1 /* 2 * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP 26 #define SHARE_GC_G1_G1COLLECTEDHEAP_HPP 27 28 #include "gc/g1/g1BarrierSet.hpp" 29 #include "gc/g1/g1BiasedArray.hpp" 30 #include "gc/g1/g1CardTable.hpp" 31 #include "gc/g1/g1CollectionSet.hpp" 32 #include "gc/g1/g1CollectorState.hpp" 33 #include "gc/g1/g1ConcurrentMark.hpp" 34 #include "gc/g1/g1EdenRegions.hpp" 35 #include "gc/g1/g1EvacFailure.hpp" 36 #include "gc/g1/g1EvacStats.hpp" 37 #include "gc/g1/g1EvacuationInfo.hpp" 38 #include "gc/g1/g1GCPhaseTimes.hpp" 39 #include "gc/g1/g1GCPauseType.hpp" 40 #include "gc/g1/g1HeapTransition.hpp" 41 #include "gc/g1/g1HeapVerifier.hpp" 42 #include "gc/g1/g1HRPrinter.hpp" 43 #include "gc/g1/g1HeapRegionAttr.hpp" 44 #include "gc/g1/g1MonitoringSupport.hpp" 45 #include "gc/g1/g1NUMA.hpp" 46 #include "gc/g1/g1RedirtyCardsQueue.hpp" 47 #include "gc/g1/g1SurvivorRegions.hpp" 48 #include "gc/g1/heapRegionManager.hpp" 49 #include "gc/g1/heapRegionSet.hpp" 50 #include "gc/shared/barrierSet.hpp" 51 #include "gc/shared/collectedHeap.hpp" 52 #include "gc/shared/gcHeapSummary.hpp" 53 #include "gc/shared/plab.hpp" 54 #include "gc/shared/preservedMarks.hpp" 55 #include "gc/shared/softRefPolicy.hpp" 56 #include "gc/shared/taskqueue.hpp" 57 #include "memory/memRegion.hpp" 58 #include "utilities/stack.hpp" 59 60 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot. 61 // It uses the "Garbage First" heap organization and algorithm, which 62 // may combine concurrent marking with parallel, incremental compaction of 63 // heap subsets that will yield large amounts of garbage. 64 65 // Forward declarations 66 class HeapRegion; 67 class GenerationSpec; 68 class G1ParScanThreadState; 69 class G1ParScanThreadStateSet; 70 class G1ParScanThreadState; 71 class MemoryPool; 72 class MemoryManager; 73 class ObjectClosure; 74 class SpaceClosure; 75 class CompactibleSpaceClosure; 76 class Space; 77 class G1BatchedGangTask; 78 class G1CardTableEntryClosure; 79 class G1CollectionSet; 80 class G1Policy; 81 class G1HotCardCache; 82 class G1RemSet; 83 class G1ServiceTask; 84 class G1ServiceThread; 85 class G1ConcurrentMark; 86 class G1ConcurrentMarkThread; 87 class G1ConcurrentRefine; 88 class GenerationCounters; 89 class STWGCTimer; 90 class G1NewTracer; 91 class EvacuationFailedInfo; 92 class nmethod; 93 class WorkGang; 94 class G1Allocator; 95 class G1ArchiveAllocator; 96 class G1FullGCScope; 97 class G1HeapVerifier; 98 class G1HeapSizingPolicy; 99 class G1HeapSummary; 100 class G1EvacSummary; 101 102 typedef OverflowTaskQueue<ScannerTask, mtGC> G1ScannerTasksQueue; 103 typedef GenericTaskQueueSet<G1ScannerTasksQueue, mtGC> G1ScannerTasksQueueSet; 104 105 typedef int RegionIdx_t; // needs to hold [ 0..max_reserved_regions() ) 106 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion ) 107 108 // The G1 STW is alive closure. 109 // An instance is embedded into the G1CH and used as the 110 // (optional) _is_alive_non_header closure in the STW 111 // reference processor. It is also extensively used during 112 // reference processing during STW evacuation pauses. 113 class G1STWIsAliveClosure : public BoolObjectClosure { 114 G1CollectedHeap* _g1h; 115 public: 116 G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} 117 bool do_object_b(oop p); 118 }; 119 120 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure { 121 G1CollectedHeap* _g1h; 122 public: 123 G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} 124 bool do_object_b(oop p); 125 }; 126 127 class G1RegionMappingChangedListener : public G1MappingChangedListener { 128 private: 129 void reset_from_card_cache(uint start_idx, size_t num_regions); 130 public: 131 virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled); 132 }; 133 134 class G1CollectedHeap : public CollectedHeap { 135 friend class VM_CollectForMetadataAllocation; 136 friend class VM_G1CollectForAllocation; 137 friend class VM_G1CollectFull; 138 friend class VM_G1TryInitiateConcMark; 139 friend class VMStructs; 140 friend class MutatorAllocRegion; 141 friend class G1FullCollector; 142 friend class G1GCAllocRegion; 143 friend class G1HeapVerifier; 144 145 // Closures used in implementation. 146 friend class G1ParScanThreadState; 147 friend class G1ParScanThreadStateSet; 148 friend class G1EvacuateRegionsTask; 149 friend class G1PLABAllocator; 150 151 // Other related classes. 152 friend class HeapRegionClaimer; 153 154 // Testing classes. 155 friend class G1CheckRegionAttrTableClosure; 156 157 private: 158 G1ServiceThread* _service_thread; 159 G1ServiceTask* _periodic_gc_task; 160 161 WorkGang* _workers; 162 G1CardTable* _card_table; 163 164 Ticks _collection_pause_end; 165 166 SoftRefPolicy _soft_ref_policy; 167 168 static size_t _humongous_object_threshold_in_words; 169 170 // These sets keep track of old, archive and humongous regions respectively. 171 HeapRegionSet _old_set; 172 HeapRegionSet _archive_set; 173 HeapRegionSet _humongous_set; 174 175 void rebuild_free_region_list(); 176 // Start a new incremental collection set for the next pause. 177 void start_new_collection_set(); 178 179 // The block offset table for the G1 heap. 180 G1BlockOffsetTable* _bot; 181 182 public: 183 void prepare_region_for_full_compaction(HeapRegion* hr); 184 185 private: 186 // Rebuilds the region sets / lists so that they are repopulated to 187 // reflect the contents of the heap. The only exception is the 188 // humongous set which was not torn down in the first place. If 189 // free_list_only is true, it will only rebuild the free list. 190 void rebuild_region_sets(bool free_list_only); 191 192 // Callback for region mapping changed events. 193 G1RegionMappingChangedListener _listener; 194 195 // Handle G1 NUMA support. 196 G1NUMA* _numa; 197 198 // The sequence of all heap regions in the heap. 199 HeapRegionManager _hrm; 200 201 // Manages all allocations with regions except humongous object allocations. 202 G1Allocator* _allocator; 203 204 // Manages all heap verification. 205 G1HeapVerifier* _verifier; 206 207 // Outside of GC pauses, the number of bytes used in all regions other 208 // than the current allocation region(s). 209 volatile size_t _summary_bytes_used; 210 211 void increase_used(size_t bytes); 212 void decrease_used(size_t bytes); 213 214 void set_used(size_t bytes); 215 216 // Number of bytes used in all regions during GC. Typically changed when 217 // retiring a GC alloc region. 218 size_t _bytes_used_during_gc; 219 220 // Class that handles archive allocation ranges. 221 G1ArchiveAllocator* _archive_allocator; 222 223 // GC allocation statistics policy for survivors. 224 G1EvacStats _survivor_evac_stats; 225 226 // GC allocation statistics policy for tenured objects. 227 G1EvacStats _old_evac_stats; 228 229 // It specifies whether we should attempt to expand the heap after a 230 // region allocation failure. If heap expansion fails we set this to 231 // false so that we don't re-attempt the heap expansion (it's likely 232 // that subsequent expansion attempts will also fail if one fails). 233 // Currently, it is only consulted during GC and it's reset at the 234 // start of each GC. 235 bool _expand_heap_after_alloc_failure; 236 237 // Helper for monitoring and management support. 238 G1MonitoringSupport* _g1mm; 239 240 // Records whether the region at the given index is (still) a 241 // candidate for eager reclaim. Only valid for humongous start 242 // regions; other regions have unspecified values. Humongous start 243 // regions are initialized at start of collection pause, with 244 // candidates removed from the set as they are found reachable from 245 // roots or the young generation. 246 class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> { 247 protected: 248 bool default_value() const { return false; } 249 public: 250 void clear() { G1BiasedMappedArray<bool>::clear(); } 251 void set_candidate(uint region, bool value) { 252 set_by_index(region, value); 253 } 254 bool is_candidate(uint region) { 255 return get_by_index(region); 256 } 257 }; 258 259 HumongousReclaimCandidates _humongous_reclaim_candidates; 260 uint _num_humongous_objects; // Current amount of (all) humongous objects found in the heap. 261 uint _num_humongous_reclaim_candidates; // Number of humongous object eager reclaim candidates. 262 public: 263 uint num_humongous_objects() const { return _num_humongous_objects; } 264 uint num_humongous_reclaim_candidates() const { return _num_humongous_reclaim_candidates; } 265 bool has_humongous_reclaim_candidates() const { return _num_humongous_reclaim_candidates > 0; } 266 267 bool should_do_eager_reclaim() const; 268 269 private: 270 271 G1HRPrinter _hr_printer; 272 273 // Return true if an explicit GC should start a concurrent cycle instead 274 // of doing a STW full GC. A concurrent cycle should be started if: 275 // (a) cause == _g1_humongous_allocation, 276 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent, 277 // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent, 278 // (d) cause == _wb_conc_mark or _wb_breakpoint, 279 // (e) cause == _g1_periodic_collection and +G1PeriodicGCInvokesConcurrent. 280 bool should_do_concurrent_full_gc(GCCause::Cause cause); 281 282 // Attempt to start a concurrent cycle with the indicated cause. 283 // precondition: should_do_concurrent_full_gc(cause) 284 bool try_collect_concurrently(GCCause::Cause cause, 285 uint gc_counter, 286 uint old_marking_started_before); 287 288 // indicates whether we are in young or mixed GC mode 289 G1CollectorState _collector_state; 290 291 // Keeps track of how many "old marking cycles" (i.e., Full GCs or 292 // concurrent cycles) we have started. 293 volatile uint _old_marking_cycles_started; 294 295 // Keeps track of how many "old marking cycles" (i.e., Full GCs or 296 // concurrent cycles) we have completed. 297 volatile uint _old_marking_cycles_completed; 298 299 // This is a non-product method that is helpful for testing. It is 300 // called at the end of a GC and artificially expands the heap by 301 // allocating a number of dead regions. This way we can induce very 302 // frequent marking cycles and stress the cleanup / concurrent 303 // cleanup code more (as all the regions that will be allocated by 304 // this method will be found dead by the marking cycle). 305 void allocate_dummy_regions() PRODUCT_RETURN; 306 307 // If the HR printer is active, dump the state of the regions in the 308 // heap after a compaction. 309 void print_hrm_post_compaction(); 310 311 // Create a memory mapper for auxiliary data structures of the given size and 312 // translation factor. 313 static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description, 314 size_t size, 315 size_t translation_factor); 316 317 void trace_heap(GCWhen::Type when, const GCTracer* tracer); 318 319 // These are macros so that, if the assert fires, we get the correct 320 // line number, file, etc. 321 322 #define heap_locking_asserts_params(_extra_message_) \ 323 "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \ 324 (_extra_message_), \ 325 BOOL_TO_STR(Heap_lock->owned_by_self()), \ 326 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \ 327 BOOL_TO_STR(Thread::current()->is_VM_thread()) 328 329 #define assert_heap_locked() \ 330 do { \ 331 assert(Heap_lock->owned_by_self(), \ 332 heap_locking_asserts_params("should be holding the Heap_lock")); \ 333 } while (0) 334 335 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \ 336 do { \ 337 assert(Heap_lock->owned_by_self() || \ 338 (SafepointSynchronize::is_at_safepoint() && \ 339 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \ 340 heap_locking_asserts_params("should be holding the Heap_lock or " \ 341 "should be at a safepoint")); \ 342 } while (0) 343 344 #define assert_heap_locked_and_not_at_safepoint() \ 345 do { \ 346 assert(Heap_lock->owned_by_self() && \ 347 !SafepointSynchronize::is_at_safepoint(), \ 348 heap_locking_asserts_params("should be holding the Heap_lock and " \ 349 "should not be at a safepoint")); \ 350 } while (0) 351 352 #define assert_heap_not_locked() \ 353 do { \ 354 assert(!Heap_lock->owned_by_self(), \ 355 heap_locking_asserts_params("should not be holding the Heap_lock")); \ 356 } while (0) 357 358 #define assert_heap_not_locked_and_not_at_safepoint() \ 359 do { \ 360 assert(!Heap_lock->owned_by_self() && \ 361 !SafepointSynchronize::is_at_safepoint(), \ 362 heap_locking_asserts_params("should not be holding the Heap_lock and " \ 363 "should not be at a safepoint")); \ 364 } while (0) 365 366 #define assert_at_safepoint_on_vm_thread() \ 367 do { \ 368 assert_at_safepoint(); \ 369 assert(Thread::current_or_null() != NULL, "no current thread"); \ 370 assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \ 371 } while (0) 372 373 #ifdef ASSERT 374 #define assert_used_and_recalculate_used_equal(g1h) \ 375 do { \ 376 size_t cur_used_bytes = g1h->used(); \ 377 size_t recal_used_bytes = g1h->recalculate_used(); \ 378 assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \ 379 " same as recalculated used(" SIZE_FORMAT ").", \ 380 cur_used_bytes, recal_used_bytes); \ 381 } while (0) 382 #else 383 #define assert_used_and_recalculate_used_equal(g1h) do {} while(0) 384 #endif 385 386 static const uint MaxYoungGCNameLength = 128; 387 // Sets given young_gc_name to the canonical young gc pause string. Young_gc_name 388 // must be at least of length MaxYoungGCNameLength. 389 void set_young_gc_name(char* young_gc_name); 390 391 // The young region list. 392 G1EdenRegions _eden; 393 G1SurvivorRegions _survivor; 394 395 STWGCTimer* _gc_timer_stw; 396 397 G1NewTracer* _gc_tracer_stw; 398 399 void gc_tracer_report_gc_start(); 400 void gc_tracer_report_gc_end(bool concurrent_operation_is_full_mark, G1EvacuationInfo& evacuation_info); 401 402 // The current policy object for the collector. 403 G1Policy* _policy; 404 G1HeapSizingPolicy* _heap_sizing_policy; 405 406 G1CollectionSet _collection_set; 407 408 // Try to allocate a single non-humongous HeapRegion sufficient for 409 // an allocation of the given word_size. If do_expand is true, 410 // attempt to expand the heap if necessary to satisfy the allocation 411 // request. 'type' takes the type of region to be allocated. (Use constants 412 // Old, Eden, Humongous, Survivor defined in HeapRegionType.) 413 HeapRegion* new_region(size_t word_size, 414 HeapRegionType type, 415 bool do_expand, 416 uint node_index = G1NUMA::AnyNodeIndex); 417 418 // Initialize a contiguous set of free regions of length num_regions 419 // and starting at index first so that they appear as a single 420 // humongous region. 421 HeapWord* humongous_obj_allocate_initialize_regions(HeapRegion* first_hr, 422 uint num_regions, 423 size_t word_size); 424 425 // Attempt to allocate a humongous object of the given size. Return 426 // NULL if unsuccessful. 427 HeapWord* humongous_obj_allocate(size_t word_size); 428 429 // The following two methods, allocate_new_tlab() and 430 // mem_allocate(), are the two main entry points from the runtime 431 // into the G1's allocation routines. They have the following 432 // assumptions: 433 // 434 // * They should both be called outside safepoints. 435 // 436 // * They should both be called without holding the Heap_lock. 437 // 438 // * All allocation requests for new TLABs should go to 439 // allocate_new_tlab(). 440 // 441 // * All non-TLAB allocation requests should go to mem_allocate(). 442 // 443 // * If either call cannot satisfy the allocation request using the 444 // current allocating region, they will try to get a new one. If 445 // this fails, they will attempt to do an evacuation pause and 446 // retry the allocation. 447 // 448 // * If all allocation attempts fail, even after trying to schedule 449 // an evacuation pause, allocate_new_tlab() will return NULL, 450 // whereas mem_allocate() will attempt a heap expansion and/or 451 // schedule a Full GC. 452 // 453 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab 454 // should never be called with word_size being humongous. All 455 // humongous allocation requests should go to mem_allocate() which 456 // will satisfy them with a special path. 457 458 virtual HeapWord* allocate_new_tlab(size_t min_size, 459 size_t requested_size, 460 size_t* actual_size); 461 462 virtual HeapWord* mem_allocate(size_t word_size, 463 bool* gc_overhead_limit_was_exceeded); 464 465 // First-level mutator allocation attempt: try to allocate out of 466 // the mutator alloc region without taking the Heap_lock. This 467 // should only be used for non-humongous allocations. 468 inline HeapWord* attempt_allocation(size_t min_word_size, 469 size_t desired_word_size, 470 size_t* actual_word_size); 471 472 // Second-level mutator allocation attempt: take the Heap_lock and 473 // retry the allocation attempt, potentially scheduling a GC 474 // pause. This should only be used for non-humongous allocations. 475 HeapWord* attempt_allocation_slow(size_t word_size); 476 477 // Takes the Heap_lock and attempts a humongous allocation. It can 478 // potentially schedule a GC pause. 479 HeapWord* attempt_allocation_humongous(size_t word_size); 480 481 // Allocation attempt that should be called during safepoints (e.g., 482 // at the end of a successful GC). expect_null_mutator_alloc_region 483 // specifies whether the mutator alloc region is expected to be NULL 484 // or not. 485 HeapWord* attempt_allocation_at_safepoint(size_t word_size, 486 bool expect_null_mutator_alloc_region); 487 488 // These methods are the "callbacks" from the G1AllocRegion class. 489 490 // For mutator alloc regions. 491 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force, uint node_index); 492 void retire_mutator_alloc_region(HeapRegion* alloc_region, 493 size_t allocated_bytes); 494 495 // For GC alloc regions. 496 bool has_more_regions(G1HeapRegionAttr dest); 497 HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index); 498 void retire_gc_alloc_region(HeapRegion* alloc_region, 499 size_t allocated_bytes, G1HeapRegionAttr dest); 500 501 // - if explicit_gc is true, the GC is for a System.gc() etc, 502 // otherwise it's for a failed allocation. 503 // - if clear_all_soft_refs is true, all soft references should be 504 // cleared during the GC. 505 // - if do_maximum_compaction is true, full gc will do a maximally 506 // compacting collection, leaving no dead wood. 507 // - it returns false if it is unable to do the collection due to the 508 // GC locker being active, true otherwise. 509 bool do_full_collection(bool explicit_gc, 510 bool clear_all_soft_refs, 511 bool do_maximum_compaction); 512 513 // Callback from VM_G1CollectFull operation, or collect_as_vm_thread. 514 virtual void do_full_collection(bool clear_all_soft_refs); 515 516 // Helper to do a full collection that clears soft references. 517 bool upgrade_to_full_collection(); 518 519 // Callback from VM_G1CollectForAllocation operation. 520 // This function does everything necessary/possible to satisfy a 521 // failed allocation request (including collection, expansion, etc.) 522 HeapWord* satisfy_failed_allocation(size_t word_size, 523 bool* succeeded); 524 // Internal helpers used during full GC to split it up to 525 // increase readability. 526 void abort_concurrent_cycle(); 527 void verify_before_full_collection(bool explicit_gc); 528 void prepare_heap_for_full_collection(); 529 void prepare_heap_for_mutators(); 530 void abort_refinement(); 531 void verify_after_full_collection(); 532 void print_heap_after_full_collection(G1HeapTransition* heap_transition); 533 534 // Helper method for satisfy_failed_allocation() 535 HeapWord* satisfy_failed_allocation_helper(size_t word_size, 536 bool do_gc, 537 bool maximum_compaction, 538 bool expect_null_mutator_alloc_region, 539 bool* gc_succeeded); 540 541 // Attempting to expand the heap sufficiently 542 // to support an allocation of the given "word_size". If 543 // successful, perform the allocation and return the address of the 544 // allocated block, or else "NULL". 545 HeapWord* expand_and_allocate(size_t word_size); 546 547 // Process any reference objects discovered. 548 void process_discovered_references(G1ParScanThreadStateSet* per_thread_states); 549 550 // If during a concurrent start pause we may install a pending list head which is not 551 // otherwise reachable, ensure that it is marked in the bitmap for concurrent marking 552 // to discover. 553 void make_pending_list_reachable(); 554 555 void verify_numa_regions(const char* desc); 556 557 public: 558 G1ServiceThread* service_thread() const { return _service_thread; } 559 560 WorkGang* workers() const { return _workers; } 561 562 // Runs the given AbstractGangTask with the current active workers, 563 // returning the total time taken. 564 Tickspan run_task_timed(AbstractGangTask* task); 565 // Run the given batch task using the work gang. 566 void run_batch_task(G1BatchedGangTask* cl); 567 568 G1Allocator* allocator() { 569 return _allocator; 570 } 571 572 G1HeapVerifier* verifier() { 573 return _verifier; 574 } 575 576 G1MonitoringSupport* g1mm() { 577 assert(_g1mm != NULL, "should have been initialized"); 578 return _g1mm; 579 } 580 581 void resize_heap_if_necessary(); 582 583 // Check if there is memory to uncommit and if so schedule a task to do it. 584 void uncommit_regions_if_necessary(); 585 // Immediately uncommit uncommittable regions. 586 uint uncommit_regions(uint region_limit); 587 bool has_uncommittable_regions(); 588 589 G1NUMA* numa() const { return _numa; } 590 591 // Expand the garbage-first heap by at least the given size (in bytes!). 592 // Returns true if the heap was expanded by the requested amount; 593 // false otherwise. 594 // (Rounds up to a HeapRegion boundary.) 595 bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL); 596 bool expand_single_region(uint node_index); 597 598 // Returns the PLAB statistics for a given destination. 599 inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest); 600 601 // Determines PLAB size for a given destination. 602 inline size_t desired_plab_sz(G1HeapRegionAttr dest); 603 604 // Do anything common to GC's. 605 void gc_prologue(bool full); 606 void gc_epilogue(bool full); 607 608 // Does the given region fulfill remembered set based eager reclaim candidate requirements? 609 bool is_potential_eager_reclaim_candidate(HeapRegion* r) const; 610 611 // Modify the reclaim candidate set and test for presence. 612 // These are only valid for starts_humongous regions. 613 inline void set_humongous_reclaim_candidate(uint region, bool value); 614 inline bool is_humongous_reclaim_candidate(uint region); 615 616 // Remove from the reclaim candidate set. Also remove from the 617 // collection set so that later encounters avoid the slow path. 618 inline void set_humongous_is_live(oop obj); 619 620 // Register the given region to be part of the collection set. 621 inline void register_humongous_region_with_region_attr(uint index); 622 623 // We register a region with the fast "in collection set" test. We 624 // simply set to true the array slot corresponding to this region. 625 void register_young_region_with_region_attr(HeapRegion* r) { 626 _region_attr.set_in_young(r->hrm_index()); 627 } 628 inline void register_region_with_region_attr(HeapRegion* r); 629 inline void register_old_region_with_region_attr(HeapRegion* r); 630 inline void register_optional_region_with_region_attr(HeapRegion* r); 631 632 void clear_region_attr(const HeapRegion* hr) { 633 _region_attr.clear(hr); 634 } 635 636 void clear_region_attr() { 637 _region_attr.clear(); 638 } 639 640 // Verify that the G1RegionAttr remset tracking corresponds to actual remset tracking 641 // for all regions. 642 void verify_region_attr_remset_update() PRODUCT_RETURN; 643 644 bool is_user_requested_concurrent_full_gc(GCCause::Cause cause); 645 646 // This is called at the start of either a concurrent cycle or a Full 647 // GC to update the number of old marking cycles started. 648 void increment_old_marking_cycles_started(); 649 650 // This is called at the end of either a concurrent cycle or a Full 651 // GC to update the number of old marking cycles completed. Those two 652 // can happen in a nested fashion, i.e., we start a concurrent 653 // cycle, a Full GC happens half-way through it which ends first, 654 // and then the cycle notices that a Full GC happened and ends 655 // too. The concurrent parameter is a boolean to help us do a bit 656 // tighter consistency checking in the method. If concurrent is 657 // false, the caller is the inner caller in the nesting (i.e., the 658 // Full GC). If concurrent is true, the caller is the outer caller 659 // in this nesting (i.e., the concurrent cycle). Further nesting is 660 // not currently supported. The end of this call also notifies 661 // the G1OldGCCount_lock in case a Java thread is waiting for a full 662 // GC to happen (e.g., it called System.gc() with 663 // +ExplicitGCInvokesConcurrent). 664 // whole_heap_examined should indicate that during that old marking 665 // cycle the whole heap has been examined for live objects (as opposed 666 // to only parts, or aborted before completion). 667 void increment_old_marking_cycles_completed(bool concurrent, bool whole_heap_examined); 668 669 uint old_marking_cycles_completed() { 670 return _old_marking_cycles_completed; 671 } 672 673 G1HRPrinter* hr_printer() { return &_hr_printer; } 674 675 // Allocates a new heap region instance. 676 HeapRegion* new_heap_region(uint hrs_index, MemRegion mr); 677 678 // Allocate the highest free region in the reserved heap. This will commit 679 // regions as necessary. 680 HeapRegion* alloc_highest_free_region(); 681 682 // Frees a region by resetting its metadata and adding it to the free list 683 // passed as a parameter (this is usually a local list which will be appended 684 // to the master free list later or NULL if free list management is handled 685 // in another way). 686 // Callers must ensure they are the only one calling free on the given region 687 // at the same time. 688 void free_region(HeapRegion* hr, FreeRegionList* free_list); 689 690 // It dirties the cards that cover the block so that the post 691 // write barrier never queues anything when updating objects on this 692 // block. It is assumed (and in fact we assert) that the block 693 // belongs to a young region. 694 inline void dirty_young_block(HeapWord* start, size_t word_size); 695 696 // Frees a humongous region by collapsing it into individual regions 697 // and calling free_region() for each of them. The freed regions 698 // will be added to the free list that's passed as a parameter (this 699 // is usually a local list which will be appended to the master free 700 // list later). 701 // The method assumes that only a single thread is ever calling 702 // this for a particular region at once. 703 void free_humongous_region(HeapRegion* hr, 704 FreeRegionList* free_list); 705 706 // Facility for allocating in 'archive' regions in high heap memory and 707 // recording the allocated ranges. These should all be called from the 708 // VM thread at safepoints, without the heap lock held. They can be used 709 // to create and archive a set of heap regions which can be mapped at the 710 // same fixed addresses in a subsequent JVM invocation. 711 void begin_archive_alloc_range(bool open = false); 712 713 // Check if the requested size would be too large for an archive allocation. 714 bool is_archive_alloc_too_large(size_t word_size); 715 716 // Allocate memory of the requested size from the archive region. This will 717 // return NULL if the size is too large or if no memory is available. It 718 // does not trigger a garbage collection. 719 HeapWord* archive_mem_allocate(size_t word_size); 720 721 // Optionally aligns the end address and returns the allocated ranges in 722 // an array of MemRegions in order of ascending addresses. 723 void end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 724 size_t end_alignment_in_bytes = 0); 725 726 // Facility for allocating a fixed range within the heap and marking 727 // the containing regions as 'archive'. For use at JVM init time, when the 728 // caller may mmap archived heap data at the specified range(s). 729 // Verify that the MemRegions specified in the argument array are within the 730 // reserved heap. 731 bool check_archive_addresses(MemRegion* range, size_t count); 732 733 // Commit the appropriate G1 regions containing the specified MemRegions 734 // and mark them as 'archive' regions. The regions in the array must be 735 // non-overlapping and in order of ascending address. 736 bool alloc_archive_regions(MemRegion* range, size_t count, bool open); 737 738 // Insert any required filler objects in the G1 regions around the specified 739 // ranges to make the regions parseable. This must be called after 740 // alloc_archive_regions, and after class loading has occurred. 741 void fill_archive_regions(MemRegion* range, size_t count); 742 743 // Populate the G1BlockOffsetTablePart for archived regions with the given 744 // memory ranges. 745 void populate_archive_regions_bot_part(MemRegion* range, size_t count); 746 747 // For each of the specified MemRegions, uncommit the containing G1 regions 748 // which had been allocated by alloc_archive_regions. This should be called 749 // rather than fill_archive_regions at JVM init time if the archive file 750 // mapping failed, with the same non-overlapping and sorted MemRegion array. 751 void dealloc_archive_regions(MemRegion* range, size_t count); 752 753 private: 754 755 // Shrink the garbage-first heap by at most the given size (in bytes!). 756 // (Rounds down to a HeapRegion boundary.) 757 void shrink(size_t shrink_bytes); 758 void shrink_helper(size_t expand_bytes); 759 760 #if TASKQUEUE_STATS 761 static void print_taskqueue_stats_hdr(outputStream* const st); 762 void print_taskqueue_stats() const; 763 void reset_taskqueue_stats(); 764 #endif // TASKQUEUE_STATS 765 766 // Start a concurrent cycle. 767 void start_concurrent_cycle(bool concurrent_operation_is_full_mark); 768 769 // Schedule the VM operation that will do an evacuation pause to 770 // satisfy an allocation request of word_size. *succeeded will 771 // return whether the VM operation was successful (it did do an 772 // evacuation pause) or not (another thread beat us to it or the GC 773 // locker was active). Given that we should not be holding the 774 // Heap_lock when we enter this method, we will pass the 775 // gc_count_before (i.e., total_collections()) as a parameter since 776 // it has to be read while holding the Heap_lock. Currently, both 777 // methods that call do_collection_pause() release the Heap_lock 778 // before the call, so it's easy to read gc_count_before just before. 779 HeapWord* do_collection_pause(size_t word_size, 780 uint gc_count_before, 781 bool* succeeded, 782 GCCause::Cause gc_cause); 783 784 void wait_for_root_region_scanning(); 785 786 // Perform an incremental collection at a safepoint, possibly 787 // followed by a by-policy upgrade to a full collection. Returns 788 // false if unable to do the collection due to the GC locker being 789 // active, true otherwise. 790 // precondition: at safepoint on VM thread 791 // precondition: !is_gc_active() 792 bool do_collection_pause_at_safepoint(double target_pause_time_ms); 793 794 // Helper for do_collection_pause_at_safepoint, containing the guts 795 // of the incremental collection pause, executed by the vm thread. 796 void do_collection_pause_at_safepoint_helper(double target_pause_time_ms); 797 798 G1HeapVerifier::G1VerifyType young_collection_verify_type() const; 799 void verify_before_young_collection(G1HeapVerifier::G1VerifyType type); 800 void verify_after_young_collection(G1HeapVerifier::G1VerifyType type); 801 802 void calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms); 803 804 // Actually do the work of evacuating the parts of the collection set. 805 // The has_optional_evacuation_work flag for the initial collection set 806 // evacuation indicates whether one or more optional evacuation steps may 807 // follow. 808 // If not set, G1 can avoid clearing the card tables of regions that we scan 809 // for roots from the heap: when scanning the card table for dirty cards after 810 // all remembered sets have been dumped onto it, for optional evacuation we 811 // mark these cards as "Scanned" to know that we do not need to re-scan them 812 // in the additional optional evacuation passes. This means that in the "Clear 813 // Card Table" phase we need to clear those marks. However, if there is no 814 // optional evacuation, g1 can immediately clean the dirty cards it encounters 815 // as nobody else will be looking at them again, saving the clear card table 816 // work later. 817 // This case is very common (young only collections and most mixed gcs), so 818 // depending on the ratio between scanned and evacuated regions (which g1 always 819 // needs to clear), this is a big win. 820 void evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states, 821 bool has_optional_evacuation_work); 822 void evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states); 823 private: 824 // Evacuate the next set of optional regions. 825 void evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states); 826 827 public: 828 void pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss); 829 void post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, 830 G1RedirtyCardsQueueSet* rdcqs, 831 G1ParScanThreadStateSet* pss); 832 833 void expand_heap_after_young_collection(); 834 // Update object copying statistics. 835 void record_obj_copy_mem_stats(); 836 837 // The hot card cache for remembered set insertion optimization. 838 G1HotCardCache* _hot_card_cache; 839 840 // The g1 remembered set of the heap. 841 G1RemSet* _rem_set; 842 843 void post_evacuate_cleanup_1(G1ParScanThreadStateSet* per_thread_states, 844 G1RedirtyCardsQueueSet* rdcqs); 845 void post_evacuate_cleanup_2(PreservedMarksSet* preserved_marks, 846 G1RedirtyCardsQueueSet* rdcqs, 847 G1EvacuationInfo* evacuation_info, 848 const size_t* surviving_young_words); 849 850 // After a collection pause, reset eden and the collection set. 851 void clear_eden(); 852 void clear_collection_set(); 853 854 // Abandon the current collection set without recording policy 855 // statistics or updating free lists. 856 void abandon_collection_set(G1CollectionSet* collection_set); 857 858 // The concurrent marker (and the thread it runs in.) 859 G1ConcurrentMark* _cm; 860 G1ConcurrentMarkThread* _cm_thread; 861 862 // The concurrent refiner. 863 G1ConcurrentRefine* _cr; 864 865 // The parallel task queues 866 G1ScannerTasksQueueSet *_task_queues; 867 868 // Number of regions evacuation failed in the current collection. 869 volatile uint _num_regions_failed_evacuation; 870 // Records for every region on the heap whether evacuation failed for it. 871 volatile bool* _regions_failed_evacuation; 872 873 EvacuationFailedInfo* _evacuation_failed_info_array; 874 875 PreservedMarksSet _preserved_marks_set; 876 877 // Preserve the mark of "obj", if necessary, in preparation for its mark 878 // word being overwritten with a self-forwarding-pointer. 879 void preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m); 880 881 #ifndef PRODUCT 882 // Support for forcing evacuation failures. Analogous to 883 // PromotionFailureALot for the other collectors. 884 885 // Records whether G1EvacuationFailureALot should be in effect 886 // for the current GC 887 bool _evacuation_failure_alot_for_current_gc; 888 889 // Used to record the GC number for interval checking when 890 // determining whether G1EvaucationFailureALot is in effect 891 // for the current GC. 892 size_t _evacuation_failure_alot_gc_number; 893 894 // Count of the number of evacuations between failures. 895 volatile size_t _evacuation_failure_alot_count; 896 897 // Set whether G1EvacuationFailureALot should be in effect 898 // for the current GC (based upon the type of GC and which 899 // command line flags are set); 900 inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc, 901 bool during_concurrent_start, 902 bool mark_or_rebuild_in_progress); 903 904 inline void set_evacuation_failure_alot_for_current_gc(); 905 906 // Return true if it's time to cause an evacuation failure. 907 inline bool evacuation_should_fail(); 908 909 // Reset the G1EvacuationFailureALot counters. Should be called at 910 // the end of an evacuation pause in which an evacuation failure occurred. 911 inline void reset_evacuation_should_fail(); 912 #endif // !PRODUCT 913 914 // ("Weak") Reference processing support. 915 // 916 // G1 has 2 instances of the reference processor class. One 917 // (_ref_processor_cm) handles reference object discovery 918 // and subsequent processing during concurrent marking cycles. 919 // 920 // The other (_ref_processor_stw) handles reference object 921 // discovery and processing during full GCs and incremental 922 // evacuation pauses. 923 // 924 // During an incremental pause, reference discovery will be 925 // temporarily disabled for _ref_processor_cm and will be 926 // enabled for _ref_processor_stw. At the end of the evacuation 927 // pause references discovered by _ref_processor_stw will be 928 // processed and discovery will be disabled. The previous 929 // setting for reference object discovery for _ref_processor_cm 930 // will be re-instated. 931 // 932 // At the start of marking: 933 // * Discovery by the CM ref processor is verified to be inactive 934 // and it's discovered lists are empty. 935 // * Discovery by the CM ref processor is then enabled. 936 // 937 // At the end of marking: 938 // * Any references on the CM ref processor's discovered 939 // lists are processed (possibly MT). 940 // 941 // At the start of full GC we: 942 // * Disable discovery by the CM ref processor and 943 // empty CM ref processor's discovered lists 944 // (without processing any entries). 945 // * Verify that the STW ref processor is inactive and it's 946 // discovered lists are empty. 947 // * Temporarily set STW ref processor discovery as single threaded. 948 // * Temporarily clear the STW ref processor's _is_alive_non_header 949 // field. 950 // * Finally enable discovery by the STW ref processor. 951 // 952 // The STW ref processor is used to record any discovered 953 // references during the full GC. 954 // 955 // At the end of a full GC we: 956 // * Enqueue any reference objects discovered by the STW ref processor 957 // that have non-live referents. This has the side-effect of 958 // making the STW ref processor inactive by disabling discovery. 959 // * Verify that the CM ref processor is still inactive 960 // and no references have been placed on it's discovered 961 // lists (also checked as a precondition during concurrent start). 962 963 // The (stw) reference processor... 964 ReferenceProcessor* _ref_processor_stw; 965 966 // During reference object discovery, the _is_alive_non_header 967 // closure (if non-null) is applied to the referent object to 968 // determine whether the referent is live. If so then the 969 // reference object does not need to be 'discovered' and can 970 // be treated as a regular oop. This has the benefit of reducing 971 // the number of 'discovered' reference objects that need to 972 // be processed. 973 // 974 // Instance of the is_alive closure for embedding into the 975 // STW reference processor as the _is_alive_non_header field. 976 // Supplying a value for the _is_alive_non_header field is 977 // optional but doing so prevents unnecessary additions to 978 // the discovered lists during reference discovery. 979 G1STWIsAliveClosure _is_alive_closure_stw; 980 981 G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw; 982 983 // The (concurrent marking) reference processor... 984 ReferenceProcessor* _ref_processor_cm; 985 986 // Instance of the concurrent mark is_alive closure for embedding 987 // into the Concurrent Marking reference processor as the 988 // _is_alive_non_header field. Supplying a value for the 989 // _is_alive_non_header field is optional but doing so prevents 990 // unnecessary additions to the discovered lists during reference 991 // discovery. 992 G1CMIsAliveClosure _is_alive_closure_cm; 993 994 G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm; 995 public: 996 997 G1ScannerTasksQueue* task_queue(uint i) const; 998 999 uint num_task_queues() const; 1000 1001 // Create a G1CollectedHeap. 1002 // Must call the initialize method afterwards. 1003 // May not return if something goes wrong. 1004 G1CollectedHeap(); 1005 1006 private: 1007 jint initialize_concurrent_refinement(); 1008 jint initialize_service_thread(); 1009 public: 1010 // Initialize the G1CollectedHeap to have the initial and 1011 // maximum sizes and remembered and barrier sets 1012 // specified by the policy object. 1013 jint initialize(); 1014 1015 virtual void stop(); 1016 virtual void safepoint_synchronize_begin(); 1017 virtual void safepoint_synchronize_end(); 1018 1019 // Does operations required after initialization has been done. 1020 void post_initialize(); 1021 1022 // Initialize weak reference processing. 1023 void ref_processing_init(); 1024 1025 virtual Name kind() const { 1026 return CollectedHeap::G1; 1027 } 1028 1029 virtual const char* name() const { 1030 return "G1"; 1031 } 1032 1033 const G1CollectorState* collector_state() const { return &_collector_state; } 1034 G1CollectorState* collector_state() { return &_collector_state; } 1035 1036 // The current policy object for the collector. 1037 G1Policy* policy() const { return _policy; } 1038 // The remembered set. 1039 G1RemSet* rem_set() const { return _rem_set; } 1040 1041 inline G1GCPhaseTimes* phase_times() const; 1042 1043 const G1CollectionSet* collection_set() const { return &_collection_set; } 1044 G1CollectionSet* collection_set() { return &_collection_set; } 1045 1046 virtual SoftRefPolicy* soft_ref_policy(); 1047 1048 virtual void initialize_serviceability(); 1049 virtual MemoryUsage memory_usage(); 1050 virtual GrowableArray<GCMemoryManager*> memory_managers(); 1051 virtual GrowableArray<MemoryPool*> memory_pools(); 1052 1053 // Try to minimize the remembered set. 1054 void scrub_rem_set(); 1055 1056 // Apply the given closure on all cards in the Hot Card Cache, emptying it. 1057 void iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id); 1058 1059 // The shared block offset table array. 1060 G1BlockOffsetTable* bot() const { return _bot; } 1061 1062 // Reference Processing accessors 1063 1064 // The STW reference processor.... 1065 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; } 1066 1067 G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; } 1068 1069 // The Concurrent Marking reference processor... 1070 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; } 1071 1072 size_t unused_committed_regions_in_bytes() const; 1073 1074 virtual size_t capacity() const; 1075 virtual size_t used() const; 1076 // This should be called when we're not holding the heap lock. The 1077 // result might be a bit inaccurate. 1078 size_t used_unlocked() const; 1079 size_t recalculate_used() const; 1080 1081 // These virtual functions do the actual allocation. 1082 // Some heaps may offer a contiguous region for shared non-blocking 1083 // allocation, via inlined code (by exporting the address of the top and 1084 // end fields defining the extent of the contiguous allocation region.) 1085 // But G1CollectedHeap doesn't yet support this. 1086 1087 virtual bool is_maximal_no_gc() const { 1088 return _hrm.available() == 0; 1089 } 1090 1091 // Returns true if an incremental GC should be upgrade to a full gc. This 1092 // is done when there are no free regions and the heap can't be expanded. 1093 bool should_upgrade_to_full_gc() const { 1094 return is_maximal_no_gc() && num_free_regions() == 0; 1095 } 1096 1097 // The current number of regions in the heap. 1098 uint num_regions() const { return _hrm.length(); } 1099 1100 // The max number of regions reserved for the heap. Except for static array 1101 // sizing purposes you probably want to use max_regions(). 1102 uint max_reserved_regions() const { return _hrm.reserved_length(); } 1103 1104 // Max number of regions that can be committed. 1105 uint max_regions() const { return _hrm.max_length(); } 1106 1107 // The number of regions that are completely free. 1108 uint num_free_regions() const { return _hrm.num_free_regions(); } 1109 1110 // The number of regions that can be allocated into. 1111 uint num_free_or_available_regions() const { return num_free_regions() + _hrm.available(); } 1112 1113 MemoryUsage get_auxiliary_data_memory_usage() const { 1114 return _hrm.get_auxiliary_data_memory_usage(); 1115 } 1116 1117 // The number of regions that are not completely free. 1118 uint num_used_regions() const { return num_regions() - num_free_regions(); } 1119 1120 #ifdef ASSERT 1121 bool is_on_master_free_list(HeapRegion* hr) { 1122 return _hrm.is_free(hr); 1123 } 1124 #endif // ASSERT 1125 1126 inline void old_set_add(HeapRegion* hr); 1127 inline void old_set_remove(HeapRegion* hr); 1128 1129 inline void archive_set_add(HeapRegion* hr); 1130 1131 size_t non_young_capacity_bytes() { 1132 return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes; 1133 } 1134 1135 // Determine whether the given region is one that we are using as an 1136 // old GC alloc region. 1137 bool is_old_gc_alloc_region(HeapRegion* hr); 1138 1139 // Perform a collection of the heap; intended for use in implementing 1140 // "System.gc". This probably implies as full a collection as the 1141 // "CollectedHeap" supports. 1142 virtual void collect(GCCause::Cause cause); 1143 1144 // Perform a collection of the heap with the given cause. 1145 // Returns whether this collection actually executed. 1146 bool try_collect(GCCause::Cause cause); 1147 1148 // True iff an evacuation has failed in the most-recent collection. 1149 inline bool evacuation_failed() const; 1150 // True iff the given region encountered an evacuation failure in the most-recent 1151 // collection. 1152 inline bool evacuation_failed(uint region_idx) const; 1153 1154 inline uint num_regions_failed_evacuation() const; 1155 // Notify that the garbage collection encountered an evacuation failure in the 1156 // given region. Returns whether this has been the first occurrence of an evacuation 1157 // failure in that region. 1158 inline bool notify_region_failed_evacuation(uint const region_idx); 1159 1160 void remove_from_old_gen_sets(const uint old_regions_removed, 1161 const uint archive_regions_removed, 1162 const uint humongous_regions_removed); 1163 void prepend_to_freelist(FreeRegionList* list); 1164 void decrement_summary_bytes(size_t bytes); 1165 1166 virtual bool is_in(const void* p) const; 1167 1168 // Return "TRUE" iff the given object address is within the collection 1169 // set. Assumes that the reference points into the heap. 1170 inline bool is_in_cset(const HeapRegion *hr); 1171 inline bool is_in_cset(oop obj); 1172 inline bool is_in_cset(HeapWord* addr); 1173 1174 inline bool is_in_cset_or_humongous(const oop obj); 1175 1176 private: 1177 // This array is used for a quick test on whether a reference points into 1178 // the collection set or not. Each of the array's elements denotes whether the 1179 // corresponding region is in the collection set or not. 1180 G1HeapRegionAttrBiasedMappedArray _region_attr; 1181 1182 public: 1183 1184 inline G1HeapRegionAttr region_attr(const void* obj) const; 1185 inline G1HeapRegionAttr region_attr(uint idx) const; 1186 1187 MemRegion reserved() const { 1188 return _hrm.reserved(); 1189 } 1190 1191 bool is_in_reserved(const void* addr) const { 1192 return reserved().contains(addr); 1193 } 1194 1195 G1HotCardCache* hot_card_cache() const { return _hot_card_cache; } 1196 1197 G1CardTable* card_table() const { 1198 return _card_table; 1199 } 1200 1201 // Iteration functions. 1202 1203 void object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer); 1204 1205 // Iterate over all objects, calling "cl.do_object" on each. 1206 virtual void object_iterate(ObjectClosure* cl); 1207 1208 virtual ParallelObjectIterator* parallel_object_iterator(uint thread_num); 1209 1210 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1211 virtual void keep_alive(oop obj); 1212 1213 // Iterate over heap regions, in address order, terminating the 1214 // iteration early if the "do_heap_region" method returns "true". 1215 void heap_region_iterate(HeapRegionClosure* blk) const; 1216 1217 // Return the region with the given index. It assumes the index is valid. 1218 inline HeapRegion* region_at(uint index) const; 1219 inline HeapRegion* region_at_or_null(uint index) const; 1220 1221 // Return the next region (by index) that is part of the same 1222 // humongous object that hr is part of. 1223 inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const; 1224 1225 // Calculate the region index of the given address. Given address must be 1226 // within the heap. 1227 inline uint addr_to_region(HeapWord* addr) const; 1228 1229 inline HeapWord* bottom_addr_for_region(uint index) const; 1230 1231 // Two functions to iterate over the heap regions in parallel. Threads 1232 // compete using the HeapRegionClaimer to claim the regions before 1233 // applying the closure on them. 1234 // The _from_worker_offset version uses the HeapRegionClaimer and 1235 // the worker id to calculate a start offset to prevent all workers to 1236 // start from the point. 1237 void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, 1238 HeapRegionClaimer* hrclaimer, 1239 uint worker_id) const; 1240 1241 void heap_region_par_iterate_from_start(HeapRegionClosure* cl, 1242 HeapRegionClaimer* hrclaimer) const; 1243 1244 // Iterate over all regions in the collection set in parallel. 1245 void collection_set_par_iterate_all(HeapRegionClosure* cl, 1246 HeapRegionClaimer* hr_claimer, 1247 uint worker_id); 1248 1249 // Iterate over all regions currently in the current collection set. 1250 void collection_set_iterate_all(HeapRegionClosure* blk); 1251 1252 // Iterate over the regions in the current increment of the collection set. 1253 // Starts the iteration so that the start regions of a given worker id over the 1254 // set active_workers are evenly spread across the set of collection set regions 1255 // to be iterated. 1256 // The variant with the HeapRegionClaimer guarantees that the closure will be 1257 // applied to a particular region exactly once. 1258 void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id) { 1259 collection_set_iterate_increment_from(blk, NULL, worker_id); 1260 } 1261 void collection_set_iterate_increment_from(HeapRegionClosure *blk, HeapRegionClaimer* hr_claimer, uint worker_id); 1262 1263 // Returns the HeapRegion that contains addr. addr must not be NULL. 1264 template <class T> 1265 inline HeapRegion* heap_region_containing(const T addr) const; 1266 1267 // Returns the HeapRegion that contains addr, or NULL if that is an uncommitted 1268 // region. addr must not be NULL. 1269 template <class T> 1270 inline HeapRegion* heap_region_containing_or_null(const T addr) const; 1271 1272 // A CollectedHeap is divided into a dense sequence of "blocks"; that is, 1273 // each address in the (reserved) heap is a member of exactly 1274 // one block. The defining characteristic of a block is that it is 1275 // possible to find its size, and thus to progress forward to the next 1276 // block. (Blocks may be of different sizes.) Thus, blocks may 1277 // represent Java objects, or they might be free blocks in a 1278 // free-list-based heap (or subheap), as long as the two kinds are 1279 // distinguishable and the size of each is determinable. 1280 1281 // Returns the address of the start of the "block" that contains the 1282 // address "addr". We say "blocks" instead of "object" since some heaps 1283 // may not pack objects densely; a chunk may either be an object or a 1284 // non-object. 1285 HeapWord* block_start(const void* addr) const; 1286 1287 // Requires "addr" to be the start of a block, and returns "TRUE" iff 1288 // the block is an object. 1289 bool block_is_obj(const HeapWord* addr) const; 1290 1291 // Section on thread-local allocation buffers (TLABs) 1292 // See CollectedHeap for semantics. 1293 1294 size_t tlab_capacity(Thread* ignored) const; 1295 size_t tlab_used(Thread* ignored) const; 1296 size_t max_tlab_size() const; 1297 size_t unsafe_max_tlab_alloc(Thread* ignored) const; 1298 1299 inline bool is_in_young(const oop obj); 1300 1301 // Returns "true" iff the given word_size is "very large". 1302 static bool is_humongous(size_t word_size) { 1303 // Note this has to be strictly greater-than as the TLABs 1304 // are capped at the humongous threshold and we want to 1305 // ensure that we don't try to allocate a TLAB as 1306 // humongous and that we don't allocate a humongous 1307 // object in a TLAB. 1308 return word_size > _humongous_object_threshold_in_words; 1309 } 1310 1311 // Returns the humongous threshold for a specific region size 1312 static size_t humongous_threshold_for(size_t region_size) { 1313 return (region_size / 2); 1314 } 1315 1316 // Returns the number of regions the humongous object of the given word size 1317 // requires. 1318 static size_t humongous_obj_size_in_regions(size_t word_size); 1319 1320 // Print the maximum heap capacity. 1321 virtual size_t max_capacity() const; 1322 1323 Tickspan time_since_last_collection() const { return Ticks::now() - _collection_pause_end; } 1324 1325 // Convenience function to be used in situations where the heap type can be 1326 // asserted to be this type. 1327 static G1CollectedHeap* heap() { 1328 return named_heap<G1CollectedHeap>(CollectedHeap::G1); 1329 } 1330 1331 void set_region_short_lived_locked(HeapRegion* hr); 1332 // add appropriate methods for any other surv rate groups 1333 1334 const G1SurvivorRegions* survivor() const { return &_survivor; } 1335 1336 uint eden_regions_count() const { return _eden.length(); } 1337 uint eden_regions_count(uint node_index) const { return _eden.regions_on_node(node_index); } 1338 uint survivor_regions_count() const { return _survivor.length(); } 1339 uint survivor_regions_count(uint node_index) const { return _survivor.regions_on_node(node_index); } 1340 size_t eden_regions_used_bytes() const { return _eden.used_bytes(); } 1341 size_t survivor_regions_used_bytes() const { return _survivor.used_bytes(); } 1342 uint young_regions_count() const { return _eden.length() + _survivor.length(); } 1343 uint old_regions_count() const { return _old_set.length(); } 1344 uint archive_regions_count() const { return _archive_set.length(); } 1345 uint humongous_regions_count() const { return _humongous_set.length(); } 1346 1347 #ifdef ASSERT 1348 bool check_young_list_empty(); 1349 #endif 1350 1351 bool is_marked_next(oop obj) const; 1352 1353 // Determine if an object is dead, given the object and also 1354 // the region to which the object belongs. 1355 bool is_obj_dead(const oop obj, const HeapRegion* hr) const { 1356 return hr->is_obj_dead(obj, _cm->prev_mark_bitmap()); 1357 } 1358 1359 // This function returns true when an object has been 1360 // around since the previous marking and hasn't yet 1361 // been marked during this marking, and is not in a closed archive region. 1362 bool is_obj_ill(const oop obj, const HeapRegion* hr) const { 1363 return 1364 !hr->obj_allocated_since_next_marking(obj) && 1365 !is_marked_next(obj) && 1366 !hr->is_closed_archive(); 1367 } 1368 1369 // Determine if an object is dead, given only the object itself. 1370 // This will find the region to which the object belongs and 1371 // then call the region version of the same function. 1372 1373 // Added if it is NULL it isn't dead. 1374 1375 inline bool is_obj_dead(const oop obj) const; 1376 1377 inline bool is_obj_ill(const oop obj) const; 1378 1379 inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const; 1380 inline bool is_obj_dead_full(const oop obj) const; 1381 1382 G1ConcurrentMark* concurrent_mark() const { return _cm; } 1383 1384 // Refinement 1385 1386 G1ConcurrentRefine* concurrent_refine() const { return _cr; } 1387 1388 // Optimized nmethod scanning support routines 1389 1390 // Register the given nmethod with the G1 heap. 1391 virtual void register_nmethod(nmethod* nm); 1392 1393 // Unregister the given nmethod from the G1 heap. 1394 virtual void unregister_nmethod(nmethod* nm); 1395 1396 // No nmethod flushing needed. 1397 virtual void flush_nmethod(nmethod* nm) {} 1398 1399 // No nmethod verification implemented. 1400 virtual void verify_nmethod(nmethod* nm) {} 1401 1402 // Recalculate amount of used memory after GC. Must be called after all allocation 1403 // has finished. 1404 void update_used_after_gc(); 1405 // Reset and re-enable the hot card cache. 1406 // Note the counts for the cards in the regions in the 1407 // collection set are reset when the collection set is freed. 1408 void reset_hot_card_cache(); 1409 // Free up superfluous code root memory. 1410 void purge_code_root_memory(); 1411 1412 // Rebuild the strong code root lists for each region 1413 // after a full GC. 1414 void rebuild_strong_code_roots(); 1415 1416 // Performs cleaning of data structures after class unloading. 1417 void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred); 1418 1419 // Verification 1420 1421 // Perform any cleanup actions necessary before allowing a verification. 1422 virtual void prepare_for_verify(); 1423 1424 // Perform verification. 1425 1426 // vo == UsePrevMarking -> use "prev" marking information, 1427 // vo == UseNextMarking -> use "next" marking information 1428 // vo == UseFullMarking -> use "next" marking bitmap but no TAMS 1429 // 1430 // NOTE: Only the "prev" marking information is guaranteed to be 1431 // consistent most of the time, so most calls to this should use 1432 // vo == UsePrevMarking. 1433 // Currently, there is only one case where this is called with 1434 // vo == UseNextMarking, which is to verify the "next" marking 1435 // information at the end of remark. 1436 // Currently there is only one place where this is called with 1437 // vo == UseFullMarking, which is to verify the marking during a 1438 // full GC. 1439 void verify(VerifyOption vo); 1440 1441 // WhiteBox testing support. 1442 virtual bool supports_concurrent_gc_breakpoints() const; 1443 1444 virtual WorkGang* safepoint_workers() { return _workers; } 1445 1446 virtual bool is_archived_object(oop object) const; 1447 1448 // The methods below are here for convenience and dispatch the 1449 // appropriate method depending on value of the given VerifyOption 1450 // parameter. The values for that parameter, and their meanings, 1451 // are the same as those above. 1452 1453 bool is_obj_dead_cond(const oop obj, 1454 const HeapRegion* hr, 1455 const VerifyOption vo) const; 1456 1457 bool is_obj_dead_cond(const oop obj, 1458 const VerifyOption vo) const; 1459 1460 G1HeapSummary create_g1_heap_summary(); 1461 G1EvacSummary create_g1_evac_summary(G1EvacStats* stats); 1462 1463 // Printing 1464 private: 1465 void print_heap_regions() const; 1466 void print_regions_on(outputStream* st) const; 1467 1468 public: 1469 virtual void print_on(outputStream* st) const; 1470 virtual void print_extended_on(outputStream* st) const; 1471 virtual void print_on_error(outputStream* st) const; 1472 1473 virtual void gc_threads_do(ThreadClosure* tc) const; 1474 1475 // Override 1476 void print_tracing_info() const; 1477 1478 // The following two methods are helpful for debugging RSet issues. 1479 void print_cset_rsets() PRODUCT_RETURN; 1480 void print_all_rsets() PRODUCT_RETURN; 1481 1482 // Used to print information about locations in the hs_err file. 1483 virtual bool print_location(outputStream* st, void* addr) const; 1484 }; 1485 1486 class G1ParEvacuateFollowersClosure : public VoidClosure { 1487 private: 1488 double _start_term; 1489 double _term_time; 1490 size_t _term_attempts; 1491 1492 void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); } 1493 void end_term_time() { _term_time += (os::elapsedTime() - _start_term); } 1494 protected: 1495 G1CollectedHeap* _g1h; 1496 G1ParScanThreadState* _par_scan_state; 1497 G1ScannerTasksQueueSet* _queues; 1498 TaskTerminator* _terminator; 1499 G1GCPhaseTimes::GCParPhases _phase; 1500 1501 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 1502 G1ScannerTasksQueueSet* queues() { return _queues; } 1503 TaskTerminator* terminator() { return _terminator; } 1504 1505 public: 1506 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 1507 G1ParScanThreadState* par_scan_state, 1508 G1ScannerTasksQueueSet* queues, 1509 TaskTerminator* terminator, 1510 G1GCPhaseTimes::GCParPhases phase) 1511 : _start_term(0.0), _term_time(0.0), _term_attempts(0), 1512 _g1h(g1h), _par_scan_state(par_scan_state), 1513 _queues(queues), _terminator(terminator), _phase(phase) {} 1514 1515 void do_void(); 1516 1517 double term_time() const { return _term_time; } 1518 size_t term_attempts() const { return _term_attempts; } 1519 1520 private: 1521 inline bool offer_termination(); 1522 }; 1523 1524 #endif // SHARE_GC_G1_G1COLLECTEDHEAP_HPP