1 /* 2 * Copyright (c) 2013, 2021, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "memory/allocation.hpp" 27 #include "memory/universe.hpp" 28 29 #include "gc/shared/gcArguments.hpp" 30 #include "gc/shared/gcTimer.hpp" 31 #include "gc/shared/gcTraceTime.inline.hpp" 32 #include "gc/shared/locationPrinter.inline.hpp" 33 #include "gc/shared/memAllocator.hpp" 34 #include "gc/shared/plab.hpp" 35 #include "gc/shared/slidingForwarding.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 38 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 39 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 40 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 41 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 42 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 43 #include "gc/shenandoah/shenandoahControlThread.hpp" 44 #include "gc/shenandoah/shenandoahFreeSet.hpp" 45 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 46 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 47 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 48 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 49 #include "gc/shenandoah/shenandoahInitLogger.hpp" 50 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 51 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 52 #include "gc/shenandoah/shenandoahMetrics.hpp" 53 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 54 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 55 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 56 #include "gc/shenandoah/shenandoahPadding.hpp" 57 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 58 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 59 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 60 #include "gc/shenandoah/shenandoahStringDedup.hpp" 61 #include "gc/shenandoah/shenandoahSTWMark.hpp" 62 #include "gc/shenandoah/shenandoahUtils.hpp" 63 #include "gc/shenandoah/shenandoahVerifier.hpp" 64 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 65 #include "gc/shenandoah/shenandoahVMOperations.hpp" 66 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 67 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 68 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 69 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 70 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 71 #if INCLUDE_JFR 72 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 73 #endif 74 75 #include "classfile/systemDictionary.hpp" 76 #include "memory/classLoaderMetaspace.hpp" 77 #include "memory/metaspaceUtils.hpp" 78 #include "oops/compressedOops.inline.hpp" 79 #include "prims/jvmtiTagMap.hpp" 80 #include "runtime/atomic.hpp" 81 #include "runtime/globals.hpp" 82 #include "runtime/interfaceSupport.inline.hpp" 83 #include "runtime/java.hpp" 84 #include "runtime/orderAccess.hpp" 85 #include "runtime/safepointMechanism.hpp" 86 #include "runtime/vmThread.hpp" 87 #include "services/mallocTracker.hpp" 88 #include "services/memTracker.hpp" 89 #include "utilities/events.hpp" 90 #include "utilities/powerOfTwo.hpp" 91 92 class ShenandoahPretouchHeapTask : public AbstractGangTask { 93 private: 94 ShenandoahRegionIterator _regions; 95 const size_t _page_size; 96 public: 97 ShenandoahPretouchHeapTask(size_t page_size) : 98 AbstractGangTask("Shenandoah Pretouch Heap"), 99 _page_size(page_size) {} 100 101 virtual void work(uint worker_id) { 102 ShenandoahHeapRegion* r = _regions.next(); 103 while (r != NULL) { 104 if (r->is_committed()) { 105 os::pretouch_memory(r->bottom(), r->end(), _page_size); 106 } 107 r = _regions.next(); 108 } 109 } 110 }; 111 112 class ShenandoahPretouchBitmapTask : public AbstractGangTask { 113 private: 114 ShenandoahRegionIterator _regions; 115 char* _bitmap_base; 116 const size_t _bitmap_size; 117 const size_t _page_size; 118 public: 119 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 120 AbstractGangTask("Shenandoah Pretouch Bitmap"), 121 _bitmap_base(bitmap_base), 122 _bitmap_size(bitmap_size), 123 _page_size(page_size) {} 124 125 virtual void work(uint worker_id) { 126 ShenandoahHeapRegion* r = _regions.next(); 127 while (r != NULL) { 128 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 129 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 130 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 131 132 if (r->is_committed()) { 133 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 134 } 135 136 r = _regions.next(); 137 } 138 } 139 }; 140 141 jint ShenandoahHeap::initialize() { 142 // 143 // Figure out heap sizing 144 // 145 146 size_t init_byte_size = InitialHeapSize; 147 size_t min_byte_size = MinHeapSize; 148 size_t max_byte_size = MaxHeapSize; 149 size_t heap_alignment = HeapAlignment; 150 151 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 152 153 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 154 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 155 156 _num_regions = ShenandoahHeapRegion::region_count(); 157 assert(_num_regions == (max_byte_size / reg_size_bytes), 158 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 159 _num_regions, max_byte_size, reg_size_bytes); 160 161 // Now we know the number of regions, initialize the heuristics. 162 initialize_heuristics(); 163 164 size_t num_committed_regions = init_byte_size / reg_size_bytes; 165 num_committed_regions = MIN2(num_committed_regions, _num_regions); 166 assert(num_committed_regions <= _num_regions, "sanity"); 167 _initial_size = num_committed_regions * reg_size_bytes; 168 169 size_t num_min_regions = min_byte_size / reg_size_bytes; 170 num_min_regions = MIN2(num_min_regions, _num_regions); 171 assert(num_min_regions <= _num_regions, "sanity"); 172 _minimum_size = num_min_regions * reg_size_bytes; 173 174 // Default to max heap size. 175 _soft_max_size = _num_regions * reg_size_bytes; 176 177 _committed = _initial_size; 178 179 size_t heap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size(); 180 size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size(); 181 size_t region_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size(); 182 183 // 184 // Reserve and commit memory for heap 185 // 186 187 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 188 initialize_reserved_region(heap_rs); 189 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 190 _heap_region_special = heap_rs.special(); 191 192 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 193 "Misaligned heap: " PTR_FORMAT, p2i(base())); 194 195 #if SHENANDOAH_OPTIMIZED_MARKTASK 196 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 197 // Fail if we ever attempt to address more than we can. 198 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 199 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 200 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 201 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 202 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 203 vm_exit_during_initialization("Fatal Error", buf); 204 } 205 #endif 206 207 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 208 if (!_heap_region_special) { 209 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 210 "Cannot commit heap memory"); 211 } 212 213 // 214 // Reserve and commit memory for bitmap(s) 215 // 216 217 _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 218 _bitmap_size = align_up(_bitmap_size, bitmap_page_size); 219 220 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 221 222 guarantee(bitmap_bytes_per_region != 0, 223 "Bitmap bytes per region should not be zero"); 224 guarantee(is_power_of_2(bitmap_bytes_per_region), 225 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 226 227 if (bitmap_page_size > bitmap_bytes_per_region) { 228 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 229 _bitmap_bytes_per_slice = bitmap_page_size; 230 } else { 231 _bitmap_regions_per_slice = 1; 232 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 233 } 234 235 guarantee(_bitmap_regions_per_slice >= 1, 236 "Should have at least one region per slice: " SIZE_FORMAT, 237 _bitmap_regions_per_slice); 238 239 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 240 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 241 _bitmap_bytes_per_slice, bitmap_page_size); 242 243 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 244 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 245 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 246 _bitmap_region_special = bitmap.special(); 247 248 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 249 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 250 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 251 if (!_bitmap_region_special) { 252 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 253 "Cannot commit bitmap memory"); 254 } 255 256 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 257 258 if (ShenandoahVerify) { 259 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 260 if (!verify_bitmap.special()) { 261 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 262 "Cannot commit verification bitmap memory"); 263 } 264 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 265 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 266 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 267 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 268 } 269 270 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 271 ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size); 272 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 273 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 274 _aux_bitmap_region_special = aux_bitmap.special(); 275 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 276 277 // 278 // Create regions and region sets 279 // 280 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 281 size_t region_storage_size = align_up(region_align * _num_regions, region_page_size); 282 region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity()); 283 284 ReservedSpace region_storage(region_storage_size, region_page_size); 285 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 286 if (!region_storage.special()) { 287 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 288 "Cannot commit region memory"); 289 } 290 291 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 292 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 293 // If not successful, bite a bullet and allocate at whatever address. 294 { 295 size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 296 size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 297 298 uintptr_t min = round_up_power_of_2(cset_align); 299 uintptr_t max = (1u << 30u); 300 301 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 302 char* req_addr = (char*)addr; 303 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 304 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr); 305 if (cset_rs.is_reserved()) { 306 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 307 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 308 break; 309 } 310 } 311 312 if (_collection_set == NULL) { 313 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size()); 314 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 315 } 316 } 317 318 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 319 _free_set = new ShenandoahFreeSet(this, _num_regions); 320 321 { 322 ShenandoahHeapLocker locker(lock()); 323 324 for (size_t i = 0; i < _num_regions; i++) { 325 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 326 bool is_committed = i < num_committed_regions; 327 void* loc = region_storage.base() + i * region_align; 328 329 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 330 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 331 332 _marking_context->initialize_top_at_mark_start(r); 333 _regions[i] = r; 334 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 335 } 336 337 // Initialize to complete 338 _marking_context->mark_complete(); 339 340 _free_set->rebuild(); 341 } 342 343 if (AlwaysPreTouch) { 344 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 345 // before initialize() below zeroes it with initializing thread. For any given region, 346 // we touch the region and the corresponding bitmaps from the same thread. 347 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 348 349 _pretouch_heap_page_size = heap_page_size; 350 _pretouch_bitmap_page_size = bitmap_page_size; 351 352 #ifdef LINUX 353 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge 354 // pages. But, the kernel needs to know that every small page is used, in order to coalesce 355 // them into huge one. Therefore, we need to pretouch with smaller pages. 356 if (UseTransparentHugePages) { 357 _pretouch_heap_page_size = (size_t)os::vm_page_size(); 358 _pretouch_bitmap_page_size = (size_t)os::vm_page_size(); 359 } 360 #endif 361 362 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 363 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 364 365 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 366 _workers->run_task(&bcl); 367 368 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 369 _workers->run_task(&hcl); 370 } 371 372 // 373 // Initialize the rest of GC subsystems 374 // 375 376 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 377 for (uint worker = 0; worker < _max_workers; worker++) { 378 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 379 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 380 } 381 382 // There should probably be Shenandoah-specific options for these, 383 // just as there are G1-specific options. 384 { 385 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 386 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 387 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 388 } 389 390 _monitoring_support = new ShenandoahMonitoringSupport(this); 391 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 392 ShenandoahCodeRoots::initialize(); 393 394 if (ShenandoahPacing) { 395 _pacer = new ShenandoahPacer(this); 396 _pacer->setup_for_idle(); 397 } else { 398 _pacer = NULL; 399 } 400 401 _control_thread = new ShenandoahControlThread(); 402 403 ShenandoahInitLogger::print(); 404 405 SlidingForwarding::initialize(_heap_region, ShenandoahHeapRegion::region_size_words()); 406 407 return JNI_OK; 408 } 409 410 void ShenandoahHeap::initialize_mode() { 411 if (ShenandoahGCMode != NULL) { 412 if (strcmp(ShenandoahGCMode, "satb") == 0) { 413 _gc_mode = new ShenandoahSATBMode(); 414 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 415 _gc_mode = new ShenandoahIUMode(); 416 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 417 _gc_mode = new ShenandoahPassiveMode(); 418 } else { 419 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 420 } 421 } else { 422 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 423 } 424 _gc_mode->initialize_flags(); 425 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 426 vm_exit_during_initialization( 427 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 428 _gc_mode->name())); 429 } 430 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 431 vm_exit_during_initialization( 432 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 433 _gc_mode->name())); 434 } 435 } 436 437 void ShenandoahHeap::initialize_heuristics() { 438 assert(_gc_mode != NULL, "Must be initialized"); 439 _heuristics = _gc_mode->initialize_heuristics(); 440 441 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 442 vm_exit_during_initialization( 443 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 444 _heuristics->name())); 445 } 446 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 447 vm_exit_during_initialization( 448 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 449 _heuristics->name())); 450 } 451 } 452 453 #ifdef _MSC_VER 454 #pragma warning( push ) 455 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 456 #endif 457 458 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 459 CollectedHeap(), 460 _initial_size(0), 461 _used(0), 462 _committed(0), 463 _bytes_allocated_since_gc_start(0), 464 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 465 _workers(NULL), 466 _safepoint_workers(NULL), 467 _heap_region_special(false), 468 _num_regions(0), 469 _regions(NULL), 470 _update_refs_iterator(this), 471 _gc_state_changed(false), 472 _control_thread(NULL), 473 _shenandoah_policy(policy), 474 _gc_mode(NULL), 475 _heuristics(NULL), 476 _free_set(NULL), 477 _pacer(NULL), 478 _verifier(NULL), 479 _phase_timings(NULL), 480 _monitoring_support(NULL), 481 _memory_pool(NULL), 482 _stw_memory_manager("Shenandoah Pauses"), 483 _cycle_memory_manager("Shenandoah Cycles"), 484 _gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 485 _soft_ref_policy(), 486 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 487 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 488 _marking_context(NULL), 489 _bitmap_size(0), 490 _bitmap_regions_per_slice(0), 491 _bitmap_bytes_per_slice(0), 492 _bitmap_region_special(false), 493 _aux_bitmap_region_special(false), 494 _liveness_cache(NULL), 495 _collection_set(NULL) 496 { 497 // Initialize GC mode early, so we can adjust barrier support 498 initialize_mode(); 499 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 500 501 _max_workers = MAX2(_max_workers, 1U); 502 _workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers, 503 /* are_GC_task_threads */ true, 504 /* are_ConcurrentGC_threads */ true); 505 if (_workers == NULL) { 506 vm_exit_during_initialization("Failed necessary allocation."); 507 } else { 508 _workers->initialize_workers(); 509 } 510 511 if (ParallelGCThreads > 1) { 512 _safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread", 513 ParallelGCThreads, 514 /* are_GC_task_threads */ false, 515 /* are_ConcurrentGC_threads */ false); 516 _safepoint_workers->initialize_workers(); 517 } 518 } 519 520 #ifdef _MSC_VER 521 #pragma warning( pop ) 522 #endif 523 524 class ShenandoahResetBitmapTask : public AbstractGangTask { 525 private: 526 ShenandoahRegionIterator _regions; 527 528 public: 529 ShenandoahResetBitmapTask() : 530 AbstractGangTask("Shenandoah Reset Bitmap") {} 531 532 void work(uint worker_id) { 533 ShenandoahHeapRegion* region = _regions.next(); 534 ShenandoahHeap* heap = ShenandoahHeap::heap(); 535 ShenandoahMarkingContext* const ctx = heap->marking_context(); 536 while (region != NULL) { 537 if (heap->is_bitmap_slice_committed(region)) { 538 ctx->clear_bitmap(region); 539 } 540 region = _regions.next(); 541 } 542 } 543 }; 544 545 void ShenandoahHeap::reset_mark_bitmap() { 546 assert_gc_workers(_workers->active_workers()); 547 mark_incomplete_marking_context(); 548 549 ShenandoahResetBitmapTask task; 550 _workers->run_task(&task); 551 } 552 553 void ShenandoahHeap::print_on(outputStream* st) const { 554 st->print_cr("Shenandoah Heap"); 555 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 556 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 557 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 558 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 559 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 560 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 561 num_regions(), 562 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 563 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 564 565 st->print("Status: "); 566 if (has_forwarded_objects()) st->print("has forwarded objects, "); 567 if (is_concurrent_mark_in_progress()) st->print("marking, "); 568 if (is_evacuation_in_progress()) st->print("evacuating, "); 569 if (is_update_refs_in_progress()) st->print("updating refs, "); 570 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 571 if (is_full_gc_in_progress()) st->print("full gc, "); 572 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 573 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 574 if (is_concurrent_strong_root_in_progress() && 575 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 576 577 if (cancelled_gc()) { 578 st->print("cancelled"); 579 } else { 580 st->print("not cancelled"); 581 } 582 st->cr(); 583 584 st->print_cr("Reserved region:"); 585 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 586 p2i(reserved_region().start()), 587 p2i(reserved_region().end())); 588 589 ShenandoahCollectionSet* cset = collection_set(); 590 st->print_cr("Collection set:"); 591 if (cset != NULL) { 592 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 593 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 594 } else { 595 st->print_cr(" (NULL)"); 596 } 597 598 st->cr(); 599 MetaspaceUtils::print_on(st); 600 601 if (Verbose) { 602 st->cr(); 603 print_heap_regions_on(st); 604 } 605 } 606 607 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 608 public: 609 void do_thread(Thread* thread) { 610 assert(thread != NULL, "Sanity"); 611 assert(thread->is_Worker_thread(), "Only worker thread expected"); 612 ShenandoahThreadLocalData::initialize_gclab(thread); 613 } 614 }; 615 616 void ShenandoahHeap::post_initialize() { 617 CollectedHeap::post_initialize(); 618 MutexLocker ml(Threads_lock); 619 620 ShenandoahInitWorkerGCLABClosure init_gclabs; 621 _workers->threads_do(&init_gclabs); 622 623 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 624 // Now, we will let WorkGang to initialize gclab when new worker is created. 625 _workers->set_initialize_gclab(); 626 if (_safepoint_workers != NULL) { 627 _safepoint_workers->threads_do(&init_gclabs); 628 _safepoint_workers->set_initialize_gclab(); 629 } 630 631 _heuristics->initialize(); 632 633 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 634 } 635 636 size_t ShenandoahHeap::used() const { 637 return Atomic::load(&_used); 638 } 639 640 size_t ShenandoahHeap::committed() const { 641 return Atomic::load(&_committed); 642 } 643 644 void ShenandoahHeap::increase_committed(size_t bytes) { 645 shenandoah_assert_heaplocked_or_safepoint(); 646 _committed += bytes; 647 } 648 649 void ShenandoahHeap::decrease_committed(size_t bytes) { 650 shenandoah_assert_heaplocked_or_safepoint(); 651 _committed -= bytes; 652 } 653 654 void ShenandoahHeap::increase_used(size_t bytes) { 655 Atomic::add(&_used, bytes, memory_order_relaxed); 656 } 657 658 void ShenandoahHeap::set_used(size_t bytes) { 659 Atomic::store(&_used, bytes); 660 } 661 662 void ShenandoahHeap::decrease_used(size_t bytes) { 663 assert(used() >= bytes, "never decrease heap size by more than we've left"); 664 Atomic::sub(&_used, bytes, memory_order_relaxed); 665 } 666 667 void ShenandoahHeap::increase_allocated(size_t bytes) { 668 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 669 } 670 671 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 672 size_t bytes = words * HeapWordSize; 673 if (!waste) { 674 increase_used(bytes); 675 } 676 increase_allocated(bytes); 677 if (ShenandoahPacing) { 678 control_thread()->pacing_notify_alloc(words); 679 if (waste) { 680 pacer()->claim_for_alloc(words, true); 681 } 682 } 683 } 684 685 size_t ShenandoahHeap::capacity() const { 686 return committed(); 687 } 688 689 size_t ShenandoahHeap::max_capacity() const { 690 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 691 } 692 693 size_t ShenandoahHeap::soft_max_capacity() const { 694 size_t v = Atomic::load(&_soft_max_size); 695 assert(min_capacity() <= v && v <= max_capacity(), 696 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 697 min_capacity(), v, max_capacity()); 698 return v; 699 } 700 701 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 702 assert(min_capacity() <= v && v <= max_capacity(), 703 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 704 min_capacity(), v, max_capacity()); 705 Atomic::store(&_soft_max_size, v); 706 } 707 708 size_t ShenandoahHeap::min_capacity() const { 709 return _minimum_size; 710 } 711 712 size_t ShenandoahHeap::initial_capacity() const { 713 return _initial_size; 714 } 715 716 bool ShenandoahHeap::is_in(const void* p) const { 717 HeapWord* heap_base = (HeapWord*) base(); 718 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 719 return p >= heap_base && p < last_region_end; 720 } 721 722 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 723 assert (ShenandoahUncommit, "should be enabled"); 724 725 // Application allocates from the beginning of the heap, and GC allocates at 726 // the end of it. It is more efficient to uncommit from the end, so that applications 727 // could enjoy the near committed regions. GC allocations are much less frequent, 728 // and therefore can accept the committing costs. 729 730 size_t count = 0; 731 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 732 ShenandoahHeapRegion* r = get_region(i - 1); 733 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 734 ShenandoahHeapLocker locker(lock()); 735 if (r->is_empty_committed()) { 736 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 737 break; 738 } 739 740 r->make_uncommitted(); 741 count++; 742 } 743 } 744 SpinPause(); // allow allocators to take the lock 745 } 746 747 if (count > 0) { 748 control_thread()->notify_heap_changed(); 749 } 750 } 751 752 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 753 // New object should fit the GCLAB size 754 size_t min_size = MAX2(size, PLAB::min_size()); 755 756 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 757 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 758 new_size = MIN2(new_size, PLAB::max_size()); 759 new_size = MAX2(new_size, PLAB::min_size()); 760 761 // Record new heuristic value even if we take any shortcut. This captures 762 // the case when moderately-sized objects always take a shortcut. At some point, 763 // heuristics should catch up with them. 764 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 765 766 if (new_size < size) { 767 // New size still does not fit the object. Fall back to shared allocation. 768 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 769 return NULL; 770 } 771 772 // Retire current GCLAB, and allocate a new one. 773 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 774 gclab->retire(); 775 776 size_t actual_size = 0; 777 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 778 if (gclab_buf == NULL) { 779 return NULL; 780 } 781 782 assert (size <= actual_size, "allocation should fit"); 783 784 if (ZeroTLAB) { 785 // ..and clear it. 786 Copy::zero_to_words(gclab_buf, actual_size); 787 } else { 788 // ...and zap just allocated object. 789 #ifdef ASSERT 790 // Skip mangling the space corresponding to the object header to 791 // ensure that the returned space is not considered parsable by 792 // any concurrent GC thread. 793 size_t hdr_size = oopDesc::header_size(); 794 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 795 #endif // ASSERT 796 } 797 gclab->set_buf(gclab_buf, actual_size); 798 return gclab->allocate(size); 799 } 800 801 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 802 size_t requested_size, 803 size_t* actual_size) { 804 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 805 HeapWord* res = allocate_memory(req); 806 if (res != NULL) { 807 *actual_size = req.actual_size(); 808 } else { 809 *actual_size = 0; 810 } 811 return res; 812 } 813 814 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 815 size_t word_size, 816 size_t* actual_size) { 817 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 818 HeapWord* res = allocate_memory(req); 819 if (res != NULL) { 820 *actual_size = req.actual_size(); 821 } else { 822 *actual_size = 0; 823 } 824 return res; 825 } 826 827 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 828 intptr_t pacer_epoch = 0; 829 bool in_new_region = false; 830 HeapWord* result = NULL; 831 832 if (req.is_mutator_alloc()) { 833 if (ShenandoahPacing) { 834 pacer()->pace_for_alloc(req.size()); 835 pacer_epoch = pacer()->epoch(); 836 } 837 838 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 839 result = allocate_memory_under_lock(req, in_new_region); 840 } 841 842 // Allocation failed, block until control thread reacted, then retry allocation. 843 // 844 // It might happen that one of the threads requesting allocation would unblock 845 // way later after GC happened, only to fail the second allocation, because 846 // other threads have already depleted the free storage. In this case, a better 847 // strategy is to try again, as long as GC makes progress. 848 // 849 // Then, we need to make sure the allocation was retried after at least one 850 // Full GC, which means we want to try more than ShenandoahFullGCThreshold times. 851 852 size_t tries = 0; 853 854 while (result == NULL && _progress_last_gc.is_set()) { 855 tries++; 856 control_thread()->handle_alloc_failure(req); 857 result = allocate_memory_under_lock(req, in_new_region); 858 } 859 860 while (result == NULL && tries <= ShenandoahFullGCThreshold) { 861 tries++; 862 control_thread()->handle_alloc_failure(req); 863 result = allocate_memory_under_lock(req, in_new_region); 864 } 865 866 } else { 867 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 868 result = allocate_memory_under_lock(req, in_new_region); 869 // Do not call handle_alloc_failure() here, because we cannot block. 870 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 871 } 872 873 if (in_new_region) { 874 control_thread()->notify_heap_changed(); 875 } 876 877 if (result != NULL) { 878 size_t requested = req.size(); 879 size_t actual = req.actual_size(); 880 881 assert (req.is_lab_alloc() || (requested == actual), 882 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 883 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 884 885 if (req.is_mutator_alloc()) { 886 notify_mutator_alloc_words(actual, false); 887 888 // If we requested more than we were granted, give the rest back to pacer. 889 // This only matters if we are in the same pacing epoch: do not try to unpace 890 // over the budget for the other phase. 891 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 892 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 893 } 894 } else { 895 increase_used(actual*HeapWordSize); 896 } 897 } 898 899 return result; 900 } 901 902 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 903 ShenandoahHeapLocker locker(lock()); 904 return _free_set->allocate(req, in_new_region); 905 } 906 907 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 908 bool* gc_overhead_limit_was_exceeded) { 909 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 910 return allocate_memory(req); 911 } 912 913 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 914 size_t size, 915 Metaspace::MetadataType mdtype) { 916 MetaWord* result; 917 918 // Inform metaspace OOM to GC heuristics if class unloading is possible. 919 if (heuristics()->can_unload_classes()) { 920 ShenandoahHeuristics* h = heuristics(); 921 h->record_metaspace_oom(); 922 } 923 924 // Expand and retry allocation 925 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 926 if (result != NULL) { 927 return result; 928 } 929 930 // Start full GC 931 collect(GCCause::_metadata_GC_clear_soft_refs); 932 933 // Retry allocation 934 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 935 if (result != NULL) { 936 return result; 937 } 938 939 // Expand and retry allocation 940 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 941 if (result != NULL) { 942 return result; 943 } 944 945 // Out of memory 946 return NULL; 947 } 948 949 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 950 private: 951 ShenandoahHeap* const _heap; 952 Thread* const _thread; 953 public: 954 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 955 _heap(heap), _thread(Thread::current()) {} 956 957 void do_object(oop p) { 958 shenandoah_assert_marked(NULL, p); 959 if (!ShenandoahForwarding::is_forwarded(p)) { 960 _heap->evacuate_object(p, _thread); 961 } 962 } 963 }; 964 965 class ShenandoahEvacuationTask : public AbstractGangTask { 966 private: 967 ShenandoahHeap* const _sh; 968 ShenandoahCollectionSet* const _cs; 969 bool _concurrent; 970 public: 971 ShenandoahEvacuationTask(ShenandoahHeap* sh, 972 ShenandoahCollectionSet* cs, 973 bool concurrent) : 974 AbstractGangTask("Shenandoah Evacuation"), 975 _sh(sh), 976 _cs(cs), 977 _concurrent(concurrent) 978 {} 979 980 void work(uint worker_id) { 981 if (_concurrent) { 982 ShenandoahConcurrentWorkerSession worker_session(worker_id); 983 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers); 984 ShenandoahEvacOOMScope oom_evac_scope; 985 do_work(); 986 } else { 987 ShenandoahParallelWorkerSession worker_session(worker_id); 988 ShenandoahEvacOOMScope oom_evac_scope; 989 do_work(); 990 } 991 } 992 993 private: 994 void do_work() { 995 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 996 ShenandoahHeapRegion* r; 997 while ((r =_cs->claim_next()) != NULL) { 998 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 999 _sh->marked_object_iterate(r, &cl); 1000 1001 if (ShenandoahPacing) { 1002 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1003 } 1004 1005 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1006 break; 1007 } 1008 } 1009 } 1010 }; 1011 1012 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1013 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1014 workers()->run_task(&task); 1015 } 1016 1017 void ShenandoahHeap::trash_cset_regions() { 1018 ShenandoahHeapLocker locker(lock()); 1019 1020 ShenandoahCollectionSet* set = collection_set(); 1021 ShenandoahHeapRegion* r; 1022 set->clear_current_index(); 1023 while ((r = set->next()) != NULL) { 1024 r->make_trash(); 1025 } 1026 collection_set()->clear(); 1027 } 1028 1029 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1030 st->print_cr("Heap Regions:"); 1031 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1032 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1033 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1034 st->print_cr("UWM=update watermark, U=used"); 1035 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1036 st->print_cr("S=shared allocs, L=live data"); 1037 st->print_cr("CP=critical pins"); 1038 1039 for (size_t i = 0; i < num_regions(); i++) { 1040 get_region(i)->print_on(st); 1041 } 1042 } 1043 1044 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1045 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1046 1047 oop humongous_obj = cast_to_oop(start->bottom()); 1048 size_t size = humongous_obj->size(); 1049 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1050 size_t index = start->index() + required_regions - 1; 1051 1052 assert(!start->has_live(), "liveness must be zero"); 1053 1054 for(size_t i = 0; i < required_regions; i++) { 1055 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1056 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1057 ShenandoahHeapRegion* region = get_region(index --); 1058 1059 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1060 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1061 1062 region->make_trash_immediate(); 1063 } 1064 } 1065 1066 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1067 public: 1068 ShenandoahCheckCleanGCLABClosure() {} 1069 void do_thread(Thread* thread) { 1070 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1071 assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name()); 1072 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1073 } 1074 }; 1075 1076 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1077 private: 1078 bool const _resize; 1079 public: 1080 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1081 void do_thread(Thread* thread) { 1082 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1083 assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name()); 1084 gclab->retire(); 1085 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1086 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1087 } 1088 } 1089 }; 1090 1091 void ShenandoahHeap::labs_make_parsable() { 1092 assert(UseTLAB, "Only call with UseTLAB"); 1093 1094 ShenandoahRetireGCLABClosure cl(false); 1095 1096 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1097 ThreadLocalAllocBuffer& tlab = t->tlab(); 1098 tlab.make_parsable(); 1099 cl.do_thread(t); 1100 } 1101 1102 workers()->threads_do(&cl); 1103 } 1104 1105 void ShenandoahHeap::tlabs_retire(bool resize) { 1106 assert(UseTLAB, "Only call with UseTLAB"); 1107 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1108 1109 ThreadLocalAllocStats stats; 1110 1111 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1112 ThreadLocalAllocBuffer& tlab = t->tlab(); 1113 tlab.retire(&stats); 1114 if (resize) { 1115 tlab.resize(); 1116 } 1117 } 1118 1119 stats.publish(); 1120 1121 #ifdef ASSERT 1122 ShenandoahCheckCleanGCLABClosure cl; 1123 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1124 cl.do_thread(t); 1125 } 1126 workers()->threads_do(&cl); 1127 #endif 1128 } 1129 1130 void ShenandoahHeap::gclabs_retire(bool resize) { 1131 assert(UseTLAB, "Only call with UseTLAB"); 1132 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1133 1134 ShenandoahRetireGCLABClosure cl(resize); 1135 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1136 cl.do_thread(t); 1137 } 1138 workers()->threads_do(&cl); 1139 1140 if (safepoint_workers() != NULL) { 1141 safepoint_workers()->threads_do(&cl); 1142 } 1143 } 1144 1145 // Returns size in bytes 1146 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1147 if (ShenandoahElasticTLAB) { 1148 // With Elastic TLABs, return the max allowed size, and let the allocation path 1149 // figure out the safe size for current allocation. 1150 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1151 } else { 1152 return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes()); 1153 } 1154 } 1155 1156 size_t ShenandoahHeap::max_tlab_size() const { 1157 // Returns size in words 1158 return ShenandoahHeapRegion::max_tlab_size_words(); 1159 } 1160 1161 void ShenandoahHeap::collect(GCCause::Cause cause) { 1162 control_thread()->request_gc(cause); 1163 } 1164 1165 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1166 //assert(false, "Shouldn't need to do full collections"); 1167 } 1168 1169 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1170 ShenandoahHeapRegion* r = heap_region_containing(addr); 1171 if (r != NULL) { 1172 return r->block_start(addr); 1173 } 1174 return NULL; 1175 } 1176 1177 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1178 ShenandoahHeapRegion* r = heap_region_containing(addr); 1179 return r->block_is_obj(addr); 1180 } 1181 1182 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1183 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1184 } 1185 1186 void ShenandoahHeap::prepare_for_verify() { 1187 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1188 labs_make_parsable(); 1189 } 1190 } 1191 1192 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1193 tcl->do_thread(_control_thread); 1194 workers()->threads_do(tcl); 1195 if (_safepoint_workers != NULL) { 1196 _safepoint_workers->threads_do(tcl); 1197 } 1198 if (ShenandoahStringDedup::is_enabled()) { 1199 ShenandoahStringDedup::threads_do(tcl); 1200 } 1201 } 1202 1203 void ShenandoahHeap::print_tracing_info() const { 1204 LogTarget(Info, gc, stats) lt; 1205 if (lt.is_enabled()) { 1206 ResourceMark rm; 1207 LogStream ls(lt); 1208 1209 phase_timings()->print_global_on(&ls); 1210 1211 ls.cr(); 1212 ls.cr(); 1213 1214 shenandoah_policy()->print_gc_stats(&ls); 1215 1216 ls.cr(); 1217 ls.cr(); 1218 } 1219 } 1220 1221 void ShenandoahHeap::verify(VerifyOption vo) { 1222 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1223 if (ShenandoahVerify) { 1224 verifier()->verify_generic(vo); 1225 } else { 1226 // TODO: Consider allocating verification bitmaps on demand, 1227 // and turn this on unconditionally. 1228 } 1229 } 1230 } 1231 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1232 return _free_set->capacity(); 1233 } 1234 1235 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1236 private: 1237 MarkBitMap* _bitmap; 1238 ShenandoahScanObjectStack* _oop_stack; 1239 ShenandoahHeap* const _heap; 1240 ShenandoahMarkingContext* const _marking_context; 1241 1242 template <class T> 1243 void do_oop_work(T* p) { 1244 T o = RawAccess<>::oop_load(p); 1245 if (!CompressedOops::is_null(o)) { 1246 oop obj = CompressedOops::decode_not_null(o); 1247 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1248 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1249 return; 1250 } 1251 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1252 1253 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1254 if (!_bitmap->is_marked(obj)) { 1255 _bitmap->mark(obj); 1256 _oop_stack->push(obj); 1257 } 1258 } 1259 } 1260 public: 1261 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1262 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1263 _marking_context(_heap->marking_context()) {} 1264 void do_oop(oop* p) { do_oop_work(p); } 1265 void do_oop(narrowOop* p) { do_oop_work(p); } 1266 }; 1267 1268 /* 1269 * This is public API, used in preparation of object_iterate(). 1270 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1271 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1272 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1273 */ 1274 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1275 // No-op. 1276 } 1277 1278 /* 1279 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1280 * 1281 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1282 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1283 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1284 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1285 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1286 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1287 * wiped the bitmap in preparation for next marking). 1288 * 1289 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1290 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1291 * is allowed to report dead objects, but is not required to do so. 1292 */ 1293 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1294 // Reset bitmap 1295 if (!prepare_aux_bitmap_for_iteration()) 1296 return; 1297 1298 ShenandoahScanObjectStack oop_stack; 1299 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1300 // Seed the stack with root scan 1301 scan_roots_for_iteration(&oop_stack, &oops); 1302 1303 // Work through the oop stack to traverse heap 1304 while (! oop_stack.is_empty()) { 1305 oop obj = oop_stack.pop(); 1306 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1307 shenandoah_assert_not_in_cset_except(NULL, obj, cancelled_gc()); 1308 cl->do_object(obj); 1309 obj->oop_iterate(&oops); 1310 } 1311 1312 assert(oop_stack.is_empty(), "should be empty"); 1313 // Reclaim bitmap 1314 reclaim_aux_bitmap_for_iteration(); 1315 } 1316 1317 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1318 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1319 1320 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1321 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1322 return false; 1323 } 1324 // Reset bitmap 1325 _aux_bit_map.clear(); 1326 return true; 1327 } 1328 1329 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1330 // Process GC roots according to current GC cycle 1331 // This populates the work stack with initial objects 1332 // It is important to relinquish the associated locks before diving 1333 // into heap dumper 1334 ShenandoahHeapIterationRootScanner rp; 1335 rp.roots_do(oops); 1336 } 1337 1338 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1339 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1340 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1341 } 1342 } 1343 1344 // Closure for parallelly iterate objects 1345 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1346 private: 1347 MarkBitMap* _bitmap; 1348 ShenandoahObjToScanQueue* _queue; 1349 ShenandoahHeap* const _heap; 1350 ShenandoahMarkingContext* const _marking_context; 1351 1352 template <class T> 1353 void do_oop_work(T* p) { 1354 T o = RawAccess<>::oop_load(p); 1355 if (!CompressedOops::is_null(o)) { 1356 oop obj = CompressedOops::decode_not_null(o); 1357 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1358 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1359 return; 1360 } 1361 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1362 1363 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1364 if (_bitmap->par_mark(obj)) { 1365 _queue->push(ShenandoahMarkTask(obj)); 1366 } 1367 } 1368 } 1369 public: 1370 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1371 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1372 _marking_context(_heap->marking_context()) {} 1373 void do_oop(oop* p) { do_oop_work(p); } 1374 void do_oop(narrowOop* p) { do_oop_work(p); } 1375 }; 1376 1377 // Object iterator for parallel heap iteraion. 1378 // The root scanning phase happenes in construction as a preparation of 1379 // parallel marking queues. 1380 // Every worker processes it's own marking queue. work-stealing is used 1381 // to balance workload. 1382 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1383 private: 1384 uint _num_workers; 1385 bool _init_ready; 1386 MarkBitMap* _aux_bit_map; 1387 ShenandoahHeap* _heap; 1388 ShenandoahScanObjectStack _roots_stack; // global roots stack 1389 ShenandoahObjToScanQueueSet* _task_queues; 1390 public: 1391 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1392 _num_workers(num_workers), 1393 _init_ready(false), 1394 _aux_bit_map(bitmap), 1395 _heap(ShenandoahHeap::heap()) { 1396 // Initialize bitmap 1397 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1398 if (!_init_ready) { 1399 return; 1400 } 1401 1402 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1403 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1404 1405 _init_ready = prepare_worker_queues(); 1406 } 1407 1408 ~ShenandoahParallelObjectIterator() { 1409 // Reclaim bitmap 1410 _heap->reclaim_aux_bitmap_for_iteration(); 1411 // Reclaim queue for workers 1412 if (_task_queues!= NULL) { 1413 for (uint i = 0; i < _num_workers; ++i) { 1414 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1415 if (q != NULL) { 1416 delete q; 1417 _task_queues->register_queue(i, NULL); 1418 } 1419 } 1420 delete _task_queues; 1421 _task_queues = NULL; 1422 } 1423 } 1424 1425 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1426 if (_init_ready) { 1427 object_iterate_parallel(cl, worker_id, _task_queues); 1428 } 1429 } 1430 1431 private: 1432 // Divide global root_stack into worker queues 1433 bool prepare_worker_queues() { 1434 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1435 // Initialize queues for every workers 1436 for (uint i = 0; i < _num_workers; ++i) { 1437 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1438 task_queue->initialize(); 1439 _task_queues->register_queue(i, task_queue); 1440 } 1441 // Divide roots among the workers. Assume that object referencing distribution 1442 // is related with root kind, use round-robin to make every worker have same chance 1443 // to process every kind of roots 1444 size_t roots_num = _roots_stack.size(); 1445 if (roots_num == 0) { 1446 // No work to do 1447 return false; 1448 } 1449 1450 for (uint j = 0; j < roots_num; j++) { 1451 uint stack_id = j % _num_workers; 1452 oop obj = _roots_stack.pop(); 1453 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1454 } 1455 return true; 1456 } 1457 1458 void object_iterate_parallel(ObjectClosure* cl, 1459 uint worker_id, 1460 ShenandoahObjToScanQueueSet* queue_set) { 1461 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1462 assert(queue_set != NULL, "task queue must not be NULL"); 1463 1464 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1465 assert(q != NULL, "object iterate queue must not be NULL"); 1466 1467 ShenandoahMarkTask t; 1468 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1469 1470 // Work through the queue to traverse heap. 1471 // Steal when there is no task in queue. 1472 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1473 oop obj = t.obj(); 1474 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1475 cl->do_object(obj); 1476 obj->oop_iterate(&oops); 1477 } 1478 assert(q->is_empty(), "should be empty"); 1479 } 1480 }; 1481 1482 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1483 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1484 } 1485 1486 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1487 void ShenandoahHeap::keep_alive(oop obj) { 1488 if (is_concurrent_mark_in_progress() && (obj != NULL)) { 1489 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1490 } 1491 } 1492 1493 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1494 for (size_t i = 0; i < num_regions(); i++) { 1495 ShenandoahHeapRegion* current = get_region(i); 1496 blk->heap_region_do(current); 1497 } 1498 } 1499 1500 class ShenandoahParallelHeapRegionTask : public AbstractGangTask { 1501 private: 1502 ShenandoahHeap* const _heap; 1503 ShenandoahHeapRegionClosure* const _blk; 1504 1505 shenandoah_padding(0); 1506 volatile size_t _index; 1507 shenandoah_padding(1); 1508 1509 public: 1510 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) : 1511 AbstractGangTask("Shenandoah Parallel Region Operation"), 1512 _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {} 1513 1514 void work(uint worker_id) { 1515 ShenandoahParallelWorkerSession worker_session(worker_id); 1516 size_t stride = ShenandoahParallelRegionStride; 1517 1518 size_t max = _heap->num_regions(); 1519 while (Atomic::load(&_index) < max) { 1520 size_t cur = Atomic::fetch_and_add(&_index, stride, memory_order_relaxed); 1521 size_t start = cur; 1522 size_t end = MIN2(cur + stride, max); 1523 if (start >= max) break; 1524 1525 for (size_t i = cur; i < end; i++) { 1526 ShenandoahHeapRegion* current = _heap->get_region(i); 1527 _blk->heap_region_do(current); 1528 } 1529 } 1530 } 1531 }; 1532 1533 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1534 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1535 if (num_regions() > ShenandoahParallelRegionStride) { 1536 ShenandoahParallelHeapRegionTask task(blk); 1537 workers()->run_task(&task); 1538 } else { 1539 heap_region_iterate(blk); 1540 } 1541 } 1542 1543 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1544 private: 1545 ShenandoahMarkingContext* const _ctx; 1546 public: 1547 ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1548 1549 void heap_region_do(ShenandoahHeapRegion* r) { 1550 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1551 if (r->is_active()) { 1552 // Check if region needs updating its TAMS. We have updated it already during concurrent 1553 // reset, so it is very likely we don't need to do another write here. 1554 if (_ctx->top_at_mark_start(r) != r->top()) { 1555 _ctx->capture_top_at_mark_start(r); 1556 } 1557 } else { 1558 assert(_ctx->top_at_mark_start(r) == r->top(), 1559 "Region " SIZE_FORMAT " should already have correct TAMS", r->index()); 1560 } 1561 } 1562 1563 bool is_thread_safe() { return true; } 1564 }; 1565 1566 class ShenandoahRendezvousClosure : public HandshakeClosure { 1567 public: 1568 inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {} 1569 inline void do_thread(Thread* thread) {} 1570 }; 1571 1572 void ShenandoahHeap::rendezvous_threads() { 1573 ShenandoahRendezvousClosure cl; 1574 Handshake::execute(&cl); 1575 } 1576 1577 void ShenandoahHeap::recycle_trash() { 1578 free_set()->recycle_trash(); 1579 } 1580 1581 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1582 private: 1583 ShenandoahMarkingContext* const _ctx; 1584 public: 1585 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1586 1587 void heap_region_do(ShenandoahHeapRegion* r) { 1588 if (r->is_active()) { 1589 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1590 // anyway to capture any updates that happened since now. 1591 r->clear_live_data(); 1592 _ctx->capture_top_at_mark_start(r); 1593 } 1594 } 1595 1596 bool is_thread_safe() { return true; } 1597 }; 1598 1599 void ShenandoahHeap::prepare_gc() { 1600 reset_mark_bitmap(); 1601 1602 ShenandoahResetUpdateRegionStateClosure cl; 1603 parallel_heap_region_iterate(&cl); 1604 } 1605 1606 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1607 private: 1608 ShenandoahMarkingContext* const _ctx; 1609 ShenandoahHeapLock* const _lock; 1610 1611 public: 1612 ShenandoahFinalMarkUpdateRegionStateClosure() : 1613 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1614 1615 void heap_region_do(ShenandoahHeapRegion* r) { 1616 if (r->is_active()) { 1617 // All allocations past TAMS are implicitly live, adjust the region data. 1618 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1619 HeapWord *tams = _ctx->top_at_mark_start(r); 1620 HeapWord *top = r->top(); 1621 if (top > tams) { 1622 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1623 } 1624 1625 // We are about to select the collection set, make sure it knows about 1626 // current pinning status. Also, this allows trashing more regions that 1627 // now have their pinning status dropped. 1628 if (r->is_pinned()) { 1629 if (r->pin_count() == 0) { 1630 ShenandoahHeapLocker locker(_lock); 1631 r->make_unpinned(); 1632 } 1633 } else { 1634 if (r->pin_count() > 0) { 1635 ShenandoahHeapLocker locker(_lock); 1636 r->make_pinned(); 1637 } 1638 } 1639 1640 // Remember limit for updating refs. It's guaranteed that we get no 1641 // from-space-refs written from here on. 1642 r->set_update_watermark_at_safepoint(r->top()); 1643 } else { 1644 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1645 assert(_ctx->top_at_mark_start(r) == r->top(), 1646 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1647 } 1648 } 1649 1650 bool is_thread_safe() { return true; } 1651 }; 1652 1653 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1654 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1655 { 1656 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1657 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1658 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1659 parallel_heap_region_iterate(&cl); 1660 1661 assert_pinned_region_status(); 1662 } 1663 1664 { 1665 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1666 ShenandoahPhaseTimings::degen_gc_choose_cset); 1667 ShenandoahHeapLocker locker(lock()); 1668 _collection_set->clear(); 1669 heuristics()->choose_collection_set(_collection_set); 1670 } 1671 1672 { 1673 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1674 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1675 ShenandoahHeapLocker locker(lock()); 1676 _free_set->rebuild(); 1677 } 1678 } 1679 1680 void ShenandoahHeap::do_class_unloading() { 1681 _unloader.unload(); 1682 } 1683 1684 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1685 // Weak refs processing 1686 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1687 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1688 ShenandoahTimingsTracker t(phase); 1689 ShenandoahGCWorkerPhase worker_phase(phase); 1690 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1691 } 1692 1693 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1694 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1695 1696 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1697 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1698 // for future GCLABs here. 1699 if (UseTLAB) { 1700 ShenandoahGCPhase phase(concurrent ? 1701 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1702 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1703 gclabs_retire(ResizeTLAB); 1704 } 1705 1706 _update_refs_iterator.reset(); 1707 } 1708 1709 void ShenandoahHeap::set_gc_state_all_threads() { 1710 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1711 if (_gc_state_changed) { 1712 _gc_state_changed = false; 1713 char state = gc_state(); 1714 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1715 ShenandoahThreadLocalData::set_gc_state(t, state); 1716 } 1717 } 1718 } 1719 1720 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) { 1721 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1722 _gc_state.set_cond(mask, value); 1723 _gc_state_changed = true; 1724 } 1725 1726 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1727 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1728 set_gc_state_mask(MARKING, in_progress); 1729 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1730 } 1731 1732 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1733 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1734 set_gc_state_mask(EVACUATION, in_progress); 1735 } 1736 1737 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1738 if (in_progress) { 1739 _concurrent_strong_root_in_progress.set(); 1740 } else { 1741 _concurrent_strong_root_in_progress.unset(); 1742 } 1743 } 1744 1745 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1746 set_gc_state_mask(WEAK_ROOTS, cond); 1747 } 1748 1749 GCTracer* ShenandoahHeap::tracer() { 1750 return shenandoah_policy()->tracer(); 1751 } 1752 1753 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1754 return _free_set->used(); 1755 } 1756 1757 bool ShenandoahHeap::try_cancel_gc() { 1758 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1759 return prev == CANCELLABLE; 1760 } 1761 1762 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1763 if (try_cancel_gc()) { 1764 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1765 log_info(gc)("%s", msg.buffer()); 1766 Events::log(Thread::current(), "%s", msg.buffer()); 1767 } 1768 } 1769 1770 uint ShenandoahHeap::max_workers() { 1771 return _max_workers; 1772 } 1773 1774 void ShenandoahHeap::stop() { 1775 // The shutdown sequence should be able to terminate when GC is running. 1776 1777 // Step 0. Notify policy to disable event recording. 1778 _shenandoah_policy->record_shutdown(); 1779 1780 // Step 1. Notify control thread that we are in shutdown. 1781 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1782 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1783 control_thread()->prepare_for_graceful_shutdown(); 1784 1785 // Step 2. Notify GC workers that we are cancelling GC. 1786 cancel_gc(GCCause::_shenandoah_stop_vm); 1787 1788 // Step 3. Wait until GC worker exits normally. 1789 control_thread()->stop(); 1790 } 1791 1792 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1793 if (!unload_classes()) return; 1794 // Unload classes and purge SystemDictionary. 1795 { 1796 ShenandoahPhaseTimings::Phase phase = full_gc ? 1797 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1798 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1799 ShenandoahGCPhase gc_phase(phase); 1800 ShenandoahGCWorkerPhase worker_phase(phase); 1801 bool purged_class = SystemDictionary::do_unloading(gc_timer()); 1802 1803 ShenandoahIsAliveSelector is_alive; 1804 uint num_workers = _workers->active_workers(); 1805 ShenandoahClassUnloadingTask unlink_task(phase, is_alive.is_alive_closure(), num_workers, purged_class); 1806 _workers->run_task(&unlink_task); 1807 } 1808 1809 { 1810 ShenandoahGCPhase phase(full_gc ? 1811 ShenandoahPhaseTimings::full_gc_purge_cldg : 1812 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1813 ClassLoaderDataGraph::purge(/*at_safepoint*/true); 1814 } 1815 // Resize and verify metaspace 1816 MetaspaceGC::compute_new_size(); 1817 DEBUG_ONLY(MetaspaceUtils::verify();) 1818 } 1819 1820 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 1821 // so they should not have forwarded oops. 1822 // However, we do need to "null" dead oops in the roots, if can not be done 1823 // in concurrent cycles. 1824 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 1825 uint num_workers = _workers->active_workers(); 1826 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 1827 ShenandoahPhaseTimings::full_gc_purge_weak_par : 1828 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 1829 ShenandoahGCPhase phase(timing_phase); 1830 ShenandoahGCWorkerPhase worker_phase(timing_phase); 1831 // Cleanup weak roots 1832 if (has_forwarded_objects()) { 1833 ShenandoahForwardedIsAliveClosure is_alive; 1834 ShenandoahUpdateRefsClosure keep_alive; 1835 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 1836 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 1837 _workers->run_task(&cleaning_task); 1838 } else { 1839 ShenandoahIsAliveClosure is_alive; 1840 #ifdef ASSERT 1841 ShenandoahAssertNotForwardedClosure verify_cl; 1842 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 1843 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 1844 #else 1845 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 1846 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 1847 #endif 1848 _workers->run_task(&cleaning_task); 1849 } 1850 } 1851 1852 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 1853 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1854 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 1855 ShenandoahGCPhase phase(full_gc ? 1856 ShenandoahPhaseTimings::full_gc_purge : 1857 ShenandoahPhaseTimings::degen_gc_purge); 1858 stw_weak_refs(full_gc); 1859 stw_process_weak_roots(full_gc); 1860 stw_unload_classes(full_gc); 1861 } 1862 1863 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 1864 set_gc_state_mask(HAS_FORWARDED, cond); 1865 } 1866 1867 void ShenandoahHeap::set_unload_classes(bool uc) { 1868 _unload_classes.set_cond(uc); 1869 } 1870 1871 bool ShenandoahHeap::unload_classes() const { 1872 return _unload_classes.is_set(); 1873 } 1874 1875 address ShenandoahHeap::in_cset_fast_test_addr() { 1876 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1877 assert(heap->collection_set() != NULL, "Sanity"); 1878 return (address) heap->collection_set()->biased_map_address(); 1879 } 1880 1881 address ShenandoahHeap::cancelled_gc_addr() { 1882 return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of(); 1883 } 1884 1885 size_t ShenandoahHeap::bytes_allocated_since_gc_start() { 1886 return Atomic::load(&_bytes_allocated_since_gc_start); 1887 } 1888 1889 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 1890 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 1891 } 1892 1893 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 1894 _degenerated_gc_in_progress.set_cond(in_progress); 1895 } 1896 1897 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 1898 _full_gc_in_progress.set_cond(in_progress); 1899 } 1900 1901 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 1902 assert (is_full_gc_in_progress(), "should be"); 1903 _full_gc_move_in_progress.set_cond(in_progress); 1904 } 1905 1906 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 1907 set_gc_state_mask(UPDATEREFS, in_progress); 1908 } 1909 1910 void ShenandoahHeap::register_nmethod(nmethod* nm) { 1911 ShenandoahCodeRoots::register_nmethod(nm); 1912 } 1913 1914 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 1915 ShenandoahCodeRoots::unregister_nmethod(nm); 1916 } 1917 1918 void ShenandoahHeap::flush_nmethod(nmethod* nm) { 1919 ShenandoahCodeRoots::flush_nmethod(nm); 1920 } 1921 1922 oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 1923 heap_region_containing(o)->record_pin(); 1924 return o; 1925 } 1926 1927 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 1928 ShenandoahHeapRegion* r = heap_region_containing(o); 1929 assert(r != NULL, "Sanity"); 1930 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 1931 r->record_unpin(); 1932 } 1933 1934 void ShenandoahHeap::sync_pinned_region_status() { 1935 ShenandoahHeapLocker locker(lock()); 1936 1937 for (size_t i = 0; i < num_regions(); i++) { 1938 ShenandoahHeapRegion *r = get_region(i); 1939 if (r->is_active()) { 1940 if (r->is_pinned()) { 1941 if (r->pin_count() == 0) { 1942 r->make_unpinned(); 1943 } 1944 } else { 1945 if (r->pin_count() > 0) { 1946 r->make_pinned(); 1947 } 1948 } 1949 } 1950 } 1951 1952 assert_pinned_region_status(); 1953 } 1954 1955 #ifdef ASSERT 1956 void ShenandoahHeap::assert_pinned_region_status() { 1957 for (size_t i = 0; i < num_regions(); i++) { 1958 ShenandoahHeapRegion* r = get_region(i); 1959 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 1960 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 1961 } 1962 } 1963 #endif 1964 1965 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 1966 return _gc_timer; 1967 } 1968 1969 void ShenandoahHeap::prepare_concurrent_roots() { 1970 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1971 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1972 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 1973 set_concurrent_weak_root_in_progress(true); 1974 if (unload_classes()) { 1975 _unloader.prepare(); 1976 } 1977 } 1978 1979 void ShenandoahHeap::finish_concurrent_roots() { 1980 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1981 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1982 if (unload_classes()) { 1983 _unloader.finish(); 1984 } 1985 } 1986 1987 #ifdef ASSERT 1988 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 1989 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 1990 1991 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1992 if (UseDynamicNumberOfGCThreads) { 1993 assert(nworkers <= ParallelGCThreads, "Cannot use more than it has"); 1994 } else { 1995 // Use ParallelGCThreads inside safepoints 1996 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints"); 1997 } 1998 } else { 1999 if (UseDynamicNumberOfGCThreads) { 2000 assert(nworkers <= ConcGCThreads, "Cannot use more than it has"); 2001 } else { 2002 // Use ConcGCThreads outside safepoints 2003 assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints"); 2004 } 2005 } 2006 } 2007 #endif 2008 2009 ShenandoahVerifier* ShenandoahHeap::verifier() { 2010 guarantee(ShenandoahVerify, "Should be enabled"); 2011 assert (_verifier != NULL, "sanity"); 2012 return _verifier; 2013 } 2014 2015 template<bool CONCURRENT> 2016 class ShenandoahUpdateHeapRefsTask : public AbstractGangTask { 2017 private: 2018 ShenandoahHeap* _heap; 2019 ShenandoahRegionIterator* _regions; 2020 public: 2021 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2022 AbstractGangTask("Shenandoah Update References"), 2023 _heap(ShenandoahHeap::heap()), 2024 _regions(regions) { 2025 } 2026 2027 void work(uint worker_id) { 2028 if (CONCURRENT) { 2029 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2030 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers); 2031 do_work<ShenandoahConcUpdateRefsClosure>(); 2032 } else { 2033 ShenandoahParallelWorkerSession worker_session(worker_id); 2034 do_work<ShenandoahSTWUpdateRefsClosure>(); 2035 } 2036 } 2037 2038 private: 2039 template<class T> 2040 void do_work() { 2041 T cl; 2042 ShenandoahHeapRegion* r = _regions->next(); 2043 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2044 while (r != NULL) { 2045 HeapWord* update_watermark = r->get_update_watermark(); 2046 assert (update_watermark >= r->bottom(), "sanity"); 2047 if (r->is_active() && !r->is_cset()) { 2048 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2049 } 2050 if (ShenandoahPacing) { 2051 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2052 } 2053 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2054 return; 2055 } 2056 r = _regions->next(); 2057 } 2058 } 2059 }; 2060 2061 void ShenandoahHeap::update_heap_references(bool concurrent) { 2062 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2063 2064 if (concurrent) { 2065 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2066 workers()->run_task(&task); 2067 } else { 2068 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2069 workers()->run_task(&task); 2070 } 2071 } 2072 2073 2074 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2075 private: 2076 ShenandoahHeapLock* const _lock; 2077 2078 public: 2079 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2080 2081 void heap_region_do(ShenandoahHeapRegion* r) { 2082 // Drop unnecessary "pinned" state from regions that does not have CP marks 2083 // anymore, as this would allow trashing them. 2084 2085 if (r->is_active()) { 2086 if (r->is_pinned()) { 2087 if (r->pin_count() == 0) { 2088 ShenandoahHeapLocker locker(_lock); 2089 r->make_unpinned(); 2090 } 2091 } else { 2092 if (r->pin_count() > 0) { 2093 ShenandoahHeapLocker locker(_lock); 2094 r->make_pinned(); 2095 } 2096 } 2097 } 2098 } 2099 2100 bool is_thread_safe() { return true; } 2101 }; 2102 2103 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2104 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2105 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2106 2107 { 2108 ShenandoahGCPhase phase(concurrent ? 2109 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2110 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2111 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2112 parallel_heap_region_iterate(&cl); 2113 2114 assert_pinned_region_status(); 2115 } 2116 2117 { 2118 ShenandoahGCPhase phase(concurrent ? 2119 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2120 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2121 trash_cset_regions(); 2122 } 2123 } 2124 2125 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2126 { 2127 ShenandoahGCPhase phase(concurrent ? 2128 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2129 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2130 ShenandoahHeapLocker locker(lock()); 2131 _free_set->rebuild(); 2132 } 2133 } 2134 2135 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2136 print_on(st); 2137 st->cr(); 2138 print_heap_regions_on(st); 2139 } 2140 2141 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2142 size_t slice = r->index() / _bitmap_regions_per_slice; 2143 2144 size_t regions_from = _bitmap_regions_per_slice * slice; 2145 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2146 for (size_t g = regions_from; g < regions_to; g++) { 2147 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2148 if (skip_self && g == r->index()) continue; 2149 if (get_region(g)->is_committed()) { 2150 return true; 2151 } 2152 } 2153 return false; 2154 } 2155 2156 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2157 shenandoah_assert_heaplocked(); 2158 2159 // Bitmaps in special regions do not need commits 2160 if (_bitmap_region_special) { 2161 return true; 2162 } 2163 2164 if (is_bitmap_slice_committed(r, true)) { 2165 // Some other region from the group is already committed, meaning the bitmap 2166 // slice is already committed, we exit right away. 2167 return true; 2168 } 2169 2170 // Commit the bitmap slice: 2171 size_t slice = r->index() / _bitmap_regions_per_slice; 2172 size_t off = _bitmap_bytes_per_slice * slice; 2173 size_t len = _bitmap_bytes_per_slice; 2174 char* start = (char*) _bitmap_region.start() + off; 2175 2176 if (!os::commit_memory(start, len, false)) { 2177 return false; 2178 } 2179 2180 if (AlwaysPreTouch) { 2181 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2182 } 2183 2184 return true; 2185 } 2186 2187 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2188 shenandoah_assert_heaplocked(); 2189 2190 // Bitmaps in special regions do not need uncommits 2191 if (_bitmap_region_special) { 2192 return true; 2193 } 2194 2195 if (is_bitmap_slice_committed(r, true)) { 2196 // Some other region from the group is still committed, meaning the bitmap 2197 // slice is should stay committed, exit right away. 2198 return true; 2199 } 2200 2201 // Uncommit the bitmap slice: 2202 size_t slice = r->index() / _bitmap_regions_per_slice; 2203 size_t off = _bitmap_bytes_per_slice * slice; 2204 size_t len = _bitmap_bytes_per_slice; 2205 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2206 return false; 2207 } 2208 return true; 2209 } 2210 2211 void ShenandoahHeap::safepoint_synchronize_begin() { 2212 if (ShenandoahSuspendibleWorkers || UseStringDeduplication) { 2213 SuspendibleThreadSet::synchronize(); 2214 } 2215 } 2216 2217 void ShenandoahHeap::safepoint_synchronize_end() { 2218 if (ShenandoahSuspendibleWorkers || UseStringDeduplication) { 2219 SuspendibleThreadSet::desynchronize(); 2220 } 2221 } 2222 2223 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) { 2224 static const char *msg = "Concurrent uncommit"; 2225 ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 2226 EventMark em("%s", msg); 2227 2228 op_uncommit(shrink_before, shrink_until); 2229 } 2230 2231 void ShenandoahHeap::try_inject_alloc_failure() { 2232 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2233 _inject_alloc_failure.set(); 2234 os::naked_short_sleep(1); 2235 if (cancelled_gc()) { 2236 log_info(gc)("Allocation failure was successfully injected"); 2237 } 2238 } 2239 } 2240 2241 bool ShenandoahHeap::should_inject_alloc_failure() { 2242 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2243 } 2244 2245 void ShenandoahHeap::initialize_serviceability() { 2246 _memory_pool = new ShenandoahMemoryPool(this); 2247 _cycle_memory_manager.add_pool(_memory_pool); 2248 _stw_memory_manager.add_pool(_memory_pool); 2249 } 2250 2251 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2252 GrowableArray<GCMemoryManager*> memory_managers(2); 2253 memory_managers.append(&_cycle_memory_manager); 2254 memory_managers.append(&_stw_memory_manager); 2255 return memory_managers; 2256 } 2257 2258 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2259 GrowableArray<MemoryPool*> memory_pools(1); 2260 memory_pools.append(_memory_pool); 2261 return memory_pools; 2262 } 2263 2264 MemoryUsage ShenandoahHeap::memory_usage() { 2265 return _memory_pool->get_memory_usage(); 2266 } 2267 2268 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2269 _heap(ShenandoahHeap::heap()), 2270 _index(0) {} 2271 2272 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2273 _heap(heap), 2274 _index(0) {} 2275 2276 void ShenandoahRegionIterator::reset() { 2277 _index = 0; 2278 } 2279 2280 bool ShenandoahRegionIterator::has_next() const { 2281 return _index < _heap->num_regions(); 2282 } 2283 2284 char ShenandoahHeap::gc_state() const { 2285 return _gc_state.raw_value(); 2286 } 2287 2288 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2289 #ifdef ASSERT 2290 assert(_liveness_cache != NULL, "sanity"); 2291 assert(worker_id < _max_workers, "sanity"); 2292 for (uint i = 0; i < num_regions(); i++) { 2293 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2294 } 2295 #endif 2296 return _liveness_cache[worker_id]; 2297 } 2298 2299 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2300 assert(worker_id < _max_workers, "sanity"); 2301 assert(_liveness_cache != NULL, "sanity"); 2302 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2303 for (uint i = 0; i < num_regions(); i++) { 2304 ShenandoahLiveData live = ld[i]; 2305 if (live > 0) { 2306 ShenandoahHeapRegion* r = get_region(i); 2307 r->increase_live_data_gc_words(live); 2308 ld[i] = 0; 2309 } 2310 } 2311 }