1 /*
  2  * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP
 26 #define SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/collectedHeap.hpp"
 29 #include "gc/shared/generation.hpp"
 30 #include "gc/shared/oopStorageParState.hpp"
 31 #include "gc/shared/preGCValues.hpp"
 32 #include "gc/shared/softRefGenPolicy.hpp"
 33 
 34 class AdaptiveSizePolicy;
 35 class CardTableRS;
 36 class GCPolicyCounters;
 37 class GenerationSpec;
 38 class SlidingForwarding;
 39 class StrongRootsScope;
 40 class SubTasksDone;
 41 class WorkGang;
 42 
 43 // A "GenCollectedHeap" is a CollectedHeap that uses generational
 44 // collection.  It has two generations, young and old.
 45 class GenCollectedHeap : public CollectedHeap {
 46   friend class Generation;
 47   friend class DefNewGeneration;
 48   friend class TenuredGeneration;
 49   friend class GenMarkSweep;
 50   friend class VM_GenCollectForAllocation;
 51   friend class VM_GenCollectFull;
 52   friend class VM_GenCollectFullConcurrent;
 53   friend class VM_GC_HeapInspection;
 54   friend class VM_HeapDumper;
 55   friend class HeapInspection;
 56   friend class GCCauseSetter;
 57   friend class VMStructs;
 58 public:
 59   friend class VM_PopulateDumpSharedSpace;
 60 
 61   enum GenerationType {
 62     YoungGen,
 63     OldGen
 64   };
 65 
 66 protected:
 67   Generation* _young_gen;
 68   Generation* _old_gen;
 69 
 70 private:
 71   GenerationSpec* _young_gen_spec;
 72   GenerationSpec* _old_gen_spec;
 73 
 74   // The singleton CardTable Remembered Set.
 75   CardTableRS* _rem_set;
 76 
 77   SoftRefGenPolicy _soft_ref_gen_policy;
 78 
 79   // The sizing of the heap is controlled by a sizing policy.
 80   AdaptiveSizePolicy* _size_policy;
 81 
 82   GCPolicyCounters* _gc_policy_counters;
 83 
 84   // Indicates that the most recent previous incremental collection failed.
 85   // The flag is cleared when an action is taken that might clear the
 86   // condition that caused that incremental collection to fail.
 87   bool _incremental_collection_failed;
 88 
 89   // In support of ExplicitGCInvokesConcurrent functionality
 90   unsigned int _full_collections_completed;
 91 
 92   SlidingForwarding* _forwarding;
 93 
 94   // Collects the given generation.
 95   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
 96                           bool run_verification, bool clear_soft_refs,
 97                           bool restore_marks_for_biased_locking);
 98 
 99   // Reserve aligned space for the heap as needed by the contained generations.
100   ReservedHeapSpace allocate(size_t alignment);
101 
102   // Initialize ("weak") refs processing support
103   void ref_processing_init();
104 
105   PreGenGCValues get_pre_gc_values() const;
106 
107 protected:
108 
109   GCMemoryManager* _young_manager;
110   GCMemoryManager* _old_manager;
111 
112   // Helper functions for allocation
113   HeapWord* attempt_allocation(size_t size,
114                                bool   is_tlab,
115                                bool   first_only);
116 
117   // Helper function for two callbacks below.
118   // Considers collection of the first max_level+1 generations.
119   void do_collection(bool           full,
120                      bool           clear_all_soft_refs,
121                      size_t         size,
122                      bool           is_tlab,
123                      GenerationType max_generation);
124 
125   // Callback from VM_GenCollectForAllocation operation.
126   // This function does everything necessary/possible to satisfy an
127   // allocation request that failed in the youngest generation that should
128   // have handled it (including collection, expansion, etc.)
129   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
130 
131   // Callback from VM_GenCollectFull operation.
132   // Perform a full collection of the first max_level+1 generations.
133   virtual void do_full_collection(bool clear_all_soft_refs);
134   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
135 
136   // Does the "cause" of GC indicate that
137   // we absolutely __must__ clear soft refs?
138   bool must_clear_all_soft_refs();
139 
140   GenCollectedHeap(Generation::Name young,
141                    Generation::Name old,
142                    const char* policy_counters_name);
143 
144 public:
145 
146   // Returns JNI_OK on success
147   virtual jint initialize();
148   virtual CardTableRS* create_rem_set(const MemRegion& reserved_region);
149 
150   void initialize_size_policy(size_t init_eden_size,
151                               size_t init_promo_size,
152                               size_t init_survivor_size);
153 
154   // Does operations required after initialization has been done.
155   void post_initialize();
156 
157   Generation* young_gen() const { return _young_gen; }
158   Generation* old_gen()   const { return _old_gen; }
159 
160   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
161   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
162 
163   MemRegion reserved_region() const { return _reserved; }
164   bool is_in_reserved(const void* addr) const { return _reserved.contains(addr); }
165 
166   GenerationSpec* young_gen_spec() const;
167   GenerationSpec* old_gen_spec() const;
168 
169   virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_gen_policy; }
170 
171   // Adaptive size policy
172   virtual AdaptiveSizePolicy* size_policy() {
173     return _size_policy;
174   }
175 
176   // Performance Counter support
177   GCPolicyCounters* counters()     { return _gc_policy_counters; }
178 
179   size_t capacity() const;
180   size_t used() const;
181 
182   // Save the "used_region" for both generations.
183   void save_used_regions();
184 
185   size_t max_capacity() const;
186 
187   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
188 
189   // We may support a shared contiguous allocation area, if the youngest
190   // generation does.
191   bool supports_inline_contig_alloc() const;
192   HeapWord* volatile* top_addr() const;
193   HeapWord** end_addr() const;
194 
195   // Perform a full collection of the heap; intended for use in implementing
196   // "System.gc". This implies as full a collection as the CollectedHeap
197   // supports. Caller does not hold the Heap_lock on entry.
198   virtual void collect(GCCause::Cause cause);
199 
200   // The same as above but assume that the caller holds the Heap_lock.
201   void collect_locked(GCCause::Cause cause);
202 
203   // Perform a full collection of generations up to and including max_generation.
204   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
205   void collect(GCCause::Cause cause, GenerationType max_generation);
206 
207   // Returns "TRUE" iff "p" points into the committed areas of the heap.
208   // The methods is_in() and is_in_youngest() may be expensive to compute
209   // in general, so, to prevent their inadvertent use in product jvm's, we
210   // restrict their use to assertion checking or verification only.
211   bool is_in(const void* p) const;
212 
213   // Returns true if the reference is to an object in the reserved space
214   // for the young generation.
215   // Assumes the the young gen address range is less than that of the old gen.
216   bool is_in_young(oop p);
217 
218 #ifdef ASSERT
219   bool is_in_partial_collection(const void* p);
220 #endif
221 
222   // Optimized nmethod scanning support routines
223   virtual void register_nmethod(nmethod* nm);
224   virtual void unregister_nmethod(nmethod* nm);
225   virtual void verify_nmethod(nmethod* nm);
226   virtual void flush_nmethod(nmethod* nm);
227 
228   void prune_scavengable_nmethods();
229 
230   // Iteration functions.
231   void oop_iterate(OopIterateClosure* cl);
232   void object_iterate(ObjectClosure* cl);
233   Space* space_containing(const void* addr) const;
234 
235   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
236   // each address in the (reserved) heap is a member of exactly
237   // one block.  The defining characteristic of a block is that it is
238   // possible to find its size, and thus to progress forward to the next
239   // block.  (Blocks may be of different sizes.)  Thus, blocks may
240   // represent Java objects, or they might be free blocks in a
241   // free-list-based heap (or subheap), as long as the two kinds are
242   // distinguishable and the size of each is determinable.
243 
244   // Returns the address of the start of the "block" that contains the
245   // address "addr".  We say "blocks" instead of "object" since some heaps
246   // may not pack objects densely; a chunk may either be an object or a
247   // non-object.
248   HeapWord* block_start(const void* addr) const;
249 
250   // Requires "addr" to be the start of a block, and returns "TRUE" iff
251   // the block is an object. Assumes (and verifies in non-product
252   // builds) that addr is in the allocated part of the heap and is
253   // the start of a chunk.
254   bool block_is_obj(const HeapWord* addr) const;
255 
256   // Section on TLAB's.
257   virtual size_t tlab_capacity(Thread* thr) const;
258   virtual size_t tlab_used(Thread* thr) const;
259   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
260   virtual HeapWord* allocate_new_tlab(size_t min_size,
261                                       size_t requested_size,
262                                       size_t* actual_size);
263 
264   // The "requestor" generation is performing some garbage collection
265   // action for which it would be useful to have scratch space.  The
266   // requestor promises to allocate no more than "max_alloc_words" in any
267   // older generation (via promotion say.)   Any blocks of space that can
268   // be provided are returned as a list of ScratchBlocks, sorted by
269   // decreasing size.
270   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
271   // Allow each generation to reset any scratch space that it has
272   // contributed as it needs.
273   void release_scratch();
274 
275   // Ensure parsability: override
276   virtual void ensure_parsability(bool retire_tlabs);
277 
278   // Total number of full collections completed.
279   unsigned int total_full_collections_completed() {
280     assert(_full_collections_completed <= _total_full_collections,
281            "Can't complete more collections than were started");
282     return _full_collections_completed;
283   }
284 
285   // Update above counter, as appropriate, at the end of a stop-world GC cycle
286   unsigned int update_full_collections_completed();
287 
288   // Update the gc statistics for each generation.
289   void update_gc_stats(Generation* current_generation, bool full) {
290     _old_gen->update_gc_stats(current_generation, full);
291   }
292 
293   bool no_gc_in_progress() { return !is_gc_active(); }
294 
295   // Override.
296   void prepare_for_verify();
297 
298   // Override.
299   void verify(VerifyOption option);
300 
301   // Override.
302   virtual void print_on(outputStream* st) const;
303   virtual void gc_threads_do(ThreadClosure* tc) const;
304   virtual void print_tracing_info() const;
305 
306   // Used to print information about locations in the hs_err file.
307   virtual bool print_location(outputStream* st, void* addr) const;
308 
309   void print_heap_change(const PreGenGCValues& pre_gc_values) const;
310 
311   // The functions below are helper functions that a subclass of
312   // "CollectedHeap" can use in the implementation of its virtual
313   // functions.
314 
315   class GenClosure : public StackObj {
316    public:
317     virtual void do_generation(Generation* gen) = 0;
318   };
319 
320   // Apply "cl.do_generation" to all generations in the heap
321   // If "old_to_young" determines the order.
322   void generation_iterate(GenClosure* cl, bool old_to_young);
323 
324   // Return "true" if all generations have reached the
325   // maximal committed limit that they can reach, without a garbage
326   // collection.
327   virtual bool is_maximal_no_gc() const;
328 
329   // This function returns the CardTableRS object that allows us to scan
330   // generations in a fully generational heap.
331   CardTableRS* rem_set() { return _rem_set; }
332 
333   // Convenience function to be used in situations where the heap type can be
334   // asserted to be this type.
335   static GenCollectedHeap* heap();
336 
337   SlidingForwarding* forwarding() const {
338     return _forwarding;
339   }
340 
341   // The ScanningOption determines which of the roots
342   // the closure is applied to:
343   // "SO_None" does none;
344   enum ScanningOption {
345     SO_None                =  0x0,
346     SO_AllCodeCache        =  0x8,
347     SO_ScavengeCodeCache   = 0x10
348   };
349 
350  protected:
351   void process_roots(ScanningOption so,
352                      OopClosure* strong_roots,
353                      CLDClosure* strong_cld_closure,
354                      CLDClosure* weak_cld_closure,
355                      CodeBlobToOopClosure* code_roots);
356 
357   virtual void gc_prologue(bool full);
358   virtual void gc_epilogue(bool full);
359 
360  public:
361   void full_process_roots(bool is_adjust_phase,
362                           ScanningOption so,
363                           bool only_strong_roots,
364                           OopClosure* root_closure,
365                           CLDClosure* cld_closure);
366 
367   // Apply "root_closure" to all the weak roots of the system.
368   // These include JNI weak roots, string table,
369   // and referents of reachable weak refs.
370   void gen_process_weak_roots(OopClosure* root_closure);
371 
372   // Set the saved marks of generations, if that makes sense.
373   // In particular, if any generation might iterate over the oops
374   // in other generations, it should call this method.
375   void save_marks();
376 
377   // Returns "true" iff no allocations have occurred since the last
378   // call to "save_marks".
379   bool no_allocs_since_save_marks();
380 
381   // Returns true if an incremental collection is likely to fail.
382   // We optionally consult the young gen, if asked to do so;
383   // otherwise we base our answer on whether the previous incremental
384   // collection attempt failed with no corrective action as of yet.
385   bool incremental_collection_will_fail(bool consult_young) {
386     // The first disjunct remembers if an incremental collection failed, even
387     // when we thought (second disjunct) that it would not.
388     return incremental_collection_failed() ||
389            (consult_young && !_young_gen->collection_attempt_is_safe());
390   }
391 
392   // If a generation bails out of an incremental collection,
393   // it sets this flag.
394   bool incremental_collection_failed() const {
395     return _incremental_collection_failed;
396   }
397   void set_incremental_collection_failed() {
398     _incremental_collection_failed = true;
399   }
400   void clear_incremental_collection_failed() {
401     _incremental_collection_failed = false;
402   }
403 
404   // Promotion of obj into gen failed.  Try to promote obj to higher
405   // gens in ascending order; return the new location of obj if successful.
406   // Otherwise, try expand-and-allocate for obj in both the young and old
407   // generation; return the new location of obj if successful.  Otherwise, return NULL.
408   oop handle_failed_promotion(Generation* old_gen,
409                               oop obj,
410                               size_t obj_size);
411 
412 
413 private:
414   // Return true if an allocation should be attempted in the older generation
415   // if it fails in the younger generation.  Return false, otherwise.
416   bool should_try_older_generation_allocation(size_t word_size) const;
417 
418   // Try to allocate space by expanding the heap.
419   HeapWord* expand_heap_and_allocate(size_t size, bool is_tlab);
420 
421   HeapWord* mem_allocate_work(size_t size,
422                               bool is_tlab,
423                               bool* gc_overhead_limit_was_exceeded);
424 
425 #if INCLUDE_SERIALGC
426   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
427   // in an essential way: compaction is performed across generations, by
428   // iterating over spaces.
429   void prepare_for_compaction();
430 #endif
431 
432   // Perform a full collection of the generations up to and including max_generation.
433   // This is the low level interface used by the public versions of
434   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
435   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
436 
437   // Save the tops of the spaces in all generations
438   void record_gen_tops_before_GC() PRODUCT_RETURN;
439 
440   // Return true if we need to perform full collection.
441   bool should_do_full_collection(size_t size, bool full,
442                                  bool is_tlab, GenerationType max_gen) const;
443 };
444 
445 #endif // SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP