1 /*
  2  * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_G1_HEAPREGION_HPP
 26 #define SHARE_GC_G1_HEAPREGION_HPP
 27 
 28 #include "gc/g1/g1BlockOffsetTable.hpp"
 29 #include "gc/g1/g1HeapRegionTraceType.hpp"
 30 #include "gc/g1/g1SurvRateGroup.hpp"
 31 #include "gc/g1/heapRegionTracer.hpp"
 32 #include "gc/g1/heapRegionType.hpp"
 33 #include "gc/shared/ageTable.hpp"
 34 #include "gc/shared/spaceDecorator.hpp"
 35 #include "gc/shared/verifyOption.hpp"
 36 #include "runtime/mutex.hpp"
 37 #include "utilities/macros.hpp"
 38 
 39 class G1CollectedHeap;
 40 class G1CMBitMap;
 41 class G1Predictions;
 42 class HeapRegionRemSet;
 43 class HeapRegion;
 44 class HeapRegionSetBase;
 45 class nmethod;
 46 
 47 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
 48 #define HR_FORMAT_PARAMS(_hr_) \
 49                 (_hr_)->hrm_index(), \
 50                 (_hr_)->get_short_type_str(), \
 51                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
 52 
 53 // sentinel value for hrm_index
 54 #define G1_NO_HRM_INDEX ((uint) -1)
 55 
 56 // A HeapRegion is the smallest piece of a G1CollectedHeap that
 57 // can be collected independently.
 58 
 59 // Each heap region is self contained. top() and end() can never
 60 // be set beyond the end of the region. For humongous objects,
 61 // the first region is a StartsHumongous region. If the humongous
 62 // object is larger than a heap region, the following regions will
 63 // be of type ContinuesHumongous. In this case the top() of the
 64 // StartHumongous region and all ContinuesHumongous regions except
 65 // the last will point to their own end. The last ContinuesHumongous
 66 // region may have top() equal the end of object if there isn't
 67 // room for filler objects to pad out to the end of the region.
 68 class HeapRegion : public CHeapObj<mtGC> {
 69   friend class VMStructs;
 70 
 71   HeapWord* const _bottom;
 72   HeapWord* const _end;
 73 
 74   HeapWord* volatile _top;
 75   HeapWord* _compaction_top;
 76 
 77   G1BlockOffsetTablePart _bot_part;
 78   Mutex _par_alloc_lock;
 79   // When we need to retire an allocation region, while other threads
 80   // are also concurrently trying to allocate into it, we typically
 81   // allocate a dummy object at the end of the region to ensure that
 82   // no more allocations can take place in it. However, sometimes we
 83   // want to know where the end of the last "real" object we allocated
 84   // into the region was and this is what this keeps track.
 85   HeapWord* _pre_dummy_top;
 86 
 87 public:
 88   HeapWord* bottom() const         { return _bottom; }
 89   HeapWord* end() const            { return _end;    }
 90 
 91   void set_compaction_top(HeapWord* compaction_top) { _compaction_top = compaction_top; }
 92   HeapWord* compaction_top() const { return _compaction_top; }
 93 
 94   void set_top(HeapWord* value) { _top = value; }
 95   HeapWord* top() const { return _top; }
 96 
 97   // See the comment above in the declaration of _pre_dummy_top for an
 98   // explanation of what it is.
 99   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
100     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
101     _pre_dummy_top = pre_dummy_top;
102   }
103   HeapWord* pre_dummy_top() { return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top; }
104   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
105 
106   // Returns true iff the given the heap  region contains the
107   // given address as part of an allocated object. This may
108   // be a potentially, so we restrict its use to assertion checks only.
109   bool is_in(const void* p) const {
110     return is_in_reserved(p);
111   }
112   bool is_in(oop obj) const {
113     return is_in((void*)obj);
114   }
115   // Returns true iff the given reserved memory of the space contains the
116   // given address.
117   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
118 
119   size_t capacity()     const { return byte_size(bottom(), end()); }
120   size_t used() const { return byte_size(bottom(), top()); }
121   size_t free() const { return byte_size(top(), end()); }
122 
123   bool is_empty() const { return used() == 0; }
124 
125 private:
126   void reset_compaction_top_after_compaction();
127 
128   void reset_after_full_gc_common();
129 
130   void clear(bool mangle_space);
131 
132   HeapWord* block_start_const(const void* p) const;
133 
134   void mangle_unused_area() PRODUCT_RETURN;
135 
136   // Try to allocate at least min_word_size and up to desired_size from this region.
137   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
138   // space allocated.
139   // This version assumes that all allocation requests to this HeapRegion are properly
140   // synchronized.
141   inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
142   // Try to allocate at least min_word_size and up to desired_size from this HeapRegion.
143   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
144   // space allocated.
145   // This version synchronizes with other calls to par_allocate_impl().
146   inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
147 
148   template<bool RESOLVE>
149   void object_iterate_impl(ObjectClosure* blk);
150 
151 public:
152   HeapWord* block_start(const void* p);
153 
154   void object_iterate(ObjectClosure* blk);
155 
156   // Allocation (return NULL if full).  Assumes the caller has established
157   // mutually exclusive access to the HeapRegion.
158   HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
159   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
160   HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
161 
162   HeapWord* allocate(size_t word_size);
163   HeapWord* par_allocate(size_t word_size);
164 
165   inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
166   inline HeapWord* allocate_no_bot_updates(size_t word_size);
167   inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
168 
169   // Full GC support methods.
170 
171   HeapWord* initialize_threshold();
172   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
173 
174   // Update heap region that has been compacted to be consistent after Full GC.
175   void reset_compacted_after_full_gc();
176   // Update skip-compacting heap region to be consistent after Full GC.
177   void reset_skip_compacting_after_full_gc();
178 
179   // All allocated blocks are occupied by objects in a HeapRegion
180   bool block_is_obj(const HeapWord* p) const;
181 
182   // Returns whether the given object is dead based on TAMS and bitmap.
183   // An object is dead iff a) it was not allocated since the last mark (>TAMS), b) it
184   // is not marked (bitmap).
185   bool is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const;
186 
187   // Returns the object size for all valid block starts
188   // and the amount of unallocated words if called on top()
189   template<bool RESOLVE = false>
190   size_t block_size(const HeapWord* p) const;
191 
192   // Scans through the region using the bitmap to determine what
193   // objects to call size_t ApplyToMarkedClosure::apply(oop) for.
194   template<typename ApplyToMarkedClosure>
195   inline void apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure);
196 
197   void reset_bot() {
198     _bot_part.reset_bot();
199   }
200 
201   void update_bot() {
202     _bot_part.update();
203   }
204 
205 private:
206   // The remembered set for this region.
207   HeapRegionRemSet* _rem_set;
208 
209   // Cached index of this region in the heap region sequence.
210   const uint _hrm_index;
211 
212   HeapRegionType _type;
213 
214   // For a humongous region, region in which it starts.
215   HeapRegion* _humongous_start_region;
216 
217   static const uint InvalidCSetIndex = UINT_MAX;
218 
219   // The index in the optional regions array, if this region
220   // is considered optional during a mixed collections.
221   uint _index_in_opt_cset;
222 
223   // Fields used by the HeapRegionSetBase class and subclasses.
224   HeapRegion* _next;
225   HeapRegion* _prev;
226 #ifdef ASSERT
227   HeapRegionSetBase* _containing_set;
228 #endif // ASSERT
229 
230   // The start of the unmarked area. The unmarked area extends from this
231   // word until the top and/or end of the region, and is the part
232   // of the region for which no marking was done, i.e. objects may
233   // have been allocated in this part since the last mark phase.
234   // "prev" is the top at the start of the last completed marking.
235   // "next" is the top at the start of the in-progress marking (if any.)
236   HeapWord* _prev_top_at_mark_start;
237   HeapWord* _next_top_at_mark_start;
238 
239   // We use concurrent marking to determine the amount of live data
240   // in each heap region.
241   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
242   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
243 
244   void init_top_at_mark_start() {
245     assert(_prev_marked_bytes == 0 &&
246            _next_marked_bytes == 0,
247            "Must be called after zero_marked_bytes.");
248     _prev_top_at_mark_start = _next_top_at_mark_start = bottom();
249   }
250 
251   // Data for young region survivor prediction.
252   uint  _young_index_in_cset;
253   G1SurvRateGroup* _surv_rate_group;
254   int  _age_index;
255 
256   // Cached attributes used in the collection set policy information
257 
258   // The calculated GC efficiency of the region.
259   double _gc_efficiency;
260 
261   uint _node_index;
262 
263   void report_region_type_change(G1HeapRegionTraceType::Type to);
264 
265   // Returns whether the given object address refers to a dead object, and either the
266   // size of the object (if live) or the size of the block (if dead) in size.
267   // May
268   // - only called with obj < top()
269   // - not called on humongous objects or archive regions
270   inline bool is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const;
271 
272   // Iterate over the references covered by the given MemRegion in a humongous
273   // object and apply the given closure to them.
274   // Humongous objects are allocated directly in the old-gen. So we need special
275   // handling for concurrent processing encountering an in-progress allocation.
276   // Returns the address after the last actually scanned or NULL if the area could
277   // not be scanned (That should only happen when invoked concurrently with the
278   // mutator).
279   template <class Closure, bool is_gc_active>
280   inline HeapWord* do_oops_on_memregion_in_humongous(MemRegion mr,
281                                                      Closure* cl,
282                                                      G1CollectedHeap* g1h);
283 
284   // Returns the block size of the given (dead, potentially having its class unloaded) object
285   // starting at p extending to at most the prev TAMS using the given mark bitmap.
286   inline size_t block_size_using_bitmap(const HeapWord* p, const G1CMBitMap* const prev_bitmap) const;
287 public:
288   HeapRegion(uint hrm_index, G1BlockOffsetTable* bot, MemRegion mr);
289 
290   // If this region is a member of a HeapRegionManager, the index in that
291   // sequence, otherwise -1.
292   uint hrm_index() const { return _hrm_index; }
293 
294   // Initializing the HeapRegion not only resets the data structure, but also
295   // resets the BOT for that heap region.
296   // The default values for clear_space means that we will do the clearing if
297   // there's clearing to be done ourselves. We also always mangle the space.
298   void initialize(bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
299 
300   static int    LogOfHRGrainBytes;
301   static int    LogCardsPerRegion;
302 
303   static size_t GrainBytes;
304   static size_t GrainWords;
305   static size_t CardsPerRegion;
306 
307   static size_t align_up_to_region_byte_size(size_t sz) {
308     return (sz + (size_t) GrainBytes - 1) &
309                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
310   }
311 
312   // Returns whether a field is in the same region as the obj it points to.
313   template <typename T>
314   static bool is_in_same_region(T* p, oop obj) {
315     assert(p != NULL, "p can't be NULL");
316     assert(obj != NULL, "obj can't be NULL");
317     return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0;
318   }
319 
320   static size_t max_region_size();
321   static size_t min_region_size_in_words();
322 
323   // It sets up the heap region size (GrainBytes / GrainWords), as well as
324   // other related fields that are based on the heap region size
325   // (LogOfHRGrainBytes / CardsPerRegion). All those fields are considered
326   // constant throughout the JVM's execution, therefore they should only be set
327   // up once during initialization time.
328   static void setup_heap_region_size(size_t max_heap_size);
329 
330   // The number of bytes marked live in the region in the last marking phase.
331   size_t marked_bytes()    { return _prev_marked_bytes; }
332   size_t live_bytes() {
333     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
334   }
335 
336   // The number of bytes counted in the next marking.
337   size_t next_marked_bytes() { return _next_marked_bytes; }
338   // The number of bytes live wrt the next marking.
339   size_t next_live_bytes() {
340     return
341       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
342   }
343 
344   // A lower bound on the amount of garbage bytes in the region.
345   size_t garbage_bytes() {
346     size_t used_at_mark_start_bytes =
347       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
348     return used_at_mark_start_bytes - marked_bytes();
349   }
350 
351   // Return the amount of bytes we'll reclaim if we collect this
352   // region. This includes not only the known garbage bytes in the
353   // region but also any unallocated space in it, i.e., [top, end),
354   // since it will also be reclaimed if we collect the region.
355   size_t reclaimable_bytes() {
356     size_t known_live_bytes = live_bytes();
357     assert(known_live_bytes <= capacity(), "sanity");
358     return capacity() - known_live_bytes;
359   }
360 
361   // An upper bound on the number of live bytes in the region.
362   size_t max_live_bytes() { return used() - garbage_bytes(); }
363 
364   void add_to_marked_bytes(size_t incr_bytes) {
365     _next_marked_bytes = _next_marked_bytes + incr_bytes;
366   }
367 
368   void zero_marked_bytes()      {
369     _prev_marked_bytes = _next_marked_bytes = 0;
370   }
371   // Get the start of the unmarked area in this region.
372   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
373   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
374 
375   // Note the start or end of marking. This tells the heap region
376   // that the collector is about to start or has finished (concurrently)
377   // marking the heap.
378 
379   // Notify the region that concurrent marking is starting. Initialize
380   // all fields related to the next marking info.
381   inline void note_start_of_marking();
382 
383   // Notify the region that concurrent marking has finished. Copy the
384   // (now finalized) next marking info fields into the prev marking
385   // info fields.
386   inline void note_end_of_marking();
387 
388   const char* get_type_str() const { return _type.get_str(); }
389   const char* get_short_type_str() const { return _type.get_short_str(); }
390   G1HeapRegionTraceType::Type get_trace_type() { return _type.get_trace_type(); }
391 
392   bool is_free() const { return _type.is_free(); }
393 
394   bool is_young()    const { return _type.is_young();    }
395   bool is_eden()     const { return _type.is_eden();     }
396   bool is_survivor() const { return _type.is_survivor(); }
397 
398   bool is_humongous() const { return _type.is_humongous(); }
399   bool is_starts_humongous() const { return _type.is_starts_humongous(); }
400   bool is_continues_humongous() const { return _type.is_continues_humongous();   }
401 
402   bool is_old() const { return _type.is_old(); }
403 
404   bool is_old_or_humongous() const { return _type.is_old_or_humongous(); }
405 
406   bool is_old_or_humongous_or_archive() const { return _type.is_old_or_humongous_or_archive(); }
407 
408   // A pinned region contains objects which are not moved by garbage collections.
409   // Humongous regions and archive regions are pinned.
410   bool is_pinned() const { return _type.is_pinned(); }
411 
412   // An archive region is a pinned region, also tagged as old, which
413   // should not be marked during mark/sweep. This allows the address
414   // space to be shared by JVM instances.
415   bool is_archive()        const { return _type.is_archive(); }
416   bool is_open_archive()   const { return _type.is_open_archive(); }
417   bool is_closed_archive() const { return _type.is_closed_archive(); }
418 
419   void set_free();
420 
421   void set_eden();
422   void set_eden_pre_gc();
423   void set_survivor();
424 
425   void move_to_old();
426   void set_old();
427 
428   void set_open_archive();
429   void set_closed_archive();
430 
431   // For a humongous region, region in which it starts.
432   HeapRegion* humongous_start_region() const {
433     return _humongous_start_region;
434   }
435 
436   // Makes the current region be a "starts humongous" region, i.e.,
437   // the first region in a series of one or more contiguous regions
438   // that will contain a single "humongous" object.
439   //
440   // obj_top : points to the top of the humongous object.
441   // fill_size : size of the filler object at the end of the region series.
442   void set_starts_humongous(HeapWord* obj_top, size_t fill_size);
443 
444   // Makes the current region be a "continues humongous'
445   // region. first_hr is the "start humongous" region of the series
446   // which this region will be part of.
447   void set_continues_humongous(HeapRegion* first_hr);
448 
449   // Unsets the humongous-related fields on the region.
450   void clear_humongous();
451 
452   // If the region has a remembered set, return a pointer to it.
453   HeapRegionRemSet* rem_set() const {
454     return _rem_set;
455   }
456 
457   inline bool in_collection_set() const;
458 
459   // Methods used by the HeapRegionSetBase class and subclasses.
460 
461   // Getter and setter for the next and prev fields used to link regions into
462   // linked lists.
463   void set_next(HeapRegion* next) { _next = next; }
464   HeapRegion* next()              { return _next; }
465 
466   void set_prev(HeapRegion* prev) { _prev = prev; }
467   HeapRegion* prev()              { return _prev; }
468 
469   void unlink_from_list();
470 
471   // Every region added to a set is tagged with a reference to that
472   // set. This is used for doing consistency checking to make sure that
473   // the contents of a set are as they should be and it's only
474   // available in non-product builds.
475 #ifdef ASSERT
476   void set_containing_set(HeapRegionSetBase* containing_set) {
477     assert((containing_set != NULL && _containing_set == NULL) ||
478             containing_set == NULL,
479            "containing_set: " PTR_FORMAT " "
480            "_containing_set: " PTR_FORMAT,
481            p2i(containing_set), p2i(_containing_set));
482 
483     _containing_set = containing_set;
484   }
485 
486   HeapRegionSetBase* containing_set() { return _containing_set; }
487 #else // ASSERT
488   void set_containing_set(HeapRegionSetBase* containing_set) { }
489 
490   // containing_set() is only used in asserts so there's no reason
491   // to provide a dummy version of it.
492 #endif // ASSERT
493 
494 
495   // Reset the HeapRegion to default values and clear its remembered set.
496   // If clear_space is true, clear the HeapRegion's memory.
497   // Callers must ensure this is not called by multiple threads at the same time.
498   void hr_clear(bool clear_space);
499   // Clear the card table corresponding to this region.
500   void clear_cardtable();
501 
502   // Notify the region that we are about to start processing
503   // self-forwarded objects during evac failure handling.
504   void note_self_forwarding_removal_start(bool during_concurrent_start,
505                                           bool during_conc_mark);
506 
507   // Notify the region that we have finished processing self-forwarded
508   // objects during evac failure handling.
509   void note_self_forwarding_removal_end(size_t marked_bytes);
510 
511   uint index_in_opt_cset() const {
512     assert(has_index_in_opt_cset(), "Opt cset index not set.");
513     return _index_in_opt_cset;
514   }
515   bool has_index_in_opt_cset() const { return _index_in_opt_cset != InvalidCSetIndex; }
516   void set_index_in_opt_cset(uint index) { _index_in_opt_cset = index; }
517   void clear_index_in_opt_cset() { _index_in_opt_cset = InvalidCSetIndex; }
518 
519   void calc_gc_efficiency(void);
520   double gc_efficiency() const { return _gc_efficiency;}
521 
522   uint  young_index_in_cset() const { return _young_index_in_cset; }
523   void clear_young_index_in_cset() { _young_index_in_cset = 0; }
524   void set_young_index_in_cset(uint index) {
525     assert(index != UINT_MAX, "just checking");
526     assert(index != 0, "just checking");
527     assert(is_young(), "pre-condition");
528     _young_index_in_cset = index;
529   }
530 
531   int age_in_surv_rate_group() const;
532   bool has_valid_age_in_surv_rate() const;
533 
534   bool has_surv_rate_group() const;
535 
536   double surv_rate_prediction(G1Predictions const& predictor) const;
537 
538   void install_surv_rate_group(G1SurvRateGroup* surv_rate_group);
539   void uninstall_surv_rate_group();
540 
541   void record_surv_words_in_group(size_t words_survived);
542 
543   // Determine if an object has been allocated since the last
544   // mark performed by the collector. This returns true iff the object
545   // is within the unmarked area of the region.
546   bool obj_allocated_since_prev_marking(oop obj) const {
547     return cast_from_oop<HeapWord*>(obj) >= prev_top_at_mark_start();
548   }
549   bool obj_allocated_since_next_marking(oop obj) const {
550     return cast_from_oop<HeapWord*>(obj) >= next_top_at_mark_start();
551   }
552 
553   // Update the region state after a failed evacuation.
554   void handle_evacuation_failure();
555 
556   // Iterate over the objects overlapping the given memory region, applying cl
557   // to all references in the region.  This is a helper for
558   // G1RemSet::refine_card*, and is tightly coupled with them.
559   // mr must not be empty. Must be trimmed to the allocated/parseable space in this region.
560   // This region must be old or humongous.
561   // Returns the next unscanned address if the designated objects were successfully
562   // processed, NULL if an unparseable part of the heap was encountered (That should
563   // only happen when invoked concurrently with the mutator).
564   template <bool is_gc_active, class Closure>
565   inline HeapWord* oops_on_memregion_seq_iterate_careful(MemRegion mr, Closure* cl);
566 
567   // Routines for managing a list of code roots (attached to the
568   // this region's RSet) that point into this heap region.
569   void add_strong_code_root(nmethod* nm);
570   void add_strong_code_root_locked(nmethod* nm);
571   void remove_strong_code_root(nmethod* nm);
572 
573   // Applies blk->do_code_blob() to each of the entries in
574   // the strong code roots list for this region
575   void strong_code_roots_do(CodeBlobClosure* blk) const;
576 
577   uint node_index() const { return _node_index; }
578   void set_node_index(uint node_index) { _node_index = node_index; }
579 
580   // Verify that the entries on the strong code root list for this
581   // region are live and include at least one pointer into this region.
582   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
583 
584   void print() const;
585   void print_on(outputStream* st) const;
586 
587   // vo == UsePrevMarking -> use "prev" marking information,
588   // vo == UseNextMarking -> use "next" marking information
589   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
590   //
591   // NOTE: Only the "prev" marking information is guaranteed to be
592   // consistent most of the time, so most calls to this should use
593   // vo == UsePrevMarking.
594   // Currently, there is only one case where this is called with
595   // vo == UseNextMarking, which is to verify the "next" marking
596   // information at the end of remark.
597   // Currently there is only one place where this is called with
598   // vo == UseFullMarking, which is to verify the marking during a
599   // full GC.
600   void verify(VerifyOption vo, bool *failures) const;
601 
602   // Verify using the "prev" marking information
603   void verify() const;
604 
605   void verify_rem_set(VerifyOption vo, bool *failures) const;
606   void verify_rem_set() const;
607 };
608 
609 // HeapRegionClosure is used for iterating over regions.
610 // Terminates the iteration when the "do_heap_region" method returns "true".
611 class HeapRegionClosure : public StackObj {
612   friend class HeapRegionManager;
613   friend class G1CollectionSet;
614   friend class G1CollectionSetCandidates;
615 
616   bool _is_complete;
617   void set_incomplete() { _is_complete = false; }
618 
619 public:
620   HeapRegionClosure(): _is_complete(true) {}
621 
622   // Typically called on each region until it returns true.
623   virtual bool do_heap_region(HeapRegion* r) = 0;
624 
625   // True after iteration if the closure was applied to all heap regions
626   // and returned "false" in all cases.
627   bool is_complete() { return _is_complete; }
628 };
629 
630 #endif // SHARE_GC_G1_HEAPREGION_HPP
--- EOF ---