1 /*
  2  * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_G1_HEAPREGION_HPP
 26 #define SHARE_GC_G1_HEAPREGION_HPP
 27 
 28 #include "gc/g1/g1BlockOffsetTable.hpp"
 29 #include "gc/g1/g1HeapRegionTraceType.hpp"
 30 #include "gc/g1/g1SurvRateGroup.hpp"
 31 #include "gc/g1/heapRegionTracer.hpp"
 32 #include "gc/g1/heapRegionType.hpp"
 33 #include "gc/shared/ageTable.hpp"
 34 #include "gc/shared/spaceDecorator.hpp"
 35 #include "gc/shared/verifyOption.hpp"
 36 #include "runtime/mutex.hpp"
 37 #include "utilities/macros.hpp"
 38 
 39 class G1CollectedHeap;
 40 class G1CMBitMap;
 41 class G1Predictions;
 42 class HeapRegionRemSet;
 43 class HeapRegion;
 44 class HeapRegionSetBase;
 45 class nmethod;
 46 
 47 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
 48 #define HR_FORMAT_PARAMS(_hr_) \
 49                 (_hr_)->hrm_index(), \
 50                 (_hr_)->get_short_type_str(), \
 51                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
 52 
 53 // sentinel value for hrm_index
 54 #define G1_NO_HRM_INDEX ((uint) -1)
 55 
 56 // A HeapRegion is the smallest piece of a G1CollectedHeap that
 57 // can be collected independently.
 58 
 59 // Each heap region is self contained. top() and end() can never
 60 // be set beyond the end of the region. For humongous objects,
 61 // the first region is a StartsHumongous region. If the humongous
 62 // object is larger than a heap region, the following regions will
 63 // be of type ContinuesHumongous. In this case the top() of the
 64 // StartHumongous region and all ContinuesHumongous regions except
 65 // the last will point to their own end. The last ContinuesHumongous
 66 // region may have top() equal the end of object if there isn't
 67 // room for filler objects to pad out to the end of the region.
 68 class HeapRegion : public CHeapObj<mtGC> {
 69   friend class VMStructs;
 70 
 71   HeapWord* const _bottom;
 72   HeapWord* const _end;
 73 
 74   HeapWord* volatile _top;
 75   HeapWord* _compaction_top;
 76 
 77   G1BlockOffsetTablePart _bot_part;
 78   Mutex _par_alloc_lock;
 79   // When we need to retire an allocation region, while other threads
 80   // are also concurrently trying to allocate into it, we typically
 81   // allocate a dummy object at the end of the region to ensure that
 82   // no more allocations can take place in it. However, sometimes we
 83   // want to know where the end of the last "real" object we allocated
 84   // into the region was and this is what this keeps track.
 85   HeapWord* _pre_dummy_top;
 86 
 87 public:
 88   HeapWord* bottom() const         { return _bottom; }
 89   HeapWord* end() const            { return _end;    }
 90 
 91   void set_compaction_top(HeapWord* compaction_top) { _compaction_top = compaction_top; }
 92   HeapWord* compaction_top() const { return _compaction_top; }
 93 
 94   void set_top(HeapWord* value) { _top = value; }
 95   HeapWord* top() const { return _top; }
 96 
 97   // See the comment above in the declaration of _pre_dummy_top for an
 98   // explanation of what it is.
 99   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
100     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
101     _pre_dummy_top = pre_dummy_top;
102   }
103   HeapWord* pre_dummy_top() { return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top; }
104   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
105 
106   // Returns true iff the given the heap  region contains the
107   // given address as part of an allocated object. This may
108   // be a potentially, so we restrict its use to assertion checks only.
109   bool is_in(const void* p) const {
110     return is_in_reserved(p);
111   }
112   bool is_in(oop obj) const {
113     return is_in((void*)obj);
114   }
115   // Returns true iff the given reserved memory of the space contains the
116   // given address.
117   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
118 
119   size_t capacity()     const { return byte_size(bottom(), end()); }
120   size_t used() const { return byte_size(bottom(), top()); }
121   size_t free() const { return byte_size(top(), end()); }
122 
123   bool is_empty() const { return used() == 0; }
124 
125 private:
126   void reset_compaction_top_after_compaction();
127 
128   void reset_after_full_gc_common();
129 
130   void clear(bool mangle_space);
131 
132   HeapWord* block_start_const(const void* p) const;
133 
134   void mangle_unused_area() PRODUCT_RETURN;
135 
136   // Try to allocate at least min_word_size and up to desired_size from this region.
137   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
138   // space allocated.
139   // This version assumes that all allocation requests to this HeapRegion are properly
140   // synchronized.
141   inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
142   // Try to allocate at least min_word_size and up to desired_size from this HeapRegion.
143   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
144   // space allocated.
145   // This version synchronizes with other calls to par_allocate_impl().
146   inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
147 



148 public:
149   HeapWord* block_start(const void* p);
150 
151   void object_iterate(ObjectClosure* blk);
152 
153   // Allocation (return NULL if full).  Assumes the caller has established
154   // mutually exclusive access to the HeapRegion.
155   HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
156   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
157   HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
158 
159   HeapWord* allocate(size_t word_size);
160   HeapWord* par_allocate(size_t word_size);
161 
162   inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
163   inline HeapWord* allocate_no_bot_updates(size_t word_size);
164   inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
165 
166   // Full GC support methods.
167 
168   HeapWord* initialize_threshold();
169   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
170 
171   // Update heap region that has been compacted to be consistent after Full GC.
172   void reset_compacted_after_full_gc();
173   // Update skip-compacting heap region to be consistent after Full GC.
174   void reset_skip_compacting_after_full_gc();
175 
176   // All allocated blocks are occupied by objects in a HeapRegion
177   bool block_is_obj(const HeapWord* p) const;
178 
179   // Returns whether the given object is dead based on TAMS and bitmap.
180   // An object is dead iff a) it was not allocated since the last mark (>TAMS), b) it
181   // is not marked (bitmap).
182   bool is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const;
183 
184   // Returns the object size for all valid block starts
185   // and the amount of unallocated words if called on top()

186   size_t block_size(const HeapWord* p) const;
187 
188   // Scans through the region using the bitmap to determine what
189   // objects to call size_t ApplyToMarkedClosure::apply(oop) for.
190   template<typename ApplyToMarkedClosure>
191   inline void apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure);
192 
193   void reset_bot() {
194     _bot_part.reset_bot();
195   }
196 
197   void update_bot() {
198     _bot_part.update();
199   }
200 
201 private:
202   // The remembered set for this region.
203   HeapRegionRemSet* _rem_set;
204 
205   // Cached index of this region in the heap region sequence.
206   const uint _hrm_index;
207 
208   HeapRegionType _type;
209 
210   // For a humongous region, region in which it starts.
211   HeapRegion* _humongous_start_region;
212 
213   static const uint InvalidCSetIndex = UINT_MAX;
214 
215   // The index in the optional regions array, if this region
216   // is considered optional during a mixed collections.
217   uint _index_in_opt_cset;
218 
219   // Fields used by the HeapRegionSetBase class and subclasses.
220   HeapRegion* _next;
221   HeapRegion* _prev;
222 #ifdef ASSERT
223   HeapRegionSetBase* _containing_set;
224 #endif // ASSERT
225 
226   // The start of the unmarked area. The unmarked area extends from this
227   // word until the top and/or end of the region, and is the part
228   // of the region for which no marking was done, i.e. objects may
229   // have been allocated in this part since the last mark phase.
230   // "prev" is the top at the start of the last completed marking.
231   // "next" is the top at the start of the in-progress marking (if any.)
232   HeapWord* _prev_top_at_mark_start;
233   HeapWord* _next_top_at_mark_start;
234 
235   // We use concurrent marking to determine the amount of live data
236   // in each heap region.
237   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
238   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
239 
240   void init_top_at_mark_start() {
241     assert(_prev_marked_bytes == 0 &&
242            _next_marked_bytes == 0,
243            "Must be called after zero_marked_bytes.");
244     _prev_top_at_mark_start = _next_top_at_mark_start = bottom();
245   }
246 
247   // Data for young region survivor prediction.
248   uint  _young_index_in_cset;
249   G1SurvRateGroup* _surv_rate_group;
250   int  _age_index;
251 
252   // Cached attributes used in the collection set policy information
253 
254   // The calculated GC efficiency of the region.
255   double _gc_efficiency;
256 
257   uint _node_index;
258 
259   void report_region_type_change(G1HeapRegionTraceType::Type to);
260 
261   // Returns whether the given object address refers to a dead object, and either the
262   // size of the object (if live) or the size of the block (if dead) in size.
263   // May
264   // - only called with obj < top()
265   // - not called on humongous objects or archive regions
266   inline bool is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const;
267 
268   // Iterate over the references covered by the given MemRegion in a humongous
269   // object and apply the given closure to them.
270   // Humongous objects are allocated directly in the old-gen. So we need special
271   // handling for concurrent processing encountering an in-progress allocation.
272   // Returns the address after the last actually scanned or NULL if the area could
273   // not be scanned (That should only happen when invoked concurrently with the
274   // mutator).
275   template <class Closure, bool is_gc_active>
276   inline HeapWord* do_oops_on_memregion_in_humongous(MemRegion mr,
277                                                      Closure* cl,
278                                                      G1CollectedHeap* g1h);
279 
280   // Returns the block size of the given (dead, potentially having its class unloaded) object
281   // starting at p extending to at most the prev TAMS using the given mark bitmap.
282   inline size_t block_size_using_bitmap(const HeapWord* p, const G1CMBitMap* const prev_bitmap) const;
283 public:
284   HeapRegion(uint hrm_index, G1BlockOffsetTable* bot, MemRegion mr);
285 
286   // If this region is a member of a HeapRegionManager, the index in that
287   // sequence, otherwise -1.
288   uint hrm_index() const { return _hrm_index; }
289 
290   // Initializing the HeapRegion not only resets the data structure, but also
291   // resets the BOT for that heap region.
292   // The default values for clear_space means that we will do the clearing if
293   // there's clearing to be done ourselves. We also always mangle the space.
294   void initialize(bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
295 
296   static int    LogOfHRGrainBytes;
297   static int    LogCardsPerRegion;
298 
299   static size_t GrainBytes;
300   static size_t GrainWords;
301   static size_t CardsPerRegion;
302 
303   static size_t align_up_to_region_byte_size(size_t sz) {
304     return (sz + (size_t) GrainBytes - 1) &
305                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
306   }
307 
308   // Returns whether a field is in the same region as the obj it points to.
309   template <typename T>
310   static bool is_in_same_region(T* p, oop obj) {
311     assert(p != NULL, "p can't be NULL");
312     assert(obj != NULL, "obj can't be NULL");
313     return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0;
314   }
315 
316   static size_t max_region_size();
317   static size_t min_region_size_in_words();
318 
319   // It sets up the heap region size (GrainBytes / GrainWords), as well as
320   // other related fields that are based on the heap region size
321   // (LogOfHRGrainBytes / CardsPerRegion). All those fields are considered
322   // constant throughout the JVM's execution, therefore they should only be set
323   // up once during initialization time.
324   static void setup_heap_region_size(size_t max_heap_size);
325 
326   // The number of bytes marked live in the region in the last marking phase.
327   size_t marked_bytes()    { return _prev_marked_bytes; }
328   size_t live_bytes() {
329     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
330   }
331 
332   // The number of bytes counted in the next marking.
333   size_t next_marked_bytes() { return _next_marked_bytes; }
334   // The number of bytes live wrt the next marking.
335   size_t next_live_bytes() {
336     return
337       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
338   }
339 
340   // A lower bound on the amount of garbage bytes in the region.
341   size_t garbage_bytes() {
342     size_t used_at_mark_start_bytes =
343       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
344     return used_at_mark_start_bytes - marked_bytes();
345   }
346 
347   // Return the amount of bytes we'll reclaim if we collect this
348   // region. This includes not only the known garbage bytes in the
349   // region but also any unallocated space in it, i.e., [top, end),
350   // since it will also be reclaimed if we collect the region.
351   size_t reclaimable_bytes() {
352     size_t known_live_bytes = live_bytes();
353     assert(known_live_bytes <= capacity(), "sanity");
354     return capacity() - known_live_bytes;
355   }
356 
357   // An upper bound on the number of live bytes in the region.
358   size_t max_live_bytes() { return used() - garbage_bytes(); }
359 
360   void add_to_marked_bytes(size_t incr_bytes) {
361     _next_marked_bytes = _next_marked_bytes + incr_bytes;
362   }
363 
364   void zero_marked_bytes()      {
365     _prev_marked_bytes = _next_marked_bytes = 0;
366   }
367   // Get the start of the unmarked area in this region.
368   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
369   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
370 
371   // Note the start or end of marking. This tells the heap region
372   // that the collector is about to start or has finished (concurrently)
373   // marking the heap.
374 
375   // Notify the region that concurrent marking is starting. Initialize
376   // all fields related to the next marking info.
377   inline void note_start_of_marking();
378 
379   // Notify the region that concurrent marking has finished. Copy the
380   // (now finalized) next marking info fields into the prev marking
381   // info fields.
382   inline void note_end_of_marking();
383 
384   const char* get_type_str() const { return _type.get_str(); }
385   const char* get_short_type_str() const { return _type.get_short_str(); }
386   G1HeapRegionTraceType::Type get_trace_type() { return _type.get_trace_type(); }
387 
388   bool is_free() const { return _type.is_free(); }
389 
390   bool is_young()    const { return _type.is_young();    }
391   bool is_eden()     const { return _type.is_eden();     }
392   bool is_survivor() const { return _type.is_survivor(); }
393 
394   bool is_humongous() const { return _type.is_humongous(); }
395   bool is_starts_humongous() const { return _type.is_starts_humongous(); }
396   bool is_continues_humongous() const { return _type.is_continues_humongous();   }
397 
398   bool is_old() const { return _type.is_old(); }
399 
400   bool is_old_or_humongous() const { return _type.is_old_or_humongous(); }
401 
402   bool is_old_or_humongous_or_archive() const { return _type.is_old_or_humongous_or_archive(); }
403 
404   // A pinned region contains objects which are not moved by garbage collections.
405   // Humongous regions and archive regions are pinned.
406   bool is_pinned() const { return _type.is_pinned(); }
407 
408   // An archive region is a pinned region, also tagged as old, which
409   // should not be marked during mark/sweep. This allows the address
410   // space to be shared by JVM instances.
411   bool is_archive()        const { return _type.is_archive(); }
412   bool is_open_archive()   const { return _type.is_open_archive(); }
413   bool is_closed_archive() const { return _type.is_closed_archive(); }
414 
415   void set_free();
416 
417   void set_eden();
418   void set_eden_pre_gc();
419   void set_survivor();
420 
421   void move_to_old();
422   void set_old();
423 
424   void set_open_archive();
425   void set_closed_archive();
426 
427   // For a humongous region, region in which it starts.
428   HeapRegion* humongous_start_region() const {
429     return _humongous_start_region;
430   }
431 
432   // Makes the current region be a "starts humongous" region, i.e.,
433   // the first region in a series of one or more contiguous regions
434   // that will contain a single "humongous" object.
435   //
436   // obj_top : points to the top of the humongous object.
437   // fill_size : size of the filler object at the end of the region series.
438   void set_starts_humongous(HeapWord* obj_top, size_t fill_size);
439 
440   // Makes the current region be a "continues humongous'
441   // region. first_hr is the "start humongous" region of the series
442   // which this region will be part of.
443   void set_continues_humongous(HeapRegion* first_hr);
444 
445   // Unsets the humongous-related fields on the region.
446   void clear_humongous();
447 
448   // If the region has a remembered set, return a pointer to it.
449   HeapRegionRemSet* rem_set() const {
450     return _rem_set;
451   }
452 
453   inline bool in_collection_set() const;
454 
455   // Methods used by the HeapRegionSetBase class and subclasses.
456 
457   // Getter and setter for the next and prev fields used to link regions into
458   // linked lists.
459   void set_next(HeapRegion* next) { _next = next; }
460   HeapRegion* next()              { return _next; }
461 
462   void set_prev(HeapRegion* prev) { _prev = prev; }
463   HeapRegion* prev()              { return _prev; }
464 
465   void unlink_from_list();
466 
467   // Every region added to a set is tagged with a reference to that
468   // set. This is used for doing consistency checking to make sure that
469   // the contents of a set are as they should be and it's only
470   // available in non-product builds.
471 #ifdef ASSERT
472   void set_containing_set(HeapRegionSetBase* containing_set) {
473     assert((containing_set != NULL && _containing_set == NULL) ||
474             containing_set == NULL,
475            "containing_set: " PTR_FORMAT " "
476            "_containing_set: " PTR_FORMAT,
477            p2i(containing_set), p2i(_containing_set));
478 
479     _containing_set = containing_set;
480   }
481 
482   HeapRegionSetBase* containing_set() { return _containing_set; }
483 #else // ASSERT
484   void set_containing_set(HeapRegionSetBase* containing_set) { }
485 
486   // containing_set() is only used in asserts so there's no reason
487   // to provide a dummy version of it.
488 #endif // ASSERT
489 
490 
491   // Reset the HeapRegion to default values and clear its remembered set.
492   // If clear_space is true, clear the HeapRegion's memory.
493   // Callers must ensure this is not called by multiple threads at the same time.
494   void hr_clear(bool clear_space);
495   // Clear the card table corresponding to this region.
496   void clear_cardtable();
497 
498   // Notify the region that we are about to start processing
499   // self-forwarded objects during evac failure handling.
500   void note_self_forwarding_removal_start(bool during_concurrent_start,
501                                           bool during_conc_mark);
502 
503   // Notify the region that we have finished processing self-forwarded
504   // objects during evac failure handling.
505   void note_self_forwarding_removal_end(size_t marked_bytes);
506 
507   uint index_in_opt_cset() const {
508     assert(has_index_in_opt_cset(), "Opt cset index not set.");
509     return _index_in_opt_cset;
510   }
511   bool has_index_in_opt_cset() const { return _index_in_opt_cset != InvalidCSetIndex; }
512   void set_index_in_opt_cset(uint index) { _index_in_opt_cset = index; }
513   void clear_index_in_opt_cset() { _index_in_opt_cset = InvalidCSetIndex; }
514 
515   void calc_gc_efficiency(void);
516   double gc_efficiency() const { return _gc_efficiency;}
517 
518   uint  young_index_in_cset() const { return _young_index_in_cset; }
519   void clear_young_index_in_cset() { _young_index_in_cset = 0; }
520   void set_young_index_in_cset(uint index) {
521     assert(index != UINT_MAX, "just checking");
522     assert(index != 0, "just checking");
523     assert(is_young(), "pre-condition");
524     _young_index_in_cset = index;
525   }
526 
527   int age_in_surv_rate_group() const;
528   bool has_valid_age_in_surv_rate() const;
529 
530   bool has_surv_rate_group() const;
531 
532   double surv_rate_prediction(G1Predictions const& predictor) const;
533 
534   void install_surv_rate_group(G1SurvRateGroup* surv_rate_group);
535   void uninstall_surv_rate_group();
536 
537   void record_surv_words_in_group(size_t words_survived);
538 
539   // Determine if an object has been allocated since the last
540   // mark performed by the collector. This returns true iff the object
541   // is within the unmarked area of the region.
542   bool obj_allocated_since_prev_marking(oop obj) const {
543     return cast_from_oop<HeapWord*>(obj) >= prev_top_at_mark_start();
544   }
545   bool obj_allocated_since_next_marking(oop obj) const {
546     return cast_from_oop<HeapWord*>(obj) >= next_top_at_mark_start();
547   }
548 
549   // Update the region state after a failed evacuation.
550   void handle_evacuation_failure();
551 
552   // Iterate over the objects overlapping the given memory region, applying cl
553   // to all references in the region.  This is a helper for
554   // G1RemSet::refine_card*, and is tightly coupled with them.
555   // mr must not be empty. Must be trimmed to the allocated/parseable space in this region.
556   // This region must be old or humongous.
557   // Returns the next unscanned address if the designated objects were successfully
558   // processed, NULL if an unparseable part of the heap was encountered (That should
559   // only happen when invoked concurrently with the mutator).
560   template <bool is_gc_active, class Closure>
561   inline HeapWord* oops_on_memregion_seq_iterate_careful(MemRegion mr, Closure* cl);
562 
563   // Routines for managing a list of code roots (attached to the
564   // this region's RSet) that point into this heap region.
565   void add_strong_code_root(nmethod* nm);
566   void add_strong_code_root_locked(nmethod* nm);
567   void remove_strong_code_root(nmethod* nm);
568 
569   // Applies blk->do_code_blob() to each of the entries in
570   // the strong code roots list for this region
571   void strong_code_roots_do(CodeBlobClosure* blk) const;
572 
573   uint node_index() const { return _node_index; }
574   void set_node_index(uint node_index) { _node_index = node_index; }
575 
576   // Verify that the entries on the strong code root list for this
577   // region are live and include at least one pointer into this region.
578   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
579 
580   void print() const;
581   void print_on(outputStream* st) const;
582 
583   // vo == UsePrevMarking -> use "prev" marking information,
584   // vo == UseNextMarking -> use "next" marking information
585   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
586   //
587   // NOTE: Only the "prev" marking information is guaranteed to be
588   // consistent most of the time, so most calls to this should use
589   // vo == UsePrevMarking.
590   // Currently, there is only one case where this is called with
591   // vo == UseNextMarking, which is to verify the "next" marking
592   // information at the end of remark.
593   // Currently there is only one place where this is called with
594   // vo == UseFullMarking, which is to verify the marking during a
595   // full GC.
596   void verify(VerifyOption vo, bool *failures) const;
597 
598   // Verify using the "prev" marking information
599   void verify() const;
600 
601   void verify_rem_set(VerifyOption vo, bool *failures) const;
602   void verify_rem_set() const;
603 };
604 
605 // HeapRegionClosure is used for iterating over regions.
606 // Terminates the iteration when the "do_heap_region" method returns "true".
607 class HeapRegionClosure : public StackObj {
608   friend class HeapRegionManager;
609   friend class G1CollectionSet;
610   friend class G1CollectionSetCandidates;
611 
612   bool _is_complete;
613   void set_incomplete() { _is_complete = false; }
614 
615 public:
616   HeapRegionClosure(): _is_complete(true) {}
617 
618   // Typically called on each region until it returns true.
619   virtual bool do_heap_region(HeapRegion* r) = 0;
620 
621   // True after iteration if the closure was applied to all heap regions
622   // and returned "false" in all cases.
623   bool is_complete() { return _is_complete; }
624 };
625 
626 #endif // SHARE_GC_G1_HEAPREGION_HPP
--- EOF ---