1 /* 2 * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/serial/defNewGeneration.inline.hpp" 27 #include "gc/serial/serialGcRefProcProxyTask.hpp" 28 #include "gc/serial/serialHeap.inline.hpp" 29 #include "gc/serial/tenuredGeneration.hpp" 30 #include "gc/shared/adaptiveSizePolicy.hpp" 31 #include "gc/shared/ageTable.inline.hpp" 32 #include "gc/shared/cardTableRS.hpp" 33 #include "gc/shared/collectorCounters.hpp" 34 #include "gc/shared/gcArguments.hpp" 35 #include "gc/shared/gcHeapSummary.hpp" 36 #include "gc/shared/gcLocker.hpp" 37 #include "gc/shared/gcPolicyCounters.hpp" 38 #include "gc/shared/gcTimer.hpp" 39 #include "gc/shared/gcTrace.hpp" 40 #include "gc/shared/gcTraceTime.inline.hpp" 41 #include "gc/shared/generationSpec.hpp" 42 #include "gc/shared/genOopClosures.inline.hpp" 43 #include "gc/shared/preservedMarks.inline.hpp" 44 #include "gc/shared/referencePolicy.hpp" 45 #include "gc/shared/referenceProcessorPhaseTimes.hpp" 46 #include "gc/shared/space.inline.hpp" 47 #include "gc/shared/spaceDecorator.inline.hpp" 48 #include "gc/shared/strongRootsScope.hpp" 49 #include "gc/shared/weakProcessor.hpp" 50 #include "logging/log.hpp" 51 #include "memory/iterator.inline.hpp" 52 #include "memory/resourceArea.hpp" 53 #include "oops/instanceRefKlass.hpp" 54 #include "oops/oop.inline.hpp" 55 #include "runtime/java.hpp" 56 #include "runtime/prefetch.inline.hpp" 57 #include "runtime/thread.inline.hpp" 58 #include "utilities/align.hpp" 59 #include "utilities/copy.hpp" 60 #include "utilities/globalDefinitions.hpp" 61 #include "utilities/stack.inline.hpp" 62 63 // 64 // DefNewGeneration functions. 65 66 // Methods of protected closure types. 67 68 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) { 69 assert(_young_gen->kind() == Generation::DefNew, "Expected the young generation here"); 70 } 71 72 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) { 73 return cast_from_oop<HeapWord*>(p) >= _young_gen->reserved().end() || p->is_forwarded(); 74 } 75 76 DefNewGeneration::KeepAliveClosure:: 77 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) { 78 _rs = GenCollectedHeap::heap()->rem_set(); 79 } 80 81 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); } 82 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); } 83 84 85 DefNewGeneration::FastKeepAliveClosure:: 86 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) : 87 DefNewGeneration::KeepAliveClosure(cl) { 88 _boundary = g->reserved().end(); 89 } 90 91 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); } 92 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); } 93 94 DefNewGeneration::FastEvacuateFollowersClosure:: 95 FastEvacuateFollowersClosure(SerialHeap* heap, 96 DefNewScanClosure* cur, 97 DefNewYoungerGenClosure* older) : 98 _heap(heap), _scan_cur_or_nonheap(cur), _scan_older(older) 99 { 100 } 101 102 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() { 103 do { 104 _heap->oop_since_save_marks_iterate(_scan_cur_or_nonheap, _scan_older); 105 } while (!_heap->no_allocs_since_save_marks()); 106 guarantee(_heap->young_gen()->promo_failure_scan_is_complete(), "Failed to finish scan"); 107 } 108 109 void CLDScanClosure::do_cld(ClassLoaderData* cld) { 110 NOT_PRODUCT(ResourceMark rm); 111 log_develop_trace(gc, scavenge)("CLDScanClosure::do_cld " PTR_FORMAT ", %s, dirty: %s", 112 p2i(cld), 113 cld->loader_name_and_id(), 114 cld->has_modified_oops() ? "true" : "false"); 115 116 // If the cld has not been dirtied we know that there's 117 // no references into the young gen and we can skip it. 118 if (cld->has_modified_oops()) { 119 120 // Tell the closure which CLD is being scanned so that it can be dirtied 121 // if oops are left pointing into the young gen. 122 _scavenge_closure->set_scanned_cld(cld); 123 124 // Clean the cld since we're going to scavenge all the metadata. 125 cld->oops_do(_scavenge_closure, ClassLoaderData::_claim_none, /*clear_modified_oops*/true); 126 127 _scavenge_closure->set_scanned_cld(NULL); 128 } 129 } 130 131 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) : 132 _g(g) 133 { 134 _boundary = _g->reserved().end(); 135 } 136 137 DefNewGeneration::DefNewGeneration(ReservedSpace rs, 138 size_t initial_size, 139 size_t min_size, 140 size_t max_size, 141 const char* policy) 142 : Generation(rs, initial_size), 143 _preserved_marks_set(false /* in_c_heap */), 144 _promo_failure_drain_in_progress(false), 145 _should_allocate_from_space(false) 146 { 147 MemRegion cmr((HeapWord*)_virtual_space.low(), 148 (HeapWord*)_virtual_space.high()); 149 GenCollectedHeap* gch = GenCollectedHeap::heap(); 150 151 gch->rem_set()->resize_covered_region(cmr); 152 153 _eden_space = new ContiguousSpace(); 154 _from_space = new ContiguousSpace(); 155 _to_space = new ContiguousSpace(); 156 157 // Compute the maximum eden and survivor space sizes. These sizes 158 // are computed assuming the entire reserved space is committed. 159 // These values are exported as performance counters. 160 uintx size = _virtual_space.reserved_size(); 161 _max_survivor_size = compute_survivor_size(size, SpaceAlignment); 162 _max_eden_size = size - (2*_max_survivor_size); 163 164 // allocate the performance counters 165 166 // Generation counters -- generation 0, 3 subspaces 167 _gen_counters = new GenerationCounters("new", 0, 3, 168 min_size, max_size, &_virtual_space); 169 _gc_counters = new CollectorCounters(policy, 0); 170 171 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space, 172 _gen_counters); 173 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space, 174 _gen_counters); 175 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space, 176 _gen_counters); 177 178 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle); 179 update_counters(); 180 _old_gen = NULL; 181 _tenuring_threshold = MaxTenuringThreshold; 182 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize; 183 184 _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer(); 185 } 186 187 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size, 188 bool clear_space, 189 bool mangle_space) { 190 // If the spaces are being cleared (only done at heap initialization 191 // currently), the survivor spaces need not be empty. 192 // Otherwise, no care is taken for used areas in the survivor spaces 193 // so check. 194 assert(clear_space || (to()->is_empty() && from()->is_empty()), 195 "Initialization of the survivor spaces assumes these are empty"); 196 197 // Compute sizes 198 uintx size = _virtual_space.committed_size(); 199 uintx survivor_size = compute_survivor_size(size, SpaceAlignment); 200 uintx eden_size = size - (2*survivor_size); 201 if (eden_size > max_eden_size()) { 202 eden_size = max_eden_size(); 203 survivor_size = (size - eden_size)/2; 204 } 205 assert(eden_size > 0 && survivor_size <= eden_size, "just checking"); 206 207 if (eden_size < minimum_eden_size) { 208 // May happen due to 64Kb rounding, if so adjust eden size back up 209 minimum_eden_size = align_up(minimum_eden_size, SpaceAlignment); 210 uintx maximum_survivor_size = (size - minimum_eden_size) / 2; 211 uintx unaligned_survivor_size = 212 align_down(maximum_survivor_size, SpaceAlignment); 213 survivor_size = MAX2(unaligned_survivor_size, SpaceAlignment); 214 eden_size = size - (2*survivor_size); 215 assert(eden_size > 0 && survivor_size <= eden_size, "just checking"); 216 assert(eden_size >= minimum_eden_size, "just checking"); 217 } 218 219 char *eden_start = _virtual_space.low(); 220 char *from_start = eden_start + eden_size; 221 char *to_start = from_start + survivor_size; 222 char *to_end = to_start + survivor_size; 223 224 assert(to_end == _virtual_space.high(), "just checking"); 225 assert(Space::is_aligned(eden_start), "checking alignment"); 226 assert(Space::is_aligned(from_start), "checking alignment"); 227 assert(Space::is_aligned(to_start), "checking alignment"); 228 229 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start); 230 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start); 231 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end); 232 233 // A minimum eden size implies that there is a part of eden that 234 // is being used and that affects the initialization of any 235 // newly formed eden. 236 bool live_in_eden = minimum_eden_size > 0; 237 238 // If not clearing the spaces, do some checking to verify that 239 // the space are already mangled. 240 if (!clear_space) { 241 // Must check mangling before the spaces are reshaped. Otherwise, 242 // the bottom or end of one space may have moved into another 243 // a failure of the check may not correctly indicate which space 244 // is not properly mangled. 245 if (ZapUnusedHeapArea) { 246 HeapWord* limit = (HeapWord*) _virtual_space.high(); 247 eden()->check_mangled_unused_area(limit); 248 from()->check_mangled_unused_area(limit); 249 to()->check_mangled_unused_area(limit); 250 } 251 } 252 253 // Reset the spaces for their new regions. 254 eden()->initialize(edenMR, 255 clear_space && !live_in_eden, 256 SpaceDecorator::Mangle); 257 // If clear_space and live_in_eden, we will not have cleared any 258 // portion of eden above its top. This can cause newly 259 // expanded space not to be mangled if using ZapUnusedHeapArea. 260 // We explicitly do such mangling here. 261 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) { 262 eden()->mangle_unused_area(); 263 } 264 from()->initialize(fromMR, clear_space, mangle_space); 265 to()->initialize(toMR, clear_space, mangle_space); 266 267 // Set next compaction spaces. 268 eden()->set_next_compaction_space(from()); 269 // The to-space is normally empty before a compaction so need 270 // not be considered. The exception is during promotion 271 // failure handling when to-space can contain live objects. 272 from()->set_next_compaction_space(NULL); 273 } 274 275 void DefNewGeneration::swap_spaces() { 276 ContiguousSpace* s = from(); 277 _from_space = to(); 278 _to_space = s; 279 eden()->set_next_compaction_space(from()); 280 // The to-space is normally empty before a compaction so need 281 // not be considered. The exception is during promotion 282 // failure handling when to-space can contain live objects. 283 from()->set_next_compaction_space(NULL); 284 285 if (UsePerfData) { 286 CSpaceCounters* c = _from_counters; 287 _from_counters = _to_counters; 288 _to_counters = c; 289 } 290 } 291 292 bool DefNewGeneration::expand(size_t bytes) { 293 MutexLocker x(ExpandHeap_lock); 294 HeapWord* prev_high = (HeapWord*) _virtual_space.high(); 295 bool success = _virtual_space.expand_by(bytes); 296 if (success && ZapUnusedHeapArea) { 297 // Mangle newly committed space immediately because it 298 // can be done here more simply that after the new 299 // spaces have been computed. 300 HeapWord* new_high = (HeapWord*) _virtual_space.high(); 301 MemRegion mangle_region(prev_high, new_high); 302 SpaceMangler::mangle_region(mangle_region); 303 } 304 305 // Do not attempt an expand-to-the reserve size. The 306 // request should properly observe the maximum size of 307 // the generation so an expand-to-reserve should be 308 // unnecessary. Also a second call to expand-to-reserve 309 // value potentially can cause an undue expansion. 310 // For example if the first expand fail for unknown reasons, 311 // but the second succeeds and expands the heap to its maximum 312 // value. 313 if (GCLocker::is_active()) { 314 log_debug(gc)("Garbage collection disabled, expanded heap instead"); 315 } 316 317 return success; 318 } 319 320 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate, 321 size_t new_size_before, 322 size_t alignment) const { 323 size_t desired_new_size = new_size_before; 324 325 if (NewSizeThreadIncrease > 0) { 326 int threads_count; 327 size_t thread_increase_size = 0; 328 329 // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'. 330 threads_count = Threads::number_of_non_daemon_threads(); 331 if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) { 332 thread_increase_size = threads_count * NewSizeThreadIncrease; 333 334 // 2. Check an overflow at 'new_size_candidate + thread_increase_size'. 335 if (new_size_candidate <= max_uintx - thread_increase_size) { 336 new_size_candidate += thread_increase_size; 337 338 // 3. Check an overflow at 'align_up'. 339 size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1)); 340 if (new_size_candidate <= aligned_max) { 341 desired_new_size = align_up(new_size_candidate, alignment); 342 } 343 } 344 } 345 } 346 347 return desired_new_size; 348 } 349 350 void DefNewGeneration::compute_new_size() { 351 // This is called after a GC that includes the old generation, so from-space 352 // will normally be empty. 353 // Note that we check both spaces, since if scavenge failed they revert roles. 354 // If not we bail out (otherwise we would have to relocate the objects). 355 if (!from()->is_empty() || !to()->is_empty()) { 356 return; 357 } 358 359 GenCollectedHeap* gch = GenCollectedHeap::heap(); 360 361 size_t old_size = gch->old_gen()->capacity(); 362 size_t new_size_before = _virtual_space.committed_size(); 363 size_t min_new_size = initial_size(); 364 size_t max_new_size = reserved().byte_size(); 365 assert(min_new_size <= new_size_before && 366 new_size_before <= max_new_size, 367 "just checking"); 368 // All space sizes must be multiples of Generation::GenGrain. 369 size_t alignment = Generation::GenGrain; 370 371 int threads_count = 0; 372 size_t thread_increase_size = 0; 373 374 size_t new_size_candidate = old_size / NewRatio; 375 // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease 376 // and reverts to previous value if any overflow happens 377 size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment); 378 379 // Adjust new generation size 380 desired_new_size = clamp(desired_new_size, min_new_size, max_new_size); 381 assert(desired_new_size <= max_new_size, "just checking"); 382 383 bool changed = false; 384 if (desired_new_size > new_size_before) { 385 size_t change = desired_new_size - new_size_before; 386 assert(change % alignment == 0, "just checking"); 387 if (expand(change)) { 388 changed = true; 389 } 390 // If the heap failed to expand to the desired size, 391 // "changed" will be false. If the expansion failed 392 // (and at this point it was expected to succeed), 393 // ignore the failure (leaving "changed" as false). 394 } 395 if (desired_new_size < new_size_before && eden()->is_empty()) { 396 // bail out of shrinking if objects in eden 397 size_t change = new_size_before - desired_new_size; 398 assert(change % alignment == 0, "just checking"); 399 _virtual_space.shrink_by(change); 400 changed = true; 401 } 402 if (changed) { 403 // The spaces have already been mangled at this point but 404 // may not have been cleared (set top = bottom) and should be. 405 // Mangling was done when the heap was being expanded. 406 compute_space_boundaries(eden()->used(), 407 SpaceDecorator::Clear, 408 SpaceDecorator::DontMangle); 409 MemRegion cmr((HeapWord*)_virtual_space.low(), 410 (HeapWord*)_virtual_space.high()); 411 gch->rem_set()->resize_covered_region(cmr); 412 413 log_debug(gc, ergo, heap)( 414 "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]", 415 new_size_before/K, _virtual_space.committed_size()/K, 416 eden()->capacity()/K, from()->capacity()/K); 417 log_trace(gc, ergo, heap)( 418 " [allowed " SIZE_FORMAT "K extra for %d threads]", 419 thread_increase_size/K, threads_count); 420 } 421 } 422 423 424 size_t DefNewGeneration::capacity() const { 425 return eden()->capacity() 426 + from()->capacity(); // to() is only used during scavenge 427 } 428 429 430 size_t DefNewGeneration::used() const { 431 return eden()->used() 432 + from()->used(); // to() is only used during scavenge 433 } 434 435 436 size_t DefNewGeneration::free() const { 437 return eden()->free() 438 + from()->free(); // to() is only used during scavenge 439 } 440 441 size_t DefNewGeneration::max_capacity() const { 442 const size_t reserved_bytes = reserved().byte_size(); 443 return reserved_bytes - compute_survivor_size(reserved_bytes, SpaceAlignment); 444 } 445 446 size_t DefNewGeneration::unsafe_max_alloc_nogc() const { 447 return eden()->free(); 448 } 449 450 size_t DefNewGeneration::capacity_before_gc() const { 451 return eden()->capacity(); 452 } 453 454 size_t DefNewGeneration::contiguous_available() const { 455 return eden()->free(); 456 } 457 458 459 HeapWord* volatile* DefNewGeneration::top_addr() const { return eden()->top_addr(); } 460 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); } 461 462 void DefNewGeneration::object_iterate(ObjectClosure* blk) { 463 eden()->object_iterate(blk); 464 from()->object_iterate(blk); 465 } 466 467 468 void DefNewGeneration::space_iterate(SpaceClosure* blk, 469 bool usedOnly) { 470 blk->do_space(eden()); 471 blk->do_space(from()); 472 blk->do_space(to()); 473 } 474 475 // The last collection bailed out, we are running out of heap space, 476 // so we try to allocate the from-space, too. 477 HeapWord* DefNewGeneration::allocate_from_space(size_t size) { 478 bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc(); 479 480 // If the Heap_lock is not locked by this thread, this will be called 481 // again later with the Heap_lock held. 482 bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread())); 483 484 HeapWord* result = NULL; 485 if (do_alloc) { 486 result = from()->allocate(size); 487 } 488 489 log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "): will_fail: %s heap_lock: %s free: " SIZE_FORMAT "%s%s returns %s", 490 size, 491 GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ? 492 "true" : "false", 493 Heap_lock->is_locked() ? "locked" : "unlocked", 494 from()->free(), 495 should_try_alloc ? "" : " should_allocate_from_space: NOT", 496 do_alloc ? " Heap_lock is not owned by self" : "", 497 result == NULL ? "NULL" : "object"); 498 499 return result; 500 } 501 502 HeapWord* DefNewGeneration::expand_and_allocate(size_t size, 503 bool is_tlab, 504 bool parallel) { 505 // We don't attempt to expand the young generation (but perhaps we should.) 506 return allocate(size, is_tlab); 507 } 508 509 void DefNewGeneration::adjust_desired_tenuring_threshold() { 510 // Set the desired survivor size to half the real survivor space 511 size_t const survivor_capacity = to()->capacity() / HeapWordSize; 512 size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100); 513 514 _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size); 515 516 if (UsePerfData) { 517 GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->counters(); 518 gc_counters->tenuring_threshold()->set_value(_tenuring_threshold); 519 gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize); 520 } 521 522 age_table()->print_age_table(_tenuring_threshold); 523 } 524 525 void DefNewGeneration::collect(bool full, 526 bool clear_all_soft_refs, 527 size_t size, 528 bool is_tlab) { 529 assert(full || size > 0, "otherwise we don't want to collect"); 530 531 SerialHeap* heap = SerialHeap::heap(); 532 533 _gc_timer->register_gc_start(); 534 DefNewTracer gc_tracer; 535 gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer->gc_start()); 536 537 _old_gen = heap->old_gen(); 538 539 // If the next generation is too full to accommodate promotion 540 // from this generation, pass on collection; let the next generation 541 // do it. 542 if (!collection_attempt_is_safe()) { 543 log_trace(gc)(":: Collection attempt not safe ::"); 544 heap->set_incremental_collection_failed(); // Slight lie: we did not even attempt one 545 return; 546 } 547 assert(to()->is_empty(), "Else not collection_attempt_is_safe"); 548 549 init_assuming_no_promotion_failure(); 550 551 GCTraceTime(Trace, gc, phases) tm("DefNew", NULL, heap->gc_cause()); 552 553 heap->trace_heap_before_gc(&gc_tracer); 554 555 // These can be shared for all code paths 556 IsAliveClosure is_alive(this); 557 ScanWeakRefClosure scan_weak_ref(this); 558 559 age_table()->clear(); 560 to()->clear(SpaceDecorator::Mangle); 561 // The preserved marks should be empty at the start of the GC. 562 _preserved_marks_set.init(1); 563 564 assert(heap->no_allocs_since_save_marks(), 565 "save marks have not been newly set."); 566 567 DefNewScanClosure scan_closure(this); 568 DefNewYoungerGenClosure younger_gen_closure(this, _old_gen); 569 570 CLDScanClosure cld_scan_closure(&scan_closure); 571 572 set_promo_failure_scan_stack_closure(&scan_closure); 573 FastEvacuateFollowersClosure evacuate_followers(heap, 574 &scan_closure, 575 &younger_gen_closure); 576 577 assert(heap->no_allocs_since_save_marks(), 578 "save marks have not been newly set."); 579 580 { 581 StrongRootsScope srs(0); 582 583 heap->young_process_roots(&scan_closure, 584 &younger_gen_closure, 585 &cld_scan_closure); 586 } 587 588 // "evacuate followers". 589 evacuate_followers.do_void(); 590 591 FastKeepAliveClosure keep_alive(this, &scan_weak_ref); 592 ReferenceProcessor* rp = ref_processor(); 593 rp->setup_policy(clear_all_soft_refs); 594 ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues()); 595 SerialGCRefProcProxyTask task(is_alive, keep_alive, evacuate_followers); 596 const ReferenceProcessorStats& stats = rp->process_discovered_references(task, pt); 597 gc_tracer.report_gc_reference_stats(stats); 598 gc_tracer.report_tenuring_threshold(tenuring_threshold()); 599 pt.print_all_references(); 600 601 assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set."); 602 603 WeakProcessor::weak_oops_do(&is_alive, &keep_alive); 604 605 // Verify that the usage of keep_alive didn't copy any objects. 606 assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set."); 607 608 if (!_promotion_failed) { 609 // Swap the survivor spaces. 610 eden()->clear(SpaceDecorator::Mangle); 611 from()->clear(SpaceDecorator::Mangle); 612 if (ZapUnusedHeapArea) { 613 // This is now done here because of the piece-meal mangling which 614 // can check for valid mangling at intermediate points in the 615 // collection(s). When a young collection fails to collect 616 // sufficient space resizing of the young generation can occur 617 // an redistribute the spaces in the young generation. Mangle 618 // here so that unzapped regions don't get distributed to 619 // other spaces. 620 to()->mangle_unused_area(); 621 } 622 swap_spaces(); 623 624 assert(to()->is_empty(), "to space should be empty now"); 625 626 adjust_desired_tenuring_threshold(); 627 628 // A successful scavenge should restart the GC time limit count which is 629 // for full GC's. 630 AdaptiveSizePolicy* size_policy = heap->size_policy(); 631 size_policy->reset_gc_overhead_limit_count(); 632 assert(!heap->incremental_collection_failed(), "Should be clear"); 633 } else { 634 assert(_promo_failure_scan_stack.is_empty(), "post condition"); 635 _promo_failure_scan_stack.clear(true); // Clear cached segments. 636 637 remove_forwarding_pointers(); 638 log_info(gc, promotion)("Promotion failed"); 639 // Add to-space to the list of space to compact 640 // when a promotion failure has occurred. In that 641 // case there can be live objects in to-space 642 // as a result of a partial evacuation of eden 643 // and from-space. 644 swap_spaces(); // For uniformity wrt ParNewGeneration. 645 from()->set_next_compaction_space(to()); 646 heap->set_incremental_collection_failed(); 647 648 // Inform the next generation that a promotion failure occurred. 649 _old_gen->promotion_failure_occurred(); 650 gc_tracer.report_promotion_failed(_promotion_failed_info); 651 652 // Reset the PromotionFailureALot counters. 653 NOT_PRODUCT(heap->reset_promotion_should_fail();) 654 } 655 // We should have processed and cleared all the preserved marks. 656 _preserved_marks_set.reclaim(); 657 658 heap->trace_heap_after_gc(&gc_tracer); 659 660 _gc_timer->register_gc_end(); 661 662 gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions()); 663 } 664 665 void DefNewGeneration::init_assuming_no_promotion_failure() { 666 _promotion_failed = false; 667 _promotion_failed_info.reset(); 668 from()->set_next_compaction_space(NULL); 669 } 670 671 void DefNewGeneration::remove_forwarding_pointers() { 672 RemoveForwardedPointerClosure rspc; 673 eden()->object_iterate(&rspc); 674 from()->object_iterate(&rspc); 675 restore_preserved_marks(); 676 } 677 678 void DefNewGeneration::restore_preserved_marks() { 679 _preserved_marks_set.restore(NULL); 680 } 681 682 void DefNewGeneration::handle_promotion_failure(oop old) { 683 log_debug(gc, promotion)("Promotion failure size = %d) ", old->size()); 684 685 _promotion_failed = true; 686 _promotion_failed_info.register_copy_failure(old->size()); 687 _preserved_marks_set.get()->push_if_necessary(old, old->mark()); 688 // forward to self 689 old->forward_to(old); 690 691 _promo_failure_scan_stack.push(old); 692 693 if (!_promo_failure_drain_in_progress) { 694 // prevent recursion in copy_to_survivor_space() 695 _promo_failure_drain_in_progress = true; 696 drain_promo_failure_scan_stack(); 697 _promo_failure_drain_in_progress = false; 698 } 699 } 700 701 oop DefNewGeneration::copy_to_survivor_space(oop old) { 702 assert(is_in_reserved(old) && !old->is_forwarded(), 703 "shouldn't be scavenging this oop"); 704 size_t s = old->size(); 705 oop obj = NULL; 706 707 // Try allocating obj in to-space (unless too old) 708 if (old->age() < tenuring_threshold()) { 709 obj = cast_to_oop(to()->allocate(s)); 710 } 711 712 // Otherwise try allocating obj tenured 713 if (obj == NULL) { 714 obj = _old_gen->promote(old, s); 715 if (obj == NULL) { 716 handle_promotion_failure(old); 717 return old; 718 } 719 } else { 720 // Prefetch beyond obj 721 const intx interval = PrefetchCopyIntervalInBytes; 722 Prefetch::write(obj, interval); 723 724 // Copy obj 725 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), cast_from_oop<HeapWord*>(obj), s); 726 727 // Increment age if obj still in new generation 728 obj->incr_age(); 729 age_table()->add(obj, s); 730 } 731 732 // Done, insert forward pointer to obj in this header 733 old->forward_to(obj); 734 735 return obj; 736 } 737 738 void DefNewGeneration::drain_promo_failure_scan_stack() { 739 while (!_promo_failure_scan_stack.is_empty()) { 740 oop obj = _promo_failure_scan_stack.pop(); 741 obj->oop_iterate(_promo_failure_scan_stack_closure); 742 } 743 } 744 745 void DefNewGeneration::save_marks() { 746 eden()->set_saved_mark(); 747 to()->set_saved_mark(); 748 from()->set_saved_mark(); 749 } 750 751 752 void DefNewGeneration::reset_saved_marks() { 753 eden()->reset_saved_mark(); 754 to()->reset_saved_mark(); 755 from()->reset_saved_mark(); 756 } 757 758 759 bool DefNewGeneration::no_allocs_since_save_marks() { 760 assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden"); 761 assert(from()->saved_mark_at_top(), "Violated spec - alloc in from"); 762 return to()->saved_mark_at_top(); 763 } 764 765 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor, 766 size_t max_alloc_words) { 767 if (requestor == this || _promotion_failed) { 768 return; 769 } 770 assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation"); 771 772 /* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate. 773 if (to_space->top() > to_space->bottom()) { 774 trace("to_space not empty when contribute_scratch called"); 775 } 776 */ 777 778 ContiguousSpace* to_space = to(); 779 assert(to_space->end() >= to_space->top(), "pointers out of order"); 780 size_t free_words = pointer_delta(to_space->end(), to_space->top()); 781 if (free_words >= MinFreeScratchWords) { 782 ScratchBlock* sb = (ScratchBlock*)to_space->top(); 783 sb->num_words = free_words; 784 sb->next = list; 785 list = sb; 786 } 787 } 788 789 void DefNewGeneration::reset_scratch() { 790 // If contributing scratch in to_space, mangle all of 791 // to_space if ZapUnusedHeapArea. This is needed because 792 // top is not maintained while using to-space as scratch. 793 if (ZapUnusedHeapArea) { 794 to()->mangle_unused_area_complete(); 795 } 796 } 797 798 bool DefNewGeneration::collection_attempt_is_safe() { 799 if (!to()->is_empty()) { 800 log_trace(gc)(":: to is not empty ::"); 801 return false; 802 } 803 if (_old_gen == NULL) { 804 GenCollectedHeap* gch = GenCollectedHeap::heap(); 805 _old_gen = gch->old_gen(); 806 } 807 return _old_gen->promotion_attempt_is_safe(used()); 808 } 809 810 void DefNewGeneration::gc_epilogue(bool full) { 811 DEBUG_ONLY(static bool seen_incremental_collection_failed = false;) 812 813 assert(!GCLocker::is_active(), "We should not be executing here"); 814 // Check if the heap is approaching full after a collection has 815 // been done. Generally the young generation is empty at 816 // a minimum at the end of a collection. If it is not, then 817 // the heap is approaching full. 818 GenCollectedHeap* gch = GenCollectedHeap::heap(); 819 if (full) { 820 DEBUG_ONLY(seen_incremental_collection_failed = false;) 821 if (!collection_attempt_is_safe() && !_eden_space->is_empty()) { 822 log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen", 823 GCCause::to_string(gch->gc_cause())); 824 gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state 825 set_should_allocate_from_space(); // we seem to be running out of space 826 } else { 827 log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen", 828 GCCause::to_string(gch->gc_cause())); 829 gch->clear_incremental_collection_failed(); // We just did a full collection 830 clear_should_allocate_from_space(); // if set 831 } 832 } else { 833 #ifdef ASSERT 834 // It is possible that incremental_collection_failed() == true 835 // here, because an attempted scavenge did not succeed. The policy 836 // is normally expected to cause a full collection which should 837 // clear that condition, so we should not be here twice in a row 838 // with incremental_collection_failed() == true without having done 839 // a full collection in between. 840 if (!seen_incremental_collection_failed && 841 gch->incremental_collection_failed()) { 842 log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed", 843 GCCause::to_string(gch->gc_cause())); 844 seen_incremental_collection_failed = true; 845 } else if (seen_incremental_collection_failed) { 846 log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed", 847 GCCause::to_string(gch->gc_cause())); 848 seen_incremental_collection_failed = false; 849 } 850 #endif // ASSERT 851 } 852 853 if (ZapUnusedHeapArea) { 854 eden()->check_mangled_unused_area_complete(); 855 from()->check_mangled_unused_area_complete(); 856 to()->check_mangled_unused_area_complete(); 857 } 858 859 // update the generation and space performance counters 860 update_counters(); 861 gch->counters()->update_counters(); 862 } 863 864 void DefNewGeneration::record_spaces_top() { 865 assert(ZapUnusedHeapArea, "Not mangling unused space"); 866 eden()->set_top_for_allocations(); 867 to()->set_top_for_allocations(); 868 from()->set_top_for_allocations(); 869 } 870 871 void DefNewGeneration::ref_processor_init() { 872 Generation::ref_processor_init(); 873 } 874 875 876 void DefNewGeneration::update_counters() { 877 if (UsePerfData) { 878 _eden_counters->update_all(); 879 _from_counters->update_all(); 880 _to_counters->update_all(); 881 _gen_counters->update_all(); 882 } 883 } 884 885 void DefNewGeneration::verify() { 886 eden()->verify(); 887 from()->verify(); 888 to()->verify(); 889 } 890 891 void DefNewGeneration::print_on(outputStream* st) const { 892 Generation::print_on(st); 893 st->print(" eden"); 894 eden()->print_on(st); 895 st->print(" from"); 896 from()->print_on(st); 897 st->print(" to "); 898 to()->print_on(st); 899 } 900 901 902 const char* DefNewGeneration::name() const { 903 return "def new generation"; 904 } 905 906 // Moved from inline file as they are not called inline 907 CompactibleSpace* DefNewGeneration::first_compaction_space() const { 908 return eden(); 909 } 910 911 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) { 912 // This is the slow-path allocation for the DefNewGeneration. 913 // Most allocations are fast-path in compiled code. 914 // We try to allocate from the eden. If that works, we are happy. 915 // Note that since DefNewGeneration supports lock-free allocation, we 916 // have to use it here, as well. 917 HeapWord* result = eden()->par_allocate(word_size); 918 if (result == NULL) { 919 // If the eden is full and the last collection bailed out, we are running 920 // out of heap space, and we try to allocate the from-space, too. 921 // allocate_from_space can't be inlined because that would introduce a 922 // circular dependency at compile time. 923 result = allocate_from_space(word_size); 924 } 925 return result; 926 } 927 928 HeapWord* DefNewGeneration::par_allocate(size_t word_size, 929 bool is_tlab) { 930 return eden()->par_allocate(word_size); 931 } 932 933 size_t DefNewGeneration::tlab_capacity() const { 934 return eden()->capacity(); 935 } 936 937 size_t DefNewGeneration::tlab_used() const { 938 return eden()->used(); 939 } 940 941 size_t DefNewGeneration::unsafe_max_tlab_alloc() const { 942 return unsafe_max_alloc_nogc(); 943 }