1 /* 2 * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderData.hpp" 27 #include "classfile/vmClasses.hpp" 28 #include "gc/shared/allocTracer.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/collectedHeap.inline.hpp" 32 #include "gc/shared/gcLocker.inline.hpp" 33 #include "gc/shared/gcHeapSummary.hpp" 34 #include "gc/shared/stringdedup/stringDedup.hpp" 35 #include "gc/shared/gcTrace.hpp" 36 #include "gc/shared/gcTraceTime.inline.hpp" 37 #include "gc/shared/gcVMOperations.hpp" 38 #include "gc/shared/gcWhen.hpp" 39 #include "gc/shared/gc_globals.hpp" 40 #include "gc/shared/memAllocator.hpp" 41 #include "gc/shared/tlab_globals.hpp" 42 #include "logging/log.hpp" 43 #include "logging/logStream.hpp" 44 #include "memory/classLoaderMetaspace.hpp" 45 #include "memory/metaspaceUtils.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "memory/universe.hpp" 48 #include "oops/instanceMirrorKlass.hpp" 49 #include "oops/oop.inline.hpp" 50 #include "runtime/handles.inline.hpp" 51 #include "runtime/init.hpp" 52 #include "runtime/perfData.hpp" 53 #include "runtime/thread.inline.hpp" 54 #include "runtime/threadSMR.hpp" 55 #include "runtime/vmThread.hpp" 56 #include "services/heapDumper.hpp" 57 #include "utilities/align.hpp" 58 #include "utilities/copy.hpp" 59 #include "utilities/events.hpp" 60 61 class ClassLoaderData; 62 63 size_t CollectedHeap::_filler_array_max_size = 0; 64 65 class GCMessage : public FormatBuffer<1024> { 66 public: 67 bool is_before; 68 }; 69 70 template <> 71 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) { 72 st->print_cr("GC heap %s", m.is_before ? "before" : "after"); 73 st->print_raw(m); 74 } 75 76 class GCHeapLog : public EventLogBase<GCMessage> { 77 private: 78 void log_heap(CollectedHeap* heap, bool before); 79 80 public: 81 GCHeapLog() : EventLogBase<GCMessage>("GC Heap History", "gc") {} 82 83 void log_heap_before(CollectedHeap* heap) { 84 log_heap(heap, true); 85 } 86 void log_heap_after(CollectedHeap* heap) { 87 log_heap(heap, false); 88 } 89 }; 90 91 void GCHeapLog::log_heap(CollectedHeap* heap, bool before) { 92 if (!should_log()) { 93 return; 94 } 95 96 double timestamp = fetch_timestamp(); 97 MutexLocker ml(&_mutex, Mutex::_no_safepoint_check_flag); 98 int index = compute_log_index(); 99 _records[index].thread = NULL; // Its the GC thread so it's not that interesting. 100 _records[index].timestamp = timestamp; 101 _records[index].data.is_before = before; 102 stringStream st(_records[index].data.buffer(), _records[index].data.size()); 103 104 st.print_cr("{Heap %s GC invocations=%u (full %u):", 105 before ? "before" : "after", 106 heap->total_collections(), 107 heap->total_full_collections()); 108 109 heap->print_on(&st); 110 st.print_cr("}"); 111 } 112 113 ParallelObjectIterator::ParallelObjectIterator(uint thread_num) : 114 _impl(Universe::heap()->parallel_object_iterator(thread_num)) 115 {} 116 117 ParallelObjectIterator::~ParallelObjectIterator() { 118 delete _impl; 119 } 120 121 void ParallelObjectIterator::object_iterate(ObjectClosure* cl, uint worker_id) { 122 _impl->object_iterate(cl, worker_id); 123 } 124 125 size_t CollectedHeap::unused() const { 126 MutexLocker ml(Heap_lock); 127 return capacity() - used(); 128 } 129 130 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() { 131 size_t capacity_in_words = capacity() / HeapWordSize; 132 133 return VirtualSpaceSummary( 134 _reserved.start(), _reserved.start() + capacity_in_words, _reserved.end()); 135 } 136 137 GCHeapSummary CollectedHeap::create_heap_summary() { 138 VirtualSpaceSummary heap_space = create_heap_space_summary(); 139 return GCHeapSummary(heap_space, used()); 140 } 141 142 MetaspaceSummary CollectedHeap::create_metaspace_summary() { 143 const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary = 144 MetaspaceUtils::chunk_free_list_summary(Metaspace::NonClassType); 145 const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary = 146 MetaspaceUtils::chunk_free_list_summary(Metaspace::ClassType); 147 return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), 148 MetaspaceUtils::get_combined_statistics(), 149 ms_chunk_free_list_summary, class_chunk_free_list_summary); 150 } 151 152 void CollectedHeap::print_heap_before_gc() { 153 LogTarget(Debug, gc, heap) lt; 154 if (lt.is_enabled()) { 155 LogStream ls(lt); 156 ls.print_cr("Heap before GC invocations=%u (full %u):", total_collections(), total_full_collections()); 157 ResourceMark rm; 158 print_on(&ls); 159 } 160 161 if (_gc_heap_log != NULL) { 162 _gc_heap_log->log_heap_before(this); 163 } 164 } 165 166 void CollectedHeap::print_heap_after_gc() { 167 LogTarget(Debug, gc, heap) lt; 168 if (lt.is_enabled()) { 169 LogStream ls(lt); 170 ls.print_cr("Heap after GC invocations=%u (full %u):", total_collections(), total_full_collections()); 171 ResourceMark rm; 172 print_on(&ls); 173 } 174 175 if (_gc_heap_log != NULL) { 176 _gc_heap_log->log_heap_after(this); 177 } 178 } 179 180 void CollectedHeap::print() const { print_on(tty); } 181 182 void CollectedHeap::print_on_error(outputStream* st) const { 183 st->print_cr("Heap:"); 184 print_extended_on(st); 185 st->cr(); 186 187 BarrierSet* bs = BarrierSet::barrier_set(); 188 if (bs != NULL) { 189 bs->print_on(st); 190 } 191 } 192 193 void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { 194 const GCHeapSummary& heap_summary = create_heap_summary(); 195 gc_tracer->report_gc_heap_summary(when, heap_summary); 196 197 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 198 gc_tracer->report_metaspace_summary(when, metaspace_summary); 199 } 200 201 void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) { 202 trace_heap(GCWhen::BeforeGC, gc_tracer); 203 } 204 205 void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) { 206 trace_heap(GCWhen::AfterGC, gc_tracer); 207 } 208 209 // Default implementation, for collectors that don't support the feature. 210 bool CollectedHeap::supports_concurrent_gc_breakpoints() const { 211 return false; 212 } 213 214 bool CollectedHeap::is_oop(oop object) const { 215 if (!is_object_aligned(object)) { 216 return false; 217 } 218 219 if (!is_in(object)) { 220 return false; 221 } 222 223 return true; 224 } 225 226 // Memory state functions. 227 228 229 CollectedHeap::CollectedHeap() : 230 _capacity_at_last_gc(0), 231 _used_at_last_gc(0), 232 _is_gc_active(false), 233 _last_whole_heap_examined_time_ns(os::javaTimeNanos()), 234 _total_collections(0), 235 _total_full_collections(0), 236 _gc_cause(GCCause::_no_gc), 237 _gc_lastcause(GCCause::_no_gc) 238 { 239 const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT)); 240 const size_t elements_per_word = HeapWordSize / sizeof(jint); 241 int header_size_in_bytes = arrayOopDesc::base_offset_in_bytes(T_INT); 242 assert(header_size_in_bytes % sizeof(jint) == 0, "must be aligned to int"); 243 int header_size_in_ints = header_size_in_bytes / sizeof(jint); 244 _filler_array_max_size = align_object_size((header_size_in_ints + max_len) / elements_per_word); 245 246 NOT_PRODUCT(_promotion_failure_alot_count = 0;) 247 NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;) 248 249 if (UsePerfData) { 250 EXCEPTION_MARK; 251 252 // create the gc cause jvmstat counters 253 _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause", 254 80, GCCause::to_string(_gc_cause), CHECK); 255 256 _perf_gc_lastcause = 257 PerfDataManager::create_string_variable(SUN_GC, "lastCause", 258 80, GCCause::to_string(_gc_lastcause), CHECK); 259 } 260 261 // Create the ring log 262 if (LogEvents) { 263 _gc_heap_log = new GCHeapLog(); 264 } else { 265 _gc_heap_log = NULL; 266 } 267 } 268 269 // This interface assumes that it's being called by the 270 // vm thread. It collects the heap assuming that the 271 // heap lock is already held and that we are executing in 272 // the context of the vm thread. 273 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) { 274 Thread* thread = Thread::current(); 275 assert(thread->is_VM_thread(), "Precondition#1"); 276 assert(Heap_lock->is_locked(), "Precondition#2"); 277 GCCauseSetter gcs(this, cause); 278 switch (cause) { 279 case GCCause::_heap_inspection: 280 case GCCause::_heap_dump: 281 case GCCause::_metadata_GC_threshold : { 282 HandleMark hm(thread); 283 do_full_collection(false); // don't clear all soft refs 284 break; 285 } 286 case GCCause::_archive_time_gc: 287 case GCCause::_metadata_GC_clear_soft_refs: { 288 HandleMark hm(thread); 289 do_full_collection(true); // do clear all soft refs 290 break; 291 } 292 default: 293 ShouldNotReachHere(); // Unexpected use of this function 294 } 295 } 296 297 MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 298 size_t word_size, 299 Metaspace::MetadataType mdtype) { 300 uint loop_count = 0; 301 uint gc_count = 0; 302 uint full_gc_count = 0; 303 304 assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock"); 305 306 do { 307 MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype); 308 if (result != NULL) { 309 return result; 310 } 311 312 if (GCLocker::is_active_and_needs_gc()) { 313 // If the GCLocker is active, just expand and allocate. 314 // If that does not succeed, wait if this thread is not 315 // in a critical section itself. 316 result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype); 317 if (result != NULL) { 318 return result; 319 } 320 JavaThread* jthr = JavaThread::current(); 321 if (!jthr->in_critical()) { 322 // Wait for JNI critical section to be exited 323 GCLocker::stall_until_clear(); 324 // The GC invoked by the last thread leaving the critical 325 // section will be a young collection and a full collection 326 // is (currently) needed for unloading classes so continue 327 // to the next iteration to get a full GC. 328 continue; 329 } else { 330 if (CheckJNICalls) { 331 fatal("Possible deadlock due to allocating while" 332 " in jni critical section"); 333 } 334 return NULL; 335 } 336 } 337 338 { // Need lock to get self consistent gc_count's 339 MutexLocker ml(Heap_lock); 340 gc_count = Universe::heap()->total_collections(); 341 full_gc_count = Universe::heap()->total_full_collections(); 342 } 343 344 // Generate a VM operation 345 VM_CollectForMetadataAllocation op(loader_data, 346 word_size, 347 mdtype, 348 gc_count, 349 full_gc_count, 350 GCCause::_metadata_GC_threshold); 351 VMThread::execute(&op); 352 353 // If GC was locked out, try again. Check before checking success because the 354 // prologue could have succeeded and the GC still have been locked out. 355 if (op.gc_locked()) { 356 continue; 357 } 358 359 if (op.prologue_succeeded()) { 360 return op.result(); 361 } 362 loop_count++; 363 if ((QueuedAllocationWarningCount > 0) && 364 (loop_count % QueuedAllocationWarningCount == 0)) { 365 log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times," 366 " size=" SIZE_FORMAT, loop_count, word_size); 367 } 368 } while (true); // Until a GC is done 369 } 370 371 MemoryUsage CollectedHeap::memory_usage() { 372 return MemoryUsage(InitialHeapSize, used(), capacity(), max_capacity()); 373 } 374 375 void CollectedHeap::set_gc_cause(GCCause::Cause v) { 376 if (UsePerfData) { 377 _gc_lastcause = _gc_cause; 378 _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause)); 379 _perf_gc_cause->set_value(GCCause::to_string(v)); 380 } 381 _gc_cause = v; 382 } 383 384 size_t CollectedHeap::max_tlab_size() const { 385 // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE]. 386 // This restriction could be removed by enabling filling with multiple arrays. 387 // If we compute that the reasonable way as 388 // header_size + ((sizeof(jint) * max_jint) / HeapWordSize) 389 // we'll overflow on the multiply, so we do the divide first. 390 // We actually lose a little by dividing first, 391 // but that just makes the TLAB somewhat smaller than the biggest array, 392 // which is fine, since we'll be able to fill that. 393 int header_size_in_bytes = typeArrayOopDesc::base_offset_in_bytes(T_INT); 394 assert(header_size_in_bytes % sizeof(jint) == 0, "header size must align to int"); 395 size_t max_int_size = header_size_in_bytes / HeapWordSize + 396 sizeof(jint) * 397 ((juint) max_jint / (size_t) HeapWordSize); 398 return align_down(max_int_size, MinObjAlignment); 399 } 400 401 size_t CollectedHeap::filler_array_min_size() { 402 int aligned_header_size_words = align_up(arrayOopDesc::base_offset_in_bytes(T_INT), HeapWordSize) / HeapWordSize; 403 return align_object_size(aligned_header_size_words); // align to MinObjAlignment 404 } 405 406 #ifdef ASSERT 407 void CollectedHeap::fill_args_check(HeapWord* start, size_t words) 408 { 409 assert(words >= min_fill_size(), "too small to fill"); 410 assert(is_object_aligned(words), "unaligned size"); 411 } 412 413 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap) 414 { 415 if (ZapFillerObjects && zap) { 416 int payload_start = align_up(arrayOopDesc::base_offset_in_bytes(T_INT), HeapWordSize) / HeapWordSize; 417 Copy::fill_to_words(start + payload_start, 418 words - payload_start, 0XDEAFBABE); 419 } 420 } 421 #endif // ASSERT 422 423 void 424 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap) 425 { 426 assert(words >= filler_array_min_size(), "too small for an array"); 427 assert(words <= filler_array_max_size(), "too big for a single object"); 428 429 const size_t payload_size_bytes = words * HeapWordSize - arrayOopDesc::base_offset_in_bytes(T_INT); 430 assert(payload_size_bytes % sizeof(jint) == 0, "must be int aligned"); 431 const size_t len = payload_size_bytes / sizeof(jint); 432 assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len); 433 434 ObjArrayAllocator allocator(Universe::intArrayKlassObj(), words, (int)len, /* do_zero */ false); 435 allocator.initialize(start); 436 DEBUG_ONLY(zap_filler_array(start, words, zap);) 437 } 438 439 void 440 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap) 441 { 442 assert(words <= filler_array_max_size(), "too big for a single object"); 443 444 if (words >= filler_array_min_size()) { 445 fill_with_array(start, words, zap); 446 } else if (words > 0) { 447 assert(words == min_fill_size(), "unaligned size"); 448 ObjAllocator allocator(vmClasses::Object_klass(), words); 449 allocator.initialize(start); 450 } 451 } 452 453 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap) 454 { 455 DEBUG_ONLY(fill_args_check(start, words);) 456 HandleMark hm(Thread::current()); // Free handles before leaving. 457 fill_with_object_impl(start, words, zap); 458 } 459 460 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap) 461 { 462 DEBUG_ONLY(fill_args_check(start, words);) 463 HandleMark hm(Thread::current()); // Free handles before leaving. 464 465 // Multiple objects may be required depending on the filler array maximum size. Fill 466 // the range up to that with objects that are filler_array_max_size sized. The 467 // remainder is filled with a single object. 468 const size_t min = min_fill_size(); 469 const size_t max = filler_array_max_size(); 470 while (words > max) { 471 const size_t cur = (words - max) >= min ? max : max - min; 472 fill_with_array(start, cur, zap); 473 start += cur; 474 words -= cur; 475 } 476 477 fill_with_object_impl(start, words, zap); 478 } 479 480 void CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) { 481 CollectedHeap::fill_with_object(start, end, zap); 482 } 483 484 size_t CollectedHeap::min_dummy_object_size() const { 485 return oopDesc::header_size(); 486 } 487 488 size_t CollectedHeap::tlab_alloc_reserve() const { 489 size_t min_size = min_dummy_object_size(); 490 return min_size > (size_t)MinObjAlignment ? align_object_size(min_size) : 0; 491 } 492 493 HeapWord* CollectedHeap::allocate_new_tlab(size_t min_size, 494 size_t requested_size, 495 size_t* actual_size) { 496 guarantee(false, "thread-local allocation buffers not supported"); 497 return NULL; 498 } 499 500 void CollectedHeap::ensure_parsability(bool retire_tlabs) { 501 assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(), 502 "Should only be called at a safepoint or at start-up"); 503 504 ThreadLocalAllocStats stats; 505 506 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next();) { 507 BarrierSet::barrier_set()->make_parsable(thread); 508 if (UseTLAB) { 509 if (retire_tlabs) { 510 thread->tlab().retire(&stats); 511 } else { 512 thread->tlab().make_parsable(); 513 } 514 } 515 } 516 517 stats.publish(); 518 } 519 520 void CollectedHeap::resize_all_tlabs() { 521 assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(), 522 "Should only resize tlabs at safepoint"); 523 524 if (UseTLAB && ResizeTLAB) { 525 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) { 526 thread->tlab().resize(); 527 } 528 } 529 } 530 531 jlong CollectedHeap::millis_since_last_whole_heap_examined() { 532 return (os::javaTimeNanos() - _last_whole_heap_examined_time_ns) / NANOSECS_PER_MILLISEC; 533 } 534 535 void CollectedHeap::record_whole_heap_examined_timestamp() { 536 _last_whole_heap_examined_time_ns = os::javaTimeNanos(); 537 } 538 539 void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) { 540 assert(timer != NULL, "timer is null"); 541 if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) { 542 GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer); 543 HeapDumper::dump_heap(); 544 } 545 546 LogTarget(Trace, gc, classhisto) lt; 547 if (lt.is_enabled()) { 548 GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer); 549 ResourceMark rm; 550 LogStream ls(lt); 551 VM_GC_HeapInspection inspector(&ls, false /* ! full gc */); 552 inspector.doit(); 553 } 554 } 555 556 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) { 557 full_gc_dump(timer, true); 558 } 559 560 void CollectedHeap::post_full_gc_dump(GCTimer* timer) { 561 full_gc_dump(timer, false); 562 } 563 564 void CollectedHeap::initialize_reserved_region(const ReservedHeapSpace& rs) { 565 // It is important to do this in a way such that concurrent readers can't 566 // temporarily think something is in the heap. (Seen this happen in asserts.) 567 _reserved.set_word_size(0); 568 _reserved.set_start((HeapWord*)rs.base()); 569 _reserved.set_end((HeapWord*)rs.end()); 570 } 571 572 void CollectedHeap::post_initialize() { 573 StringDedup::initialize(); 574 initialize_serviceability(); 575 } 576 577 #ifndef PRODUCT 578 579 bool CollectedHeap::promotion_should_fail(volatile size_t* count) { 580 // Access to count is not atomic; the value does not have to be exact. 581 if (PromotionFailureALot) { 582 const size_t gc_num = total_collections(); 583 const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number; 584 if (elapsed_gcs >= PromotionFailureALotInterval) { 585 // Test for unsigned arithmetic wrap-around. 586 if (++*count >= PromotionFailureALotCount) { 587 *count = 0; 588 return true; 589 } 590 } 591 } 592 return false; 593 } 594 595 bool CollectedHeap::promotion_should_fail() { 596 return promotion_should_fail(&_promotion_failure_alot_count); 597 } 598 599 void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) { 600 if (PromotionFailureALot) { 601 _promotion_failure_alot_gc_number = total_collections(); 602 *count = 0; 603 } 604 } 605 606 void CollectedHeap::reset_promotion_should_fail() { 607 reset_promotion_should_fail(&_promotion_failure_alot_count); 608 } 609 610 #endif // #ifndef PRODUCT 611 612 bool CollectedHeap::supports_object_pinning() const { 613 return false; 614 } 615 616 oop CollectedHeap::pin_object(JavaThread* thread, oop obj) { 617 ShouldNotReachHere(); 618 return NULL; 619 } 620 621 void CollectedHeap::unpin_object(JavaThread* thread, oop obj) { 622 ShouldNotReachHere(); 623 } 624 625 bool CollectedHeap::is_archived_object(oop object) const { 626 return false; 627 } 628 629 uint32_t CollectedHeap::hash_oop(oop obj) const { 630 const uintptr_t addr = cast_from_oop<uintptr_t>(obj); 631 return static_cast<uint32_t>(addr >> LogMinObjAlignment); 632 } 633 634 // It's the caller's responsibility to ensure glitch-freedom 635 // (if required). 636 void CollectedHeap::update_capacity_and_used_at_gc() { 637 _capacity_at_last_gc = capacity(); 638 _used_at_last_gc = used(); 639 }