1 /* 2 * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_G1_HEAPREGION_INLINE_HPP 26 #define SHARE_GC_G1_HEAPREGION_INLINE_HPP 27 28 #include "gc/g1/heapRegion.hpp" 29 30 #include "gc/g1/g1BlockOffsetTable.inline.hpp" 31 #include "gc/g1/g1CollectedHeap.inline.hpp" 32 #include "gc/g1/g1ConcurrentMarkBitMap.inline.hpp" 33 #include "gc/g1/g1Predictions.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "runtime/atomic.hpp" 36 #include "runtime/prefetch.inline.hpp" 37 #include "utilities/align.hpp" 38 #include "utilities/globalDefinitions.hpp" 39 40 inline HeapWord* HeapRegion::allocate_impl(size_t min_word_size, 41 size_t desired_word_size, 42 size_t* actual_size) { 43 HeapWord* obj = top(); 44 size_t available = pointer_delta(end(), obj); 45 size_t want_to_allocate = MIN2(available, desired_word_size); 46 if (want_to_allocate >= min_word_size) { 47 HeapWord* new_top = obj + want_to_allocate; 48 set_top(new_top); 49 assert(is_object_aligned(obj) && is_object_aligned(new_top), "checking alignment"); 50 *actual_size = want_to_allocate; 51 return obj; 52 } else { 53 return NULL; 54 } 55 } 56 57 inline HeapWord* HeapRegion::par_allocate_impl(size_t min_word_size, 58 size_t desired_word_size, 59 size_t* actual_size) { 60 do { 61 HeapWord* obj = top(); 62 size_t available = pointer_delta(end(), obj); 63 size_t want_to_allocate = MIN2(available, desired_word_size); 64 if (want_to_allocate >= min_word_size) { 65 HeapWord* new_top = obj + want_to_allocate; 66 HeapWord* result = Atomic::cmpxchg(&_top, obj, new_top); 67 // result can be one of two: 68 // the old top value: the exchange succeeded 69 // otherwise: the new value of the top is returned. 70 if (result == obj) { 71 assert(is_object_aligned(obj) && is_object_aligned(new_top), "checking alignment"); 72 *actual_size = want_to_allocate; 73 return obj; 74 } 75 } else { 76 return NULL; 77 } 78 } while (true); 79 } 80 81 inline HeapWord* HeapRegion::allocate(size_t min_word_size, 82 size_t desired_word_size, 83 size_t* actual_size) { 84 HeapWord* res = allocate_impl(min_word_size, desired_word_size, actual_size); 85 if (res != NULL) { 86 _bot_part.alloc_block(res, *actual_size); 87 } 88 return res; 89 } 90 91 inline HeapWord* HeapRegion::allocate(size_t word_size) { 92 size_t temp; 93 return allocate(word_size, word_size, &temp); 94 } 95 96 inline HeapWord* HeapRegion::par_allocate(size_t word_size) { 97 size_t temp; 98 return par_allocate(word_size, word_size, &temp); 99 } 100 101 // Because of the requirement of keeping "_offsets" up to date with the 102 // allocations, we sequentialize these with a lock. Therefore, best if 103 // this is used for larger LAB allocations only. 104 inline HeapWord* HeapRegion::par_allocate(size_t min_word_size, 105 size_t desired_word_size, 106 size_t* actual_size) { 107 MutexLocker x(&_par_alloc_lock); 108 return allocate(min_word_size, desired_word_size, actual_size); 109 } 110 111 inline HeapWord* HeapRegion::block_start(const void* p) { 112 return _bot_part.block_start(p); 113 } 114 115 inline HeapWord* HeapRegion::block_start_const(const void* p) const { 116 return _bot_part.block_start_const(p); 117 } 118 119 inline bool HeapRegion::is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const { 120 HeapWord* addr = cast_from_oop<HeapWord*>(obj); 121 122 assert(addr < top(), "must be"); 123 assert(!is_closed_archive(), 124 "Closed archive regions should not have references into other regions"); 125 assert(!is_humongous(), "Humongous objects not handled here"); 126 bool obj_is_dead = is_obj_dead(obj, prev_bitmap); 127 128 if (ClassUnloading && obj_is_dead) { 129 assert(!block_is_obj(addr), "must be"); 130 *size = block_size_using_bitmap(addr, prev_bitmap); 131 } else { 132 assert(block_is_obj(addr), "must be"); 133 *size = obj->size(); 134 } 135 return obj_is_dead; 136 } 137 138 inline bool HeapRegion::block_is_obj(const HeapWord* p) const { 139 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 140 141 if (!this->is_in(p)) { 142 assert(is_continues_humongous(), "This case can only happen for humongous regions"); 143 return (p == humongous_start_region()->bottom()); 144 } 145 // When class unloading is enabled it is not safe to only consider top() to conclude if the 146 // given pointer is a valid object. The situation can occur both for class unloading in a 147 // Full GC and during a concurrent cycle. 148 // During a Full GC regions can be excluded from compaction due to high live ratio, and 149 // because of this there can be stale objects for unloaded classes left in these regions. 150 // During a concurrent cycle class unloading is done after marking is complete and objects 151 // for the unloaded classes will be stale until the regions are collected. 152 if (ClassUnloading) { 153 return !g1h->is_obj_dead(cast_to_oop(p), this); 154 } 155 return p < top(); 156 } 157 158 inline size_t HeapRegion::block_size_using_bitmap(const HeapWord* addr, const G1CMBitMap* const prev_bitmap) const { 159 assert(ClassUnloading, 160 "All blocks should be objects if class unloading isn't used, so this method should not be called. " 161 "HR: [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ") " 162 "addr: " PTR_FORMAT, 163 p2i(bottom()), p2i(top()), p2i(end()), p2i(addr)); 164 165 // Old regions' dead objects may have dead classes 166 // We need to find the next live object using the bitmap 167 HeapWord* next = prev_bitmap->get_next_marked_addr(addr, prev_top_at_mark_start()); 168 169 assert(next > addr, "must get the next live object"); 170 return pointer_delta(next, addr); 171 } 172 173 inline bool HeapRegion::is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const { 174 assert(is_in_reserved(obj), "Object " PTR_FORMAT " must be in region", p2i(obj)); 175 return !obj_allocated_since_prev_marking(obj) && 176 !prev_bitmap->is_marked(obj) && 177 !is_closed_archive(); 178 } 179 180 template <bool RESOLVE> 181 inline size_t HeapRegion::block_size(const HeapWord *addr) const { 182 if (addr == top()) { 183 return pointer_delta(end(), addr); 184 } 185 186 if (block_is_obj(addr)) { 187 oop obj = cast_to_oop(addr); 188 #ifdef _LP64 189 #ifdef ASSERT 190 if (RESOLVE) { 191 assert(UseCompactObjectHeaders && !G1CollectedHeap::heap()->collector_state()->in_full_gc(), "Illegal/excessive resolve during full-GC"); 192 } else { 193 assert(!UseCompactObjectHeaders || G1CollectedHeap::heap()->collector_state()->in_full_gc() || !obj->is_forwarded(), "Missing resolve when forwarded during normal GC"); 194 } 195 #endif 196 if (RESOLVE && obj->is_forwarded()) { 197 obj = obj->forwardee(); 198 } 199 #endif 200 return obj->size(); 201 } 202 203 return block_size_using_bitmap(addr, G1CollectedHeap::heap()->concurrent_mark()->prev_mark_bitmap()); 204 } 205 206 inline void HeapRegion::reset_compaction_top_after_compaction() { 207 set_top(compaction_top()); 208 _compaction_top = bottom(); 209 } 210 211 inline void HeapRegion::reset_compacted_after_full_gc() { 212 assert(!is_pinned(), "must be"); 213 214 reset_compaction_top_after_compaction(); 215 // After a compaction the mark bitmap in a non-pinned regions is invalid. 216 // We treat all objects as being above PTAMS. 217 zero_marked_bytes(); 218 init_top_at_mark_start(); 219 220 reset_after_full_gc_common(); 221 } 222 223 inline void HeapRegion::reset_skip_compacting_after_full_gc() { 224 assert(!is_free(), "must be"); 225 226 assert(compaction_top() == bottom(), 227 "region %u compaction_top " PTR_FORMAT " must not be different from bottom " PTR_FORMAT, 228 hrm_index(), p2i(compaction_top()), p2i(bottom())); 229 230 _prev_top_at_mark_start = top(); // Keep existing top and usage. 231 _prev_marked_bytes = used(); 232 _next_top_at_mark_start = bottom(); 233 _next_marked_bytes = 0; 234 235 reset_after_full_gc_common(); 236 } 237 238 inline void HeapRegion::reset_after_full_gc_common() { 239 if (is_empty()) { 240 reset_bot(); 241 } 242 243 // Clear unused heap memory in debug builds. 244 if (ZapUnusedHeapArea) { 245 mangle_unused_area(); 246 } 247 } 248 249 template<typename ApplyToMarkedClosure> 250 inline void HeapRegion::apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure) { 251 HeapWord* limit = top(); 252 HeapWord* next_addr = bottom(); 253 254 while (next_addr < limit) { 255 Prefetch::write(next_addr, PrefetchScanIntervalInBytes); 256 // This explicit is_marked check is a way to avoid 257 // some extra work done by get_next_marked_addr for 258 // the case where next_addr is marked. 259 if (bitmap->is_marked(next_addr)) { 260 oop current = cast_to_oop(next_addr); 261 next_addr += closure->apply(current); 262 } else { 263 next_addr = bitmap->get_next_marked_addr(next_addr, limit); 264 } 265 } 266 267 assert(next_addr == limit, "Should stop the scan at the limit."); 268 } 269 270 inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t min_word_size, 271 size_t desired_word_size, 272 size_t* actual_word_size) { 273 assert(is_young(), "we can only skip BOT updates on young regions"); 274 return par_allocate_impl(min_word_size, desired_word_size, actual_word_size); 275 } 276 277 inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) { 278 size_t temp; 279 return allocate_no_bot_updates(word_size, word_size, &temp); 280 } 281 282 inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t min_word_size, 283 size_t desired_word_size, 284 size_t* actual_word_size) { 285 assert(is_young(), "we can only skip BOT updates on young regions"); 286 return allocate_impl(min_word_size, desired_word_size, actual_word_size); 287 } 288 289 inline void HeapRegion::note_start_of_marking() { 290 _next_marked_bytes = 0; 291 _next_top_at_mark_start = top(); 292 _gc_efficiency = -1.0; 293 } 294 295 inline void HeapRegion::note_end_of_marking() { 296 _prev_top_at_mark_start = _next_top_at_mark_start; 297 _next_top_at_mark_start = bottom(); 298 _prev_marked_bytes = _next_marked_bytes; 299 _next_marked_bytes = 0; 300 } 301 302 inline bool HeapRegion::in_collection_set() const { 303 return G1CollectedHeap::heap()->is_in_cset(this); 304 } 305 306 template <class Closure, bool is_gc_active> 307 HeapWord* HeapRegion::do_oops_on_memregion_in_humongous(MemRegion mr, 308 Closure* cl, 309 G1CollectedHeap* g1h) { 310 assert(is_humongous(), "precondition"); 311 HeapRegion* sr = humongous_start_region(); 312 oop obj = cast_to_oop(sr->bottom()); 313 314 // If concurrent and klass_or_null is NULL, then space has been 315 // allocated but the object has not yet been published by setting 316 // the klass. That can only happen if the card is stale. However, 317 // we've already set the card clean, so we must return failure, 318 // since the allocating thread could have performed a write to the 319 // card that might be missed otherwise. 320 if (!is_gc_active && (obj->klass_or_null_acquire() == NULL)) { 321 return NULL; 322 } 323 324 // We have a well-formed humongous object at the start of sr. 325 // Only filler objects follow a humongous object in the containing 326 // regions, and we can ignore those. So only process the one 327 // humongous object. 328 if (g1h->is_obj_dead(obj, sr)) { 329 // The object is dead. There can be no other object in this region, so return 330 // the end of that region. 331 return end(); 332 } 333 if (obj->is_objArray() || (sr->bottom() < mr.start())) { 334 // objArrays are always marked precisely, so limit processing 335 // with mr. Non-objArrays might be precisely marked, and since 336 // it's humongous it's worthwhile avoiding full processing. 337 // However, the card could be stale and only cover filler 338 // objects. That should be rare, so not worth checking for; 339 // instead let it fall out from the bounded iteration. 340 obj->oop_iterate(cl, mr); 341 return mr.end(); 342 } else { 343 // If obj is not an objArray and mr contains the start of the 344 // obj, then this could be an imprecise mark, and we need to 345 // process the entire object. 346 int size = obj->oop_iterate_size(cl); 347 // We have scanned to the end of the object, but since there can be no objects 348 // after this humongous object in the region, we can return the end of the 349 // region if it is greater. 350 return MAX2(cast_from_oop<HeapWord*>(obj) + size, mr.end()); 351 } 352 } 353 354 template <bool is_gc_active, class Closure> 355 HeapWord* HeapRegion::oops_on_memregion_seq_iterate_careful(MemRegion mr, 356 Closure* cl) { 357 assert(MemRegion(bottom(), end()).contains(mr), "Card region not in heap region"); 358 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 359 360 // Special handling for humongous regions. 361 if (is_humongous()) { 362 return do_oops_on_memregion_in_humongous<Closure, is_gc_active>(mr, cl, g1h); 363 } 364 assert(is_old() || is_archive(), "Wrongly trying to iterate over region %u type %s", _hrm_index, get_type_str()); 365 366 // Because mr has been trimmed to what's been allocated in this 367 // region, the parts of the heap that are examined here are always 368 // parsable; there's no need to use klass_or_null to detect 369 // in-progress allocation. 370 371 // Cache the boundaries of the memory region in some const locals 372 HeapWord* const start = mr.start(); 373 HeapWord* const end = mr.end(); 374 375 // Find the obj that extends onto mr.start(). 376 // Update BOT as needed while finding start of (possibly dead) 377 // object containing the start of the region. 378 HeapWord* cur = block_start(start); 379 380 #ifdef ASSERT 381 { 382 assert(cur <= start, 383 "cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start)); 384 HeapWord* next = cur + block_size(cur); 385 assert(start < next, 386 "start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next)); 387 } 388 #endif 389 390 const G1CMBitMap* const bitmap = g1h->concurrent_mark()->prev_mark_bitmap(); 391 while (true) { 392 oop obj = cast_to_oop(cur); 393 assert(oopDesc::is_oop(obj, true), "Not an oop at " PTR_FORMAT, p2i(cur)); 394 assert(obj->klass_or_null() != NULL, 395 "Unparsable heap at " PTR_FORMAT, p2i(cur)); 396 397 size_t size; 398 bool is_dead = is_obj_dead_with_size(obj, bitmap, &size); 399 bool is_precise = false; 400 401 cur += size; 402 if (!is_dead) { 403 // Process live object's references. 404 405 // Non-objArrays are usually marked imprecise at the object 406 // start, in which case we need to iterate over them in full. 407 // objArrays are precisely marked, but can still be iterated 408 // over in full if completely covered. 409 if (!obj->is_objArray() || (cast_from_oop<HeapWord*>(obj) >= start && cur <= end)) { 410 obj->oop_iterate(cl); 411 } else { 412 obj->oop_iterate(cl, mr); 413 is_precise = true; 414 } 415 } 416 if (cur >= end) { 417 return is_precise ? end : cur; 418 } 419 } 420 } 421 422 inline int HeapRegion::age_in_surv_rate_group() const { 423 assert(has_surv_rate_group(), "pre-condition"); 424 assert(has_valid_age_in_surv_rate(), "pre-condition"); 425 return _surv_rate_group->age_in_group(_age_index); 426 } 427 428 inline bool HeapRegion::has_valid_age_in_surv_rate() const { 429 return G1SurvRateGroup::is_valid_age_index(_age_index); 430 } 431 432 inline bool HeapRegion::has_surv_rate_group() const { 433 return _surv_rate_group != NULL; 434 } 435 436 inline double HeapRegion::surv_rate_prediction(G1Predictions const& predictor) const { 437 assert(has_surv_rate_group(), "pre-condition"); 438 return _surv_rate_group->surv_rate_pred(predictor, age_in_surv_rate_group()); 439 } 440 441 inline void HeapRegion::install_surv_rate_group(G1SurvRateGroup* surv_rate_group) { 442 assert(surv_rate_group != NULL, "pre-condition"); 443 assert(!has_surv_rate_group(), "pre-condition"); 444 assert(is_young(), "pre-condition"); 445 446 _surv_rate_group = surv_rate_group; 447 _age_index = surv_rate_group->next_age_index(); 448 } 449 450 inline void HeapRegion::uninstall_surv_rate_group() { 451 if (has_surv_rate_group()) { 452 assert(has_valid_age_in_surv_rate(), "pre-condition"); 453 assert(is_young(), "pre-condition"); 454 455 _surv_rate_group = NULL; 456 _age_index = G1SurvRateGroup::InvalidAgeIndex; 457 } else { 458 assert(!has_valid_age_in_surv_rate(), "pre-condition"); 459 } 460 } 461 462 inline void HeapRegion::record_surv_words_in_group(size_t words_survived) { 463 assert(has_surv_rate_group(), "pre-condition"); 464 assert(has_valid_age_in_surv_rate(), "pre-condition"); 465 int age_in_group = age_in_surv_rate_group(); 466 _surv_rate_group->record_surviving_words(age_in_group, words_survived); 467 } 468 469 #endif // SHARE_GC_G1_HEAPREGION_INLINE_HPP