1 /*
  2  * Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
 26 #define SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
 27 
 28 #include "gc/parallel/psPromotionManager.hpp"
 29 
 30 #include "gc/parallel/parallelScavengeHeap.hpp"
 31 #include "gc/parallel/parMarkBitMap.inline.hpp"
 32 #include "gc/parallel/psOldGen.hpp"
 33 #include "gc/parallel/psPromotionLAB.inline.hpp"
 34 #include "gc/parallel/psScavenge.inline.hpp"
 35 #include "gc/shared/taskqueue.inline.hpp"
 36 #include "gc/shared/tlab_globals.hpp"
 37 #include "logging/log.hpp"
 38 #include "memory/iterator.inline.hpp"
 39 #include "oops/access.inline.hpp"
 40 #include "oops/oop.inline.hpp"
 41 #include "runtime/orderAccess.hpp"
 42 #include "runtime/prefetch.inline.hpp"
 43 
 44 inline PSPromotionManager* PSPromotionManager::manager_array(uint index) {
 45   assert(_manager_array != NULL, "access of NULL manager_array");
 46   assert(index <= ParallelGCThreads, "out of range manager_array access");
 47   return &_manager_array[index];
 48 }
 49 
 50 inline void PSPromotionManager::push_depth(ScannerTask task) {
 51   claimed_stack_depth()->push(task);
 52 }
 53 
 54 template <class T>
 55 inline void PSPromotionManager::claim_or_forward_depth(T* p) {
 56   assert(should_scavenge(p, true), "revisiting object?");
 57   assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap");
 58   oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
 59   Prefetch::write(obj->mark_addr(), 0);
 60   push_depth(ScannerTask(p));
 61 }
 62 
 63 inline void PSPromotionManager::promotion_trace_event(oop new_obj, oop old_obj,
 64                                                       size_t obj_size,
 65                                                       uint age, bool tenured,
 66                                                       const PSPromotionLAB* lab) {
 67   // Skip if memory allocation failed
 68   if (new_obj != NULL) {
 69     const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer();
 70 
 71     if (lab != NULL) {
 72       // Promotion of object through newly allocated PLAB
 73       if (gc_tracer->should_report_promotion_in_new_plab_event()) {
 74         size_t obj_bytes = obj_size * HeapWordSize;
 75         size_t lab_size = lab->capacity();
 76         gc_tracer->report_promotion_in_new_plab_event(old_obj->klass(), obj_bytes,
 77                                                       age, tenured, lab_size);
 78       }
 79     } else {
 80       // Promotion of object directly to heap
 81       if (gc_tracer->should_report_promotion_outside_plab_event()) {
 82         size_t obj_bytes = obj_size * HeapWordSize;
 83         gc_tracer->report_promotion_outside_plab_event(old_obj->klass(), obj_bytes,
 84                                                        age, tenured);
 85       }
 86     }
 87   }
 88 }
 89 
 90 class PSPushContentsClosure: public BasicOopIterateClosure {
 91   PSPromotionManager* _pm;
 92  public:
 93   PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {}
 94 
 95   template <typename T> void do_oop_nv(T* p) {
 96     if (PSScavenge::should_scavenge(p)) {
 97       _pm->claim_or_forward_depth(p);
 98     }
 99   }
100 
101   virtual void do_oop(oop* p)       { do_oop_nv(p); }
102   virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
103 };
104 
105 //
106 // This closure specialization will override the one that is defined in
107 // instanceRefKlass.inline.cpp. It swaps the order of oop_oop_iterate and
108 // oop_oop_iterate_ref_processing. Unfortunately G1 and Parallel behaves
109 // significantly better (especially in the Derby benchmark) using opposite
110 // order of these function calls.
111 //
112 template <>
113 inline void InstanceRefKlass::oop_oop_iterate_reverse<oop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
114   oop_oop_iterate_ref_processing<oop>(obj, closure);
115   InstanceKlass::oop_oop_iterate_reverse<oop>(obj, closure);
116 }
117 
118 template <>
119 inline void InstanceRefKlass::oop_oop_iterate_reverse<narrowOop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
120   oop_oop_iterate_ref_processing<narrowOop>(obj, closure);
121   InstanceKlass::oop_oop_iterate_reverse<narrowOop>(obj, closure);
122 }
123 
124 inline void PSPromotionManager::push_contents(oop obj) {
125   if (!obj->klass()->is_typeArray_klass()) {
126     PSPushContentsClosure pcc(this);
127     obj->oop_iterate_backwards(&pcc);
128   }
129 }
130 
131 template<bool promote_immediately>
132 inline oop PSPromotionManager::copy_to_survivor_space(oop o) {
133   assert(should_scavenge(&o), "Sanity");
134 
135   // NOTE! We must be very careful with any methods that access the mark
136   // in o. There may be multiple threads racing on it, and it may be forwarded
137   // at any time.
138   markWord m = o->mark();
139   if (!m.is_marked()) {
140     return copy_unmarked_to_survivor_space<promote_immediately>(o, m);
141   } else {
142     // Ensure any loads from the forwardee follow all changes that precede
143     // the release-cmpxchg that performed the forwarding, possibly in some
144     // other thread.
145     OrderAccess::acquire();
146     // Return the already installed forwardee.
147     return cast_to_oop(m.decode_pointer());
148   }
149 }
150 
151 //
152 // This method is pretty bulky. It would be nice to split it up
153 // into smaller submethods, but we need to be careful not to hurt
154 // performance.
155 //
156 template<bool promote_immediately>
157 inline oop PSPromotionManager::copy_unmarked_to_survivor_space(oop o,
158                                                                markWord test_mark) {
159   assert(should_scavenge(&o), "Sanity");
160 
161   oop new_obj = NULL;
162   bool new_obj_is_tenured = false;
163   size_t new_obj_size = o->size();
164 
165   // Find the objects age, MT safe.
166   uint age = (test_mark.has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
167       test_mark.displaced_mark_helper().age() : test_mark.age();
168 
169   if (!promote_immediately) {
170     // Try allocating obj in to-space (unless too old)
171     if (age < PSScavenge::tenuring_threshold()) {
172       new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
173       if (new_obj == NULL && !_young_gen_is_full) {
174         // Do we allocate directly, or flush and refill?
175         if (new_obj_size > (YoungPLABSize / 2)) {
176           // Allocate this object directly
177           new_obj = cast_to_oop(young_space()->cas_allocate(new_obj_size));
178           promotion_trace_event(new_obj, o, new_obj_size, age, false, NULL);
179         } else {
180           // Flush and fill
181           _young_lab.flush();
182 
183           HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
184           if (lab_base != NULL) {
185             _young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
186             // Try the young lab allocation again.
187             new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
188             promotion_trace_event(new_obj, o, new_obj_size, age, false, &_young_lab);
189           } else {
190             _young_gen_is_full = true;
191           }
192         }
193       }
194     }
195   }
196 
197   // Otherwise try allocating obj tenured
198   if (new_obj == NULL) {
199 #ifndef PRODUCT
200     if (ParallelScavengeHeap::heap()->promotion_should_fail()) {
201       return oop_promotion_failed(o, test_mark);
202     }
203 #endif  // #ifndef PRODUCT
204 
205     new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
206     new_obj_is_tenured = true;
207 
208     if (new_obj == NULL) {
209       if (!_old_gen_is_full) {
210         // Do we allocate directly, or flush and refill?
211         if (new_obj_size > (OldPLABSize / 2)) {
212           // Allocate this object directly
213           new_obj = cast_to_oop(old_gen()->allocate(new_obj_size));
214           promotion_trace_event(new_obj, o, new_obj_size, age, true, NULL);
215         } else {
216           // Flush and fill
217           _old_lab.flush();
218 
219           HeapWord* lab_base = old_gen()->allocate(OldPLABSize);
220           if(lab_base != NULL) {
221 #ifdef ASSERT
222             // Delay the initialization of the promotion lab (plab).
223             // This exposes uninitialized plabs to card table processing.
224             if (GCWorkerDelayMillis > 0) {
225               os::naked_sleep(GCWorkerDelayMillis);
226             }
227 #endif
228             _old_lab.initialize(MemRegion(lab_base, OldPLABSize));
229             // Try the old lab allocation again.
230             new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
231             promotion_trace_event(new_obj, o, new_obj_size, age, true, &_old_lab);
232           }
233         }
234       }
235 
236       // This is the promotion failed test, and code handling.
237       // The code belongs here for two reasons. It is slightly
238       // different than the code below, and cannot share the
239       // CAS testing code. Keeping the code here also minimizes
240       // the impact on the common case fast path code.
241 
242       if (new_obj == NULL) {
243         _old_gen_is_full = true;
244         return oop_promotion_failed(o, test_mark);
245       }
246     }
247   }
248 
249   assert(new_obj != NULL, "allocation should have succeeded");
250 
251   // Copy obj
252   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(o), cast_from_oop<HeapWord*>(new_obj), new_obj_size);
253 
254   // Now we have to CAS in the header.
255   // Make copy visible to threads reading the forwardee.
256   oop forwardee = o->forward_to_atomic(new_obj, test_mark, memory_order_release);
257   if (forwardee == NULL) {  // forwardee is NULL when forwarding is successful
258     // We won any races, we "own" this object.
259     assert(new_obj == o->forwardee(), "Sanity");
260 
261     // Increment age if obj still in new generation. Now that
262     // we're dealing with a markWord that cannot change, it is
263     // okay to use the non mt safe oop methods.
264     if (!new_obj_is_tenured) {
265       new_obj->incr_age();
266       assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
267     }
268 
269     log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
270                                     new_obj_is_tenured ? "copying" : "tenuring",
271                                     new_obj->klass()->internal_name(),
272                                     p2i((void *)o), p2i((void *)new_obj), new_obj->size());
273 
274     // Do the size comparison first with new_obj_size, which we
275     // already have. Hopefully, only a few objects are larger than
276     // _min_array_size_for_chunking, and most of them will be arrays.
277     // So, the is->objArray() test would be very infrequent.
278     if (new_obj_size > _min_array_size_for_chunking &&
279         new_obj->is_objArray() &&
280         PSChunkLargeArrays) {
281       // we'll chunk it
282       push_depth(ScannerTask(PartialArrayScanTask(o)));
283       TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_array_chunk_pushes);
284     } else {
285       // we'll just push its contents
286       push_contents(new_obj);
287     }
288     return new_obj;
289   } else {
290     // We lost, someone else "owns" this object.
291     // Ensure loads from the forwardee follow all changes that preceeded the
292     // release-cmpxchg that performed the forwarding in another thread.
293     OrderAccess::acquire();
294 
295     assert(o->is_forwarded(), "Object must be forwarded if the cas failed.");
296     assert(o->forwardee() == forwardee, "invariant");
297 
298     // Try to deallocate the space.  If it was directly allocated we cannot
299     // deallocate it, so we have to test.  If the deallocation fails,
300     // overwrite with a filler object.
301     if (new_obj_is_tenured) {
302       if (!_old_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size)) {
303         CollectedHeap::fill_with_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size);
304       }
305     } else if (!_young_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size)) {
306       CollectedHeap::fill_with_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size);
307     }
308     return forwardee;
309   }
310 }
311 
312 // Attempt to "claim" oop at p via CAS, push the new obj if successful
313 // This version tests the oop* to make sure it is within the heap before
314 // attempting marking.
315 template <bool promote_immediately, class T>
316 inline void PSPromotionManager::copy_and_push_safe_barrier(T* p) {
317   assert(should_scavenge(p, true), "revisiting object?");
318 
319   oop o = RawAccess<IS_NOT_NULL>::oop_load(p);
320   oop new_obj = copy_to_survivor_space<promote_immediately>(o);
321   RawAccess<IS_NOT_NULL>::oop_store(p, new_obj);
322 
323   // We cannot mark without test, as some code passes us pointers
324   // that are outside the heap. These pointers are either from roots
325   // or from metadata.
326   if ((!PSScavenge::is_obj_in_young((HeapWord*)p)) &&
327       ParallelScavengeHeap::heap()->is_in_reserved(p)) {
328     if (PSScavenge::is_obj_in_young(new_obj)) {
329       PSScavenge::card_table()->inline_write_ref_field_gc(p, new_obj);
330     }
331   }
332 }
333 
334 inline void PSPromotionManager::process_popped_location_depth(ScannerTask task) {
335   if (task.is_partial_array_task()) {
336     assert(PSChunkLargeArrays, "invariant");
337     process_array_chunk(task.to_partial_array_task());
338   } else {
339     if (task.is_narrow_oop_ptr()) {
340       assert(UseCompressedOops, "Error");
341       copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_narrow_oop_ptr());
342     } else {
343       copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_oop_ptr());
344     }
345   }
346 }
347 
348 inline bool PSPromotionManager::steal_depth(int queue_num, ScannerTask& t) {
349   return stack_array_depth()->steal(queue_num, t);
350 }
351 
352 #if TASKQUEUE_STATS
353 void PSPromotionManager::record_steal(ScannerTask task) {
354   if (task.is_partial_array_task()) {
355     ++_array_chunk_steals;
356   }
357 }
358 #endif // TASKQUEUE_STATS
359 
360 #endif // SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP