1 /* 2 * Copyright (c) 2013, 2021, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "memory/allocation.hpp" 27 #include "memory/universe.hpp" 28 29 #include "gc/shared/gcArguments.hpp" 30 #include "gc/shared/gcTimer.hpp" 31 #include "gc/shared/gcTraceTime.inline.hpp" 32 #include "gc/shared/locationPrinter.inline.hpp" 33 #include "gc/shared/memAllocator.hpp" 34 #include "gc/shared/plab.hpp" 35 #include "gc/shared/tlab_globals.hpp" 36 37 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 38 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 39 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 40 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 41 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 42 #include "gc/shenandoah/shenandoahControlThread.hpp" 43 #include "gc/shenandoah/shenandoahFreeSet.hpp" 44 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 45 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 46 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 47 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 48 #include "gc/shenandoah/shenandoahInitLogger.hpp" 49 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 50 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 51 #include "gc/shenandoah/shenandoahMetrics.hpp" 52 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 53 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 54 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 55 #include "gc/shenandoah/shenandoahPadding.hpp" 56 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 57 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 58 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 59 #include "gc/shenandoah/shenandoahStringDedup.hpp" 60 #include "gc/shenandoah/shenandoahSTWMark.hpp" 61 #include "gc/shenandoah/shenandoahUtils.hpp" 62 #include "gc/shenandoah/shenandoahVerifier.hpp" 63 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 64 #include "gc/shenandoah/shenandoahVMOperations.hpp" 65 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 66 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 67 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 68 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 69 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 70 #if INCLUDE_JFR 71 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 72 #endif 73 74 #include "classfile/systemDictionary.hpp" 75 #include "memory/classLoaderMetaspace.hpp" 76 #include "memory/metaspaceUtils.hpp" 77 #include "oops/compressedOops.inline.hpp" 78 #include "prims/jvmtiTagMap.hpp" 79 #include "runtime/atomic.hpp" 80 #include "runtime/globals.hpp" 81 #include "runtime/interfaceSupport.inline.hpp" 82 #include "runtime/java.hpp" 83 #include "runtime/orderAccess.hpp" 84 #include "runtime/safepointMechanism.hpp" 85 #include "runtime/vmThread.hpp" 86 #include "services/mallocTracker.hpp" 87 #include "services/memTracker.hpp" 88 #include "utilities/events.hpp" 89 #include "utilities/powerOfTwo.hpp" 90 91 class ShenandoahPretouchHeapTask : public AbstractGangTask { 92 private: 93 ShenandoahRegionIterator _regions; 94 const size_t _page_size; 95 public: 96 ShenandoahPretouchHeapTask(size_t page_size) : 97 AbstractGangTask("Shenandoah Pretouch Heap"), 98 _page_size(page_size) {} 99 100 virtual void work(uint worker_id) { 101 ShenandoahHeapRegion* r = _regions.next(); 102 while (r != NULL) { 103 if (r->is_committed()) { 104 os::pretouch_memory(r->bottom(), r->end(), _page_size); 105 } 106 r = _regions.next(); 107 } 108 } 109 }; 110 111 class ShenandoahPretouchBitmapTask : public AbstractGangTask { 112 private: 113 ShenandoahRegionIterator _regions; 114 char* _bitmap_base; 115 const size_t _bitmap_size; 116 const size_t _page_size; 117 public: 118 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 119 AbstractGangTask("Shenandoah Pretouch Bitmap"), 120 _bitmap_base(bitmap_base), 121 _bitmap_size(bitmap_size), 122 _page_size(page_size) {} 123 124 virtual void work(uint worker_id) { 125 ShenandoahHeapRegion* r = _regions.next(); 126 while (r != NULL) { 127 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 128 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 129 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 130 131 if (r->is_committed()) { 132 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 133 } 134 135 r = _regions.next(); 136 } 137 } 138 }; 139 140 jint ShenandoahHeap::initialize() { 141 // 142 // Figure out heap sizing 143 // 144 145 size_t init_byte_size = InitialHeapSize; 146 size_t min_byte_size = MinHeapSize; 147 size_t max_byte_size = MaxHeapSize; 148 size_t heap_alignment = HeapAlignment; 149 150 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 151 152 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 153 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 154 155 _num_regions = ShenandoahHeapRegion::region_count(); 156 assert(_num_regions == (max_byte_size / reg_size_bytes), 157 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 158 _num_regions, max_byte_size, reg_size_bytes); 159 160 // Now we know the number of regions, initialize the heuristics. 161 initialize_heuristics(); 162 163 size_t num_committed_regions = init_byte_size / reg_size_bytes; 164 num_committed_regions = MIN2(num_committed_regions, _num_regions); 165 assert(num_committed_regions <= _num_regions, "sanity"); 166 _initial_size = num_committed_regions * reg_size_bytes; 167 168 size_t num_min_regions = min_byte_size / reg_size_bytes; 169 num_min_regions = MIN2(num_min_regions, _num_regions); 170 assert(num_min_regions <= _num_regions, "sanity"); 171 _minimum_size = num_min_regions * reg_size_bytes; 172 173 // Default to max heap size. 174 _soft_max_size = _num_regions * reg_size_bytes; 175 176 _committed = _initial_size; 177 178 size_t heap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size(); 179 size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size(); 180 size_t region_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size(); 181 182 // 183 // Reserve and commit memory for heap 184 // 185 186 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 187 initialize_reserved_region(heap_rs); 188 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 189 _heap_region_special = heap_rs.special(); 190 191 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 192 "Misaligned heap: " PTR_FORMAT, p2i(base())); 193 194 #if SHENANDOAH_OPTIMIZED_MARKTASK 195 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 196 // Fail if we ever attempt to address more than we can. 197 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 198 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 199 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 200 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 201 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 202 vm_exit_during_initialization("Fatal Error", buf); 203 } 204 #endif 205 206 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 207 if (!_heap_region_special) { 208 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 209 "Cannot commit heap memory"); 210 } 211 212 // 213 // Reserve and commit memory for bitmap(s) 214 // 215 216 _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 217 _bitmap_size = align_up(_bitmap_size, bitmap_page_size); 218 219 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 220 221 guarantee(bitmap_bytes_per_region != 0, 222 "Bitmap bytes per region should not be zero"); 223 guarantee(is_power_of_2(bitmap_bytes_per_region), 224 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 225 226 if (bitmap_page_size > bitmap_bytes_per_region) { 227 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 228 _bitmap_bytes_per_slice = bitmap_page_size; 229 } else { 230 _bitmap_regions_per_slice = 1; 231 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 232 } 233 234 guarantee(_bitmap_regions_per_slice >= 1, 235 "Should have at least one region per slice: " SIZE_FORMAT, 236 _bitmap_regions_per_slice); 237 238 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 239 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 240 _bitmap_bytes_per_slice, bitmap_page_size); 241 242 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 243 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 244 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 245 _bitmap_region_special = bitmap.special(); 246 247 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 248 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 249 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 250 if (!_bitmap_region_special) { 251 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 252 "Cannot commit bitmap memory"); 253 } 254 255 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 256 257 if (ShenandoahVerify) { 258 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 259 if (!verify_bitmap.special()) { 260 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 261 "Cannot commit verification bitmap memory"); 262 } 263 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 264 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 265 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 266 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 267 } 268 269 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 270 ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size); 271 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 272 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 273 _aux_bitmap_region_special = aux_bitmap.special(); 274 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 275 276 // 277 // Create regions and region sets 278 // 279 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 280 size_t region_storage_size = align_up(region_align * _num_regions, region_page_size); 281 region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity()); 282 283 ReservedSpace region_storage(region_storage_size, region_page_size); 284 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 285 if (!region_storage.special()) { 286 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 287 "Cannot commit region memory"); 288 } 289 290 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 291 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 292 // If not successful, bite a bullet and allocate at whatever address. 293 { 294 size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 295 size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 296 297 uintptr_t min = round_up_power_of_2(cset_align); 298 uintptr_t max = (1u << 30u); 299 300 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 301 char* req_addr = (char*)addr; 302 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 303 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr); 304 if (cset_rs.is_reserved()) { 305 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 306 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 307 break; 308 } 309 } 310 311 if (_collection_set == NULL) { 312 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size()); 313 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 314 } 315 } 316 317 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 318 _free_set = new ShenandoahFreeSet(this, _num_regions); 319 320 { 321 ShenandoahHeapLocker locker(lock()); 322 323 for (size_t i = 0; i < _num_regions; i++) { 324 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 325 bool is_committed = i < num_committed_regions; 326 void* loc = region_storage.base() + i * region_align; 327 328 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 329 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 330 331 _marking_context->initialize_top_at_mark_start(r); 332 _regions[i] = r; 333 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 334 } 335 336 // Initialize to complete 337 _marking_context->mark_complete(); 338 339 _free_set->rebuild(); 340 } 341 342 if (AlwaysPreTouch) { 343 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 344 // before initialize() below zeroes it with initializing thread. For any given region, 345 // we touch the region and the corresponding bitmaps from the same thread. 346 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 347 348 _pretouch_heap_page_size = heap_page_size; 349 _pretouch_bitmap_page_size = bitmap_page_size; 350 351 #ifdef LINUX 352 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge 353 // pages. But, the kernel needs to know that every small page is used, in order to coalesce 354 // them into huge one. Therefore, we need to pretouch with smaller pages. 355 if (UseTransparentHugePages) { 356 _pretouch_heap_page_size = (size_t)os::vm_page_size(); 357 _pretouch_bitmap_page_size = (size_t)os::vm_page_size(); 358 } 359 #endif 360 361 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 362 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 363 364 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 365 _workers->run_task(&bcl); 366 367 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 368 _workers->run_task(&hcl); 369 } 370 371 // 372 // Initialize the rest of GC subsystems 373 // 374 375 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 376 for (uint worker = 0; worker < _max_workers; worker++) { 377 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 378 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 379 } 380 381 // There should probably be Shenandoah-specific options for these, 382 // just as there are G1-specific options. 383 { 384 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 385 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 386 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 387 } 388 389 _monitoring_support = new ShenandoahMonitoringSupport(this); 390 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 391 ShenandoahCodeRoots::initialize(); 392 393 if (ShenandoahPacing) { 394 _pacer = new ShenandoahPacer(this); 395 _pacer->setup_for_idle(); 396 } else { 397 _pacer = NULL; 398 } 399 400 _control_thread = new ShenandoahControlThread(); 401 402 ShenandoahInitLogger::print(); 403 404 return JNI_OK; 405 } 406 407 void ShenandoahHeap::initialize_mode() { 408 if (ShenandoahGCMode != NULL) { 409 if (strcmp(ShenandoahGCMode, "satb") == 0) { 410 _gc_mode = new ShenandoahSATBMode(); 411 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 412 _gc_mode = new ShenandoahIUMode(); 413 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 414 _gc_mode = new ShenandoahPassiveMode(); 415 } else { 416 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 417 } 418 } else { 419 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 420 } 421 _gc_mode->initialize_flags(); 422 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 423 vm_exit_during_initialization( 424 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 425 _gc_mode->name())); 426 } 427 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 428 vm_exit_during_initialization( 429 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 430 _gc_mode->name())); 431 } 432 } 433 434 void ShenandoahHeap::initialize_heuristics() { 435 assert(_gc_mode != NULL, "Must be initialized"); 436 _heuristics = _gc_mode->initialize_heuristics(); 437 438 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 439 vm_exit_during_initialization( 440 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 441 _heuristics->name())); 442 } 443 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 444 vm_exit_during_initialization( 445 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 446 _heuristics->name())); 447 } 448 } 449 450 #ifdef _MSC_VER 451 #pragma warning( push ) 452 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 453 #endif 454 455 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 456 CollectedHeap(), 457 _initial_size(0), 458 _used(0), 459 _committed(0), 460 _bytes_allocated_since_gc_start(0), 461 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 462 _workers(NULL), 463 _safepoint_workers(NULL), 464 _heap_region_special(false), 465 _num_regions(0), 466 _regions(NULL), 467 _update_refs_iterator(this), 468 _gc_state_changed(false), 469 _control_thread(NULL), 470 _shenandoah_policy(policy), 471 _gc_mode(NULL), 472 _heuristics(NULL), 473 _free_set(NULL), 474 _pacer(NULL), 475 _verifier(NULL), 476 _phase_timings(NULL), 477 _monitoring_support(NULL), 478 _memory_pool(NULL), 479 _stw_memory_manager("Shenandoah Pauses"), 480 _cycle_memory_manager("Shenandoah Cycles"), 481 _gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 482 _soft_ref_policy(), 483 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 484 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 485 _marking_context(NULL), 486 _bitmap_size(0), 487 _bitmap_regions_per_slice(0), 488 _bitmap_bytes_per_slice(0), 489 _bitmap_region_special(false), 490 _aux_bitmap_region_special(false), 491 _liveness_cache(NULL), 492 _collection_set(NULL) 493 { 494 // Initialize GC mode early, so we can adjust barrier support 495 initialize_mode(); 496 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 497 498 _max_workers = MAX2(_max_workers, 1U); 499 _workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers, 500 /* are_GC_task_threads */ true, 501 /* are_ConcurrentGC_threads */ true); 502 if (_workers == NULL) { 503 vm_exit_during_initialization("Failed necessary allocation."); 504 } else { 505 _workers->initialize_workers(); 506 } 507 508 if (ParallelGCThreads > 1) { 509 _safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread", 510 ParallelGCThreads, 511 /* are_GC_task_threads */ false, 512 /* are_ConcurrentGC_threads */ false); 513 _safepoint_workers->initialize_workers(); 514 } 515 } 516 517 #ifdef _MSC_VER 518 #pragma warning( pop ) 519 #endif 520 521 class ShenandoahResetBitmapTask : public AbstractGangTask { 522 private: 523 ShenandoahRegionIterator _regions; 524 525 public: 526 ShenandoahResetBitmapTask() : 527 AbstractGangTask("Shenandoah Reset Bitmap") {} 528 529 void work(uint worker_id) { 530 ShenandoahHeapRegion* region = _regions.next(); 531 ShenandoahHeap* heap = ShenandoahHeap::heap(); 532 ShenandoahMarkingContext* const ctx = heap->marking_context(); 533 while (region != NULL) { 534 if (heap->is_bitmap_slice_committed(region)) { 535 ctx->clear_bitmap(region); 536 } 537 region = _regions.next(); 538 } 539 } 540 }; 541 542 void ShenandoahHeap::reset_mark_bitmap() { 543 assert_gc_workers(_workers->active_workers()); 544 mark_incomplete_marking_context(); 545 546 ShenandoahResetBitmapTask task; 547 _workers->run_task(&task); 548 } 549 550 void ShenandoahHeap::print_on(outputStream* st) const { 551 st->print_cr("Shenandoah Heap"); 552 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 553 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 554 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 555 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 556 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 557 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 558 num_regions(), 559 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 560 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 561 562 st->print("Status: "); 563 if (has_forwarded_objects()) st->print("has forwarded objects, "); 564 if (is_concurrent_mark_in_progress()) st->print("marking, "); 565 if (is_evacuation_in_progress()) st->print("evacuating, "); 566 if (is_update_refs_in_progress()) st->print("updating refs, "); 567 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 568 if (is_full_gc_in_progress()) st->print("full gc, "); 569 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 570 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 571 if (is_concurrent_strong_root_in_progress() && 572 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 573 574 if (cancelled_gc()) { 575 st->print("cancelled"); 576 } else { 577 st->print("not cancelled"); 578 } 579 st->cr(); 580 581 st->print_cr("Reserved region:"); 582 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 583 p2i(reserved_region().start()), 584 p2i(reserved_region().end())); 585 586 ShenandoahCollectionSet* cset = collection_set(); 587 st->print_cr("Collection set:"); 588 if (cset != NULL) { 589 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 590 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 591 } else { 592 st->print_cr(" (NULL)"); 593 } 594 595 st->cr(); 596 MetaspaceUtils::print_on(st); 597 598 if (Verbose) { 599 st->cr(); 600 print_heap_regions_on(st); 601 } 602 } 603 604 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 605 public: 606 void do_thread(Thread* thread) { 607 assert(thread != NULL, "Sanity"); 608 assert(thread->is_Worker_thread(), "Only worker thread expected"); 609 ShenandoahThreadLocalData::initialize_gclab(thread); 610 } 611 }; 612 613 void ShenandoahHeap::post_initialize() { 614 CollectedHeap::post_initialize(); 615 MutexLocker ml(Threads_lock); 616 617 ShenandoahInitWorkerGCLABClosure init_gclabs; 618 _workers->threads_do(&init_gclabs); 619 620 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 621 // Now, we will let WorkGang to initialize gclab when new worker is created. 622 _workers->set_initialize_gclab(); 623 if (_safepoint_workers != NULL) { 624 _safepoint_workers->threads_do(&init_gclabs); 625 _safepoint_workers->set_initialize_gclab(); 626 } 627 628 _heuristics->initialize(); 629 630 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 631 } 632 633 size_t ShenandoahHeap::used() const { 634 return Atomic::load(&_used); 635 } 636 637 size_t ShenandoahHeap::committed() const { 638 return Atomic::load(&_committed); 639 } 640 641 void ShenandoahHeap::increase_committed(size_t bytes) { 642 shenandoah_assert_heaplocked_or_safepoint(); 643 _committed += bytes; 644 } 645 646 void ShenandoahHeap::decrease_committed(size_t bytes) { 647 shenandoah_assert_heaplocked_or_safepoint(); 648 _committed -= bytes; 649 } 650 651 void ShenandoahHeap::increase_used(size_t bytes) { 652 Atomic::add(&_used, bytes, memory_order_relaxed); 653 } 654 655 void ShenandoahHeap::set_used(size_t bytes) { 656 Atomic::store(&_used, bytes); 657 } 658 659 void ShenandoahHeap::decrease_used(size_t bytes) { 660 assert(used() >= bytes, "never decrease heap size by more than we've left"); 661 Atomic::sub(&_used, bytes, memory_order_relaxed); 662 } 663 664 void ShenandoahHeap::increase_allocated(size_t bytes) { 665 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 666 } 667 668 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 669 size_t bytes = words * HeapWordSize; 670 if (!waste) { 671 increase_used(bytes); 672 } 673 increase_allocated(bytes); 674 if (ShenandoahPacing) { 675 control_thread()->pacing_notify_alloc(words); 676 if (waste) { 677 pacer()->claim_for_alloc(words, true); 678 } 679 } 680 } 681 682 size_t ShenandoahHeap::capacity() const { 683 return committed(); 684 } 685 686 size_t ShenandoahHeap::max_capacity() const { 687 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 688 } 689 690 size_t ShenandoahHeap::soft_max_capacity() const { 691 size_t v = Atomic::load(&_soft_max_size); 692 assert(min_capacity() <= v && v <= max_capacity(), 693 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 694 min_capacity(), v, max_capacity()); 695 return v; 696 } 697 698 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 699 assert(min_capacity() <= v && v <= max_capacity(), 700 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 701 min_capacity(), v, max_capacity()); 702 Atomic::store(&_soft_max_size, v); 703 } 704 705 size_t ShenandoahHeap::min_capacity() const { 706 return _minimum_size; 707 } 708 709 size_t ShenandoahHeap::initial_capacity() const { 710 return _initial_size; 711 } 712 713 bool ShenandoahHeap::is_in(const void* p) const { 714 HeapWord* heap_base = (HeapWord*) base(); 715 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 716 return p >= heap_base && p < last_region_end; 717 } 718 719 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 720 assert (ShenandoahUncommit, "should be enabled"); 721 722 // Application allocates from the beginning of the heap, and GC allocates at 723 // the end of it. It is more efficient to uncommit from the end, so that applications 724 // could enjoy the near committed regions. GC allocations are much less frequent, 725 // and therefore can accept the committing costs. 726 727 size_t count = 0; 728 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 729 ShenandoahHeapRegion* r = get_region(i - 1); 730 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 731 ShenandoahHeapLocker locker(lock()); 732 if (r->is_empty_committed()) { 733 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 734 break; 735 } 736 737 r->make_uncommitted(); 738 count++; 739 } 740 } 741 SpinPause(); // allow allocators to take the lock 742 } 743 744 if (count > 0) { 745 control_thread()->notify_heap_changed(); 746 } 747 } 748 749 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 750 // New object should fit the GCLAB size 751 size_t min_size = MAX2(size, PLAB::min_size()); 752 753 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 754 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 755 new_size = MIN2(new_size, PLAB::max_size()); 756 new_size = MAX2(new_size, PLAB::min_size()); 757 758 // Record new heuristic value even if we take any shortcut. This captures 759 // the case when moderately-sized objects always take a shortcut. At some point, 760 // heuristics should catch up with them. 761 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 762 763 if (new_size < size) { 764 // New size still does not fit the object. Fall back to shared allocation. 765 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 766 return NULL; 767 } 768 769 // Retire current GCLAB, and allocate a new one. 770 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 771 gclab->retire(); 772 773 size_t actual_size = 0; 774 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 775 if (gclab_buf == NULL) { 776 return NULL; 777 } 778 779 assert (size <= actual_size, "allocation should fit"); 780 781 if (ZeroTLAB) { 782 // ..and clear it. 783 Copy::zero_to_words(gclab_buf, actual_size); 784 } else { 785 // ...and zap just allocated object. 786 #ifdef ASSERT 787 // Skip mangling the space corresponding to the object header to 788 // ensure that the returned space is not considered parsable by 789 // any concurrent GC thread. 790 size_t hdr_size = oopDesc::header_size(); 791 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 792 #endif // ASSERT 793 } 794 gclab->set_buf(gclab_buf, actual_size); 795 return gclab->allocate(size); 796 } 797 798 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 799 size_t requested_size, 800 size_t* actual_size) { 801 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 802 HeapWord* res = allocate_memory(req); 803 if (res != NULL) { 804 *actual_size = req.actual_size(); 805 } else { 806 *actual_size = 0; 807 } 808 return res; 809 } 810 811 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 812 size_t word_size, 813 size_t* actual_size) { 814 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 815 HeapWord* res = allocate_memory(req); 816 if (res != NULL) { 817 *actual_size = req.actual_size(); 818 } else { 819 *actual_size = 0; 820 } 821 return res; 822 } 823 824 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 825 intptr_t pacer_epoch = 0; 826 bool in_new_region = false; 827 HeapWord* result = NULL; 828 829 if (req.is_mutator_alloc()) { 830 if (ShenandoahPacing) { 831 pacer()->pace_for_alloc(req.size()); 832 pacer_epoch = pacer()->epoch(); 833 } 834 835 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 836 result = allocate_memory_under_lock(req, in_new_region); 837 } 838 839 // Allocation failed, block until control thread reacted, then retry allocation. 840 // 841 // It might happen that one of the threads requesting allocation would unblock 842 // way later after GC happened, only to fail the second allocation, because 843 // other threads have already depleted the free storage. In this case, a better 844 // strategy is to try again, as long as GC makes progress. 845 // 846 // Then, we need to make sure the allocation was retried after at least one 847 // Full GC, which means we want to try more than ShenandoahFullGCThreshold times. 848 849 size_t tries = 0; 850 851 while (result == NULL && _progress_last_gc.is_set()) { 852 tries++; 853 control_thread()->handle_alloc_failure(req); 854 result = allocate_memory_under_lock(req, in_new_region); 855 } 856 857 while (result == NULL && tries <= ShenandoahFullGCThreshold) { 858 tries++; 859 control_thread()->handle_alloc_failure(req); 860 result = allocate_memory_under_lock(req, in_new_region); 861 } 862 863 } else { 864 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 865 result = allocate_memory_under_lock(req, in_new_region); 866 // Do not call handle_alloc_failure() here, because we cannot block. 867 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 868 } 869 870 if (in_new_region) { 871 control_thread()->notify_heap_changed(); 872 } 873 874 if (result != NULL) { 875 size_t requested = req.size(); 876 size_t actual = req.actual_size(); 877 878 assert (req.is_lab_alloc() || (requested == actual), 879 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 880 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 881 882 if (req.is_mutator_alloc()) { 883 notify_mutator_alloc_words(actual, false); 884 885 // If we requested more than we were granted, give the rest back to pacer. 886 // This only matters if we are in the same pacing epoch: do not try to unpace 887 // over the budget for the other phase. 888 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 889 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 890 } 891 } else { 892 increase_used(actual*HeapWordSize); 893 } 894 } 895 896 return result; 897 } 898 899 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 900 ShenandoahHeapLocker locker(lock()); 901 return _free_set->allocate(req, in_new_region); 902 } 903 904 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 905 bool* gc_overhead_limit_was_exceeded) { 906 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 907 return allocate_memory(req); 908 } 909 910 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 911 size_t size, 912 Metaspace::MetadataType mdtype) { 913 MetaWord* result; 914 915 // Inform metaspace OOM to GC heuristics if class unloading is possible. 916 if (heuristics()->can_unload_classes()) { 917 ShenandoahHeuristics* h = heuristics(); 918 h->record_metaspace_oom(); 919 } 920 921 // Expand and retry allocation 922 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 923 if (result != NULL) { 924 return result; 925 } 926 927 // Start full GC 928 collect(GCCause::_metadata_GC_clear_soft_refs); 929 930 // Retry allocation 931 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 932 if (result != NULL) { 933 return result; 934 } 935 936 // Expand and retry allocation 937 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 938 if (result != NULL) { 939 return result; 940 } 941 942 // Out of memory 943 return NULL; 944 } 945 946 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 947 private: 948 ShenandoahHeap* const _heap; 949 Thread* const _thread; 950 public: 951 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 952 _heap(heap), _thread(Thread::current()) {} 953 954 void do_object(oop p) { 955 shenandoah_assert_marked(NULL, p); 956 if (!p->is_forwarded()) { 957 _heap->evacuate_object(p, _thread); 958 } 959 } 960 }; 961 962 class ShenandoahEvacuationTask : public AbstractGangTask { 963 private: 964 ShenandoahHeap* const _sh; 965 ShenandoahCollectionSet* const _cs; 966 bool _concurrent; 967 public: 968 ShenandoahEvacuationTask(ShenandoahHeap* sh, 969 ShenandoahCollectionSet* cs, 970 bool concurrent) : 971 AbstractGangTask("Shenandoah Evacuation"), 972 _sh(sh), 973 _cs(cs), 974 _concurrent(concurrent) 975 {} 976 977 void work(uint worker_id) { 978 if (_concurrent) { 979 ShenandoahConcurrentWorkerSession worker_session(worker_id); 980 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers); 981 ShenandoahEvacOOMScope oom_evac_scope; 982 do_work(); 983 } else { 984 ShenandoahParallelWorkerSession worker_session(worker_id); 985 ShenandoahEvacOOMScope oom_evac_scope; 986 do_work(); 987 } 988 } 989 990 private: 991 void do_work() { 992 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 993 ShenandoahHeapRegion* r; 994 while ((r =_cs->claim_next()) != NULL) { 995 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 996 _sh->marked_object_iterate(r, &cl); 997 998 if (ShenandoahPacing) { 999 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1000 } 1001 1002 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1003 break; 1004 } 1005 } 1006 } 1007 }; 1008 1009 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1010 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1011 workers()->run_task(&task); 1012 } 1013 1014 void ShenandoahHeap::trash_cset_regions() { 1015 ShenandoahHeapLocker locker(lock()); 1016 1017 ShenandoahCollectionSet* set = collection_set(); 1018 ShenandoahHeapRegion* r; 1019 set->clear_current_index(); 1020 while ((r = set->next()) != NULL) { 1021 r->make_trash(); 1022 } 1023 collection_set()->clear(); 1024 } 1025 1026 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1027 st->print_cr("Heap Regions:"); 1028 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1029 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1030 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1031 st->print_cr("UWM=update watermark, U=used"); 1032 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1033 st->print_cr("S=shared allocs, L=live data"); 1034 st->print_cr("CP=critical pins"); 1035 1036 for (size_t i = 0; i < num_regions(); i++) { 1037 get_region(i)->print_on(st); 1038 } 1039 } 1040 1041 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1042 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1043 1044 oop humongous_obj = cast_to_oop(start->bottom()); 1045 size_t size = humongous_obj->size(); 1046 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1047 size_t index = start->index() + required_regions - 1; 1048 1049 assert(!start->has_live(), "liveness must be zero"); 1050 1051 for(size_t i = 0; i < required_regions; i++) { 1052 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1053 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1054 ShenandoahHeapRegion* region = get_region(index --); 1055 1056 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1057 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1058 1059 region->make_trash_immediate(); 1060 } 1061 } 1062 1063 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1064 public: 1065 ShenandoahCheckCleanGCLABClosure() {} 1066 void do_thread(Thread* thread) { 1067 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1068 assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name()); 1069 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1070 } 1071 }; 1072 1073 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1074 private: 1075 bool const _resize; 1076 public: 1077 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1078 void do_thread(Thread* thread) { 1079 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1080 assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name()); 1081 gclab->retire(); 1082 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1083 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1084 } 1085 } 1086 }; 1087 1088 void ShenandoahHeap::labs_make_parsable() { 1089 assert(UseTLAB, "Only call with UseTLAB"); 1090 1091 ShenandoahRetireGCLABClosure cl(false); 1092 1093 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1094 ThreadLocalAllocBuffer& tlab = t->tlab(); 1095 tlab.make_parsable(); 1096 cl.do_thread(t); 1097 } 1098 1099 workers()->threads_do(&cl); 1100 } 1101 1102 void ShenandoahHeap::tlabs_retire(bool resize) { 1103 assert(UseTLAB, "Only call with UseTLAB"); 1104 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1105 1106 ThreadLocalAllocStats stats; 1107 1108 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1109 ThreadLocalAllocBuffer& tlab = t->tlab(); 1110 tlab.retire(&stats); 1111 if (resize) { 1112 tlab.resize(); 1113 } 1114 } 1115 1116 stats.publish(); 1117 1118 #ifdef ASSERT 1119 ShenandoahCheckCleanGCLABClosure cl; 1120 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1121 cl.do_thread(t); 1122 } 1123 workers()->threads_do(&cl); 1124 #endif 1125 } 1126 1127 void ShenandoahHeap::gclabs_retire(bool resize) { 1128 assert(UseTLAB, "Only call with UseTLAB"); 1129 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1130 1131 ShenandoahRetireGCLABClosure cl(resize); 1132 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1133 cl.do_thread(t); 1134 } 1135 workers()->threads_do(&cl); 1136 1137 if (safepoint_workers() != NULL) { 1138 safepoint_workers()->threads_do(&cl); 1139 } 1140 } 1141 1142 // Returns size in bytes 1143 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1144 if (ShenandoahElasticTLAB) { 1145 // With Elastic TLABs, return the max allowed size, and let the allocation path 1146 // figure out the safe size for current allocation. 1147 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1148 } else { 1149 return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes()); 1150 } 1151 } 1152 1153 size_t ShenandoahHeap::max_tlab_size() const { 1154 // Returns size in words 1155 return ShenandoahHeapRegion::max_tlab_size_words(); 1156 } 1157 1158 void ShenandoahHeap::collect(GCCause::Cause cause) { 1159 control_thread()->request_gc(cause); 1160 } 1161 1162 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1163 //assert(false, "Shouldn't need to do full collections"); 1164 } 1165 1166 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1167 ShenandoahHeapRegion* r = heap_region_containing(addr); 1168 if (r != NULL) { 1169 return r->block_start(addr); 1170 } 1171 return NULL; 1172 } 1173 1174 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1175 ShenandoahHeapRegion* r = heap_region_containing(addr); 1176 return r->block_is_obj(addr); 1177 } 1178 1179 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1180 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1181 } 1182 1183 void ShenandoahHeap::prepare_for_verify() { 1184 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1185 labs_make_parsable(); 1186 } 1187 } 1188 1189 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1190 tcl->do_thread(_control_thread); 1191 workers()->threads_do(tcl); 1192 if (_safepoint_workers != NULL) { 1193 _safepoint_workers->threads_do(tcl); 1194 } 1195 if (ShenandoahStringDedup::is_enabled()) { 1196 ShenandoahStringDedup::threads_do(tcl); 1197 } 1198 } 1199 1200 void ShenandoahHeap::print_tracing_info() const { 1201 LogTarget(Info, gc, stats) lt; 1202 if (lt.is_enabled()) { 1203 ResourceMark rm; 1204 LogStream ls(lt); 1205 1206 phase_timings()->print_global_on(&ls); 1207 1208 ls.cr(); 1209 ls.cr(); 1210 1211 shenandoah_policy()->print_gc_stats(&ls); 1212 1213 ls.cr(); 1214 ls.cr(); 1215 } 1216 } 1217 1218 void ShenandoahHeap::verify(VerifyOption vo) { 1219 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1220 if (ShenandoahVerify) { 1221 verifier()->verify_generic(vo); 1222 } else { 1223 // TODO: Consider allocating verification bitmaps on demand, 1224 // and turn this on unconditionally. 1225 } 1226 } 1227 } 1228 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1229 return _free_set->capacity(); 1230 } 1231 1232 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1233 private: 1234 MarkBitMap* _bitmap; 1235 ShenandoahScanObjectStack* _oop_stack; 1236 ShenandoahHeap* const _heap; 1237 ShenandoahMarkingContext* const _marking_context; 1238 1239 template <class T> 1240 void do_oop_work(T* p) { 1241 T o = RawAccess<>::oop_load(p); 1242 if (!CompressedOops::is_null(o)) { 1243 oop obj = CompressedOops::decode_not_null(o); 1244 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1245 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1246 return; 1247 } 1248 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1249 1250 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1251 if (!_bitmap->is_marked(obj)) { 1252 _bitmap->mark(obj); 1253 _oop_stack->push(obj); 1254 } 1255 } 1256 } 1257 public: 1258 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1259 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1260 _marking_context(_heap->marking_context()) {} 1261 void do_oop(oop* p) { do_oop_work(p); } 1262 void do_oop(narrowOop* p) { do_oop_work(p); } 1263 }; 1264 1265 /* 1266 * This is public API, used in preparation of object_iterate(). 1267 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1268 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1269 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1270 */ 1271 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1272 // No-op. 1273 } 1274 1275 /* 1276 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1277 * 1278 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1279 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1280 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1281 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1282 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1283 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1284 * wiped the bitmap in preparation for next marking). 1285 * 1286 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1287 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1288 * is allowed to report dead objects, but is not required to do so. 1289 */ 1290 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1291 // Reset bitmap 1292 if (!prepare_aux_bitmap_for_iteration()) 1293 return; 1294 1295 ShenandoahScanObjectStack oop_stack; 1296 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1297 // Seed the stack with root scan 1298 scan_roots_for_iteration(&oop_stack, &oops); 1299 1300 // Work through the oop stack to traverse heap 1301 while (! oop_stack.is_empty()) { 1302 oop obj = oop_stack.pop(); 1303 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1304 cl->do_object(obj); 1305 obj->oop_iterate(&oops); 1306 } 1307 1308 assert(oop_stack.is_empty(), "should be empty"); 1309 // Reclaim bitmap 1310 reclaim_aux_bitmap_for_iteration(); 1311 } 1312 1313 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1314 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1315 1316 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1317 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1318 return false; 1319 } 1320 // Reset bitmap 1321 _aux_bit_map.clear(); 1322 return true; 1323 } 1324 1325 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1326 // Process GC roots according to current GC cycle 1327 // This populates the work stack with initial objects 1328 // It is important to relinquish the associated locks before diving 1329 // into heap dumper 1330 ShenandoahHeapIterationRootScanner rp; 1331 rp.roots_do(oops); 1332 } 1333 1334 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1335 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1336 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1337 } 1338 } 1339 1340 // Closure for parallelly iterate objects 1341 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1342 private: 1343 MarkBitMap* _bitmap; 1344 ShenandoahObjToScanQueue* _queue; 1345 ShenandoahHeap* const _heap; 1346 ShenandoahMarkingContext* const _marking_context; 1347 1348 template <class T> 1349 void do_oop_work(T* p) { 1350 T o = RawAccess<>::oop_load(p); 1351 if (!CompressedOops::is_null(o)) { 1352 oop obj = CompressedOops::decode_not_null(o); 1353 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1354 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1355 return; 1356 } 1357 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1358 1359 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1360 if (_bitmap->par_mark(obj)) { 1361 _queue->push(ShenandoahMarkTask(obj)); 1362 } 1363 } 1364 } 1365 public: 1366 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1367 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1368 _marking_context(_heap->marking_context()) {} 1369 void do_oop(oop* p) { do_oop_work(p); } 1370 void do_oop(narrowOop* p) { do_oop_work(p); } 1371 }; 1372 1373 // Object iterator for parallel heap iteraion. 1374 // The root scanning phase happenes in construction as a preparation of 1375 // parallel marking queues. 1376 // Every worker processes it's own marking queue. work-stealing is used 1377 // to balance workload. 1378 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1379 private: 1380 uint _num_workers; 1381 bool _init_ready; 1382 MarkBitMap* _aux_bit_map; 1383 ShenandoahHeap* _heap; 1384 ShenandoahScanObjectStack _roots_stack; // global roots stack 1385 ShenandoahObjToScanQueueSet* _task_queues; 1386 public: 1387 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1388 _num_workers(num_workers), 1389 _init_ready(false), 1390 _aux_bit_map(bitmap), 1391 _heap(ShenandoahHeap::heap()) { 1392 // Initialize bitmap 1393 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1394 if (!_init_ready) { 1395 return; 1396 } 1397 1398 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1399 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1400 1401 _init_ready = prepare_worker_queues(); 1402 } 1403 1404 ~ShenandoahParallelObjectIterator() { 1405 // Reclaim bitmap 1406 _heap->reclaim_aux_bitmap_for_iteration(); 1407 // Reclaim queue for workers 1408 if (_task_queues!= NULL) { 1409 for (uint i = 0; i < _num_workers; ++i) { 1410 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1411 if (q != NULL) { 1412 delete q; 1413 _task_queues->register_queue(i, NULL); 1414 } 1415 } 1416 delete _task_queues; 1417 _task_queues = NULL; 1418 } 1419 } 1420 1421 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1422 if (_init_ready) { 1423 object_iterate_parallel(cl, worker_id, _task_queues); 1424 } 1425 } 1426 1427 private: 1428 // Divide global root_stack into worker queues 1429 bool prepare_worker_queues() { 1430 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1431 // Initialize queues for every workers 1432 for (uint i = 0; i < _num_workers; ++i) { 1433 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1434 task_queue->initialize(); 1435 _task_queues->register_queue(i, task_queue); 1436 } 1437 // Divide roots among the workers. Assume that object referencing distribution 1438 // is related with root kind, use round-robin to make every worker have same chance 1439 // to process every kind of roots 1440 size_t roots_num = _roots_stack.size(); 1441 if (roots_num == 0) { 1442 // No work to do 1443 return false; 1444 } 1445 1446 for (uint j = 0; j < roots_num; j++) { 1447 uint stack_id = j % _num_workers; 1448 oop obj = _roots_stack.pop(); 1449 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1450 } 1451 return true; 1452 } 1453 1454 void object_iterate_parallel(ObjectClosure* cl, 1455 uint worker_id, 1456 ShenandoahObjToScanQueueSet* queue_set) { 1457 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1458 assert(queue_set != NULL, "task queue must not be NULL"); 1459 1460 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1461 assert(q != NULL, "object iterate queue must not be NULL"); 1462 1463 ShenandoahMarkTask t; 1464 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1465 1466 // Work through the queue to traverse heap. 1467 // Steal when there is no task in queue. 1468 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1469 oop obj = t.obj(); 1470 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1471 cl->do_object(obj); 1472 obj->oop_iterate(&oops); 1473 } 1474 assert(q->is_empty(), "should be empty"); 1475 } 1476 }; 1477 1478 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1479 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1480 } 1481 1482 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1483 void ShenandoahHeap::keep_alive(oop obj) { 1484 if (is_concurrent_mark_in_progress() && (obj != NULL)) { 1485 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1486 } 1487 } 1488 1489 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1490 for (size_t i = 0; i < num_regions(); i++) { 1491 ShenandoahHeapRegion* current = get_region(i); 1492 blk->heap_region_do(current); 1493 } 1494 } 1495 1496 class ShenandoahParallelHeapRegionTask : public AbstractGangTask { 1497 private: 1498 ShenandoahHeap* const _heap; 1499 ShenandoahHeapRegionClosure* const _blk; 1500 1501 shenandoah_padding(0); 1502 volatile size_t _index; 1503 shenandoah_padding(1); 1504 1505 public: 1506 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) : 1507 AbstractGangTask("Shenandoah Parallel Region Operation"), 1508 _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {} 1509 1510 void work(uint worker_id) { 1511 ShenandoahParallelWorkerSession worker_session(worker_id); 1512 size_t stride = ShenandoahParallelRegionStride; 1513 1514 size_t max = _heap->num_regions(); 1515 while (Atomic::load(&_index) < max) { 1516 size_t cur = Atomic::fetch_and_add(&_index, stride, memory_order_relaxed); 1517 size_t start = cur; 1518 size_t end = MIN2(cur + stride, max); 1519 if (start >= max) break; 1520 1521 for (size_t i = cur; i < end; i++) { 1522 ShenandoahHeapRegion* current = _heap->get_region(i); 1523 _blk->heap_region_do(current); 1524 } 1525 } 1526 } 1527 }; 1528 1529 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1530 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1531 if (num_regions() > ShenandoahParallelRegionStride) { 1532 ShenandoahParallelHeapRegionTask task(blk); 1533 workers()->run_task(&task); 1534 } else { 1535 heap_region_iterate(blk); 1536 } 1537 } 1538 1539 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1540 private: 1541 ShenandoahMarkingContext* const _ctx; 1542 public: 1543 ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1544 1545 void heap_region_do(ShenandoahHeapRegion* r) { 1546 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1547 if (r->is_active()) { 1548 // Check if region needs updating its TAMS. We have updated it already during concurrent 1549 // reset, so it is very likely we don't need to do another write here. 1550 if (_ctx->top_at_mark_start(r) != r->top()) { 1551 _ctx->capture_top_at_mark_start(r); 1552 } 1553 } else { 1554 assert(_ctx->top_at_mark_start(r) == r->top(), 1555 "Region " SIZE_FORMAT " should already have correct TAMS", r->index()); 1556 } 1557 } 1558 1559 bool is_thread_safe() { return true; } 1560 }; 1561 1562 class ShenandoahRendezvousClosure : public HandshakeClosure { 1563 public: 1564 inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {} 1565 inline void do_thread(Thread* thread) {} 1566 }; 1567 1568 void ShenandoahHeap::rendezvous_threads() { 1569 ShenandoahRendezvousClosure cl; 1570 Handshake::execute(&cl); 1571 } 1572 1573 void ShenandoahHeap::recycle_trash() { 1574 free_set()->recycle_trash(); 1575 } 1576 1577 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1578 private: 1579 ShenandoahMarkingContext* const _ctx; 1580 public: 1581 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1582 1583 void heap_region_do(ShenandoahHeapRegion* r) { 1584 if (r->is_active()) { 1585 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1586 // anyway to capture any updates that happened since now. 1587 r->clear_live_data(); 1588 _ctx->capture_top_at_mark_start(r); 1589 } 1590 } 1591 1592 bool is_thread_safe() { return true; } 1593 }; 1594 1595 void ShenandoahHeap::prepare_gc() { 1596 reset_mark_bitmap(); 1597 1598 ShenandoahResetUpdateRegionStateClosure cl; 1599 parallel_heap_region_iterate(&cl); 1600 } 1601 1602 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1603 private: 1604 ShenandoahMarkingContext* const _ctx; 1605 ShenandoahHeapLock* const _lock; 1606 1607 public: 1608 ShenandoahFinalMarkUpdateRegionStateClosure() : 1609 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1610 1611 void heap_region_do(ShenandoahHeapRegion* r) { 1612 if (r->is_active()) { 1613 // All allocations past TAMS are implicitly live, adjust the region data. 1614 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1615 HeapWord *tams = _ctx->top_at_mark_start(r); 1616 HeapWord *top = r->top(); 1617 if (top > tams) { 1618 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1619 } 1620 1621 // We are about to select the collection set, make sure it knows about 1622 // current pinning status. Also, this allows trashing more regions that 1623 // now have their pinning status dropped. 1624 if (r->is_pinned()) { 1625 if (r->pin_count() == 0) { 1626 ShenandoahHeapLocker locker(_lock); 1627 r->make_unpinned(); 1628 } 1629 } else { 1630 if (r->pin_count() > 0) { 1631 ShenandoahHeapLocker locker(_lock); 1632 r->make_pinned(); 1633 } 1634 } 1635 1636 // Remember limit for updating refs. It's guaranteed that we get no 1637 // from-space-refs written from here on. 1638 r->set_update_watermark_at_safepoint(r->top()); 1639 } else { 1640 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1641 assert(_ctx->top_at_mark_start(r) == r->top(), 1642 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1643 } 1644 } 1645 1646 bool is_thread_safe() { return true; } 1647 }; 1648 1649 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1650 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1651 { 1652 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1653 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1654 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1655 parallel_heap_region_iterate(&cl); 1656 1657 assert_pinned_region_status(); 1658 } 1659 1660 { 1661 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1662 ShenandoahPhaseTimings::degen_gc_choose_cset); 1663 ShenandoahHeapLocker locker(lock()); 1664 _collection_set->clear(); 1665 heuristics()->choose_collection_set(_collection_set); 1666 } 1667 1668 { 1669 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1670 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1671 ShenandoahHeapLocker locker(lock()); 1672 _free_set->rebuild(); 1673 } 1674 } 1675 1676 void ShenandoahHeap::do_class_unloading() { 1677 _unloader.unload(); 1678 } 1679 1680 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1681 // Weak refs processing 1682 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1683 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1684 ShenandoahTimingsTracker t(phase); 1685 ShenandoahGCWorkerPhase worker_phase(phase); 1686 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1687 } 1688 1689 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1690 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1691 1692 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1693 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1694 // for future GCLABs here. 1695 if (UseTLAB) { 1696 ShenandoahGCPhase phase(concurrent ? 1697 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1698 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1699 gclabs_retire(ResizeTLAB); 1700 } 1701 1702 _update_refs_iterator.reset(); 1703 } 1704 1705 void ShenandoahHeap::set_gc_state_all_threads() { 1706 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1707 if (_gc_state_changed) { 1708 _gc_state_changed = false; 1709 char state = gc_state(); 1710 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1711 ShenandoahThreadLocalData::set_gc_state(t, state); 1712 } 1713 } 1714 } 1715 1716 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) { 1717 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1718 _gc_state.set_cond(mask, value); 1719 _gc_state_changed = true; 1720 } 1721 1722 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1723 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1724 set_gc_state_mask(MARKING, in_progress); 1725 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1726 } 1727 1728 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1729 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1730 set_gc_state_mask(EVACUATION, in_progress); 1731 } 1732 1733 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1734 if (in_progress) { 1735 _concurrent_strong_root_in_progress.set(); 1736 } else { 1737 _concurrent_strong_root_in_progress.unset(); 1738 } 1739 } 1740 1741 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1742 set_gc_state_mask(WEAK_ROOTS, cond); 1743 } 1744 1745 GCTracer* ShenandoahHeap::tracer() { 1746 return shenandoah_policy()->tracer(); 1747 } 1748 1749 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1750 return _free_set->used(); 1751 } 1752 1753 bool ShenandoahHeap::try_cancel_gc() { 1754 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1755 return prev == CANCELLABLE; 1756 } 1757 1758 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1759 if (try_cancel_gc()) { 1760 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1761 log_info(gc)("%s", msg.buffer()); 1762 Events::log(Thread::current(), "%s", msg.buffer()); 1763 } 1764 } 1765 1766 uint ShenandoahHeap::max_workers() { 1767 return _max_workers; 1768 } 1769 1770 void ShenandoahHeap::stop() { 1771 // The shutdown sequence should be able to terminate when GC is running. 1772 1773 // Step 0. Notify policy to disable event recording. 1774 _shenandoah_policy->record_shutdown(); 1775 1776 // Step 1. Notify control thread that we are in shutdown. 1777 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1778 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1779 control_thread()->prepare_for_graceful_shutdown(); 1780 1781 // Step 2. Notify GC workers that we are cancelling GC. 1782 cancel_gc(GCCause::_shenandoah_stop_vm); 1783 1784 // Step 3. Wait until GC worker exits normally. 1785 control_thread()->stop(); 1786 } 1787 1788 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1789 if (!unload_classes()) return; 1790 // Unload classes and purge SystemDictionary. 1791 { 1792 ShenandoahPhaseTimings::Phase phase = full_gc ? 1793 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1794 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1795 ShenandoahGCPhase gc_phase(phase); 1796 ShenandoahGCWorkerPhase worker_phase(phase); 1797 bool purged_class = SystemDictionary::do_unloading(gc_timer()); 1798 1799 ShenandoahIsAliveSelector is_alive; 1800 uint num_workers = _workers->active_workers(); 1801 ShenandoahClassUnloadingTask unlink_task(phase, is_alive.is_alive_closure(), num_workers, purged_class); 1802 _workers->run_task(&unlink_task); 1803 } 1804 1805 { 1806 ShenandoahGCPhase phase(full_gc ? 1807 ShenandoahPhaseTimings::full_gc_purge_cldg : 1808 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1809 ClassLoaderDataGraph::purge(/*at_safepoint*/true); 1810 } 1811 // Resize and verify metaspace 1812 MetaspaceGC::compute_new_size(); 1813 DEBUG_ONLY(MetaspaceUtils::verify();) 1814 } 1815 1816 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 1817 // so they should not have forwarded oops. 1818 // However, we do need to "null" dead oops in the roots, if can not be done 1819 // in concurrent cycles. 1820 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 1821 uint num_workers = _workers->active_workers(); 1822 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 1823 ShenandoahPhaseTimings::full_gc_purge_weak_par : 1824 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 1825 ShenandoahGCPhase phase(timing_phase); 1826 ShenandoahGCWorkerPhase worker_phase(timing_phase); 1827 // Cleanup weak roots 1828 if (has_forwarded_objects()) { 1829 ShenandoahForwardedIsAliveClosure is_alive; 1830 ShenandoahUpdateRefsClosure keep_alive; 1831 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 1832 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 1833 _workers->run_task(&cleaning_task); 1834 } else { 1835 ShenandoahIsAliveClosure is_alive; 1836 #ifdef ASSERT 1837 ShenandoahAssertNotForwardedClosure verify_cl; 1838 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 1839 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 1840 #else 1841 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 1842 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 1843 #endif 1844 _workers->run_task(&cleaning_task); 1845 } 1846 } 1847 1848 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 1849 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1850 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 1851 ShenandoahGCPhase phase(full_gc ? 1852 ShenandoahPhaseTimings::full_gc_purge : 1853 ShenandoahPhaseTimings::degen_gc_purge); 1854 stw_weak_refs(full_gc); 1855 stw_process_weak_roots(full_gc); 1856 stw_unload_classes(full_gc); 1857 } 1858 1859 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 1860 set_gc_state_mask(HAS_FORWARDED, cond); 1861 } 1862 1863 void ShenandoahHeap::set_unload_classes(bool uc) { 1864 _unload_classes.set_cond(uc); 1865 } 1866 1867 bool ShenandoahHeap::unload_classes() const { 1868 return _unload_classes.is_set(); 1869 } 1870 1871 address ShenandoahHeap::in_cset_fast_test_addr() { 1872 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1873 assert(heap->collection_set() != NULL, "Sanity"); 1874 return (address) heap->collection_set()->biased_map_address(); 1875 } 1876 1877 address ShenandoahHeap::cancelled_gc_addr() { 1878 return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of(); 1879 } 1880 1881 size_t ShenandoahHeap::bytes_allocated_since_gc_start() { 1882 return Atomic::load(&_bytes_allocated_since_gc_start); 1883 } 1884 1885 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 1886 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 1887 } 1888 1889 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 1890 _degenerated_gc_in_progress.set_cond(in_progress); 1891 } 1892 1893 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 1894 _full_gc_in_progress.set_cond(in_progress); 1895 } 1896 1897 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 1898 assert (is_full_gc_in_progress(), "should be"); 1899 _full_gc_move_in_progress.set_cond(in_progress); 1900 } 1901 1902 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 1903 set_gc_state_mask(UPDATEREFS, in_progress); 1904 } 1905 1906 void ShenandoahHeap::register_nmethod(nmethod* nm) { 1907 ShenandoahCodeRoots::register_nmethod(nm); 1908 } 1909 1910 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 1911 ShenandoahCodeRoots::unregister_nmethod(nm); 1912 } 1913 1914 void ShenandoahHeap::flush_nmethod(nmethod* nm) { 1915 ShenandoahCodeRoots::flush_nmethod(nm); 1916 } 1917 1918 oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 1919 heap_region_containing(o)->record_pin(); 1920 return o; 1921 } 1922 1923 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 1924 ShenandoahHeapRegion* r = heap_region_containing(o); 1925 assert(r != NULL, "Sanity"); 1926 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 1927 r->record_unpin(); 1928 } 1929 1930 void ShenandoahHeap::sync_pinned_region_status() { 1931 ShenandoahHeapLocker locker(lock()); 1932 1933 for (size_t i = 0; i < num_regions(); i++) { 1934 ShenandoahHeapRegion *r = get_region(i); 1935 if (r->is_active()) { 1936 if (r->is_pinned()) { 1937 if (r->pin_count() == 0) { 1938 r->make_unpinned(); 1939 } 1940 } else { 1941 if (r->pin_count() > 0) { 1942 r->make_pinned(); 1943 } 1944 } 1945 } 1946 } 1947 1948 assert_pinned_region_status(); 1949 } 1950 1951 #ifdef ASSERT 1952 void ShenandoahHeap::assert_pinned_region_status() { 1953 for (size_t i = 0; i < num_regions(); i++) { 1954 ShenandoahHeapRegion* r = get_region(i); 1955 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 1956 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 1957 } 1958 } 1959 #endif 1960 1961 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 1962 return _gc_timer; 1963 } 1964 1965 void ShenandoahHeap::prepare_concurrent_roots() { 1966 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1967 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1968 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 1969 set_concurrent_weak_root_in_progress(true); 1970 if (unload_classes()) { 1971 _unloader.prepare(); 1972 } 1973 } 1974 1975 void ShenandoahHeap::finish_concurrent_roots() { 1976 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1977 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1978 if (unload_classes()) { 1979 _unloader.finish(); 1980 } 1981 } 1982 1983 #ifdef ASSERT 1984 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 1985 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 1986 1987 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1988 if (UseDynamicNumberOfGCThreads) { 1989 assert(nworkers <= ParallelGCThreads, "Cannot use more than it has"); 1990 } else { 1991 // Use ParallelGCThreads inside safepoints 1992 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints"); 1993 } 1994 } else { 1995 if (UseDynamicNumberOfGCThreads) { 1996 assert(nworkers <= ConcGCThreads, "Cannot use more than it has"); 1997 } else { 1998 // Use ConcGCThreads outside safepoints 1999 assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints"); 2000 } 2001 } 2002 } 2003 #endif 2004 2005 ShenandoahVerifier* ShenandoahHeap::verifier() { 2006 guarantee(ShenandoahVerify, "Should be enabled"); 2007 assert (_verifier != NULL, "sanity"); 2008 return _verifier; 2009 } 2010 2011 template<bool CONCURRENT> 2012 class ShenandoahUpdateHeapRefsTask : public AbstractGangTask { 2013 private: 2014 ShenandoahHeap* _heap; 2015 ShenandoahRegionIterator* _regions; 2016 public: 2017 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2018 AbstractGangTask("Shenandoah Update References"), 2019 _heap(ShenandoahHeap::heap()), 2020 _regions(regions) { 2021 } 2022 2023 void work(uint worker_id) { 2024 if (CONCURRENT) { 2025 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2026 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers); 2027 do_work<ShenandoahConcUpdateRefsClosure>(); 2028 } else { 2029 ShenandoahParallelWorkerSession worker_session(worker_id); 2030 do_work<ShenandoahSTWUpdateRefsClosure>(); 2031 } 2032 } 2033 2034 private: 2035 template<class T> 2036 void do_work() { 2037 T cl; 2038 ShenandoahHeapRegion* r = _regions->next(); 2039 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2040 while (r != NULL) { 2041 HeapWord* update_watermark = r->get_update_watermark(); 2042 assert (update_watermark >= r->bottom(), "sanity"); 2043 if (r->is_active() && !r->is_cset()) { 2044 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2045 } 2046 if (ShenandoahPacing) { 2047 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2048 } 2049 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2050 return; 2051 } 2052 r = _regions->next(); 2053 } 2054 } 2055 }; 2056 2057 void ShenandoahHeap::update_heap_references(bool concurrent) { 2058 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2059 2060 if (concurrent) { 2061 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2062 workers()->run_task(&task); 2063 } else { 2064 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2065 workers()->run_task(&task); 2066 } 2067 } 2068 2069 2070 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2071 private: 2072 ShenandoahHeapLock* const _lock; 2073 2074 public: 2075 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2076 2077 void heap_region_do(ShenandoahHeapRegion* r) { 2078 // Drop unnecessary "pinned" state from regions that does not have CP marks 2079 // anymore, as this would allow trashing them. 2080 2081 if (r->is_active()) { 2082 if (r->is_pinned()) { 2083 if (r->pin_count() == 0) { 2084 ShenandoahHeapLocker locker(_lock); 2085 r->make_unpinned(); 2086 } 2087 } else { 2088 if (r->pin_count() > 0) { 2089 ShenandoahHeapLocker locker(_lock); 2090 r->make_pinned(); 2091 } 2092 } 2093 } 2094 } 2095 2096 bool is_thread_safe() { return true; } 2097 }; 2098 2099 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2100 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2101 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2102 2103 { 2104 ShenandoahGCPhase phase(concurrent ? 2105 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2106 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2107 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2108 parallel_heap_region_iterate(&cl); 2109 2110 assert_pinned_region_status(); 2111 } 2112 2113 { 2114 ShenandoahGCPhase phase(concurrent ? 2115 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2116 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2117 trash_cset_regions(); 2118 } 2119 } 2120 2121 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2122 { 2123 ShenandoahGCPhase phase(concurrent ? 2124 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2125 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2126 ShenandoahHeapLocker locker(lock()); 2127 _free_set->rebuild(); 2128 } 2129 } 2130 2131 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2132 print_on(st); 2133 st->cr(); 2134 print_heap_regions_on(st); 2135 } 2136 2137 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2138 size_t slice = r->index() / _bitmap_regions_per_slice; 2139 2140 size_t regions_from = _bitmap_regions_per_slice * slice; 2141 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2142 for (size_t g = regions_from; g < regions_to; g++) { 2143 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2144 if (skip_self && g == r->index()) continue; 2145 if (get_region(g)->is_committed()) { 2146 return true; 2147 } 2148 } 2149 return false; 2150 } 2151 2152 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2153 shenandoah_assert_heaplocked(); 2154 2155 // Bitmaps in special regions do not need commits 2156 if (_bitmap_region_special) { 2157 return true; 2158 } 2159 2160 if (is_bitmap_slice_committed(r, true)) { 2161 // Some other region from the group is already committed, meaning the bitmap 2162 // slice is already committed, we exit right away. 2163 return true; 2164 } 2165 2166 // Commit the bitmap slice: 2167 size_t slice = r->index() / _bitmap_regions_per_slice; 2168 size_t off = _bitmap_bytes_per_slice * slice; 2169 size_t len = _bitmap_bytes_per_slice; 2170 char* start = (char*) _bitmap_region.start() + off; 2171 2172 if (!os::commit_memory(start, len, false)) { 2173 return false; 2174 } 2175 2176 if (AlwaysPreTouch) { 2177 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2178 } 2179 2180 return true; 2181 } 2182 2183 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2184 shenandoah_assert_heaplocked(); 2185 2186 // Bitmaps in special regions do not need uncommits 2187 if (_bitmap_region_special) { 2188 return true; 2189 } 2190 2191 if (is_bitmap_slice_committed(r, true)) { 2192 // Some other region from the group is still committed, meaning the bitmap 2193 // slice is should stay committed, exit right away. 2194 return true; 2195 } 2196 2197 // Uncommit the bitmap slice: 2198 size_t slice = r->index() / _bitmap_regions_per_slice; 2199 size_t off = _bitmap_bytes_per_slice * slice; 2200 size_t len = _bitmap_bytes_per_slice; 2201 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2202 return false; 2203 } 2204 return true; 2205 } 2206 2207 void ShenandoahHeap::safepoint_synchronize_begin() { 2208 if (ShenandoahSuspendibleWorkers || UseStringDeduplication) { 2209 SuspendibleThreadSet::synchronize(); 2210 } 2211 } 2212 2213 void ShenandoahHeap::safepoint_synchronize_end() { 2214 if (ShenandoahSuspendibleWorkers || UseStringDeduplication) { 2215 SuspendibleThreadSet::desynchronize(); 2216 } 2217 } 2218 2219 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) { 2220 static const char *msg = "Concurrent uncommit"; 2221 ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 2222 EventMark em("%s", msg); 2223 2224 op_uncommit(shrink_before, shrink_until); 2225 } 2226 2227 void ShenandoahHeap::try_inject_alloc_failure() { 2228 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2229 _inject_alloc_failure.set(); 2230 os::naked_short_sleep(1); 2231 if (cancelled_gc()) { 2232 log_info(gc)("Allocation failure was successfully injected"); 2233 } 2234 } 2235 } 2236 2237 bool ShenandoahHeap::should_inject_alloc_failure() { 2238 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2239 } 2240 2241 void ShenandoahHeap::initialize_serviceability() { 2242 _memory_pool = new ShenandoahMemoryPool(this); 2243 _cycle_memory_manager.add_pool(_memory_pool); 2244 _stw_memory_manager.add_pool(_memory_pool); 2245 } 2246 2247 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2248 GrowableArray<GCMemoryManager*> memory_managers(2); 2249 memory_managers.append(&_cycle_memory_manager); 2250 memory_managers.append(&_stw_memory_manager); 2251 return memory_managers; 2252 } 2253 2254 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2255 GrowableArray<MemoryPool*> memory_pools(1); 2256 memory_pools.append(_memory_pool); 2257 return memory_pools; 2258 } 2259 2260 MemoryUsage ShenandoahHeap::memory_usage() { 2261 return _memory_pool->get_memory_usage(); 2262 } 2263 2264 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2265 _heap(ShenandoahHeap::heap()), 2266 _index(0) {} 2267 2268 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2269 _heap(heap), 2270 _index(0) {} 2271 2272 void ShenandoahRegionIterator::reset() { 2273 _index = 0; 2274 } 2275 2276 bool ShenandoahRegionIterator::has_next() const { 2277 return _index < _heap->num_regions(); 2278 } 2279 2280 char ShenandoahHeap::gc_state() const { 2281 return _gc_state.raw_value(); 2282 } 2283 2284 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2285 #ifdef ASSERT 2286 assert(_liveness_cache != NULL, "sanity"); 2287 assert(worker_id < _max_workers, "sanity"); 2288 for (uint i = 0; i < num_regions(); i++) { 2289 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2290 } 2291 #endif 2292 return _liveness_cache[worker_id]; 2293 } 2294 2295 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2296 assert(worker_id < _max_workers, "sanity"); 2297 assert(_liveness_cache != NULL, "sanity"); 2298 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2299 for (uint i = 0; i < num_regions(); i++) { 2300 ShenandoahLiveData live = ld[i]; 2301 if (live > 0) { 2302 ShenandoahHeapRegion* r = get_region(i); 2303 r->increase_live_data_gc_words(live); 2304 ld[i] = 0; 2305 } 2306 } 2307 }