1 /* 2 * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/nmethod.hpp" 27 #include "gc/g1/g1Allocator.inline.hpp" 28 #include "gc/g1/g1BlockOffsetTable.inline.hpp" 29 #include "gc/g1/g1CollectedHeap.inline.hpp" 30 #include "gc/g1/g1CollectionSet.hpp" 31 #include "gc/g1/g1HeapRegionTraceType.hpp" 32 #include "gc/g1/g1NUMA.hpp" 33 #include "gc/g1/g1OopClosures.inline.hpp" 34 #include "gc/g1/heapRegion.inline.hpp" 35 #include "gc/g1/heapRegionBounds.inline.hpp" 36 #include "gc/g1/heapRegionManager.inline.hpp" 37 #include "gc/g1/heapRegionRemSet.hpp" 38 #include "gc/g1/heapRegionTracer.hpp" 39 #include "gc/shared/genOopClosures.inline.hpp" 40 #include "logging/log.hpp" 41 #include "logging/logStream.hpp" 42 #include "memory/iterator.inline.hpp" 43 #include "memory/resourceArea.hpp" 44 #include "oops/access.inline.hpp" 45 #include "oops/compressedOops.inline.hpp" 46 #include "oops/oop.inline.hpp" 47 #include "runtime/globals_extension.hpp" 48 #include "utilities/powerOfTwo.hpp" 49 50 int HeapRegion::LogOfHRGrainBytes = 0; 51 int HeapRegion::LogCardsPerRegion = 0; 52 size_t HeapRegion::GrainBytes = 0; 53 size_t HeapRegion::GrainWords = 0; 54 size_t HeapRegion::CardsPerRegion = 0; 55 56 size_t HeapRegion::max_region_size() { 57 return HeapRegionBounds::max_size(); 58 } 59 60 size_t HeapRegion::min_region_size_in_words() { 61 return HeapRegionBounds::min_size() >> LogHeapWordSize; 62 } 63 64 void HeapRegion::setup_heap_region_size(size_t max_heap_size) { 65 size_t region_size = G1HeapRegionSize; 66 // G1HeapRegionSize = 0 means decide ergonomically. 67 if (region_size == 0) { 68 region_size = MAX2(max_heap_size / HeapRegionBounds::target_number(), 69 HeapRegionBounds::min_size()); 70 } 71 72 // Make sure region size is a power of 2. Rounding up since this 73 // is beneficial in most cases. 74 region_size = round_up_power_of_2(region_size); 75 76 // Now make sure that we don't go over or under our limits. 77 region_size = clamp(region_size, HeapRegionBounds::min_size(), HeapRegionBounds::max_size()); 78 79 // Calculate the log for the region size. 80 int region_size_log = log2i_exact(region_size); 81 82 // Now, set up the globals. 83 guarantee(LogOfHRGrainBytes == 0, "we should only set it once"); 84 LogOfHRGrainBytes = region_size_log; 85 86 guarantee(GrainBytes == 0, "we should only set it once"); 87 // The cast to int is safe, given that we've bounded region_size by 88 // MIN_REGION_SIZE and MAX_REGION_SIZE. 89 GrainBytes = region_size; 90 91 guarantee(GrainWords == 0, "we should only set it once"); 92 GrainWords = GrainBytes >> LogHeapWordSize; 93 94 guarantee(CardsPerRegion == 0, "we should only set it once"); 95 CardsPerRegion = GrainBytes >> G1CardTable::card_shift; 96 97 LogCardsPerRegion = log2i(CardsPerRegion); 98 99 if (G1HeapRegionSize != GrainBytes) { 100 FLAG_SET_ERGO(G1HeapRegionSize, GrainBytes); 101 } 102 } 103 104 void HeapRegion::handle_evacuation_failure() { 105 uninstall_surv_rate_group(); 106 clear_young_index_in_cset(); 107 set_old(); 108 _next_marked_bytes = 0; 109 } 110 111 void HeapRegion::unlink_from_list() { 112 set_next(NULL); 113 set_prev(NULL); 114 set_containing_set(NULL); 115 } 116 117 void HeapRegion::hr_clear(bool clear_space) { 118 assert(_humongous_start_region == NULL, 119 "we should have already filtered out humongous regions"); 120 121 clear_young_index_in_cset(); 122 clear_index_in_opt_cset(); 123 uninstall_surv_rate_group(); 124 set_free(); 125 reset_pre_dummy_top(); 126 127 rem_set()->clear_locked(); 128 129 zero_marked_bytes(); 130 131 init_top_at_mark_start(); 132 if (clear_space) clear(SpaceDecorator::Mangle); 133 134 _gc_efficiency = -1.0; 135 } 136 137 void HeapRegion::clear_cardtable() { 138 G1CardTable* ct = G1CollectedHeap::heap()->card_table(); 139 ct->clear(MemRegion(bottom(), end())); 140 } 141 142 void HeapRegion::calc_gc_efficiency() { 143 // GC efficiency is the ratio of how much space would be 144 // reclaimed over how long we predict it would take to reclaim it. 145 G1Policy* policy = G1CollectedHeap::heap()->policy(); 146 147 // Retrieve a prediction of the elapsed time for this region for 148 // a mixed gc because the region will only be evacuated during a 149 // mixed gc. 150 double region_elapsed_time_ms = policy->predict_region_total_time_ms(this, false /* for_young_gc */); 151 _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms; 152 } 153 154 void HeapRegion::set_free() { 155 report_region_type_change(G1HeapRegionTraceType::Free); 156 _type.set_free(); 157 } 158 159 void HeapRegion::set_eden() { 160 report_region_type_change(G1HeapRegionTraceType::Eden); 161 _type.set_eden(); 162 } 163 164 void HeapRegion::set_eden_pre_gc() { 165 report_region_type_change(G1HeapRegionTraceType::Eden); 166 _type.set_eden_pre_gc(); 167 } 168 169 void HeapRegion::set_survivor() { 170 report_region_type_change(G1HeapRegionTraceType::Survivor); 171 _type.set_survivor(); 172 } 173 174 void HeapRegion::move_to_old() { 175 if (_type.relabel_as_old()) { 176 report_region_type_change(G1HeapRegionTraceType::Old); 177 } 178 } 179 180 void HeapRegion::set_old() { 181 report_region_type_change(G1HeapRegionTraceType::Old); 182 _type.set_old(); 183 } 184 185 void HeapRegion::set_open_archive() { 186 report_region_type_change(G1HeapRegionTraceType::OpenArchive); 187 _type.set_open_archive(); 188 } 189 190 void HeapRegion::set_closed_archive() { 191 report_region_type_change(G1HeapRegionTraceType::ClosedArchive); 192 _type.set_closed_archive(); 193 } 194 195 void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) { 196 assert(!is_humongous(), "sanity / pre-condition"); 197 assert(top() == bottom(), "should be empty"); 198 199 report_region_type_change(G1HeapRegionTraceType::StartsHumongous); 200 _type.set_starts_humongous(); 201 _humongous_start_region = this; 202 203 _bot_part.set_for_starts_humongous(obj_top, fill_size); 204 } 205 206 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) { 207 assert(!is_humongous(), "sanity / pre-condition"); 208 assert(top() == bottom(), "should be empty"); 209 assert(first_hr->is_starts_humongous(), "pre-condition"); 210 211 report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous); 212 _type.set_continues_humongous(); 213 _humongous_start_region = first_hr; 214 215 _bot_part.set_object_can_span(true); 216 } 217 218 void HeapRegion::clear_humongous() { 219 assert(is_humongous(), "pre-condition"); 220 221 assert(capacity() == HeapRegion::GrainBytes, "pre-condition"); 222 _humongous_start_region = NULL; 223 224 _bot_part.set_object_can_span(false); 225 } 226 227 HeapRegion::HeapRegion(uint hrm_index, 228 G1BlockOffsetTable* bot, 229 MemRegion mr) : 230 _bottom(mr.start()), 231 _end(mr.end()), 232 _top(NULL), 233 _compaction_top(NULL), 234 _bot_part(bot, this), 235 _par_alloc_lock(Mutex::leaf, "HeapRegion par alloc lock", true), 236 _pre_dummy_top(NULL), 237 _rem_set(NULL), 238 _hrm_index(hrm_index), 239 _type(), 240 _humongous_start_region(NULL), 241 _index_in_opt_cset(InvalidCSetIndex), 242 _next(NULL), _prev(NULL), 243 #ifdef ASSERT 244 _containing_set(NULL), 245 #endif 246 _prev_top_at_mark_start(NULL), _next_top_at_mark_start(NULL), 247 _prev_marked_bytes(0), _next_marked_bytes(0), 248 _young_index_in_cset(-1), 249 _surv_rate_group(NULL), _age_index(G1SurvRateGroup::InvalidAgeIndex), _gc_efficiency(-1.0), 250 _node_index(G1NUMA::UnknownNodeIndex) 251 { 252 assert(Universe::on_page_boundary(mr.start()) && Universe::on_page_boundary(mr.end()), 253 "invalid space boundaries"); 254 255 _rem_set = new HeapRegionRemSet(bot, this); 256 initialize(); 257 } 258 259 void HeapRegion::initialize(bool clear_space, bool mangle_space) { 260 assert(_rem_set->is_empty(), "Remembered set must be empty"); 261 262 if (clear_space) { 263 clear(mangle_space); 264 } 265 266 set_top(bottom()); 267 set_compaction_top(bottom()); 268 reset_bot(); 269 270 hr_clear(false /*clear_space*/); 271 } 272 273 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) { 274 HeapRegionTracer::send_region_type_change(_hrm_index, 275 get_trace_type(), 276 to, 277 (uintptr_t)bottom(), 278 used()); 279 } 280 281 void HeapRegion::note_self_forwarding_removal_start(bool during_concurrent_start, 282 bool during_conc_mark) { 283 // We always recreate the prev marking info and we'll explicitly 284 // mark all objects we find to be self-forwarded on the prev 285 // bitmap. So all objects need to be below PTAMS. 286 _prev_marked_bytes = 0; 287 288 if (during_concurrent_start) { 289 // During concurrent start, we'll also explicitly mark all objects 290 // we find to be self-forwarded on the next bitmap. So all 291 // objects need to be below NTAMS. 292 _next_top_at_mark_start = top(); 293 _next_marked_bytes = 0; 294 } else if (during_conc_mark) { 295 // During concurrent mark, all objects in the CSet (including 296 // the ones we find to be self-forwarded) are implicitly live. 297 // So all objects need to be above NTAMS. 298 _next_top_at_mark_start = bottom(); 299 _next_marked_bytes = 0; 300 } 301 } 302 303 void HeapRegion::note_self_forwarding_removal_end(size_t marked_bytes) { 304 assert(marked_bytes <= used(), 305 "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used()); 306 _prev_top_at_mark_start = top(); 307 _prev_marked_bytes = marked_bytes; 308 } 309 310 // Code roots support 311 312 void HeapRegion::add_strong_code_root(nmethod* nm) { 313 HeapRegionRemSet* hrrs = rem_set(); 314 hrrs->add_strong_code_root(nm); 315 } 316 317 void HeapRegion::add_strong_code_root_locked(nmethod* nm) { 318 assert_locked_or_safepoint(CodeCache_lock); 319 HeapRegionRemSet* hrrs = rem_set(); 320 hrrs->add_strong_code_root_locked(nm); 321 } 322 323 void HeapRegion::remove_strong_code_root(nmethod* nm) { 324 HeapRegionRemSet* hrrs = rem_set(); 325 hrrs->remove_strong_code_root(nm); 326 } 327 328 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const { 329 HeapRegionRemSet* hrrs = rem_set(); 330 hrrs->strong_code_roots_do(blk); 331 } 332 333 class VerifyStrongCodeRootOopClosure: public OopClosure { 334 const HeapRegion* _hr; 335 bool _failures; 336 bool _has_oops_in_region; 337 338 template <class T> void do_oop_work(T* p) { 339 T heap_oop = RawAccess<>::oop_load(p); 340 if (!CompressedOops::is_null(heap_oop)) { 341 oop obj = CompressedOops::decode_not_null(heap_oop); 342 343 // Note: not all the oops embedded in the nmethod are in the 344 // current region. We only look at those which are. 345 if (_hr->is_in(obj)) { 346 // Object is in the region. Check that its less than top 347 if (_hr->top() <= cast_from_oop<HeapWord*>(obj)) { 348 // Object is above top 349 log_error(gc, verify)("Object " PTR_FORMAT " in region " HR_FORMAT " is above top ", 350 p2i(obj), HR_FORMAT_PARAMS(_hr)); 351 _failures = true; 352 return; 353 } 354 // Nmethod has at least one oop in the current region 355 _has_oops_in_region = true; 356 } 357 } 358 } 359 360 public: 361 VerifyStrongCodeRootOopClosure(const HeapRegion* hr): 362 _hr(hr), _failures(false), _has_oops_in_region(false) {} 363 364 void do_oop(narrowOop* p) { do_oop_work(p); } 365 void do_oop(oop* p) { do_oop_work(p); } 366 367 bool failures() { return _failures; } 368 bool has_oops_in_region() { return _has_oops_in_region; } 369 }; 370 371 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure { 372 const HeapRegion* _hr; 373 bool _failures; 374 public: 375 VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) : 376 _hr(hr), _failures(false) {} 377 378 void do_code_blob(CodeBlob* cb) { 379 nmethod* nm = (cb == NULL) ? NULL : cb->as_compiled_method()->as_nmethod_or_null(); 380 if (nm != NULL) { 381 // Verify that the nemthod is live 382 if (!nm->is_alive()) { 383 log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots", 384 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); 385 _failures = true; 386 } else { 387 VerifyStrongCodeRootOopClosure oop_cl(_hr); 388 nm->oops_do(&oop_cl); 389 if (!oop_cl.has_oops_in_region()) { 390 log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region", 391 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); 392 _failures = true; 393 } else if (oop_cl.failures()) { 394 log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT, 395 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm)); 396 _failures = true; 397 } 398 } 399 } 400 } 401 402 bool failures() { return _failures; } 403 }; 404 405 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const { 406 if (!G1VerifyHeapRegionCodeRoots) { 407 // We're not verifying code roots. 408 return; 409 } 410 if (vo == VerifyOption_G1UseFullMarking) { 411 // Marking verification during a full GC is performed after class 412 // unloading, code cache unloading, etc so the strong code roots 413 // attached to each heap region are in an inconsistent state. They won't 414 // be consistent until the strong code roots are rebuilt after the 415 // actual GC. Skip verifying the strong code roots in this particular 416 // time. 417 assert(VerifyDuringGC, "only way to get here"); 418 return; 419 } 420 421 HeapRegionRemSet* hrrs = rem_set(); 422 size_t strong_code_roots_length = hrrs->strong_code_roots_list_length(); 423 424 // if this region is empty then there should be no entries 425 // on its strong code root list 426 if (is_empty()) { 427 if (strong_code_roots_length > 0) { 428 log_error(gc, verify)("region " HR_FORMAT " is empty but has " SIZE_FORMAT " code root entries", 429 HR_FORMAT_PARAMS(this), strong_code_roots_length); 430 *failures = true; 431 } 432 return; 433 } 434 435 if (is_continues_humongous()) { 436 if (strong_code_roots_length > 0) { 437 log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries", 438 HR_FORMAT_PARAMS(this), strong_code_roots_length); 439 *failures = true; 440 } 441 return; 442 } 443 444 VerifyStrongCodeRootCodeBlobClosure cb_cl(this); 445 strong_code_roots_do(&cb_cl); 446 447 if (cb_cl.failures()) { 448 *failures = true; 449 } 450 } 451 452 void HeapRegion::print() const { print_on(tty); } 453 454 void HeapRegion::print_on(outputStream* st) const { 455 st->print("|%4u", this->_hrm_index); 456 st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT, 457 p2i(bottom()), p2i(top()), p2i(end())); 458 st->print("|%3d%%", (int) ((double) used() * 100 / capacity())); 459 st->print("|%2s", get_short_type_str()); 460 if (in_collection_set()) { 461 st->print("|CS"); 462 } else { 463 st->print("| "); 464 } 465 st->print("|TAMS " PTR_FORMAT ", " PTR_FORMAT "| %s ", 466 p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()), rem_set()->get_state_str()); 467 if (UseNUMA) { 468 G1NUMA* numa = G1NUMA::numa(); 469 if (node_index() < numa->num_active_nodes()) { 470 st->print("|%d", numa->numa_id(node_index())); 471 } else { 472 st->print("|-"); 473 } 474 } 475 st->print_cr(""); 476 } 477 478 class G1VerificationClosure : public BasicOopIterateClosure { 479 protected: 480 G1CollectedHeap* _g1h; 481 G1CardTable *_ct; 482 oop _containing_obj; 483 bool _failures; 484 int _n_failures; 485 VerifyOption _vo; 486 public: 487 // _vo == UsePrevMarking -> use "prev" marking information, 488 // _vo == UseNextMarking -> use "next" marking information, 489 // _vo == UseFullMarking -> use "next" marking bitmap but no TAMS. 490 G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) : 491 _g1h(g1h), _ct(g1h->card_table()), 492 _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) { 493 } 494 495 void set_containing_obj(oop obj) { 496 _containing_obj = obj; 497 } 498 499 bool failures() { return _failures; } 500 int n_failures() { return _n_failures; } 501 502 void print_object(outputStream* out, oop obj) { 503 #ifdef PRODUCT 504 Klass* k = obj->klass(); 505 const char* class_name = k->external_name(); 506 out->print_cr("class name %s", class_name); 507 #else // PRODUCT 508 obj->print_on(out); 509 #endif // PRODUCT 510 } 511 }; 512 513 class VerifyLiveClosure : public G1VerificationClosure { 514 public: 515 VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {} 516 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 517 virtual void do_oop(oop* p) { do_oop_work(p); } 518 519 template <class T> 520 void do_oop_work(T* p) { 521 assert(_containing_obj != NULL, "Precondition"); 522 assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), 523 "Precondition"); 524 verify_liveness(p); 525 } 526 527 template <class T> 528 void verify_liveness(T* p) { 529 T heap_oop = RawAccess<>::oop_load(p); 530 Log(gc, verify) log; 531 if (!CompressedOops::is_null(heap_oop)) { 532 oop obj = CompressedOops::decode_not_null(heap_oop); 533 bool failed = false; 534 if (!_g1h->is_in(obj) || _g1h->is_obj_dead_cond(obj, _vo)) { 535 MutexLocker x(ParGCRareEvent_lock, 536 Mutex::_no_safepoint_check_flag); 537 538 if (!_failures) { 539 log.error("----------"); 540 } 541 ResourceMark rm; 542 if (!_g1h->is_in(obj)) { 543 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 544 log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT, 545 p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); 546 LogStream ls(log.error()); 547 print_object(&ls, _containing_obj); 548 HeapRegion* const to = _g1h->heap_region_containing(obj); 549 log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s", 550 p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str()); 551 } else { 552 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 553 HeapRegion* to = _g1h->heap_region_containing(obj); 554 log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT, 555 p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); 556 LogStream ls(log.error()); 557 print_object(&ls, _containing_obj); 558 log.error("points to dead obj " PTR_FORMAT " in region " HR_FORMAT, 559 p2i(obj), HR_FORMAT_PARAMS(to)); 560 print_object(&ls, obj); 561 } 562 log.error("----------"); 563 _failures = true; 564 failed = true; 565 _n_failures++; 566 } 567 } 568 } 569 }; 570 571 class VerifyRemSetClosure : public G1VerificationClosure { 572 public: 573 VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {} 574 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 575 virtual void do_oop(oop* p) { do_oop_work(p); } 576 577 template <class T> 578 void do_oop_work(T* p) { 579 assert(_containing_obj != NULL, "Precondition"); 580 assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), 581 "Precondition"); 582 verify_remembered_set(p); 583 } 584 585 template <class T> 586 void verify_remembered_set(T* p) { 587 T heap_oop = RawAccess<>::oop_load(p); 588 Log(gc, verify) log; 589 if (!CompressedOops::is_null(heap_oop)) { 590 oop obj = CompressedOops::decode_not_null(heap_oop); 591 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 592 HeapRegion* to = _g1h->heap_region_containing(obj); 593 if (from != NULL && to != NULL && 594 from != to && 595 !to->is_pinned() && 596 to->rem_set()->is_complete()) { 597 jbyte cv_obj = *_ct->byte_for_const(_containing_obj); 598 jbyte cv_field = *_ct->byte_for_const(p); 599 const jbyte dirty = G1CardTable::dirty_card_val(); 600 601 bool is_bad = !(from->is_young() 602 || to->rem_set()->contains_reference(p) 603 || (_containing_obj->is_objArray() ? 604 cv_field == dirty : 605 cv_obj == dirty || cv_field == dirty)); 606 if (is_bad) { 607 MutexLocker x(ParGCRareEvent_lock, 608 Mutex::_no_safepoint_check_flag); 609 610 if (!_failures) { 611 log.error("----------"); 612 } 613 log.error("Missing rem set entry:"); 614 log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT " in region " HR_FORMAT, 615 p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from)); 616 ResourceMark rm; 617 LogStream ls(log.error()); 618 _containing_obj->print_on(&ls); 619 log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s", 620 p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str()); 621 if (oopDesc::is_oop(obj)) { 622 obj->print_on(&ls); 623 } 624 log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field); 625 log.error("----------"); 626 _failures = true; 627 _n_failures++; 628 } 629 } 630 } 631 } 632 }; 633 634 // Closure that applies the given two closures in sequence. 635 class G1Mux2Closure : public BasicOopIterateClosure { 636 OopClosure* _c1; 637 OopClosure* _c2; 638 public: 639 G1Mux2Closure(OopClosure *c1, OopClosure *c2) { _c1 = c1; _c2 = c2; } 640 template <class T> inline void do_oop_work(T* p) { 641 // Apply first closure; then apply the second. 642 _c1->do_oop(p); 643 _c2->do_oop(p); 644 } 645 virtual inline void do_oop(oop* p) { do_oop_work(p); } 646 virtual inline void do_oop(narrowOop* p) { do_oop_work(p); } 647 }; 648 649 void HeapRegion::verify(VerifyOption vo, 650 bool* failures) const { 651 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 652 *failures = false; 653 HeapWord* p = bottom(); 654 HeapWord* prev_p = NULL; 655 VerifyLiveClosure vl_cl(g1h, vo); 656 VerifyRemSetClosure vr_cl(g1h, vo); 657 bool is_region_humongous = is_humongous(); 658 size_t object_num = 0; 659 while (p < top()) { 660 oop obj = cast_to_oop(p); 661 size_t obj_size = block_size(p); 662 object_num += 1; 663 664 if (!g1h->is_obj_dead_cond(obj, this, vo)) { 665 if (oopDesc::is_oop(obj)) { 666 Klass* klass = obj->klass(); 667 bool is_metaspace_object = Metaspace::contains(klass); 668 if (!is_metaspace_object) { 669 log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " " 670 "not metadata", p2i(klass), p2i(obj)); 671 *failures = true; 672 return; 673 } else if (!klass->is_klass()) { 674 log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " " 675 "not a klass", p2i(klass), p2i(obj)); 676 *failures = true; 677 return; 678 } else { 679 vl_cl.set_containing_obj(obj); 680 if (!g1h->collector_state()->in_full_gc() || G1VerifyRSetsDuringFullGC) { 681 // verify liveness and rem_set 682 vr_cl.set_containing_obj(obj); 683 G1Mux2Closure mux(&vl_cl, &vr_cl); 684 obj->oop_iterate(&mux); 685 686 if (vr_cl.failures()) { 687 *failures = true; 688 } 689 if (G1MaxVerifyFailures >= 0 && 690 vr_cl.n_failures() >= G1MaxVerifyFailures) { 691 return; 692 } 693 } else { 694 // verify only liveness 695 obj->oop_iterate(&vl_cl); 696 } 697 if (vl_cl.failures()) { 698 *failures = true; 699 } 700 if (G1MaxVerifyFailures >= 0 && 701 vl_cl.n_failures() >= G1MaxVerifyFailures) { 702 return; 703 } 704 } 705 } else { 706 log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj)); 707 *failures = true; 708 return; 709 } 710 } 711 prev_p = p; 712 p += obj_size; 713 } 714 715 if (!is_empty()) { 716 _bot_part.verify(); 717 } 718 719 if (is_region_humongous) { 720 oop obj = cast_to_oop(this->humongous_start_region()->bottom()); 721 if (cast_from_oop<HeapWord*>(obj) > bottom() || cast_from_oop<HeapWord*>(obj) + obj->size() < bottom()) { 722 log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj)); 723 *failures = true; 724 return; 725 } 726 } 727 728 if (!is_region_humongous && p != top()) { 729 log_error(gc, verify)("end of last object " PTR_FORMAT " " 730 "does not match top " PTR_FORMAT, p2i(p), p2i(top())); 731 *failures = true; 732 return; 733 } 734 735 HeapWord* the_end = end(); 736 // Do some extra BOT consistency checking for addresses in the 737 // range [top, end). BOT look-ups in this range should yield 738 // top. No point in doing that if top == end (there's nothing there). 739 if (p < the_end) { 740 // Look up top 741 HeapWord* addr_1 = p; 742 HeapWord* b_start_1 = block_start_const(addr_1); 743 if (b_start_1 != p) { 744 log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " " 745 " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, 746 p2i(addr_1), p2i(b_start_1), p2i(p)); 747 *failures = true; 748 return; 749 } 750 751 // Look up top + 1 752 HeapWord* addr_2 = p + 1; 753 if (addr_2 < the_end) { 754 HeapWord* b_start_2 = block_start_const(addr_2); 755 if (b_start_2 != p) { 756 log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " " 757 " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, 758 p2i(addr_2), p2i(b_start_2), p2i(p)); 759 *failures = true; 760 return; 761 } 762 } 763 764 // Look up an address between top and end 765 size_t diff = pointer_delta(the_end, p) / 2; 766 HeapWord* addr_3 = p + diff; 767 if (addr_3 < the_end) { 768 HeapWord* b_start_3 = block_start_const(addr_3); 769 if (b_start_3 != p) { 770 log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " " 771 " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, 772 p2i(addr_3), p2i(b_start_3), p2i(p)); 773 *failures = true; 774 return; 775 } 776 } 777 778 // Look up end - 1 779 HeapWord* addr_4 = the_end - 1; 780 HeapWord* b_start_4 = block_start_const(addr_4); 781 if (b_start_4 != p) { 782 log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " " 783 " yielded " PTR_FORMAT ", expecting " PTR_FORMAT, 784 p2i(addr_4), p2i(b_start_4), p2i(p)); 785 *failures = true; 786 return; 787 } 788 } 789 790 verify_strong_code_roots(vo, failures); 791 } 792 793 void HeapRegion::verify() const { 794 bool dummy = false; 795 verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy); 796 } 797 798 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const { 799 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 800 *failures = false; 801 HeapWord* p = bottom(); 802 HeapWord* prev_p = NULL; 803 VerifyRemSetClosure vr_cl(g1h, vo); 804 while (p < top()) { 805 oop obj = cast_to_oop(p); 806 size_t obj_size = block_size(p); 807 808 if (!g1h->is_obj_dead_cond(obj, this, vo)) { 809 if (oopDesc::is_oop(obj)) { 810 vr_cl.set_containing_obj(obj); 811 obj->oop_iterate(&vr_cl); 812 813 if (vr_cl.failures()) { 814 *failures = true; 815 } 816 if (G1MaxVerifyFailures >= 0 && 817 vr_cl.n_failures() >= G1MaxVerifyFailures) { 818 return; 819 } 820 } else { 821 log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj)); 822 *failures = true; 823 return; 824 } 825 } 826 827 prev_p = p; 828 p += obj_size; 829 } 830 } 831 832 void HeapRegion::verify_rem_set() const { 833 bool failures = false; 834 verify_rem_set(VerifyOption_G1UsePrevMarking, &failures); 835 guarantee(!failures, "HeapRegion RemSet verification failed"); 836 } 837 838 void HeapRegion::clear(bool mangle_space) { 839 set_top(bottom()); 840 set_compaction_top(bottom()); 841 842 if (ZapUnusedHeapArea && mangle_space) { 843 mangle_unused_area(); 844 } 845 reset_bot(); 846 } 847 848 #ifndef PRODUCT 849 void HeapRegion::mangle_unused_area() { 850 SpaceMangler::mangle_region(MemRegion(top(), end())); 851 } 852 #endif 853 854 HeapWord* HeapRegion::initialize_threshold() { 855 return _bot_part.initialize_threshold(); 856 } 857 858 HeapWord* HeapRegion::cross_threshold(HeapWord* start, HeapWord* end) { 859 _bot_part.alloc_block(start, end); 860 return _bot_part.threshold(); 861 } 862 863 template<bool RESOLVE> 864 void HeapRegion::object_iterate_impl(ObjectClosure* blk) { 865 HeapWord* p = bottom(); 866 while (p < top()) { 867 if (block_is_obj(p)) { 868 blk->do_object(cast_to_oop(p)); 869 } 870 p += block_size<RESOLVE>(p); 871 } 872 } 873 874 void HeapRegion::object_iterate(ObjectClosure* blk) { 875 if (!UseCompactObjectHeaders || G1CollectedHeap::heap()->collector_state()->in_full_gc()) { 876 object_iterate_impl<false>(blk); 877 } else { 878 object_iterate_impl<true>(blk); 879 } 880 }