1 /*
   2  * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/serial/defNewGeneration.hpp"
  34 #include "gc/shared/adaptiveSizePolicy.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "gc/shared/cardTableRS.hpp"
  37 #include "gc/shared/collectedHeap.inline.hpp"
  38 #include "gc/shared/collectorCounters.hpp"
  39 #include "gc/shared/gcId.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "gc/shared/gcPolicyCounters.hpp"
  42 #include "gc/shared/gcTrace.hpp"
  43 #include "gc/shared/gcTraceTime.inline.hpp"
  44 #include "gc/shared/genArguments.hpp"
  45 #include "gc/shared/gcVMOperations.hpp"
  46 #include "gc/shared/genCollectedHeap.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/generationSpec.hpp"
  49 #include "gc/shared/gcInitLogger.hpp"
  50 #include "gc/shared/locationPrinter.inline.hpp"
  51 #include "gc/shared/oopStorage.inline.hpp"
  52 #include "gc/shared/oopStorageSet.inline.hpp"
  53 #include "gc/shared/oopStorageParState.inline.hpp"
  54 #include "gc/shared/scavengableNMethods.hpp"
  55 #include "gc/shared/space.hpp"
  56 #include "gc/shared/strongRootsScope.hpp"
  57 #include "gc/shared/weakProcessor.hpp"
  58 #include "gc/shared/workgroup.hpp"
  59 #include "memory/iterator.hpp"
  60 #include "memory/metaspaceCounters.hpp"
  61 #include "memory/metaspaceUtils.hpp"
  62 #include "memory/resourceArea.hpp"
  63 #include "memory/universe.hpp"
  64 #include "oops/oop.inline.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/handles.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/java.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "services/memoryService.hpp"
  71 #include "utilities/autoRestore.hpp"
  72 #include "utilities/debug.hpp"
  73 #include "utilities/formatBuffer.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/stack.inline.hpp"
  76 #include "utilities/vmError.hpp"
  77 #if INCLUDE_JVMCI
  78 #include "jvmci/jvmci.hpp"
  79 #endif
  80 
  81 GenCollectedHeap::GenCollectedHeap(Generation::Name young,
  82                                    Generation::Name old,
  83                                    const char* policy_counters_name) :
  84   CollectedHeap(),
  85   _young_gen(NULL),
  86   _old_gen(NULL),
  87   _young_gen_spec(new GenerationSpec(young,
  88                                      NewSize,
  89                                      MaxNewSize,
  90                                      GenAlignment)),
  91   _old_gen_spec(new GenerationSpec(old,
  92                                    OldSize,
  93                                    MaxOldSize,
  94                                    GenAlignment)),
  95   _rem_set(NULL),
  96   _soft_ref_gen_policy(),
  97   _size_policy(NULL),
  98   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
  99   _incremental_collection_failed(false),
 100   _full_collections_completed(0),
 101   _young_manager(NULL),
 102   _old_manager(NULL) {
 103 }
 104 
 105 jint GenCollectedHeap::initialize() {
 106   // While there are no constraints in the GC code that HeapWordSize
 107   // be any particular value, there are multiple other areas in the
 108   // system which believe this to be true (e.g. oop->object_size in some
 109   // cases incorrectly returns the size in wordSize units rather than
 110   // HeapWordSize).
 111   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 112 
 113   // Allocate space for the heap.
 114 
 115   ReservedHeapSpace heap_rs = allocate(HeapAlignment);
 116 
 117   if (!heap_rs.is_reserved()) {
 118     vm_shutdown_during_initialization(
 119       "Could not reserve enough space for object heap");
 120     return JNI_ENOMEM;
 121   }
 122 
 123   initialize_reserved_region(heap_rs);
 124 
 125   _rem_set = create_rem_set(heap_rs.region());
 126   _rem_set->initialize();
 127   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 128   bs->initialize();
 129   BarrierSet::set_barrier_set(bs);
 130 
 131   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size());
 132   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 133   ReservedSpace old_rs = heap_rs.last_part(_young_gen_spec->max_size());
 134 
 135   old_rs = old_rs.first_part(_old_gen_spec->max_size());
 136   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 137 
 138   GCInitLogger::print();
 139 
 140   return JNI_OK;
 141 }
 142 
 143 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 144   return new CardTableRS(reserved_region);
 145 }
 146 
 147 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 148                                               size_t init_promo_size,
 149                                               size_t init_survivor_size) {
 150   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 151   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 152                                         init_promo_size,
 153                                         init_survivor_size,
 154                                         max_gc_pause_sec,
 155                                         GCTimeRatio);
 156 }
 157 
 158 ReservedHeapSpace GenCollectedHeap::allocate(size_t alignment) {
 159   // Now figure out the total size.
 160   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 161   assert(alignment % pageSize == 0, "Must be");
 162 
 163   // Check for overflow.
 164   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 165   if (total_reserved < _young_gen_spec->max_size()) {
 166     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 167                                   "the maximum representable size");
 168   }
 169   assert(total_reserved % alignment == 0,
 170          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 171          SIZE_FORMAT, total_reserved, alignment);
 172 
 173   ReservedHeapSpace heap_rs = Universe::reserve_heap(total_reserved, alignment);
 174   size_t used_page_size = heap_rs.page_size();
 175 
 176   os::trace_page_sizes("Heap",
 177                        MinHeapSize,
 178                        total_reserved,
 179                        used_page_size,
 180                        heap_rs.base(),
 181                        heap_rs.size());
 182 
 183   return heap_rs;
 184 }
 185 
 186 class GenIsScavengable : public BoolObjectClosure {
 187 public:
 188   bool do_object_b(oop obj) {
 189     return GenCollectedHeap::heap()->is_in_young(obj);
 190   }
 191 };
 192 
 193 static GenIsScavengable _is_scavengable;
 194 
 195 void GenCollectedHeap::post_initialize() {
 196   CollectedHeap::post_initialize();
 197   ref_processing_init();
 198 
 199   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 200 
 201   initialize_size_policy(def_new_gen->eden()->capacity(),
 202                          _old_gen->capacity(),
 203                          def_new_gen->from()->capacity());
 204 
 205   MarkSweep::initialize();
 206 
 207   ScavengableNMethods::initialize(&_is_scavengable);
 208 }
 209 
 210 void GenCollectedHeap::ref_processing_init() {
 211   _young_gen->ref_processor_init();
 212   _old_gen->ref_processor_init();
 213 }
 214 
 215 PreGenGCValues GenCollectedHeap::get_pre_gc_values() const {
 216   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
 217 
 218   return PreGenGCValues(def_new_gen->used(),
 219                         def_new_gen->capacity(),
 220                         def_new_gen->eden()->used(),
 221                         def_new_gen->eden()->capacity(),
 222                         def_new_gen->from()->used(),
 223                         def_new_gen->from()->capacity(),
 224                         old_gen()->used(),
 225                         old_gen()->capacity());
 226 }
 227 
 228 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 229   return _young_gen_spec;
 230 }
 231 
 232 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 233   return _old_gen_spec;
 234 }
 235 
 236 size_t GenCollectedHeap::capacity() const {
 237   return _young_gen->capacity() + _old_gen->capacity();
 238 }
 239 
 240 size_t GenCollectedHeap::used() const {
 241   return _young_gen->used() + _old_gen->used();
 242 }
 243 
 244 void GenCollectedHeap::save_used_regions() {
 245   _old_gen->save_used_region();
 246   _young_gen->save_used_region();
 247 }
 248 
 249 size_t GenCollectedHeap::max_capacity() const {
 250   return _young_gen->max_capacity() + _old_gen->max_capacity();
 251 }
 252 
 253 // Update the _full_collections_completed counter
 254 // at the end of a stop-world full GC.
 255 unsigned int GenCollectedHeap::update_full_collections_completed() {
 256   assert(_full_collections_completed <= _total_full_collections,
 257          "Can't complete more collections than were started");
 258   _full_collections_completed = _total_full_collections;
 259   return _full_collections_completed;
 260 }
 261 
 262 // Return true if any of the following is true:
 263 // . the allocation won't fit into the current young gen heap
 264 // . gc locker is occupied (jni critical section)
 265 // . heap memory is tight -- the most recent previous collection
 266 //   was a full collection because a partial collection (would
 267 //   have) failed and is likely to fail again
 268 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 269   size_t young_capacity = _young_gen->capacity_before_gc();
 270   return    (word_size > heap_word_size(young_capacity))
 271          || GCLocker::is_active_and_needs_gc()
 272          || incremental_collection_failed();
 273 }
 274 
 275 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 276   HeapWord* result = NULL;
 277   if (_old_gen->should_allocate(size, is_tlab)) {
 278     result = _old_gen->expand_and_allocate(size, is_tlab);
 279   }
 280   if (result == NULL) {
 281     if (_young_gen->should_allocate(size, is_tlab)) {
 282       result = _young_gen->expand_and_allocate(size, is_tlab);
 283     }
 284   }
 285   assert(result == NULL || is_in_reserved(result), "result not in heap");
 286   return result;
 287 }
 288 
 289 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 290                                               bool is_tlab,
 291                                               bool* gc_overhead_limit_was_exceeded) {
 292   // In general gc_overhead_limit_was_exceeded should be false so
 293   // set it so here and reset it to true only if the gc time
 294   // limit is being exceeded as checked below.
 295   *gc_overhead_limit_was_exceeded = false;
 296 
 297   HeapWord* result = NULL;
 298 
 299   // Loop until the allocation is satisfied, or unsatisfied after GC.
 300   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 301 
 302     // First allocation attempt is lock-free.
 303     Generation *young = _young_gen;
 304     assert(young->supports_inline_contig_alloc(),
 305       "Otherwise, must do alloc within heap lock");
 306     if (young->should_allocate(size, is_tlab)) {
 307       result = young->par_allocate(size, is_tlab);
 308       if (result != NULL) {
 309         assert(is_in_reserved(result), "result not in heap");
 310         return result;
 311       }
 312     }
 313     uint gc_count_before;  // Read inside the Heap_lock locked region.
 314     {
 315       MutexLocker ml(Heap_lock);
 316       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 317       // Note that only large objects get a shot at being
 318       // allocated in later generations.
 319       bool first_only = !should_try_older_generation_allocation(size);
 320 
 321       result = attempt_allocation(size, is_tlab, first_only);
 322       if (result != NULL) {
 323         assert(is_in_reserved(result), "result not in heap");
 324         return result;
 325       }
 326 
 327       if (GCLocker::is_active_and_needs_gc()) {
 328         if (is_tlab) {
 329           return NULL;  // Caller will retry allocating individual object.
 330         }
 331         if (!is_maximal_no_gc()) {
 332           // Try and expand heap to satisfy request.
 333           result = expand_heap_and_allocate(size, is_tlab);
 334           // Result could be null if we are out of space.
 335           if (result != NULL) {
 336             return result;
 337           }
 338         }
 339 
 340         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 341           return NULL; // We didn't get to do a GC and we didn't get any memory.
 342         }
 343 
 344         // If this thread is not in a jni critical section, we stall
 345         // the requestor until the critical section has cleared and
 346         // GC allowed. When the critical section clears, a GC is
 347         // initiated by the last thread exiting the critical section; so
 348         // we retry the allocation sequence from the beginning of the loop,
 349         // rather than causing more, now probably unnecessary, GC attempts.
 350         JavaThread* jthr = JavaThread::current();
 351         if (!jthr->in_critical()) {
 352           MutexUnlocker mul(Heap_lock);
 353           // Wait for JNI critical section to be exited
 354           GCLocker::stall_until_clear();
 355           gclocker_stalled_count += 1;
 356           continue;
 357         } else {
 358           if (CheckJNICalls) {
 359             fatal("Possible deadlock due to allocating while"
 360                   " in jni critical section");
 361           }
 362           return NULL;
 363         }
 364       }
 365 
 366       // Read the gc count while the heap lock is held.
 367       gc_count_before = total_collections();
 368     }
 369 
 370     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 371     VMThread::execute(&op);
 372     if (op.prologue_succeeded()) {
 373       result = op.result();
 374       if (op.gc_locked()) {
 375          assert(result == NULL, "must be NULL if gc_locked() is true");
 376          continue;  // Retry and/or stall as necessary.
 377       }
 378 
 379       // Allocation has failed and a collection
 380       // has been done.  If the gc time limit was exceeded the
 381       // this time, return NULL so that an out-of-memory
 382       // will be thrown.  Clear gc_overhead_limit_exceeded
 383       // so that the overhead exceeded does not persist.
 384 
 385       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 386       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 387 
 388       if (limit_exceeded && softrefs_clear) {
 389         *gc_overhead_limit_was_exceeded = true;
 390         size_policy()->set_gc_overhead_limit_exceeded(false);
 391         if (op.result() != NULL) {
 392           CollectedHeap::fill_with_object(op.result(), size);
 393         }
 394         return NULL;
 395       }
 396       assert(result == NULL || is_in_reserved(result),
 397              "result not in heap");
 398       return result;
 399     }
 400 
 401     // Give a warning if we seem to be looping forever.
 402     if ((QueuedAllocationWarningCount > 0) &&
 403         (try_count % QueuedAllocationWarningCount == 0)) {
 404           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 405                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 406     }
 407   }
 408 }
 409 
 410 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 411                                                bool is_tlab,
 412                                                bool first_only) {
 413   HeapWord* res = NULL;
 414 
 415   if (_young_gen->should_allocate(size, is_tlab)) {
 416     res = _young_gen->allocate(size, is_tlab);
 417     if (res != NULL || first_only) {
 418       return res;
 419     }
 420   }
 421 
 422   if (_old_gen->should_allocate(size, is_tlab)) {
 423     res = _old_gen->allocate(size, is_tlab);
 424   }
 425 
 426   return res;
 427 }
 428 
 429 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 430                                          bool* gc_overhead_limit_was_exceeded) {
 431   return mem_allocate_work(size,
 432                            false /* is_tlab */,
 433                            gc_overhead_limit_was_exceeded);
 434 }
 435 
 436 bool GenCollectedHeap::must_clear_all_soft_refs() {
 437   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 438          _gc_cause == GCCause::_wb_full_gc;
 439 }
 440 
 441 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 442                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 443                                           bool restore_marks_for_biased_locking) {
 444   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 445   GCTraceTime(Trace, gc, phases) t1(title);
 446   TraceCollectorStats tcs(gen->counters());
 447   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause(), heap()->is_young_gen(gen) ? "end of minor GC" : "end of major GC");
 448 
 449   gen->stat_record()->invocations++;
 450   gen->stat_record()->accumulated_time.start();
 451 
 452   // Must be done anew before each collection because
 453   // a previous collection will do mangling and will
 454   // change top of some spaces.
 455   record_gen_tops_before_GC();
 456 
 457   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 458 
 459   if (run_verification && VerifyBeforeGC) {
 460     Universe::verify("Before GC");
 461   }
 462   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::clear());
 463 
 464   if (restore_marks_for_biased_locking) {
 465     // We perform this mark word preservation work lazily
 466     // because it's only at this point that we know whether we
 467     // absolutely have to do it; we want to avoid doing it for
 468     // scavenge-only collections where it's unnecessary
 469     BiasedLocking::preserve_marks();
 470   }
 471 
 472   // Do collection work
 473   {
 474     // Note on ref discovery: For what appear to be historical reasons,
 475     // GCH enables and disabled (by enqueing) refs discovery.
 476     // In the future this should be moved into the generation's
 477     // collect method so that ref discovery and enqueueing concerns
 478     // are local to a generation. The collect method could return
 479     // an appropriate indication in the case that notification on
 480     // the ref lock was needed. This will make the treatment of
 481     // weak refs more uniform (and indeed remove such concerns
 482     // from GCH). XXX
 483 
 484     save_marks();   // save marks for all gens
 485     // We want to discover references, but not process them yet.
 486     // This mode is disabled in process_discovered_references if the
 487     // generation does some collection work, or in
 488     // enqueue_discovered_references if the generation returns
 489     // without doing any work.
 490     ReferenceProcessor* rp = gen->ref_processor();
 491     // If the discovery of ("weak") refs in this generation is
 492     // atomic wrt other collectors in this configuration, we
 493     // are guaranteed to have empty discovered ref lists.
 494     if (rp->discovery_is_atomic()) {
 495       rp->enable_discovery();
 496       rp->setup_policy(clear_soft_refs);
 497     } else {
 498       // collect() below will enable discovery as appropriate
 499     }
 500     gen->collect(full, clear_soft_refs, size, is_tlab);
 501     if (!rp->enqueuing_is_done()) {
 502       rp->disable_discovery();
 503     } else {
 504       rp->set_enqueuing_is_done(false);
 505     }
 506     rp->verify_no_references_recorded();
 507   }
 508 
 509   COMPILER2_OR_JVMCI_PRESENT(DerivedPointerTable::update_pointers());
 510 
 511   gen->stat_record()->accumulated_time.stop();
 512 
 513   update_gc_stats(gen, full);
 514 
 515   if (run_verification && VerifyAfterGC) {
 516     Universe::verify("After GC");
 517   }
 518 }
 519 
 520 void GenCollectedHeap::do_collection(bool           full,
 521                                      bool           clear_all_soft_refs,
 522                                      size_t         size,
 523                                      bool           is_tlab,
 524                                      GenerationType max_generation) {
 525   ResourceMark rm;
 526   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 527 
 528   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 529   assert(my_thread->is_VM_thread(), "only VM thread");
 530   assert(Heap_lock->is_locked(),
 531          "the requesting thread should have the Heap_lock");
 532   guarantee(!is_gc_active(), "collection is not reentrant");
 533 
 534   if (GCLocker::check_active_before_gc()) {
 535     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 536   }
 537 
 538   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 539                           soft_ref_policy()->should_clear_all_soft_refs();
 540 
 541   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 542 
 543   AutoModifyRestore<bool> temporarily(_is_gc_active, true);
 544 
 545   bool complete = full && (max_generation == OldGen);
 546   bool old_collects_young = complete && !ScavengeBeforeFullGC;
 547   bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 548 
 549   const PreGenGCValues pre_gc_values = get_pre_gc_values();
 550 
 551   bool run_verification = total_collections() >= VerifyGCStartAt;
 552   bool prepared_for_verification = false;
 553   bool do_full_collection = false;
 554 
 555   if (do_young_collection) {
 556     GCIdMark gc_id_mark;
 557     GCTraceCPUTime tcpu;
 558     GCTraceTime(Info, gc) t("Pause Young", NULL, gc_cause(), true);
 559 
 560     print_heap_before_gc();
 561 
 562     if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 563       prepare_for_verify();
 564       prepared_for_verification = true;
 565     }
 566 
 567     gc_prologue(complete);
 568     increment_total_collections(complete);
 569 
 570     collect_generation(_young_gen,
 571                        full,
 572                        size,
 573                        is_tlab,
 574                        run_verification && VerifyGCLevel <= 0,
 575                        do_clear_all_soft_refs,
 576                        false);
 577 
 578     if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 579         size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 580       // Allocation request was met by young GC.
 581       size = 0;
 582     }
 583 
 584     // Ask if young collection is enough. If so, do the final steps for young collection,
 585     // and fallthrough to the end.
 586     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 587     if (!do_full_collection) {
 588       // Adjust generation sizes.
 589       _young_gen->compute_new_size();
 590 
 591       print_heap_change(pre_gc_values);
 592 
 593       // Track memory usage and detect low memory after GC finishes
 594       MemoryService::track_memory_usage();
 595 
 596       gc_epilogue(complete);
 597     }
 598 
 599     print_heap_after_gc();
 600 
 601   } else {
 602     // No young collection, ask if we need to perform Full collection.
 603     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 604   }
 605 
 606   if (do_full_collection) {
 607     GCIdMark gc_id_mark;
 608     GCTraceCPUTime tcpu;
 609     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 610 
 611     print_heap_before_gc();
 612 
 613     if (!prepared_for_verification && run_verification &&
 614         VerifyGCLevel <= 1 && VerifyBeforeGC) {
 615       prepare_for_verify();
 616     }
 617 
 618     if (!do_young_collection) {
 619       gc_prologue(complete);
 620       increment_total_collections(complete);
 621     }
 622 
 623     // Accounting quirk: total full collections would be incremented when "complete"
 624     // is set, by calling increment_total_collections above. However, we also need to
 625     // account Full collections that had "complete" unset.
 626     if (!complete) {
 627       increment_total_full_collections();
 628     }
 629 
 630     collect_generation(_old_gen,
 631                        full,
 632                        size,
 633                        is_tlab,
 634                        run_verification && VerifyGCLevel <= 1,
 635                        do_clear_all_soft_refs,
 636                        true);
 637 
 638     // Adjust generation sizes.
 639     _old_gen->compute_new_size();
 640     _young_gen->compute_new_size();
 641 
 642     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 643     ClassLoaderDataGraph::purge(/*at_safepoint*/true);
 644     DEBUG_ONLY(MetaspaceUtils::verify();)
 645     // Resize the metaspace capacity after full collections
 646     MetaspaceGC::compute_new_size();
 647     update_full_collections_completed();
 648 
 649     print_heap_change(pre_gc_values);
 650 
 651     // Track memory usage and detect low memory after GC finishes
 652     MemoryService::track_memory_usage();
 653 
 654     // Need to tell the epilogue code we are done with Full GC, regardless what was
 655     // the initial value for "complete" flag.
 656     gc_epilogue(true);
 657 
 658     BiasedLocking::restore_marks();
 659 
 660     print_heap_after_gc();
 661   }
 662 }
 663 
 664 bool GenCollectedHeap::should_do_full_collection(size_t size, bool full, bool is_tlab,
 665                                                  GenCollectedHeap::GenerationType max_gen) const {
 666   return max_gen == OldGen && _old_gen->should_collect(full, size, is_tlab);
 667 }
 668 
 669 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 670   ScavengableNMethods::register_nmethod(nm);
 671 }
 672 
 673 void GenCollectedHeap::unregister_nmethod(nmethod* nm) {
 674   ScavengableNMethods::unregister_nmethod(nm);
 675 }
 676 
 677 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 678   ScavengableNMethods::verify_nmethod(nm);
 679 }
 680 
 681 void GenCollectedHeap::flush_nmethod(nmethod* nm) {
 682   // Do nothing.
 683 }
 684 
 685 void GenCollectedHeap::prune_scavengable_nmethods() {
 686   ScavengableNMethods::prune_nmethods();
 687 }
 688 
 689 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 690   GCCauseSetter x(this, GCCause::_allocation_failure);
 691   HeapWord* result = NULL;
 692 
 693   assert(size != 0, "Precondition violated");
 694   if (GCLocker::is_active_and_needs_gc()) {
 695     // GC locker is active; instead of a collection we will attempt
 696     // to expand the heap, if there's room for expansion.
 697     if (!is_maximal_no_gc()) {
 698       result = expand_heap_and_allocate(size, is_tlab);
 699     }
 700     return result;   // Could be null if we are out of space.
 701   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 702     // Do an incremental collection.
 703     do_collection(false,                     // full
 704                   false,                     // clear_all_soft_refs
 705                   size,                      // size
 706                   is_tlab,                   // is_tlab
 707                   GenCollectedHeap::OldGen); // max_generation
 708   } else {
 709     log_trace(gc)(" :: Trying full because partial may fail :: ");
 710     // Try a full collection; see delta for bug id 6266275
 711     // for the original code and why this has been simplified
 712     // with from-space allocation criteria modified and
 713     // such allocation moved out of the safepoint path.
 714     do_collection(true,                      // full
 715                   false,                     // clear_all_soft_refs
 716                   size,                      // size
 717                   is_tlab,                   // is_tlab
 718                   GenCollectedHeap::OldGen); // max_generation
 719   }
 720 
 721   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 722 
 723   if (result != NULL) {
 724     assert(is_in_reserved(result), "result not in heap");
 725     return result;
 726   }
 727 
 728   // OK, collection failed, try expansion.
 729   result = expand_heap_and_allocate(size, is_tlab);
 730   if (result != NULL) {
 731     return result;
 732   }
 733 
 734   // If we reach this point, we're really out of memory. Try every trick
 735   // we can to reclaim memory. Force collection of soft references. Force
 736   // a complete compaction of the heap. Any additional methods for finding
 737   // free memory should be here, especially if they are expensive. If this
 738   // attempt fails, an OOM exception will be thrown.
 739   {
 740     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 741 
 742     do_collection(true,                      // full
 743                   true,                      // clear_all_soft_refs
 744                   size,                      // size
 745                   is_tlab,                   // is_tlab
 746                   GenCollectedHeap::OldGen); // max_generation
 747   }
 748 
 749   result = attempt_allocation(size, is_tlab, false /* first_only */);
 750   if (result != NULL) {
 751     assert(is_in_reserved(result), "result not in heap");
 752     return result;
 753   }
 754 
 755   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 756     "Flag should have been handled and cleared prior to this point");
 757 
 758   // What else?  We might try synchronous finalization later.  If the total
 759   // space available is large enough for the allocation, then a more
 760   // complete compaction phase than we've tried so far might be
 761   // appropriate.
 762   return NULL;
 763 }
 764 
 765 #ifdef ASSERT
 766 class AssertNonScavengableClosure: public OopClosure {
 767 public:
 768   virtual void do_oop(oop* p) {
 769     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 770       "Referent should not be scavengable.");  }
 771   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 772 };
 773 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 774 #endif
 775 
 776 void GenCollectedHeap::process_roots(ScanningOption so,
 777                                      OopClosure* strong_roots,
 778                                      CLDClosure* strong_cld_closure,
 779                                      CLDClosure* weak_cld_closure,
 780                                      CodeBlobToOopClosure* code_roots) {
 781   // General roots.
 782   assert(code_roots != NULL, "code root closure should always be set");
 783 
 784   ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 785 
 786   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 787   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 788 
 789   Threads::oops_do(strong_roots, roots_from_code_p);
 790 
 791   OopStorageSet::strong_oops_do(strong_roots);
 792 
 793   if (so & SO_ScavengeCodeCache) {
 794     assert(code_roots != NULL, "must supply closure for code cache");
 795 
 796     // We only visit parts of the CodeCache when scavenging.
 797     ScavengableNMethods::nmethods_do(code_roots);
 798   }
 799   if (so & SO_AllCodeCache) {
 800     assert(code_roots != NULL, "must supply closure for code cache");
 801 
 802     // CMSCollector uses this to do intermediate-strength collections.
 803     // We scan the entire code cache, since CodeCache::do_unloading is not called.
 804     CodeCache::blobs_do(code_roots);
 805   }
 806   // Verify that the code cache contents are not subject to
 807   // movement by a scavenging collection.
 808   DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 809   DEBUG_ONLY(ScavengableNMethods::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 810 }
 811 
 812 void GenCollectedHeap::full_process_roots(bool is_adjust_phase,
 813                                           ScanningOption so,
 814                                           bool only_strong_roots,
 815                                           OopClosure* root_closure,
 816                                           CLDClosure* cld_closure) {
 817   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 818   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 819 
 820   process_roots(so, root_closure, cld_closure, weak_cld_closure, &mark_code_closure);
 821 }
 822 
 823 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 824   WeakProcessor::oops_do(root_closure);
 825   _young_gen->ref_processor()->weak_oops_do(root_closure);
 826   _old_gen->ref_processor()->weak_oops_do(root_closure);
 827 }
 828 
 829 bool GenCollectedHeap::no_allocs_since_save_marks() {
 830   return _young_gen->no_allocs_since_save_marks() &&
 831          _old_gen->no_allocs_since_save_marks();
 832 }
 833 
 834 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 835   return _young_gen->supports_inline_contig_alloc();
 836 }
 837 
 838 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 839   return _young_gen->top_addr();
 840 }
 841 
 842 HeapWord** GenCollectedHeap::end_addr() const {
 843   return _young_gen->end_addr();
 844 }
 845 
 846 // public collection interfaces
 847 
 848 void GenCollectedHeap::collect(GCCause::Cause cause) {
 849   if ((cause == GCCause::_wb_young_gc) ||
 850       (cause == GCCause::_gc_locker)) {
 851     // Young collection for WhiteBox or GCLocker.
 852     collect(cause, YoungGen);
 853   } else {
 854 #ifdef ASSERT
 855   if (cause == GCCause::_scavenge_alot) {
 856     // Young collection only.
 857     collect(cause, YoungGen);
 858   } else {
 859     // Stop-the-world full collection.
 860     collect(cause, OldGen);
 861   }
 862 #else
 863     // Stop-the-world full collection.
 864     collect(cause, OldGen);
 865 #endif
 866   }
 867 }
 868 
 869 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 870   // The caller doesn't have the Heap_lock
 871   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 872   MutexLocker ml(Heap_lock);
 873   collect_locked(cause, max_generation);
 874 }
 875 
 876 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 877   // The caller has the Heap_lock
 878   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 879   collect_locked(cause, OldGen);
 880 }
 881 
 882 // this is the private collection interface
 883 // The Heap_lock is expected to be held on entry.
 884 
 885 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 886   // Read the GC count while holding the Heap_lock
 887   unsigned int gc_count_before      = total_collections();
 888   unsigned int full_gc_count_before = total_full_collections();
 889 
 890   if (GCLocker::should_discard(cause, gc_count_before)) {
 891     return;
 892   }
 893 
 894   {
 895     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 896     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 897                          cause, max_generation);
 898     VMThread::execute(&op);
 899   }
 900 }
 901 
 902 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 903    do_full_collection(clear_all_soft_refs, OldGen);
 904 }
 905 
 906 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 907                                           GenerationType last_generation) {
 908   do_collection(true,                   // full
 909                 clear_all_soft_refs,    // clear_all_soft_refs
 910                 0,                      // size
 911                 false,                  // is_tlab
 912                 last_generation);       // last_generation
 913   // Hack XXX FIX ME !!!
 914   // A scavenge may not have been attempted, or may have
 915   // been attempted and failed, because the old gen was too full
 916   if (gc_cause() == GCCause::_gc_locker && incremental_collection_failed()) {
 917     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 918     // This time allow the old gen to be collected as well
 919     do_collection(true,                // full
 920                   clear_all_soft_refs, // clear_all_soft_refs
 921                   0,                   // size
 922                   false,               // is_tlab
 923                   OldGen);             // last_generation
 924   }
 925 }
 926 
 927 bool GenCollectedHeap::is_in_young(oop p) {
 928   bool result = cast_from_oop<HeapWord*>(p) < _old_gen->reserved().start();
 929   assert(result == _young_gen->is_in_reserved(p),
 930          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 931   return result;
 932 }
 933 
 934 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 935 bool GenCollectedHeap::is_in(const void* p) const {
 936   return _young_gen->is_in(p) || _old_gen->is_in(p);
 937 }
 938 
 939 #ifdef ASSERT
 940 // Don't implement this by using is_in_young().  This method is used
 941 // in some cases to check that is_in_young() is correct.
 942 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 943   assert(is_in_reserved(p) || p == NULL,
 944     "Does not work if address is non-null and outside of the heap");
 945   return p < _young_gen->reserved().end() && p != NULL;
 946 }
 947 #endif
 948 
 949 void GenCollectedHeap::oop_iterate(OopIterateClosure* cl) {
 950   _young_gen->oop_iterate(cl);
 951   _old_gen->oop_iterate(cl);
 952 }
 953 
 954 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 955   _young_gen->object_iterate(cl);
 956   _old_gen->object_iterate(cl);
 957 }
 958 
 959 Space* GenCollectedHeap::space_containing(const void* addr) const {
 960   Space* res = _young_gen->space_containing(addr);
 961   if (res != NULL) {
 962     return res;
 963   }
 964   res = _old_gen->space_containing(addr);
 965   assert(res != NULL, "Could not find containing space");
 966   return res;
 967 }
 968 
 969 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 970   assert(is_in_reserved(addr), "block_start of address outside of heap");
 971   if (_young_gen->is_in_reserved(addr)) {
 972     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 973     return _young_gen->block_start(addr);
 974   }
 975 
 976   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 977   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 978   return _old_gen->block_start(addr);
 979 }
 980 
 981 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 982   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 983   assert(block_start(addr) == addr, "addr must be a block start");
 984   if (_young_gen->is_in_reserved(addr)) {
 985     return _young_gen->block_is_obj(addr);
 986   }
 987 
 988   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 989   return _old_gen->block_is_obj(addr);
 990 }
 991 
 992 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 993   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 994   assert(_young_gen->supports_tlab_allocation(), "Young gen doesn't support TLAB allocation?!");
 995   return _young_gen->tlab_capacity();
 996 }
 997 
 998 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 999   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1000   assert(_young_gen->supports_tlab_allocation(), "Young gen doesn't support TLAB allocation?!");
1001   return _young_gen->tlab_used();
1002 }
1003 
1004 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1005   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1006   assert(_young_gen->supports_tlab_allocation(), "Young gen doesn't support TLAB allocation?!");
1007   return _young_gen->unsafe_max_tlab_alloc();
1008 }
1009 
1010 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
1011                                               size_t requested_size,
1012                                               size_t* actual_size) {
1013   bool gc_overhead_limit_was_exceeded;
1014   HeapWord* result = mem_allocate_work(requested_size /* size */,
1015                                        true /* is_tlab */,
1016                                        &gc_overhead_limit_was_exceeded);
1017   if (result != NULL) {
1018     *actual_size = requested_size;
1019   }
1020 
1021   return result;
1022 }
1023 
1024 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1025 // from the list headed by "*prev_ptr".
1026 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1027   bool first = true;
1028   size_t min_size = 0;   // "first" makes this conceptually infinite.
1029   ScratchBlock **smallest_ptr, *smallest;
1030   ScratchBlock  *cur = *prev_ptr;
1031   while (cur) {
1032     assert(*prev_ptr == cur, "just checking");
1033     if (first || cur->num_words < min_size) {
1034       smallest_ptr = prev_ptr;
1035       smallest     = cur;
1036       min_size     = smallest->num_words;
1037       first        = false;
1038     }
1039     prev_ptr = &cur->next;
1040     cur     =  cur->next;
1041   }
1042   smallest      = *smallest_ptr;
1043   *smallest_ptr = smallest->next;
1044   return smallest;
1045 }
1046 
1047 // Sort the scratch block list headed by res into decreasing size order,
1048 // and set "res" to the result.
1049 static void sort_scratch_list(ScratchBlock*& list) {
1050   ScratchBlock* sorted = NULL;
1051   ScratchBlock* unsorted = list;
1052   while (unsorted) {
1053     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1054     smallest->next  = sorted;
1055     sorted          = smallest;
1056   }
1057   list = sorted;
1058 }
1059 
1060 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1061                                                size_t max_alloc_words) {
1062   ScratchBlock* res = NULL;
1063   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1064   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1065   sort_scratch_list(res);
1066   return res;
1067 }
1068 
1069 void GenCollectedHeap::release_scratch() {
1070   _young_gen->reset_scratch();
1071   _old_gen->reset_scratch();
1072 }
1073 
1074 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1075   void do_generation(Generation* gen) {
1076     gen->prepare_for_verify();
1077   }
1078 };
1079 
1080 void GenCollectedHeap::prepare_for_verify() {
1081   ensure_parsability(false);        // no need to retire TLABs
1082   GenPrepareForVerifyClosure blk;
1083   generation_iterate(&blk, false);
1084 }
1085 
1086 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1087                                           bool old_to_young) {
1088   if (old_to_young) {
1089     cl->do_generation(_old_gen);
1090     cl->do_generation(_young_gen);
1091   } else {
1092     cl->do_generation(_young_gen);
1093     cl->do_generation(_old_gen);
1094   }
1095 }
1096 
1097 bool GenCollectedHeap::is_maximal_no_gc() const {
1098   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1099 }
1100 
1101 void GenCollectedHeap::save_marks() {
1102   _young_gen->save_marks();
1103   _old_gen->save_marks();
1104 }
1105 
1106 GenCollectedHeap* GenCollectedHeap::heap() {
1107   // SerialHeap is the only subtype of GenCollectedHeap.
1108   return named_heap<GenCollectedHeap>(CollectedHeap::Serial);
1109 }
1110 
1111 #if INCLUDE_SERIALGC
1112 void GenCollectedHeap::prepare_for_compaction() {
1113   // Start by compacting into same gen.
1114   CompactPoint cp(_old_gen);
1115   _old_gen->prepare_for_compaction(&cp);
1116   _young_gen->prepare_for_compaction(&cp);
1117 }
1118 #endif // INCLUDE_SERIALGC
1119 
1120 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1121   log_debug(gc, verify)("%s", _old_gen->name());
1122   _old_gen->verify();
1123 
1124   log_debug(gc, verify)("%s", _old_gen->name());
1125   _young_gen->verify();
1126 
1127   log_debug(gc, verify)("RemSet");
1128   rem_set()->verify();
1129 }
1130 
1131 void GenCollectedHeap::print_on(outputStream* st) const {
1132   if (_young_gen != NULL) {
1133     _young_gen->print_on(st);
1134   }
1135   if (_old_gen != NULL) {
1136     _old_gen->print_on(st);
1137   }
1138   MetaspaceUtils::print_on(st);
1139 }
1140 
1141 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1142 }
1143 
1144 bool GenCollectedHeap::print_location(outputStream* st, void* addr) const {
1145   return BlockLocationPrinter<GenCollectedHeap>::print_location(st, addr);
1146 }
1147 
1148 void GenCollectedHeap::print_tracing_info() const {
1149   if (log_is_enabled(Debug, gc, heap, exit)) {
1150     LogStreamHandle(Debug, gc, heap, exit) lsh;
1151     _young_gen->print_summary_info_on(&lsh);
1152     _old_gen->print_summary_info_on(&lsh);
1153   }
1154 }
1155 
1156 void GenCollectedHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
1157   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
1158 
1159   log_info(gc, heap)(HEAP_CHANGE_FORMAT" "
1160                      HEAP_CHANGE_FORMAT" "
1161                      HEAP_CHANGE_FORMAT,
1162                      HEAP_CHANGE_FORMAT_ARGS(def_new_gen->short_name(),
1163                                              pre_gc_values.young_gen_used(),
1164                                              pre_gc_values.young_gen_capacity(),
1165                                              def_new_gen->used(),
1166                                              def_new_gen->capacity()),
1167                      HEAP_CHANGE_FORMAT_ARGS("Eden",
1168                                              pre_gc_values.eden_used(),
1169                                              pre_gc_values.eden_capacity(),
1170                                              def_new_gen->eden()->used(),
1171                                              def_new_gen->eden()->capacity()),
1172                      HEAP_CHANGE_FORMAT_ARGS("From",
1173                                              pre_gc_values.from_used(),
1174                                              pre_gc_values.from_capacity(),
1175                                              def_new_gen->from()->used(),
1176                                              def_new_gen->from()->capacity()));
1177   log_info(gc, heap)(HEAP_CHANGE_FORMAT,
1178                      HEAP_CHANGE_FORMAT_ARGS(old_gen()->short_name(),
1179                                              pre_gc_values.old_gen_used(),
1180                                              pre_gc_values.old_gen_capacity(),
1181                                              old_gen()->used(),
1182                                              old_gen()->capacity()));
1183   MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
1184 }
1185 
1186 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1187  private:
1188   bool _full;
1189  public:
1190   void do_generation(Generation* gen) {
1191     gen->gc_prologue(_full);
1192   }
1193   GenGCPrologueClosure(bool full) : _full(full) {};
1194 };
1195 
1196 void GenCollectedHeap::gc_prologue(bool full) {
1197   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1198 
1199   // Fill TLAB's and such
1200   ensure_parsability(true);   // retire TLABs
1201 
1202   // Walk generations
1203   GenGCPrologueClosure blk(full);
1204   generation_iterate(&blk, false);  // not old-to-young.
1205 };
1206 
1207 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1208  private:
1209   bool _full;
1210  public:
1211   void do_generation(Generation* gen) {
1212     gen->gc_epilogue(_full);
1213   }
1214   GenGCEpilogueClosure(bool full) : _full(full) {};
1215 };
1216 
1217 void GenCollectedHeap::gc_epilogue(bool full) {
1218 #if COMPILER2_OR_JVMCI
1219   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1220   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1221   guarantee(!CompilerConfig::is_c2_or_jvmci_compiler_enabled() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1222 #endif // COMPILER2_OR_JVMCI
1223 
1224   resize_all_tlabs();
1225 
1226   GenGCEpilogueClosure blk(full);
1227   generation_iterate(&blk, false);  // not old-to-young.
1228 
1229   MetaspaceCounters::update_performance_counters();
1230 };
1231 
1232 #ifndef PRODUCT
1233 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1234  private:
1235  public:
1236   void do_generation(Generation* gen) {
1237     gen->record_spaces_top();
1238   }
1239 };
1240 
1241 void GenCollectedHeap::record_gen_tops_before_GC() {
1242   if (ZapUnusedHeapArea) {
1243     GenGCSaveTopsBeforeGCClosure blk;
1244     generation_iterate(&blk, false);  // not old-to-young.
1245   }
1246 }
1247 #endif  // not PRODUCT
1248 
1249 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1250  public:
1251   void do_generation(Generation* gen) {
1252     gen->ensure_parsability();
1253   }
1254 };
1255 
1256 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1257   CollectedHeap::ensure_parsability(retire_tlabs);
1258   GenEnsureParsabilityClosure ep_cl;
1259   generation_iterate(&ep_cl, false);
1260 }
1261 
1262 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1263                                               oop obj,
1264                                               size_t obj_size) {
1265   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1266   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1267   HeapWord* result = NULL;
1268 
1269   result = old_gen->expand_and_allocate(obj_size, false);
1270 
1271   if (result != NULL) {
1272     Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(obj), result, obj_size);
1273   }
1274   return cast_to_oop(result);
1275 }