1 /* 2 * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_SHARED_SPACE_INLINE_HPP 26 #define SHARE_GC_SHARED_SPACE_INLINE_HPP 27 28 #include "gc/shared/space.hpp" 29 30 #include "gc/shared/blockOffsetTable.inline.hpp" 31 #include "gc/shared/collectedHeap.hpp" 32 #include "gc/shared/generation.hpp" 33 #include "gc/shared/spaceDecorator.hpp" 34 #include "oops/oopsHierarchy.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/prefetch.inline.hpp" 37 #include "runtime/safepoint.hpp" 38 #if INCLUDE_SERIALGC 39 #include "gc/serial/markSweep.inline.hpp" 40 #endif 41 42 inline HeapWord* Space::block_start(const void* p) { 43 return block_start_const(p); 44 } 45 46 inline HeapWord* OffsetTableContigSpace::allocate(size_t size) { 47 HeapWord* res = ContiguousSpace::allocate(size); 48 if (res != NULL) { 49 _offsets.alloc_block(res, size); 50 } 51 return res; 52 } 53 54 // Because of the requirement of keeping "_offsets" up to date with the 55 // allocations, we sequentialize these with a lock. Therefore, best if 56 // this is used for larger LAB allocations only. 57 inline HeapWord* OffsetTableContigSpace::par_allocate(size_t size) { 58 MutexLocker x(&_par_alloc_lock); 59 // This ought to be just "allocate", because of the lock above, but that 60 // ContiguousSpace::allocate asserts that either the allocating thread 61 // holds the heap lock or it is the VM thread and we're at a safepoint. 62 // The best I (dld) could figure was to put a field in ContiguousSpace 63 // meaning "locking at safepoint taken care of", and set/reset that 64 // here. But this will do for now, especially in light of the comment 65 // above. Perhaps in the future some lock-free manner of keeping the 66 // coordination. 67 HeapWord* res = ContiguousSpace::par_allocate(size); 68 if (res != NULL) { 69 _offsets.alloc_block(res, size); 70 } 71 return res; 72 } 73 74 inline HeapWord* 75 OffsetTableContigSpace::block_start_const(const void* p) const { 76 return _offsets.block_start(p); 77 } 78 79 size_t CompactibleSpace::obj_size(const HeapWord* addr) const { 80 return cast_to_oop(addr)->size(); 81 } 82 83 #if INCLUDE_SERIALGC 84 85 class DeadSpacer : StackObj { 86 size_t _allowed_deadspace_words; 87 bool _active; 88 CompactibleSpace* _space; 89 90 public: 91 DeadSpacer(CompactibleSpace* space) : _allowed_deadspace_words(0), _space(space) { 92 size_t ratio = _space->allowed_dead_ratio(); 93 _active = ratio > 0; 94 95 if (_active) { 96 assert(!UseG1GC, "G1 should not be using dead space"); 97 98 // We allow some amount of garbage towards the bottom of the space, so 99 // we don't start compacting before there is a significant gain to be made. 100 // Occasionally, we want to ensure a full compaction, which is determined 101 // by the MarkSweepAlwaysCompactCount parameter. 102 if ((MarkSweep::total_invocations() % MarkSweepAlwaysCompactCount) != 0) { 103 _allowed_deadspace_words = (space->capacity() * ratio / 100) / HeapWordSize; 104 } else { 105 _active = false; 106 } 107 } 108 } 109 110 111 bool insert_deadspace(HeapWord* dead_start, HeapWord* dead_end) { 112 if (!_active) { 113 return false; 114 } 115 116 size_t dead_length = pointer_delta(dead_end, dead_start); 117 if (_allowed_deadspace_words >= dead_length) { 118 _allowed_deadspace_words -= dead_length; 119 CollectedHeap::fill_with_object(dead_start, dead_length); 120 oop obj = cast_to_oop(dead_start); 121 obj->set_mark(obj->mark().set_marked()); 122 123 assert(dead_length == (size_t)obj->size(), "bad filler object size"); 124 log_develop_trace(gc, compaction)("Inserting object to dead space: " PTR_FORMAT ", " PTR_FORMAT ", " SIZE_FORMAT "b", 125 p2i(dead_start), p2i(dead_end), dead_length * HeapWordSize); 126 127 return true; 128 } else { 129 _active = false; 130 return false; 131 } 132 } 133 134 }; 135 136 template <class SpaceType> 137 inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) { 138 // Compute the new addresses for the live objects and store it in the mark 139 // Used by universe::mark_sweep_phase2() 140 141 // We're sure to be here before any objects are compacted into this 142 // space, so this is a good time to initialize this: 143 space->set_compaction_top(space->bottom()); 144 145 if (cp->space == NULL) { 146 assert(cp->gen != NULL, "need a generation"); 147 assert(cp->threshold == NULL, "just checking"); 148 assert(cp->gen->first_compaction_space() == space, "just checking"); 149 cp->space = cp->gen->first_compaction_space(); 150 cp->threshold = cp->space->initialize_threshold(); 151 cp->space->set_compaction_top(cp->space->bottom()); 152 } 153 154 HeapWord* compact_top = cp->space->compaction_top(); // This is where we are currently compacting to. 155 156 DeadSpacer dead_spacer(space); 157 158 HeapWord* end_of_live = space->bottom(); // One byte beyond the last byte of the last live object. 159 HeapWord* first_dead = NULL; // The first dead object. 160 161 const intx interval = PrefetchScanIntervalInBytes; 162 163 HeapWord* cur_obj = space->bottom(); 164 HeapWord* scan_limit = space->scan_limit(); 165 166 while (cur_obj < scan_limit) { 167 if (space->scanned_block_is_obj(cur_obj) && cast_to_oop(cur_obj)->is_gc_marked()) { 168 // prefetch beyond cur_obj 169 Prefetch::write(cur_obj, interval); 170 size_t size = space->scanned_block_size(cur_obj); 171 compact_top = cp->space->forward(cast_to_oop(cur_obj), size, cp, compact_top); 172 cur_obj += size; 173 end_of_live = cur_obj; 174 } else { 175 // run over all the contiguous dead objects 176 HeapWord* end = cur_obj; 177 do { 178 // prefetch beyond end 179 Prefetch::write(end, interval); 180 end += space->scanned_block_size(end); 181 } while (end < scan_limit && (!space->scanned_block_is_obj(end) || !cast_to_oop(end)->is_gc_marked())); 182 183 // see if we might want to pretend this object is alive so that 184 // we don't have to compact quite as often. 185 if (cur_obj == compact_top && dead_spacer.insert_deadspace(cur_obj, end)) { 186 oop obj = cast_to_oop(cur_obj); 187 compact_top = cp->space->forward(obj, obj->size(), cp, compact_top); 188 end_of_live = end; 189 } else { 190 // otherwise, it really is a free region. 191 192 // cur_obj is a pointer to a dead object. Use this dead memory to store a pointer to the next live object. 193 *(HeapWord**)cur_obj = end; 194 195 // see if this is the first dead region. 196 if (first_dead == NULL) { 197 first_dead = cur_obj; 198 } 199 } 200 201 // move on to the next object 202 cur_obj = end; 203 } 204 } 205 206 assert(cur_obj == scan_limit, "just checking"); 207 space->_end_of_live = end_of_live; 208 if (first_dead != NULL) { 209 space->_first_dead = first_dead; 210 } else { 211 space->_first_dead = end_of_live; 212 } 213 214 // save the compaction_top of the compaction space. 215 cp->space->set_compaction_top(compact_top); 216 } 217 218 template <class SpaceType> 219 inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) { 220 // adjust all the interior pointers to point at the new locations of objects 221 // Used by MarkSweep::mark_sweep_phase3() 222 223 HeapWord* cur_obj = space->bottom(); 224 HeapWord* const end_of_live = space->_end_of_live; // Established by "scan_and_forward". 225 HeapWord* const first_dead = space->_first_dead; // Established by "scan_and_forward". 226 227 assert(first_dead <= end_of_live, "Stands to reason, no?"); 228 229 const intx interval = PrefetchScanIntervalInBytes; 230 231 debug_only(HeapWord* prev_obj = NULL); 232 while (cur_obj < end_of_live) { 233 Prefetch::write(cur_obj, interval); 234 if (cur_obj < first_dead || cast_to_oop(cur_obj)->is_gc_marked()) { 235 // cur_obj is alive 236 // point all the oops to the new location 237 size_t size = MarkSweep::adjust_pointers(cast_to_oop(cur_obj)); 238 size = space->adjust_obj_size(size); 239 debug_only(prev_obj = cur_obj); 240 cur_obj += size; 241 } else { 242 debug_only(prev_obj = cur_obj); 243 // cur_obj is not a live object, instead it points at the next live object 244 cur_obj = *(HeapWord**)cur_obj; 245 assert(cur_obj > prev_obj, "we should be moving forward through memory, cur_obj: " PTR_FORMAT ", prev_obj: " PTR_FORMAT, p2i(cur_obj), p2i(prev_obj)); 246 } 247 } 248 249 assert(cur_obj == end_of_live, "just checking"); 250 } 251 252 #ifdef ASSERT 253 template <class SpaceType> 254 inline void CompactibleSpace::verify_up_to_first_dead(SpaceType* space) { 255 HeapWord* cur_obj = space->bottom(); 256 257 if (cur_obj < space->_end_of_live && space->_first_dead > cur_obj && !cast_to_oop(cur_obj)->is_gc_marked()) { 258 // we have a chunk of the space which hasn't moved and we've reinitialized 259 // the mark word during the previous pass, so we can't use is_gc_marked for 260 // the traversal. 261 HeapWord* prev_obj = NULL; 262 263 while (cur_obj < space->_first_dead) { 264 size_t size = space->obj_size(cur_obj); 265 assert(!cast_to_oop(cur_obj)->is_gc_marked(), "should be unmarked (special dense prefix handling)"); 266 prev_obj = cur_obj; 267 cur_obj += size; 268 } 269 } 270 } 271 #endif 272 273 template <class SpaceType> 274 inline void CompactibleSpace::clear_empty_region(SpaceType* space) { 275 // Let's remember if we were empty before we did the compaction. 276 bool was_empty = space->used_region().is_empty(); 277 // Reset space after compaction is complete 278 space->reset_after_compaction(); 279 // We do this clear, below, since it has overloaded meanings for some 280 // space subtypes. For example, OffsetTableContigSpace's that were 281 // compacted into will have had their offset table thresholds updated 282 // continuously, but those that weren't need to have their thresholds 283 // re-initialized. Also mangles unused area for debugging. 284 if (space->used_region().is_empty()) { 285 if (!was_empty) space->clear(SpaceDecorator::Mangle); 286 } else { 287 if (ZapUnusedHeapArea) space->mangle_unused_area(); 288 } 289 } 290 291 template <class SpaceType> 292 inline void CompactibleSpace::scan_and_compact(SpaceType* space) { 293 // Copy all live objects to their new location 294 // Used by MarkSweep::mark_sweep_phase4() 295 296 verify_up_to_first_dead(space); 297 298 HeapWord* const bottom = space->bottom(); 299 HeapWord* const end_of_live = space->_end_of_live; 300 301 assert(space->_first_dead <= end_of_live, "Invariant. _first_dead: " PTR_FORMAT " <= end_of_live: " PTR_FORMAT, p2i(space->_first_dead), p2i(end_of_live)); 302 if (space->_first_dead == end_of_live && (bottom == end_of_live || !cast_to_oop(bottom)->is_gc_marked())) { 303 // Nothing to compact. The space is either empty or all live object should be left in place. 304 clear_empty_region(space); 305 return; 306 } 307 308 const intx scan_interval = PrefetchScanIntervalInBytes; 309 const intx copy_interval = PrefetchCopyIntervalInBytes; 310 311 assert(bottom < end_of_live, "bottom: " PTR_FORMAT " should be < end_of_live: " PTR_FORMAT, p2i(bottom), p2i(end_of_live)); 312 HeapWord* cur_obj = bottom; 313 if (space->_first_dead > cur_obj && !cast_to_oop(cur_obj)->is_gc_marked()) { 314 // All object before _first_dead can be skipped. They should not be moved. 315 // A pointer to the first live object is stored at the memory location for _first_dead. 316 cur_obj = *(HeapWord**)(space->_first_dead); 317 } 318 319 debug_only(HeapWord* prev_obj = NULL); 320 while (cur_obj < end_of_live) { 321 if (!cast_to_oop(cur_obj)->is_gc_marked()) { 322 debug_only(prev_obj = cur_obj); 323 // The first word of the dead object contains a pointer to the next live object or end of space. 324 cur_obj = *(HeapWord**)cur_obj; 325 assert(cur_obj > prev_obj, "we should be moving forward through memory"); 326 } else { 327 // prefetch beyond q 328 Prefetch::read(cur_obj, scan_interval); 329 330 // size and destination 331 size_t size = space->obj_size(cur_obj); 332 HeapWord* compaction_top = cast_from_oop<HeapWord*>(cast_to_oop(cur_obj)->forwardee()); 333 334 // prefetch beyond compaction_top 335 Prefetch::write(compaction_top, copy_interval); 336 337 // copy object and reinit its mark 338 assert(cur_obj != compaction_top, "everything in this pass should be moving"); 339 Copy::aligned_conjoint_words(cur_obj, compaction_top, size); 340 cast_to_oop(compaction_top)->init_mark(); 341 assert(cast_to_oop(compaction_top)->klass() != NULL, "should have a class"); 342 343 debug_only(prev_obj = cur_obj); 344 cur_obj += size; 345 } 346 } 347 348 clear_empty_region(space); 349 } 350 351 #endif // INCLUDE_SERIALGC 352 353 size_t ContiguousSpace::scanned_block_size(const HeapWord* addr) const { 354 return cast_to_oop(addr)->size(); 355 } 356 357 template <typename OopClosureType> 358 void ContiguousSpace::oop_since_save_marks_iterate(OopClosureType* blk) { 359 HeapWord* t; 360 HeapWord* p = saved_mark_word(); 361 assert(p != NULL, "expected saved mark"); 362 363 const intx interval = PrefetchScanIntervalInBytes; 364 do { 365 t = top(); 366 while (p < t) { 367 Prefetch::write(p, interval); 368 debug_only(HeapWord* prev = p); 369 oop m = cast_to_oop(p); 370 p += m->oop_iterate_size(blk); 371 } 372 } while (t < top()); 373 374 set_saved_mark_word(p); 375 } 376 377 #endif // SHARE_GC_SHARED_SPACE_INLINE_HPP