1 /* 2 * Copyright (c) 2001, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP 27 28 #include "gc/shared/gcCause.hpp" 29 #include "gc/shared/gcWhen.hpp" 30 #include "gc/shared/verifyOption.hpp" 31 #include "memory/allocation.hpp" 32 #include "memory/metaspace.hpp" 33 #include "memory/universe.hpp" 34 #include "runtime/handles.hpp" 35 #include "runtime/perfDataTypes.hpp" 36 #include "runtime/safepoint.hpp" 37 #include "services/memoryUsage.hpp" 38 #include "utilities/debug.hpp" 39 #include "utilities/formatBuffer.hpp" 40 #include "utilities/growableArray.hpp" 41 42 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This 43 // is an abstract class: there may be many different kinds of heaps. This 44 // class defines the functions that a heap must implement, and contains 45 // infrastructure common to all heaps. 46 47 class AbstractGangTask; 48 class AdaptiveSizePolicy; 49 class BarrierSet; 50 class GCHeapLog; 51 class GCHeapSummary; 52 class GCTimer; 53 class GCTracer; 54 class GCMemoryManager; 55 class MemoryPool; 56 class MetaspaceSummary; 57 class ReservedHeapSpace; 58 class SoftRefPolicy; 59 class Thread; 60 class ThreadClosure; 61 class VirtualSpaceSummary; 62 class WorkGang; 63 class nmethod; 64 65 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> { 66 public: 67 virtual ~ParallelObjectIteratorImpl() {} 68 virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0; 69 }; 70 71 // User facing parallel object iterator. This is a StackObj, which ensures that 72 // the _impl is allocated and deleted in the scope of this object. This ensures 73 // the life cycle of the implementation is as required by ThreadsListHandle, 74 // which is sometimes used by the root iterators. 75 class ParallelObjectIterator : public StackObj { 76 ParallelObjectIteratorImpl* _impl; 77 78 public: 79 ParallelObjectIterator(uint thread_num); 80 ~ParallelObjectIterator(); 81 void object_iterate(ObjectClosure* cl, uint worker_id); 82 }; 83 84 // 85 // CollectedHeap 86 // GenCollectedHeap 87 // SerialHeap 88 // G1CollectedHeap 89 // ParallelScavengeHeap 90 // ShenandoahHeap 91 // ZCollectedHeap 92 // 93 class CollectedHeap : public CHeapObj<mtGC> { 94 friend class VMStructs; 95 friend class JVMCIVMStructs; 96 friend class IsGCActiveMark; // Block structured external access to _is_gc_active 97 friend class MemAllocator; 98 friend class ParallelObjectIterator; 99 100 private: 101 GCHeapLog* _gc_heap_log; 102 103 // Historic gc information 104 size_t _capacity_at_last_gc; 105 size_t _used_at_last_gc; 106 107 protected: 108 // Not used by all GCs 109 MemRegion _reserved; 110 111 bool _is_gc_active; 112 113 // Used for filler objects (static, but initialized in ctor). 114 static size_t _filler_array_max_size; 115 116 // Last time the whole heap has been examined in support of RMI 117 // MaxObjectInspectionAge. 118 // This timestamp must be monotonically non-decreasing to avoid 119 // time-warp warnings. 120 jlong _last_whole_heap_examined_time_ns; 121 122 unsigned int _total_collections; // ... started 123 unsigned int _total_full_collections; // ... started 124 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;) 125 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;) 126 127 // Reason for current garbage collection. Should be set to 128 // a value reflecting no collection between collections. 129 GCCause::Cause _gc_cause; 130 GCCause::Cause _gc_lastcause; 131 PerfStringVariable* _perf_gc_cause; 132 PerfStringVariable* _perf_gc_lastcause; 133 134 // Constructor 135 CollectedHeap(); 136 137 // Create a new tlab. All TLAB allocations must go through this. 138 // To allow more flexible TLAB allocations min_size specifies 139 // the minimum size needed, while requested_size is the requested 140 // size based on ergonomics. The actually allocated size will be 141 // returned in actual_size. 142 virtual HeapWord* allocate_new_tlab(size_t min_size, 143 size_t requested_size, 144 size_t* actual_size); 145 146 // Reinitialize tlabs before resuming mutators. 147 virtual void resize_all_tlabs(); 148 149 // Raw memory allocation facilities 150 // The obj and array allocate methods are covers for these methods. 151 // mem_allocate() should never be 152 // called to allocate TLABs, only individual objects. 153 virtual HeapWord* mem_allocate(size_t size, 154 bool* gc_overhead_limit_was_exceeded) = 0; 155 156 // Filler object utilities. 157 static inline size_t filler_array_min_size(); 158 159 DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);) 160 DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);) 161 162 // Fill with a single array; caller must ensure filler_array_min_size() <= 163 // words <= filler_array_max_size(). 164 static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true); 165 166 // Fill with a single object (either an int array or a java.lang.Object). 167 static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true); 168 169 virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer); 170 171 // Verification functions 172 debug_only(static void check_for_valid_allocation_state();) 173 174 public: 175 enum Name { 176 None, 177 Serial, 178 Parallel, 179 G1, 180 Epsilon, 181 Z, 182 Shenandoah 183 }; 184 185 protected: 186 // Get a pointer to the derived heap object. Used to implement 187 // derived class heap() functions rather than being called directly. 188 template<typename T> 189 static T* named_heap(Name kind) { 190 CollectedHeap* heap = Universe::heap(); 191 assert(heap != NULL, "Uninitialized heap"); 192 assert(kind == heap->kind(), "Heap kind %u should be %u", 193 static_cast<uint>(heap->kind()), static_cast<uint>(kind)); 194 return static_cast<T*>(heap); 195 } 196 197 public: 198 199 static inline size_t filler_array_max_size() { 200 return _filler_array_max_size; 201 } 202 203 virtual Name kind() const = 0; 204 205 virtual const char* name() const = 0; 206 207 /** 208 * Returns JNI error code JNI_ENOMEM if memory could not be allocated, 209 * and JNI_OK on success. 210 */ 211 virtual jint initialize() = 0; 212 213 // In many heaps, there will be a need to perform some initialization activities 214 // after the Universe is fully formed, but before general heap allocation is allowed. 215 // This is the correct place to place such initialization methods. 216 virtual void post_initialize(); 217 218 // Stop any onging concurrent work and prepare for exit. 219 virtual void stop() {} 220 221 // Stop and resume concurrent GC threads interfering with safepoint operations 222 virtual void safepoint_synchronize_begin() {} 223 virtual void safepoint_synchronize_end() {} 224 225 void initialize_reserved_region(const ReservedHeapSpace& rs); 226 227 virtual size_t capacity() const = 0; 228 virtual size_t used() const = 0; 229 230 // Returns unused capacity. 231 virtual size_t unused() const; 232 233 // Historic gc information 234 size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; } 235 size_t used_at_last_gc() const { return _used_at_last_gc; } 236 void update_capacity_and_used_at_gc(); 237 238 // Return "true" if the part of the heap that allocates Java 239 // objects has reached the maximal committed limit that it can 240 // reach, without a garbage collection. 241 virtual bool is_maximal_no_gc() const = 0; 242 243 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of 244 // memory that the vm could make available for storing 'normal' java objects. 245 // This is based on the reserved address space, but should not include space 246 // that the vm uses internally for bookkeeping or temporary storage 247 // (e.g., in the case of the young gen, one of the survivor 248 // spaces). 249 virtual size_t max_capacity() const = 0; 250 251 // Returns "TRUE" iff "p" points into the committed areas of the heap. 252 // This method can be expensive so avoid using it in performance critical 253 // code. 254 virtual bool is_in(const void* p) const = 0; 255 256 DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); }) 257 258 virtual uint32_t hash_oop(oop obj) const; 259 260 void set_gc_cause(GCCause::Cause v); 261 GCCause::Cause gc_cause() { return _gc_cause; } 262 263 oop obj_allocate(Klass* klass, int size, TRAPS); 264 virtual oop array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS); 265 oop class_allocate(Klass* klass, int size, TRAPS); 266 267 // Utilities for turning raw memory into filler objects. 268 // 269 // min_fill_size() is the smallest region that can be filled. 270 // fill_with_objects() can fill arbitrary-sized regions of the heap using 271 // multiple objects. fill_with_object() is for regions known to be smaller 272 // than the largest array of integers; it uses a single object to fill the 273 // region and has slightly less overhead. 274 static size_t min_fill_size() { 275 return size_t(align_object_size(oopDesc::header_size())); 276 } 277 278 static void fill_with_objects(HeapWord* start, size_t words, bool zap = true); 279 280 static void fill_with_object(HeapWord* start, size_t words, bool zap = true); 281 static void fill_with_object(MemRegion region, bool zap = true) { 282 fill_with_object(region.start(), region.word_size(), zap); 283 } 284 static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) { 285 fill_with_object(start, pointer_delta(end, start), zap); 286 } 287 288 virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap); 289 virtual size_t min_dummy_object_size() const; 290 size_t tlab_alloc_reserve() const; 291 292 // Some heaps may offer a contiguous region for shared non-blocking 293 // allocation, via inlined code (by exporting the address of the top and 294 // end fields defining the extent of the contiguous allocation region.) 295 296 // This function returns "true" iff the heap supports this kind of 297 // allocation. (Default is "no".) 298 virtual bool supports_inline_contig_alloc() const { 299 return false; 300 } 301 // These functions return the addresses of the fields that define the 302 // boundaries of the contiguous allocation area. (These fields should be 303 // physically near to one another.) 304 virtual HeapWord* volatile* top_addr() const { 305 guarantee(false, "inline contiguous allocation not supported"); 306 return NULL; 307 } 308 virtual HeapWord** end_addr() const { 309 guarantee(false, "inline contiguous allocation not supported"); 310 return NULL; 311 } 312 313 // Some heaps may be in an unparseable state at certain times between 314 // collections. This may be necessary for efficient implementation of 315 // certain allocation-related activities. Calling this function before 316 // attempting to parse a heap ensures that the heap is in a parsable 317 // state (provided other concurrent activity does not introduce 318 // unparsability). It is normally expected, therefore, that this 319 // method is invoked with the world stopped. 320 // NOTE: if you override this method, make sure you call 321 // super::ensure_parsability so that the non-generational 322 // part of the work gets done. See implementation of 323 // CollectedHeap::ensure_parsability and, for instance, 324 // that of GenCollectedHeap::ensure_parsability(). 325 // The argument "retire_tlabs" controls whether existing TLABs 326 // are merely filled or also retired, thus preventing further 327 // allocation from them and necessitating allocation of new TLABs. 328 virtual void ensure_parsability(bool retire_tlabs); 329 330 // The amount of space available for thread-local allocation buffers. 331 virtual size_t tlab_capacity(Thread *thr) const = 0; 332 333 // The amount of used space for thread-local allocation buffers for the given thread. 334 virtual size_t tlab_used(Thread *thr) const = 0; 335 336 virtual size_t max_tlab_size() const; 337 338 // An estimate of the maximum allocation that could be performed 339 // for thread-local allocation buffers without triggering any 340 // collection or expansion activity. 341 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const { 342 guarantee(false, "thread-local allocation buffers not supported"); 343 return 0; 344 } 345 346 // If a GC uses a stack watermark barrier, the stack processing is lazy, concurrent, 347 // incremental and cooperative. In order for that to work well, mechanisms that stop 348 // another thread might want to ensure its roots are in a sane state. 349 virtual bool uses_stack_watermark_barrier() const { return false; } 350 351 // Perform a collection of the heap; intended for use in implementing 352 // "System.gc". This probably implies as full a collection as the 353 // "CollectedHeap" supports. 354 virtual void collect(GCCause::Cause cause) = 0; 355 356 // Perform a full collection 357 virtual void do_full_collection(bool clear_all_soft_refs) = 0; 358 359 // This interface assumes that it's being called by the 360 // vm thread. It collects the heap assuming that the 361 // heap lock is already held and that we are executing in 362 // the context of the vm thread. 363 virtual void collect_as_vm_thread(GCCause::Cause cause); 364 365 virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 366 size_t size, 367 Metaspace::MetadataType mdtype); 368 369 // Returns "true" iff there is a stop-world GC in progress. (I assume 370 // that it should answer "false" for the concurrent part of a concurrent 371 // collector -- dld). 372 bool is_gc_active() const { return _is_gc_active; } 373 374 // Total number of GC collections (started) 375 unsigned int total_collections() const { return _total_collections; } 376 unsigned int total_full_collections() const { return _total_full_collections;} 377 378 // Increment total number of GC collections (started) 379 void increment_total_collections(bool full = false) { 380 _total_collections++; 381 if (full) { 382 increment_total_full_collections(); 383 } 384 } 385 386 void increment_total_full_collections() { _total_full_collections++; } 387 388 // Return the SoftRefPolicy for the heap; 389 virtual SoftRefPolicy* soft_ref_policy() = 0; 390 391 virtual MemoryUsage memory_usage(); 392 virtual GrowableArray<GCMemoryManager*> memory_managers() = 0; 393 virtual GrowableArray<MemoryPool*> memory_pools() = 0; 394 395 // Iterate over all objects, calling "cl.do_object" on each. 396 virtual void object_iterate(ObjectClosure* cl) = 0; 397 398 protected: 399 virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) { 400 return NULL; 401 } 402 403 public: 404 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 405 virtual void keep_alive(oop obj) {} 406 407 // Perform any cleanup actions necessary before allowing a verification. 408 virtual void prepare_for_verify() = 0; 409 410 // Returns the longest time (in ms) that has elapsed since the last 411 // time that the whole heap has been examined by a garbage collection. 412 jlong millis_since_last_whole_heap_examined(); 413 // GC should call this when the next whole heap analysis has completed to 414 // satisfy above requirement. 415 void record_whole_heap_examined_timestamp(); 416 417 private: 418 // Generate any dumps preceding or following a full gc 419 void full_gc_dump(GCTimer* timer, bool before); 420 421 virtual void initialize_serviceability() = 0; 422 423 public: 424 void pre_full_gc_dump(GCTimer* timer); 425 void post_full_gc_dump(GCTimer* timer); 426 427 virtual VirtualSpaceSummary create_heap_space_summary(); 428 GCHeapSummary create_heap_summary(); 429 430 MetaspaceSummary create_metaspace_summary(); 431 432 // Print heap information on the given outputStream. 433 virtual void print_on(outputStream* st) const = 0; 434 // The default behavior is to call print_on() on tty. 435 virtual void print() const; 436 437 // Print more detailed heap information on the given 438 // outputStream. The default behavior is to call print_on(). It is 439 // up to each subclass to override it and add any additional output 440 // it needs. 441 virtual void print_extended_on(outputStream* st) const { 442 print_on(st); 443 } 444 445 virtual void print_on_error(outputStream* st) const; 446 447 // Used to print information about locations in the hs_err file. 448 virtual bool print_location(outputStream* st, void* addr) const = 0; 449 450 // Iterator for all GC threads (other than VM thread) 451 virtual void gc_threads_do(ThreadClosure* tc) const = 0; 452 453 // Print any relevant tracing info that flags imply. 454 // Default implementation does nothing. 455 virtual void print_tracing_info() const = 0; 456 457 void print_heap_before_gc(); 458 void print_heap_after_gc(); 459 460 // Registering and unregistering an nmethod (compiled code) with the heap. 461 virtual void register_nmethod(nmethod* nm) = 0; 462 virtual void unregister_nmethod(nmethod* nm) = 0; 463 // Callback for when nmethod is about to be deleted. 464 virtual void flush_nmethod(nmethod* nm) = 0; 465 virtual void verify_nmethod(nmethod* nm) = 0; 466 467 void trace_heap_before_gc(const GCTracer* gc_tracer); 468 void trace_heap_after_gc(const GCTracer* gc_tracer); 469 470 // Heap verification 471 virtual void verify(VerifyOption option) = 0; 472 473 // Return true if concurrent gc control via WhiteBox is supported by 474 // this collector. The default implementation returns false. 475 virtual bool supports_concurrent_gc_breakpoints() const; 476 477 // Provides a thread pool to SafepointSynchronize to use 478 // for parallel safepoint cleanup. 479 // GCs that use a GC worker thread pool may want to share 480 // it for use during safepoint cleanup. This is only possible 481 // if the GC can pause and resume concurrent work (e.g. G1 482 // concurrent marking) for an intermittent non-GC safepoint. 483 // If this method returns NULL, SafepointSynchronize will 484 // perform cleanup tasks serially in the VMThread. 485 virtual WorkGang* safepoint_workers() { return NULL; } 486 487 // Support for object pinning. This is used by JNI Get*Critical() 488 // and Release*Critical() family of functions. If supported, the GC 489 // must guarantee that pinned objects never move. 490 virtual bool supports_object_pinning() const; 491 virtual oop pin_object(JavaThread* thread, oop obj); 492 virtual void unpin_object(JavaThread* thread, oop obj); 493 494 // Is the given object inside a CDS archive area? 495 virtual bool is_archived_object(oop object) const; 496 497 virtual bool is_oop(oop object) const; 498 // Non product verification and debugging. 499 #ifndef PRODUCT 500 // Support for PromotionFailureALot. Return true if it's time to cause a 501 // promotion failure. The no-argument version uses 502 // this->_promotion_failure_alot_count as the counter. 503 bool promotion_should_fail(volatile size_t* count); 504 bool promotion_should_fail(); 505 506 // Reset the PromotionFailureALot counters. Should be called at the end of a 507 // GC in which promotion failure occurred. 508 void reset_promotion_should_fail(volatile size_t* count); 509 void reset_promotion_should_fail(); 510 #endif // #ifndef PRODUCT 511 }; 512 513 // Class to set and reset the GC cause for a CollectedHeap. 514 515 class GCCauseSetter : StackObj { 516 CollectedHeap* _heap; 517 GCCause::Cause _previous_cause; 518 public: 519 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) { 520 _heap = heap; 521 _previous_cause = _heap->gc_cause(); 522 _heap->set_gc_cause(cause); 523 } 524 525 ~GCCauseSetter() { 526 _heap->set_gc_cause(_previous_cause); 527 } 528 }; 529 530 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP