1 /*
  2  * Copyright (c) 2001, 2022, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/gcCause.hpp"
 29 #include "gc/shared/gcWhen.hpp"
 30 #include "gc/shared/verifyOption.hpp"
 31 #include "memory/allocation.hpp"
 32 #include "memory/metaspace.hpp"
 33 #include "memory/universe.hpp"
 34 #include "runtime/handles.hpp"
 35 #include "runtime/perfDataTypes.hpp"
 36 #include "runtime/safepoint.hpp"
 37 #include "services/memoryUsage.hpp"
 38 #include "utilities/debug.hpp"
 39 #include "utilities/formatBuffer.hpp"
 40 #include "utilities/growableArray.hpp"
 41 
 42 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
 43 // is an abstract class: there may be many different kinds of heaps.  This
 44 // class defines the functions that a heap must implement, and contains
 45 // infrastructure common to all heaps.
 46 
 47 class AbstractGangTask;
 48 class AdaptiveSizePolicy;
 49 class BarrierSet;
 50 class GCHeapLog;
 51 class GCHeapSummary;
 52 class GCTimer;
 53 class GCTracer;
 54 class GCMemoryManager;
 55 class MemoryPool;
 56 class MetaspaceSummary;
 57 class ReservedHeapSpace;
 58 class SoftRefPolicy;
 59 class Thread;
 60 class ThreadClosure;
 61 class VirtualSpaceSummary;
 62 class WorkGang;
 63 class nmethod;
 64 
 65 class ParallelObjectIteratorImpl : public CHeapObj<mtGC> {
 66 public:
 67   virtual ~ParallelObjectIteratorImpl() {}
 68   virtual void object_iterate(ObjectClosure* cl, uint worker_id) = 0;
 69 };
 70 
 71 // User facing parallel object iterator. This is a StackObj, which ensures that
 72 // the _impl is allocated and deleted in the scope of this object. This ensures
 73 // the life cycle of the implementation is as required by ThreadsListHandle,
 74 // which is sometimes used by the root iterators.
 75 class ParallelObjectIterator : public StackObj {
 76   ParallelObjectIteratorImpl* _impl;
 77 
 78 public:
 79   ParallelObjectIterator(uint thread_num);
 80   ~ParallelObjectIterator();
 81   void object_iterate(ObjectClosure* cl, uint worker_id);
 82 };
 83 
 84 //
 85 // CollectedHeap
 86 //   GenCollectedHeap
 87 //     SerialHeap
 88 //   G1CollectedHeap
 89 //   ParallelScavengeHeap
 90 //   ShenandoahHeap
 91 //   ZCollectedHeap
 92 //
 93 class CollectedHeap : public CHeapObj<mtGC> {
 94   friend class VMStructs;
 95   friend class JVMCIVMStructs;
 96   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
 97   friend class MemAllocator;
 98   friend class ParallelObjectIterator;
 99 
100  private:
101   GCHeapLog* _gc_heap_log;
102 
103   // Historic gc information
104   size_t _capacity_at_last_gc;
105   size_t _used_at_last_gc;
106 
107  protected:
108   // Not used by all GCs
109   MemRegion _reserved;
110 
111   bool _is_gc_active;
112 
113   // Used for filler objects (static, but initialized in ctor).
114   static size_t _filler_array_max_size;
115 
116   // Last time the whole heap has been examined in support of RMI
117   // MaxObjectInspectionAge.
118   // This timestamp must be monotonically non-decreasing to avoid
119   // time-warp warnings.
120   jlong _last_whole_heap_examined_time_ns;
121 
122   unsigned int _total_collections;          // ... started
123   unsigned int _total_full_collections;     // ... started
124   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
125   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
126 
127   // Reason for current garbage collection.  Should be set to
128   // a value reflecting no collection between collections.
129   GCCause::Cause _gc_cause;
130   GCCause::Cause _gc_lastcause;
131   PerfStringVariable* _perf_gc_cause;
132   PerfStringVariable* _perf_gc_lastcause;
133 
134   // Constructor
135   CollectedHeap();
136 
137   // Create a new tlab. All TLAB allocations must go through this.
138   // To allow more flexible TLAB allocations min_size specifies
139   // the minimum size needed, while requested_size is the requested
140   // size based on ergonomics. The actually allocated size will be
141   // returned in actual_size.
142   virtual HeapWord* allocate_new_tlab(size_t min_size,
143                                       size_t requested_size,
144                                       size_t* actual_size);
145 
146   // Reinitialize tlabs before resuming mutators.
147   virtual void resize_all_tlabs();
148 
149   // Raw memory allocation facilities
150   // The obj and array allocate methods are covers for these methods.
151   // mem_allocate() should never be
152   // called to allocate TLABs, only individual objects.
153   virtual HeapWord* mem_allocate(size_t size,
154                                  bool* gc_overhead_limit_was_exceeded) = 0;
155 
156   // Filler object utilities.
157   static inline size_t filler_array_min_size();
158 
159   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
160   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
161 
162   // Fill with a single array; caller must ensure filler_array_min_size() <=
163   // words <= filler_array_max_size().
164   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
165 
166   // Fill with a single object (either an int array or a java.lang.Object).
167   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
168 
169   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
170 
171   // Verification functions
172   debug_only(static void check_for_valid_allocation_state();)
173 
174  public:
175   enum Name {
176     None,
177     Serial,
178     Parallel,
179     G1,
180     Epsilon,
181     Z,
182     Shenandoah
183   };
184 
185  protected:
186   // Get a pointer to the derived heap object.  Used to implement
187   // derived class heap() functions rather than being called directly.
188   template<typename T>
189   static T* named_heap(Name kind) {
190     CollectedHeap* heap = Universe::heap();
191     assert(heap != NULL, "Uninitialized heap");
192     assert(kind == heap->kind(), "Heap kind %u should be %u",
193            static_cast<uint>(heap->kind()), static_cast<uint>(kind));
194     return static_cast<T*>(heap);
195   }
196 
197  public:
198 
199   static inline size_t filler_array_max_size() {
200     return _filler_array_max_size;
201   }
202 
203   virtual Name kind() const = 0;
204 
205   virtual const char* name() const = 0;
206 
207   /**
208    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
209    * and JNI_OK on success.
210    */
211   virtual jint initialize() = 0;
212 
213   // In many heaps, there will be a need to perform some initialization activities
214   // after the Universe is fully formed, but before general heap allocation is allowed.
215   // This is the correct place to place such initialization methods.
216   virtual void post_initialize();
217 
218   // Stop any onging concurrent work and prepare for exit.
219   virtual void stop() {}
220 
221   // Stop and resume concurrent GC threads interfering with safepoint operations
222   virtual void safepoint_synchronize_begin() {}
223   virtual void safepoint_synchronize_end() {}
224 
225   void initialize_reserved_region(const ReservedHeapSpace& rs);
226 
227   virtual size_t capacity() const = 0;
228   virtual size_t used() const = 0;
229 
230   // Returns unused capacity.
231   virtual size_t unused() const;
232 
233   // Historic gc information
234   size_t free_at_last_gc() const { return _capacity_at_last_gc - _used_at_last_gc; }
235   size_t used_at_last_gc() const { return _used_at_last_gc; }
236   void update_capacity_and_used_at_gc();
237 
238   // Return "true" if the part of the heap that allocates Java
239   // objects has reached the maximal committed limit that it can
240   // reach, without a garbage collection.
241   virtual bool is_maximal_no_gc() const = 0;
242 
243   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
244   // memory that the vm could make available for storing 'normal' java objects.
245   // This is based on the reserved address space, but should not include space
246   // that the vm uses internally for bookkeeping or temporary storage
247   // (e.g., in the case of the young gen, one of the survivor
248   // spaces).
249   virtual size_t max_capacity() const = 0;
250 
251   // Returns "TRUE" iff "p" points into the committed areas of the heap.
252   // This method can be expensive so avoid using it in performance critical
253   // code.
254   virtual bool is_in(const void* p) const = 0;
255 
256   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
257 
258   virtual uint32_t hash_oop(oop obj) const;
259 
260   void set_gc_cause(GCCause::Cause v);
261   GCCause::Cause gc_cause() { return _gc_cause; }
262 
263   oop obj_allocate(Klass* klass, int size, TRAPS);
264   virtual oop array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS);
265   oop class_allocate(Klass* klass, int size, TRAPS);
266 
267   // Utilities for turning raw memory into filler objects.
268   //
269   // min_fill_size() is the smallest region that can be filled.
270   // fill_with_objects() can fill arbitrary-sized regions of the heap using
271   // multiple objects.  fill_with_object() is for regions known to be smaller
272   // than the largest array of integers; it uses a single object to fill the
273   // region and has slightly less overhead.
274   static size_t min_fill_size() {
275     return size_t(align_object_size(oopDesc::header_size()));
276   }
277 
278   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
279 
280   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
281   static void fill_with_object(MemRegion region, bool zap = true) {
282     fill_with_object(region.start(), region.word_size(), zap);
283   }
284   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
285     fill_with_object(start, pointer_delta(end, start), zap);
286   }
287 
288   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
289   virtual size_t min_dummy_object_size() const;
290   size_t tlab_alloc_reserve() const;
291 
292   // Some heaps may offer a contiguous region for shared non-blocking
293   // allocation, via inlined code (by exporting the address of the top and
294   // end fields defining the extent of the contiguous allocation region.)
295 
296   // This function returns "true" iff the heap supports this kind of
297   // allocation.  (Default is "no".)
298   virtual bool supports_inline_contig_alloc() const {
299     return false;
300   }
301   // These functions return the addresses of the fields that define the
302   // boundaries of the contiguous allocation area.  (These fields should be
303   // physically near to one another.)
304   virtual HeapWord* volatile* top_addr() const {
305     guarantee(false, "inline contiguous allocation not supported");
306     return NULL;
307   }
308   virtual HeapWord** end_addr() const {
309     guarantee(false, "inline contiguous allocation not supported");
310     return NULL;
311   }
312 
313   // Some heaps may be in an unparseable state at certain times between
314   // collections. This may be necessary for efficient implementation of
315   // certain allocation-related activities. Calling this function before
316   // attempting to parse a heap ensures that the heap is in a parsable
317   // state (provided other concurrent activity does not introduce
318   // unparsability). It is normally expected, therefore, that this
319   // method is invoked with the world stopped.
320   // NOTE: if you override this method, make sure you call
321   // super::ensure_parsability so that the non-generational
322   // part of the work gets done. See implementation of
323   // CollectedHeap::ensure_parsability and, for instance,
324   // that of GenCollectedHeap::ensure_parsability().
325   // The argument "retire_tlabs" controls whether existing TLABs
326   // are merely filled or also retired, thus preventing further
327   // allocation from them and necessitating allocation of new TLABs.
328   virtual void ensure_parsability(bool retire_tlabs);
329 
330   // The amount of space available for thread-local allocation buffers.
331   virtual size_t tlab_capacity(Thread *thr) const = 0;
332 
333   // The amount of used space for thread-local allocation buffers for the given thread.
334   virtual size_t tlab_used(Thread *thr) const = 0;
335 
336   virtual size_t max_tlab_size() const;
337 
338   // An estimate of the maximum allocation that could be performed
339   // for thread-local allocation buffers without triggering any
340   // collection or expansion activity.
341   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
342     guarantee(false, "thread-local allocation buffers not supported");
343     return 0;
344   }
345 
346   // If a GC uses a stack watermark barrier, the stack processing is lazy, concurrent,
347   // incremental and cooperative. In order for that to work well, mechanisms that stop
348   // another thread might want to ensure its roots are in a sane state.
349   virtual bool uses_stack_watermark_barrier() const { return false; }
350 
351   // Perform a collection of the heap; intended for use in implementing
352   // "System.gc".  This probably implies as full a collection as the
353   // "CollectedHeap" supports.
354   virtual void collect(GCCause::Cause cause) = 0;
355 
356   // Perform a full collection
357   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
358 
359   // This interface assumes that it's being called by the
360   // vm thread. It collects the heap assuming that the
361   // heap lock is already held and that we are executing in
362   // the context of the vm thread.
363   virtual void collect_as_vm_thread(GCCause::Cause cause);
364 
365   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
366                                                        size_t size,
367                                                        Metaspace::MetadataType mdtype);
368 
369   // Returns "true" iff there is a stop-world GC in progress.  (I assume
370   // that it should answer "false" for the concurrent part of a concurrent
371   // collector -- dld).
372   bool is_gc_active() const { return _is_gc_active; }
373 
374   // Total number of GC collections (started)
375   unsigned int total_collections() const { return _total_collections; }
376   unsigned int total_full_collections() const { return _total_full_collections;}
377 
378   // Increment total number of GC collections (started)
379   void increment_total_collections(bool full = false) {
380     _total_collections++;
381     if (full) {
382       increment_total_full_collections();
383     }
384   }
385 
386   void increment_total_full_collections() { _total_full_collections++; }
387 
388   // Return the SoftRefPolicy for the heap;
389   virtual SoftRefPolicy* soft_ref_policy() = 0;
390 
391   virtual MemoryUsage memory_usage();
392   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
393   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
394 
395   // Iterate over all objects, calling "cl.do_object" on each.
396   virtual void object_iterate(ObjectClosure* cl) = 0;
397 
398  protected:
399   virtual ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) {
400     return NULL;
401   }
402 
403  public:
404   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
405   virtual void keep_alive(oop obj) {}
406 
407   // Perform any cleanup actions necessary before allowing a verification.
408   virtual void prepare_for_verify() = 0;
409 
410   // Returns the longest time (in ms) that has elapsed since the last
411   // time that the whole heap has been examined by a garbage collection.
412   jlong millis_since_last_whole_heap_examined();
413   // GC should call this when the next whole heap analysis has completed to
414   // satisfy above requirement.
415   void record_whole_heap_examined_timestamp();
416 
417  private:
418   // Generate any dumps preceding or following a full gc
419   void full_gc_dump(GCTimer* timer, bool before);
420 
421   virtual void initialize_serviceability() = 0;
422 
423  public:
424   void pre_full_gc_dump(GCTimer* timer);
425   void post_full_gc_dump(GCTimer* timer);
426 
427   virtual VirtualSpaceSummary create_heap_space_summary();
428   GCHeapSummary create_heap_summary();
429 
430   MetaspaceSummary create_metaspace_summary();
431 
432   // Print heap information on the given outputStream.
433   virtual void print_on(outputStream* st) const = 0;
434   // The default behavior is to call print_on() on tty.
435   virtual void print() const;
436 
437   // Print more detailed heap information on the given
438   // outputStream. The default behavior is to call print_on(). It is
439   // up to each subclass to override it and add any additional output
440   // it needs.
441   virtual void print_extended_on(outputStream* st) const {
442     print_on(st);
443   }
444 
445   virtual void print_on_error(outputStream* st) const;
446 
447   // Used to print information about locations in the hs_err file.
448   virtual bool print_location(outputStream* st, void* addr) const = 0;
449 
450   // Iterator for all GC threads (other than VM thread)
451   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
452 
453   // Print any relevant tracing info that flags imply.
454   // Default implementation does nothing.
455   virtual void print_tracing_info() const = 0;
456 
457   void print_heap_before_gc();
458   void print_heap_after_gc();
459 
460   // Registering and unregistering an nmethod (compiled code) with the heap.
461   virtual void register_nmethod(nmethod* nm) = 0;
462   virtual void unregister_nmethod(nmethod* nm) = 0;
463   // Callback for when nmethod is about to be deleted.
464   virtual void flush_nmethod(nmethod* nm) = 0;
465   virtual void verify_nmethod(nmethod* nm) = 0;
466 
467   void trace_heap_before_gc(const GCTracer* gc_tracer);
468   void trace_heap_after_gc(const GCTracer* gc_tracer);
469 
470   // Heap verification
471   virtual void verify(VerifyOption option) = 0;
472 
473   // Return true if concurrent gc control via WhiteBox is supported by
474   // this collector.  The default implementation returns false.
475   virtual bool supports_concurrent_gc_breakpoints() const;
476 
477   // Provides a thread pool to SafepointSynchronize to use
478   // for parallel safepoint cleanup.
479   // GCs that use a GC worker thread pool may want to share
480   // it for use during safepoint cleanup. This is only possible
481   // if the GC can pause and resume concurrent work (e.g. G1
482   // concurrent marking) for an intermittent non-GC safepoint.
483   // If this method returns NULL, SafepointSynchronize will
484   // perform cleanup tasks serially in the VMThread.
485   virtual WorkGang* safepoint_workers() { return NULL; }
486 
487   // Support for object pinning. This is used by JNI Get*Critical()
488   // and Release*Critical() family of functions. If supported, the GC
489   // must guarantee that pinned objects never move.
490   virtual bool supports_object_pinning() const;
491   virtual oop pin_object(JavaThread* thread, oop obj);
492   virtual void unpin_object(JavaThread* thread, oop obj);
493 
494   // Is the given object inside a CDS archive area?
495   virtual bool is_archived_object(oop object) const;
496 
497   virtual bool is_oop(oop object) const;
498   // Non product verification and debugging.
499 #ifndef PRODUCT
500   // Support for PromotionFailureALot.  Return true if it's time to cause a
501   // promotion failure.  The no-argument version uses
502   // this->_promotion_failure_alot_count as the counter.
503   bool promotion_should_fail(volatile size_t* count);
504   bool promotion_should_fail();
505 
506   // Reset the PromotionFailureALot counters.  Should be called at the end of a
507   // GC in which promotion failure occurred.
508   void reset_promotion_should_fail(volatile size_t* count);
509   void reset_promotion_should_fail();
510 #endif  // #ifndef PRODUCT
511 };
512 
513 // Class to set and reset the GC cause for a CollectedHeap.
514 
515 class GCCauseSetter : StackObj {
516   CollectedHeap* _heap;
517   GCCause::Cause _previous_cause;
518  public:
519   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
520     _heap = heap;
521     _previous_cause = _heap->gc_cause();
522     _heap->set_gc_cause(cause);
523   }
524 
525   ~GCCauseSetter() {
526     _heap->set_gc_cause(_previous_cause);
527   }
528 };
529 
530 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP