1 /*
  2  * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_G1_HEAPREGION_INLINE_HPP
 26 #define SHARE_GC_G1_HEAPREGION_INLINE_HPP
 27 
 28 #include "gc/g1/heapRegion.hpp"
 29 
 30 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
 31 #include "gc/g1/g1CollectedHeap.inline.hpp"
 32 #include "gc/g1/g1ConcurrentMarkBitMap.inline.hpp"
 33 #include "gc/g1/g1Predictions.hpp"
 34 #include "oops/oop.inline.hpp"
 35 #include "runtime/atomic.hpp"
 36 #include "runtime/prefetch.inline.hpp"
 37 #include "utilities/align.hpp"
 38 #include "utilities/globalDefinitions.hpp"
 39 
 40 inline HeapWord* HeapRegion::allocate_impl(size_t min_word_size,
 41                                            size_t desired_word_size,
 42                                            size_t* actual_size) {
 43   HeapWord* obj = top();
 44   size_t available = pointer_delta(end(), obj);
 45   size_t want_to_allocate = MIN2(available, desired_word_size);
 46   if (want_to_allocate >= min_word_size) {
 47     HeapWord* new_top = obj + want_to_allocate;
 48     set_top(new_top);
 49     assert(is_object_aligned(obj) && is_object_aligned(new_top), "checking alignment");
 50     *actual_size = want_to_allocate;
 51     return obj;
 52   } else {
 53     return NULL;
 54   }
 55 }
 56 
 57 inline HeapWord* HeapRegion::par_allocate_impl(size_t min_word_size,
 58                                                size_t desired_word_size,
 59                                                size_t* actual_size) {
 60   do {
 61     HeapWord* obj = top();
 62     size_t available = pointer_delta(end(), obj);
 63     size_t want_to_allocate = MIN2(available, desired_word_size);
 64     if (want_to_allocate >= min_word_size) {
 65       HeapWord* new_top = obj + want_to_allocate;
 66       HeapWord* result = Atomic::cmpxchg(&_top, obj, new_top);
 67       // result can be one of two:
 68       //  the old top value: the exchange succeeded
 69       //  otherwise: the new value of the top is returned.
 70       if (result == obj) {
 71         assert(is_object_aligned(obj) && is_object_aligned(new_top), "checking alignment");
 72         *actual_size = want_to_allocate;
 73         return obj;
 74       }
 75     } else {
 76       return NULL;
 77     }
 78   } while (true);
 79 }
 80 
 81 inline HeapWord* HeapRegion::allocate(size_t min_word_size,
 82                                       size_t desired_word_size,
 83                                       size_t* actual_size) {
 84   HeapWord* res = allocate_impl(min_word_size, desired_word_size, actual_size);
 85   if (res != NULL) {
 86     _bot_part.alloc_block(res, *actual_size);
 87   }
 88   return res;
 89 }
 90 
 91 inline HeapWord* HeapRegion::allocate(size_t word_size) {
 92   size_t temp;
 93   return allocate(word_size, word_size, &temp);
 94 }
 95 
 96 inline HeapWord* HeapRegion::par_allocate(size_t word_size) {
 97   size_t temp;
 98   return par_allocate(word_size, word_size, &temp);
 99 }
100 
101 // Because of the requirement of keeping "_offsets" up to date with the
102 // allocations, we sequentialize these with a lock.  Therefore, best if
103 // this is used for larger LAB allocations only.
104 inline HeapWord* HeapRegion::par_allocate(size_t min_word_size,
105                                           size_t desired_word_size,
106                                           size_t* actual_size) {
107   MutexLocker x(&_par_alloc_lock);
108   return allocate(min_word_size, desired_word_size, actual_size);
109 }
110 
111 inline HeapWord* HeapRegion::block_start(const void* p) {
112   return _bot_part.block_start(p);
113 }
114 
115 inline HeapWord* HeapRegion::block_start_const(const void* p) const {
116   return _bot_part.block_start_const(p);
117 }
118 
119 inline bool HeapRegion::is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const {
120   HeapWord* addr = cast_from_oop<HeapWord*>(obj);
121 
122   assert(addr < top(), "must be");
123   assert(!is_closed_archive(),
124          "Closed archive regions should not have references into other regions");
125   assert(!is_humongous(), "Humongous objects not handled here");
126   bool obj_is_dead = is_obj_dead(obj, prev_bitmap);
127 
128   if (ClassUnloading && obj_is_dead) {
129     assert(!block_is_obj(addr), "must be");
130     *size = block_size_using_bitmap(addr, prev_bitmap);
131   } else {
132     assert(block_is_obj(addr), "must be");
133     *size = obj->size();
134   }
135   return obj_is_dead;
136 }
137 
138 inline bool HeapRegion::block_is_obj(const HeapWord* p) const {
139   G1CollectedHeap* g1h = G1CollectedHeap::heap();
140 
141   if (!this->is_in(p)) {
142     assert(is_continues_humongous(), "This case can only happen for humongous regions");
143     return (p == humongous_start_region()->bottom());
144   }
145   // When class unloading is enabled it is not safe to only consider top() to conclude if the
146   // given pointer is a valid object. The situation can occur both for class unloading in a
147   // Full GC and during a concurrent cycle.
148   // During a Full GC regions can be excluded from compaction due to high live ratio, and
149   // because of this there can be stale objects for unloaded classes left in these regions.
150   // During a concurrent cycle class unloading is done after marking is complete and objects
151   // for the unloaded classes will be stale until the regions are collected.
152   if (ClassUnloading) {
153     return !g1h->is_obj_dead(cast_to_oop(p), this);
154   }
155   return p < top();
156 }
157 
158 inline size_t HeapRegion::block_size_using_bitmap(const HeapWord* addr, const G1CMBitMap* const prev_bitmap) const {
159   assert(ClassUnloading,
160          "All blocks should be objects if class unloading isn't used, so this method should not be called. "
161          "HR: [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ") "
162          "addr: " PTR_FORMAT,
163          p2i(bottom()), p2i(top()), p2i(end()), p2i(addr));
164 
165   // Old regions' dead objects may have dead classes
166   // We need to find the next live object using the bitmap
167   HeapWord* next = prev_bitmap->get_next_marked_addr(addr, prev_top_at_mark_start());
168 
169   assert(next > addr, "must get the next live object");
170   return pointer_delta(next, addr);
171 }
172 
173 inline bool HeapRegion::is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const {
174   assert(is_in_reserved(obj), "Object " PTR_FORMAT " must be in region", p2i(obj));
175   return !obj_allocated_since_prev_marking(obj) &&
176          !prev_bitmap->is_marked(obj) &&
177          !is_closed_archive();
178 }
179 
180 inline size_t HeapRegion::block_size(const HeapWord *addr) const {
181   if (addr == top()) {
182     return pointer_delta(end(), addr);
183   }
184 
185   if (block_is_obj(addr)) {
186     return cast_to_oop(addr)->size();
187   }
188 
189   return block_size_using_bitmap(addr, G1CollectedHeap::heap()->concurrent_mark()->prev_mark_bitmap());
190 }
191 
192 inline void HeapRegion::reset_compaction_top_after_compaction() {
193   set_top(compaction_top());
194   _compaction_top = bottom();
195 }
196 
197 inline void HeapRegion::reset_compacted_after_full_gc() {
198   assert(!is_pinned(), "must be");
199 
200   reset_compaction_top_after_compaction();
201   // After a compaction the mark bitmap in a non-pinned regions is invalid.
202   // We treat all objects as being above PTAMS.
203   zero_marked_bytes();
204   init_top_at_mark_start();
205 
206   reset_after_full_gc_common();
207 }
208 
209 inline void HeapRegion::reset_skip_compacting_after_full_gc() {
210   assert(!is_free(), "must be");
211 
212   assert(compaction_top() == bottom(),
213          "region %u compaction_top " PTR_FORMAT " must not be different from bottom " PTR_FORMAT,
214          hrm_index(), p2i(compaction_top()), p2i(bottom()));
215 
216   _prev_top_at_mark_start = top(); // Keep existing top and usage.
217   _prev_marked_bytes = used();
218   _next_top_at_mark_start = bottom();
219   _next_marked_bytes = 0;
220 
221   reset_after_full_gc_common();
222 }
223 
224 inline void HeapRegion::reset_after_full_gc_common() {
225   if (is_empty()) {
226     reset_bot();
227   }
228 
229   // Clear unused heap memory in debug builds.
230   if (ZapUnusedHeapArea) {
231     mangle_unused_area();
232   }
233 }
234 
235 template<typename ApplyToMarkedClosure>
236 inline void HeapRegion::apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure) {
237   HeapWord* limit = top();
238   HeapWord* next_addr = bottom();
239 
240   while (next_addr < limit) {
241     Prefetch::write(next_addr, PrefetchScanIntervalInBytes);
242     // This explicit is_marked check is a way to avoid
243     // some extra work done by get_next_marked_addr for
244     // the case where next_addr is marked.
245     if (bitmap->is_marked(next_addr)) {
246       oop current = cast_to_oop(next_addr);
247       next_addr += closure->apply(current);
248     } else {
249       next_addr = bitmap->get_next_marked_addr(next_addr, limit);
250     }
251   }
252 
253   assert(next_addr == limit, "Should stop the scan at the limit.");
254 }
255 
256 inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t min_word_size,
257                                                          size_t desired_word_size,
258                                                          size_t* actual_word_size) {
259   assert(is_young(), "we can only skip BOT updates on young regions");
260   return par_allocate_impl(min_word_size, desired_word_size, actual_word_size);
261 }
262 
263 inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) {
264   size_t temp;
265   return allocate_no_bot_updates(word_size, word_size, &temp);
266 }
267 
268 inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t min_word_size,
269                                                      size_t desired_word_size,
270                                                      size_t* actual_word_size) {
271   assert(is_young(), "we can only skip BOT updates on young regions");
272   return allocate_impl(min_word_size, desired_word_size, actual_word_size);
273 }
274 
275 inline void HeapRegion::note_start_of_marking() {
276   _next_marked_bytes = 0;
277   _next_top_at_mark_start = top();
278   _gc_efficiency = -1.0;
279 }
280 
281 inline void HeapRegion::note_end_of_marking() {
282   _prev_top_at_mark_start = _next_top_at_mark_start;
283   _next_top_at_mark_start = bottom();
284   _prev_marked_bytes = _next_marked_bytes;
285   _next_marked_bytes = 0;
286 }
287 
288 inline bool HeapRegion::in_collection_set() const {
289   return G1CollectedHeap::heap()->is_in_cset(this);
290 }
291 
292 template <class Closure, bool is_gc_active>
293 HeapWord* HeapRegion::do_oops_on_memregion_in_humongous(MemRegion mr,
294                                                         Closure* cl,
295                                                         G1CollectedHeap* g1h) {
296   assert(is_humongous(), "precondition");
297   HeapRegion* sr = humongous_start_region();
298   oop obj = cast_to_oop(sr->bottom());
299 
300   // If concurrent and klass_or_null is NULL, then space has been
301   // allocated but the object has not yet been published by setting
302   // the klass.  That can only happen if the card is stale.  However,
303   // we've already set the card clean, so we must return failure,
304   // since the allocating thread could have performed a write to the
305   // card that might be missed otherwise.
306   if (!is_gc_active && (obj->klass_or_null_acquire() == NULL)) {
307     return NULL;
308   }
309 
310   // We have a well-formed humongous object at the start of sr.
311   // Only filler objects follow a humongous object in the containing
312   // regions, and we can ignore those.  So only process the one
313   // humongous object.
314   if (g1h->is_obj_dead(obj, sr)) {
315     // The object is dead. There can be no other object in this region, so return
316     // the end of that region.
317     return end();
318   }
319   if (obj->is_objArray() || (sr->bottom() < mr.start())) {
320     // objArrays are always marked precisely, so limit processing
321     // with mr.  Non-objArrays might be precisely marked, and since
322     // it's humongous it's worthwhile avoiding full processing.
323     // However, the card could be stale and only cover filler
324     // objects.  That should be rare, so not worth checking for;
325     // instead let it fall out from the bounded iteration.
326     obj->oop_iterate(cl, mr);
327     return mr.end();
328   } else {
329     // If obj is not an objArray and mr contains the start of the
330     // obj, then this could be an imprecise mark, and we need to
331     // process the entire object.
332     int size = obj->oop_iterate_size(cl);
333     // We have scanned to the end of the object, but since there can be no objects
334     // after this humongous object in the region, we can return the end of the
335     // region if it is greater.
336     return MAX2(cast_from_oop<HeapWord*>(obj) + size, mr.end());
337   }
338 }
339 
340 template <bool is_gc_active, class Closure>
341 HeapWord* HeapRegion::oops_on_memregion_seq_iterate_careful(MemRegion mr,
342                                                             Closure* cl) {
343   assert(MemRegion(bottom(), end()).contains(mr), "Card region not in heap region");
344   G1CollectedHeap* g1h = G1CollectedHeap::heap();
345 
346   // Special handling for humongous regions.
347   if (is_humongous()) {
348     return do_oops_on_memregion_in_humongous<Closure, is_gc_active>(mr, cl, g1h);
349   }
350   assert(is_old() || is_archive(), "Wrongly trying to iterate over region %u type %s", _hrm_index, get_type_str());
351 
352   // Because mr has been trimmed to what's been allocated in this
353   // region, the parts of the heap that are examined here are always
354   // parsable; there's no need to use klass_or_null to detect
355   // in-progress allocation.
356 
357   // Cache the boundaries of the memory region in some const locals
358   HeapWord* const start = mr.start();
359   HeapWord* const end = mr.end();
360 
361   // Find the obj that extends onto mr.start().
362   // Update BOT as needed while finding start of (possibly dead)
363   // object containing the start of the region.
364   HeapWord* cur = block_start(start);
365 
366 #ifdef ASSERT
367   {
368     assert(cur <= start,
369            "cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start));
370     HeapWord* next = cur + block_size(cur);
371     assert(start < next,
372            "start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next));
373   }
374 #endif
375 
376   const G1CMBitMap* const bitmap = g1h->concurrent_mark()->prev_mark_bitmap();
377   while (true) {
378     oop obj = cast_to_oop(cur);
379     assert(oopDesc::is_oop(obj, true), "Not an oop at " PTR_FORMAT, p2i(cur));
380     assert(obj->klass_or_null() != NULL,
381            "Unparsable heap at " PTR_FORMAT, p2i(cur));
382 
383     size_t size;
384     bool is_dead = is_obj_dead_with_size(obj, bitmap, &size);
385     bool is_precise = false;
386 
387     cur += size;
388     if (!is_dead) {
389       // Process live object's references.
390 
391       // Non-objArrays are usually marked imprecise at the object
392       // start, in which case we need to iterate over them in full.
393       // objArrays are precisely marked, but can still be iterated
394       // over in full if completely covered.
395       if (!obj->is_objArray() || (cast_from_oop<HeapWord*>(obj) >= start && cur <= end)) {
396         obj->oop_iterate(cl);
397       } else {
398         obj->oop_iterate(cl, mr);
399         is_precise = true;
400       }
401     }
402     if (cur >= end) {
403       return is_precise ? end : cur;
404     }
405   }
406 }
407 
408 inline int HeapRegion::age_in_surv_rate_group() const {
409   assert(has_surv_rate_group(), "pre-condition");
410   assert(has_valid_age_in_surv_rate(), "pre-condition");
411   return _surv_rate_group->age_in_group(_age_index);
412 }
413 
414 inline bool HeapRegion::has_valid_age_in_surv_rate() const {
415   return G1SurvRateGroup::is_valid_age_index(_age_index);
416 }
417 
418 inline bool HeapRegion::has_surv_rate_group() const {
419   return _surv_rate_group != NULL;
420 }
421 
422 inline double HeapRegion::surv_rate_prediction(G1Predictions const& predictor) const {
423   assert(has_surv_rate_group(), "pre-condition");
424   return _surv_rate_group->surv_rate_pred(predictor, age_in_surv_rate_group());
425 }
426 
427 inline void HeapRegion::install_surv_rate_group(G1SurvRateGroup* surv_rate_group) {
428   assert(surv_rate_group != NULL, "pre-condition");
429   assert(!has_surv_rate_group(), "pre-condition");
430   assert(is_young(), "pre-condition");
431 
432   _surv_rate_group = surv_rate_group;
433   _age_index = surv_rate_group->next_age_index();
434 }
435 
436 inline void HeapRegion::uninstall_surv_rate_group() {
437   if (has_surv_rate_group()) {
438     assert(has_valid_age_in_surv_rate(), "pre-condition");
439     assert(is_young(), "pre-condition");
440 
441     _surv_rate_group = NULL;
442     _age_index = G1SurvRateGroup::InvalidAgeIndex;
443   } else {
444     assert(!has_valid_age_in_surv_rate(), "pre-condition");
445   }
446 }
447 
448 inline void HeapRegion::record_surv_words_in_group(size_t words_survived) {
449   assert(has_surv_rate_group(), "pre-condition");
450   assert(has_valid_age_in_surv_rate(), "pre-condition");
451   int age_in_group = age_in_surv_rate_group();
452   _surv_rate_group->record_surviving_words(age_in_group, words_survived);
453 }
454 
455 #endif // SHARE_GC_G1_HEAPREGION_INLINE_HPP