1 /* 2 * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP 26 #define SHARE_GC_G1_G1COLLECTEDHEAP_HPP 27 28 #include "gc/g1/g1BarrierSet.hpp" 29 #include "gc/g1/g1BiasedArray.hpp" 30 #include "gc/g1/g1CardTable.hpp" 31 #include "gc/g1/g1CollectionSet.hpp" 32 #include "gc/g1/g1CollectorState.hpp" 33 #include "gc/g1/g1ConcurrentMark.hpp" 34 #include "gc/g1/g1EdenRegions.hpp" 35 #include "gc/g1/g1EvacFailure.hpp" 36 #include "gc/g1/g1EvacStats.hpp" 37 #include "gc/g1/g1EvacuationInfo.hpp" 38 #include "gc/g1/g1GCPhaseTimes.hpp" 39 #include "gc/g1/g1GCPauseType.hpp" 40 #include "gc/g1/g1HeapTransition.hpp" 41 #include "gc/g1/g1HeapVerifier.hpp" 42 #include "gc/g1/g1HRPrinter.hpp" 43 #include "gc/g1/g1HeapRegionAttr.hpp" 44 #include "gc/g1/g1MonitoringSupport.hpp" 45 #include "gc/g1/g1NUMA.hpp" 46 #include "gc/g1/g1RedirtyCardsQueue.hpp" 47 #include "gc/g1/g1SurvivorRegions.hpp" 48 #include "gc/g1/heapRegionManager.hpp" 49 #include "gc/g1/heapRegionSet.hpp" 50 #include "gc/shared/barrierSet.hpp" 51 #include "gc/shared/collectedHeap.hpp" 52 #include "gc/shared/gcHeapSummary.hpp" 53 #include "gc/shared/plab.hpp" 54 #include "gc/shared/preservedMarks.hpp" 55 #include "gc/shared/softRefPolicy.hpp" 56 #include "gc/shared/taskqueue.hpp" 57 #include "memory/memRegion.hpp" 58 #include "utilities/stack.hpp" 59 60 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot. 61 // It uses the "Garbage First" heap organization and algorithm, which 62 // may combine concurrent marking with parallel, incremental compaction of 63 // heap subsets that will yield large amounts of garbage. 64 65 // Forward declarations 66 class HeapRegion; 67 class GenerationSpec; 68 class G1ParScanThreadState; 69 class G1ParScanThreadStateSet; 70 class G1ParScanThreadState; 71 class MemoryPool; 72 class MemoryManager; 73 class ObjectClosure; 74 class SpaceClosure; 75 class CompactibleSpaceClosure; 76 class Space; 77 class G1BatchedGangTask; 78 class G1CardTableEntryClosure; 79 class G1CollectionSet; 80 class G1Policy; 81 class G1HotCardCache; 82 class G1RemSet; 83 class G1ServiceTask; 84 class G1ServiceThread; 85 class G1ConcurrentMark; 86 class G1ConcurrentMarkThread; 87 class G1ConcurrentRefine; 88 class GenerationCounters; 89 class STWGCTimer; 90 class SlidingForwarding; 91 class G1NewTracer; 92 class EvacuationFailedInfo; 93 class nmethod; 94 class WorkGang; 95 class G1Allocator; 96 class G1ArchiveAllocator; 97 class G1FullGCScope; 98 class G1HeapVerifier; 99 class G1HeapSizingPolicy; 100 class G1HeapSummary; 101 class G1EvacSummary; 102 103 typedef OverflowTaskQueue<ScannerTask, mtGC> G1ScannerTasksQueue; 104 typedef GenericTaskQueueSet<G1ScannerTasksQueue, mtGC> G1ScannerTasksQueueSet; 105 106 typedef int RegionIdx_t; // needs to hold [ 0..max_reserved_regions() ) 107 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion ) 108 109 // The G1 STW is alive closure. 110 // An instance is embedded into the G1CH and used as the 111 // (optional) _is_alive_non_header closure in the STW 112 // reference processor. It is also extensively used during 113 // reference processing during STW evacuation pauses. 114 class G1STWIsAliveClosure : public BoolObjectClosure { 115 G1CollectedHeap* _g1h; 116 public: 117 G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} 118 bool do_object_b(oop p); 119 }; 120 121 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure { 122 G1CollectedHeap* _g1h; 123 public: 124 G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} 125 bool do_object_b(oop p); 126 }; 127 128 class G1RegionMappingChangedListener : public G1MappingChangedListener { 129 private: 130 void reset_from_card_cache(uint start_idx, size_t num_regions); 131 public: 132 virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled); 133 }; 134 135 class G1CollectedHeap : public CollectedHeap { 136 friend class VM_CollectForMetadataAllocation; 137 friend class VM_G1CollectForAllocation; 138 friend class VM_G1CollectFull; 139 friend class VM_G1TryInitiateConcMark; 140 friend class VMStructs; 141 friend class MutatorAllocRegion; 142 friend class G1FullCollector; 143 friend class G1GCAllocRegion; 144 friend class G1HeapVerifier; 145 146 // Closures used in implementation. 147 friend class G1ParScanThreadState; 148 friend class G1ParScanThreadStateSet; 149 friend class G1EvacuateRegionsTask; 150 friend class G1PLABAllocator; 151 152 // Other related classes. 153 friend class HeapRegionClaimer; 154 155 // Testing classes. 156 friend class G1CheckRegionAttrTableClosure; 157 158 private: 159 G1ServiceThread* _service_thread; 160 G1ServiceTask* _periodic_gc_task; 161 162 WorkGang* _workers; 163 G1CardTable* _card_table; 164 165 Ticks _collection_pause_end; 166 167 SoftRefPolicy _soft_ref_policy; 168 169 static size_t _humongous_object_threshold_in_words; 170 171 // These sets keep track of old, archive and humongous regions respectively. 172 HeapRegionSet _old_set; 173 HeapRegionSet _archive_set; 174 HeapRegionSet _humongous_set; 175 176 void rebuild_free_region_list(); 177 // Start a new incremental collection set for the next pause. 178 void start_new_collection_set(); 179 180 // The block offset table for the G1 heap. 181 G1BlockOffsetTable* _bot; 182 183 public: 184 void prepare_region_for_full_compaction(HeapRegion* hr); 185 186 private: 187 // Rebuilds the region sets / lists so that they are repopulated to 188 // reflect the contents of the heap. The only exception is the 189 // humongous set which was not torn down in the first place. If 190 // free_list_only is true, it will only rebuild the free list. 191 void rebuild_region_sets(bool free_list_only); 192 193 // Callback for region mapping changed events. 194 G1RegionMappingChangedListener _listener; 195 196 // Handle G1 NUMA support. 197 G1NUMA* _numa; 198 199 // The sequence of all heap regions in the heap. 200 HeapRegionManager _hrm; 201 202 // Manages all allocations with regions except humongous object allocations. 203 G1Allocator* _allocator; 204 205 // Manages all heap verification. 206 G1HeapVerifier* _verifier; 207 208 // Outside of GC pauses, the number of bytes used in all regions other 209 // than the current allocation region(s). 210 volatile size_t _summary_bytes_used; 211 212 void increase_used(size_t bytes); 213 void decrease_used(size_t bytes); 214 215 void set_used(size_t bytes); 216 217 // Number of bytes used in all regions during GC. Typically changed when 218 // retiring a GC alloc region. 219 size_t _bytes_used_during_gc; 220 221 // Class that handles archive allocation ranges. 222 G1ArchiveAllocator* _archive_allocator; 223 224 // GC allocation statistics policy for survivors. 225 G1EvacStats _survivor_evac_stats; 226 227 // GC allocation statistics policy for tenured objects. 228 G1EvacStats _old_evac_stats; 229 230 // It specifies whether we should attempt to expand the heap after a 231 // region allocation failure. If heap expansion fails we set this to 232 // false so that we don't re-attempt the heap expansion (it's likely 233 // that subsequent expansion attempts will also fail if one fails). 234 // Currently, it is only consulted during GC and it's reset at the 235 // start of each GC. 236 bool _expand_heap_after_alloc_failure; 237 238 // Helper for monitoring and management support. 239 G1MonitoringSupport* _g1mm; 240 241 SlidingForwarding* _forwarding; 242 243 // Records whether the region at the given index is (still) a 244 // candidate for eager reclaim. Only valid for humongous start 245 // regions; other regions have unspecified values. Humongous start 246 // regions are initialized at start of collection pause, with 247 // candidates removed from the set as they are found reachable from 248 // roots or the young generation. 249 class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> { 250 protected: 251 bool default_value() const { return false; } 252 public: 253 void clear() { G1BiasedMappedArray<bool>::clear(); } 254 void set_candidate(uint region, bool value) { 255 set_by_index(region, value); 256 } 257 bool is_candidate(uint region) { 258 return get_by_index(region); 259 } 260 }; 261 262 HumongousReclaimCandidates _humongous_reclaim_candidates; 263 uint _num_humongous_objects; // Current amount of (all) humongous objects found in the heap. 264 uint _num_humongous_reclaim_candidates; // Number of humongous object eager reclaim candidates. 265 public: 266 uint num_humongous_objects() const { return _num_humongous_objects; } 267 uint num_humongous_reclaim_candidates() const { return _num_humongous_reclaim_candidates; } 268 bool has_humongous_reclaim_candidates() const { return _num_humongous_reclaim_candidates > 0; } 269 270 bool should_do_eager_reclaim() const; 271 272 SlidingForwarding* forwarding() const { 273 return _forwarding; 274 } 275 276 private: 277 278 G1HRPrinter _hr_printer; 279 280 // Return true if an explicit GC should start a concurrent cycle instead 281 // of doing a STW full GC. A concurrent cycle should be started if: 282 // (a) cause == _g1_humongous_allocation, 283 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent, 284 // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent, 285 // (d) cause == _wb_conc_mark or _wb_breakpoint, 286 // (e) cause == _g1_periodic_collection and +G1PeriodicGCInvokesConcurrent. 287 bool should_do_concurrent_full_gc(GCCause::Cause cause); 288 289 // Attempt to start a concurrent cycle with the indicated cause. 290 // precondition: should_do_concurrent_full_gc(cause) 291 bool try_collect_concurrently(GCCause::Cause cause, 292 uint gc_counter, 293 uint old_marking_started_before); 294 295 // indicates whether we are in young or mixed GC mode 296 G1CollectorState _collector_state; 297 298 // Keeps track of how many "old marking cycles" (i.e., Full GCs or 299 // concurrent cycles) we have started. 300 volatile uint _old_marking_cycles_started; 301 302 // Keeps track of how many "old marking cycles" (i.e., Full GCs or 303 // concurrent cycles) we have completed. 304 volatile uint _old_marking_cycles_completed; 305 306 // This is a non-product method that is helpful for testing. It is 307 // called at the end of a GC and artificially expands the heap by 308 // allocating a number of dead regions. This way we can induce very 309 // frequent marking cycles and stress the cleanup / concurrent 310 // cleanup code more (as all the regions that will be allocated by 311 // this method will be found dead by the marking cycle). 312 void allocate_dummy_regions() PRODUCT_RETURN; 313 314 // If the HR printer is active, dump the state of the regions in the 315 // heap after a compaction. 316 void print_hrm_post_compaction(); 317 318 // Create a memory mapper for auxiliary data structures of the given size and 319 // translation factor. 320 static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description, 321 size_t size, 322 size_t translation_factor); 323 324 void trace_heap(GCWhen::Type when, const GCTracer* tracer); 325 326 // These are macros so that, if the assert fires, we get the correct 327 // line number, file, etc. 328 329 #define heap_locking_asserts_params(_extra_message_) \ 330 "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \ 331 (_extra_message_), \ 332 BOOL_TO_STR(Heap_lock->owned_by_self()), \ 333 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \ 334 BOOL_TO_STR(Thread::current()->is_VM_thread()) 335 336 #define assert_heap_locked() \ 337 do { \ 338 assert(Heap_lock->owned_by_self(), \ 339 heap_locking_asserts_params("should be holding the Heap_lock")); \ 340 } while (0) 341 342 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \ 343 do { \ 344 assert(Heap_lock->owned_by_self() || \ 345 (SafepointSynchronize::is_at_safepoint() && \ 346 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \ 347 heap_locking_asserts_params("should be holding the Heap_lock or " \ 348 "should be at a safepoint")); \ 349 } while (0) 350 351 #define assert_heap_locked_and_not_at_safepoint() \ 352 do { \ 353 assert(Heap_lock->owned_by_self() && \ 354 !SafepointSynchronize::is_at_safepoint(), \ 355 heap_locking_asserts_params("should be holding the Heap_lock and " \ 356 "should not be at a safepoint")); \ 357 } while (0) 358 359 #define assert_heap_not_locked() \ 360 do { \ 361 assert(!Heap_lock->owned_by_self(), \ 362 heap_locking_asserts_params("should not be holding the Heap_lock")); \ 363 } while (0) 364 365 #define assert_heap_not_locked_and_not_at_safepoint() \ 366 do { \ 367 assert(!Heap_lock->owned_by_self() && \ 368 !SafepointSynchronize::is_at_safepoint(), \ 369 heap_locking_asserts_params("should not be holding the Heap_lock and " \ 370 "should not be at a safepoint")); \ 371 } while (0) 372 373 #define assert_at_safepoint_on_vm_thread() \ 374 do { \ 375 assert_at_safepoint(); \ 376 assert(Thread::current_or_null() != NULL, "no current thread"); \ 377 assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \ 378 } while (0) 379 380 #ifdef ASSERT 381 #define assert_used_and_recalculate_used_equal(g1h) \ 382 do { \ 383 size_t cur_used_bytes = g1h->used(); \ 384 size_t recal_used_bytes = g1h->recalculate_used(); \ 385 assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \ 386 " same as recalculated used(" SIZE_FORMAT ").", \ 387 cur_used_bytes, recal_used_bytes); \ 388 } while (0) 389 #else 390 #define assert_used_and_recalculate_used_equal(g1h) do {} while(0) 391 #endif 392 393 static const uint MaxYoungGCNameLength = 128; 394 // Sets given young_gc_name to the canonical young gc pause string. Young_gc_name 395 // must be at least of length MaxYoungGCNameLength. 396 void set_young_gc_name(char* young_gc_name); 397 398 // The young region list. 399 G1EdenRegions _eden; 400 G1SurvivorRegions _survivor; 401 402 STWGCTimer* _gc_timer_stw; 403 404 G1NewTracer* _gc_tracer_stw; 405 406 void gc_tracer_report_gc_start(); 407 void gc_tracer_report_gc_end(bool concurrent_operation_is_full_mark, G1EvacuationInfo& evacuation_info); 408 409 // The current policy object for the collector. 410 G1Policy* _policy; 411 G1HeapSizingPolicy* _heap_sizing_policy; 412 413 G1CollectionSet _collection_set; 414 415 // Try to allocate a single non-humongous HeapRegion sufficient for 416 // an allocation of the given word_size. If do_expand is true, 417 // attempt to expand the heap if necessary to satisfy the allocation 418 // request. 'type' takes the type of region to be allocated. (Use constants 419 // Old, Eden, Humongous, Survivor defined in HeapRegionType.) 420 HeapRegion* new_region(size_t word_size, 421 HeapRegionType type, 422 bool do_expand, 423 uint node_index = G1NUMA::AnyNodeIndex); 424 425 // Initialize a contiguous set of free regions of length num_regions 426 // and starting at index first so that they appear as a single 427 // humongous region. 428 HeapWord* humongous_obj_allocate_initialize_regions(HeapRegion* first_hr, 429 uint num_regions, 430 size_t word_size); 431 432 // Attempt to allocate a humongous object of the given size. Return 433 // NULL if unsuccessful. 434 HeapWord* humongous_obj_allocate(size_t word_size); 435 436 // The following two methods, allocate_new_tlab() and 437 // mem_allocate(), are the two main entry points from the runtime 438 // into the G1's allocation routines. They have the following 439 // assumptions: 440 // 441 // * They should both be called outside safepoints. 442 // 443 // * They should both be called without holding the Heap_lock. 444 // 445 // * All allocation requests for new TLABs should go to 446 // allocate_new_tlab(). 447 // 448 // * All non-TLAB allocation requests should go to mem_allocate(). 449 // 450 // * If either call cannot satisfy the allocation request using the 451 // current allocating region, they will try to get a new one. If 452 // this fails, they will attempt to do an evacuation pause and 453 // retry the allocation. 454 // 455 // * If all allocation attempts fail, even after trying to schedule 456 // an evacuation pause, allocate_new_tlab() will return NULL, 457 // whereas mem_allocate() will attempt a heap expansion and/or 458 // schedule a Full GC. 459 // 460 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab 461 // should never be called with word_size being humongous. All 462 // humongous allocation requests should go to mem_allocate() which 463 // will satisfy them with a special path. 464 465 virtual HeapWord* allocate_new_tlab(size_t min_size, 466 size_t requested_size, 467 size_t* actual_size); 468 469 virtual HeapWord* mem_allocate(size_t word_size, 470 bool* gc_overhead_limit_was_exceeded); 471 472 // First-level mutator allocation attempt: try to allocate out of 473 // the mutator alloc region without taking the Heap_lock. This 474 // should only be used for non-humongous allocations. 475 inline HeapWord* attempt_allocation(size_t min_word_size, 476 size_t desired_word_size, 477 size_t* actual_word_size); 478 479 // Second-level mutator allocation attempt: take the Heap_lock and 480 // retry the allocation attempt, potentially scheduling a GC 481 // pause. This should only be used for non-humongous allocations. 482 HeapWord* attempt_allocation_slow(size_t word_size); 483 484 // Takes the Heap_lock and attempts a humongous allocation. It can 485 // potentially schedule a GC pause. 486 HeapWord* attempt_allocation_humongous(size_t word_size); 487 488 // Allocation attempt that should be called during safepoints (e.g., 489 // at the end of a successful GC). expect_null_mutator_alloc_region 490 // specifies whether the mutator alloc region is expected to be NULL 491 // or not. 492 HeapWord* attempt_allocation_at_safepoint(size_t word_size, 493 bool expect_null_mutator_alloc_region); 494 495 // These methods are the "callbacks" from the G1AllocRegion class. 496 497 // For mutator alloc regions. 498 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force, uint node_index); 499 void retire_mutator_alloc_region(HeapRegion* alloc_region, 500 size_t allocated_bytes); 501 502 // For GC alloc regions. 503 bool has_more_regions(G1HeapRegionAttr dest); 504 HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index); 505 void retire_gc_alloc_region(HeapRegion* alloc_region, 506 size_t allocated_bytes, G1HeapRegionAttr dest); 507 508 // - if explicit_gc is true, the GC is for a System.gc() etc, 509 // otherwise it's for a failed allocation. 510 // - if clear_all_soft_refs is true, all soft references should be 511 // cleared during the GC. 512 // - if do_maximum_compaction is true, full gc will do a maximally 513 // compacting collection, leaving no dead wood. 514 // - it returns false if it is unable to do the collection due to the 515 // GC locker being active, true otherwise. 516 bool do_full_collection(bool explicit_gc, 517 bool clear_all_soft_refs, 518 bool do_maximum_compaction); 519 520 // Callback from VM_G1CollectFull operation, or collect_as_vm_thread. 521 virtual void do_full_collection(bool clear_all_soft_refs); 522 523 // Helper to do a full collection that clears soft references. 524 bool upgrade_to_full_collection(); 525 526 // Callback from VM_G1CollectForAllocation operation. 527 // This function does everything necessary/possible to satisfy a 528 // failed allocation request (including collection, expansion, etc.) 529 HeapWord* satisfy_failed_allocation(size_t word_size, 530 bool* succeeded); 531 // Internal helpers used during full GC to split it up to 532 // increase readability. 533 void abort_concurrent_cycle(); 534 void verify_before_full_collection(bool explicit_gc); 535 void prepare_heap_for_full_collection(); 536 void prepare_heap_for_mutators(); 537 void abort_refinement(); 538 void verify_after_full_collection(); 539 void print_heap_after_full_collection(G1HeapTransition* heap_transition); 540 541 // Helper method for satisfy_failed_allocation() 542 HeapWord* satisfy_failed_allocation_helper(size_t word_size, 543 bool do_gc, 544 bool maximum_compaction, 545 bool expect_null_mutator_alloc_region, 546 bool* gc_succeeded); 547 548 // Attempting to expand the heap sufficiently 549 // to support an allocation of the given "word_size". If 550 // successful, perform the allocation and return the address of the 551 // allocated block, or else "NULL". 552 HeapWord* expand_and_allocate(size_t word_size); 553 554 // Process any reference objects discovered. 555 void process_discovered_references(G1ParScanThreadStateSet* per_thread_states); 556 557 // If during a concurrent start pause we may install a pending list head which is not 558 // otherwise reachable, ensure that it is marked in the bitmap for concurrent marking 559 // to discover. 560 void make_pending_list_reachable(); 561 562 void verify_numa_regions(const char* desc); 563 564 public: 565 G1ServiceThread* service_thread() const { return _service_thread; } 566 567 WorkGang* workers() const { return _workers; } 568 569 // Runs the given AbstractGangTask with the current active workers, 570 // returning the total time taken. 571 Tickspan run_task_timed(AbstractGangTask* task); 572 // Run the given batch task using the work gang. 573 void run_batch_task(G1BatchedGangTask* cl); 574 575 G1Allocator* allocator() { 576 return _allocator; 577 } 578 579 G1HeapVerifier* verifier() { 580 return _verifier; 581 } 582 583 G1MonitoringSupport* g1mm() { 584 assert(_g1mm != NULL, "should have been initialized"); 585 return _g1mm; 586 } 587 588 void resize_heap_if_necessary(); 589 590 // Check if there is memory to uncommit and if so schedule a task to do it. 591 void uncommit_regions_if_necessary(); 592 // Immediately uncommit uncommittable regions. 593 uint uncommit_regions(uint region_limit); 594 bool has_uncommittable_regions(); 595 596 G1NUMA* numa() const { return _numa; } 597 598 // Expand the garbage-first heap by at least the given size (in bytes!). 599 // Returns true if the heap was expanded by the requested amount; 600 // false otherwise. 601 // (Rounds up to a HeapRegion boundary.) 602 bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL); 603 bool expand_single_region(uint node_index); 604 605 // Returns the PLAB statistics for a given destination. 606 inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest); 607 608 // Determines PLAB size for a given destination. 609 inline size_t desired_plab_sz(G1HeapRegionAttr dest); 610 611 // Do anything common to GC's. 612 void gc_prologue(bool full); 613 void gc_epilogue(bool full); 614 615 // Does the given region fulfill remembered set based eager reclaim candidate requirements? 616 bool is_potential_eager_reclaim_candidate(HeapRegion* r) const; 617 618 // Modify the reclaim candidate set and test for presence. 619 // These are only valid for starts_humongous regions. 620 inline void set_humongous_reclaim_candidate(uint region, bool value); 621 inline bool is_humongous_reclaim_candidate(uint region); 622 623 // Remove from the reclaim candidate set. Also remove from the 624 // collection set so that later encounters avoid the slow path. 625 inline void set_humongous_is_live(oop obj); 626 627 // Register the given region to be part of the collection set. 628 inline void register_humongous_region_with_region_attr(uint index); 629 630 // We register a region with the fast "in collection set" test. We 631 // simply set to true the array slot corresponding to this region. 632 void register_young_region_with_region_attr(HeapRegion* r) { 633 _region_attr.set_in_young(r->hrm_index()); 634 } 635 inline void register_region_with_region_attr(HeapRegion* r); 636 inline void register_old_region_with_region_attr(HeapRegion* r); 637 inline void register_optional_region_with_region_attr(HeapRegion* r); 638 639 void clear_region_attr(const HeapRegion* hr) { 640 _region_attr.clear(hr); 641 } 642 643 void clear_region_attr() { 644 _region_attr.clear(); 645 } 646 647 // Verify that the G1RegionAttr remset tracking corresponds to actual remset tracking 648 // for all regions. 649 void verify_region_attr_remset_update() PRODUCT_RETURN; 650 651 bool is_user_requested_concurrent_full_gc(GCCause::Cause cause); 652 653 // This is called at the start of either a concurrent cycle or a Full 654 // GC to update the number of old marking cycles started. 655 void increment_old_marking_cycles_started(); 656 657 // This is called at the end of either a concurrent cycle or a Full 658 // GC to update the number of old marking cycles completed. Those two 659 // can happen in a nested fashion, i.e., we start a concurrent 660 // cycle, a Full GC happens half-way through it which ends first, 661 // and then the cycle notices that a Full GC happened and ends 662 // too. The concurrent parameter is a boolean to help us do a bit 663 // tighter consistency checking in the method. If concurrent is 664 // false, the caller is the inner caller in the nesting (i.e., the 665 // Full GC). If concurrent is true, the caller is the outer caller 666 // in this nesting (i.e., the concurrent cycle). Further nesting is 667 // not currently supported. The end of this call also notifies 668 // the G1OldGCCount_lock in case a Java thread is waiting for a full 669 // GC to happen (e.g., it called System.gc() with 670 // +ExplicitGCInvokesConcurrent). 671 // whole_heap_examined should indicate that during that old marking 672 // cycle the whole heap has been examined for live objects (as opposed 673 // to only parts, or aborted before completion). 674 void increment_old_marking_cycles_completed(bool concurrent, bool whole_heap_examined); 675 676 uint old_marking_cycles_completed() { 677 return _old_marking_cycles_completed; 678 } 679 680 G1HRPrinter* hr_printer() { return &_hr_printer; } 681 682 // Allocates a new heap region instance. 683 HeapRegion* new_heap_region(uint hrs_index, MemRegion mr); 684 685 // Allocate the highest free region in the reserved heap. This will commit 686 // regions as necessary. 687 HeapRegion* alloc_highest_free_region(); 688 689 // Frees a region by resetting its metadata and adding it to the free list 690 // passed as a parameter (this is usually a local list which will be appended 691 // to the master free list later or NULL if free list management is handled 692 // in another way). 693 // Callers must ensure they are the only one calling free on the given region 694 // at the same time. 695 void free_region(HeapRegion* hr, FreeRegionList* free_list); 696 697 // It dirties the cards that cover the block so that the post 698 // write barrier never queues anything when updating objects on this 699 // block. It is assumed (and in fact we assert) that the block 700 // belongs to a young region. 701 inline void dirty_young_block(HeapWord* start, size_t word_size); 702 703 // Frees a humongous region by collapsing it into individual regions 704 // and calling free_region() for each of them. The freed regions 705 // will be added to the free list that's passed as a parameter (this 706 // is usually a local list which will be appended to the master free 707 // list later). 708 // The method assumes that only a single thread is ever calling 709 // this for a particular region at once. 710 void free_humongous_region(HeapRegion* hr, 711 FreeRegionList* free_list); 712 713 // Facility for allocating in 'archive' regions in high heap memory and 714 // recording the allocated ranges. These should all be called from the 715 // VM thread at safepoints, without the heap lock held. They can be used 716 // to create and archive a set of heap regions which can be mapped at the 717 // same fixed addresses in a subsequent JVM invocation. 718 void begin_archive_alloc_range(bool open = false); 719 720 // Check if the requested size would be too large for an archive allocation. 721 bool is_archive_alloc_too_large(size_t word_size); 722 723 // Allocate memory of the requested size from the archive region. This will 724 // return NULL if the size is too large or if no memory is available. It 725 // does not trigger a garbage collection. 726 HeapWord* archive_mem_allocate(size_t word_size); 727 728 // Optionally aligns the end address and returns the allocated ranges in 729 // an array of MemRegions in order of ascending addresses. 730 void end_archive_alloc_range(GrowableArray<MemRegion>* ranges, 731 size_t end_alignment_in_bytes = 0); 732 733 // Facility for allocating a fixed range within the heap and marking 734 // the containing regions as 'archive'. For use at JVM init time, when the 735 // caller may mmap archived heap data at the specified range(s). 736 // Verify that the MemRegions specified in the argument array are within the 737 // reserved heap. 738 bool check_archive_addresses(MemRegion* range, size_t count); 739 740 // Commit the appropriate G1 regions containing the specified MemRegions 741 // and mark them as 'archive' regions. The regions in the array must be 742 // non-overlapping and in order of ascending address. 743 bool alloc_archive_regions(MemRegion* range, size_t count, bool open); 744 745 // Insert any required filler objects in the G1 regions around the specified 746 // ranges to make the regions parseable. This must be called after 747 // alloc_archive_regions, and after class loading has occurred. 748 void fill_archive_regions(MemRegion* range, size_t count); 749 750 // Populate the G1BlockOffsetTablePart for archived regions with the given 751 // memory ranges. 752 void populate_archive_regions_bot_part(MemRegion* range, size_t count); 753 754 // For each of the specified MemRegions, uncommit the containing G1 regions 755 // which had been allocated by alloc_archive_regions. This should be called 756 // rather than fill_archive_regions at JVM init time if the archive file 757 // mapping failed, with the same non-overlapping and sorted MemRegion array. 758 void dealloc_archive_regions(MemRegion* range, size_t count); 759 760 private: 761 762 // Shrink the garbage-first heap by at most the given size (in bytes!). 763 // (Rounds down to a HeapRegion boundary.) 764 void shrink(size_t shrink_bytes); 765 void shrink_helper(size_t expand_bytes); 766 767 #if TASKQUEUE_STATS 768 static void print_taskqueue_stats_hdr(outputStream* const st); 769 void print_taskqueue_stats() const; 770 void reset_taskqueue_stats(); 771 #endif // TASKQUEUE_STATS 772 773 // Start a concurrent cycle. 774 void start_concurrent_cycle(bool concurrent_operation_is_full_mark); 775 776 // Schedule the VM operation that will do an evacuation pause to 777 // satisfy an allocation request of word_size. *succeeded will 778 // return whether the VM operation was successful (it did do an 779 // evacuation pause) or not (another thread beat us to it or the GC 780 // locker was active). Given that we should not be holding the 781 // Heap_lock when we enter this method, we will pass the 782 // gc_count_before (i.e., total_collections()) as a parameter since 783 // it has to be read while holding the Heap_lock. Currently, both 784 // methods that call do_collection_pause() release the Heap_lock 785 // before the call, so it's easy to read gc_count_before just before. 786 HeapWord* do_collection_pause(size_t word_size, 787 uint gc_count_before, 788 bool* succeeded, 789 GCCause::Cause gc_cause); 790 791 void wait_for_root_region_scanning(); 792 793 // Perform an incremental collection at a safepoint, possibly 794 // followed by a by-policy upgrade to a full collection. Returns 795 // false if unable to do the collection due to the GC locker being 796 // active, true otherwise. 797 // precondition: at safepoint on VM thread 798 // precondition: !is_gc_active() 799 bool do_collection_pause_at_safepoint(double target_pause_time_ms); 800 801 // Helper for do_collection_pause_at_safepoint, containing the guts 802 // of the incremental collection pause, executed by the vm thread. 803 void do_collection_pause_at_safepoint_helper(double target_pause_time_ms); 804 805 G1HeapVerifier::G1VerifyType young_collection_verify_type() const; 806 void verify_before_young_collection(G1HeapVerifier::G1VerifyType type); 807 void verify_after_young_collection(G1HeapVerifier::G1VerifyType type); 808 809 void calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms); 810 811 // Actually do the work of evacuating the parts of the collection set. 812 // The has_optional_evacuation_work flag for the initial collection set 813 // evacuation indicates whether one or more optional evacuation steps may 814 // follow. 815 // If not set, G1 can avoid clearing the card tables of regions that we scan 816 // for roots from the heap: when scanning the card table for dirty cards after 817 // all remembered sets have been dumped onto it, for optional evacuation we 818 // mark these cards as "Scanned" to know that we do not need to re-scan them 819 // in the additional optional evacuation passes. This means that in the "Clear 820 // Card Table" phase we need to clear those marks. However, if there is no 821 // optional evacuation, g1 can immediately clean the dirty cards it encounters 822 // as nobody else will be looking at them again, saving the clear card table 823 // work later. 824 // This case is very common (young only collections and most mixed gcs), so 825 // depending on the ratio between scanned and evacuated regions (which g1 always 826 // needs to clear), this is a big win. 827 void evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states, 828 bool has_optional_evacuation_work); 829 void evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states); 830 private: 831 // Evacuate the next set of optional regions. 832 void evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states); 833 834 public: 835 void pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss); 836 void post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, 837 G1RedirtyCardsQueueSet* rdcqs, 838 G1ParScanThreadStateSet* pss); 839 840 void expand_heap_after_young_collection(); 841 // Update object copying statistics. 842 void record_obj_copy_mem_stats(); 843 844 // The hot card cache for remembered set insertion optimization. 845 G1HotCardCache* _hot_card_cache; 846 847 // The g1 remembered set of the heap. 848 G1RemSet* _rem_set; 849 850 void post_evacuate_cleanup_1(G1ParScanThreadStateSet* per_thread_states, 851 G1RedirtyCardsQueueSet* rdcqs); 852 void post_evacuate_cleanup_2(PreservedMarksSet* preserved_marks, 853 G1RedirtyCardsQueueSet* rdcqs, 854 G1EvacuationInfo* evacuation_info, 855 const size_t* surviving_young_words); 856 857 // After a collection pause, reset eden and the collection set. 858 void clear_eden(); 859 void clear_collection_set(); 860 861 // Abandon the current collection set without recording policy 862 // statistics or updating free lists. 863 void abandon_collection_set(G1CollectionSet* collection_set); 864 865 // The concurrent marker (and the thread it runs in.) 866 G1ConcurrentMark* _cm; 867 G1ConcurrentMarkThread* _cm_thread; 868 869 // The concurrent refiner. 870 G1ConcurrentRefine* _cr; 871 872 // The parallel task queues 873 G1ScannerTasksQueueSet *_task_queues; 874 875 // Number of regions evacuation failed in the current collection. 876 volatile uint _num_regions_failed_evacuation; 877 // Records for every region on the heap whether evacuation failed for it. 878 volatile bool* _regions_failed_evacuation; 879 880 EvacuationFailedInfo* _evacuation_failed_info_array; 881 882 PreservedMarksSet _preserved_marks_set; 883 884 // Preserve the mark of "obj", if necessary, in preparation for its mark 885 // word being overwritten with a self-forwarding-pointer. 886 void preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m); 887 888 #ifndef PRODUCT 889 // Support for forcing evacuation failures. Analogous to 890 // PromotionFailureALot for the other collectors. 891 892 // Records whether G1EvacuationFailureALot should be in effect 893 // for the current GC 894 bool _evacuation_failure_alot_for_current_gc; 895 896 // Used to record the GC number for interval checking when 897 // determining whether G1EvaucationFailureALot is in effect 898 // for the current GC. 899 size_t _evacuation_failure_alot_gc_number; 900 901 // Count of the number of evacuations between failures. 902 volatile size_t _evacuation_failure_alot_count; 903 904 // Set whether G1EvacuationFailureALot should be in effect 905 // for the current GC (based upon the type of GC and which 906 // command line flags are set); 907 inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc, 908 bool during_concurrent_start, 909 bool mark_or_rebuild_in_progress); 910 911 inline void set_evacuation_failure_alot_for_current_gc(); 912 913 // Return true if it's time to cause an evacuation failure. 914 inline bool evacuation_should_fail(); 915 916 // Reset the G1EvacuationFailureALot counters. Should be called at 917 // the end of an evacuation pause in which an evacuation failure occurred. 918 inline void reset_evacuation_should_fail(); 919 #endif // !PRODUCT 920 921 // ("Weak") Reference processing support. 922 // 923 // G1 has 2 instances of the reference processor class. One 924 // (_ref_processor_cm) handles reference object discovery 925 // and subsequent processing during concurrent marking cycles. 926 // 927 // The other (_ref_processor_stw) handles reference object 928 // discovery and processing during full GCs and incremental 929 // evacuation pauses. 930 // 931 // During an incremental pause, reference discovery will be 932 // temporarily disabled for _ref_processor_cm and will be 933 // enabled for _ref_processor_stw. At the end of the evacuation 934 // pause references discovered by _ref_processor_stw will be 935 // processed and discovery will be disabled. The previous 936 // setting for reference object discovery for _ref_processor_cm 937 // will be re-instated. 938 // 939 // At the start of marking: 940 // * Discovery by the CM ref processor is verified to be inactive 941 // and it's discovered lists are empty. 942 // * Discovery by the CM ref processor is then enabled. 943 // 944 // At the end of marking: 945 // * Any references on the CM ref processor's discovered 946 // lists are processed (possibly MT). 947 // 948 // At the start of full GC we: 949 // * Disable discovery by the CM ref processor and 950 // empty CM ref processor's discovered lists 951 // (without processing any entries). 952 // * Verify that the STW ref processor is inactive and it's 953 // discovered lists are empty. 954 // * Temporarily set STW ref processor discovery as single threaded. 955 // * Temporarily clear the STW ref processor's _is_alive_non_header 956 // field. 957 // * Finally enable discovery by the STW ref processor. 958 // 959 // The STW ref processor is used to record any discovered 960 // references during the full GC. 961 // 962 // At the end of a full GC we: 963 // * Enqueue any reference objects discovered by the STW ref processor 964 // that have non-live referents. This has the side-effect of 965 // making the STW ref processor inactive by disabling discovery. 966 // * Verify that the CM ref processor is still inactive 967 // and no references have been placed on it's discovered 968 // lists (also checked as a precondition during concurrent start). 969 970 // The (stw) reference processor... 971 ReferenceProcessor* _ref_processor_stw; 972 973 // During reference object discovery, the _is_alive_non_header 974 // closure (if non-null) is applied to the referent object to 975 // determine whether the referent is live. If so then the 976 // reference object does not need to be 'discovered' and can 977 // be treated as a regular oop. This has the benefit of reducing 978 // the number of 'discovered' reference objects that need to 979 // be processed. 980 // 981 // Instance of the is_alive closure for embedding into the 982 // STW reference processor as the _is_alive_non_header field. 983 // Supplying a value for the _is_alive_non_header field is 984 // optional but doing so prevents unnecessary additions to 985 // the discovered lists during reference discovery. 986 G1STWIsAliveClosure _is_alive_closure_stw; 987 988 G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw; 989 990 // The (concurrent marking) reference processor... 991 ReferenceProcessor* _ref_processor_cm; 992 993 // Instance of the concurrent mark is_alive closure for embedding 994 // into the Concurrent Marking reference processor as the 995 // _is_alive_non_header field. Supplying a value for the 996 // _is_alive_non_header field is optional but doing so prevents 997 // unnecessary additions to the discovered lists during reference 998 // discovery. 999 G1CMIsAliveClosure _is_alive_closure_cm; 1000 1001 G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm; 1002 public: 1003 1004 G1ScannerTasksQueue* task_queue(uint i) const; 1005 1006 uint num_task_queues() const; 1007 1008 // Create a G1CollectedHeap. 1009 // Must call the initialize method afterwards. 1010 // May not return if something goes wrong. 1011 G1CollectedHeap(); 1012 1013 private: 1014 jint initialize_concurrent_refinement(); 1015 jint initialize_service_thread(); 1016 public: 1017 // Initialize the G1CollectedHeap to have the initial and 1018 // maximum sizes and remembered and barrier sets 1019 // specified by the policy object. 1020 jint initialize(); 1021 1022 virtual void stop(); 1023 virtual void safepoint_synchronize_begin(); 1024 virtual void safepoint_synchronize_end(); 1025 1026 // Does operations required after initialization has been done. 1027 void post_initialize(); 1028 1029 // Initialize weak reference processing. 1030 void ref_processing_init(); 1031 1032 virtual Name kind() const { 1033 return CollectedHeap::G1; 1034 } 1035 1036 virtual const char* name() const { 1037 return "G1"; 1038 } 1039 1040 const G1CollectorState* collector_state() const { return &_collector_state; } 1041 G1CollectorState* collector_state() { return &_collector_state; } 1042 1043 // The current policy object for the collector. 1044 G1Policy* policy() const { return _policy; } 1045 // The remembered set. 1046 G1RemSet* rem_set() const { return _rem_set; } 1047 1048 inline G1GCPhaseTimes* phase_times() const; 1049 1050 const G1CollectionSet* collection_set() const { return &_collection_set; } 1051 G1CollectionSet* collection_set() { return &_collection_set; } 1052 1053 virtual SoftRefPolicy* soft_ref_policy(); 1054 1055 virtual void initialize_serviceability(); 1056 virtual MemoryUsage memory_usage(); 1057 virtual GrowableArray<GCMemoryManager*> memory_managers(); 1058 virtual GrowableArray<MemoryPool*> memory_pools(); 1059 1060 // Try to minimize the remembered set. 1061 void scrub_rem_set(); 1062 1063 // Apply the given closure on all cards in the Hot Card Cache, emptying it. 1064 void iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id); 1065 1066 // The shared block offset table array. 1067 G1BlockOffsetTable* bot() const { return _bot; } 1068 1069 // Reference Processing accessors 1070 1071 // The STW reference processor.... 1072 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; } 1073 1074 G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; } 1075 1076 // The Concurrent Marking reference processor... 1077 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; } 1078 1079 size_t unused_committed_regions_in_bytes() const; 1080 1081 virtual size_t capacity() const; 1082 virtual size_t used() const; 1083 // This should be called when we're not holding the heap lock. The 1084 // result might be a bit inaccurate. 1085 size_t used_unlocked() const; 1086 size_t recalculate_used() const; 1087 1088 // These virtual functions do the actual allocation. 1089 // Some heaps may offer a contiguous region for shared non-blocking 1090 // allocation, via inlined code (by exporting the address of the top and 1091 // end fields defining the extent of the contiguous allocation region.) 1092 // But G1CollectedHeap doesn't yet support this. 1093 1094 virtual bool is_maximal_no_gc() const { 1095 return _hrm.available() == 0; 1096 } 1097 1098 // Returns true if an incremental GC should be upgrade to a full gc. This 1099 // is done when there are no free regions and the heap can't be expanded. 1100 bool should_upgrade_to_full_gc() const { 1101 return is_maximal_no_gc() && num_free_regions() == 0; 1102 } 1103 1104 // The current number of regions in the heap. 1105 uint num_regions() const { return _hrm.length(); } 1106 1107 // The max number of regions reserved for the heap. Except for static array 1108 // sizing purposes you probably want to use max_regions(). 1109 uint max_reserved_regions() const { return _hrm.reserved_length(); } 1110 1111 // Max number of regions that can be committed. 1112 uint max_regions() const { return _hrm.max_length(); } 1113 1114 // The number of regions that are completely free. 1115 uint num_free_regions() const { return _hrm.num_free_regions(); } 1116 1117 // The number of regions that can be allocated into. 1118 uint num_free_or_available_regions() const { return num_free_regions() + _hrm.available(); } 1119 1120 MemoryUsage get_auxiliary_data_memory_usage() const { 1121 return _hrm.get_auxiliary_data_memory_usage(); 1122 } 1123 1124 // The number of regions that are not completely free. 1125 uint num_used_regions() const { return num_regions() - num_free_regions(); } 1126 1127 #ifdef ASSERT 1128 bool is_on_master_free_list(HeapRegion* hr) { 1129 return _hrm.is_free(hr); 1130 } 1131 #endif // ASSERT 1132 1133 inline void old_set_add(HeapRegion* hr); 1134 inline void old_set_remove(HeapRegion* hr); 1135 1136 inline void archive_set_add(HeapRegion* hr); 1137 1138 size_t non_young_capacity_bytes() { 1139 return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes; 1140 } 1141 1142 // Determine whether the given region is one that we are using as an 1143 // old GC alloc region. 1144 bool is_old_gc_alloc_region(HeapRegion* hr); 1145 1146 // Perform a collection of the heap; intended for use in implementing 1147 // "System.gc". This probably implies as full a collection as the 1148 // "CollectedHeap" supports. 1149 virtual void collect(GCCause::Cause cause); 1150 1151 // Perform a collection of the heap with the given cause. 1152 // Returns whether this collection actually executed. 1153 bool try_collect(GCCause::Cause cause); 1154 1155 // True iff an evacuation has failed in the most-recent collection. 1156 inline bool evacuation_failed() const; 1157 // True iff the given region encountered an evacuation failure in the most-recent 1158 // collection. 1159 inline bool evacuation_failed(uint region_idx) const; 1160 1161 inline uint num_regions_failed_evacuation() const; 1162 // Notify that the garbage collection encountered an evacuation failure in the 1163 // given region. Returns whether this has been the first occurrence of an evacuation 1164 // failure in that region. 1165 inline bool notify_region_failed_evacuation(uint const region_idx); 1166 1167 void remove_from_old_gen_sets(const uint old_regions_removed, 1168 const uint archive_regions_removed, 1169 const uint humongous_regions_removed); 1170 void prepend_to_freelist(FreeRegionList* list); 1171 void decrement_summary_bytes(size_t bytes); 1172 1173 virtual bool is_in(const void* p) const; 1174 1175 // Return "TRUE" iff the given object address is within the collection 1176 // set. Assumes that the reference points into the heap. 1177 inline bool is_in_cset(const HeapRegion *hr); 1178 inline bool is_in_cset(oop obj); 1179 inline bool is_in_cset(HeapWord* addr); 1180 1181 inline bool is_in_cset_or_humongous(const oop obj); 1182 1183 private: 1184 // This array is used for a quick test on whether a reference points into 1185 // the collection set or not. Each of the array's elements denotes whether the 1186 // corresponding region is in the collection set or not. 1187 G1HeapRegionAttrBiasedMappedArray _region_attr; 1188 1189 public: 1190 1191 inline G1HeapRegionAttr region_attr(const void* obj) const; 1192 inline G1HeapRegionAttr region_attr(uint idx) const; 1193 1194 MemRegion reserved() const { 1195 return _hrm.reserved(); 1196 } 1197 1198 bool is_in_reserved(const void* addr) const { 1199 return reserved().contains(addr); 1200 } 1201 1202 G1HotCardCache* hot_card_cache() const { return _hot_card_cache; } 1203 1204 G1CardTable* card_table() const { 1205 return _card_table; 1206 } 1207 1208 // Iteration functions. 1209 1210 void object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer); 1211 1212 // Iterate over all objects, calling "cl.do_object" on each. 1213 virtual void object_iterate(ObjectClosure* cl); 1214 1215 virtual ParallelObjectIterator* parallel_object_iterator(uint thread_num); 1216 1217 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1218 virtual void keep_alive(oop obj); 1219 1220 // Iterate over heap regions, in address order, terminating the 1221 // iteration early if the "do_heap_region" method returns "true". 1222 void heap_region_iterate(HeapRegionClosure* blk) const; 1223 1224 // Return the region with the given index. It assumes the index is valid. 1225 inline HeapRegion* region_at(uint index) const; 1226 inline HeapRegion* region_at_or_null(uint index) const; 1227 1228 // Return the next region (by index) that is part of the same 1229 // humongous object that hr is part of. 1230 inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const; 1231 1232 // Calculate the region index of the given address. Given address must be 1233 // within the heap. 1234 inline uint addr_to_region(HeapWord* addr) const; 1235 1236 inline HeapWord* bottom_addr_for_region(uint index) const; 1237 1238 // Two functions to iterate over the heap regions in parallel. Threads 1239 // compete using the HeapRegionClaimer to claim the regions before 1240 // applying the closure on them. 1241 // The _from_worker_offset version uses the HeapRegionClaimer and 1242 // the worker id to calculate a start offset to prevent all workers to 1243 // start from the point. 1244 void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, 1245 HeapRegionClaimer* hrclaimer, 1246 uint worker_id) const; 1247 1248 void heap_region_par_iterate_from_start(HeapRegionClosure* cl, 1249 HeapRegionClaimer* hrclaimer) const; 1250 1251 // Iterate over all regions in the collection set in parallel. 1252 void collection_set_par_iterate_all(HeapRegionClosure* cl, 1253 HeapRegionClaimer* hr_claimer, 1254 uint worker_id); 1255 1256 // Iterate over all regions currently in the current collection set. 1257 void collection_set_iterate_all(HeapRegionClosure* blk); 1258 1259 // Iterate over the regions in the current increment of the collection set. 1260 // Starts the iteration so that the start regions of a given worker id over the 1261 // set active_workers are evenly spread across the set of collection set regions 1262 // to be iterated. 1263 // The variant with the HeapRegionClaimer guarantees that the closure will be 1264 // applied to a particular region exactly once. 1265 void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id) { 1266 collection_set_iterate_increment_from(blk, NULL, worker_id); 1267 } 1268 void collection_set_iterate_increment_from(HeapRegionClosure *blk, HeapRegionClaimer* hr_claimer, uint worker_id); 1269 1270 // Returns the HeapRegion that contains addr. addr must not be NULL. 1271 template <class T> 1272 inline HeapRegion* heap_region_containing(const T addr) const; 1273 1274 // Returns the HeapRegion that contains addr, or NULL if that is an uncommitted 1275 // region. addr must not be NULL. 1276 template <class T> 1277 inline HeapRegion* heap_region_containing_or_null(const T addr) const; 1278 1279 // A CollectedHeap is divided into a dense sequence of "blocks"; that is, 1280 // each address in the (reserved) heap is a member of exactly 1281 // one block. The defining characteristic of a block is that it is 1282 // possible to find its size, and thus to progress forward to the next 1283 // block. (Blocks may be of different sizes.) Thus, blocks may 1284 // represent Java objects, or they might be free blocks in a 1285 // free-list-based heap (or subheap), as long as the two kinds are 1286 // distinguishable and the size of each is determinable. 1287 1288 // Returns the address of the start of the "block" that contains the 1289 // address "addr". We say "blocks" instead of "object" since some heaps 1290 // may not pack objects densely; a chunk may either be an object or a 1291 // non-object. 1292 HeapWord* block_start(const void* addr) const; 1293 1294 // Requires "addr" to be the start of a block, and returns "TRUE" iff 1295 // the block is an object. 1296 bool block_is_obj(const HeapWord* addr) const; 1297 1298 // Section on thread-local allocation buffers (TLABs) 1299 // See CollectedHeap for semantics. 1300 1301 size_t tlab_capacity(Thread* ignored) const; 1302 size_t tlab_used(Thread* ignored) const; 1303 size_t max_tlab_size() const; 1304 size_t unsafe_max_tlab_alloc(Thread* ignored) const; 1305 1306 inline bool is_in_young(const oop obj); 1307 1308 // Returns "true" iff the given word_size is "very large". 1309 static bool is_humongous(size_t word_size) { 1310 // Note this has to be strictly greater-than as the TLABs 1311 // are capped at the humongous threshold and we want to 1312 // ensure that we don't try to allocate a TLAB as 1313 // humongous and that we don't allocate a humongous 1314 // object in a TLAB. 1315 return word_size > _humongous_object_threshold_in_words; 1316 } 1317 1318 // Returns the humongous threshold for a specific region size 1319 static size_t humongous_threshold_for(size_t region_size) { 1320 return (region_size / 2); 1321 } 1322 1323 // Returns the number of regions the humongous object of the given word size 1324 // requires. 1325 static size_t humongous_obj_size_in_regions(size_t word_size); 1326 1327 // Print the maximum heap capacity. 1328 virtual size_t max_capacity() const; 1329 1330 Tickspan time_since_last_collection() const { return Ticks::now() - _collection_pause_end; } 1331 1332 // Convenience function to be used in situations where the heap type can be 1333 // asserted to be this type. 1334 static G1CollectedHeap* heap() { 1335 return named_heap<G1CollectedHeap>(CollectedHeap::G1); 1336 } 1337 1338 void set_region_short_lived_locked(HeapRegion* hr); 1339 // add appropriate methods for any other surv rate groups 1340 1341 const G1SurvivorRegions* survivor() const { return &_survivor; } 1342 1343 uint eden_regions_count() const { return _eden.length(); } 1344 uint eden_regions_count(uint node_index) const { return _eden.regions_on_node(node_index); } 1345 uint survivor_regions_count() const { return _survivor.length(); } 1346 uint survivor_regions_count(uint node_index) const { return _survivor.regions_on_node(node_index); } 1347 size_t eden_regions_used_bytes() const { return _eden.used_bytes(); } 1348 size_t survivor_regions_used_bytes() const { return _survivor.used_bytes(); } 1349 uint young_regions_count() const { return _eden.length() + _survivor.length(); } 1350 uint old_regions_count() const { return _old_set.length(); } 1351 uint archive_regions_count() const { return _archive_set.length(); } 1352 uint humongous_regions_count() const { return _humongous_set.length(); } 1353 1354 #ifdef ASSERT 1355 bool check_young_list_empty(); 1356 #endif 1357 1358 bool is_marked_next(oop obj) const; 1359 1360 // Determine if an object is dead, given the object and also 1361 // the region to which the object belongs. 1362 bool is_obj_dead(const oop obj, const HeapRegion* hr) const { 1363 return hr->is_obj_dead(obj, _cm->prev_mark_bitmap()); 1364 } 1365 1366 // This function returns true when an object has been 1367 // around since the previous marking and hasn't yet 1368 // been marked during this marking, and is not in a closed archive region. 1369 bool is_obj_ill(const oop obj, const HeapRegion* hr) const { 1370 return 1371 !hr->obj_allocated_since_next_marking(obj) && 1372 !is_marked_next(obj) && 1373 !hr->is_closed_archive(); 1374 } 1375 1376 // Determine if an object is dead, given only the object itself. 1377 // This will find the region to which the object belongs and 1378 // then call the region version of the same function. 1379 1380 // Added if it is NULL it isn't dead. 1381 1382 inline bool is_obj_dead(const oop obj) const; 1383 1384 inline bool is_obj_ill(const oop obj) const; 1385 1386 inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const; 1387 inline bool is_obj_dead_full(const oop obj) const; 1388 1389 G1ConcurrentMark* concurrent_mark() const { return _cm; } 1390 1391 // Refinement 1392 1393 G1ConcurrentRefine* concurrent_refine() const { return _cr; } 1394 1395 // Optimized nmethod scanning support routines 1396 1397 // Register the given nmethod with the G1 heap. 1398 virtual void register_nmethod(nmethod* nm); 1399 1400 // Unregister the given nmethod from the G1 heap. 1401 virtual void unregister_nmethod(nmethod* nm); 1402 1403 // No nmethod flushing needed. 1404 virtual void flush_nmethod(nmethod* nm) {} 1405 1406 // No nmethod verification implemented. 1407 virtual void verify_nmethod(nmethod* nm) {} 1408 1409 // Recalculate amount of used memory after GC. Must be called after all allocation 1410 // has finished. 1411 void update_used_after_gc(); 1412 // Reset and re-enable the hot card cache. 1413 // Note the counts for the cards in the regions in the 1414 // collection set are reset when the collection set is freed. 1415 void reset_hot_card_cache(); 1416 // Free up superfluous code root memory. 1417 void purge_code_root_memory(); 1418 1419 // Rebuild the strong code root lists for each region 1420 // after a full GC. 1421 void rebuild_strong_code_roots(); 1422 1423 // Performs cleaning of data structures after class unloading. 1424 void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred); 1425 1426 // Verification 1427 1428 // Perform any cleanup actions necessary before allowing a verification. 1429 virtual void prepare_for_verify(); 1430 1431 // Perform verification. 1432 1433 // vo == UsePrevMarking -> use "prev" marking information, 1434 // vo == UseNextMarking -> use "next" marking information 1435 // vo == UseFullMarking -> use "next" marking bitmap but no TAMS 1436 // 1437 // NOTE: Only the "prev" marking information is guaranteed to be 1438 // consistent most of the time, so most calls to this should use 1439 // vo == UsePrevMarking. 1440 // Currently, there is only one case where this is called with 1441 // vo == UseNextMarking, which is to verify the "next" marking 1442 // information at the end of remark. 1443 // Currently there is only one place where this is called with 1444 // vo == UseFullMarking, which is to verify the marking during a 1445 // full GC. 1446 void verify(VerifyOption vo); 1447 1448 // WhiteBox testing support. 1449 virtual bool supports_concurrent_gc_breakpoints() const; 1450 1451 virtual WorkGang* safepoint_workers() { return _workers; } 1452 1453 virtual bool is_archived_object(oop object) const; 1454 1455 // The methods below are here for convenience and dispatch the 1456 // appropriate method depending on value of the given VerifyOption 1457 // parameter. The values for that parameter, and their meanings, 1458 // are the same as those above. 1459 1460 bool is_obj_dead_cond(const oop obj, 1461 const HeapRegion* hr, 1462 const VerifyOption vo) const; 1463 1464 bool is_obj_dead_cond(const oop obj, 1465 const VerifyOption vo) const; 1466 1467 G1HeapSummary create_g1_heap_summary(); 1468 G1EvacSummary create_g1_evac_summary(G1EvacStats* stats); 1469 1470 // Printing 1471 private: 1472 void print_heap_regions() const; 1473 void print_regions_on(outputStream* st) const; 1474 1475 public: 1476 virtual void print_on(outputStream* st) const; 1477 virtual void print_extended_on(outputStream* st) const; 1478 virtual void print_on_error(outputStream* st) const; 1479 1480 virtual void gc_threads_do(ThreadClosure* tc) const; 1481 1482 // Override 1483 void print_tracing_info() const; 1484 1485 // The following two methods are helpful for debugging RSet issues. 1486 void print_cset_rsets() PRODUCT_RETURN; 1487 void print_all_rsets() PRODUCT_RETURN; 1488 1489 // Used to print information about locations in the hs_err file. 1490 virtual bool print_location(outputStream* st, void* addr) const; 1491 }; 1492 1493 class G1ParEvacuateFollowersClosure : public VoidClosure { 1494 private: 1495 double _start_term; 1496 double _term_time; 1497 size_t _term_attempts; 1498 1499 void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); } 1500 void end_term_time() { _term_time += (os::elapsedTime() - _start_term); } 1501 protected: 1502 G1CollectedHeap* _g1h; 1503 G1ParScanThreadState* _par_scan_state; 1504 G1ScannerTasksQueueSet* _queues; 1505 TaskTerminator* _terminator; 1506 G1GCPhaseTimes::GCParPhases _phase; 1507 1508 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 1509 G1ScannerTasksQueueSet* queues() { return _queues; } 1510 TaskTerminator* terminator() { return _terminator; } 1511 1512 public: 1513 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 1514 G1ParScanThreadState* par_scan_state, 1515 G1ScannerTasksQueueSet* queues, 1516 TaskTerminator* terminator, 1517 G1GCPhaseTimes::GCParPhases phase) 1518 : _start_term(0.0), _term_time(0.0), _term_attempts(0), 1519 _g1h(g1h), _par_scan_state(par_scan_state), 1520 _queues(queues), _terminator(terminator), _phase(phase) {} 1521 1522 void do_void(); 1523 1524 double term_time() const { return _term_time; } 1525 size_t term_attempts() const { return _term_attempts; } 1526 1527 private: 1528 inline bool offer_termination(); 1529 }; 1530 1531 #endif // SHARE_GC_G1_G1COLLECTEDHEAP_HPP