1 /*
  2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_GC_SHARED_SPACE_HPP
 26 #define SHARE_GC_SHARED_SPACE_HPP
 27 
 28 #include "gc/shared/blockOffsetTable.hpp"
 29 #include "gc/shared/cardTable.hpp"
 30 #include "gc/shared/workgroup.hpp"
 31 #include "memory/allocation.hpp"
 32 #include "memory/iterator.hpp"
 33 #include "memory/memRegion.hpp"
 34 #include "oops/markWord.hpp"
 35 #include "runtime/mutexLocker.hpp"
 36 #include "utilities/align.hpp"
 37 #include "utilities/macros.hpp"
 38 
 39 // A space is an abstraction for the "storage units" backing
 40 // up the generation abstraction. It includes specific
 41 // implementations for keeping track of free and used space,
 42 // for iterating over objects and free blocks, etc.
 43 
 44 // Forward decls.
 45 class Space;
 46 class BlockOffsetArray;
 47 class BlockOffsetArrayContigSpace;
 48 class Generation;
 49 class CompactibleSpace;
 50 class BlockOffsetTable;
 51 class CardTableRS;
 52 class DirtyCardToOopClosure;
 53 
 54 // A Space describes a heap area. Class Space is an abstract
 55 // base class.
 56 //
 57 // Space supports allocation, size computation and GC support is provided.
 58 //
 59 // Invariant: bottom() and end() are on page_size boundaries and
 60 // bottom() <= top() <= end()
 61 // top() is inclusive and end() is exclusive.
 62 
 63 class Space: public CHeapObj<mtGC> {
 64   friend class VMStructs;
 65  protected:
 66   HeapWord* _bottom;
 67   HeapWord* _end;
 68 
 69   // Used in support of save_marks()
 70   HeapWord* _saved_mark_word;
 71 
 72   Space():
 73     _bottom(NULL), _end(NULL) { }
 74 
 75  public:
 76   // Accessors
 77   HeapWord* bottom() const         { return _bottom; }
 78   HeapWord* end() const            { return _end;    }
 79   virtual void set_bottom(HeapWord* value) { _bottom = value; }
 80   virtual void set_end(HeapWord* value)    { _end = value; }
 81 
 82   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
 83 
 84   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
 85 
 86   // Returns true if this object has been allocated since a
 87   // generation's "save_marks" call.
 88   virtual bool obj_allocated_since_save_marks(const oop obj) const {
 89     return cast_from_oop<HeapWord*>(obj) >= saved_mark_word();
 90   }
 91 
 92   // Returns a subregion of the space containing only the allocated objects in
 93   // the space.
 94   virtual MemRegion used_region() const = 0;
 95 
 96   // Returns a region that is guaranteed to contain (at least) all objects
 97   // allocated at the time of the last call to "save_marks".  If the space
 98   // initializes its DirtyCardToOopClosure's specifying the "contig" option
 99   // (that is, if the space is contiguous), then this region must contain only
100   // such objects: the memregion will be from the bottom of the region to the
101   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
102   // the space must distinguish between objects in the region allocated before
103   // and after the call to save marks.
104   MemRegion used_region_at_save_marks() const {
105     return MemRegion(bottom(), saved_mark_word());
106   }
107 
108   // Initialization.
109   // "initialize" should be called once on a space, before it is used for
110   // any purpose.  The "mr" arguments gives the bounds of the space, and
111   // the "clear_space" argument should be true unless the memory in "mr" is
112   // known to be zeroed.
113   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
114 
115   // The "clear" method must be called on a region that may have
116   // had allocation performed in it, but is now to be considered empty.
117   virtual void clear(bool mangle_space);
118 
119   // For detecting GC bugs.  Should only be called at GC boundaries, since
120   // some unused space may be used as scratch space during GC's.
121   // We also call this when expanding a space to satisfy an allocation
122   // request. See bug #4668531
123   virtual void mangle_unused_area() = 0;
124   virtual void mangle_unused_area_complete() = 0;
125 
126   // Testers
127   bool is_empty() const              { return used() == 0; }
128   bool not_empty() const             { return used() > 0; }
129 
130   // Returns true iff the given the space contains the
131   // given address as part of an allocated object. For
132   // certain kinds of spaces, this might be a potentially
133   // expensive operation. To prevent performance problems
134   // on account of its inadvertent use in product jvm's,
135   // we restrict its use to assertion checks only.
136   bool is_in(const void* p) const {
137     return used_region().contains(p);
138   }
139   bool is_in(oop obj) const {
140     return is_in((void*)obj);
141   }
142 
143   // Returns true iff the given reserved memory of the space contains the
144   // given address.
145   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
146 
147   // Returns true iff the given block is not allocated.
148   virtual bool is_free_block(const HeapWord* p) const = 0;
149 
150   // Test whether p is double-aligned
151   static bool is_aligned(void* p) {
152     return ::is_aligned(p, sizeof(double));
153   }
154 
155   // Size computations.  Sizes are in bytes.
156   size_t capacity()     const { return byte_size(bottom(), end()); }
157   virtual size_t used() const = 0;
158   virtual size_t free() const = 0;
159 
160   // Iterate over all the ref-containing fields of all objects in the
161   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
162   // applications of the closure are not included in the iteration.
163   virtual void oop_iterate(OopIterateClosure* cl);
164 
165   // Iterate over all objects in the space, calling "cl.do_object" on
166   // each.  Objects allocated by applications of the closure are not
167   // included in the iteration.
168   virtual void object_iterate(ObjectClosure* blk) = 0;
169 
170   // Create and return a new dirty card to oop closure. Can be
171   // overridden to return the appropriate type of closure
172   // depending on the type of space in which the closure will
173   // operate. ResourceArea allocated.
174   virtual DirtyCardToOopClosure* new_dcto_cl(OopIterateClosure* cl,
175                                              CardTable::PrecisionStyle precision,
176                                              HeapWord* boundary);
177 
178   // If "p" is in the space, returns the address of the start of the
179   // "block" that contains "p".  We say "block" instead of "object" since
180   // some heaps may not pack objects densely; a chunk may either be an
181   // object or a non-object.  If "p" is not in the space, return NULL.
182   virtual HeapWord* block_start_const(const void* p) const = 0;
183 
184   // The non-const version may have benevolent side effects on the data
185   // structure supporting these calls, possibly speeding up future calls.
186   // The default implementation, however, is simply to call the const
187   // version.
188   virtual HeapWord* block_start(const void* p);
189 
190   // Requires "addr" to be the start of a chunk, and returns its size.
191   // "addr + size" is required to be the start of a new chunk, or the end
192   // of the active area of the heap.
193   virtual size_t block_size(const HeapWord* addr) const = 0;
194 
195   // Requires "addr" to be the start of a block, and returns "TRUE" iff
196   // the block is an object.
197   virtual bool block_is_obj(const HeapWord* addr) const = 0;
198 
199   // Requires "addr" to be the start of a block, and returns "TRUE" iff
200   // the block is an object and the object is alive.
201   virtual bool obj_is_alive(const HeapWord* addr) const;
202 
203   // Allocation (return NULL if full).  Assumes the caller has established
204   // mutually exclusive access to the space.
205   virtual HeapWord* allocate(size_t word_size) = 0;
206 
207   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
208   virtual HeapWord* par_allocate(size_t word_size) = 0;
209 
210 #if INCLUDE_SERIALGC
211   // Mark-sweep-compact support: all spaces can update pointers to objects
212   // moving as a part of compaction.
213   virtual void adjust_pointers() = 0;
214 #endif
215 
216   virtual void print() const;
217   virtual void print_on(outputStream* st) const;
218   virtual void print_short() const;
219   virtual void print_short_on(outputStream* st) const;
220 
221 
222   // IF "this" is a ContiguousSpace, return it, else return NULL.
223   virtual ContiguousSpace* toContiguousSpace() {
224     return NULL;
225   }
226 
227   // Debugging
228   virtual void verify() const = 0;
229 };
230 
231 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
232 // OopClosure to (the addresses of) all the ref-containing fields that could
233 // be modified by virtue of the given MemRegion being dirty. (Note that
234 // because of the imprecise nature of the write barrier, this may iterate
235 // over oops beyond the region.)
236 // This base type for dirty card to oop closures handles memory regions
237 // in non-contiguous spaces with no boundaries, and should be sub-classed
238 // to support other space types. See ContiguousDCTOC for a sub-class
239 // that works with ContiguousSpaces.
240 
241 class DirtyCardToOopClosure: public MemRegionClosureRO {
242 protected:
243   OopIterateClosure* _cl;
244   Space* _sp;
245   CardTable::PrecisionStyle _precision;
246   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
247                                 // pointing below boundary.
248   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
249                                 // a downwards traversal; this is the
250                                 // lowest location already done (or,
251                                 // alternatively, the lowest address that
252                                 // shouldn't be done again.  NULL means infinity.)
253   NOT_PRODUCT(HeapWord* _last_bottom;)
254   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
255 
256   // Get the actual top of the area on which the closure will
257   // operate, given where the top is assumed to be (the end of the
258   // memory region passed to do_MemRegion) and where the object
259   // at the top is assumed to start. For example, an object may
260   // start at the top but actually extend past the assumed top,
261   // in which case the top becomes the end of the object.
262   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
263 
264   // Walk the given memory region from bottom to (actual) top
265   // looking for objects and applying the oop closure (_cl) to
266   // them. The base implementation of this treats the area as
267   // blocks, where a block may or may not be an object. Sub-
268   // classes should override this to provide more accurate
269   // or possibly more efficient walking.
270   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
271 
272 public:
273   DirtyCardToOopClosure(Space* sp, OopIterateClosure* cl,
274                         CardTable::PrecisionStyle precision,
275                         HeapWord* boundary) :
276     _cl(cl), _sp(sp), _precision(precision), _boundary(boundary),
277     _min_done(NULL) {
278     NOT_PRODUCT(_last_bottom = NULL);
279     NOT_PRODUCT(_last_explicit_min_done = NULL);
280   }
281 
282   void do_MemRegion(MemRegion mr);
283 
284   void set_min_done(HeapWord* min_done) {
285     _min_done = min_done;
286     NOT_PRODUCT(_last_explicit_min_done = _min_done);
287   }
288 #ifndef PRODUCT
289   void set_last_bottom(HeapWord* last_bottom) {
290     _last_bottom = last_bottom;
291   }
292 #endif
293 };
294 
295 // A structure to represent a point at which objects are being copied
296 // during compaction.
297 class CompactPoint : public StackObj {
298 public:
299   Generation* gen;
300   CompactibleSpace* space;
301   HeapWord* threshold;
302 
303   CompactPoint(Generation* g = NULL) :
304     gen(g), space(NULL), threshold(0) {}
305 };
306 
307 // A space that supports compaction operations.  This is usually, but not
308 // necessarily, a space that is normally contiguous.  But, for example, a
309 // free-list-based space whose normal collection is a mark-sweep without
310 // compaction could still support compaction in full GC's.
311 //
312 // The compaction operations are implemented by the
313 // scan_and_{adjust_pointers,compact,forward} function templates.
314 // The following are, non-virtual, auxiliary functions used by these function templates:
315 // - scan_limit()
316 // - scanned_block_is_obj()
317 // - scanned_block_size()
318 // - adjust_obj_size()
319 // - obj_size()
320 // These functions are to be used exclusively by the scan_and_* function templates,
321 // and must be defined for all (non-abstract) subclasses of CompactibleSpace.
322 //
323 // NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
324 // in any of the auxiliary functions must also override the corresponding
325 // prepare_for_compaction/adjust_pointers/compact functions using them.
326 // If not, such changes will not be used or have no effect on the compaction operations.
327 //
328 // This translates to the following dependencies:
329 // Overrides/definitions of
330 //  - scan_limit
331 //  - scanned_block_is_obj
332 //  - scanned_block_size
333 // require override/definition of prepare_for_compaction().
334 // Similar dependencies exist between
335 //  - adjust_obj_size  and adjust_pointers()
336 //  - obj_size         and compact().
337 //
338 // Additionally, this also means that changes to block_size() or block_is_obj() that
339 // should be effective during the compaction operations must provide a corresponding
340 // definition of scanned_block_size/scanned_block_is_obj respectively.
341 class CompactibleSpace: public Space {
342   friend class VMStructs;
343 private:
344   HeapWord* _compaction_top;
345   CompactibleSpace* _next_compaction_space;
346 
347   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
348   inline size_t adjust_obj_size(size_t size) const {
349     return size;
350   }
351 
352   inline size_t obj_size(const HeapWord* addr) const;
353 
354   template <class SpaceType>
355   static inline void verify_up_to_first_dead(SpaceType* space) NOT_DEBUG_RETURN;
356 
357   template <class SpaceType>
358   static inline void clear_empty_region(SpaceType* space);
359 
360 public:
361   CompactibleSpace() :
362    _compaction_top(NULL), _next_compaction_space(NULL) {}
363 
364   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
365   virtual void clear(bool mangle_space);
366 
367   // Used temporarily during a compaction phase to hold the value
368   // top should have when compaction is complete.
369   HeapWord* compaction_top() const { return _compaction_top;    }
370 
371   void set_compaction_top(HeapWord* value) {
372     assert(value == NULL || (value >= bottom() && value <= end()),
373       "should point inside space");
374     _compaction_top = value;
375   }
376 
377   // Perform operations on the space needed after a compaction
378   // has been performed.
379   virtual void reset_after_compaction() = 0;
380 
381   // Returns the next space (in the current generation) to be compacted in
382   // the global compaction order.  Also is used to select the next
383   // space into which to compact.
384 
385   virtual CompactibleSpace* next_compaction_space() const {
386     return _next_compaction_space;
387   }
388 
389   void set_next_compaction_space(CompactibleSpace* csp) {
390     _next_compaction_space = csp;
391   }
392 
393 #if INCLUDE_SERIALGC
394   // MarkSweep support phase2
395 
396   // Start the process of compaction of the current space: compute
397   // post-compaction addresses, and insert forwarding pointers.  The fields
398   // "cp->gen" and "cp->compaction_space" are the generation and space into
399   // which we are currently compacting.  This call updates "cp" as necessary,
400   // and leaves the "compaction_top" of the final value of
401   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
402   // this phase as if the final copy had occurred; if so, "cp->threshold"
403   // indicates when the next such action should be taken.
404   virtual void prepare_for_compaction(CompactPoint* cp) = 0;
405   // MarkSweep support phase3
406   virtual void adjust_pointers();
407   // MarkSweep support phase4
408   virtual void compact();
409 #endif // INCLUDE_SERIALGC
410 
411   // The maximum percentage of objects that can be dead in the compacted
412   // live part of a compacted space ("deadwood" support.)
413   virtual size_t allowed_dead_ratio() const { return 0; };
414 
415   // Some contiguous spaces may maintain some data structures that should
416   // be updated whenever an allocation crosses a boundary.  This function
417   // returns the first such boundary.
418   // (The default implementation returns the end of the space, so the
419   // boundary is never crossed.)
420   virtual HeapWord* initialize_threshold() { return end(); }
421 
422   // "q" is an object of the given "size" that should be forwarded;
423   // "cp" names the generation ("gen") and containing "this" (which must
424   // also equal "cp->space").  "compact_top" is where in "this" the
425   // next object should be forwarded to.  If there is room in "this" for
426   // the object, insert an appropriate forwarding pointer in "q".
427   // If not, go to the next compaction space (there must
428   // be one, since compaction must succeed -- we go to the first space of
429   // the previous generation if necessary, updating "cp"), reset compact_top
430   // and then forward.  In either case, returns the new value of "compact_top".
431   // If the forwarding crosses "cp->threshold", invokes the "cross_threshold"
432   // function of the then-current compaction space, and updates "cp->threshold
433   // accordingly".
434   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
435                     HeapWord* compact_top);
436 
437   // Return a size with adjustments as required of the space.
438   virtual size_t adjust_object_size_v(size_t size) const { return size; }
439 
440   void set_first_dead(HeapWord* value) { _first_dead = value; }
441   void set_end_of_live(HeapWord* value) { _end_of_live = value; }
442 
443 protected:
444   // Used during compaction.
445   HeapWord* _first_dead;
446   HeapWord* _end_of_live;
447 
448   // This the function is invoked when an allocation of an object covering
449   // "start" to "end occurs crosses the threshold; returns the next
450   // threshold.  (The default implementation does nothing.)
451   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
452     return end();
453   }
454 
455   // Below are template functions for scan_and_* algorithms (avoiding virtual calls).
456   // The space argument should be a subclass of CompactibleSpace, implementing
457   // scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
458   // and possibly also overriding obj_size(), and adjust_obj_size().
459   // These functions should avoid virtual calls whenever possible.
460 
461 #if INCLUDE_SERIALGC
462   // Frequently calls adjust_obj_size().
463   template <class SpaceType>
464   static inline void scan_and_adjust_pointers(SpaceType* space);
465 #endif
466 
467   // Frequently calls obj_size().
468   template <class SpaceType>
469   static inline void scan_and_compact(SpaceType* space);
470 
471   // Frequently calls scanned_block_is_obj() and scanned_block_size().
472   // Requires the scan_limit() function.
473   template <class SpaceType>
474   static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
475 };
476 
477 class GenSpaceMangler;
478 
479 // A space in which the free area is contiguous.  It therefore supports
480 // faster allocation, and compaction.
481 class ContiguousSpace: public CompactibleSpace {
482   friend class VMStructs;
483   // Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
484   template <typename SpaceType>
485   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
486 
487  private:
488   // Auxiliary functions for scan_and_forward support.
489   // See comments for CompactibleSpace for more information.
490   inline HeapWord* scan_limit() const {
491     return top();
492   }
493 
494   inline bool scanned_block_is_obj(const HeapWord* addr) const {
495     return true; // Always true, since scan_limit is top
496   }
497 
498   inline size_t scanned_block_size(const HeapWord* addr) const;
499 
500  protected:
501   HeapWord* _top;
502   // A helper for mangling the unused area of the space in debug builds.
503   GenSpaceMangler* _mangler;
504 
505   GenSpaceMangler* mangler() { return _mangler; }
506 
507   // Allocation helpers (return NULL if full).
508   inline HeapWord* allocate_impl(size_t word_size);
509   inline HeapWord* par_allocate_impl(size_t word_size);
510 
511  public:
512   ContiguousSpace();
513   ~ContiguousSpace();
514 
515   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
516   virtual void clear(bool mangle_space);
517 
518   // Accessors
519   HeapWord* top() const            { return _top;    }
520   void set_top(HeapWord* value)    { _top = value; }
521 
522   void set_saved_mark()            { _saved_mark_word = top();    }
523   void reset_saved_mark()          { _saved_mark_word = bottom(); }
524 
525   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
526 
527   // In debug mode mangle (write it with a particular bit
528   // pattern) the unused part of a space.
529 
530   // Used to save the an address in a space for later use during mangling.
531   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
532   // Used to save the space's current top for later use during mangling.
533   void set_top_for_allocations() PRODUCT_RETURN;
534 
535   // Mangle regions in the space from the current top up to the
536   // previously mangled part of the space.
537   void mangle_unused_area() PRODUCT_RETURN;
538   // Mangle [top, end)
539   void mangle_unused_area_complete() PRODUCT_RETURN;
540 
541   // Do some sparse checking on the area that should have been mangled.
542   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
543   // Check the complete area that should have been mangled.
544   // This code may be NULL depending on the macro DEBUG_MANGLING.
545   void check_mangled_unused_area_complete() PRODUCT_RETURN;
546 
547   // Size computations: sizes in bytes.
548   size_t capacity() const        { return byte_size(bottom(), end()); }
549   size_t used() const            { return byte_size(bottom(), top()); }
550   size_t free() const            { return byte_size(top(),    end()); }
551 
552   virtual bool is_free_block(const HeapWord* p) const;
553 
554   // In a contiguous space we have a more obvious bound on what parts
555   // contain objects.
556   MemRegion used_region() const { return MemRegion(bottom(), top()); }
557 
558   // Allocation (return NULL if full)
559   virtual HeapWord* allocate(size_t word_size);
560   virtual HeapWord* par_allocate(size_t word_size);
561 
562   // Iteration
563   void oop_iterate(OopIterateClosure* cl);
564   void object_iterate(ObjectClosure* blk);
565 
566   // Compaction support
567   virtual void reset_after_compaction() {
568     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
569     set_top(compaction_top());
570   }
571 
572   // Override.
573   DirtyCardToOopClosure* new_dcto_cl(OopIterateClosure* cl,
574                                      CardTable::PrecisionStyle precision,
575                                      HeapWord* boundary);
576 
577   // Apply "blk->do_oop" to the addresses of all reference fields in objects
578   // starting with the _saved_mark_word, which was noted during a generation's
579   // save_marks and is required to denote the head of an object.
580   // Fields in objects allocated by applications of the closure
581   // *are* included in the iteration.
582   // Updates _saved_mark_word to point to just after the last object
583   // iterated over.
584   template <typename OopClosureType>
585   void oop_since_save_marks_iterate(OopClosureType* blk);
586 
587   // Same as object_iterate, but starting from "mark", which is required
588   // to denote the start of an object.  Objects allocated by
589   // applications of the closure *are* included in the iteration.
590   virtual void object_iterate_from(HeapWord* mark, ObjectClosure* blk);
591 
592   // Very inefficient implementation.
593   virtual HeapWord* block_start_const(const void* p) const;
594   size_t block_size(const HeapWord* p) const;
595   // If a block is in the allocated area, it is an object.
596   bool block_is_obj(const HeapWord* p) const { return p < top(); }
597 
598   // Addresses for inlined allocation
599   HeapWord** top_addr() { return &_top; }
600   HeapWord** end_addr() { return &_end; }
601 
602 #if INCLUDE_SERIALGC
603   // Overrides for more efficient compaction support.
604   void prepare_for_compaction(CompactPoint* cp);
605 #endif
606 
607   virtual void print_on(outputStream* st) const;
608 
609   // Checked dynamic downcasts.
610   virtual ContiguousSpace* toContiguousSpace() {
611     return this;
612   }
613 
614   // Debugging
615   virtual void verify() const;
616 
617   // Used to increase collection frequency.  "factor" of 0 means entire
618   // space.
619   void allocate_temporary_filler(int factor);
620 };
621 
622 
623 // A dirty card to oop closure that does filtering.
624 // It knows how to filter out objects that are outside of the _boundary.
625 class FilteringDCTOC : public DirtyCardToOopClosure {
626 protected:
627   // Override.
628   void walk_mem_region(MemRegion mr,
629                        HeapWord* bottom, HeapWord* top);
630 
631   // Walk the given memory region, from bottom to top, applying
632   // the given oop closure to (possibly) all objects found. The
633   // given oop closure may or may not be the same as the oop
634   // closure with which this closure was created, as it may
635   // be a filtering closure which makes use of the _boundary.
636   // We offer two signatures, so the FilteringClosure static type is
637   // apparent.
638   virtual void walk_mem_region_with_cl(MemRegion mr,
639                                        HeapWord* bottom, HeapWord* top,
640                                        OopIterateClosure* cl) = 0;
641   virtual void walk_mem_region_with_cl(MemRegion mr,
642                                        HeapWord* bottom, HeapWord* top,
643                                        FilteringClosure* cl) = 0;
644 
645 public:
646   FilteringDCTOC(Space* sp, OopIterateClosure* cl,
647                   CardTable::PrecisionStyle precision,
648                   HeapWord* boundary) :
649     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
650 };
651 
652 // A dirty card to oop closure for contiguous spaces
653 // (ContiguousSpace and sub-classes).
654 // It is a FilteringClosure, as defined above, and it knows:
655 //
656 // 1. That the actual top of any area in a memory region
657 //    contained by the space is bounded by the end of the contiguous
658 //    region of the space.
659 // 2. That the space is really made up of objects and not just
660 //    blocks.
661 
662 class ContiguousSpaceDCTOC : public FilteringDCTOC {
663 protected:
664   // Overrides.
665   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
666 
667   virtual void walk_mem_region_with_cl(MemRegion mr,
668                                        HeapWord* bottom, HeapWord* top,
669                                        OopIterateClosure* cl);
670   virtual void walk_mem_region_with_cl(MemRegion mr,
671                                        HeapWord* bottom, HeapWord* top,
672                                        FilteringClosure* cl);
673 
674 public:
675   ContiguousSpaceDCTOC(ContiguousSpace* sp, OopIterateClosure* cl,
676                        CardTable::PrecisionStyle precision,
677                        HeapWord* boundary) :
678     FilteringDCTOC(sp, cl, precision, boundary)
679   {}
680 };
681 
682 // A ContigSpace that Supports an efficient "block_start" operation via
683 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
684 // other spaces.)  This is the abstract base class for old generation
685 // (tenured) spaces.
686 
687 class OffsetTableContigSpace: public ContiguousSpace {
688   friend class VMStructs;
689  protected:
690   BlockOffsetArrayContigSpace _offsets;
691   Mutex _par_alloc_lock;
692 
693  public:
694   // Constructor
695   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
696                          MemRegion mr);
697 
698   void set_bottom(HeapWord* value);
699   void set_end(HeapWord* value);
700 
701   void clear(bool mangle_space);
702 
703   inline HeapWord* block_start_const(const void* p) const;
704 
705   // Add offset table update.
706   virtual inline HeapWord* allocate(size_t word_size);
707   inline HeapWord* par_allocate(size_t word_size);
708 
709   // MarkSweep support phase3
710   virtual HeapWord* initialize_threshold();
711   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
712 
713   virtual void print_on(outputStream* st) const;
714 
715   // Debugging
716   void verify() const;
717 };
718 
719 
720 // Class TenuredSpace is used by TenuredGeneration
721 
722 class TenuredSpace: public OffsetTableContigSpace {
723   friend class VMStructs;
724  protected:
725   // Mark sweep support
726   size_t allowed_dead_ratio() const;
727  public:
728   // Constructor
729   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
730                MemRegion mr) :
731     OffsetTableContigSpace(sharedOffsetArray, mr) {}
732 };
733 #endif // SHARE_GC_SHARED_SPACE_HPP