", 610 HeapRegion::GrainWords * HeapWordSize * commits); 611 612 } 613 614 // Mark each G1 region touched by the range as archive, add it to 615 // the old set, and set top. 616 HeapRegion* curr_region = _hrm.addr_to_region(start_address); 617 HeapRegion* last_region = _hrm.addr_to_region(last_address); 618 prev_last_region = last_region; 619 620 while (curr_region != NULL) { 621 assert(curr_region->is_empty() && !curr_region->is_pinned(), 622 "Region already in use (index %u)", curr_region->hrm_index()); 623 if (open) { 624 curr_region->set_open_archive(); 625 } else { 626 curr_region->set_closed_archive(); 627 } 628 _hr_printer.alloc(curr_region); 629 _archive_set.add(curr_region); 630 HeapWord* top; 631 HeapRegion* next_region; 632 if (curr_region != last_region) { 633 top = curr_region->end(); 634 next_region = _hrm.next_region_in_heap(curr_region); 635 } else { 636 top = last_address + 1; 637 next_region = NULL; 638 } 639 curr_region->set_top(top); 640 curr_region = next_region; 641 } 642 } 643 return true; 644 } 645 646 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) { 647 assert(!is_init_completed(), "Expect to be called at JVM init time"); 648 assert(ranges != NULL, "MemRegion array NULL"); 649 assert(count != 0, "No MemRegions provided"); 650 MemRegion reserved = _hrm.reserved(); 651 HeapWord *prev_last_addr = NULL; 652 HeapRegion* prev_last_region = NULL; 653 654 // For each MemRegion, create filler objects, if needed, in the G1 regions 655 // that contain the address range. The address range actually within the 656 // MemRegion will not be modified. That is assumed to have been initialized 657 // elsewhere, probably via an mmap of archived heap data. 658 MutexLocker x(Heap_lock); 659 for (size_t i = 0; i < count; i++) { 660 HeapWord* start_address = ranges[i].start(); 661 HeapWord* last_address = ranges[i].last(); 662 663 assert(reserved.contains(start_address) && reserved.contains(last_address), 664 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 665 p2i(start_address), p2i(last_address)); 666 assert(start_address > prev_last_addr, 667 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 668 p2i(start_address), p2i(prev_last_addr)); 669 670 HeapRegion* start_region = _hrm.addr_to_region(start_address); 671 HeapRegion* last_region = _hrm.addr_to_region(last_address); 672 HeapWord* bottom_address = start_region->bottom(); 673 674 // Check for a range beginning in the same region in which the 675 // previous one ended. 676 if (start_region == prev_last_region) { 677 bottom_address = prev_last_addr + 1; 678 } 679 680 // Verify that the regions were all marked as archive regions by 681 // alloc_archive_regions. 682 HeapRegion* curr_region = start_region; 683 while (curr_region != NULL) { 684 guarantee(curr_region->is_archive(), 685 "Expected archive region at index %u", curr_region->hrm_index()); 686 if (curr_region != last_region) { 687 curr_region = _hrm.next_region_in_heap(curr_region); 688 } else { 689 curr_region = NULL; 690 } 691 } 692 693 prev_last_addr = last_address; 694 prev_last_region = last_region; 695 696 // Fill the memory below the allocated range with dummy object(s), 697 // if the region bottom does not match the range start, or if the previous 698 // range ended within the same G1 region, and there is a gap. 699 assert(start_address >= bottom_address, "bottom address should not be greater than start address"); 700 if (start_address > bottom_address) { 701 size_t fill_size = pointer_delta(start_address, bottom_address); 702 G1CollectedHeap::fill_with_objects(bottom_address, fill_size); 703 increase_used(fill_size * HeapWordSize); 704 } 705 } 706 } 707 708 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size, 709 size_t desired_word_size, 710 size_t* actual_word_size) { 711 assert_heap_not_locked_and_not_at_safepoint(); 712 assert(!is_humongous(desired_word_size), "attempt_allocation() should not " 713 "be called for humongous allocation requests"); 714 715 HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size); 716 717 if (result == NULL) { 718 *actual_word_size = desired_word_size; 719 result = attempt_allocation_slow(desired_word_size); 720 } 721 722 assert_heap_not_locked(); 723 if (result != NULL) { 724 assert(*actual_word_size != 0, "Actual size must have been set here"); 725 dirty_young_block(result, *actual_word_size); 726 } else { 727 *actual_word_size = 0; 728 } 729 730 return result; 731 } 732 733 void G1CollectedHeap::populate_archive_regions_bot_part(MemRegion* ranges, size_t count) { 734 assert(!is_init_completed(), "Expect to be called at JVM init time"); 735 assert(ranges != NULL, "MemRegion array NULL"); 736 assert(count != 0, "No MemRegions provided"); 737 738 HeapWord* st = ranges[0].start(); 739 HeapWord* last = ranges[count-1].last(); 740 HeapRegion* hr_st = _hrm.addr_to_region(st); 741 HeapRegion* hr_last = _hrm.addr_to_region(last); 742 743 HeapRegion* hr_curr = hr_st; 744 while (hr_curr != NULL) { 745 hr_curr->update_bot(); 746 if (hr_curr != hr_last) { 747 hr_curr = _hrm.next_region_in_heap(hr_curr); 748 } else { 749 hr_curr = NULL; 750 } 751 } 752 } 753 754 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) { 755 assert(!is_init_completed(), "Expect to be called at JVM init time"); 756 assert(ranges != NULL, "MemRegion array NULL"); 757 assert(count != 0, "No MemRegions provided"); 758 MemRegion reserved = _hrm.reserved(); 759 HeapWord* prev_last_addr = NULL; 760 HeapRegion* prev_last_region = NULL; 761 size_t size_used = 0; 762 uint shrink_count = 0; 763 764 // For each Memregion, free the G1 regions that constitute it, and 765 // notify mark-sweep that the range is no longer to be considered 'archive.' 766 MutexLocker x(Heap_lock); 767 for (size_t i = 0; i < count; i++) { 768 HeapWord* start_address = ranges[i].start(); 769 HeapWord* last_address = ranges[i].last(); 770 771 assert(reserved.contains(start_address) && reserved.contains(last_address), 772 "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", 773 p2i(start_address), p2i(last_address)); 774 assert(start_address > prev_last_addr, 775 "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT , 776 p2i(start_address), p2i(prev_last_addr)); 777 size_used += ranges[i].byte_size(); 778 prev_last_addr = last_address; 779 780 HeapRegion* start_region = _hrm.addr_to_region(start_address); 781 HeapRegion* last_region = _hrm.addr_to_region(last_address); 782 783 // Check for ranges that start in the same G1 region in which the previous 784 // range ended, and adjust the start address so we don't try to free 785 // the same region again. If the current range is entirely within that 786 // region, skip it. 787 if (start_region == prev_last_region) { 788 start_address = start_region->end(); 789 if (start_address > last_address) { 790 continue; 791 } 792 start_region = _hrm.addr_to_region(start_address); 793 } 794 prev_last_region = last_region; 795 796 // After verifying that each region was marked as an archive region by 797 // alloc_archive_regions, set it free and empty and uncommit it. 798 HeapRegion* curr_region = start_region; 799 while (curr_region != NULL) { 800 guarantee(curr_region->is_archive(), 801 "Expected archive region at index %u", curr_region->hrm_index()); 802 uint curr_index = curr_region->hrm_index(); 803 _archive_set.remove(curr_region); 804 curr_region->set_free(); 805 curr_region->set_top(curr_region->bottom()); 806 if (curr_region != last_region) { 807 curr_region = _hrm.next_region_in_heap(curr_region); 808 } else { 809 curr_region = NULL; 810 } 811 812 _hrm.shrink_at(curr_index, 1); 813 shrink_count++; 814 } 815 } 816 817 if (shrink_count != 0) { 818 log_debug(gc, ergo, heap)("Attempt heap shrinking (archive regions). Total size: " SIZE_FORMAT "B", 819 HeapRegion::GrainWords * HeapWordSize * shrink_count); 820 // Explicit uncommit. 821 uncommit_regions(shrink_count); 822 } 823 decrease_used(size_used); 824 } 825 826 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) { 827 ResourceMark rm; // For retrieving the thread names in log messages. 828 829 // The structure of this method has a lot of similarities to 830 // attempt_allocation_slow(). The reason these two were not merged 831 // into a single one is that such a method would require several "if 832 // allocation is not humongous do this, otherwise do that" 833 // conditional paths which would obscure its flow. In fact, an early 834 // version of this code did use a unified method which was harder to 835 // follow and, as a result, it had subtle bugs that were hard to 836 // track down. So keeping these two methods separate allows each to 837 // be more readable. It will be good to keep these two in sync as 838 // much as possible. 839 840 assert_heap_not_locked_and_not_at_safepoint(); 841 assert(is_humongous(word_size), "attempt_allocation_humongous() " 842 "should only be called for humongous allocations"); 843 844 // Humongous objects can exhaust the heap quickly, so we should check if we 845 // need to start a marking cycle at each humongous object allocation. We do 846 // the check before we do the actual allocation. The reason for doing it 847 // before the allocation is that we avoid having to keep track of the newly 848 // allocated memory while we do a GC. 849 if (policy()->need_to_start_conc_mark("concurrent humongous allocation", 850 word_size)) { 851 collect(GCCause::_g1_humongous_allocation); 852 } 853 854 // We will loop until a) we manage to successfully perform the 855 // allocation or b) we successfully schedule a collection which 856 // fails to perform the allocation. b) is the only case when we'll 857 // return NULL. 858 HeapWord* result = NULL; 859 for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 860 bool should_try_gc; 861 bool preventive_collection_required = false; 862 uint gc_count_before; 863 864 865 { 866 MutexLocker x(Heap_lock); 867 868 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 869 preventive_collection_required = policy()->preventive_collection_required((uint)size_in_regions); 870 if (!preventive_collection_required) { 871 // Given that humongous objects are not allocated in young 872 // regions, we'll first try to do the allocation without doing a 873 // collection hoping that there's enough space in the heap. 874 result = humongous_obj_allocate(word_size); 875 if (result != NULL) { 876 policy()->old_gen_alloc_tracker()-> 877 add_allocated_humongous_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes); 878 return result; 879 } 880 } 881 882 // Only try a GC if the GCLocker does not signal the need for a GC. Wait until 883 // the GCLocker initiated GC has been performed and then retry. This includes 884 // the case when the GC Locker is not active but has not been performed. 885 should_try_gc = !GCLocker::needs_gc(); 886 // Read the GC count while still holding the Heap_lock. 887 gc_count_before = total_collections(); 888 } 889 890 if (should_try_gc) { 891 GCCause::Cause gc_cause = preventive_collection_required ? GCCause::_g1_preventive_collection 892 : GCCause::_g1_humongous_allocation; 893 bool succeeded; 894 result = do_collection_pause(word_size, gc_count_before, &succeeded, gc_cause); 895 if (result != NULL) { 896 assert(succeeded, "only way to get back a non-NULL result"); 897 log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, 898 Thread::current()->name(), p2i(result)); 899 size_t size_in_regions = humongous_obj_size_in_regions(word_size); 900 policy()->old_gen_alloc_tracker()-> 901 record_collection_pause_humongous_allocation(size_in_regions * HeapRegion::GrainBytes); 902 return result; 903 } 904 905 if (succeeded) { 906 // We successfully scheduled a collection which failed to allocate. No 907 // point in trying to allocate further. We'll just return NULL. 908 log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " 909 SIZE_FORMAT " words", Thread::current()->name(), word_size); 910 return NULL; 911 } 912 log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "", 913 Thread::current()->name(), word_size); 914 } else { 915 // Failed to schedule a collection. 916 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 917 log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " 918 SIZE_FORMAT " words", Thread::current()->name(), word_size); 919 return NULL; 920 } 921 log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); 922 // The GCLocker is either active or the GCLocker initiated 923 // GC has not yet been performed. Stall until it is and 924 // then retry the allocation. 925 GCLocker::stall_until_clear(); 926 gclocker_retry_count += 1; 927 } 928 929 930 // We can reach here if we were unsuccessful in scheduling a 931 // collection (because another thread beat us to it) or if we were 932 // stalled due to the GC locker. In either can we should retry the 933 // allocation attempt in case another thread successfully 934 // performed a collection and reclaimed enough space. 935 // Humongous object allocation always needs a lock, so we wait for the retry 936 // in the next iteration of the loop, unlike for the regular iteration case. 937 // Give a warning if we seem to be looping forever. 938 939 if ((QueuedAllocationWarningCount > 0) && 940 (try_count % QueuedAllocationWarningCount == 0)) { 941 log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", 942 Thread::current()->name(), try_count, word_size); 943 } 944 } 945 946 ShouldNotReachHere(); 947 return NULL; 948 } 949 950 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 951 bool expect_null_mutator_alloc_region) { 952 assert_at_safepoint_on_vm_thread(); 953 assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region, 954 "the current alloc region was unexpectedly found to be non-NULL"); 955 956 if (!is_humongous(word_size)) { 957 return _allocator->attempt_allocation_locked(word_size); 958 } else { 959 HeapWord* result = humongous_obj_allocate(word_size); 960 if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) { 961 collector_state()->set_initiate_conc_mark_if_possible(true); 962 } 963 return result; 964 } 965 966 ShouldNotReachHere(); 967 } 968 969 class PostCompactionPrinterClosure: public HeapRegionClosure { 970 private: 971 G1HRPrinter* _hr_printer; 972 public: 973 bool do_heap_region(HeapRegion* hr) { 974 assert(!hr->is_young(), "not expecting to find young regions"); 975 _hr_printer->post_compaction(hr); 976 return false; 977 } 978 979 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 980 : _hr_printer(hr_printer) { } 981 }; 982 983 void G1CollectedHeap::print_hrm_post_compaction() { 984 if (_hr_printer.is_active()) { 985 PostCompactionPrinterClosure cl(hr_printer()); 986 heap_region_iterate(&cl); 987 } 988 } 989 990 void G1CollectedHeap::abort_concurrent_cycle() { 991 // If we start the compaction before the CM threads finish 992 // scanning the root regions we might trip them over as we'll 993 // be moving objects / updating references. So let's wait until 994 // they are done. By telling them to abort, they should complete 995 // early. 996 _cm->root_regions()->abort(); 997 _cm->root_regions()->wait_until_scan_finished(); 998 999 // Disable discovery and empty the discovered lists 1000 // for the CM ref processor. 1001 _ref_processor_cm->disable_discovery(); 1002 _ref_processor_cm->abandon_partial_discovery(); 1003 _ref_processor_cm->verify_no_references_recorded(); 1004 1005 // Abandon current iterations of concurrent marking and concurrent 1006 // refinement, if any are in progress. 1007 concurrent_mark()->concurrent_cycle_abort(); 1008 } 1009 1010 void G1CollectedHeap::prepare_heap_for_full_collection() { 1011 // Make sure we'll choose a new allocation region afterwards. 1012 _allocator->release_mutator_alloc_regions(); 1013 _allocator->abandon_gc_alloc_regions(); 1014 1015 // We may have added regions to the current incremental collection 1016 // set between the last GC or pause and now. We need to clear the 1017 // incremental collection set and then start rebuilding it afresh 1018 // after this full GC. 1019 abandon_collection_set(collection_set()); 1020 1021 _hrm.remove_all_free_regions(); 1022 } 1023 1024 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) { 1025 assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant"); 1026 assert_used_and_recalculate_used_equal(this); 1027 _verifier->verify_region_sets_optional(); 1028 _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull); 1029 _verifier->check_bitmaps("Full GC Start"); 1030 } 1031 1032 void G1CollectedHeap::prepare_heap_for_mutators() { 1033 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1034 ClassLoaderDataGraph::purge(/*at_safepoint*/true); 1035 DEBUG_ONLY(MetaspaceUtils::verify();) 1036 1037 // Prepare heap for normal collections. 1038 assert(num_free_regions() == 0, "we should not have added any free regions"); 1039 rebuild_region_sets(false /* free_list_only */); 1040 abort_refinement(); 1041 resize_heap_if_necessary(); 1042 uncommit_regions_if_necessary(); 1043 1044 // Rebuild the strong code root lists for each region 1045 rebuild_strong_code_roots(); 1046 1047 // Purge code root memory 1048 purge_code_root_memory(); 1049 1050 // Start a new incremental collection set for the next pause 1051 start_new_collection_set(); 1052 1053 _allocator->init_mutator_alloc_regions(); 1054 1055 // Post collection state updates. 1056 MetaspaceGC::compute_new_size(); 1057 } 1058 1059 void G1CollectedHeap::abort_refinement() { 1060 if (_hot_card_cache->use_cache()) { 1061 _hot_card_cache->reset_hot_cache(); 1062 } 1063 1064 // Discard all remembered set updates and reset refinement statistics. 1065 G1BarrierSet::dirty_card_queue_set().abandon_logs(); 1066 assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0, 1067 "DCQS should be empty"); 1068 concurrent_refine()->get_and_reset_refinement_stats(); 1069 } 1070 1071 void G1CollectedHeap::verify_after_full_collection() { 1072 _hrm.verify_optional(); 1073 _verifier->verify_region_sets_optional(); 1074 _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull); 1075 1076 // This call implicitly verifies that the next bitmap is clear after Full GC. 1077 _verifier->check_bitmaps("Full GC End"); 1078 1079 // At this point there should be no regions in the 1080 // entire heap tagged as young. 1081 assert(check_young_list_empty(), "young list should be empty at this point"); 1082 1083 // Note: since we've just done a full GC, concurrent 1084 // marking is no longer active. Therefore we need not 1085 // re-enable reference discovery for the CM ref processor. 1086 // That will be done at the start of the next marking cycle. 1087 // We also know that the STW processor should no longer 1088 // discover any new references. 1089 assert(!_ref_processor_stw->discovery_enabled(), "Postcondition"); 1090 assert(!_ref_processor_cm->discovery_enabled(), "Postcondition"); 1091 _ref_processor_stw->verify_no_references_recorded(); 1092 _ref_processor_cm->verify_no_references_recorded(); 1093 } 1094 1095 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) { 1096 // Post collection logging. 1097 // We should do this after we potentially resize the heap so 1098 // that all the COMMIT / UNCOMMIT events are generated before 1099 // the compaction events. 1100 print_hrm_post_compaction(); 1101 heap_transition->print(); 1102 print_heap_after_gc(); 1103 print_heap_regions(); 1104 } 1105 1106 bool G1CollectedHeap::do_full_collection(bool explicit_gc, 1107 bool clear_all_soft_refs, 1108 bool do_maximum_compaction) { 1109 assert_at_safepoint_on_vm_thread(); 1110 1111 if (GCLocker::check_active_before_gc()) { 1112 // Full GC was not completed. 1113 return false; 1114 } 1115 1116 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1117 soft_ref_policy()->should_clear_all_soft_refs(); 1118 1119 G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs, do_maximum_compaction); 1120 GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true); 1121 1122 collector.prepare_collection(); 1123 collector.collect(); 1124 collector.complete_collection(); 1125 1126 // Full collection was successfully completed. 1127 return true; 1128 } 1129 1130 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1131 // Currently, there is no facility in the do_full_collection(bool) API to notify 1132 // the caller that the collection did not succeed (e.g., because it was locked 1133 // out by the GC locker). So, right now, we'll ignore the return value. 1134 // When clear_all_soft_refs is set we want to do a maximum compaction 1135 // not leaving any dead wood. 1136 bool do_maximum_compaction = clear_all_soft_refs; 1137 bool dummy = do_full_collection(true, /* explicit_gc */ 1138 clear_all_soft_refs, 1139 do_maximum_compaction); 1140 } 1141 1142 bool G1CollectedHeap::upgrade_to_full_collection() { 1143 GCCauseSetter compaction(this, GCCause::_g1_compaction_pause); 1144 log_info(gc, ergo)("Attempting full compaction clearing soft references"); 1145 bool success = do_full_collection(false /* explicit gc */, 1146 true /* clear_all_soft_refs */, 1147 false /* do_maximum_compaction */); 1148 // do_full_collection only fails if blocked by GC locker and that can't 1149 // be the case here since we only call this when already completed one gc. 1150 assert(success, "invariant"); 1151 return success; 1152 } 1153 1154 void G1CollectedHeap::resize_heap_if_necessary() { 1155 assert_at_safepoint_on_vm_thread(); 1156 1157 bool should_expand; 1158 size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand); 1159 1160 if (resize_amount == 0) { 1161 return; 1162 } else if (should_expand) { 1163 expand(resize_amount, _workers); 1164 } else { 1165 shrink(resize_amount); 1166 } 1167 } 1168 1169 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, 1170 bool do_gc, 1171 bool maximum_compaction, 1172 bool expect_null_mutator_alloc_region, 1173 bool* gc_succeeded) { 1174 *gc_succeeded = true; 1175 // Let's attempt the allocation first. 1176 HeapWord* result = 1177 attempt_allocation_at_safepoint(word_size, 1178 expect_null_mutator_alloc_region); 1179 if (result != NULL) { 1180 return result; 1181 } 1182 1183 // In a G1 heap, we're supposed to keep allocation from failing by 1184 // incremental pauses. Therefore, at least for now, we'll favor 1185 // expansion over collection. (This might change in the future if we can 1186 // do something smarter than full collection to satisfy a failed alloc.) 1187 result = expand_and_allocate(word_size); 1188 if (result != NULL) { 1189 return result; 1190 } 1191 1192 if (do_gc) { 1193 GCCauseSetter compaction(this, GCCause::_g1_compaction_pause); 1194 // Expansion didn't work, we'll try to do a Full GC. 1195 // If maximum_compaction is set we clear all soft references and don't 1196 // allow any dead wood to be left on the heap. 1197 if (maximum_compaction) { 1198 log_info(gc, ergo)("Attempting maximum full compaction clearing soft references"); 1199 } else { 1200 log_info(gc, ergo)("Attempting full compaction"); 1201 } 1202 *gc_succeeded = do_full_collection(false, /* explicit_gc */ 1203 maximum_compaction /* clear_all_soft_refs */ , 1204 maximum_compaction /* do_maximum_compaction */); 1205 } 1206 1207 return NULL; 1208 } 1209 1210 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1211 bool* succeeded) { 1212 assert_at_safepoint_on_vm_thread(); 1213 1214 // Attempts to allocate followed by Full GC. 1215 HeapWord* result = 1216 satisfy_failed_allocation_helper(word_size, 1217 true, /* do_gc */ 1218 false, /* maximum_collection */ 1219 false, /* expect_null_mutator_alloc_region */ 1220 succeeded); 1221 1222 if (result != NULL || !*succeeded) { 1223 return result; 1224 } 1225 1226 // Attempts to allocate followed by Full GC that will collect all soft references. 1227 result = satisfy_failed_allocation_helper(word_size, 1228 true, /* do_gc */ 1229 true, /* maximum_collection */ 1230 true, /* expect_null_mutator_alloc_region */ 1231 succeeded); 1232 1233 if (result != NULL || !*succeeded) { 1234 return result; 1235 } 1236 1237 // Attempts to allocate, no GC 1238 result = satisfy_failed_allocation_helper(word_size, 1239 false, /* do_gc */ 1240 false, /* maximum_collection */ 1241 true, /* expect_null_mutator_alloc_region */ 1242 succeeded); 1243 1244 if (result != NULL) { 1245 return result; 1246 } 1247 1248 assert(!soft_ref_policy()->should_clear_all_soft_refs(), 1249 "Flag should have been handled and cleared prior to this point"); 1250 1251 // What else? We might try synchronous finalization later. If the total 1252 // space available is large enough for the allocation, then a more 1253 // complete compaction phase than we've tried so far might be 1254 // appropriate. 1255 return NULL; 1256 } 1257 1258 // Attempting to expand the heap sufficiently 1259 // to support an allocation of the given "word_size". If 1260 // successful, perform the allocation and return the address of the 1261 // allocated block, or else "NULL". 1262 1263 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { 1264 assert_at_safepoint_on_vm_thread(); 1265 1266 _verifier->verify_region_sets_optional(); 1267 1268 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1269 log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B", 1270 word_size * HeapWordSize); 1271 1272 1273 if (expand(expand_bytes, _workers)) { 1274 _hrm.verify_optional(); 1275 _verifier->verify_region_sets_optional(); 1276 return attempt_allocation_at_safepoint(word_size, 1277 false /* expect_null_mutator_alloc_region */); 1278 } 1279 return NULL; 1280 } 1281 1282 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) { 1283 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1284 aligned_expand_bytes = align_up(aligned_expand_bytes, 1285 HeapRegion::GrainBytes); 1286 1287 log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B", 1288 expand_bytes, aligned_expand_bytes); 1289 1290 if (is_maximal_no_gc()) { 1291 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1292 return false; 1293 } 1294 1295 double expand_heap_start_time_sec = os::elapsedTime(); 1296 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1297 assert(regions_to_expand > 0, "Must expand by at least one region"); 1298 1299 uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers); 1300 if (expand_time_ms != NULL) { 1301 *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; 1302 } 1303 1304 if (expanded_by > 0) { 1305 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1306 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1307 policy()->record_new_heap_size(num_regions()); 1308 } else { 1309 log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)"); 1310 1311 // The expansion of the virtual storage space was unsuccessful. 1312 // Let's see if it was because we ran out of swap. 1313 if (G1ExitOnExpansionFailure && 1314 _hrm.available() >= regions_to_expand) { 1315 // We had head room... 1316 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1317 } 1318 } 1319 return regions_to_expand > 0; 1320 } 1321 1322 bool G1CollectedHeap::expand_single_region(uint node_index) { 1323 uint expanded_by = _hrm.expand_on_preferred_node(node_index); 1324 1325 if (expanded_by == 0) { 1326 assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm.available()); 1327 log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); 1328 return false; 1329 } 1330 1331 policy()->record_new_heap_size(num_regions()); 1332 return true; 1333 } 1334 1335 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1336 size_t aligned_shrink_bytes = 1337 ReservedSpace::page_align_size_down(shrink_bytes); 1338 aligned_shrink_bytes = align_down(aligned_shrink_bytes, 1339 HeapRegion::GrainBytes); 1340 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1341 1342 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1343 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1344 1345 log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B", 1346 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1347 if (num_regions_removed > 0) { 1348 log_debug(gc, heap)("Uncommittable regions after shrink: %u", num_regions_removed); 1349 policy()->record_new_heap_size(num_regions()); 1350 } else { 1351 log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)"); 1352 } 1353 } 1354 1355 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1356 _verifier->verify_region_sets_optional(); 1357 1358 // We should only reach here at the end of a Full GC or during Remark which 1359 // means we should not not be holding to any GC alloc regions. The method 1360 // below will make sure of that and do any remaining clean up. 1361 _allocator->abandon_gc_alloc_regions(); 1362 1363 // Instead of tearing down / rebuilding the free lists here, we 1364 // could instead use the remove_all_pending() method on free_list to 1365 // remove only the ones that we need to remove. 1366 _hrm.remove_all_free_regions(); 1367 shrink_helper(shrink_bytes); 1368 rebuild_region_sets(true /* free_list_only */); 1369 1370 _hrm.verify_optional(); 1371 _verifier->verify_region_sets_optional(); 1372 } 1373 1374 class OldRegionSetChecker : public HeapRegionSetChecker { 1375 public: 1376 void check_mt_safety() { 1377 // Master Old Set MT safety protocol: 1378 // (a) If we're at a safepoint, operations on the master old set 1379 // should be invoked: 1380 // - by the VM thread (which will serialize them), or 1381 // - by the GC workers while holding the FreeList_lock, if we're 1382 // at a safepoint for an evacuation pause (this lock is taken 1383 // anyway when an GC alloc region is retired so that a new one 1384 // is allocated from the free list), or 1385 // - by the GC workers while holding the OldSets_lock, if we're at a 1386 // safepoint for a cleanup pause. 1387 // (b) If we're not at a safepoint, operations on the master old set 1388 // should be invoked while holding the Heap_lock. 1389 1390 if (SafepointSynchronize::is_at_safepoint()) { 1391 guarantee(Thread::current()->is_VM_thread() || 1392 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(), 1393 "master old set MT safety protocol at a safepoint"); 1394 } else { 1395 guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint"); 1396 } 1397 } 1398 bool is_correct_type(HeapRegion* hr) { return hr->is_old(); } 1399 const char* get_description() { return "Old Regions"; } 1400 }; 1401 1402 class ArchiveRegionSetChecker : public HeapRegionSetChecker { 1403 public: 1404 void check_mt_safety() { 1405 guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(), 1406 "May only change archive regions during initialization or safepoint."); 1407 } 1408 bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); } 1409 const char* get_description() { return "Archive Regions"; } 1410 }; 1411 1412 class HumongousRegionSetChecker : public HeapRegionSetChecker { 1413 public: 1414 void check_mt_safety() { 1415 // Humongous Set MT safety protocol: 1416 // (a) If we're at a safepoint, operations on the master humongous 1417 // set should be invoked by either the VM thread (which will 1418 // serialize them) or by the GC workers while holding the 1419 // OldSets_lock. 1420 // (b) If we're not at a safepoint, operations on the master 1421 // humongous set should be invoked while holding the Heap_lock. 1422 1423 if (SafepointSynchronize::is_at_safepoint()) { 1424 guarantee(Thread::current()->is_VM_thread() || 1425 OldSets_lock->owned_by_self(), 1426 "master humongous set MT safety protocol at a safepoint"); 1427 } else { 1428 guarantee(Heap_lock->owned_by_self(), 1429 "master humongous set MT safety protocol outside a safepoint"); 1430 } 1431 } 1432 bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); } 1433 const char* get_description() { return "Humongous Regions"; } 1434 }; 1435 1436 G1CollectedHeap::G1CollectedHeap() : 1437 CollectedHeap(), 1438 _service_thread(NULL), 1439 _periodic_gc_task(NULL), 1440 _workers(NULL), 1441 _card_table(NULL), 1442 _collection_pause_end(Ticks::now()), 1443 _soft_ref_policy(), 1444 _old_set("Old Region Set", new OldRegionSetChecker()), 1445 _archive_set("Archive Region Set", new ArchiveRegionSetChecker()), 1446 _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()), 1447 _bot(NULL), 1448 _listener(), 1449 _numa(G1NUMA::create()), 1450 _hrm(), 1451 _allocator(NULL), 1452 _verifier(NULL), 1453 _summary_bytes_used(0), 1454 _bytes_used_during_gc(0), 1455 _archive_allocator(NULL), 1456 _survivor_evac_stats("Young", YoungPLABSize, PLABWeight), 1457 _old_evac_stats("Old", OldPLABSize, PLABWeight), 1458 _expand_heap_after_alloc_failure(true), 1459 _g1mm(NULL), 1460 _humongous_reclaim_candidates(), 1461 _num_humongous_objects(0), 1462 _num_humongous_reclaim_candidates(0), 1463 _hr_printer(), 1464 _collector_state(), 1465 _old_marking_cycles_started(0), 1466 _old_marking_cycles_completed(0), 1467 _eden(), 1468 _survivor(), 1469 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1470 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1471 _policy(new G1Policy(_gc_timer_stw)), 1472 _heap_sizing_policy(NULL), 1473 _collection_set(this, _policy), 1474 _hot_card_cache(NULL), 1475 _rem_set(NULL), 1476 _cm(NULL), 1477 _cm_thread(NULL), 1478 _cr(NULL), 1479 _task_queues(NULL), 1480 _num_regions_failed_evacuation(0), 1481 _regions_failed_evacuation(NULL), 1482 _evacuation_failed_info_array(NULL), 1483 _preserved_marks_set(true /* in_c_heap */), 1484 #ifndef PRODUCT 1485 _evacuation_failure_alot_for_current_gc(false), 1486 _evacuation_failure_alot_gc_number(0), 1487 _evacuation_failure_alot_count(0), 1488 #endif 1489 _ref_processor_stw(NULL), 1490 _is_alive_closure_stw(this), 1491 _is_subject_to_discovery_stw(this), 1492 _ref_processor_cm(NULL), 1493 _is_alive_closure_cm(this), 1494 _is_subject_to_discovery_cm(this), 1495 _region_attr() { 1496 1497 _verifier = new G1HeapVerifier(this); 1498 1499 _allocator = new G1Allocator(this); 1500 1501 _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics()); 1502 1503 _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); 1504 1505 // Override the default _filler_array_max_size so that no humongous filler 1506 // objects are created. 1507 _filler_array_max_size = _humongous_object_threshold_in_words; 1508 1509 uint n_queues = ParallelGCThreads; 1510 _task_queues = new G1ScannerTasksQueueSet(n_queues); 1511 1512 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1513 1514 for (uint i = 0; i < n_queues; i++) { 1515 G1ScannerTasksQueue* q = new G1ScannerTasksQueue(); 1516 q->initialize(); 1517 _task_queues->register_queue(i, q); 1518 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1519 } 1520 1521 // Initialize the G1EvacuationFailureALot counters and flags. 1522 NOT_PRODUCT(reset_evacuation_should_fail();) 1523 _gc_tracer_stw->initialize(); 1524 1525 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1526 } 1527 1528 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, 1529 size_t size, 1530 size_t translation_factor) { 1531 size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); 1532 // Allocate a new reserved space, preferring to use large pages. 1533 ReservedSpace rs(size, preferred_page_size); 1534 size_t page_size = rs.page_size(); 1535 G1RegionToSpaceMapper* result = 1536 G1RegionToSpaceMapper::create_mapper(rs, 1537 size, 1538 page_size, 1539 HeapRegion::GrainBytes, 1540 translation_factor, 1541 mtGC); 1542 1543 os::trace_page_sizes_for_requested_size(description, 1544 size, 1545 page_size, 1546 preferred_page_size, 1547 rs.base(), 1548 rs.size()); 1549 1550 return result; 1551 } 1552 1553 jint G1CollectedHeap::initialize_concurrent_refinement() { 1554 jint ecode = JNI_OK; 1555 _cr = G1ConcurrentRefine::create(&ecode); 1556 return ecode; 1557 } 1558 1559 jint G1CollectedHeap::initialize_service_thread() { 1560 _service_thread = new G1ServiceThread(); 1561 if (_service_thread->osthread() == NULL) { 1562 vm_shutdown_during_initialization("Could not create G1ServiceThread"); 1563 return JNI_ENOMEM; 1564 } 1565 return JNI_OK; 1566 } 1567 1568 jint G1CollectedHeap::initialize() { 1569 1570 // Necessary to satisfy locking discipline assertions. 1571 1572 MutexLocker x(Heap_lock); 1573 1574 // While there are no constraints in the GC code that HeapWordSize 1575 // be any particular value, there are multiple other areas in the 1576 // system which believe this to be true (e.g. oop->object_size in some 1577 // cases incorrectly returns the size in wordSize units rather than 1578 // HeapWordSize). 1579 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1580 1581 size_t init_byte_size = InitialHeapSize; 1582 size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes(); 1583 1584 // Ensure that the sizes are properly aligned. 1585 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1586 Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1587 Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap"); 1588 1589 // Reserve the maximum. 1590 1591 // When compressed oops are enabled, the preferred heap base 1592 // is calculated by subtracting the requested size from the 1593 // 32Gb boundary and using the result as the base address for 1594 // heap reservation. If the requested size is not aligned to 1595 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1596 // into the ReservedHeapSpace constructor) then the actual 1597 // base of the reserved heap may end up differing from the 1598 // address that was requested (i.e. the preferred heap base). 1599 // If this happens then we could end up using a non-optimal 1600 // compressed oops mode. 1601 1602 ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size, 1603 HeapAlignment); 1604 1605 initialize_reserved_region(heap_rs); 1606 1607 // Create the barrier set for the entire reserved region. 1608 G1CardTable* ct = new G1CardTable(heap_rs.region()); 1609 ct->initialize(); 1610 G1BarrierSet* bs = new G1BarrierSet(ct); 1611 bs->initialize(); 1612 assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity"); 1613 BarrierSet::set_barrier_set(bs); 1614 _card_table = ct; 1615 1616 { 1617 G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set(); 1618 satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold); 1619 satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent); 1620 } 1621 1622 // Create the hot card cache. 1623 _hot_card_cache = new G1HotCardCache(this); 1624 1625 // Create space mappers. 1626 size_t page_size = heap_rs.page_size(); 1627 G1RegionToSpaceMapper* heap_storage = 1628 G1RegionToSpaceMapper::create_mapper(heap_rs, 1629 heap_rs.size(), 1630 page_size, 1631 HeapRegion::GrainBytes, 1632 1, 1633 mtJavaHeap); 1634 if(heap_storage == NULL) { 1635 vm_shutdown_during_initialization("Could not initialize G1 heap"); 1636 return JNI_ERR; 1637 } 1638 1639 os::trace_page_sizes("Heap", 1640 MinHeapSize, 1641 reserved_byte_size, 1642 page_size, 1643 heap_rs.base(), 1644 heap_rs.size()); 1645 heap_storage->set_mapping_changed_listener(&_listener); 1646 1647 // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps. 1648 G1RegionToSpaceMapper* bot_storage = 1649 create_aux_memory_mapper("Block Offset Table", 1650 G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize), 1651 G1BlockOffsetTable::heap_map_factor()); 1652 1653 G1RegionToSpaceMapper* cardtable_storage = 1654 create_aux_memory_mapper("Card Table", 1655 G1CardTable::compute_size(heap_rs.size() / HeapWordSize), 1656 G1CardTable::heap_map_factor()); 1657 1658 G1RegionToSpaceMapper* card_counts_storage = 1659 create_aux_memory_mapper("Card Counts Table", 1660 G1CardCounts::compute_size(heap_rs.size() / HeapWordSize), 1661 G1CardCounts::heap_map_factor()); 1662 1663 size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size()); 1664 G1RegionToSpaceMapper* prev_bitmap_storage = 1665 create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1666 G1RegionToSpaceMapper* next_bitmap_storage = 1667 create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); 1668 1669 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 1670 _card_table->initialize(cardtable_storage); 1671 1672 // Do later initialization work for concurrent refinement. 1673 _hot_card_cache->initialize(card_counts_storage); 1674 1675 // 6843694 - ensure that the maximum region index can fit 1676 // in the remembered set structures. 1677 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 1678 guarantee((max_reserved_regions() - 1) <= max_region_idx, "too many regions"); 1679 1680 // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not 1681 // start within the first card. 1682 guarantee(heap_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card."); 1683 G1FromCardCache::initialize(max_reserved_regions()); 1684 // Also create a G1 rem set. 1685 _rem_set = new G1RemSet(this, _card_table, _hot_card_cache); 1686 _rem_set->initialize(max_reserved_regions()); 1687 1688 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 1689 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 1690 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 1691 "too many cards per region"); 1692 1693 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 1694 1695 _bot = new G1BlockOffsetTable(reserved(), bot_storage); 1696 1697 { 1698 size_t granularity = HeapRegion::GrainBytes; 1699 1700 _region_attr.initialize(reserved(), granularity); 1701 _humongous_reclaim_candidates.initialize(reserved(), granularity); 1702 } 1703 1704 _workers = new WorkGang("GC Thread", ParallelGCThreads, 1705 true /* are_GC_task_threads */, 1706 false /* are_ConcurrentGC_threads */); 1707 if (_workers == NULL) { 1708 return JNI_ENOMEM; 1709 } 1710 _workers->initialize_workers(); 1711 1712 _numa->set_region_info(HeapRegion::GrainBytes, page_size); 1713 1714 // Create the G1ConcurrentMark data structure and thread. 1715 // (Must do this late, so that "max_[reserved_]regions" is defined.) 1716 _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 1717 _cm_thread = _cm->cm_thread(); 1718 1719 // Now expand into the initial heap size. 1720 if (!expand(init_byte_size, _workers)) { 1721 vm_shutdown_during_initialization("Failed to allocate initial heap."); 1722 return JNI_ENOMEM; 1723 } 1724 1725 // Perform any initialization actions delegated to the policy. 1726 policy()->init(this, &_collection_set); 1727 1728 jint ecode = initialize_concurrent_refinement(); 1729 if (ecode != JNI_OK) { 1730 return ecode; 1731 } 1732 1733 ecode = initialize_service_thread(); 1734 if (ecode != JNI_OK) { 1735 return ecode; 1736 } 1737 1738 // Initialize and schedule sampling task on service thread. 1739 _rem_set->initialize_sampling_task(service_thread()); 1740 1741 // Create and schedule the periodic gc task on the service thread. 1742 _periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task"); 1743 _service_thread->register_task(_periodic_gc_task); 1744 1745 { 1746 G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); 1747 dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone()); 1748 dcqs.set_max_cards(concurrent_refine()->red_zone()); 1749 } 1750 1751 // Here we allocate the dummy HeapRegion that is required by the 1752 // G1AllocRegion class. 1753 HeapRegion* dummy_region = _hrm.get_dummy_region(); 1754 1755 // We'll re-use the same region whether the alloc region will 1756 // require BOT updates or not and, if it doesn't, then a non-young 1757 // region will complain that it cannot support allocations without 1758 // BOT updates. So we'll tag the dummy region as eden to avoid that. 1759 dummy_region->set_eden(); 1760 // Make sure it's full. 1761 dummy_region->set_top(dummy_region->end()); 1762 G1AllocRegion::setup(this, dummy_region); 1763 1764 _allocator->init_mutator_alloc_regions(); 1765 1766 // Do create of the monitoring and management support so that 1767 // values in the heap have been properly initialized. 1768 _g1mm = new G1MonitoringSupport(this); 1769 1770 _preserved_marks_set.init(ParallelGCThreads); 1771 1772 _collection_set.initialize(max_reserved_regions()); 1773 1774 _regions_failed_evacuation = NEW_C_HEAP_ARRAY(volatile bool, max_regions(), mtGC); 1775 1776 G1InitLogger::print(); 1777 1778 SlidingForwarding::initialize(heap_rs.region(), HeapRegion::GrainWords); 1779 1780 return JNI_OK; 1781 } 1782 1783 void G1CollectedHeap::stop() { 1784 // Stop all concurrent threads. We do this to make sure these threads 1785 // do not continue to execute and access resources (e.g. logging) 1786 // that are destroyed during shutdown. 1787 _cr->stop(); 1788 _service_thread->stop(); 1789 _cm_thread->stop(); 1790 } 1791 1792 void G1CollectedHeap::safepoint_synchronize_begin() { 1793 SuspendibleThreadSet::synchronize(); 1794 } 1795 1796 void G1CollectedHeap::safepoint_synchronize_end() { 1797 SuspendibleThreadSet::desynchronize(); 1798 } 1799 1800 void G1CollectedHeap::post_initialize() { 1801 CollectedHeap::post_initialize(); 1802 ref_processing_init(); 1803 } 1804 1805 void G1CollectedHeap::ref_processing_init() { 1806 // Reference processing in G1 currently works as follows: 1807 // 1808 // * There are two reference processor instances. One is 1809 // used to record and process discovered references 1810 // during concurrent marking; the other is used to 1811 // record and process references during STW pauses 1812 // (both full and incremental). 1813 // * Both ref processors need to 'span' the entire heap as 1814 // the regions in the collection set may be dotted around. 1815 // 1816 // * For the concurrent marking ref processor: 1817 // * Reference discovery is enabled at concurrent start. 1818 // * Reference discovery is disabled and the discovered 1819 // references processed etc during remarking. 1820 // * Reference discovery is MT (see below). 1821 // * Reference discovery requires a barrier (see below). 1822 // * Reference processing may or may not be MT 1823 // (depending on the value of ParallelRefProcEnabled 1824 // and ParallelGCThreads). 1825 // * A full GC disables reference discovery by the CM 1826 // ref processor and abandons any entries on it's 1827 // discovered lists. 1828 // 1829 // * For the STW processor: 1830 // * Non MT discovery is enabled at the start of a full GC. 1831 // * Processing and enqueueing during a full GC is non-MT. 1832 // * During a full GC, references are processed after marking. 1833 // 1834 // * Discovery (may or may not be MT) is enabled at the start 1835 // of an incremental evacuation pause. 1836 // * References are processed near the end of a STW evacuation pause. 1837 // * For both types of GC: 1838 // * Discovery is atomic - i.e. not concurrent. 1839 // * Reference discovery will not need a barrier. 1840 1841 // Concurrent Mark ref processor 1842 _ref_processor_cm = 1843 new ReferenceProcessor(&_is_subject_to_discovery_cm, 1844 ParallelGCThreads, // degree of mt processing 1845 (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery 1846 MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery 1847 false, // Reference discovery is not atomic 1848 &_is_alive_closure_cm); // is alive closure 1849 1850 // STW ref processor 1851 _ref_processor_stw = 1852 new ReferenceProcessor(&_is_subject_to_discovery_stw, 1853 ParallelGCThreads, // degree of mt processing 1854 (ParallelGCThreads > 1), // mt discovery 1855 ParallelGCThreads, // degree of mt discovery 1856 true, // Reference discovery is atomic 1857 &_is_alive_closure_stw); // is alive closure 1858 } 1859 1860 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() { 1861 return &_soft_ref_policy; 1862 } 1863 1864 size_t G1CollectedHeap::capacity() const { 1865 return _hrm.length() * HeapRegion::GrainBytes; 1866 } 1867 1868 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const { 1869 return _hrm.total_free_bytes(); 1870 } 1871 1872 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) { 1873 _hot_card_cache->drain(cl, worker_id); 1874 } 1875 1876 // Computes the sum of the storage used by the various regions. 1877 size_t G1CollectedHeap::used() const { 1878 size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); 1879 if (_archive_allocator != NULL) { 1880 result += _archive_allocator->used(); 1881 } 1882 return result; 1883 } 1884 1885 size_t G1CollectedHeap::used_unlocked() const { 1886 return _summary_bytes_used; 1887 } 1888 1889 class SumUsedClosure: public HeapRegionClosure { 1890 size_t _used; 1891 public: 1892 SumUsedClosure() : _used(0) {} 1893 bool do_heap_region(HeapRegion* r) { 1894 _used += r->used(); 1895 return false; 1896 } 1897 size_t result() { return _used; } 1898 }; 1899 1900 size_t G1CollectedHeap::recalculate_used() const { 1901 SumUsedClosure blk; 1902 heap_region_iterate(&blk); 1903 return blk.result(); 1904 } 1905 1906 bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { 1907 switch (cause) { 1908 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 1909 case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent; 1910 case GCCause::_wb_conc_mark: return true; 1911 default : return false; 1912 } 1913 } 1914 1915 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 1916 switch (cause) { 1917 case GCCause::_g1_humongous_allocation: return true; 1918 case GCCause::_g1_periodic_collection: return G1PeriodicGCInvokesConcurrent; 1919 case GCCause::_wb_breakpoint: return true; 1920 default: return is_user_requested_concurrent_full_gc(cause); 1921 } 1922 } 1923 1924 #ifndef PRODUCT 1925 void G1CollectedHeap::allocate_dummy_regions() { 1926 // Let's fill up most of the region 1927 size_t word_size = HeapRegion::GrainWords - 1024; 1928 // And as a result the region we'll allocate will be humongous. 1929 guarantee(is_humongous(word_size), "sanity"); 1930 1931 // _filler_array_max_size is set to humongous object threshold 1932 // but temporarily change it to use CollectedHeap::fill_with_object(). 1933 AutoModifyRestore<size_t> temporarily(_filler_array_max_size, word_size); 1934 1935 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 1936 // Let's use the existing mechanism for the allocation 1937 HeapWord* dummy_obj = humongous_obj_allocate(word_size); 1938 if (dummy_obj != NULL) { 1939 MemRegion mr(dummy_obj, word_size); 1940 CollectedHeap::fill_with_object(mr); 1941 } else { 1942 // If we can't allocate once, we probably cannot allocate 1943 // again. Let's get out of the loop. 1944 break; 1945 } 1946 } 1947 } 1948 #endif // !PRODUCT 1949 1950 void G1CollectedHeap::increment_old_marking_cycles_started() { 1951 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 1952 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 1953 "Wrong marking cycle count (started: %d, completed: %d)", 1954 _old_marking_cycles_started, _old_marking_cycles_completed); 1955 1956 _old_marking_cycles_started++; 1957 } 1958 1959 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent, 1960 bool whole_heap_examined) { 1961 MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag); 1962 1963 // We assume that if concurrent == true, then the caller is a 1964 // concurrent thread that was joined the Suspendible Thread 1965 // Set. If there's ever a cheap way to check this, we should add an 1966 // assert here. 1967 1968 // Given that this method is called at the end of a Full GC or of a 1969 // concurrent cycle, and those can be nested (i.e., a Full GC can 1970 // interrupt a concurrent cycle), the number of full collections 1971 // completed should be either one (in the case where there was no 1972 // nesting) or two (when a Full GC interrupted a concurrent cycle) 1973 // behind the number of full collections started. 1974 1975 // This is the case for the inner caller, i.e. a Full GC. 1976 assert(concurrent || 1977 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 1978 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 1979 "for inner caller (Full GC): _old_marking_cycles_started = %u " 1980 "is inconsistent with _old_marking_cycles_completed = %u", 1981 _old_marking_cycles_started, _old_marking_cycles_completed); 1982 1983 // This is the case for the outer caller, i.e. the concurrent cycle. 1984 assert(!concurrent || 1985 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 1986 "for outer caller (concurrent cycle): " 1987 "_old_marking_cycles_started = %u " 1988 "is inconsistent with _old_marking_cycles_completed = %u", 1989 _old_marking_cycles_started, _old_marking_cycles_completed); 1990 1991 _old_marking_cycles_completed += 1; 1992 if (whole_heap_examined) { 1993 // Signal that we have completed a visit to all live objects. 1994 record_whole_heap_examined_timestamp(); 1995 } 1996 1997 // We need to clear the "in_progress" flag in the CM thread before 1998 // we wake up any waiters (especially when ExplicitInvokesConcurrent 1999 // is set) so that if a waiter requests another System.gc() it doesn't 2000 // incorrectly see that a marking cycle is still in progress. 2001 if (concurrent) { 2002 _cm_thread->set_idle(); 2003 } 2004 2005 // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent) 2006 // for a full GC to finish that their wait is over. 2007 ml.notify_all(); 2008 } 2009 2010 void G1CollectedHeap::collect(GCCause::Cause cause) { 2011 try_collect(cause); 2012 } 2013 2014 // Return true if (x < y) with allowance for wraparound. 2015 static bool gc_counter_less_than(uint x, uint y) { 2016 return (x - y) > (UINT_MAX/2); 2017 } 2018 2019 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...) 2020 // Macro so msg printing is format-checked. 2021 #define LOG_COLLECT_CONCURRENTLY(cause, ...) \ 2022 do { \ 2023 LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt; \ 2024 if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) { \ 2025 ResourceMark rm; /* For thread name. */ \ 2026 LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \ 2027 LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \ 2028 Thread::current()->name(), \ 2029 GCCause::to_string(cause)); \ 2030 LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__); \ 2031 } \ 2032 } while (0) 2033 2034 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \ 2035 LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result)) 2036 2037 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause, 2038 uint gc_counter, 2039 uint old_marking_started_before) { 2040 assert_heap_not_locked(); 2041 assert(should_do_concurrent_full_gc(cause), 2042 "Non-concurrent cause %s", GCCause::to_string(cause)); 2043 2044 for (uint i = 1; true; ++i) { 2045 // Try to schedule concurrent start evacuation pause that will 2046 // start a concurrent cycle. 2047 LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i); 2048 VM_G1TryInitiateConcMark op(gc_counter, 2049 cause, 2050 policy()->max_pause_time_ms()); 2051 VMThread::execute(&op); 2052 2053 // Request is trivially finished. 2054 if (cause == GCCause::_g1_periodic_collection) { 2055 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded()); 2056 return op.gc_succeeded(); 2057 } 2058 2059 // If VMOp skipped initiating concurrent marking cycle because 2060 // we're terminating, then we're done. 2061 if (op.terminating()) { 2062 LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating"); 2063 return false; 2064 } 2065 2066 // Lock to get consistent set of values. 2067 uint old_marking_started_after; 2068 uint old_marking_completed_after; 2069 { 2070 MutexLocker ml(Heap_lock); 2071 // Update gc_counter for retrying VMOp if needed. Captured here to be 2072 // consistent with the values we use below for termination tests. If 2073 // a retry is needed after a possible wait, and another collection 2074 // occurs in the meantime, it will cause our retry to be skipped and 2075 // we'll recheck for termination with updated conditions from that 2076 // more recent collection. That's what we want, rather than having 2077 // our retry possibly perform an unnecessary collection. 2078 gc_counter = total_collections(); 2079 old_marking_started_after = _old_marking_cycles_started; 2080 old_marking_completed_after = _old_marking_cycles_completed; 2081 } 2082 2083 if (cause == GCCause::_wb_breakpoint) { 2084 if (op.gc_succeeded()) { 2085 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); 2086 return true; 2087 } 2088 // When _wb_breakpoint there can't be another cycle or deferred. 2089 assert(!op.cycle_already_in_progress(), "invariant"); 2090 assert(!op.whitebox_attached(), "invariant"); 2091 // Concurrent cycle attempt might have been cancelled by some other 2092 // collection, so retry. Unlike other cases below, we want to retry 2093 // even if cancelled by a STW full collection, because we really want 2094 // to start a concurrent cycle. 2095 if (old_marking_started_before != old_marking_started_after) { 2096 LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC"); 2097 old_marking_started_before = old_marking_started_after; 2098 } 2099 } else if (!GCCause::is_user_requested_gc(cause)) { 2100 // For an "automatic" (not user-requested) collection, we just need to 2101 // ensure that progress is made. 2102 // 2103 // Request is finished if any of 2104 // (1) the VMOp successfully performed a GC, 2105 // (2) a concurrent cycle was already in progress, 2106 // (3) whitebox is controlling concurrent cycles, 2107 // (4) a new cycle was started (by this thread or some other), or 2108 // (5) a Full GC was performed. 2109 // Cases (4) and (5) are detected together by a change to 2110 // _old_marking_cycles_started. 2111 // 2112 // Note that (1) does not imply (4). If we're still in the mixed 2113 // phase of an earlier concurrent collection, the request to make the 2114 // collection a concurrent start won't be honored. If we don't check for 2115 // both conditions we'll spin doing back-to-back collections. 2116 if (op.gc_succeeded() || 2117 op.cycle_already_in_progress() || 2118 op.whitebox_attached() || 2119 (old_marking_started_before != old_marking_started_after)) { 2120 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); 2121 return true; 2122 } 2123 } else { // User-requested GC. 2124 // For a user-requested collection, we want to ensure that a complete 2125 // full collection has been performed before returning, but without 2126 // waiting for more than needed. 2127 2128 // For user-requested GCs (unlike non-UR), a successful VMOp implies a 2129 // new cycle was started. That's good, because it's not clear what we 2130 // should do otherwise. Trying again just does back to back GCs. 2131 // Can't wait for someone else to start a cycle. And returning fails 2132 // to meet the goal of ensuring a full collection was performed. 2133 assert(!op.gc_succeeded() || 2134 (old_marking_started_before != old_marking_started_after), 2135 "invariant: succeeded %s, started before %u, started after %u", 2136 BOOL_TO_STR(op.gc_succeeded()), 2137 old_marking_started_before, old_marking_started_after); 2138 2139 // Request is finished if a full collection (concurrent or stw) 2140 // was started after this request and has completed, e.g. 2141 // started_before < completed_after. 2142 if (gc_counter_less_than(old_marking_started_before, 2143 old_marking_completed_after)) { 2144 LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); 2145 return true; 2146 } 2147 2148 if (old_marking_started_after != old_marking_completed_after) { 2149 // If there is an in-progress cycle (possibly started by us), then 2150 // wait for that cycle to complete, e.g. 2151 // while completed_now < started_after. 2152 LOG_COLLECT_CONCURRENTLY(cause, "wait"); 2153 MonitorLocker ml(G1OldGCCount_lock); 2154 while (gc_counter_less_than(_old_marking_cycles_completed, 2155 old_marking_started_after)) { 2156 ml.wait(); 2157 } 2158 // Request is finished if the collection we just waited for was 2159 // started after this request. 2160 if (old_marking_started_before != old_marking_started_after) { 2161 LOG_COLLECT_CONCURRENTLY(cause, "complete after wait"); 2162 return true; 2163 } 2164 } 2165 2166 // If VMOp was successful then it started a new cycle that the above 2167 // wait &etc should have recognized as finishing this request. This 2168 // differs from a non-user-request, where gc_succeeded does not imply 2169 // a new cycle was started. 2170 assert(!op.gc_succeeded(), "invariant"); 2171 2172 if (op.cycle_already_in_progress()) { 2173 // If VMOp failed because a cycle was already in progress, it 2174 // is now complete. But it didn't finish this user-requested 2175 // GC, so try again. 2176 LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress"); 2177 continue; 2178 } else if (op.whitebox_attached()) { 2179 // If WhiteBox wants control, wait for notification of a state 2180 // change in the controller, then try again. Don't wait for 2181 // release of control, since collections may complete while in 2182 // control. Note: This won't recognize a STW full collection 2183 // while waiting; we can't wait on multiple monitors. 2184 LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall"); 2185 MonitorLocker ml(ConcurrentGCBreakpoints::monitor()); 2186 if (ConcurrentGCBreakpoints::is_controlled()) { 2187 ml.wait(); 2188 } 2189 continue; 2190 } 2191 } 2192 2193 // Collection failed and should be retried. 2194 assert(op.transient_failure(), "invariant"); 2195 2196 if (GCLocker::is_active_and_needs_gc()) { 2197 // If GCLocker is active, wait until clear before retrying. 2198 LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall"); 2199 GCLocker::stall_until_clear(); 2200 } 2201 2202 LOG_COLLECT_CONCURRENTLY(cause, "retry"); 2203 } 2204 } 2205 2206 bool G1CollectedHeap::try_collect(GCCause::Cause cause) { 2207 assert_heap_not_locked(); 2208 2209 // Lock to get consistent set of values. 2210 uint gc_count_before; 2211 uint full_gc_count_before; 2212 uint old_marking_started_before; 2213 { 2214 MutexLocker ml(Heap_lock); 2215 gc_count_before = total_collections(); 2216 full_gc_count_before = total_full_collections(); 2217 old_marking_started_before = _old_marking_cycles_started; 2218 } 2219 2220 if (should_do_concurrent_full_gc(cause)) { 2221 return try_collect_concurrently(cause, 2222 gc_count_before, 2223 old_marking_started_before); 2224 } else if (GCLocker::should_discard(cause, gc_count_before)) { 2225 // Indicate failure to be consistent with VMOp failure due to 2226 // another collection slipping in after our gc_count but before 2227 // our request is processed. 2228 return false; 2229 } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2230 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2231 2232 // Schedule a standard evacuation pause. We're setting word_size 2233 // to 0 which means that we are not requesting a post-GC allocation. 2234 VM_G1CollectForAllocation op(0, /* word_size */ 2235 gc_count_before, 2236 cause, 2237 policy()->max_pause_time_ms()); 2238 VMThread::execute(&op); 2239 return op.gc_succeeded(); 2240 } else { 2241 // Schedule a Full GC. 2242 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); 2243 VMThread::execute(&op); 2244 return op.gc_succeeded(); 2245 } 2246 } 2247 2248 bool G1CollectedHeap::is_in(const void* p) const { 2249 return is_in_reserved(p) && _hrm.is_available(addr_to_region((HeapWord*)p)); 2250 } 2251 2252 // Iteration functions. 2253 2254 // Iterates an ObjectClosure over all objects within a HeapRegion. 2255 2256 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2257 ObjectClosure* _cl; 2258 public: 2259 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2260 bool do_heap_region(HeapRegion* r) { 2261 if (!r->is_continues_humongous()) { 2262 r->object_iterate(_cl); 2263 } 2264 return false; 2265 } 2266 }; 2267 2268 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2269 IterateObjectClosureRegionClosure blk(cl); 2270 heap_region_iterate(&blk); 2271 } 2272 2273 class G1ParallelObjectIterator : public ParallelObjectIteratorImpl { 2274 private: 2275 G1CollectedHeap* _heap; 2276 HeapRegionClaimer _claimer; 2277 2278 public: 2279 G1ParallelObjectIterator(uint thread_num) : 2280 _heap(G1CollectedHeap::heap()), 2281 _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {} 2282 2283 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 2284 _heap->object_iterate_parallel(cl, worker_id, &_claimer); 2285 } 2286 }; 2287 2288 ParallelObjectIteratorImpl* G1CollectedHeap::parallel_object_iterator(uint thread_num) { 2289 return new G1ParallelObjectIterator(thread_num); 2290 } 2291 2292 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) { 2293 IterateObjectClosureRegionClosure blk(cl); 2294 heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id); 2295 } 2296 2297 void G1CollectedHeap::keep_alive(oop obj) { 2298 G1BarrierSet::enqueue_preloaded(obj); 2299 } 2300 2301 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2302 _hrm.iterate(cl); 2303 } 2304 2305 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, 2306 HeapRegionClaimer *hrclaimer, 2307 uint worker_id) const { 2308 _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id)); 2309 } 2310 2311 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl, 2312 HeapRegionClaimer *hrclaimer) const { 2313 _hrm.par_iterate(cl, hrclaimer, 0); 2314 } 2315 2316 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) { 2317 _collection_set.iterate(cl); 2318 } 2319 2320 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) { 2321 _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers()); 2322 } 2323 2324 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) { 2325 _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers()); 2326 } 2327 2328 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2329 HeapRegion* hr = heap_region_containing(addr); 2330 return hr->block_start(addr); 2331 } 2332 2333 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2334 HeapRegion* hr = heap_region_containing(addr); 2335 return hr->block_is_obj(addr); 2336 } 2337 2338 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2339 return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes; 2340 } 2341 2342 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2343 return _eden.length() * HeapRegion::GrainBytes; 2344 } 2345 2346 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2347 // must be equal to the humongous object limit. 2348 size_t G1CollectedHeap::max_tlab_size() const { 2349 return align_down(_humongous_object_threshold_in_words, MinObjAlignment); 2350 } 2351 2352 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2353 return _allocator->unsafe_max_tlab_alloc(); 2354 } 2355 2356 size_t G1CollectedHeap::max_capacity() const { 2357 return max_regions() * HeapRegion::GrainBytes; 2358 } 2359 2360 void G1CollectedHeap::prepare_for_verify() { 2361 _verifier->prepare_for_verify(); 2362 } 2363 2364 void G1CollectedHeap::verify(VerifyOption vo) { 2365 _verifier->verify(vo); 2366 } 2367 2368 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const { 2369 return true; 2370 } 2371 2372 bool G1CollectedHeap::is_archived_object(oop object) const { 2373 return object != NULL && heap_region_containing(object)->is_archive(); 2374 } 2375 2376 class PrintRegionClosure: public HeapRegionClosure { 2377 outputStream* _st; 2378 public: 2379 PrintRegionClosure(outputStream* st) : _st(st) {} 2380 bool do_heap_region(HeapRegion* r) { 2381 r->print_on(_st); 2382 return false; 2383 } 2384 }; 2385 2386 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2387 const HeapRegion* hr, 2388 const VerifyOption vo) const { 2389 switch (vo) { 2390 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 2391 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 2392 case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr); 2393 default: ShouldNotReachHere(); 2394 } 2395 return false; // keep some compilers happy 2396 } 2397 2398 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 2399 const VerifyOption vo) const { 2400 switch (vo) { 2401 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 2402 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 2403 case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj); 2404 default: ShouldNotReachHere(); 2405 } 2406 return false; // keep some compilers happy 2407 } 2408 2409 void G1CollectedHeap::print_heap_regions() const { 2410 LogTarget(Trace, gc, heap, region) lt; 2411 if (lt.is_enabled()) { 2412 LogStream ls(lt); 2413 print_regions_on(&ls); 2414 } 2415 } 2416 2417 void G1CollectedHeap::print_on(outputStream* st) const { 2418 size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); 2419 st->print(" %-20s", "garbage-first heap"); 2420 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 2421 capacity()/K, heap_used/K); 2422 st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")", 2423 p2i(_hrm.reserved().start()), 2424 p2i(_hrm.reserved().end())); 2425 st->cr(); 2426 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 2427 uint young_regions = young_regions_count(); 2428 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 2429 (size_t) young_regions * HeapRegion::GrainBytes / K); 2430 uint survivor_regions = survivor_regions_count(); 2431 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 2432 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 2433 st->cr(); 2434 if (_numa->is_enabled()) { 2435 uint num_nodes = _numa->num_active_nodes(); 2436 st->print(" remaining free region(s) on each NUMA node: "); 2437 const int* node_ids = _numa->node_ids(); 2438 for (uint node_index = 0; node_index < num_nodes; node_index++) { 2439 uint num_free_regions = _hrm.num_free_regions(node_index); 2440 st->print("%d=%u ", node_ids[node_index], num_free_regions); 2441 } 2442 st->cr(); 2443 } 2444 MetaspaceUtils::print_on(st); 2445 } 2446 2447 void G1CollectedHeap::print_regions_on(outputStream* st) const { 2448 st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " 2449 "HS=humongous(starts), HC=humongous(continues), " 2450 "CS=collection set, F=free, " 2451 "OA=open archive, CA=closed archive, " 2452 "TAMS=top-at-mark-start (previous, next)"); 2453 PrintRegionClosure blk(st); 2454 heap_region_iterate(&blk); 2455 } 2456 2457 void G1CollectedHeap::print_extended_on(outputStream* st) const { 2458 print_on(st); 2459 2460 // Print the per-region information. 2461 st->cr(); 2462 print_regions_on(st); 2463 } 2464 2465 void G1CollectedHeap::print_on_error(outputStream* st) const { 2466 this->CollectedHeap::print_on_error(st); 2467 2468 if (_cm != NULL) { 2469 st->cr(); 2470 _cm->print_on_error(st); 2471 } 2472 } 2473 2474 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 2475 workers()->threads_do(tc); 2476 tc->do_thread(_cm_thread); 2477 _cm->threads_do(tc); 2478 _cr->threads_do(tc); 2479 tc->do_thread(_service_thread); 2480 } 2481 2482 void G1CollectedHeap::print_tracing_info() const { 2483 rem_set()->print_summary_info(); 2484 concurrent_mark()->print_summary_info(); 2485 } 2486 2487 #ifndef PRODUCT 2488 // Helpful for debugging RSet issues. 2489 2490 class PrintRSetsClosure : public HeapRegionClosure { 2491 private: 2492 const char* _msg; 2493 size_t _occupied_sum; 2494 2495 public: 2496 bool do_heap_region(HeapRegion* r) { 2497 HeapRegionRemSet* hrrs = r->rem_set(); 2498 size_t occupied = hrrs->occupied(); 2499 _occupied_sum += occupied; 2500 2501 tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r)); 2502 if (occupied == 0) { 2503 tty->print_cr(" RSet is empty"); 2504 } else { 2505 hrrs->print(); 2506 } 2507 tty->print_cr("----------"); 2508 return false; 2509 } 2510 2511 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 2512 tty->cr(); 2513 tty->print_cr("========================================"); 2514 tty->print_cr("%s", msg); 2515 tty->cr(); 2516 } 2517 2518 ~PrintRSetsClosure() { 2519 tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum); 2520 tty->print_cr("========================================"); 2521 tty->cr(); 2522 } 2523 }; 2524 2525 void G1CollectedHeap::print_cset_rsets() { 2526 PrintRSetsClosure cl("Printing CSet RSets"); 2527 collection_set_iterate_all(&cl); 2528 } 2529 2530 void G1CollectedHeap::print_all_rsets() { 2531 PrintRSetsClosure cl("Printing All RSets");; 2532 heap_region_iterate(&cl); 2533 } 2534 #endif // PRODUCT 2535 2536 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const { 2537 return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr); 2538 } 2539 2540 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { 2541 2542 size_t eden_used_bytes = _eden.used_bytes(); 2543 size_t survivor_used_bytes = _survivor.used_bytes(); 2544 size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); 2545 2546 size_t eden_capacity_bytes = 2547 (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; 2548 2549 VirtualSpaceSummary heap_summary = create_heap_space_summary(); 2550 return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, 2551 eden_capacity_bytes, survivor_used_bytes, num_regions()); 2552 } 2553 2554 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { 2555 return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), 2556 stats->unused(), stats->used(), stats->region_end_waste(), 2557 stats->regions_filled(), stats->direct_allocated(), 2558 stats->failure_used(), stats->failure_waste()); 2559 } 2560 2561 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 2562 const G1HeapSummary& heap_summary = create_g1_heap_summary(); 2563 gc_tracer->report_gc_heap_summary(when, heap_summary); 2564 2565 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 2566 gc_tracer->report_metaspace_summary(when, metaspace_summary); 2567 } 2568 2569 void G1CollectedHeap::gc_prologue(bool full) { 2570 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 2571 2572 // This summary needs to be printed before incrementing total collections. 2573 rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections()); 2574 2575 // Update common counters. 2576 increment_total_collections(full /* full gc */); 2577 if (full || collector_state()->in_concurrent_start_gc()) { 2578 increment_old_marking_cycles_started(); 2579 } 2580 2581 // Fill TLAB's and such 2582 { 2583 Ticks start = Ticks::now(); 2584 ensure_parsability(true); 2585 Tickspan dt = Ticks::now() - start; 2586 phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS); 2587 } 2588 2589 if (!full) { 2590 // Flush dirty card queues to qset, so later phases don't need to account 2591 // for partially filled per-thread queues and such. Not needed for full 2592 // collections, which ignore those logs. 2593 Ticks start = Ticks::now(); 2594 G1BarrierSet::dirty_card_queue_set().concatenate_logs(); 2595 Tickspan dt = Ticks::now() - start; 2596 phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS); 2597 } 2598 } 2599 2600 void G1CollectedHeap::gc_epilogue(bool full) { 2601 // Update common counters. 2602 if (full) { 2603 // Update the number of full collections that have been completed. 2604 increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */); 2605 } 2606 2607 // We are at the end of the GC. Total collections has already been increased. 2608 rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1); 2609 2610 #if COMPILER2_OR_JVMCI 2611 assert(DerivedPointerTable::is_empty(), "derived pointer present"); 2612 #endif 2613 2614 double start = os::elapsedTime(); 2615 resize_all_tlabs(); 2616 phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0); 2617 2618 MemoryService::track_memory_usage(); 2619 // We have just completed a GC. Update the soft reference 2620 // policy with the new heap occupancy 2621 Universe::heap()->update_capacity_and_used_at_gc(); 2622 2623 // Print NUMA statistics. 2624 _numa->print_statistics(); 2625 2626 _collection_pause_end = Ticks::now(); 2627 } 2628 2629 uint G1CollectedHeap::uncommit_regions(uint region_limit) { 2630 return _hrm.uncommit_inactive_regions(region_limit); 2631 } 2632 2633 bool G1CollectedHeap::has_uncommittable_regions() { 2634 return _hrm.has_inactive_regions(); 2635 } 2636 2637 void G1CollectedHeap::uncommit_regions_if_necessary() { 2638 if (has_uncommittable_regions()) { 2639 G1UncommitRegionTask::enqueue(); 2640 } 2641 } 2642 2643 void G1CollectedHeap::verify_numa_regions(const char* desc) { 2644 LogTarget(Trace, gc, heap, verify) lt; 2645 2646 if (lt.is_enabled()) { 2647 LogStream ls(lt); 2648 // Iterate all heap regions to print matching between preferred numa id and actual numa id. 2649 G1NodeIndexCheckClosure cl(desc, _numa, &ls); 2650 heap_region_iterate(&cl); 2651 } 2652 } 2653 2654 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 2655 uint gc_count_before, 2656 bool* succeeded, 2657 GCCause::Cause gc_cause) { 2658 assert_heap_not_locked_and_not_at_safepoint(); 2659 VM_G1CollectForAllocation op(word_size, 2660 gc_count_before, 2661 gc_cause, 2662 policy()->max_pause_time_ms()); 2663 VMThread::execute(&op); 2664 2665 HeapWord* result = op.result(); 2666 bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded(); 2667 assert(result == NULL || ret_succeeded, 2668 "the result should be NULL if the VM did not succeed"); 2669 *succeeded = ret_succeeded; 2670 2671 assert_heap_not_locked(); 2672 return result; 2673 } 2674 2675 void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) { 2676 assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress"); 2677 2678 MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); 2679 if (concurrent_operation_is_full_mark) { 2680 _cm->post_concurrent_mark_start(); 2681 _cm_thread->start_full_mark(); 2682 } else { 2683 _cm->post_concurrent_undo_start(); 2684 _cm_thread->start_undo_mark(); 2685 } 2686 CGC_lock->notify(); 2687 } 2688 2689 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const { 2690 // We don't nominate objects with many remembered set entries, on 2691 // the assumption that such objects are likely still live. 2692 HeapRegionRemSet* rem_set = r->rem_set(); 2693 2694 return G1EagerReclaimHumongousObjectsWithStaleRefs ? 2695 rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold) : 2696 G1EagerReclaimHumongousObjects && rem_set->is_empty(); 2697 } 2698 2699 #ifndef PRODUCT 2700 void G1CollectedHeap::verify_region_attr_remset_update() { 2701 class VerifyRegionAttrRemSet : public HeapRegionClosure { 2702 public: 2703 virtual bool do_heap_region(HeapRegion* r) { 2704 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 2705 bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update(); 2706 assert(r->rem_set()->is_tracked() == needs_remset_update, 2707 "Region %u remset tracking status (%s) different to region attribute (%s)", 2708 r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update)); 2709 return false; 2710 } 2711 } cl; 2712 heap_region_iterate(&cl); 2713 } 2714 #endif 2715 2716 class VerifyRegionRemSetClosure : public HeapRegionClosure { 2717 public: 2718 bool do_heap_region(HeapRegion* hr) { 2719 if (!hr->is_archive() && !hr->is_continues_humongous()) { 2720 hr->verify_rem_set(); 2721 } 2722 return false; 2723 } 2724 }; 2725 2726 uint G1CollectedHeap::num_task_queues() const { 2727 return _task_queues->size(); 2728 } 2729 2730 #if TASKQUEUE_STATS 2731 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 2732 st->print_raw_cr("GC Task Stats"); 2733 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 2734 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 2735 } 2736 2737 void G1CollectedHeap::print_taskqueue_stats() const { 2738 if (!log_is_enabled(Trace, gc, task, stats)) { 2739 return; 2740 } 2741 Log(gc, task, stats) log; 2742 ResourceMark rm; 2743 LogStream ls(log.trace()); 2744 outputStream* st = &ls; 2745 2746 print_taskqueue_stats_hdr(st); 2747 2748 TaskQueueStats totals; 2749 const uint n = num_task_queues(); 2750 for (uint i = 0; i < n; ++i) { 2751 st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr(); 2752 totals += task_queue(i)->stats; 2753 } 2754 st->print_raw("tot "); totals.print(st); st->cr(); 2755 2756 DEBUG_ONLY(totals.verify()); 2757 } 2758 2759 void G1CollectedHeap::reset_taskqueue_stats() { 2760 const uint n = num_task_queues(); 2761 for (uint i = 0; i < n; ++i) { 2762 task_queue(i)->stats.reset(); 2763 } 2764 } 2765 #endif // TASKQUEUE_STATS 2766 2767 void G1CollectedHeap::wait_for_root_region_scanning() { 2768 double scan_wait_start = os::elapsedTime(); 2769 // We have to wait until the CM threads finish scanning the 2770 // root regions as it's the only way to ensure that all the 2771 // objects on them have been correctly scanned before we start 2772 // moving them during the GC. 2773 bool waited = _cm->root_regions()->wait_until_scan_finished(); 2774 double wait_time_ms = 0.0; 2775 if (waited) { 2776 double scan_wait_end = os::elapsedTime(); 2777 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 2778 } 2779 phase_times()->record_root_region_scan_wait_time(wait_time_ms); 2780 } 2781 2782 class G1PrintCollectionSetClosure : public HeapRegionClosure { 2783 private: 2784 G1HRPrinter* _hr_printer; 2785 public: 2786 G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { } 2787 2788 virtual bool do_heap_region(HeapRegion* r) { 2789 _hr_printer->cset(r); 2790 return false; 2791 } 2792 }; 2793 2794 void G1CollectedHeap::start_new_collection_set() { 2795 double start = os::elapsedTime(); 2796 2797 collection_set()->start_incremental_building(); 2798 2799 clear_region_attr(); 2800 2801 guarantee(_eden.length() == 0, "eden should have been cleared"); 2802 policy()->transfer_survivors_to_cset(survivor()); 2803 2804 // We redo the verification but now wrt to the new CSet which 2805 // has just got initialized after the previous CSet was freed. 2806 _cm->verify_no_collection_set_oops(); 2807 2808 phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0); 2809 } 2810 2811 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) { 2812 2813 _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor); 2814 evacuation_info.set_collectionset_regions(collection_set()->region_length() + 2815 collection_set()->optional_region_length()); 2816 2817 _cm->verify_no_collection_set_oops(); 2818 2819 if (_hr_printer.is_active()) { 2820 G1PrintCollectionSetClosure cl(&_hr_printer); 2821 _collection_set.iterate(&cl); 2822 _collection_set.iterate_optional(&cl); 2823 } 2824 } 2825 2826 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const { 2827 if (collector_state()->in_concurrent_start_gc()) { 2828 return G1HeapVerifier::G1VerifyConcurrentStart; 2829 } else if (collector_state()->in_young_only_phase()) { 2830 return G1HeapVerifier::G1VerifyYoungNormal; 2831 } else { 2832 return G1HeapVerifier::G1VerifyMixed; 2833 } 2834 } 2835 2836 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) { 2837 if (VerifyRememberedSets) { 2838 log_info(gc, verify)("[Verifying RemSets before GC]"); 2839 VerifyRegionRemSetClosure v_cl; 2840 heap_region_iterate(&v_cl); 2841 } 2842 _verifier->verify_before_gc(type); 2843 _verifier->check_bitmaps("GC Start"); 2844 verify_numa_regions("GC Start"); 2845 } 2846 2847 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) { 2848 if (VerifyRememberedSets) { 2849 log_info(gc, verify)("[Verifying RemSets after GC]"); 2850 VerifyRegionRemSetClosure v_cl; 2851 heap_region_iterate(&v_cl); 2852 } 2853 _verifier->verify_after_gc(type); 2854 _verifier->check_bitmaps("GC End"); 2855 verify_numa_regions("GC End"); 2856 } 2857 2858 void G1CollectedHeap::expand_heap_after_young_collection(){ 2859 size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount(); 2860 if (expand_bytes > 0) { 2861 // No need for an ergo logging here, 2862 // expansion_amount() does this when it returns a value > 0. 2863 double expand_ms = 0.0; 2864 if (!expand(expand_bytes, _workers, &expand_ms)) { 2865 // We failed to expand the heap. Cannot do anything about it. 2866 } 2867 phase_times()->record_expand_heap_time(expand_ms); 2868 } 2869 } 2870 2871 void G1CollectedHeap::set_young_gc_name(char* young_gc_name) { 2872 G1GCPauseType pause_type = 2873 // The strings for all Concurrent Start pauses are the same, so the parameter 2874 // does not matter here. 2875 collector_state()->young_gc_pause_type(false /* concurrent_operation_is_full_mark */); 2876 snprintf(young_gc_name, 2877 MaxYoungGCNameLength, 2878 "Pause Young (%s)", 2879 G1GCPauseTypeHelper::to_string(pause_type)); 2880 } 2881 2882 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 2883 assert_at_safepoint_on_vm_thread(); 2884 guarantee(!is_gc_active(), "collection is not reentrant"); 2885 2886 if (GCLocker::check_active_before_gc()) { 2887 return false; 2888 } 2889 2890 do_collection_pause_at_safepoint_helper(target_pause_time_ms); 2891 return true; 2892 } 2893 2894 void G1CollectedHeap::gc_tracer_report_gc_start() { 2895 _gc_timer_stw->register_gc_start(); 2896 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 2897 } 2898 2899 void G1CollectedHeap::gc_tracer_report_gc_end(bool concurrent_operation_is_full_mark, 2900 G1EvacuationInfo& evacuation_info) { 2901 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 2902 _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold()); 2903 2904 _gc_timer_stw->register_gc_end(); 2905 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), 2906 _gc_timer_stw->time_partitions()); 2907 } 2908 2909 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) { 2910 GCIdMark gc_id_mark; 2911 2912 SvcGCMarker sgcm(SvcGCMarker::MINOR); 2913 ResourceMark rm; 2914 2915 policy()->note_gc_start(); 2916 2917 gc_tracer_report_gc_start(); 2918 2919 wait_for_root_region_scanning(); 2920 2921 print_heap_before_gc(); 2922 print_heap_regions(); 2923 trace_heap_before_gc(_gc_tracer_stw); 2924 2925 _verifier->verify_region_sets_optional(); 2926 _verifier->verify_dirty_young_regions(); 2927 2928 // We should not be doing concurrent start unless the concurrent mark thread is running 2929 if (!_cm_thread->should_terminate()) { 2930 // This call will decide whether this pause is a concurrent start 2931 // pause. If it is, in_concurrent_start_gc() will return true 2932 // for the duration of this pause. 2933 policy()->decide_on_conc_mark_initiation(); 2934 } 2935 2936 // We do not allow concurrent start to be piggy-backed on a mixed GC. 2937 assert(!collector_state()->in_concurrent_start_gc() || 2938 collector_state()->in_young_only_phase(), "sanity"); 2939 // We also do not allow mixed GCs during marking. 2940 assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity"); 2941 2942 // Record whether this pause may need to trigger a concurrent operation. Later, 2943 // when we signal the G1ConcurrentMarkThread, the collector state has already 2944 // been reset for the next pause. 2945 bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc(); 2946 bool concurrent_operation_is_full_mark = false; 2947 2948 // Inner scope for scope based logging, timers, and stats collection 2949 { 2950 G1EvacuationInfo evacuation_info; 2951 2952 GCTraceCPUTime tcpu; 2953 2954 char young_gc_name[MaxYoungGCNameLength]; 2955 set_young_gc_name(young_gc_name); 2956 2957 GCTraceTime(Info, gc) tm(young_gc_name, NULL, gc_cause(), true); 2958 2959 uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(), 2960 workers()->active_workers(), 2961 Threads::number_of_non_daemon_threads()); 2962 active_workers = workers()->update_active_workers(active_workers); 2963 log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers()); 2964 2965 G1MonitoringScope ms(g1mm(), 2966 false /* full_gc */, 2967 collector_state()->in_mixed_phase() /* all_memory_pools_affected */); 2968 2969 G1HeapTransition heap_transition(this); 2970 2971 { 2972 IsGCActiveMark x; 2973 2974 gc_prologue(false); 2975 2976 G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type(); 2977 verify_before_young_collection(verify_type); 2978 2979 { 2980 // The elapsed time induced by the start time below deliberately elides 2981 // the possible verification above. 2982 double sample_start_time_sec = os::elapsedTime(); 2983 2984 // Please see comment in g1CollectedHeap.hpp and 2985 // G1CollectedHeap::ref_processing_init() to see how 2986 // reference processing currently works in G1. 2987 _ref_processor_stw->enable_discovery(); 2988 2989 // We want to temporarily turn off discovery by the 2990 // CM ref processor, if necessary, and turn it back on 2991 // on again later if we do. Using a scoped 2992 // NoRefDiscovery object will do this. 2993 NoRefDiscovery no_cm_discovery(_ref_processor_cm); 2994 2995 policy()->record_collection_pause_start(sample_start_time_sec); 2996 2997 // Forget the current allocation region (we might even choose it to be part 2998 // of the collection set!). 2999 _allocator->release_mutator_alloc_regions(); 3000 3001 calculate_collection_set(evacuation_info, target_pause_time_ms); 3002 3003 G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator()); 3004 G1ParScanThreadStateSet per_thread_states(this, 3005 &rdcqs, 3006 workers()->active_workers(), 3007 collection_set()->young_region_length(), 3008 collection_set()->optional_region_length()); 3009 pre_evacuate_collection_set(evacuation_info, &per_thread_states); 3010 3011 bool may_do_optional_evacuation = _collection_set.optional_region_length() != 0; 3012 // Actually do the work... 3013 evacuate_initial_collection_set(&per_thread_states, may_do_optional_evacuation); 3014 3015 if (may_do_optional_evacuation) { 3016 evacuate_optional_collection_set(&per_thread_states); 3017 } 3018 post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states); 3019 3020 start_new_collection_set(); 3021 3022 _survivor_evac_stats.adjust_desired_plab_sz(); 3023 _old_evac_stats.adjust_desired_plab_sz(); 3024 3025 allocate_dummy_regions(); 3026 3027 _allocator->init_mutator_alloc_regions(); 3028 3029 expand_heap_after_young_collection(); 3030 3031 // Refine the type of a concurrent mark operation now that we did the 3032 // evacuation, eventually aborting it. 3033 concurrent_operation_is_full_mark = policy()->concurrent_operation_is_full_mark("Revise IHOP"); 3034 3035 // Need to report the collection pause now since record_collection_pause_end() 3036 // modifies it to the next state. 3037 _gc_tracer_stw->report_young_gc_pause(collector_state()->young_gc_pause_type(concurrent_operation_is_full_mark)); 3038 3039 double sample_end_time_sec = os::elapsedTime(); 3040 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 3041 policy()->record_collection_pause_end(pause_time_ms, concurrent_operation_is_full_mark); 3042 } 3043 3044 verify_after_young_collection(verify_type); 3045 3046 gc_epilogue(false); 3047 } 3048 3049 // Print the remainder of the GC log output. 3050 if (evacuation_failed()) { 3051 log_info(gc)("To-space exhausted"); 3052 } 3053 3054 policy()->print_phases(); 3055 heap_transition.print(); 3056 3057 _hrm.verify_optional(); 3058 _verifier->verify_region_sets_optional(); 3059 3060 TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); 3061 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 3062 3063 print_heap_after_gc(); 3064 print_heap_regions(); 3065 trace_heap_after_gc(_gc_tracer_stw); 3066 3067 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 3068 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 3069 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 3070 // before any GC notifications are raised. 3071 g1mm()->update_sizes(); 3072 3073 gc_tracer_report_gc_end(concurrent_operation_is_full_mark, evacuation_info); 3074 } 3075 // It should now be safe to tell the concurrent mark thread to start 3076 // without its logging output interfering with the logging output 3077 // that came from the pause. 3078 3079 if (should_start_concurrent_mark_operation) { 3080 // CAUTION: after the start_concurrent_cycle() call below, the concurrent marking 3081 // thread(s) could be running concurrently with us. Make sure that anything 3082 // after this point does not assume that we are the only GC thread running. 3083 // Note: of course, the actual marking work will not start until the safepoint 3084 // itself is released in SuspendibleThreadSet::desynchronize(). 3085 start_concurrent_cycle(concurrent_operation_is_full_mark); 3086 ConcurrentGCBreakpoints::notify_idle_to_active(); 3087 } 3088 } 3089 3090 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) { 3091 _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size()); 3092 _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m); 3093 } 3094 3095 bool G1ParEvacuateFollowersClosure::offer_termination() { 3096 EventGCPhaseParallel event; 3097 G1ParScanThreadState* const pss = par_scan_state(); 3098 start_term_time(); 3099 const bool res = (terminator() == nullptr) ? true : terminator()->offer_termination(); 3100 end_term_time(); 3101 event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination)); 3102 return res; 3103 } 3104 3105 void G1ParEvacuateFollowersClosure::do_void() { 3106 EventGCPhaseParallel event; 3107 G1ParScanThreadState* const pss = par_scan_state(); 3108 pss->trim_queue(); 3109 event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase)); 3110 do { 3111 EventGCPhaseParallel event; 3112 pss->steal_and_trim_queue(queues()); 3113 event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase)); 3114 } while (!offer_termination()); 3115 } 3116 3117 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive, 3118 bool class_unloading_occurred) { 3119 uint num_workers = workers()->active_workers(); 3120 G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred); 3121 workers()->run_task(&unlink_task); 3122 } 3123 3124 // Weak Reference Processing support 3125 3126 bool G1STWIsAliveClosure::do_object_b(oop p) { 3127 // An object is reachable if it is outside the collection set, 3128 // or is inside and copied. 3129 return !_g1h->is_in_cset(p) || p->is_forwarded(); 3130 } 3131 3132 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) { 3133 assert(obj != NULL, "must not be NULL"); 3134 assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj)); 3135 // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below 3136 // may falsely indicate that this is not the case here: however the collection set only 3137 // contains old regions when concurrent mark is not running. 3138 return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor(); 3139 } 3140 3141 // Non Copying Keep Alive closure 3142 class G1KeepAliveClosure: public OopClosure { 3143 G1CollectedHeap*_g1h; 3144 public: 3145 G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {} 3146 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 3147 void do_oop(oop* p) { 3148 oop obj = *p; 3149 assert(obj != NULL, "the caller should have filtered out NULL values"); 3150 3151 const G1HeapRegionAttr region_attr =_g1h->region_attr(obj); 3152 if (!region_attr.is_in_cset_or_humongous()) { 3153 return; 3154 } 3155 if (region_attr.is_in_cset()) { 3156 assert( obj->is_forwarded(), "invariant" ); 3157 *p = obj->forwardee(); 3158 } else { 3159 assert(!obj->is_forwarded(), "invariant" ); 3160 assert(region_attr.is_humongous(), 3161 "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type()); 3162 _g1h->set_humongous_is_live(obj); 3163 } 3164 } 3165 }; 3166 3167 // Copying Keep Alive closure - can be called from both 3168 // serial and parallel code as long as different worker 3169 // threads utilize different G1ParScanThreadState instances 3170 // and different queues. 3171 3172 class G1CopyingKeepAliveClosure: public OopClosure { 3173 G1CollectedHeap* _g1h; 3174 G1ParScanThreadState* _par_scan_state; 3175 3176 public: 3177 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 3178 G1ParScanThreadState* pss): 3179 _g1h(g1h), 3180 _par_scan_state(pss) 3181 {} 3182 3183 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 3184 virtual void do_oop( oop* p) { do_oop_work(p); } 3185 3186 template <class T> void do_oop_work(T* p) { 3187 oop obj = RawAccess<>::oop_load(p); 3188 3189 if (_g1h->is_in_cset_or_humongous(obj)) { 3190 // If the referent object has been forwarded (either copied 3191 // to a new location or to itself in the event of an 3192 // evacuation failure) then we need to update the reference 3193 // field and, if both reference and referent are in the G1 3194 // heap, update the RSet for the referent. 3195 // 3196 // If the referent has not been forwarded then we have to keep 3197 // it alive by policy. Therefore we have copy the referent. 3198 // 3199 // When the queue is drained (after each phase of reference processing) 3200 // the object and it's followers will be copied, the reference field set 3201 // to point to the new location, and the RSet updated. 3202 _par_scan_state->push_on_queue(ScannerTask(p)); 3203 } 3204 } 3205 }; 3206 3207 // Special closure for enqueuing discovered fields: during enqueue the card table 3208 // may not be in shape to properly handle normal barrier calls (e.g. card marks 3209 // in regions that failed evacuation, scribbling of various values by card table 3210 // scan code). Additionally the regular barrier enqueues into the "global" 3211 // DCQS, but during GC we need these to-be-refined entries in the GC local queue 3212 // so that after clearing the card table, the redirty cards phase will properly 3213 // mark all dirty cards to be picked up by refinement. 3214 class G1EnqueueDiscoveredFieldClosure : public EnqueueDiscoveredFieldClosure { 3215 G1CollectedHeap* _g1h; 3216 G1ParScanThreadState* _pss; 3217 3218 public: 3219 G1EnqueueDiscoveredFieldClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : _g1h(g1h), _pss(pss) { } 3220 3221 virtual void enqueue(HeapWord* discovered_field_addr, oop value) { 3222 assert(_g1h->is_in(discovered_field_addr), PTR_FORMAT " is not in heap ", p2i(discovered_field_addr)); 3223 // Store the value first, whatever it is. 3224 RawAccess<>::oop_store(discovered_field_addr, value); 3225 if (value == NULL) { 3226 return; 3227 } 3228 _pss->write_ref_field_post(discovered_field_addr, value); 3229 } 3230 }; 3231 3232 // Serial drain queue closure. Called as the 'complete_gc' 3233 // closure for each discovered list in some of the 3234 // reference processing phases. 3235 3236 class G1STWDrainQueueClosure: public VoidClosure { 3237 protected: 3238 G1CollectedHeap* _g1h; 3239 G1ParScanThreadState* _par_scan_state; 3240 3241 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 3242 3243 public: 3244 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 3245 _g1h(g1h), 3246 _par_scan_state(pss) 3247 { } 3248 3249 void do_void() { 3250 G1ParScanThreadState* const pss = par_scan_state(); 3251 pss->trim_queue(); 3252 } 3253 }; 3254 3255 class G1STWRefProcProxyTask : public RefProcProxyTask { 3256 G1CollectedHeap& _g1h; 3257 G1ParScanThreadStateSet& _pss; 3258 TaskTerminator _terminator; 3259 G1ScannerTasksQueueSet& _task_queues; 3260 3261 public: 3262 G1STWRefProcProxyTask(uint max_workers, G1CollectedHeap& g1h, G1ParScanThreadStateSet& pss, G1ScannerTasksQueueSet& task_queues) 3263 : RefProcProxyTask("G1STWRefProcProxyTask", max_workers), 3264 _g1h(g1h), 3265 _pss(pss), 3266 _terminator(max_workers, &task_queues), 3267 _task_queues(task_queues) {} 3268 3269 void work(uint worker_id) override { 3270 assert(worker_id < _max_workers, "sanity"); 3271 uint index = (_tm == RefProcThreadModel::Single) ? 0 : worker_id; 3272 _pss.state_for_worker(index)->set_ref_discoverer(nullptr); 3273 G1STWIsAliveClosure is_alive(&_g1h); 3274 G1CopyingKeepAliveClosure keep_alive(&_g1h, _pss.state_for_worker(index)); 3275 G1ParEvacuateFollowersClosure complete_gc(&_g1h, _pss.state_for_worker(index), &_task_queues, _tm == RefProcThreadModel::Single ? nullptr : &_terminator, G1GCPhaseTimes::ObjCopy); 3276 G1EnqueueDiscoveredFieldClosure enqueue(&_g1h, _pss.state_for_worker(index)); 3277 _rp_task->rp_work(worker_id, &is_alive, &keep_alive, &enqueue, &complete_gc); 3278 } 3279 3280 void prepare_run_task_hook() override { 3281 _terminator.reset_for_reuse(_queue_count); 3282 } 3283 }; 3284 3285 // End of weak reference support closures 3286 3287 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) { 3288 double ref_proc_start = os::elapsedTime(); 3289 3290 ReferenceProcessor* rp = _ref_processor_stw; 3291 assert(rp->discovery_enabled(), "should have been enabled"); 3292 3293 // Use only a single queue for this PSS. 3294 G1ParScanThreadState* pss = per_thread_states->state_for_worker(0); 3295 pss->set_ref_discoverer(NULL); 3296 assert(pss->queue_is_empty(), "pre-condition"); 3297 3298 // Setup the soft refs policy... 3299 rp->setup_policy(false); 3300 3301 ReferenceProcessorPhaseTimes& pt = *phase_times()->ref_phase_times(); 3302 3303 ReferenceProcessorStats stats; 3304 uint no_of_gc_workers = workers()->active_workers(); 3305 3306 // Parallel reference processing 3307 assert(no_of_gc_workers <= rp->max_num_queues(), 3308 "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u", 3309 no_of_gc_workers, rp->max_num_queues()); 3310 3311 rp->set_active_mt_degree(no_of_gc_workers); 3312 G1STWRefProcProxyTask task(rp->max_num_queues(), *this, *per_thread_states, *_task_queues); 3313 stats = rp->process_discovered_references(task, pt); 3314 3315 _gc_tracer_stw->report_gc_reference_stats(stats); 3316 3317 // We have completed copying any necessary live referent objects. 3318 assert(pss->queue_is_empty(), "both queue and overflow should be empty"); 3319 3320 make_pending_list_reachable(); 3321 3322 assert(!rp->discovery_enabled(), "Postcondition"); 3323 rp->verify_no_references_recorded(); 3324 3325 double ref_proc_time = os::elapsedTime() - ref_proc_start; 3326 phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 3327 } 3328 3329 void G1CollectedHeap::make_pending_list_reachable() { 3330 if (collector_state()->in_concurrent_start_gc()) { 3331 oop pll_head = Universe::reference_pending_list(); 3332 if (pll_head != NULL) { 3333 // Any valid worker id is fine here as we are in the VM thread and single-threaded. 3334 _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head); 3335 } 3336 } 3337 } 3338 3339 static bool do_humongous_object_logging() { 3340 return log_is_enabled(Debug, gc, humongous); 3341 } 3342 3343 bool G1CollectedHeap::should_do_eager_reclaim() const { 3344 // As eager reclaim logging also gives information about humongous objects in 3345 // the heap in general, always do the eager reclaim pass even without known 3346 // candidates. 3347 return (G1EagerReclaimHumongousObjects && 3348 (has_humongous_reclaim_candidates() || do_humongous_object_logging())); 3349 } 3350 3351 class G1PrepareEvacuationTask : public AbstractGangTask { 3352 class G1PrepareRegionsClosure : public HeapRegionClosure { 3353 G1CollectedHeap* _g1h; 3354 G1PrepareEvacuationTask* _parent_task; 3355 uint _worker_humongous_total; 3356 uint _worker_humongous_candidates; 3357 3358 bool humongous_region_is_candidate(HeapRegion* region) const { 3359 assert(region->is_starts_humongous(), "Must start a humongous object"); 3360 3361 oop obj = cast_to_oop(region->bottom()); 3362 3363 // Dead objects cannot be eager reclaim candidates. Due to class 3364 // unloading it is unsafe to query their classes so we return early. 3365 if (_g1h->is_obj_dead(obj, region)) { 3366 return false; 3367 } 3368 3369 // If we do not have a complete remembered set for the region, then we can 3370 // not be sure that we have all references to it. 3371 if (!region->rem_set()->is_complete()) { 3372 return false; 3373 } 3374 // Candidate selection must satisfy the following constraints 3375 // while concurrent marking is in progress: 3376 // 3377 // * In order to maintain SATB invariants, an object must not be 3378 // reclaimed if it was allocated before the start of marking and 3379 // has not had its references scanned. Such an object must have 3380 // its references (including type metadata) scanned to ensure no 3381 // live objects are missed by the marking process. Objects 3382 // allocated after the start of concurrent marking don't need to 3383 // be scanned. 3384 // 3385 // * An object must not be reclaimed if it is on the concurrent 3386 // mark stack. Objects allocated after the start of concurrent 3387 // marking are never pushed on the mark stack. 3388 // 3389 // Nominating only objects allocated after the start of concurrent 3390 // marking is sufficient to meet both constraints. This may miss 3391 // some objects that satisfy the constraints, but the marking data 3392 // structures don't support efficiently performing the needed 3393 // additional tests or scrubbing of the mark stack. 3394 // 3395 // However, we presently only nominate is_typeArray() objects. 3396 // A humongous object containing references induces remembered 3397 // set entries on other regions. In order to reclaim such an 3398 // object, those remembered sets would need to be cleaned up. 3399 // 3400 // We also treat is_typeArray() objects specially, allowing them 3401 // to be reclaimed even if allocated before the start of 3402 // concurrent mark. For this we rely on mark stack insertion to 3403 // exclude is_typeArray() objects, preventing reclaiming an object 3404 // that is in the mark stack. We also rely on the metadata for 3405 // such objects to be built-in and so ensured to be kept live. 3406 // Frequent allocation and drop of large binary blobs is an 3407 // important use case for eager reclaim, and this special handling 3408 // may reduce needed headroom. 3409 3410 return obj->is_typeArray() && 3411 _g1h->is_potential_eager_reclaim_candidate(region); 3412 } 3413 3414 public: 3415 G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) : 3416 _g1h(g1h), 3417 _parent_task(parent_task), 3418 _worker_humongous_total(0), 3419 _worker_humongous_candidates(0) { } 3420 3421 ~G1PrepareRegionsClosure() { 3422 _parent_task->add_humongous_candidates(_worker_humongous_candidates); 3423 _parent_task->add_humongous_total(_worker_humongous_total); 3424 } 3425 3426 virtual bool do_heap_region(HeapRegion* hr) { 3427 // First prepare the region for scanning 3428 _g1h->rem_set()->prepare_region_for_scan(hr); 3429 3430 // Now check if region is a humongous candidate 3431 if (!hr->is_starts_humongous()) { 3432 _g1h->register_region_with_region_attr(hr); 3433 return false; 3434 } 3435 3436 uint index = hr->hrm_index(); 3437 if (humongous_region_is_candidate(hr)) { 3438 _g1h->set_humongous_reclaim_candidate(index, true); 3439 _g1h->register_humongous_region_with_region_attr(index); 3440 _worker_humongous_candidates++; 3441 // We will later handle the remembered sets of these regions. 3442 } else { 3443 _g1h->set_humongous_reclaim_candidate(index, false); 3444 _g1h->register_region_with_region_attr(hr); 3445 } 3446 log_debug(gc, humongous)("Humongous region %u (object size " SIZE_FORMAT " @ " PTR_FORMAT ") remset " SIZE_FORMAT " code roots " SIZE_FORMAT " marked %d reclaim candidate %d type array %d", 3447 index, 3448 (size_t)cast_to_oop(hr->bottom())->size() * HeapWordSize, 3449 p2i(hr->bottom()), 3450 hr->rem_set()->occupied(), 3451 hr->rem_set()->strong_code_roots_list_length(), 3452 _g1h->concurrent_mark()->next_mark_bitmap()->is_marked(hr->bottom()), 3453 _g1h->is_humongous_reclaim_candidate(index), 3454 cast_to_oop(hr->bottom())->is_typeArray() 3455 ); 3456 _worker_humongous_total++; 3457 3458 return false; 3459 } 3460 }; 3461 3462 G1CollectedHeap* _g1h; 3463 HeapRegionClaimer _claimer; 3464 volatile uint _humongous_total; 3465 volatile uint _humongous_candidates; 3466 public: 3467 G1PrepareEvacuationTask(G1CollectedHeap* g1h) : 3468 AbstractGangTask("Prepare Evacuation"), 3469 _g1h(g1h), 3470 _claimer(_g1h->workers()->active_workers()), 3471 _humongous_total(0), 3472 _humongous_candidates(0) { } 3473 3474 void work(uint worker_id) { 3475 G1PrepareRegionsClosure cl(_g1h, this); 3476 _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id); 3477 } 3478 3479 void add_humongous_candidates(uint candidates) { 3480 Atomic::add(&_humongous_candidates, candidates); 3481 } 3482 3483 void add_humongous_total(uint total) { 3484 Atomic::add(&_humongous_total, total); 3485 } 3486 3487 uint humongous_candidates() { 3488 return _humongous_candidates; 3489 } 3490 3491 uint humongous_total() { 3492 return _humongous_total; 3493 } 3494 }; 3495 3496 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) { 3497 _bytes_used_during_gc = 0; 3498 3499 _expand_heap_after_alloc_failure = true; 3500 Atomic::store(&_num_regions_failed_evacuation, 0u); 3501 3502 memset((void*)_regions_failed_evacuation, false, sizeof(bool) * max_regions()); 3503 3504 // Disable the hot card cache. 3505 _hot_card_cache->reset_hot_cache_claimed_index(); 3506 _hot_card_cache->set_use_cache(false); 3507 3508 // Initialize the GC alloc regions. 3509 _allocator->init_gc_alloc_regions(evacuation_info); 3510 3511 { 3512 Ticks start = Ticks::now(); 3513 rem_set()->prepare_for_scan_heap_roots(); 3514 phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0); 3515 } 3516 3517 { 3518 G1PrepareEvacuationTask g1_prep_task(this); 3519 Tickspan task_time = run_task_timed(&g1_prep_task); 3520 3521 phase_times()->record_register_regions(task_time.seconds() * 1000.0); 3522 _num_humongous_objects = g1_prep_task.humongous_total(); 3523 _num_humongous_reclaim_candidates = g1_prep_task.humongous_candidates(); 3524 } 3525 3526 assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table."); 3527 _preserved_marks_set.assert_empty(); 3528 3529 #if COMPILER2_OR_JVMCI 3530 DerivedPointerTable::clear(); 3531 #endif 3532 3533 // Concurrent start needs claim bits to keep track of the marked-through CLDs. 3534 if (collector_state()->in_concurrent_start_gc()) { 3535 concurrent_mark()->pre_concurrent_start(gc_cause()); 3536 3537 double start_clear_claimed_marks = os::elapsedTime(); 3538 3539 ClassLoaderDataGraph::clear_claimed_marks(); 3540 3541 double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0; 3542 phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms); 3543 } 3544 3545 // Should G1EvacuationFailureALot be in effect for this GC? 3546 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 3547 } 3548 3549 class G1EvacuateRegionsBaseTask : public AbstractGangTask { 3550 protected: 3551 G1CollectedHeap* _g1h; 3552 G1ParScanThreadStateSet* _per_thread_states; 3553 G1ScannerTasksQueueSet* _task_queues; 3554 TaskTerminator _terminator; 3555 uint _num_workers; 3556 3557 void evacuate_live_objects(G1ParScanThreadState* pss, 3558 uint worker_id, 3559 G1GCPhaseTimes::GCParPhases objcopy_phase, 3560 G1GCPhaseTimes::GCParPhases termination_phase) { 3561 G1GCPhaseTimes* p = _g1h->phase_times(); 3562 3563 Ticks start = Ticks::now(); 3564 G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase); 3565 cl.do_void(); 3566 3567 assert(pss->queue_is_empty(), "should be empty"); 3568 3569 Tickspan evac_time = (Ticks::now() - start); 3570 p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time()); 3571 3572 if (termination_phase == G1GCPhaseTimes::Termination) { 3573 p->record_time_secs(termination_phase, worker_id, cl.term_time()); 3574 p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts()); 3575 } else { 3576 p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time()); 3577 p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts()); 3578 } 3579 assert(pss->trim_ticks().value() == 0, 3580 "Unexpected partial trimming during evacuation value " JLONG_FORMAT, 3581 pss->trim_ticks().value()); 3582 } 3583 3584 virtual void start_work(uint worker_id) { } 3585 3586 virtual void end_work(uint worker_id) { } 3587 3588 virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0; 3589 3590 virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0; 3591 3592 public: 3593 G1EvacuateRegionsBaseTask(const char* name, 3594 G1ParScanThreadStateSet* per_thread_states, 3595 G1ScannerTasksQueueSet* task_queues, 3596 uint num_workers) : 3597 AbstractGangTask(name), 3598 _g1h(G1CollectedHeap::heap()), 3599 _per_thread_states(per_thread_states), 3600 _task_queues(task_queues), 3601 _terminator(num_workers, _task_queues), 3602 _num_workers(num_workers) 3603 { } 3604 3605 void work(uint worker_id) { 3606 start_work(worker_id); 3607 3608 { 3609 ResourceMark rm; 3610 3611 G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id); 3612 pss->set_ref_discoverer(_g1h->ref_processor_stw()); 3613 3614 scan_roots(pss, worker_id); 3615 evacuate_live_objects(pss, worker_id); 3616 } 3617 3618 end_work(worker_id); 3619 } 3620 }; 3621 3622 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask { 3623 G1RootProcessor* _root_processor; 3624 bool _has_optional_evacuation_work; 3625 3626 void scan_roots(G1ParScanThreadState* pss, uint worker_id) { 3627 _root_processor->evacuate_roots(pss, worker_id); 3628 _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy, _has_optional_evacuation_work); 3629 _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy); 3630 } 3631 3632 void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) { 3633 G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination); 3634 } 3635 3636 void start_work(uint worker_id) { 3637 _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds()); 3638 } 3639 3640 void end_work(uint worker_id) { 3641 _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds()); 3642 } 3643 3644 public: 3645 G1EvacuateRegionsTask(G1CollectedHeap* g1h, 3646 G1ParScanThreadStateSet* per_thread_states, 3647 G1ScannerTasksQueueSet* task_queues, 3648 G1RootProcessor* root_processor, 3649 uint num_workers, 3650 bool has_optional_evacuation_work) : 3651 G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers), 3652 _root_processor(root_processor), 3653 _has_optional_evacuation_work(has_optional_evacuation_work) 3654 { } 3655 }; 3656 3657 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states, 3658 bool has_optional_evacuation_work) { 3659 G1GCPhaseTimes* p = phase_times(); 3660 3661 { 3662 Ticks start = Ticks::now(); 3663 rem_set()->merge_heap_roots(true /* initial_evacuation */); 3664 p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0); 3665 } 3666 3667 Tickspan task_time; 3668 const uint num_workers = workers()->active_workers(); 3669 3670 Ticks start_processing = Ticks::now(); 3671 { 3672 G1RootProcessor root_processor(this, num_workers); 3673 G1EvacuateRegionsTask g1_par_task(this, 3674 per_thread_states, 3675 _task_queues, 3676 &root_processor, 3677 num_workers, 3678 has_optional_evacuation_work); 3679 task_time = run_task_timed(&g1_par_task); 3680 // Closing the inner scope will execute the destructor for the G1RootProcessor object. 3681 // To extract its code root fixup time we measure total time of this scope and 3682 // subtract from the time the WorkGang task took. 3683 } 3684 Tickspan total_processing = Ticks::now() - start_processing; 3685 3686 p->record_initial_evac_time(task_time.seconds() * 1000.0); 3687 p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0); 3688 3689 rem_set()->complete_evac_phase(has_optional_evacuation_work); 3690 } 3691 3692 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask { 3693 3694 void scan_roots(G1ParScanThreadState* pss, uint worker_id) { 3695 _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy, true /* remember_already_scanned_cards */); 3696 _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy); 3697 } 3698 3699 void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) { 3700 G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination); 3701 } 3702 3703 public: 3704 G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states, 3705 G1ScannerTasksQueueSet* queues, 3706 uint num_workers) : 3707 G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) { 3708 } 3709 }; 3710 3711 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) { 3712 class G1MarkScope : public MarkScope { }; 3713 3714 Tickspan task_time; 3715 3716 Ticks start_processing = Ticks::now(); 3717 { 3718 G1MarkScope code_mark_scope; 3719 G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers()); 3720 task_time = run_task_timed(&task); 3721 // See comment in evacuate_collection_set() for the reason of the scope. 3722 } 3723 Tickspan total_processing = Ticks::now() - start_processing; 3724 3725 G1GCPhaseTimes* p = phase_times(); 3726 p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0); 3727 } 3728 3729 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) { 3730 const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0; 3731 3732 while (!evacuation_failed() && _collection_set.optional_region_length() > 0) { 3733 3734 double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms; 3735 double time_left_ms = MaxGCPauseMillis - time_used_ms; 3736 3737 if (time_left_ms < 0 || 3738 !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) { 3739 log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms", 3740 _collection_set.optional_region_length(), time_left_ms); 3741 break; 3742 } 3743 3744 { 3745 Ticks start = Ticks::now(); 3746 rem_set()->merge_heap_roots(false /* initial_evacuation */); 3747 phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0); 3748 } 3749 3750 { 3751 Ticks start = Ticks::now(); 3752 evacuate_next_optional_regions(per_thread_states); 3753 phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0); 3754 } 3755 3756 rem_set()->complete_evac_phase(true /* has_more_than_one_evacuation_phase */); 3757 } 3758 3759 _collection_set.abandon_optional_collection_set(per_thread_states); 3760 } 3761 3762 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, 3763 G1RedirtyCardsQueueSet* rdcqs, 3764 G1ParScanThreadStateSet* per_thread_states) { 3765 G1GCPhaseTimes* p = phase_times(); 3766 3767 // Process any discovered reference objects - we have 3768 // to do this _before_ we retire the GC alloc regions 3769 // as we may have to copy some 'reachable' referent 3770 // objects (and their reachable sub-graphs) that were 3771 // not copied during the pause. 3772 process_discovered_references(per_thread_states); 3773 3774 G1STWIsAliveClosure is_alive(this); 3775 G1KeepAliveClosure keep_alive(this); 3776 3777 WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times()); 3778 3779 _allocator->release_gc_alloc_regions(evacuation_info); 3780 3781 post_evacuate_cleanup_1(per_thread_states, rdcqs); 3782 3783 post_evacuate_cleanup_2(&_preserved_marks_set, rdcqs, &evacuation_info, per_thread_states->surviving_young_words()); 3784 3785 assert_used_and_recalculate_used_equal(this); 3786 3787 rebuild_free_region_list(); 3788 3789 record_obj_copy_mem_stats(); 3790 3791 evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before()); 3792 evacuation_info.set_bytes_used(_bytes_used_during_gc); 3793 3794 policy()->print_age_table(); 3795 } 3796 3797 void G1CollectedHeap::record_obj_copy_mem_stats() { 3798 policy()->old_gen_alloc_tracker()-> 3799 add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); 3800 3801 _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), 3802 create_g1_evac_summary(&_old_evac_stats)); 3803 } 3804 3805 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) { 3806 assert(!hr->is_free(), "the region should not be free"); 3807 assert(!hr->is_empty(), "the region should not be empty"); 3808 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 3809 3810 if (G1VerifyBitmaps) { 3811 MemRegion mr(hr->bottom(), hr->end()); 3812 concurrent_mark()->clear_range_in_prev_bitmap(mr); 3813 } 3814 3815 // Clear the card counts for this region. 3816 // Note: we only need to do this if the region is not young 3817 // (since we don't refine cards in young regions). 3818 if (!hr->is_young()) { 3819 _hot_card_cache->reset_card_counts(hr); 3820 } 3821 3822 // Reset region metadata to allow reuse. 3823 hr->hr_clear(true /* clear_space */); 3824 _policy->remset_tracker()->update_at_free(hr); 3825 3826 if (free_list != NULL) { 3827 free_list->add_ordered(hr); 3828 } 3829 } 3830 3831 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 3832 FreeRegionList* free_list) { 3833 assert(hr->is_humongous(), "this is only for humongous regions"); 3834 hr->clear_humongous(); 3835 free_region(hr, free_list); 3836 } 3837 3838 void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed, 3839 const uint archive_regions_removed, 3840 const uint humongous_regions_removed) { 3841 if (old_regions_removed > 0 || archive_regions_removed > 0 || humongous_regions_removed > 0) { 3842 MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag); 3843 _old_set.bulk_remove(old_regions_removed); 3844 _archive_set.bulk_remove(archive_regions_removed); 3845 _humongous_set.bulk_remove(humongous_regions_removed); 3846 } 3847 3848 } 3849 3850 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 3851 assert(list != NULL, "list can't be null"); 3852 if (!list->is_empty()) { 3853 MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag); 3854 _hrm.insert_list_into_free_list(list); 3855 } 3856 } 3857 3858 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 3859 decrease_used(bytes); 3860 } 3861 3862 void G1CollectedHeap::post_evacuate_cleanup_1(G1ParScanThreadStateSet* per_thread_states, 3863 G1RedirtyCardsQueueSet* rdcqs) { 3864 Ticks start = Ticks::now(); 3865 { 3866 G1PostEvacuateCollectionSetCleanupTask1 cl(per_thread_states, rdcqs); 3867 run_batch_task(&cl); 3868 } 3869 phase_times()->record_post_evacuate_cleanup_task_1_time((Ticks::now() - start).seconds() * 1000.0); 3870 } 3871 3872 void G1CollectedHeap::post_evacuate_cleanup_2(PreservedMarksSet* preserved_marks, 3873 G1RedirtyCardsQueueSet* rdcqs, 3874 G1EvacuationInfo* evacuation_info, 3875 const size_t* surviving_young_words) { 3876 Ticks start = Ticks::now(); 3877 { 3878 G1PostEvacuateCollectionSetCleanupTask2 cl(preserved_marks, rdcqs, evacuation_info, surviving_young_words); 3879 run_batch_task(&cl); 3880 } 3881 phase_times()->record_post_evacuate_cleanup_task_2_time((Ticks::now() - start).seconds() * 1000.0); 3882 } 3883 3884 void G1CollectedHeap::clear_eden() { 3885 _eden.clear(); 3886 } 3887 3888 void G1CollectedHeap::clear_collection_set() { 3889 collection_set()->clear(); 3890 } 3891 3892 void G1CollectedHeap::rebuild_free_region_list() { 3893 Ticks start = Ticks::now(); 3894 _hrm.rebuild_free_list(workers()); 3895 phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0); 3896 } 3897 3898 class G1AbandonCollectionSetClosure : public HeapRegionClosure { 3899 public: 3900 virtual bool do_heap_region(HeapRegion* r) { 3901 assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index()); 3902 G1CollectedHeap::heap()->clear_region_attr(r); 3903 r->clear_young_index_in_cset(); 3904 return false; 3905 } 3906 }; 3907 3908 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) { 3909 G1AbandonCollectionSetClosure cl; 3910 collection_set_iterate_all(&cl); 3911 3912 collection_set->clear(); 3913 collection_set->stop_incremental_building(); 3914 } 3915 3916 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { 3917 return _allocator->is_retained_old_region(hr); 3918 } 3919 3920 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 3921 _eden.add(hr); 3922 _policy->set_region_eden(hr); 3923 } 3924 3925 #ifdef ASSERT 3926 3927 class NoYoungRegionsClosure: public HeapRegionClosure { 3928 private: 3929 bool _success; 3930 public: 3931 NoYoungRegionsClosure() : _success(true) { } 3932 bool do_heap_region(HeapRegion* r) { 3933 if (r->is_young()) { 3934 log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", 3935 p2i(r->bottom()), p2i(r->end())); 3936 _success = false; 3937 } 3938 return false; 3939 } 3940 bool success() { return _success; } 3941 }; 3942 3943 bool G1CollectedHeap::check_young_list_empty() { 3944 bool ret = (young_regions_count() == 0); 3945 3946 NoYoungRegionsClosure closure; 3947 heap_region_iterate(&closure); 3948 ret = ret && closure.success(); 3949 3950 return ret; 3951 } 3952 3953 #endif // ASSERT 3954 3955 // Remove the given HeapRegion from the appropriate region set. 3956 void G1CollectedHeap::prepare_region_for_full_compaction(HeapRegion* hr) { 3957 if (hr->is_archive()) { 3958 _archive_set.remove(hr); 3959 } else if (hr->is_humongous()) { 3960 _humongous_set.remove(hr); 3961 } else if (hr->is_old()) { 3962 _old_set.remove(hr); 3963 } else if (hr->is_young()) { 3964 // Note that emptying the eden and survivor lists is postponed and instead 3965 // done as the first step when rebuilding the regions sets again. The reason 3966 // for this is that during a full GC string deduplication needs to know if 3967 // a collected region was young or old when the full GC was initiated. 3968 hr->uninstall_surv_rate_group(); 3969 } else { 3970 // We ignore free regions, we'll empty the free list afterwards. 3971 assert(hr->is_free(), "it cannot be another type"); 3972 } 3973 } 3974 3975 void G1CollectedHeap::increase_used(size_t bytes) { 3976 _summary_bytes_used += bytes; 3977 } 3978 3979 void G1CollectedHeap::decrease_used(size_t bytes) { 3980 assert(_summary_bytes_used >= bytes, 3981 "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, 3982 _summary_bytes_used, bytes); 3983 _summary_bytes_used -= bytes; 3984 } 3985 3986 void G1CollectedHeap::set_used(size_t bytes) { 3987 _summary_bytes_used = bytes; 3988 } 3989 3990 class RebuildRegionSetsClosure : public HeapRegionClosure { 3991 private: 3992 bool _free_list_only; 3993 3994 HeapRegionSet* _old_set; 3995 HeapRegionSet* _archive_set; 3996 HeapRegionSet* _humongous_set; 3997 3998 HeapRegionManager* _hrm; 3999 4000 size_t _total_used; 4001 4002 public: 4003 RebuildRegionSetsClosure(bool free_list_only, 4004 HeapRegionSet* old_set, 4005 HeapRegionSet* archive_set, 4006 HeapRegionSet* humongous_set, 4007 HeapRegionManager* hrm) : 4008 _free_list_only(free_list_only), _old_set(old_set), _archive_set(archive_set), 4009 _humongous_set(humongous_set), _hrm(hrm), _total_used(0) { 4010 assert(_hrm->num_free_regions() == 0, "pre-condition"); 4011 if (!free_list_only) { 4012 assert(_old_set->is_empty(), "pre-condition"); 4013 assert(_archive_set->is_empty(), "pre-condition"); 4014 assert(_humongous_set->is_empty(), "pre-condition"); 4015 } 4016 } 4017 4018 bool do_heap_region(HeapRegion* r) { 4019 if (r->is_empty()) { 4020 assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets."); 4021 // Add free regions to the free list 4022 r->set_free(); 4023 _hrm->insert_into_free_list(r); 4024 } else if (!_free_list_only) { 4025 assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared."); 4026 4027 if (r->is_humongous()) { 4028 _humongous_set->add(r); 4029 } else if (r->is_archive()) { 4030 _archive_set->add(r); 4031 } else { 4032 assert(r->is_young() || r->is_free() || r->is_old(), "invariant"); 4033 // We now move all (non-humongous, non-old, non-archive) regions to old gen, 4034 // and register them as such. 4035 r->move_to_old(); 4036 _old_set->add(r); 4037 } 4038 _total_used += r->used(); 4039 } 4040 4041 return false; 4042 } 4043 4044 size_t total_used() { 4045 return _total_used; 4046 } 4047 }; 4048 4049 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 4050 assert_at_safepoint_on_vm_thread(); 4051 4052 if (!free_list_only) { 4053 _eden.clear(); 4054 _survivor.clear(); 4055 } 4056 4057 RebuildRegionSetsClosure cl(free_list_only, 4058 &_old_set, &_archive_set, &_humongous_set, 4059 &_hrm); 4060 heap_region_iterate(&cl); 4061 4062 if (!free_list_only) { 4063 set_used(cl.total_used()); 4064 if (_archive_allocator != NULL) { 4065 _archive_allocator->clear_used(); 4066 } 4067 } 4068 assert_used_and_recalculate_used_equal(this); 4069 } 4070 4071 // Methods for the mutator alloc region 4072 4073 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 4074 bool force, 4075 uint node_index) { 4076 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 4077 bool should_allocate = policy()->should_allocate_mutator_region(); 4078 if (force || should_allocate) { 4079 HeapRegion* new_alloc_region = new_region(word_size, 4080 HeapRegionType::Eden, 4081 false /* do_expand */, 4082 node_index); 4083 if (new_alloc_region != NULL) { 4084 set_region_short_lived_locked(new_alloc_region); 4085 _hr_printer.alloc(new_alloc_region, !should_allocate); 4086 _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region); 4087 _policy->remset_tracker()->update_at_allocate(new_alloc_region); 4088 return new_alloc_region; 4089 } 4090 } 4091 return NULL; 4092 } 4093 4094 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 4095 size_t allocated_bytes) { 4096 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 4097 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 4098 4099 collection_set()->add_eden_region(alloc_region); 4100 increase_used(allocated_bytes); 4101 _eden.add_used_bytes(allocated_bytes); 4102 _hr_printer.retire(alloc_region); 4103 4104 // We update the eden sizes here, when the region is retired, 4105 // instead of when it's allocated, since this is the point that its 4106 // used space has been recorded in _summary_bytes_used. 4107 g1mm()->update_eden_size(); 4108 } 4109 4110 // Methods for the GC alloc regions 4111 4112 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) { 4113 if (dest.is_old()) { 4114 return true; 4115 } else { 4116 return survivor_regions_count() < policy()->max_survivor_regions(); 4117 } 4118 } 4119 4120 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) { 4121 assert(FreeList_lock->owned_by_self(), "pre-condition"); 4122 4123 if (!has_more_regions(dest)) { 4124 return NULL; 4125 } 4126 4127 HeapRegionType type; 4128 if (dest.is_young()) { 4129 type = HeapRegionType::Survivor; 4130 } else { 4131 type = HeapRegionType::Old; 4132 } 4133 4134 HeapRegion* new_alloc_region = new_region(word_size, 4135 type, 4136 true /* do_expand */, 4137 node_index); 4138 4139 if (new_alloc_region != NULL) { 4140 if (type.is_survivor()) { 4141 new_alloc_region->set_survivor(); 4142 _survivor.add(new_alloc_region); 4143 _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region); 4144 } else { 4145 new_alloc_region->set_old(); 4146 _verifier->check_bitmaps("Old Region Allocation", new_alloc_region); 4147 } 4148 _policy->remset_tracker()->update_at_allocate(new_alloc_region); 4149 register_region_with_region_attr(new_alloc_region); 4150 _hr_printer.alloc(new_alloc_region); 4151 return new_alloc_region; 4152 } 4153 return NULL; 4154 } 4155 4156 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 4157 size_t allocated_bytes, 4158 G1HeapRegionAttr dest) { 4159 _bytes_used_during_gc += allocated_bytes; 4160 if (dest.is_old()) { 4161 old_set_add(alloc_region); 4162 } else { 4163 assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type()); 4164 _survivor.add_used_bytes(allocated_bytes); 4165 } 4166 4167 bool const during_im = collector_state()->in_concurrent_start_gc(); 4168 if (during_im && allocated_bytes > 0) { 4169 _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top()); 4170 } 4171 _hr_printer.retire(alloc_region); 4172 } 4173 4174 HeapRegion* G1CollectedHeap::alloc_highest_free_region() { 4175 bool expanded = false; 4176 uint index = _hrm.find_highest_free(&expanded); 4177 4178 if (index != G1_NO_HRM_INDEX) { 4179 if (expanded) { 4180 log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", 4181 HeapRegion::GrainWords * HeapWordSize); 4182 } 4183 return _hrm.allocate_free_regions_starting_at(index, 1); 4184 } 4185 return NULL; 4186 } 4187 4188 // Optimized nmethod scanning 4189 4190 class RegisterNMethodOopClosure: public OopClosure { 4191 G1CollectedHeap* _g1h; 4192 nmethod* _nm; 4193 4194 template <class T> void do_oop_work(T* p) { 4195 T heap_oop = RawAccess<>::oop_load(p); 4196 if (!CompressedOops::is_null(heap_oop)) { 4197 oop obj = CompressedOops::decode_not_null(heap_oop); 4198 HeapRegion* hr = _g1h->heap_region_containing(obj); 4199 assert(!hr->is_continues_humongous(), 4200 "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 4201 " starting at " HR_FORMAT, 4202 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 4203 4204 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 4205 hr->add_strong_code_root_locked(_nm); 4206 } 4207 } 4208 4209 public: 4210 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 4211 _g1h(g1h), _nm(nm) {} 4212 4213 void do_oop(oop* p) { do_oop_work(p); } 4214 void do_oop(narrowOop* p) { do_oop_work(p); } 4215 }; 4216 4217 class UnregisterNMethodOopClosure: public OopClosure { 4218 G1CollectedHeap* _g1h; 4219 nmethod* _nm; 4220 4221 template <class T> void do_oop_work(T* p) { 4222 T heap_oop = RawAccess<>::oop_load(p); 4223 if (!CompressedOops::is_null(heap_oop)) { 4224 oop obj = CompressedOops::decode_not_null(heap_oop); 4225 HeapRegion* hr = _g1h->heap_region_containing(obj); 4226 assert(!hr->is_continues_humongous(), 4227 "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT 4228 " starting at " HR_FORMAT, 4229 p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); 4230 4231 hr->remove_strong_code_root(_nm); 4232 } 4233 } 4234 4235 public: 4236 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 4237 _g1h(g1h), _nm(nm) {} 4238 4239 void do_oop(oop* p) { do_oop_work(p); } 4240 void do_oop(narrowOop* p) { do_oop_work(p); } 4241 }; 4242 4243 void G1CollectedHeap::register_nmethod(nmethod* nm) { 4244 guarantee(nm != NULL, "sanity"); 4245 RegisterNMethodOopClosure reg_cl(this, nm); 4246 nm->oops_do(®_cl); 4247 } 4248 4249 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 4250 guarantee(nm != NULL, "sanity"); 4251 UnregisterNMethodOopClosure reg_cl(this, nm); 4252 nm->oops_do(®_cl, true); 4253 } 4254 4255 void G1CollectedHeap::update_used_after_gc() { 4256 if (evacuation_failed()) { 4257 // Reset the G1EvacuationFailureALot counters and flags 4258 NOT_PRODUCT(reset_evacuation_should_fail();) 4259 4260 set_used(recalculate_used()); 4261 4262 if (_archive_allocator != NULL) { 4263 _archive_allocator->clear_used(); 4264 } 4265 for (uint i = 0; i < ParallelGCThreads; i++) { 4266 if (_evacuation_failed_info_array[i].has_failed()) { 4267 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 4268 } 4269 } 4270 } else { 4271 // The "used" of the the collection set have already been subtracted 4272 // when they were freed. Add in the bytes used. 4273 increase_used(_bytes_used_during_gc); 4274 } 4275 } 4276 4277 void G1CollectedHeap::reset_hot_card_cache() { 4278 _hot_card_cache->reset_hot_cache(); 4279 _hot_card_cache->set_use_cache(true); 4280 } 4281 4282 void G1CollectedHeap::purge_code_root_memory() { 4283 G1CodeRootSet::purge(); 4284 } 4285 4286 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 4287 G1CollectedHeap* _g1h; 4288 4289 public: 4290 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 4291 _g1h(g1h) {} 4292 4293 void do_code_blob(CodeBlob* cb) { 4294 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 4295 if (nm == NULL) { 4296 return; 4297 } 4298 4299 _g1h->register_nmethod(nm); 4300 } 4301 }; 4302 4303 void G1CollectedHeap::rebuild_strong_code_roots() { 4304 RebuildStrongCodeRootClosure blob_cl(this); 4305 CodeCache::blobs_do(&blob_cl); 4306 } 4307 4308 void G1CollectedHeap::initialize_serviceability() { 4309 _g1mm->initialize_serviceability(); 4310 } 4311 4312 MemoryUsage G1CollectedHeap::memory_usage() { 4313 return _g1mm->memory_usage(); 4314 } 4315 4316 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() { 4317 return _g1mm->memory_managers(); 4318 } 4319 4320 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() { 4321 return _g1mm->memory_pools(); 4322 }