1 /*
   2  * Copyright (c) 2013, 2021, Red Hat, Inc. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.hpp"
  27 #include "memory/universe.hpp"
  28 
  29 #include "gc/shared/gcArguments.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/locationPrinter.inline.hpp"
  33 #include "gc/shared/memAllocator.hpp"
  34 #include "gc/shared/plab.hpp"
  35 #include "gc/shared/tlab_globals.hpp"
  36 
  37 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  38 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  39 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  40 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  41 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  42 #include "gc/shenandoah/shenandoahControlThread.hpp"
  43 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  44 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  45 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  46 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  47 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  48 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  49 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  50 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  51 #include "gc/shenandoah/shenandoahMetrics.hpp"
  52 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  53 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  54 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  55 #include "gc/shenandoah/shenandoahPadding.hpp"
  56 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  57 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  58 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  59 #include "gc/shenandoah/shenandoahStringDedup.hpp"
  60 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  61 #include "gc/shenandoah/shenandoahUtils.hpp"
  62 #include "gc/shenandoah/shenandoahVerifier.hpp"
  63 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  64 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  65 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  66 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  67 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  68 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  69 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  70 #if INCLUDE_JFR
  71 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  72 #endif
  73 
  74 #include "classfile/systemDictionary.hpp"
  75 #include "memory/classLoaderMetaspace.hpp"
  76 #include "memory/metaspaceUtils.hpp"
  77 #include "oops/compressedOops.inline.hpp"
  78 #include "prims/jvmtiTagMap.hpp"
  79 #include "runtime/atomic.hpp"
  80 #include "runtime/globals.hpp"
  81 #include "runtime/interfaceSupport.inline.hpp"
  82 #include "runtime/java.hpp"
  83 #include "runtime/orderAccess.hpp"
  84 #include "runtime/safepointMechanism.hpp"
  85 #include "runtime/vmThread.hpp"
  86 #include "services/mallocTracker.hpp"
  87 #include "services/memTracker.hpp"
  88 #include "utilities/events.hpp"
  89 #include "utilities/powerOfTwo.hpp"
  90 
  91 class ShenandoahPretouchHeapTask : public AbstractGangTask {
  92 private:
  93   ShenandoahRegionIterator _regions;
  94   const size_t _page_size;
  95 public:
  96   ShenandoahPretouchHeapTask(size_t page_size) :
  97     AbstractGangTask("Shenandoah Pretouch Heap"),
  98     _page_size(page_size) {}
  99 
 100   virtual void work(uint worker_id) {
 101     ShenandoahHeapRegion* r = _regions.next();
 102     while (r != NULL) {
 103       if (r->is_committed()) {
 104         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 105       }
 106       r = _regions.next();
 107     }
 108   }
 109 };
 110 
 111 class ShenandoahPretouchBitmapTask : public AbstractGangTask {
 112 private:
 113   ShenandoahRegionIterator _regions;
 114   char* _bitmap_base;
 115   const size_t _bitmap_size;
 116   const size_t _page_size;
 117 public:
 118   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 119     AbstractGangTask("Shenandoah Pretouch Bitmap"),
 120     _bitmap_base(bitmap_base),
 121     _bitmap_size(bitmap_size),
 122     _page_size(page_size) {}
 123 
 124   virtual void work(uint worker_id) {
 125     ShenandoahHeapRegion* r = _regions.next();
 126     while (r != NULL) {
 127       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 128       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 129       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 130 
 131       if (r->is_committed()) {
 132         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 133       }
 134 
 135       r = _regions.next();
 136     }
 137   }
 138 };
 139 
 140 jint ShenandoahHeap::initialize() {
 141   //
 142   // Figure out heap sizing
 143   //
 144 
 145   size_t init_byte_size = InitialHeapSize;
 146   size_t min_byte_size  = MinHeapSize;
 147   size_t max_byte_size  = MaxHeapSize;
 148   size_t heap_alignment = HeapAlignment;
 149 
 150   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 151 
 152   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 153   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 154 
 155   _num_regions = ShenandoahHeapRegion::region_count();
 156   assert(_num_regions == (max_byte_size / reg_size_bytes),
 157          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 158          _num_regions, max_byte_size, reg_size_bytes);
 159 
 160   // Now we know the number of regions, initialize the heuristics.
 161   initialize_heuristics();
 162 
 163   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 164   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 165   assert(num_committed_regions <= _num_regions, "sanity");
 166   _initial_size = num_committed_regions * reg_size_bytes;
 167 
 168   size_t num_min_regions = min_byte_size / reg_size_bytes;
 169   num_min_regions = MIN2(num_min_regions, _num_regions);
 170   assert(num_min_regions <= _num_regions, "sanity");
 171   _minimum_size = num_min_regions * reg_size_bytes;
 172 
 173   // Default to max heap size.
 174   _soft_max_size = _num_regions * reg_size_bytes;
 175 
 176   _committed = _initial_size;
 177 
 178   size_t heap_page_size   = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 179   size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 180   size_t region_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 181 
 182   //
 183   // Reserve and commit memory for heap
 184   //
 185 
 186   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 187   initialize_reserved_region(heap_rs);
 188   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 189   _heap_region_special = heap_rs.special();
 190 
 191   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 192          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 193 
 194 #if SHENANDOAH_OPTIMIZED_MARKTASK
 195   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 196   // Fail if we ever attempt to address more than we can.
 197   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 198     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 199                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 200                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 201                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 202     vm_exit_during_initialization("Fatal Error", buf);
 203   }
 204 #endif
 205 
 206   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 207   if (!_heap_region_special) {
 208     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 209                               "Cannot commit heap memory");
 210   }
 211 
 212   //
 213   // Reserve and commit memory for bitmap(s)
 214   //
 215 
 216   _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 217   _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
 218 
 219   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 220 
 221   guarantee(bitmap_bytes_per_region != 0,
 222             "Bitmap bytes per region should not be zero");
 223   guarantee(is_power_of_2(bitmap_bytes_per_region),
 224             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 225 
 226   if (bitmap_page_size > bitmap_bytes_per_region) {
 227     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 228     _bitmap_bytes_per_slice = bitmap_page_size;
 229   } else {
 230     _bitmap_regions_per_slice = 1;
 231     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 232   }
 233 
 234   guarantee(_bitmap_regions_per_slice >= 1,
 235             "Should have at least one region per slice: " SIZE_FORMAT,
 236             _bitmap_regions_per_slice);
 237 
 238   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 239             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 240             _bitmap_bytes_per_slice, bitmap_page_size);
 241 
 242   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 243   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 244   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 245   _bitmap_region_special = bitmap.special();
 246 
 247   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 248                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 249   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 250   if (!_bitmap_region_special) {
 251     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 252                               "Cannot commit bitmap memory");
 253   }
 254 
 255   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
 256 
 257   if (ShenandoahVerify) {
 258     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 259     if (!verify_bitmap.special()) {
 260       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 261                                 "Cannot commit verification bitmap memory");
 262     }
 263     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 264     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 265     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 266     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 267   }
 268 
 269   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 270   ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
 271   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 272   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 273   _aux_bitmap_region_special = aux_bitmap.special();
 274   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 275 
 276   //
 277   // Create regions and region sets
 278   //
 279   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 280   size_t region_storage_size = align_up(region_align * _num_regions, region_page_size);
 281   region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity());
 282 
 283   ReservedSpace region_storage(region_storage_size, region_page_size);
 284   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 285   if (!region_storage.special()) {
 286     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 287                               "Cannot commit region memory");
 288   }
 289 
 290   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 291   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 292   // If not successful, bite a bullet and allocate at whatever address.
 293   {
 294     size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 295     size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 296 
 297     uintptr_t min = round_up_power_of_2(cset_align);
 298     uintptr_t max = (1u << 30u);
 299 
 300     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 301       char* req_addr = (char*)addr;
 302       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 303       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr);
 304       if (cset_rs.is_reserved()) {
 305         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 306         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 307         break;
 308       }
 309     }
 310 
 311     if (_collection_set == NULL) {
 312       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size());
 313       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 314     }
 315   }
 316 
 317   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 318   _free_set = new ShenandoahFreeSet(this, _num_regions);
 319 
 320   {
 321     ShenandoahHeapLocker locker(lock());
 322 
 323     for (size_t i = 0; i < _num_regions; i++) {
 324       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 325       bool is_committed = i < num_committed_regions;
 326       void* loc = region_storage.base() + i * region_align;
 327 
 328       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 329       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 330 
 331       _marking_context->initialize_top_at_mark_start(r);
 332       _regions[i] = r;
 333       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 334     }
 335 
 336     // Initialize to complete
 337     _marking_context->mark_complete();
 338 
 339     _free_set->rebuild();
 340   }
 341 
 342   if (AlwaysPreTouch) {
 343     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 344     // before initialize() below zeroes it with initializing thread. For any given region,
 345     // we touch the region and the corresponding bitmaps from the same thread.
 346     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 347 
 348     _pretouch_heap_page_size = heap_page_size;
 349     _pretouch_bitmap_page_size = bitmap_page_size;
 350 
 351 #ifdef LINUX
 352     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 353     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 354     // them into huge one. Therefore, we need to pretouch with smaller pages.
 355     if (UseTransparentHugePages) {
 356       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 357       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 358     }
 359 #endif
 360 
 361     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 362     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 363 
 364     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 365     _workers->run_task(&bcl);
 366 
 367     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 368     _workers->run_task(&hcl);
 369   }
 370 
 371   //
 372   // Initialize the rest of GC subsystems
 373   //
 374 
 375   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 376   for (uint worker = 0; worker < _max_workers; worker++) {
 377     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 378     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 379   }
 380 
 381   // There should probably be Shenandoah-specific options for these,
 382   // just as there are G1-specific options.
 383   {
 384     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 385     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 386     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 387   }
 388 
 389   _monitoring_support = new ShenandoahMonitoringSupport(this);
 390   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 391   ShenandoahCodeRoots::initialize();
 392 
 393   if (ShenandoahPacing) {
 394     _pacer = new ShenandoahPacer(this);
 395     _pacer->setup_for_idle();
 396   } else {
 397     _pacer = NULL;
 398   }
 399 
 400   _control_thread = new ShenandoahControlThread();
 401 
 402   ShenandoahInitLogger::print();
 403 
 404   return JNI_OK;
 405 }
 406 
 407 void ShenandoahHeap::initialize_mode() {
 408   if (ShenandoahGCMode != NULL) {
 409     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 410       _gc_mode = new ShenandoahSATBMode();
 411     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 412       _gc_mode = new ShenandoahIUMode();
 413     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 414       _gc_mode = new ShenandoahPassiveMode();
 415     } else {
 416       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 417     }
 418   } else {
 419     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 420   }
 421   _gc_mode->initialize_flags();
 422   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 423     vm_exit_during_initialization(
 424             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 425                     _gc_mode->name()));
 426   }
 427   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 428     vm_exit_during_initialization(
 429             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 430                     _gc_mode->name()));
 431   }
 432 }
 433 
 434 void ShenandoahHeap::initialize_heuristics() {
 435   assert(_gc_mode != NULL, "Must be initialized");
 436   _heuristics = _gc_mode->initialize_heuristics();
 437 
 438   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 439     vm_exit_during_initialization(
 440             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 441                     _heuristics->name()));
 442   }
 443   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 444     vm_exit_during_initialization(
 445             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 446                     _heuristics->name()));
 447   }
 448 }
 449 
 450 #ifdef _MSC_VER
 451 #pragma warning( push )
 452 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 453 #endif
 454 
 455 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 456   CollectedHeap(),
 457   _initial_size(0),
 458   _used(0),
 459   _committed(0),
 460   _bytes_allocated_since_gc_start(0),
 461   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 462   _workers(NULL),
 463   _safepoint_workers(NULL),
 464   _heap_region_special(false),
 465   _num_regions(0),
 466   _regions(NULL),
 467   _update_refs_iterator(this),
 468   _control_thread(NULL),
 469   _shenandoah_policy(policy),
 470   _gc_mode(NULL),
 471   _heuristics(NULL),
 472   _free_set(NULL),
 473   _pacer(NULL),
 474   _verifier(NULL),
 475   _phase_timings(NULL),
 476   _monitoring_support(NULL),
 477   _memory_pool(NULL),
 478   _stw_memory_manager("Shenandoah Pauses", "end of GC pause"),
 479   _cycle_memory_manager("Shenandoah Cycles", "end of GC cycle"),
 480   _gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 481   _soft_ref_policy(),
 482   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 483   _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
 484   _marking_context(NULL),
 485   _bitmap_size(0),
 486   _bitmap_regions_per_slice(0),
 487   _bitmap_bytes_per_slice(0),
 488   _bitmap_region_special(false),
 489   _aux_bitmap_region_special(false),
 490   _liveness_cache(NULL),
 491   _collection_set(NULL)
 492 {
 493   // Initialize GC mode early, so we can adjust barrier support
 494   initialize_mode();
 495   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 496 
 497   _max_workers = MAX2(_max_workers, 1U);
 498   _workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers,
 499                             /* are_GC_task_threads */ true,
 500                             /* are_ConcurrentGC_threads */ true);
 501   if (_workers == NULL) {
 502     vm_exit_during_initialization("Failed necessary allocation.");
 503   } else {
 504     _workers->initialize_workers();
 505   }
 506 
 507   if (ParallelGCThreads > 1) {
 508     _safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread",
 509                                                 ParallelGCThreads,
 510                       /* are_GC_task_threads */ false,
 511                  /* are_ConcurrentGC_threads */ false);
 512     _safepoint_workers->initialize_workers();
 513   }
 514 }
 515 
 516 #ifdef _MSC_VER
 517 #pragma warning( pop )
 518 #endif
 519 
 520 class ShenandoahResetBitmapTask : public AbstractGangTask {
 521 private:
 522   ShenandoahRegionIterator _regions;
 523 
 524 public:
 525   ShenandoahResetBitmapTask() :
 526     AbstractGangTask("Shenandoah Reset Bitmap") {}
 527 
 528   void work(uint worker_id) {
 529     ShenandoahHeapRegion* region = _regions.next();
 530     ShenandoahHeap* heap = ShenandoahHeap::heap();
 531     ShenandoahMarkingContext* const ctx = heap->marking_context();
 532     while (region != NULL) {
 533       if (heap->is_bitmap_slice_committed(region)) {
 534         ctx->clear_bitmap(region);
 535       }
 536       region = _regions.next();
 537     }
 538   }
 539 };
 540 
 541 void ShenandoahHeap::reset_mark_bitmap() {
 542   assert_gc_workers(_workers->active_workers());
 543   mark_incomplete_marking_context();
 544 
 545   ShenandoahResetBitmapTask task;
 546   _workers->run_task(&task);
 547 }
 548 
 549 void ShenandoahHeap::print_on(outputStream* st) const {
 550   st->print_cr("Shenandoah Heap");
 551   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 552                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 553                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 554                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 555                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 556   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 557                num_regions(),
 558                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 559                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 560 
 561   st->print("Status: ");
 562   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 563   if (is_concurrent_mark_in_progress())        st->print("marking, ");
 564   if (is_evacuation_in_progress())             st->print("evacuating, ");
 565   if (is_update_refs_in_progress())            st->print("updating refs, ");
 566   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 567   if (is_full_gc_in_progress())                st->print("full gc, ");
 568   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 569   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 570   if (is_concurrent_strong_root_in_progress() &&
 571       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 572 
 573   if (cancelled_gc()) {
 574     st->print("cancelled");
 575   } else {
 576     st->print("not cancelled");
 577   }
 578   st->cr();
 579 
 580   st->print_cr("Reserved region:");
 581   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 582                p2i(reserved_region().start()),
 583                p2i(reserved_region().end()));
 584 
 585   ShenandoahCollectionSet* cset = collection_set();
 586   st->print_cr("Collection set:");
 587   if (cset != NULL) {
 588     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 589     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 590   } else {
 591     st->print_cr(" (NULL)");
 592   }
 593 
 594   st->cr();
 595   MetaspaceUtils::print_on(st);
 596 
 597   if (Verbose) {
 598     print_heap_regions_on(st);
 599   }
 600 }
 601 
 602 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 603 public:
 604   void do_thread(Thread* thread) {
 605     assert(thread != NULL, "Sanity");
 606     assert(thread->is_Worker_thread(), "Only worker thread expected");
 607     ShenandoahThreadLocalData::initialize_gclab(thread);
 608   }
 609 };
 610 
 611 void ShenandoahHeap::post_initialize() {
 612   CollectedHeap::post_initialize();
 613   MutexLocker ml(Threads_lock);
 614 
 615   ShenandoahInitWorkerGCLABClosure init_gclabs;
 616   _workers->threads_do(&init_gclabs);
 617 
 618   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 619   // Now, we will let WorkGang to initialize gclab when new worker is created.
 620   _workers->set_initialize_gclab();
 621   if (_safepoint_workers != NULL) {
 622     _safepoint_workers->threads_do(&init_gclabs);
 623     _safepoint_workers->set_initialize_gclab();
 624   }
 625 
 626   _heuristics->initialize();
 627 
 628   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 629 }
 630 
 631 size_t ShenandoahHeap::used() const {
 632   return Atomic::load(&_used);
 633 }
 634 
 635 size_t ShenandoahHeap::committed() const {
 636   return Atomic::load(&_committed);
 637 }
 638 
 639 void ShenandoahHeap::increase_committed(size_t bytes) {
 640   shenandoah_assert_heaplocked_or_safepoint();
 641   _committed += bytes;
 642 }
 643 
 644 void ShenandoahHeap::decrease_committed(size_t bytes) {
 645   shenandoah_assert_heaplocked_or_safepoint();
 646   _committed -= bytes;
 647 }
 648 
 649 void ShenandoahHeap::increase_used(size_t bytes) {
 650   Atomic::add(&_used, bytes, memory_order_relaxed);
 651 }
 652 
 653 void ShenandoahHeap::set_used(size_t bytes) {
 654   Atomic::store(&_used, bytes);
 655 }
 656 
 657 void ShenandoahHeap::decrease_used(size_t bytes) {
 658   assert(used() >= bytes, "never decrease heap size by more than we've left");
 659   Atomic::sub(&_used, bytes, memory_order_relaxed);
 660 }
 661 
 662 void ShenandoahHeap::increase_allocated(size_t bytes) {
 663   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 664 }
 665 
 666 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 667   size_t bytes = words * HeapWordSize;
 668   if (!waste) {
 669     increase_used(bytes);
 670   }
 671   increase_allocated(bytes);
 672   if (ShenandoahPacing) {
 673     control_thread()->pacing_notify_alloc(words);
 674     if (waste) {
 675       pacer()->claim_for_alloc(words, true);
 676     }
 677   }
 678 }
 679 
 680 size_t ShenandoahHeap::capacity() const {
 681   return committed();
 682 }
 683 
 684 size_t ShenandoahHeap::max_capacity() const {
 685   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 686 }
 687 
 688 size_t ShenandoahHeap::soft_max_capacity() const {
 689   size_t v = Atomic::load(&_soft_max_size);
 690   assert(min_capacity() <= v && v <= max_capacity(),
 691          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 692          min_capacity(), v, max_capacity());
 693   return v;
 694 }
 695 
 696 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 697   assert(min_capacity() <= v && v <= max_capacity(),
 698          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 699          min_capacity(), v, max_capacity());
 700   Atomic::store(&_soft_max_size, v);
 701 }
 702 
 703 size_t ShenandoahHeap::min_capacity() const {
 704   return _minimum_size;
 705 }
 706 
 707 size_t ShenandoahHeap::initial_capacity() const {
 708   return _initial_size;
 709 }
 710 
 711 bool ShenandoahHeap::is_in(const void* p) const {
 712   HeapWord* heap_base = (HeapWord*) base();
 713   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 714   return p >= heap_base && p < last_region_end;
 715 }
 716 
 717 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 718   assert (ShenandoahUncommit, "should be enabled");
 719 
 720   // Application allocates from the beginning of the heap, and GC allocates at
 721   // the end of it. It is more efficient to uncommit from the end, so that applications
 722   // could enjoy the near committed regions. GC allocations are much less frequent,
 723   // and therefore can accept the committing costs.
 724 
 725   size_t count = 0;
 726   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 727     ShenandoahHeapRegion* r = get_region(i - 1);
 728     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 729       ShenandoahHeapLocker locker(lock());
 730       if (r->is_empty_committed()) {
 731         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 732           break;
 733         }
 734 
 735         r->make_uncommitted();
 736         count++;
 737       }
 738     }
 739     SpinPause(); // allow allocators to take the lock
 740   }
 741 
 742   if (count > 0) {
 743     control_thread()->notify_heap_changed();
 744   }
 745 }
 746 
 747 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 748   // New object should fit the GCLAB size
 749   size_t min_size = MAX2(size, PLAB::min_size());
 750 
 751   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 752   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 753   new_size = MIN2(new_size, PLAB::max_size());
 754   new_size = MAX2(new_size, PLAB::min_size());
 755 
 756   // Record new heuristic value even if we take any shortcut. This captures
 757   // the case when moderately-sized objects always take a shortcut. At some point,
 758   // heuristics should catch up with them.
 759   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 760 
 761   if (new_size < size) {
 762     // New size still does not fit the object. Fall back to shared allocation.
 763     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 764     return NULL;
 765   }
 766 
 767   // Retire current GCLAB, and allocate a new one.
 768   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 769   gclab->retire();
 770 
 771   size_t actual_size = 0;
 772   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 773   if (gclab_buf == NULL) {
 774     return NULL;
 775   }
 776 
 777   assert (size <= actual_size, "allocation should fit");
 778 
 779   if (ZeroTLAB) {
 780     // ..and clear it.
 781     Copy::zero_to_words(gclab_buf, actual_size);
 782   } else {
 783     // ...and zap just allocated object.
 784 #ifdef ASSERT
 785     // Skip mangling the space corresponding to the object header to
 786     // ensure that the returned space is not considered parsable by
 787     // any concurrent GC thread.
 788     size_t hdr_size = oopDesc::header_size();
 789     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 790 #endif // ASSERT
 791   }
 792   gclab->set_buf(gclab_buf, actual_size);
 793   return gclab->allocate(size);
 794 }
 795 
 796 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 797                                             size_t requested_size,
 798                                             size_t* actual_size) {
 799   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 800   HeapWord* res = allocate_memory(req);
 801   if (res != NULL) {
 802     *actual_size = req.actual_size();
 803   } else {
 804     *actual_size = 0;
 805   }
 806   return res;
 807 }
 808 
 809 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 810                                              size_t word_size,
 811                                              size_t* actual_size) {
 812   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 813   HeapWord* res = allocate_memory(req);
 814   if (res != NULL) {
 815     *actual_size = req.actual_size();
 816   } else {
 817     *actual_size = 0;
 818   }
 819   return res;
 820 }
 821 
 822 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 823   intptr_t pacer_epoch = 0;
 824   bool in_new_region = false;
 825   HeapWord* result = NULL;
 826 
 827   if (req.is_mutator_alloc()) {
 828     if (ShenandoahPacing) {
 829       pacer()->pace_for_alloc(req.size());
 830       pacer_epoch = pacer()->epoch();
 831     }
 832 
 833     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 834       result = allocate_memory_under_lock(req, in_new_region);
 835     }
 836 
 837     // Allocation failed, block until control thread reacted, then retry allocation.
 838     //
 839     // It might happen that one of the threads requesting allocation would unblock
 840     // way later after GC happened, only to fail the second allocation, because
 841     // other threads have already depleted the free storage. In this case, a better
 842     // strategy is to try again, as long as GC makes progress.
 843     //
 844     // Then, we need to make sure the allocation was retried after at least one
 845     // Full GC, which means we want to try more than ShenandoahFullGCThreshold times.
 846 
 847     size_t tries = 0;
 848 
 849     while (result == NULL && _progress_last_gc.is_set()) {
 850       tries++;
 851       control_thread()->handle_alloc_failure(req);
 852       result = allocate_memory_under_lock(req, in_new_region);
 853     }
 854 
 855     while (result == NULL && tries <= ShenandoahFullGCThreshold) {
 856       tries++;
 857       control_thread()->handle_alloc_failure(req);
 858       result = allocate_memory_under_lock(req, in_new_region);
 859     }
 860 
 861   } else {
 862     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 863     result = allocate_memory_under_lock(req, in_new_region);
 864     // Do not call handle_alloc_failure() here, because we cannot block.
 865     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 866   }
 867 
 868   if (in_new_region) {
 869     control_thread()->notify_heap_changed();
 870   }
 871 
 872   if (result != NULL) {
 873     size_t requested = req.size();
 874     size_t actual = req.actual_size();
 875 
 876     assert (req.is_lab_alloc() || (requested == actual),
 877             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 878             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 879 
 880     if (req.is_mutator_alloc()) {
 881       notify_mutator_alloc_words(actual, false);
 882 
 883       // If we requested more than we were granted, give the rest back to pacer.
 884       // This only matters if we are in the same pacing epoch: do not try to unpace
 885       // over the budget for the other phase.
 886       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 887         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 888       }
 889     } else {
 890       increase_used(actual*HeapWordSize);
 891     }
 892   }
 893 
 894   return result;
 895 }
 896 
 897 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
 898   ShenandoahHeapLocker locker(lock());
 899   return _free_set->allocate(req, in_new_region);
 900 }
 901 
 902 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
 903                                         bool*  gc_overhead_limit_was_exceeded) {
 904   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
 905   return allocate_memory(req);
 906 }
 907 
 908 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 909                                                              size_t size,
 910                                                              Metaspace::MetadataType mdtype) {
 911   MetaWord* result;
 912 
 913   // Inform metaspace OOM to GC heuristics if class unloading is possible.
 914   if (heuristics()->can_unload_classes()) {
 915     ShenandoahHeuristics* h = heuristics();
 916     h->record_metaspace_oom();
 917   }
 918 
 919   // Expand and retry allocation
 920   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 921   if (result != NULL) {
 922     return result;
 923   }
 924 
 925   // Start full GC
 926   collect(GCCause::_metadata_GC_clear_soft_refs);
 927 
 928   // Retry allocation
 929   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
 930   if (result != NULL) {
 931     return result;
 932   }
 933 
 934   // Expand and retry allocation
 935   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 936   if (result != NULL) {
 937     return result;
 938   }
 939 
 940   // Out of memory
 941   return NULL;
 942 }
 943 
 944 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
 945 private:
 946   ShenandoahHeap* const _heap;
 947   Thread* const _thread;
 948 public:
 949   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
 950     _heap(heap), _thread(Thread::current()) {}
 951 
 952   void do_object(oop p) {
 953     shenandoah_assert_marked(NULL, p);
 954     if (!p->is_forwarded()) {
 955       _heap->evacuate_object(p, _thread);
 956     }
 957   }
 958 };
 959 
 960 class ShenandoahEvacuationTask : public AbstractGangTask {
 961 private:
 962   ShenandoahHeap* const _sh;
 963   ShenandoahCollectionSet* const _cs;
 964   bool _concurrent;
 965 public:
 966   ShenandoahEvacuationTask(ShenandoahHeap* sh,
 967                            ShenandoahCollectionSet* cs,
 968                            bool concurrent) :
 969     AbstractGangTask("Shenandoah Evacuation"),
 970     _sh(sh),
 971     _cs(cs),
 972     _concurrent(concurrent)
 973   {}
 974 
 975   void work(uint worker_id) {
 976     if (_concurrent) {
 977       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 978       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
 979       ShenandoahEvacOOMScope oom_evac_scope;
 980       do_work();
 981     } else {
 982       ShenandoahParallelWorkerSession worker_session(worker_id);
 983       ShenandoahEvacOOMScope oom_evac_scope;
 984       do_work();
 985     }
 986   }
 987 
 988 private:
 989   void do_work() {
 990     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
 991     ShenandoahHeapRegion* r;
 992     while ((r =_cs->claim_next()) != NULL) {
 993       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
 994       _sh->marked_object_iterate(r, &cl);
 995 
 996       if (ShenandoahPacing) {
 997         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
 998       }
 999 
1000       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1001         break;
1002       }
1003     }
1004   }
1005 };
1006 
1007 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1008   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1009   workers()->run_task(&task);
1010 }
1011 
1012 void ShenandoahHeap::trash_cset_regions() {
1013   ShenandoahHeapLocker locker(lock());
1014 
1015   ShenandoahCollectionSet* set = collection_set();
1016   ShenandoahHeapRegion* r;
1017   set->clear_current_index();
1018   while ((r = set->next()) != NULL) {
1019     r->make_trash();
1020   }
1021   collection_set()->clear();
1022 }
1023 
1024 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1025   st->print_cr("Heap Regions:");
1026   st->print_cr("EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HC=humongous continuation, CS=collection set, T=trash, P=pinned");
1027   st->print_cr("BTE=bottom/top/end, U=used, T=TLAB allocs, G=GCLAB allocs, S=shared allocs, L=live data");
1028   st->print_cr("R=root, CP=critical pins, TAMS=top-at-mark-start, UWM=update watermark");
1029   st->print_cr("SN=alloc sequence number");
1030 
1031   for (size_t i = 0; i < num_regions(); i++) {
1032     get_region(i)->print_on(st);
1033   }
1034 }
1035 
1036 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1037   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1038 
1039   oop humongous_obj = cast_to_oop(start->bottom());
1040   size_t size = humongous_obj->size();
1041   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1042   size_t index = start->index() + required_regions - 1;
1043 
1044   assert(!start->has_live(), "liveness must be zero");
1045 
1046   for(size_t i = 0; i < required_regions; i++) {
1047     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1048     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1049     ShenandoahHeapRegion* region = get_region(index --);
1050 
1051     assert(region->is_humongous(), "expect correct humongous start or continuation");
1052     assert(!region->is_cset(), "Humongous region should not be in collection set");
1053 
1054     region->make_trash_immediate();
1055   }
1056 }
1057 
1058 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1059 public:
1060   ShenandoahCheckCleanGCLABClosure() {}
1061   void do_thread(Thread* thread) {
1062     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1063     assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1064     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1065   }
1066 };
1067 
1068 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1069 private:
1070   bool const _resize;
1071 public:
1072   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1073   void do_thread(Thread* thread) {
1074     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1075     assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1076     gclab->retire();
1077     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1078       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1079     }
1080   }
1081 };
1082 
1083 void ShenandoahHeap::labs_make_parsable() {
1084   assert(UseTLAB, "Only call with UseTLAB");
1085 
1086   ShenandoahRetireGCLABClosure cl(false);
1087 
1088   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1089     ThreadLocalAllocBuffer& tlab = t->tlab();
1090     tlab.make_parsable();
1091     cl.do_thread(t);
1092   }
1093 
1094   workers()->threads_do(&cl);
1095 }
1096 
1097 void ShenandoahHeap::tlabs_retire(bool resize) {
1098   assert(UseTLAB, "Only call with UseTLAB");
1099   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1100 
1101   ThreadLocalAllocStats stats;
1102 
1103   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1104     ThreadLocalAllocBuffer& tlab = t->tlab();
1105     tlab.retire(&stats);
1106     if (resize) {
1107       tlab.resize();
1108     }
1109   }
1110 
1111   stats.publish();
1112 
1113 #ifdef ASSERT
1114   ShenandoahCheckCleanGCLABClosure cl;
1115   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1116     cl.do_thread(t);
1117   }
1118   workers()->threads_do(&cl);
1119 #endif
1120 }
1121 
1122 void ShenandoahHeap::gclabs_retire(bool resize) {
1123   assert(UseTLAB, "Only call with UseTLAB");
1124   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1125 
1126   ShenandoahRetireGCLABClosure cl(resize);
1127   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1128     cl.do_thread(t);
1129   }
1130   workers()->threads_do(&cl);
1131 
1132   if (safepoint_workers() != NULL) {
1133     safepoint_workers()->threads_do(&cl);
1134   }
1135 }
1136 
1137 // Returns size in bytes
1138 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1139   if (ShenandoahElasticTLAB) {
1140     // With Elastic TLABs, return the max allowed size, and let the allocation path
1141     // figure out the safe size for current allocation.
1142     return ShenandoahHeapRegion::max_tlab_size_bytes();
1143   } else {
1144     return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes());
1145   }
1146 }
1147 
1148 size_t ShenandoahHeap::max_tlab_size() const {
1149   // Returns size in words
1150   return ShenandoahHeapRegion::max_tlab_size_words();
1151 }
1152 
1153 void ShenandoahHeap::collect(GCCause::Cause cause) {
1154   control_thread()->request_gc(cause);
1155 }
1156 
1157 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1158   //assert(false, "Shouldn't need to do full collections");
1159 }
1160 
1161 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1162   ShenandoahHeapRegion* r = heap_region_containing(addr);
1163   if (r != NULL) {
1164     return r->block_start(addr);
1165   }
1166   return NULL;
1167 }
1168 
1169 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1170   ShenandoahHeapRegion* r = heap_region_containing(addr);
1171   return r->block_is_obj(addr);
1172 }
1173 
1174 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1175   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1176 }
1177 
1178 void ShenandoahHeap::prepare_for_verify() {
1179   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1180     labs_make_parsable();
1181   }
1182 }
1183 
1184 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1185   workers()->threads_do(tcl);
1186   if (_safepoint_workers != NULL) {
1187     _safepoint_workers->threads_do(tcl);
1188   }
1189   if (ShenandoahStringDedup::is_enabled()) {
1190     ShenandoahStringDedup::threads_do(tcl);
1191   }
1192 }
1193 
1194 void ShenandoahHeap::print_tracing_info() const {
1195   LogTarget(Info, gc, stats) lt;
1196   if (lt.is_enabled()) {
1197     ResourceMark rm;
1198     LogStream ls(lt);
1199 
1200     phase_timings()->print_global_on(&ls);
1201 
1202     ls.cr();
1203     ls.cr();
1204 
1205     shenandoah_policy()->print_gc_stats(&ls);
1206 
1207     ls.cr();
1208     ls.cr();
1209   }
1210 }
1211 
1212 void ShenandoahHeap::verify(VerifyOption vo) {
1213   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1214     if (ShenandoahVerify) {
1215       verifier()->verify_generic(vo);
1216     } else {
1217       // TODO: Consider allocating verification bitmaps on demand,
1218       // and turn this on unconditionally.
1219     }
1220   }
1221 }
1222 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1223   return _free_set->capacity();
1224 }
1225 
1226 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1227 private:
1228   MarkBitMap* _bitmap;
1229   ShenandoahScanObjectStack* _oop_stack;
1230   ShenandoahHeap* const _heap;
1231   ShenandoahMarkingContext* const _marking_context;
1232 
1233   template <class T>
1234   void do_oop_work(T* p) {
1235     T o = RawAccess<>::oop_load(p);
1236     if (!CompressedOops::is_null(o)) {
1237       oop obj = CompressedOops::decode_not_null(o);
1238       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1239         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1240         return;
1241       }
1242       obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
1243 
1244       assert(oopDesc::is_oop(obj), "must be a valid oop");
1245       if (!_bitmap->is_marked(obj)) {
1246         _bitmap->mark(obj);
1247         _oop_stack->push(obj);
1248       }
1249     }
1250   }
1251 public:
1252   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1253     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1254     _marking_context(_heap->marking_context()) {}
1255   void do_oop(oop* p)       { do_oop_work(p); }
1256   void do_oop(narrowOop* p) { do_oop_work(p); }
1257 };
1258 
1259 /*
1260  * This is public API, used in preparation of object_iterate().
1261  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1262  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1263  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1264  */
1265 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1266   // No-op.
1267 }
1268 
1269 /*
1270  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1271  *
1272  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1273  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1274  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1275  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1276  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1277  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1278  * wiped the bitmap in preparation for next marking).
1279  *
1280  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1281  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1282  * is allowed to report dead objects, but is not required to do so.
1283  */
1284 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1285   // Reset bitmap
1286   if (!prepare_aux_bitmap_for_iteration())
1287     return;
1288 
1289   ShenandoahScanObjectStack oop_stack;
1290   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1291   // Seed the stack with root scan
1292   scan_roots_for_iteration(&oop_stack, &oops);
1293 
1294   // Work through the oop stack to traverse heap
1295   while (! oop_stack.is_empty()) {
1296     oop obj = oop_stack.pop();
1297     assert(oopDesc::is_oop(obj), "must be a valid oop");
1298     cl->do_object(obj);
1299     obj->oop_iterate(&oops);
1300   }
1301 
1302   assert(oop_stack.is_empty(), "should be empty");
1303   // Reclaim bitmap
1304   reclaim_aux_bitmap_for_iteration();
1305 }
1306 
1307 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1308   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1309 
1310   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1311     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1312     return false;
1313   }
1314   // Reset bitmap
1315   _aux_bit_map.clear();
1316   return true;
1317 }
1318 
1319 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1320   // Process GC roots according to current GC cycle
1321   // This populates the work stack with initial objects
1322   // It is important to relinquish the associated locks before diving
1323   // into heap dumper
1324   ShenandoahHeapIterationRootScanner rp;
1325   rp.roots_do(oops);
1326 }
1327 
1328 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1329   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1330     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1331   }
1332 }
1333 
1334 // Closure for parallelly iterate objects
1335 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1336 private:
1337   MarkBitMap* _bitmap;
1338   ShenandoahObjToScanQueue* _queue;
1339   ShenandoahHeap* const _heap;
1340   ShenandoahMarkingContext* const _marking_context;
1341 
1342   template <class T>
1343   void do_oop_work(T* p) {
1344     T o = RawAccess<>::oop_load(p);
1345     if (!CompressedOops::is_null(o)) {
1346       oop obj = CompressedOops::decode_not_null(o);
1347       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1348         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1349         return;
1350       }
1351       obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
1352 
1353       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1354       if (_bitmap->par_mark(obj)) {
1355         _queue->push(ShenandoahMarkTask(obj));
1356       }
1357     }
1358   }
1359 public:
1360   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1361     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1362     _marking_context(_heap->marking_context()) {}
1363   void do_oop(oop* p)       { do_oop_work(p); }
1364   void do_oop(narrowOop* p) { do_oop_work(p); }
1365 };
1366 
1367 // Object iterator for parallel heap iteraion.
1368 // The root scanning phase happenes in construction as a preparation of
1369 // parallel marking queues.
1370 // Every worker processes it's own marking queue. work-stealing is used
1371 // to balance workload.
1372 class ShenandoahParallelObjectIterator : public ParallelObjectIterator {
1373 private:
1374   uint                         _num_workers;
1375   bool                         _init_ready;
1376   MarkBitMap*                  _aux_bit_map;
1377   ShenandoahHeap*              _heap;
1378   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1379   ShenandoahObjToScanQueueSet* _task_queues;
1380 public:
1381   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1382         _num_workers(num_workers),
1383         _init_ready(false),
1384         _aux_bit_map(bitmap),
1385         _heap(ShenandoahHeap::heap()) {
1386     // Initialize bitmap
1387     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1388     if (!_init_ready) {
1389       return;
1390     }
1391 
1392     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1393     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1394 
1395     _init_ready = prepare_worker_queues();
1396   }
1397 
1398   ~ShenandoahParallelObjectIterator() {
1399     // Reclaim bitmap
1400     _heap->reclaim_aux_bitmap_for_iteration();
1401     // Reclaim queue for workers
1402     if (_task_queues!= NULL) {
1403       for (uint i = 0; i < _num_workers; ++i) {
1404         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1405         if (q != NULL) {
1406           delete q;
1407           _task_queues->register_queue(i, NULL);
1408         }
1409       }
1410       delete _task_queues;
1411       _task_queues = NULL;
1412     }
1413   }
1414 
1415   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1416     if (_init_ready) {
1417       object_iterate_parallel(cl, worker_id, _task_queues);
1418     }
1419   }
1420 
1421 private:
1422   // Divide global root_stack into worker queues
1423   bool prepare_worker_queues() {
1424     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1425     // Initialize queues for every workers
1426     for (uint i = 0; i < _num_workers; ++i) {
1427       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1428       task_queue->initialize();
1429       _task_queues->register_queue(i, task_queue);
1430     }
1431     // Divide roots among the workers. Assume that object referencing distribution
1432     // is related with root kind, use round-robin to make every worker have same chance
1433     // to process every kind of roots
1434     size_t roots_num = _roots_stack.size();
1435     if (roots_num == 0) {
1436       // No work to do
1437       return false;
1438     }
1439 
1440     for (uint j = 0; j < roots_num; j++) {
1441       uint stack_id = j % _num_workers;
1442       oop obj = _roots_stack.pop();
1443       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1444     }
1445     return true;
1446   }
1447 
1448   void object_iterate_parallel(ObjectClosure* cl,
1449                                uint worker_id,
1450                                ShenandoahObjToScanQueueSet* queue_set) {
1451     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1452     assert(queue_set != NULL, "task queue must not be NULL");
1453 
1454     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1455     assert(q != NULL, "object iterate queue must not be NULL");
1456 
1457     ShenandoahMarkTask t;
1458     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1459 
1460     // Work through the queue to traverse heap.
1461     // Steal when there is no task in queue.
1462     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1463       oop obj = t.obj();
1464       assert(oopDesc::is_oop(obj), "must be a valid oop");
1465       cl->do_object(obj);
1466       obj->oop_iterate(&oops);
1467     }
1468     assert(q->is_empty(), "should be empty");
1469   }
1470 };
1471 
1472 ParallelObjectIterator* ShenandoahHeap::parallel_object_iterator(uint workers) {
1473   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1474 }
1475 
1476 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1477 void ShenandoahHeap::keep_alive(oop obj) {
1478   if (is_concurrent_mark_in_progress() && (obj != NULL)) {
1479     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1480   }
1481 }
1482 
1483 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1484   for (size_t i = 0; i < num_regions(); i++) {
1485     ShenandoahHeapRegion* current = get_region(i);
1486     blk->heap_region_do(current);
1487   }
1488 }
1489 
1490 class ShenandoahParallelHeapRegionTask : public AbstractGangTask {
1491 private:
1492   ShenandoahHeap* const _heap;
1493   ShenandoahHeapRegionClosure* const _blk;
1494 
1495   shenandoah_padding(0);
1496   volatile size_t _index;
1497   shenandoah_padding(1);
1498 
1499 public:
1500   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1501           AbstractGangTask("Shenandoah Parallel Region Operation"),
1502           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1503 
1504   void work(uint worker_id) {
1505     ShenandoahParallelWorkerSession worker_session(worker_id);
1506     size_t stride = ShenandoahParallelRegionStride;
1507 
1508     size_t max = _heap->num_regions();
1509     while (Atomic::load(&_index) < max) {
1510       size_t cur = Atomic::fetch_and_add(&_index, stride, memory_order_relaxed);
1511       size_t start = cur;
1512       size_t end = MIN2(cur + stride, max);
1513       if (start >= max) break;
1514 
1515       for (size_t i = cur; i < end; i++) {
1516         ShenandoahHeapRegion* current = _heap->get_region(i);
1517         _blk->heap_region_do(current);
1518       }
1519     }
1520   }
1521 };
1522 
1523 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1524   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1525   if (num_regions() > ShenandoahParallelRegionStride) {
1526     ShenandoahParallelHeapRegionTask task(blk);
1527     workers()->run_task(&task);
1528   } else {
1529     heap_region_iterate(blk);
1530   }
1531 }
1532 
1533 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1534 private:
1535   ShenandoahMarkingContext* const _ctx;
1536 public:
1537   ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1538 
1539   void heap_region_do(ShenandoahHeapRegion* r) {
1540     assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1541     if (r->is_active()) {
1542       // Check if region needs updating its TAMS. We have updated it already during concurrent
1543       // reset, so it is very likely we don't need to do another write here.
1544       if (_ctx->top_at_mark_start(r) != r->top()) {
1545         _ctx->capture_top_at_mark_start(r);
1546       }
1547     } else {
1548       assert(_ctx->top_at_mark_start(r) == r->top(),
1549              "Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1550     }
1551   }
1552 
1553   bool is_thread_safe() { return true; }
1554 };
1555 
1556 class ShenandoahRendezvousClosure : public HandshakeClosure {
1557 public:
1558   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1559   inline void do_thread(Thread* thread) {}
1560 };
1561 
1562 void ShenandoahHeap::rendezvous_threads() {
1563   ShenandoahRendezvousClosure cl;
1564   Handshake::execute(&cl);
1565 }
1566 
1567 void ShenandoahHeap::recycle_trash() {
1568   free_set()->recycle_trash();
1569 }
1570 
1571 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1572 private:
1573   ShenandoahMarkingContext* const _ctx;
1574 public:
1575   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1576 
1577   void heap_region_do(ShenandoahHeapRegion* r) {
1578     if (r->is_active()) {
1579       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1580       // anyway to capture any updates that happened since now.
1581       r->clear_live_data();
1582       _ctx->capture_top_at_mark_start(r);
1583     }
1584   }
1585 
1586   bool is_thread_safe() { return true; }
1587 };
1588 
1589 void ShenandoahHeap::prepare_gc() {
1590   reset_mark_bitmap();
1591 
1592   ShenandoahResetUpdateRegionStateClosure cl;
1593   parallel_heap_region_iterate(&cl);
1594 }
1595 
1596 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1597 private:
1598   ShenandoahMarkingContext* const _ctx;
1599   ShenandoahHeapLock* const _lock;
1600 
1601 public:
1602   ShenandoahFinalMarkUpdateRegionStateClosure() :
1603     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1604 
1605   void heap_region_do(ShenandoahHeapRegion* r) {
1606     if (r->is_active()) {
1607       // All allocations past TAMS are implicitly live, adjust the region data.
1608       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1609       HeapWord *tams = _ctx->top_at_mark_start(r);
1610       HeapWord *top = r->top();
1611       if (top > tams) {
1612         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1613       }
1614 
1615       // We are about to select the collection set, make sure it knows about
1616       // current pinning status. Also, this allows trashing more regions that
1617       // now have their pinning status dropped.
1618       if (r->is_pinned()) {
1619         if (r->pin_count() == 0) {
1620           ShenandoahHeapLocker locker(_lock);
1621           r->make_unpinned();
1622         }
1623       } else {
1624         if (r->pin_count() > 0) {
1625           ShenandoahHeapLocker locker(_lock);
1626           r->make_pinned();
1627         }
1628       }
1629 
1630       // Remember limit for updating refs. It's guaranteed that we get no
1631       // from-space-refs written from here on.
1632       r->set_update_watermark_at_safepoint(r->top());
1633     } else {
1634       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1635       assert(_ctx->top_at_mark_start(r) == r->top(),
1636              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1637     }
1638   }
1639 
1640   bool is_thread_safe() { return true; }
1641 };
1642 
1643 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1644   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1645   {
1646     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1647                                          ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1648     ShenandoahFinalMarkUpdateRegionStateClosure cl;
1649     parallel_heap_region_iterate(&cl);
1650 
1651     assert_pinned_region_status();
1652   }
1653 
1654   {
1655     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1656                                          ShenandoahPhaseTimings::degen_gc_choose_cset);
1657     ShenandoahHeapLocker locker(lock());
1658     _collection_set->clear();
1659     heuristics()->choose_collection_set(_collection_set);
1660   }
1661 
1662   {
1663     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1664                                          ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1665     ShenandoahHeapLocker locker(lock());
1666     _free_set->rebuild();
1667   }
1668 }
1669 
1670 void ShenandoahHeap::do_class_unloading() {
1671   _unloader.unload();
1672 }
1673 
1674 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1675   // Weak refs processing
1676   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1677                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1678   ShenandoahTimingsTracker t(phase);
1679   ShenandoahGCWorkerPhase worker_phase(phase);
1680   ref_processor()->process_references(phase, workers(), false /* concurrent */);
1681 }
1682 
1683 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1684   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1685 
1686   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1687   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1688   // for future GCLABs here.
1689   if (UseTLAB) {
1690     ShenandoahGCPhase phase(concurrent ?
1691                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1692                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1693     gclabs_retire(ResizeTLAB);
1694   }
1695 
1696   _update_refs_iterator.reset();
1697 }
1698 
1699 void ShenandoahHeap::set_gc_state_all_threads(char state) {
1700   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1701     ShenandoahThreadLocalData::set_gc_state(t, state);
1702   }
1703 }
1704 
1705 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) {
1706   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should really be Shenandoah safepoint");
1707   _gc_state.set_cond(mask, value);
1708   set_gc_state_all_threads(_gc_state.raw_value());
1709 }
1710 
1711 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1712   assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1713   set_gc_state_mask(MARKING, in_progress);
1714   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1715 }
1716 
1717 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1718   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1719   set_gc_state_mask(EVACUATION, in_progress);
1720 }
1721 
1722 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1723   if (in_progress) {
1724     _concurrent_strong_root_in_progress.set();
1725   } else {
1726     _concurrent_strong_root_in_progress.unset();
1727   }
1728 }
1729 
1730 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1731   set_gc_state_mask(WEAK_ROOTS, cond);
1732 }
1733 
1734 GCTracer* ShenandoahHeap::tracer() {
1735   return shenandoah_policy()->tracer();
1736 }
1737 
1738 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1739   return _free_set->used();
1740 }
1741 
1742 bool ShenandoahHeap::try_cancel_gc() {
1743   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1744   return prev == CANCELLABLE;
1745 }
1746 
1747 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1748   if (try_cancel_gc()) {
1749     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1750     log_info(gc)("%s", msg.buffer());
1751     Events::log(Thread::current(), "%s", msg.buffer());
1752   }
1753 }
1754 
1755 uint ShenandoahHeap::max_workers() {
1756   return _max_workers;
1757 }
1758 
1759 void ShenandoahHeap::stop() {
1760   // The shutdown sequence should be able to terminate when GC is running.
1761 
1762   // Step 0. Notify policy to disable event recording.
1763   _shenandoah_policy->record_shutdown();
1764 
1765   // Step 1. Notify control thread that we are in shutdown.
1766   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1767   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1768   control_thread()->prepare_for_graceful_shutdown();
1769 
1770   // Step 2. Notify GC workers that we are cancelling GC.
1771   cancel_gc(GCCause::_shenandoah_stop_vm);
1772 
1773   // Step 3. Wait until GC worker exits normally.
1774   control_thread()->stop();
1775 }
1776 
1777 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1778   if (!unload_classes()) return;
1779   // Unload classes and purge SystemDictionary.
1780   {
1781     ShenandoahPhaseTimings::Phase phase = full_gc ?
1782                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
1783                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1784     ShenandoahGCPhase gc_phase(phase);
1785     ShenandoahGCWorkerPhase worker_phase(phase);
1786     bool purged_class = SystemDictionary::do_unloading(gc_timer());
1787 
1788     ShenandoahIsAliveSelector is_alive;
1789     uint num_workers = _workers->active_workers();
1790     ShenandoahClassUnloadingTask unlink_task(phase, is_alive.is_alive_closure(), num_workers, purged_class);
1791     _workers->run_task(&unlink_task);
1792   }
1793 
1794   {
1795     ShenandoahGCPhase phase(full_gc ?
1796                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1797                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
1798     ClassLoaderDataGraph::purge(/*at_safepoint*/true);
1799   }
1800   // Resize and verify metaspace
1801   MetaspaceGC::compute_new_size();
1802   DEBUG_ONLY(MetaspaceUtils::verify();)
1803 }
1804 
1805 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1806 // so they should not have forwarded oops.
1807 // However, we do need to "null" dead oops in the roots, if can not be done
1808 // in concurrent cycles.
1809 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1810   uint num_workers = _workers->active_workers();
1811   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1812                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
1813                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1814   ShenandoahGCPhase phase(timing_phase);
1815   ShenandoahGCWorkerPhase worker_phase(timing_phase);
1816   // Cleanup weak roots
1817   if (has_forwarded_objects()) {
1818     ShenandoahForwardedIsAliveClosure is_alive;
1819     ShenandoahUpdateRefsClosure keep_alive;
1820     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
1821       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
1822     _workers->run_task(&cleaning_task);
1823   } else {
1824     ShenandoahIsAliveClosure is_alive;
1825 #ifdef ASSERT
1826     ShenandoahAssertNotForwardedClosure verify_cl;
1827     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
1828       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
1829 #else
1830     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
1831       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
1832 #endif
1833     _workers->run_task(&cleaning_task);
1834   }
1835 }
1836 
1837 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
1838   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1839   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
1840   ShenandoahGCPhase phase(full_gc ?
1841                           ShenandoahPhaseTimings::full_gc_purge :
1842                           ShenandoahPhaseTimings::degen_gc_purge);
1843   stw_weak_refs(full_gc);
1844   stw_process_weak_roots(full_gc);
1845   stw_unload_classes(full_gc);
1846 }
1847 
1848 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1849   set_gc_state_mask(HAS_FORWARDED, cond);
1850 }
1851 
1852 void ShenandoahHeap::set_unload_classes(bool uc) {
1853   _unload_classes.set_cond(uc);
1854 }
1855 
1856 bool ShenandoahHeap::unload_classes() const {
1857   return _unload_classes.is_set();
1858 }
1859 
1860 address ShenandoahHeap::in_cset_fast_test_addr() {
1861   ShenandoahHeap* heap = ShenandoahHeap::heap();
1862   assert(heap->collection_set() != NULL, "Sanity");
1863   return (address) heap->collection_set()->biased_map_address();
1864 }
1865 
1866 address ShenandoahHeap::cancelled_gc_addr() {
1867   return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of();
1868 }
1869 
1870 address ShenandoahHeap::gc_state_addr() {
1871   return (address) ShenandoahHeap::heap()->_gc_state.addr_of();
1872 }
1873 
1874 size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
1875   return Atomic::load(&_bytes_allocated_since_gc_start);
1876 }
1877 
1878 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1879   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
1880 }
1881 
1882 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
1883   _degenerated_gc_in_progress.set_cond(in_progress);
1884 }
1885 
1886 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
1887   _full_gc_in_progress.set_cond(in_progress);
1888 }
1889 
1890 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
1891   assert (is_full_gc_in_progress(), "should be");
1892   _full_gc_move_in_progress.set_cond(in_progress);
1893 }
1894 
1895 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
1896   set_gc_state_mask(UPDATEREFS, in_progress);
1897 }
1898 
1899 void ShenandoahHeap::register_nmethod(nmethod* nm) {
1900   ShenandoahCodeRoots::register_nmethod(nm);
1901 }
1902 
1903 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
1904   ShenandoahCodeRoots::unregister_nmethod(nm);
1905 }
1906 
1907 void ShenandoahHeap::flush_nmethod(nmethod* nm) {
1908   ShenandoahCodeRoots::flush_nmethod(nm);
1909 }
1910 
1911 oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
1912   heap_region_containing(o)->record_pin();
1913   return o;
1914 }
1915 
1916 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
1917   ShenandoahHeapRegion* r = heap_region_containing(o);
1918   assert(r != NULL, "Sanity");
1919   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
1920   r->record_unpin();
1921 }
1922 
1923 void ShenandoahHeap::sync_pinned_region_status() {
1924   ShenandoahHeapLocker locker(lock());
1925 
1926   for (size_t i = 0; i < num_regions(); i++) {
1927     ShenandoahHeapRegion *r = get_region(i);
1928     if (r->is_active()) {
1929       if (r->is_pinned()) {
1930         if (r->pin_count() == 0) {
1931           r->make_unpinned();
1932         }
1933       } else {
1934         if (r->pin_count() > 0) {
1935           r->make_pinned();
1936         }
1937       }
1938     }
1939   }
1940 
1941   assert_pinned_region_status();
1942 }
1943 
1944 #ifdef ASSERT
1945 void ShenandoahHeap::assert_pinned_region_status() {
1946   for (size_t i = 0; i < num_regions(); i++) {
1947     ShenandoahHeapRegion* r = get_region(i);
1948     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
1949            "Region " SIZE_FORMAT " pinning status is inconsistent", i);
1950   }
1951 }
1952 #endif
1953 
1954 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
1955   return _gc_timer;
1956 }
1957 
1958 void ShenandoahHeap::prepare_concurrent_roots() {
1959   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1960   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1961   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
1962   set_concurrent_weak_root_in_progress(true);
1963   if (unload_classes()) {
1964     _unloader.prepare();
1965   }
1966 }
1967 
1968 void ShenandoahHeap::finish_concurrent_roots() {
1969   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1970   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1971   if (unload_classes()) {
1972     _unloader.finish();
1973   }
1974 }
1975 
1976 #ifdef ASSERT
1977 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
1978   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
1979 
1980   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1981     if (UseDynamicNumberOfGCThreads) {
1982       assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
1983     } else {
1984       // Use ParallelGCThreads inside safepoints
1985       assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints");
1986     }
1987   } else {
1988     if (UseDynamicNumberOfGCThreads) {
1989       assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
1990     } else {
1991       // Use ConcGCThreads outside safepoints
1992       assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
1993     }
1994   }
1995 }
1996 #endif
1997 
1998 ShenandoahVerifier* ShenandoahHeap::verifier() {
1999   guarantee(ShenandoahVerify, "Should be enabled");
2000   assert (_verifier != NULL, "sanity");
2001   return _verifier;
2002 }
2003 
2004 template<bool CONCURRENT>
2005 class ShenandoahUpdateHeapRefsTask : public AbstractGangTask {
2006 private:
2007   ShenandoahHeap* _heap;
2008   ShenandoahRegionIterator* _regions;
2009 public:
2010   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2011     AbstractGangTask("Shenandoah Update References"),
2012     _heap(ShenandoahHeap::heap()),
2013     _regions(regions) {
2014   }
2015 
2016   void work(uint worker_id) {
2017     if (CONCURRENT) {
2018       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2019       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
2020       do_work<ShenandoahConcUpdateRefsClosure>();
2021     } else {
2022       ShenandoahParallelWorkerSession worker_session(worker_id);
2023       do_work<ShenandoahSTWUpdateRefsClosure>();
2024     }
2025   }
2026 
2027 private:
2028   template<class T>
2029   void do_work() {
2030     T cl;
2031     ShenandoahHeapRegion* r = _regions->next();
2032     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2033     while (r != NULL) {
2034       HeapWord* update_watermark = r->get_update_watermark();
2035       assert (update_watermark >= r->bottom(), "sanity");
2036       if (r->is_active() && !r->is_cset()) {
2037         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2038       }
2039       if (ShenandoahPacing) {
2040         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2041       }
2042       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2043         return;
2044       }
2045       r = _regions->next();
2046     }
2047   }
2048 };
2049 
2050 void ShenandoahHeap::update_heap_references(bool concurrent) {
2051   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2052 
2053   if (concurrent) {
2054     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2055     workers()->run_task(&task);
2056   } else {
2057     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2058     workers()->run_task(&task);
2059   }
2060 }
2061 
2062 
2063 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2064 private:
2065   ShenandoahHeapLock* const _lock;
2066 
2067 public:
2068   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2069 
2070   void heap_region_do(ShenandoahHeapRegion* r) {
2071     // Drop unnecessary "pinned" state from regions that does not have CP marks
2072     // anymore, as this would allow trashing them.
2073 
2074     if (r->is_active()) {
2075       if (r->is_pinned()) {
2076         if (r->pin_count() == 0) {
2077           ShenandoahHeapLocker locker(_lock);
2078           r->make_unpinned();
2079         }
2080       } else {
2081         if (r->pin_count() > 0) {
2082           ShenandoahHeapLocker locker(_lock);
2083           r->make_pinned();
2084         }
2085       }
2086     }
2087   }
2088 
2089   bool is_thread_safe() { return true; }
2090 };
2091 
2092 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2093   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2094   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2095 
2096   {
2097     ShenandoahGCPhase phase(concurrent ?
2098                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2099                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2100     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2101     parallel_heap_region_iterate(&cl);
2102 
2103     assert_pinned_region_status();
2104   }
2105 
2106   {
2107     ShenandoahGCPhase phase(concurrent ?
2108                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2109                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2110     trash_cset_regions();
2111   }
2112 }
2113 
2114 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2115   {
2116     ShenandoahGCPhase phase(concurrent ?
2117                             ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2118                             ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2119     ShenandoahHeapLocker locker(lock());
2120     _free_set->rebuild();
2121   }
2122 }
2123 
2124 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2125   print_on(st);
2126   print_heap_regions_on(st);
2127 }
2128 
2129 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2130   size_t slice = r->index() / _bitmap_regions_per_slice;
2131 
2132   size_t regions_from = _bitmap_regions_per_slice * slice;
2133   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2134   for (size_t g = regions_from; g < regions_to; g++) {
2135     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2136     if (skip_self && g == r->index()) continue;
2137     if (get_region(g)->is_committed()) {
2138       return true;
2139     }
2140   }
2141   return false;
2142 }
2143 
2144 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2145   shenandoah_assert_heaplocked();
2146 
2147   // Bitmaps in special regions do not need commits
2148   if (_bitmap_region_special) {
2149     return true;
2150   }
2151 
2152   if (is_bitmap_slice_committed(r, true)) {
2153     // Some other region from the group is already committed, meaning the bitmap
2154     // slice is already committed, we exit right away.
2155     return true;
2156   }
2157 
2158   // Commit the bitmap slice:
2159   size_t slice = r->index() / _bitmap_regions_per_slice;
2160   size_t off = _bitmap_bytes_per_slice * slice;
2161   size_t len = _bitmap_bytes_per_slice;
2162   char* start = (char*) _bitmap_region.start() + off;
2163 
2164   if (!os::commit_memory(start, len, false)) {
2165     return false;
2166   }
2167 
2168   if (AlwaysPreTouch) {
2169     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2170   }
2171 
2172   return true;
2173 }
2174 
2175 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2176   shenandoah_assert_heaplocked();
2177 
2178   // Bitmaps in special regions do not need uncommits
2179   if (_bitmap_region_special) {
2180     return true;
2181   }
2182 
2183   if (is_bitmap_slice_committed(r, true)) {
2184     // Some other region from the group is still committed, meaning the bitmap
2185     // slice is should stay committed, exit right away.
2186     return true;
2187   }
2188 
2189   // Uncommit the bitmap slice:
2190   size_t slice = r->index() / _bitmap_regions_per_slice;
2191   size_t off = _bitmap_bytes_per_slice * slice;
2192   size_t len = _bitmap_bytes_per_slice;
2193   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2194     return false;
2195   }
2196   return true;
2197 }
2198 
2199 void ShenandoahHeap::safepoint_synchronize_begin() {
2200   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2201     SuspendibleThreadSet::synchronize();
2202   }
2203 }
2204 
2205 void ShenandoahHeap::safepoint_synchronize_end() {
2206   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2207     SuspendibleThreadSet::desynchronize();
2208   }
2209 }
2210 
2211 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) {
2212   static const char *msg = "Concurrent uncommit";
2213   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
2214   EventMark em("%s", msg);
2215 
2216   op_uncommit(shrink_before, shrink_until);
2217 }
2218 
2219 void ShenandoahHeap::try_inject_alloc_failure() {
2220   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2221     _inject_alloc_failure.set();
2222     os::naked_short_sleep(1);
2223     if (cancelled_gc()) {
2224       log_info(gc)("Allocation failure was successfully injected");
2225     }
2226   }
2227 }
2228 
2229 bool ShenandoahHeap::should_inject_alloc_failure() {
2230   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2231 }
2232 
2233 void ShenandoahHeap::initialize_serviceability() {
2234   _memory_pool = new ShenandoahMemoryPool(this);
2235   _cycle_memory_manager.add_pool(_memory_pool);
2236   _stw_memory_manager.add_pool(_memory_pool);
2237 }
2238 
2239 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2240   GrowableArray<GCMemoryManager*> memory_managers(2);
2241   memory_managers.append(&_cycle_memory_manager);
2242   memory_managers.append(&_stw_memory_manager);
2243   return memory_managers;
2244 }
2245 
2246 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2247   GrowableArray<MemoryPool*> memory_pools(1);
2248   memory_pools.append(_memory_pool);
2249   return memory_pools;
2250 }
2251 
2252 MemoryUsage ShenandoahHeap::memory_usage() {
2253   return _memory_pool->get_memory_usage();
2254 }
2255 
2256 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2257   _heap(ShenandoahHeap::heap()),
2258   _index(0) {}
2259 
2260 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2261   _heap(heap),
2262   _index(0) {}
2263 
2264 void ShenandoahRegionIterator::reset() {
2265   _index = 0;
2266 }
2267 
2268 bool ShenandoahRegionIterator::has_next() const {
2269   return _index < _heap->num_regions();
2270 }
2271 
2272 char ShenandoahHeap::gc_state() const {
2273   return _gc_state.raw_value();
2274 }
2275 
2276 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2277 #ifdef ASSERT
2278   assert(_liveness_cache != NULL, "sanity");
2279   assert(worker_id < _max_workers, "sanity");
2280   for (uint i = 0; i < num_regions(); i++) {
2281     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2282   }
2283 #endif
2284   return _liveness_cache[worker_id];
2285 }
2286 
2287 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2288   assert(worker_id < _max_workers, "sanity");
2289   assert(_liveness_cache != NULL, "sanity");
2290   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2291   for (uint i = 0; i < num_regions(); i++) {
2292     ShenandoahLiveData live = ld[i];
2293     if (live > 0) {
2294       ShenandoahHeapRegion* r = get_region(i);
2295       r->increase_live_data_gc_words(live);
2296       ld[i] = 0;
2297     }
2298   }
2299 }