1 /*
   2  * Copyright (c) 2013, 2021, Red Hat, Inc. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.hpp"
  27 #include "memory/universe.hpp"
  28 
  29 #include "gc/shared/gcArguments.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/locationPrinter.inline.hpp"
  33 #include "gc/shared/memAllocator.hpp"
  34 #include "gc/shared/plab.hpp"
  35 #include "gc/shared/slidingForwarding.hpp"
  36 #include "gc/shared/tlab_globals.hpp"
  37 
  38 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  39 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  40 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  41 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  42 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  43 #include "gc/shenandoah/shenandoahControlThread.hpp"
  44 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  45 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  46 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  47 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  48 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  49 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  50 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  51 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  52 #include "gc/shenandoah/shenandoahMetrics.hpp"
  53 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  54 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  55 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  56 #include "gc/shenandoah/shenandoahPadding.hpp"
  57 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  58 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  59 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  60 #include "gc/shenandoah/shenandoahStringDedup.hpp"
  61 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  62 #include "gc/shenandoah/shenandoahUtils.hpp"
  63 #include "gc/shenandoah/shenandoahVerifier.hpp"
  64 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  65 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  66 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  67 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  68 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  69 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  70 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  71 #if INCLUDE_JFR
  72 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  73 #endif
  74 
  75 #include "classfile/systemDictionary.hpp"
  76 #include "memory/classLoaderMetaspace.hpp"
  77 #include "memory/metaspaceUtils.hpp"
  78 #include "oops/compressedOops.inline.hpp"
  79 #include "prims/jvmtiTagMap.hpp"
  80 #include "runtime/atomic.hpp"
  81 #include "runtime/globals.hpp"
  82 #include "runtime/interfaceSupport.inline.hpp"
  83 #include "runtime/java.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/safepointMechanism.hpp"
  86 #include "runtime/vmThread.hpp"
  87 #include "services/mallocTracker.hpp"
  88 #include "services/memTracker.hpp"
  89 #include "utilities/events.hpp"
  90 #include "utilities/powerOfTwo.hpp"
  91 
  92 class ShenandoahPretouchHeapTask : public AbstractGangTask {
  93 private:
  94   ShenandoahRegionIterator _regions;
  95   const size_t _page_size;
  96 public:
  97   ShenandoahPretouchHeapTask(size_t page_size) :
  98     AbstractGangTask("Shenandoah Pretouch Heap"),
  99     _page_size(page_size) {}
 100 
 101   virtual void work(uint worker_id) {
 102     ShenandoahHeapRegion* r = _regions.next();
 103     while (r != NULL) {
 104       if (r->is_committed()) {
 105         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 106       }
 107       r = _regions.next();
 108     }
 109   }
 110 };
 111 
 112 class ShenandoahPretouchBitmapTask : public AbstractGangTask {
 113 private:
 114   ShenandoahRegionIterator _regions;
 115   char* _bitmap_base;
 116   const size_t _bitmap_size;
 117   const size_t _page_size;
 118 public:
 119   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 120     AbstractGangTask("Shenandoah Pretouch Bitmap"),
 121     _bitmap_base(bitmap_base),
 122     _bitmap_size(bitmap_size),
 123     _page_size(page_size) {}
 124 
 125   virtual void work(uint worker_id) {
 126     ShenandoahHeapRegion* r = _regions.next();
 127     while (r != NULL) {
 128       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 129       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 130       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 131 
 132       if (r->is_committed()) {
 133         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 134       }
 135 
 136       r = _regions.next();
 137     }
 138   }
 139 };
 140 
 141 jint ShenandoahHeap::initialize() {
 142   //
 143   // Figure out heap sizing
 144   //
 145 
 146   size_t init_byte_size = InitialHeapSize;
 147   size_t min_byte_size  = MinHeapSize;
 148   size_t max_byte_size  = MaxHeapSize;
 149   size_t heap_alignment = HeapAlignment;
 150 
 151   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 152 
 153   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 154   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 155 
 156   _num_regions = ShenandoahHeapRegion::region_count();
 157   assert(_num_regions == (max_byte_size / reg_size_bytes),
 158          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 159          _num_regions, max_byte_size, reg_size_bytes);
 160 
 161   // Now we know the number of regions, initialize the heuristics.
 162   initialize_heuristics();
 163 
 164   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 165   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 166   assert(num_committed_regions <= _num_regions, "sanity");
 167   _initial_size = num_committed_regions * reg_size_bytes;
 168 
 169   size_t num_min_regions = min_byte_size / reg_size_bytes;
 170   num_min_regions = MIN2(num_min_regions, _num_regions);
 171   assert(num_min_regions <= _num_regions, "sanity");
 172   _minimum_size = num_min_regions * reg_size_bytes;
 173 
 174   // Default to max heap size.
 175   _soft_max_size = _num_regions * reg_size_bytes;
 176 
 177   _committed = _initial_size;
 178 
 179   size_t heap_page_size   = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 180   size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 181   size_t region_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 182 
 183   //
 184   // Reserve and commit memory for heap
 185   //
 186 
 187   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 188   initialize_reserved_region(heap_rs);
 189   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 190   _heap_region_special = heap_rs.special();
 191 
 192   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 193          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 194 
 195 #if SHENANDOAH_OPTIMIZED_MARKTASK
 196   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 197   // Fail if we ever attempt to address more than we can.
 198   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 199     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 200                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 201                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 202                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 203     vm_exit_during_initialization("Fatal Error", buf);
 204   }
 205 #endif
 206 
 207   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 208   if (!_heap_region_special) {
 209     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 210                               "Cannot commit heap memory");
 211   }
 212 
 213   //
 214   // Reserve and commit memory for bitmap(s)
 215   //
 216 
 217   _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 218   _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
 219 
 220   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 221 
 222   guarantee(bitmap_bytes_per_region != 0,
 223             "Bitmap bytes per region should not be zero");
 224   guarantee(is_power_of_2(bitmap_bytes_per_region),
 225             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 226 
 227   if (bitmap_page_size > bitmap_bytes_per_region) {
 228     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 229     _bitmap_bytes_per_slice = bitmap_page_size;
 230   } else {
 231     _bitmap_regions_per_slice = 1;
 232     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 233   }
 234 
 235   guarantee(_bitmap_regions_per_slice >= 1,
 236             "Should have at least one region per slice: " SIZE_FORMAT,
 237             _bitmap_regions_per_slice);
 238 
 239   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 240             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 241             _bitmap_bytes_per_slice, bitmap_page_size);
 242 
 243   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 244   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 245   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 246   _bitmap_region_special = bitmap.special();
 247 
 248   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 249                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 250   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 251   if (!_bitmap_region_special) {
 252     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 253                               "Cannot commit bitmap memory");
 254   }
 255 
 256   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
 257 
 258   if (ShenandoahVerify) {
 259     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 260     if (!verify_bitmap.special()) {
 261       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 262                                 "Cannot commit verification bitmap memory");
 263     }
 264     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 265     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 266     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 267     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 268   }
 269 
 270   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 271   ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
 272   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 273   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 274   _aux_bitmap_region_special = aux_bitmap.special();
 275   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 276 
 277   //
 278   // Create regions and region sets
 279   //
 280   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 281   size_t region_storage_size = align_up(region_align * _num_regions, region_page_size);
 282   region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity());
 283 
 284   ReservedSpace region_storage(region_storage_size, region_page_size);
 285   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 286   if (!region_storage.special()) {
 287     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 288                               "Cannot commit region memory");
 289   }
 290 
 291   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 292   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 293   // If not successful, bite a bullet and allocate at whatever address.
 294   {
 295     size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 296     size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 297 
 298     uintptr_t min = round_up_power_of_2(cset_align);
 299     uintptr_t max = (1u << 30u);
 300 
 301     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 302       char* req_addr = (char*)addr;
 303       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 304       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr);
 305       if (cset_rs.is_reserved()) {
 306         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 307         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 308         break;
 309       }
 310     }
 311 
 312     if (_collection_set == NULL) {
 313       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size());
 314       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 315     }
 316   }
 317 
 318   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 319   _free_set = new ShenandoahFreeSet(this, _num_regions);
 320 
 321   {
 322     ShenandoahHeapLocker locker(lock());
 323 
 324     for (size_t i = 0; i < _num_regions; i++) {
 325       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 326       bool is_committed = i < num_committed_regions;
 327       void* loc = region_storage.base() + i * region_align;
 328 
 329       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 330       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 331 
 332       _marking_context->initialize_top_at_mark_start(r);
 333       _regions[i] = r;
 334       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 335     }
 336 
 337     // Initialize to complete
 338     _marking_context->mark_complete();
 339 
 340     _free_set->rebuild();
 341   }
 342 
 343   if (AlwaysPreTouch) {
 344     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 345     // before initialize() below zeroes it with initializing thread. For any given region,
 346     // we touch the region and the corresponding bitmaps from the same thread.
 347     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 348 
 349     _pretouch_heap_page_size = heap_page_size;
 350     _pretouch_bitmap_page_size = bitmap_page_size;
 351 
 352 #ifdef LINUX
 353     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 354     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 355     // them into huge one. Therefore, we need to pretouch with smaller pages.
 356     if (UseTransparentHugePages) {
 357       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 358       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 359     }
 360 #endif
 361 
 362     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 363     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 364 
 365     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 366     _workers->run_task(&bcl);
 367 
 368     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 369     _workers->run_task(&hcl);
 370   }
 371 
 372   //
 373   // Initialize the rest of GC subsystems
 374   //
 375 
 376   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 377   for (uint worker = 0; worker < _max_workers; worker++) {
 378     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 379     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 380   }
 381 
 382   // There should probably be Shenandoah-specific options for these,
 383   // just as there are G1-specific options.
 384   {
 385     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 386     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 387     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 388   }
 389 
 390   _monitoring_support = new ShenandoahMonitoringSupport(this);
 391   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 392   ShenandoahCodeRoots::initialize();
 393 
 394   if (ShenandoahPacing) {
 395     _pacer = new ShenandoahPacer(this);
 396     _pacer->setup_for_idle();
 397   } else {
 398     _pacer = NULL;
 399   }
 400 
 401   _control_thread = new ShenandoahControlThread();
 402 
 403   ShenandoahInitLogger::print();
 404 
 405   SlidingForwarding::initialize(_heap_region, ShenandoahHeapRegion::region_size_words());
 406 
 407   return JNI_OK;
 408 }
 409 
 410 void ShenandoahHeap::initialize_mode() {
 411   if (ShenandoahGCMode != NULL) {
 412     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 413       _gc_mode = new ShenandoahSATBMode();
 414     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 415       _gc_mode = new ShenandoahIUMode();
 416     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 417       _gc_mode = new ShenandoahPassiveMode();
 418     } else {
 419       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 420     }
 421   } else {
 422     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 423   }
 424   _gc_mode->initialize_flags();
 425   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 426     vm_exit_during_initialization(
 427             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 428                     _gc_mode->name()));
 429   }
 430   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 431     vm_exit_during_initialization(
 432             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 433                     _gc_mode->name()));
 434   }
 435 }
 436 
 437 void ShenandoahHeap::initialize_heuristics() {
 438   assert(_gc_mode != NULL, "Must be initialized");
 439   _heuristics = _gc_mode->initialize_heuristics();
 440 
 441   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 442     vm_exit_during_initialization(
 443             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 444                     _heuristics->name()));
 445   }
 446   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 447     vm_exit_during_initialization(
 448             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 449                     _heuristics->name()));
 450   }
 451 }
 452 
 453 #ifdef _MSC_VER
 454 #pragma warning( push )
 455 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 456 #endif
 457 
 458 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 459   CollectedHeap(),
 460   _initial_size(0),
 461   _used(0),
 462   _committed(0),
 463   _bytes_allocated_since_gc_start(0),
 464   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 465   _workers(NULL),
 466   _safepoint_workers(NULL),
 467   _heap_region_special(false),
 468   _num_regions(0),
 469   _regions(NULL),
 470   _update_refs_iterator(this),
 471   _gc_state_changed(false),
 472   _control_thread(NULL),
 473   _shenandoah_policy(policy),
 474   _gc_mode(NULL),
 475   _heuristics(NULL),
 476   _free_set(NULL),
 477   _pacer(NULL),
 478   _verifier(NULL),
 479   _phase_timings(NULL),
 480   _monitoring_support(NULL),
 481   _memory_pool(NULL),
 482   _stw_memory_manager("Shenandoah Pauses"),
 483   _cycle_memory_manager("Shenandoah Cycles"),
 484   _gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 485   _soft_ref_policy(),
 486   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 487   _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
 488   _marking_context(NULL),
 489   _bitmap_size(0),
 490   _bitmap_regions_per_slice(0),
 491   _bitmap_bytes_per_slice(0),
 492   _bitmap_region_special(false),
 493   _aux_bitmap_region_special(false),
 494   _liveness_cache(NULL),
 495   _collection_set(NULL)
 496 {
 497   // Initialize GC mode early, so we can adjust barrier support
 498   initialize_mode();
 499   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 500 
 501   _max_workers = MAX2(_max_workers, 1U);
 502   _workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers,
 503                             /* are_GC_task_threads */ true,
 504                             /* are_ConcurrentGC_threads */ true);
 505   if (_workers == NULL) {
 506     vm_exit_during_initialization("Failed necessary allocation.");
 507   } else {
 508     _workers->initialize_workers();
 509   }
 510 
 511   if (ParallelGCThreads > 1) {
 512     _safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread",
 513                                                 ParallelGCThreads,
 514                       /* are_GC_task_threads */ false,
 515                  /* are_ConcurrentGC_threads */ false);
 516     _safepoint_workers->initialize_workers();
 517   }
 518 }
 519 
 520 #ifdef _MSC_VER
 521 #pragma warning( pop )
 522 #endif
 523 
 524 class ShenandoahResetBitmapTask : public AbstractGangTask {
 525 private:
 526   ShenandoahRegionIterator _regions;
 527 
 528 public:
 529   ShenandoahResetBitmapTask() :
 530     AbstractGangTask("Shenandoah Reset Bitmap") {}
 531 
 532   void work(uint worker_id) {
 533     ShenandoahHeapRegion* region = _regions.next();
 534     ShenandoahHeap* heap = ShenandoahHeap::heap();
 535     ShenandoahMarkingContext* const ctx = heap->marking_context();
 536     while (region != NULL) {
 537       if (heap->is_bitmap_slice_committed(region)) {
 538         ctx->clear_bitmap(region);
 539       }
 540       region = _regions.next();
 541     }
 542   }
 543 };
 544 
 545 void ShenandoahHeap::reset_mark_bitmap() {
 546   assert_gc_workers(_workers->active_workers());
 547   mark_incomplete_marking_context();
 548 
 549   ShenandoahResetBitmapTask task;
 550   _workers->run_task(&task);
 551 }
 552 
 553 void ShenandoahHeap::print_on(outputStream* st) const {
 554   st->print_cr("Shenandoah Heap");
 555   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 556                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 557                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 558                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 559                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 560   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 561                num_regions(),
 562                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 563                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 564 
 565   st->print("Status: ");
 566   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 567   if (is_concurrent_mark_in_progress())        st->print("marking, ");
 568   if (is_evacuation_in_progress())             st->print("evacuating, ");
 569   if (is_update_refs_in_progress())            st->print("updating refs, ");
 570   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 571   if (is_full_gc_in_progress())                st->print("full gc, ");
 572   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 573   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 574   if (is_concurrent_strong_root_in_progress() &&
 575       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 576 
 577   if (cancelled_gc()) {
 578     st->print("cancelled");
 579   } else {
 580     st->print("not cancelled");
 581   }
 582   st->cr();
 583 
 584   st->print_cr("Reserved region:");
 585   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 586                p2i(reserved_region().start()),
 587                p2i(reserved_region().end()));
 588 
 589   ShenandoahCollectionSet* cset = collection_set();
 590   st->print_cr("Collection set:");
 591   if (cset != NULL) {
 592     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 593     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 594   } else {
 595     st->print_cr(" (NULL)");
 596   }
 597 
 598   st->cr();
 599   MetaspaceUtils::print_on(st);
 600 
 601   if (Verbose) {
 602     st->cr();
 603     print_heap_regions_on(st);
 604   }
 605 }
 606 
 607 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 608 public:
 609   void do_thread(Thread* thread) {
 610     assert(thread != NULL, "Sanity");
 611     assert(thread->is_Worker_thread(), "Only worker thread expected");
 612     ShenandoahThreadLocalData::initialize_gclab(thread);
 613   }
 614 };
 615 
 616 void ShenandoahHeap::post_initialize() {
 617   CollectedHeap::post_initialize();
 618   MutexLocker ml(Threads_lock);
 619 
 620   ShenandoahInitWorkerGCLABClosure init_gclabs;
 621   _workers->threads_do(&init_gclabs);
 622 
 623   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 624   // Now, we will let WorkGang to initialize gclab when new worker is created.
 625   _workers->set_initialize_gclab();
 626   if (_safepoint_workers != NULL) {
 627     _safepoint_workers->threads_do(&init_gclabs);
 628     _safepoint_workers->set_initialize_gclab();
 629   }
 630 
 631   _heuristics->initialize();
 632 
 633   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 634 }
 635 
 636 size_t ShenandoahHeap::used() const {
 637   return Atomic::load(&_used);
 638 }
 639 
 640 size_t ShenandoahHeap::committed() const {
 641   return Atomic::load(&_committed);
 642 }
 643 
 644 void ShenandoahHeap::increase_committed(size_t bytes) {
 645   shenandoah_assert_heaplocked_or_safepoint();
 646   _committed += bytes;
 647 }
 648 
 649 void ShenandoahHeap::decrease_committed(size_t bytes) {
 650   shenandoah_assert_heaplocked_or_safepoint();
 651   _committed -= bytes;
 652 }
 653 
 654 void ShenandoahHeap::increase_used(size_t bytes) {
 655   Atomic::add(&_used, bytes, memory_order_relaxed);
 656 }
 657 
 658 void ShenandoahHeap::set_used(size_t bytes) {
 659   Atomic::store(&_used, bytes);
 660 }
 661 
 662 void ShenandoahHeap::decrease_used(size_t bytes) {
 663   assert(used() >= bytes, "never decrease heap size by more than we've left");
 664   Atomic::sub(&_used, bytes, memory_order_relaxed);
 665 }
 666 
 667 void ShenandoahHeap::increase_allocated(size_t bytes) {
 668   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 669 }
 670 
 671 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 672   size_t bytes = words * HeapWordSize;
 673   if (!waste) {
 674     increase_used(bytes);
 675   }
 676   increase_allocated(bytes);
 677   if (ShenandoahPacing) {
 678     control_thread()->pacing_notify_alloc(words);
 679     if (waste) {
 680       pacer()->claim_for_alloc(words, true);
 681     }
 682   }
 683 }
 684 
 685 size_t ShenandoahHeap::capacity() const {
 686   return committed();
 687 }
 688 
 689 size_t ShenandoahHeap::max_capacity() const {
 690   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 691 }
 692 
 693 size_t ShenandoahHeap::soft_max_capacity() const {
 694   size_t v = Atomic::load(&_soft_max_size);
 695   assert(min_capacity() <= v && v <= max_capacity(),
 696          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 697          min_capacity(), v, max_capacity());
 698   return v;
 699 }
 700 
 701 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 702   assert(min_capacity() <= v && v <= max_capacity(),
 703          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 704          min_capacity(), v, max_capacity());
 705   Atomic::store(&_soft_max_size, v);
 706 }
 707 
 708 size_t ShenandoahHeap::min_capacity() const {
 709   return _minimum_size;
 710 }
 711 
 712 size_t ShenandoahHeap::initial_capacity() const {
 713   return _initial_size;
 714 }
 715 
 716 bool ShenandoahHeap::is_in(const void* p) const {
 717   HeapWord* heap_base = (HeapWord*) base();
 718   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 719   return p >= heap_base && p < last_region_end;
 720 }
 721 
 722 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 723   assert (ShenandoahUncommit, "should be enabled");
 724 
 725   // Application allocates from the beginning of the heap, and GC allocates at
 726   // the end of it. It is more efficient to uncommit from the end, so that applications
 727   // could enjoy the near committed regions. GC allocations are much less frequent,
 728   // and therefore can accept the committing costs.
 729 
 730   size_t count = 0;
 731   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 732     ShenandoahHeapRegion* r = get_region(i - 1);
 733     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 734       ShenandoahHeapLocker locker(lock());
 735       if (r->is_empty_committed()) {
 736         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 737           break;
 738         }
 739 
 740         r->make_uncommitted();
 741         count++;
 742       }
 743     }
 744     SpinPause(); // allow allocators to take the lock
 745   }
 746 
 747   if (count > 0) {
 748     control_thread()->notify_heap_changed();
 749   }
 750 }
 751 
 752 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 753   // New object should fit the GCLAB size
 754   size_t min_size = MAX2(size, PLAB::min_size());
 755 
 756   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 757   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 758   new_size = MIN2(new_size, PLAB::max_size());
 759   new_size = MAX2(new_size, PLAB::min_size());
 760 
 761   // Record new heuristic value even if we take any shortcut. This captures
 762   // the case when moderately-sized objects always take a shortcut. At some point,
 763   // heuristics should catch up with them.
 764   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 765 
 766   if (new_size < size) {
 767     // New size still does not fit the object. Fall back to shared allocation.
 768     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 769     return NULL;
 770   }
 771 
 772   // Retire current GCLAB, and allocate a new one.
 773   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 774   gclab->retire();
 775 
 776   size_t actual_size = 0;
 777   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 778   if (gclab_buf == NULL) {
 779     return NULL;
 780   }
 781 
 782   assert (size <= actual_size, "allocation should fit");
 783 
 784   if (ZeroTLAB) {
 785     // ..and clear it.
 786     Copy::zero_to_words(gclab_buf, actual_size);
 787   } else {
 788     // ...and zap just allocated object.
 789 #ifdef ASSERT
 790     // Skip mangling the space corresponding to the object header to
 791     // ensure that the returned space is not considered parsable by
 792     // any concurrent GC thread.
 793     size_t hdr_size = oopDesc::header_size();
 794     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 795 #endif // ASSERT
 796   }
 797   gclab->set_buf(gclab_buf, actual_size);
 798   return gclab->allocate(size);
 799 }
 800 
 801 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 802                                             size_t requested_size,
 803                                             size_t* actual_size) {
 804   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 805   HeapWord* res = allocate_memory(req);
 806   if (res != NULL) {
 807     *actual_size = req.actual_size();
 808   } else {
 809     *actual_size = 0;
 810   }
 811   return res;
 812 }
 813 
 814 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 815                                              size_t word_size,
 816                                              size_t* actual_size) {
 817   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 818   HeapWord* res = allocate_memory(req);
 819   if (res != NULL) {
 820     *actual_size = req.actual_size();
 821   } else {
 822     *actual_size = 0;
 823   }
 824   return res;
 825 }
 826 
 827 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 828   intptr_t pacer_epoch = 0;
 829   bool in_new_region = false;
 830   HeapWord* result = NULL;
 831 
 832   if (req.is_mutator_alloc()) {
 833     if (ShenandoahPacing) {
 834       pacer()->pace_for_alloc(req.size());
 835       pacer_epoch = pacer()->epoch();
 836     }
 837 
 838     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 839       result = allocate_memory_under_lock(req, in_new_region);
 840     }
 841 
 842     // Allocation failed, block until control thread reacted, then retry allocation.
 843     //
 844     // It might happen that one of the threads requesting allocation would unblock
 845     // way later after GC happened, only to fail the second allocation, because
 846     // other threads have already depleted the free storage. In this case, a better
 847     // strategy is to try again, as long as GC makes progress.
 848     //
 849     // Then, we need to make sure the allocation was retried after at least one
 850     // Full GC, which means we want to try more than ShenandoahFullGCThreshold times.
 851 
 852     size_t tries = 0;
 853 
 854     while (result == NULL && _progress_last_gc.is_set()) {
 855       tries++;
 856       control_thread()->handle_alloc_failure(req);
 857       result = allocate_memory_under_lock(req, in_new_region);
 858     }
 859 
 860     while (result == NULL && tries <= ShenandoahFullGCThreshold) {
 861       tries++;
 862       control_thread()->handle_alloc_failure(req);
 863       result = allocate_memory_under_lock(req, in_new_region);
 864     }
 865 
 866   } else {
 867     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 868     result = allocate_memory_under_lock(req, in_new_region);
 869     // Do not call handle_alloc_failure() here, because we cannot block.
 870     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 871   }
 872 
 873   if (in_new_region) {
 874     control_thread()->notify_heap_changed();
 875   }
 876 
 877   if (result != NULL) {
 878     size_t requested = req.size();
 879     size_t actual = req.actual_size();
 880 
 881     assert (req.is_lab_alloc() || (requested == actual),
 882             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 883             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 884 
 885     if (req.is_mutator_alloc()) {
 886       notify_mutator_alloc_words(actual, false);
 887 
 888       // If we requested more than we were granted, give the rest back to pacer.
 889       // This only matters if we are in the same pacing epoch: do not try to unpace
 890       // over the budget for the other phase.
 891       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 892         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 893       }
 894     } else {
 895       increase_used(actual*HeapWordSize);
 896     }
 897   }
 898 
 899   return result;
 900 }
 901 
 902 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
 903   ShenandoahHeapLocker locker(lock());
 904   return _free_set->allocate(req, in_new_region);
 905 }
 906 
 907 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
 908                                         bool*  gc_overhead_limit_was_exceeded) {
 909   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
 910   return allocate_memory(req);
 911 }
 912 
 913 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 914                                                              size_t size,
 915                                                              Metaspace::MetadataType mdtype) {
 916   MetaWord* result;
 917 
 918   // Inform metaspace OOM to GC heuristics if class unloading is possible.
 919   if (heuristics()->can_unload_classes()) {
 920     ShenandoahHeuristics* h = heuristics();
 921     h->record_metaspace_oom();
 922   }
 923 
 924   // Expand and retry allocation
 925   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 926   if (result != NULL) {
 927     return result;
 928   }
 929 
 930   // Start full GC
 931   collect(GCCause::_metadata_GC_clear_soft_refs);
 932 
 933   // Retry allocation
 934   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
 935   if (result != NULL) {
 936     return result;
 937   }
 938 
 939   // Expand and retry allocation
 940   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 941   if (result != NULL) {
 942     return result;
 943   }
 944 
 945   // Out of memory
 946   return NULL;
 947 }
 948 
 949 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
 950 private:
 951   ShenandoahHeap* const _heap;
 952   Thread* const _thread;
 953 public:
 954   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
 955     _heap(heap), _thread(Thread::current()) {}
 956 
 957   void do_object(oop p) {
 958     shenandoah_assert_marked(NULL, p);
 959     if (!ShenandoahForwarding::is_forwarded(p)) {
 960       _heap->evacuate_object(p, _thread);
 961     }
 962   }
 963 };
 964 
 965 class ShenandoahEvacuationTask : public AbstractGangTask {
 966 private:
 967   ShenandoahHeap* const _sh;
 968   ShenandoahCollectionSet* const _cs;
 969   bool _concurrent;
 970 public:
 971   ShenandoahEvacuationTask(ShenandoahHeap* sh,
 972                            ShenandoahCollectionSet* cs,
 973                            bool concurrent) :
 974     AbstractGangTask("Shenandoah Evacuation"),
 975     _sh(sh),
 976     _cs(cs),
 977     _concurrent(concurrent)
 978   {}
 979 
 980   void work(uint worker_id) {
 981     if (_concurrent) {
 982       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 983       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
 984       ShenandoahEvacOOMScope oom_evac_scope;
 985       do_work();
 986     } else {
 987       ShenandoahParallelWorkerSession worker_session(worker_id);
 988       ShenandoahEvacOOMScope oom_evac_scope;
 989       do_work();
 990     }
 991   }
 992 
 993 private:
 994   void do_work() {
 995     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
 996     ShenandoahHeapRegion* r;
 997     while ((r =_cs->claim_next()) != NULL) {
 998       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
 999       _sh->marked_object_iterate(r, &cl);
1000 
1001       if (ShenandoahPacing) {
1002         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1003       }
1004 
1005       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1006         break;
1007       }
1008     }
1009   }
1010 };
1011 
1012 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1013   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1014   workers()->run_task(&task);
1015 }
1016 
1017 void ShenandoahHeap::trash_cset_regions() {
1018   ShenandoahHeapLocker locker(lock());
1019 
1020   ShenandoahCollectionSet* set = collection_set();
1021   ShenandoahHeapRegion* r;
1022   set->clear_current_index();
1023   while ((r = set->next()) != NULL) {
1024     r->make_trash();
1025   }
1026   collection_set()->clear();
1027 }
1028 
1029 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1030   st->print_cr("Heap Regions:");
1031   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1032   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1033   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1034   st->print_cr("UWM=update watermark, U=used");
1035   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1036   st->print_cr("S=shared allocs, L=live data");
1037   st->print_cr("CP=critical pins");
1038 
1039   for (size_t i = 0; i < num_regions(); i++) {
1040     get_region(i)->print_on(st);
1041   }
1042 }
1043 
1044 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1045   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1046 
1047   oop humongous_obj = cast_to_oop(start->bottom());
1048   size_t size = humongous_obj->size();
1049   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1050   size_t index = start->index() + required_regions - 1;
1051 
1052   assert(!start->has_live(), "liveness must be zero");
1053 
1054   for(size_t i = 0; i < required_regions; i++) {
1055     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1056     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1057     ShenandoahHeapRegion* region = get_region(index --);
1058 
1059     assert(region->is_humongous(), "expect correct humongous start or continuation");
1060     assert(!region->is_cset(), "Humongous region should not be in collection set");
1061 
1062     region->make_trash_immediate();
1063   }
1064 }
1065 
1066 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1067 public:
1068   ShenandoahCheckCleanGCLABClosure() {}
1069   void do_thread(Thread* thread) {
1070     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1071     assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1072     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1073   }
1074 };
1075 
1076 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1077 private:
1078   bool const _resize;
1079 public:
1080   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1081   void do_thread(Thread* thread) {
1082     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1083     assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1084     gclab->retire();
1085     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1086       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1087     }
1088   }
1089 };
1090 
1091 void ShenandoahHeap::labs_make_parsable() {
1092   assert(UseTLAB, "Only call with UseTLAB");
1093 
1094   ShenandoahRetireGCLABClosure cl(false);
1095 
1096   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1097     ThreadLocalAllocBuffer& tlab = t->tlab();
1098     tlab.make_parsable();
1099     cl.do_thread(t);
1100   }
1101 
1102   workers()->threads_do(&cl);
1103 }
1104 
1105 void ShenandoahHeap::tlabs_retire(bool resize) {
1106   assert(UseTLAB, "Only call with UseTLAB");
1107   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1108 
1109   ThreadLocalAllocStats stats;
1110 
1111   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1112     ThreadLocalAllocBuffer& tlab = t->tlab();
1113     tlab.retire(&stats);
1114     if (resize) {
1115       tlab.resize();
1116     }
1117   }
1118 
1119   stats.publish();
1120 
1121 #ifdef ASSERT
1122   ShenandoahCheckCleanGCLABClosure cl;
1123   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1124     cl.do_thread(t);
1125   }
1126   workers()->threads_do(&cl);
1127 #endif
1128 }
1129 
1130 void ShenandoahHeap::gclabs_retire(bool resize) {
1131   assert(UseTLAB, "Only call with UseTLAB");
1132   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1133 
1134   ShenandoahRetireGCLABClosure cl(resize);
1135   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1136     cl.do_thread(t);
1137   }
1138   workers()->threads_do(&cl);
1139 
1140   if (safepoint_workers() != NULL) {
1141     safepoint_workers()->threads_do(&cl);
1142   }
1143 }
1144 
1145 // Returns size in bytes
1146 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1147   if (ShenandoahElasticTLAB) {
1148     // With Elastic TLABs, return the max allowed size, and let the allocation path
1149     // figure out the safe size for current allocation.
1150     return ShenandoahHeapRegion::max_tlab_size_bytes();
1151   } else {
1152     return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes());
1153   }
1154 }
1155 
1156 size_t ShenandoahHeap::max_tlab_size() const {
1157   // Returns size in words
1158   return ShenandoahHeapRegion::max_tlab_size_words();
1159 }
1160 
1161 void ShenandoahHeap::collect(GCCause::Cause cause) {
1162   control_thread()->request_gc(cause);
1163 }
1164 
1165 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1166   //assert(false, "Shouldn't need to do full collections");
1167 }
1168 
1169 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1170   ShenandoahHeapRegion* r = heap_region_containing(addr);
1171   if (r != NULL) {
1172     return r->block_start(addr);
1173   }
1174   return NULL;
1175 }
1176 
1177 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1178   ShenandoahHeapRegion* r = heap_region_containing(addr);
1179   return r->block_is_obj(addr);
1180 }
1181 
1182 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1183   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1184 }
1185 
1186 void ShenandoahHeap::prepare_for_verify() {
1187   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1188     labs_make_parsable();
1189   }
1190 }
1191 
1192 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1193   tcl->do_thread(_control_thread);
1194   workers()->threads_do(tcl);
1195   if (_safepoint_workers != NULL) {
1196     _safepoint_workers->threads_do(tcl);
1197   }
1198   if (ShenandoahStringDedup::is_enabled()) {
1199     ShenandoahStringDedup::threads_do(tcl);
1200   }
1201 }
1202 
1203 void ShenandoahHeap::print_tracing_info() const {
1204   LogTarget(Info, gc, stats) lt;
1205   if (lt.is_enabled()) {
1206     ResourceMark rm;
1207     LogStream ls(lt);
1208 
1209     phase_timings()->print_global_on(&ls);
1210 
1211     ls.cr();
1212     ls.cr();
1213 
1214     shenandoah_policy()->print_gc_stats(&ls);
1215 
1216     ls.cr();
1217     ls.cr();
1218   }
1219 }
1220 
1221 void ShenandoahHeap::verify(VerifyOption vo) {
1222   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1223     if (ShenandoahVerify) {
1224       verifier()->verify_generic(vo);
1225     } else {
1226       // TODO: Consider allocating verification bitmaps on demand,
1227       // and turn this on unconditionally.
1228     }
1229   }
1230 }
1231 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1232   return _free_set->capacity();
1233 }
1234 
1235 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1236 private:
1237   MarkBitMap* _bitmap;
1238   ShenandoahScanObjectStack* _oop_stack;
1239   ShenandoahHeap* const _heap;
1240   ShenandoahMarkingContext* const _marking_context;
1241 
1242   template <class T>
1243   void do_oop_work(T* p) {
1244     T o = RawAccess<>::oop_load(p);
1245     if (!CompressedOops::is_null(o)) {
1246       oop obj = CompressedOops::decode_not_null(o);
1247       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1248         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1249         return;
1250       }
1251       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1252 
1253       assert(oopDesc::is_oop(obj), "must be a valid oop");
1254       if (!_bitmap->is_marked(obj)) {
1255         _bitmap->mark(obj);
1256         _oop_stack->push(obj);
1257       }
1258     }
1259   }
1260 public:
1261   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1262     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1263     _marking_context(_heap->marking_context()) {}
1264   void do_oop(oop* p)       { do_oop_work(p); }
1265   void do_oop(narrowOop* p) { do_oop_work(p); }
1266 };
1267 
1268 /*
1269  * This is public API, used in preparation of object_iterate().
1270  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1271  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1272  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1273  */
1274 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1275   // No-op.
1276 }
1277 
1278 /*
1279  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1280  *
1281  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1282  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1283  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1284  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1285  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1286  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1287  * wiped the bitmap in preparation for next marking).
1288  *
1289  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1290  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1291  * is allowed to report dead objects, but is not required to do so.
1292  */
1293 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1294   // Reset bitmap
1295   if (!prepare_aux_bitmap_for_iteration())
1296     return;
1297 
1298   ShenandoahScanObjectStack oop_stack;
1299   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1300   // Seed the stack with root scan
1301   scan_roots_for_iteration(&oop_stack, &oops);
1302 
1303   // Work through the oop stack to traverse heap
1304   while (! oop_stack.is_empty()) {
1305     oop obj = oop_stack.pop();
1306     assert(oopDesc::is_oop(obj), "must be a valid oop");
1307     shenandoah_assert_not_in_cset_except(NULL, obj, cancelled_gc());
1308     cl->do_object(obj);
1309     obj->oop_iterate(&oops);
1310   }
1311 
1312   assert(oop_stack.is_empty(), "should be empty");
1313   // Reclaim bitmap
1314   reclaim_aux_bitmap_for_iteration();
1315 }
1316 
1317 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1318   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1319 
1320   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1321     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1322     return false;
1323   }
1324   // Reset bitmap
1325   _aux_bit_map.clear();
1326   return true;
1327 }
1328 
1329 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1330   // Process GC roots according to current GC cycle
1331   // This populates the work stack with initial objects
1332   // It is important to relinquish the associated locks before diving
1333   // into heap dumper
1334   ShenandoahHeapIterationRootScanner rp;
1335   rp.roots_do(oops);
1336 }
1337 
1338 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1339   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1340     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1341   }
1342 }
1343 
1344 // Closure for parallelly iterate objects
1345 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1346 private:
1347   MarkBitMap* _bitmap;
1348   ShenandoahObjToScanQueue* _queue;
1349   ShenandoahHeap* const _heap;
1350   ShenandoahMarkingContext* const _marking_context;
1351 
1352   template <class T>
1353   void do_oop_work(T* p) {
1354     T o = RawAccess<>::oop_load(p);
1355     if (!CompressedOops::is_null(o)) {
1356       oop obj = CompressedOops::decode_not_null(o);
1357       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1358         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1359         return;
1360       }
1361       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1362 
1363       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1364       if (_bitmap->par_mark(obj)) {
1365         _queue->push(ShenandoahMarkTask(obj));
1366       }
1367     }
1368   }
1369 public:
1370   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1371     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1372     _marking_context(_heap->marking_context()) {}
1373   void do_oop(oop* p)       { do_oop_work(p); }
1374   void do_oop(narrowOop* p) { do_oop_work(p); }
1375 };
1376 
1377 // Object iterator for parallel heap iteraion.
1378 // The root scanning phase happenes in construction as a preparation of
1379 // parallel marking queues.
1380 // Every worker processes it's own marking queue. work-stealing is used
1381 // to balance workload.
1382 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1383 private:
1384   uint                         _num_workers;
1385   bool                         _init_ready;
1386   MarkBitMap*                  _aux_bit_map;
1387   ShenandoahHeap*              _heap;
1388   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1389   ShenandoahObjToScanQueueSet* _task_queues;
1390 public:
1391   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1392         _num_workers(num_workers),
1393         _init_ready(false),
1394         _aux_bit_map(bitmap),
1395         _heap(ShenandoahHeap::heap()) {
1396     // Initialize bitmap
1397     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1398     if (!_init_ready) {
1399       return;
1400     }
1401 
1402     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1403     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1404 
1405     _init_ready = prepare_worker_queues();
1406   }
1407 
1408   ~ShenandoahParallelObjectIterator() {
1409     // Reclaim bitmap
1410     _heap->reclaim_aux_bitmap_for_iteration();
1411     // Reclaim queue for workers
1412     if (_task_queues!= NULL) {
1413       for (uint i = 0; i < _num_workers; ++i) {
1414         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1415         if (q != NULL) {
1416           delete q;
1417           _task_queues->register_queue(i, NULL);
1418         }
1419       }
1420       delete _task_queues;
1421       _task_queues = NULL;
1422     }
1423   }
1424 
1425   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1426     if (_init_ready) {
1427       object_iterate_parallel(cl, worker_id, _task_queues);
1428     }
1429   }
1430 
1431 private:
1432   // Divide global root_stack into worker queues
1433   bool prepare_worker_queues() {
1434     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1435     // Initialize queues for every workers
1436     for (uint i = 0; i < _num_workers; ++i) {
1437       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1438       task_queue->initialize();
1439       _task_queues->register_queue(i, task_queue);
1440     }
1441     // Divide roots among the workers. Assume that object referencing distribution
1442     // is related with root kind, use round-robin to make every worker have same chance
1443     // to process every kind of roots
1444     size_t roots_num = _roots_stack.size();
1445     if (roots_num == 0) {
1446       // No work to do
1447       return false;
1448     }
1449 
1450     for (uint j = 0; j < roots_num; j++) {
1451       uint stack_id = j % _num_workers;
1452       oop obj = _roots_stack.pop();
1453       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1454     }
1455     return true;
1456   }
1457 
1458   void object_iterate_parallel(ObjectClosure* cl,
1459                                uint worker_id,
1460                                ShenandoahObjToScanQueueSet* queue_set) {
1461     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1462     assert(queue_set != NULL, "task queue must not be NULL");
1463 
1464     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1465     assert(q != NULL, "object iterate queue must not be NULL");
1466 
1467     ShenandoahMarkTask t;
1468     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1469 
1470     // Work through the queue to traverse heap.
1471     // Steal when there is no task in queue.
1472     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1473       oop obj = t.obj();
1474       assert(oopDesc::is_oop(obj), "must be a valid oop");
1475       cl->do_object(obj);
1476       obj->oop_iterate(&oops);
1477     }
1478     assert(q->is_empty(), "should be empty");
1479   }
1480 };
1481 
1482 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1483   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1484 }
1485 
1486 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1487 void ShenandoahHeap::keep_alive(oop obj) {
1488   if (is_concurrent_mark_in_progress() && (obj != NULL)) {
1489     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1490   }
1491 }
1492 
1493 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1494   for (size_t i = 0; i < num_regions(); i++) {
1495     ShenandoahHeapRegion* current = get_region(i);
1496     blk->heap_region_do(current);
1497   }
1498 }
1499 
1500 class ShenandoahParallelHeapRegionTask : public AbstractGangTask {
1501 private:
1502   ShenandoahHeap* const _heap;
1503   ShenandoahHeapRegionClosure* const _blk;
1504 
1505   shenandoah_padding(0);
1506   volatile size_t _index;
1507   shenandoah_padding(1);
1508 
1509 public:
1510   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1511           AbstractGangTask("Shenandoah Parallel Region Operation"),
1512           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1513 
1514   void work(uint worker_id) {
1515     ShenandoahParallelWorkerSession worker_session(worker_id);
1516     size_t stride = ShenandoahParallelRegionStride;
1517 
1518     size_t max = _heap->num_regions();
1519     while (Atomic::load(&_index) < max) {
1520       size_t cur = Atomic::fetch_and_add(&_index, stride, memory_order_relaxed);
1521       size_t start = cur;
1522       size_t end = MIN2(cur + stride, max);
1523       if (start >= max) break;
1524 
1525       for (size_t i = cur; i < end; i++) {
1526         ShenandoahHeapRegion* current = _heap->get_region(i);
1527         _blk->heap_region_do(current);
1528       }
1529     }
1530   }
1531 };
1532 
1533 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1534   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1535   if (num_regions() > ShenandoahParallelRegionStride) {
1536     ShenandoahParallelHeapRegionTask task(blk);
1537     workers()->run_task(&task);
1538   } else {
1539     heap_region_iterate(blk);
1540   }
1541 }
1542 
1543 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1544 private:
1545   ShenandoahMarkingContext* const _ctx;
1546 public:
1547   ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1548 
1549   void heap_region_do(ShenandoahHeapRegion* r) {
1550     assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1551     if (r->is_active()) {
1552       // Check if region needs updating its TAMS. We have updated it already during concurrent
1553       // reset, so it is very likely we don't need to do another write here.
1554       if (_ctx->top_at_mark_start(r) != r->top()) {
1555         _ctx->capture_top_at_mark_start(r);
1556       }
1557     } else {
1558       assert(_ctx->top_at_mark_start(r) == r->top(),
1559              "Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1560     }
1561   }
1562 
1563   bool is_thread_safe() { return true; }
1564 };
1565 
1566 class ShenandoahRendezvousClosure : public HandshakeClosure {
1567 public:
1568   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1569   inline void do_thread(Thread* thread) {}
1570 };
1571 
1572 void ShenandoahHeap::rendezvous_threads() {
1573   ShenandoahRendezvousClosure cl;
1574   Handshake::execute(&cl);
1575 }
1576 
1577 void ShenandoahHeap::recycle_trash() {
1578   free_set()->recycle_trash();
1579 }
1580 
1581 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1582 private:
1583   ShenandoahMarkingContext* const _ctx;
1584 public:
1585   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1586 
1587   void heap_region_do(ShenandoahHeapRegion* r) {
1588     if (r->is_active()) {
1589       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1590       // anyway to capture any updates that happened since now.
1591       r->clear_live_data();
1592       _ctx->capture_top_at_mark_start(r);
1593     }
1594   }
1595 
1596   bool is_thread_safe() { return true; }
1597 };
1598 
1599 void ShenandoahHeap::prepare_gc() {
1600   reset_mark_bitmap();
1601 
1602   ShenandoahResetUpdateRegionStateClosure cl;
1603   parallel_heap_region_iterate(&cl);
1604 }
1605 
1606 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1607 private:
1608   ShenandoahMarkingContext* const _ctx;
1609   ShenandoahHeapLock* const _lock;
1610 
1611 public:
1612   ShenandoahFinalMarkUpdateRegionStateClosure() :
1613     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1614 
1615   void heap_region_do(ShenandoahHeapRegion* r) {
1616     if (r->is_active()) {
1617       // All allocations past TAMS are implicitly live, adjust the region data.
1618       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1619       HeapWord *tams = _ctx->top_at_mark_start(r);
1620       HeapWord *top = r->top();
1621       if (top > tams) {
1622         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1623       }
1624 
1625       // We are about to select the collection set, make sure it knows about
1626       // current pinning status. Also, this allows trashing more regions that
1627       // now have their pinning status dropped.
1628       if (r->is_pinned()) {
1629         if (r->pin_count() == 0) {
1630           ShenandoahHeapLocker locker(_lock);
1631           r->make_unpinned();
1632         }
1633       } else {
1634         if (r->pin_count() > 0) {
1635           ShenandoahHeapLocker locker(_lock);
1636           r->make_pinned();
1637         }
1638       }
1639 
1640       // Remember limit for updating refs. It's guaranteed that we get no
1641       // from-space-refs written from here on.
1642       r->set_update_watermark_at_safepoint(r->top());
1643     } else {
1644       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1645       assert(_ctx->top_at_mark_start(r) == r->top(),
1646              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1647     }
1648   }
1649 
1650   bool is_thread_safe() { return true; }
1651 };
1652 
1653 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1654   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1655   {
1656     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1657                                          ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1658     ShenandoahFinalMarkUpdateRegionStateClosure cl;
1659     parallel_heap_region_iterate(&cl);
1660 
1661     assert_pinned_region_status();
1662   }
1663 
1664   {
1665     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1666                                          ShenandoahPhaseTimings::degen_gc_choose_cset);
1667     ShenandoahHeapLocker locker(lock());
1668     _collection_set->clear();
1669     heuristics()->choose_collection_set(_collection_set);
1670   }
1671 
1672   {
1673     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1674                                          ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1675     ShenandoahHeapLocker locker(lock());
1676     _free_set->rebuild();
1677   }
1678 }
1679 
1680 void ShenandoahHeap::do_class_unloading() {
1681   _unloader.unload();
1682 }
1683 
1684 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1685   // Weak refs processing
1686   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1687                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1688   ShenandoahTimingsTracker t(phase);
1689   ShenandoahGCWorkerPhase worker_phase(phase);
1690   ref_processor()->process_references(phase, workers(), false /* concurrent */);
1691 }
1692 
1693 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1694   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1695 
1696   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1697   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1698   // for future GCLABs here.
1699   if (UseTLAB) {
1700     ShenandoahGCPhase phase(concurrent ?
1701                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1702                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1703     gclabs_retire(ResizeTLAB);
1704   }
1705 
1706   _update_refs_iterator.reset();
1707 }
1708 
1709 void ShenandoahHeap::set_gc_state_all_threads() {
1710   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1711   if (_gc_state_changed) {
1712     _gc_state_changed = false;
1713     char state = gc_state();
1714     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1715       ShenandoahThreadLocalData::set_gc_state(t, state);
1716     }
1717   }
1718 }
1719 
1720 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) {
1721   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1722   _gc_state.set_cond(mask, value);
1723   _gc_state_changed = true;
1724 }
1725 
1726 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1727   assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1728   set_gc_state_mask(MARKING, in_progress);
1729   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1730 }
1731 
1732 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1733   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1734   set_gc_state_mask(EVACUATION, in_progress);
1735 }
1736 
1737 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1738   if (in_progress) {
1739     _concurrent_strong_root_in_progress.set();
1740   } else {
1741     _concurrent_strong_root_in_progress.unset();
1742   }
1743 }
1744 
1745 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1746   set_gc_state_mask(WEAK_ROOTS, cond);
1747 }
1748 
1749 GCTracer* ShenandoahHeap::tracer() {
1750   return shenandoah_policy()->tracer();
1751 }
1752 
1753 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1754   return _free_set->used();
1755 }
1756 
1757 bool ShenandoahHeap::try_cancel_gc() {
1758   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1759   return prev == CANCELLABLE;
1760 }
1761 
1762 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1763   if (try_cancel_gc()) {
1764     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1765     log_info(gc)("%s", msg.buffer());
1766     Events::log(Thread::current(), "%s", msg.buffer());
1767   }
1768 }
1769 
1770 uint ShenandoahHeap::max_workers() {
1771   return _max_workers;
1772 }
1773 
1774 void ShenandoahHeap::stop() {
1775   // The shutdown sequence should be able to terminate when GC is running.
1776 
1777   // Step 0. Notify policy to disable event recording.
1778   _shenandoah_policy->record_shutdown();
1779 
1780   // Step 1. Notify control thread that we are in shutdown.
1781   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1782   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1783   control_thread()->prepare_for_graceful_shutdown();
1784 
1785   // Step 2. Notify GC workers that we are cancelling GC.
1786   cancel_gc(GCCause::_shenandoah_stop_vm);
1787 
1788   // Step 3. Wait until GC worker exits normally.
1789   control_thread()->stop();
1790 }
1791 
1792 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1793   if (!unload_classes()) return;
1794   // Unload classes and purge SystemDictionary.
1795   {
1796     ShenandoahPhaseTimings::Phase phase = full_gc ?
1797                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
1798                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1799     ShenandoahGCPhase gc_phase(phase);
1800     ShenandoahGCWorkerPhase worker_phase(phase);
1801     bool purged_class = SystemDictionary::do_unloading(gc_timer());
1802 
1803     ShenandoahIsAliveSelector is_alive;
1804     uint num_workers = _workers->active_workers();
1805     ShenandoahClassUnloadingTask unlink_task(phase, is_alive.is_alive_closure(), num_workers, purged_class);
1806     _workers->run_task(&unlink_task);
1807   }
1808 
1809   {
1810     ShenandoahGCPhase phase(full_gc ?
1811                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1812                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
1813     ClassLoaderDataGraph::purge(/*at_safepoint*/true);
1814   }
1815   // Resize and verify metaspace
1816   MetaspaceGC::compute_new_size();
1817   DEBUG_ONLY(MetaspaceUtils::verify();)
1818 }
1819 
1820 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1821 // so they should not have forwarded oops.
1822 // However, we do need to "null" dead oops in the roots, if can not be done
1823 // in concurrent cycles.
1824 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1825   uint num_workers = _workers->active_workers();
1826   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1827                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
1828                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1829   ShenandoahGCPhase phase(timing_phase);
1830   ShenandoahGCWorkerPhase worker_phase(timing_phase);
1831   // Cleanup weak roots
1832   if (has_forwarded_objects()) {
1833     ShenandoahForwardedIsAliveClosure is_alive;
1834     ShenandoahUpdateRefsClosure keep_alive;
1835     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
1836       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
1837     _workers->run_task(&cleaning_task);
1838   } else {
1839     ShenandoahIsAliveClosure is_alive;
1840 #ifdef ASSERT
1841     ShenandoahAssertNotForwardedClosure verify_cl;
1842     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
1843       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
1844 #else
1845     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
1846       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
1847 #endif
1848     _workers->run_task(&cleaning_task);
1849   }
1850 }
1851 
1852 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
1853   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1854   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
1855   ShenandoahGCPhase phase(full_gc ?
1856                           ShenandoahPhaseTimings::full_gc_purge :
1857                           ShenandoahPhaseTimings::degen_gc_purge);
1858   stw_weak_refs(full_gc);
1859   stw_process_weak_roots(full_gc);
1860   stw_unload_classes(full_gc);
1861 }
1862 
1863 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1864   set_gc_state_mask(HAS_FORWARDED, cond);
1865 }
1866 
1867 void ShenandoahHeap::set_unload_classes(bool uc) {
1868   _unload_classes.set_cond(uc);
1869 }
1870 
1871 bool ShenandoahHeap::unload_classes() const {
1872   return _unload_classes.is_set();
1873 }
1874 
1875 address ShenandoahHeap::in_cset_fast_test_addr() {
1876   ShenandoahHeap* heap = ShenandoahHeap::heap();
1877   assert(heap->collection_set() != NULL, "Sanity");
1878   return (address) heap->collection_set()->biased_map_address();
1879 }
1880 
1881 address ShenandoahHeap::cancelled_gc_addr() {
1882   return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of();
1883 }
1884 
1885 size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
1886   return Atomic::load(&_bytes_allocated_since_gc_start);
1887 }
1888 
1889 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1890   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
1891 }
1892 
1893 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
1894   _degenerated_gc_in_progress.set_cond(in_progress);
1895 }
1896 
1897 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
1898   _full_gc_in_progress.set_cond(in_progress);
1899 }
1900 
1901 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
1902   assert (is_full_gc_in_progress(), "should be");
1903   _full_gc_move_in_progress.set_cond(in_progress);
1904 }
1905 
1906 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
1907   set_gc_state_mask(UPDATEREFS, in_progress);
1908 }
1909 
1910 void ShenandoahHeap::register_nmethod(nmethod* nm) {
1911   ShenandoahCodeRoots::register_nmethod(nm);
1912 }
1913 
1914 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
1915   ShenandoahCodeRoots::unregister_nmethod(nm);
1916 }
1917 
1918 void ShenandoahHeap::flush_nmethod(nmethod* nm) {
1919   ShenandoahCodeRoots::flush_nmethod(nm);
1920 }
1921 
1922 oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
1923   heap_region_containing(o)->record_pin();
1924   return o;
1925 }
1926 
1927 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
1928   ShenandoahHeapRegion* r = heap_region_containing(o);
1929   assert(r != NULL, "Sanity");
1930   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
1931   r->record_unpin();
1932 }
1933 
1934 void ShenandoahHeap::sync_pinned_region_status() {
1935   ShenandoahHeapLocker locker(lock());
1936 
1937   for (size_t i = 0; i < num_regions(); i++) {
1938     ShenandoahHeapRegion *r = get_region(i);
1939     if (r->is_active()) {
1940       if (r->is_pinned()) {
1941         if (r->pin_count() == 0) {
1942           r->make_unpinned();
1943         }
1944       } else {
1945         if (r->pin_count() > 0) {
1946           r->make_pinned();
1947         }
1948       }
1949     }
1950   }
1951 
1952   assert_pinned_region_status();
1953 }
1954 
1955 #ifdef ASSERT
1956 void ShenandoahHeap::assert_pinned_region_status() {
1957   for (size_t i = 0; i < num_regions(); i++) {
1958     ShenandoahHeapRegion* r = get_region(i);
1959     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
1960            "Region " SIZE_FORMAT " pinning status is inconsistent", i);
1961   }
1962 }
1963 #endif
1964 
1965 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
1966   return _gc_timer;
1967 }
1968 
1969 void ShenandoahHeap::prepare_concurrent_roots() {
1970   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1971   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1972   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
1973   set_concurrent_weak_root_in_progress(true);
1974   if (unload_classes()) {
1975     _unloader.prepare();
1976   }
1977 }
1978 
1979 void ShenandoahHeap::finish_concurrent_roots() {
1980   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1981   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1982   if (unload_classes()) {
1983     _unloader.finish();
1984   }
1985 }
1986 
1987 #ifdef ASSERT
1988 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
1989   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
1990 
1991   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1992     if (UseDynamicNumberOfGCThreads) {
1993       assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
1994     } else {
1995       // Use ParallelGCThreads inside safepoints
1996       assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints");
1997     }
1998   } else {
1999     if (UseDynamicNumberOfGCThreads) {
2000       assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
2001     } else {
2002       // Use ConcGCThreads outside safepoints
2003       assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2004     }
2005   }
2006 }
2007 #endif
2008 
2009 ShenandoahVerifier* ShenandoahHeap::verifier() {
2010   guarantee(ShenandoahVerify, "Should be enabled");
2011   assert (_verifier != NULL, "sanity");
2012   return _verifier;
2013 }
2014 
2015 template<bool CONCURRENT>
2016 class ShenandoahUpdateHeapRefsTask : public AbstractGangTask {
2017 private:
2018   ShenandoahHeap* _heap;
2019   ShenandoahRegionIterator* _regions;
2020 public:
2021   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2022     AbstractGangTask("Shenandoah Update References"),
2023     _heap(ShenandoahHeap::heap()),
2024     _regions(regions) {
2025   }
2026 
2027   void work(uint worker_id) {
2028     if (CONCURRENT) {
2029       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2030       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
2031       do_work<ShenandoahConcUpdateRefsClosure>();
2032     } else {
2033       ShenandoahParallelWorkerSession worker_session(worker_id);
2034       do_work<ShenandoahSTWUpdateRefsClosure>();
2035     }
2036   }
2037 
2038 private:
2039   template<class T>
2040   void do_work() {
2041     T cl;
2042     ShenandoahHeapRegion* r = _regions->next();
2043     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2044     while (r != NULL) {
2045       HeapWord* update_watermark = r->get_update_watermark();
2046       assert (update_watermark >= r->bottom(), "sanity");
2047       if (r->is_active() && !r->is_cset()) {
2048         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2049       }
2050       if (ShenandoahPacing) {
2051         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2052       }
2053       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2054         return;
2055       }
2056       r = _regions->next();
2057     }
2058   }
2059 };
2060 
2061 void ShenandoahHeap::update_heap_references(bool concurrent) {
2062   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2063 
2064   if (concurrent) {
2065     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2066     workers()->run_task(&task);
2067   } else {
2068     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2069     workers()->run_task(&task);
2070   }
2071 }
2072 
2073 
2074 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2075 private:
2076   ShenandoahHeapLock* const _lock;
2077 
2078 public:
2079   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2080 
2081   void heap_region_do(ShenandoahHeapRegion* r) {
2082     // Drop unnecessary "pinned" state from regions that does not have CP marks
2083     // anymore, as this would allow trashing them.
2084 
2085     if (r->is_active()) {
2086       if (r->is_pinned()) {
2087         if (r->pin_count() == 0) {
2088           ShenandoahHeapLocker locker(_lock);
2089           r->make_unpinned();
2090         }
2091       } else {
2092         if (r->pin_count() > 0) {
2093           ShenandoahHeapLocker locker(_lock);
2094           r->make_pinned();
2095         }
2096       }
2097     }
2098   }
2099 
2100   bool is_thread_safe() { return true; }
2101 };
2102 
2103 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2104   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2105   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2106 
2107   {
2108     ShenandoahGCPhase phase(concurrent ?
2109                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2110                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2111     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2112     parallel_heap_region_iterate(&cl);
2113 
2114     assert_pinned_region_status();
2115   }
2116 
2117   {
2118     ShenandoahGCPhase phase(concurrent ?
2119                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2120                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2121     trash_cset_regions();
2122   }
2123 }
2124 
2125 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2126   {
2127     ShenandoahGCPhase phase(concurrent ?
2128                             ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2129                             ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2130     ShenandoahHeapLocker locker(lock());
2131     _free_set->rebuild();
2132   }
2133 }
2134 
2135 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2136   print_on(st);
2137   st->cr();
2138   print_heap_regions_on(st);
2139 }
2140 
2141 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2142   size_t slice = r->index() / _bitmap_regions_per_slice;
2143 
2144   size_t regions_from = _bitmap_regions_per_slice * slice;
2145   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2146   for (size_t g = regions_from; g < regions_to; g++) {
2147     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2148     if (skip_self && g == r->index()) continue;
2149     if (get_region(g)->is_committed()) {
2150       return true;
2151     }
2152   }
2153   return false;
2154 }
2155 
2156 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2157   shenandoah_assert_heaplocked();
2158 
2159   // Bitmaps in special regions do not need commits
2160   if (_bitmap_region_special) {
2161     return true;
2162   }
2163 
2164   if (is_bitmap_slice_committed(r, true)) {
2165     // Some other region from the group is already committed, meaning the bitmap
2166     // slice is already committed, we exit right away.
2167     return true;
2168   }
2169 
2170   // Commit the bitmap slice:
2171   size_t slice = r->index() / _bitmap_regions_per_slice;
2172   size_t off = _bitmap_bytes_per_slice * slice;
2173   size_t len = _bitmap_bytes_per_slice;
2174   char* start = (char*) _bitmap_region.start() + off;
2175 
2176   if (!os::commit_memory(start, len, false)) {
2177     return false;
2178   }
2179 
2180   if (AlwaysPreTouch) {
2181     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2182   }
2183 
2184   return true;
2185 }
2186 
2187 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2188   shenandoah_assert_heaplocked();
2189 
2190   // Bitmaps in special regions do not need uncommits
2191   if (_bitmap_region_special) {
2192     return true;
2193   }
2194 
2195   if (is_bitmap_slice_committed(r, true)) {
2196     // Some other region from the group is still committed, meaning the bitmap
2197     // slice is should stay committed, exit right away.
2198     return true;
2199   }
2200 
2201   // Uncommit the bitmap slice:
2202   size_t slice = r->index() / _bitmap_regions_per_slice;
2203   size_t off = _bitmap_bytes_per_slice * slice;
2204   size_t len = _bitmap_bytes_per_slice;
2205   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2206     return false;
2207   }
2208   return true;
2209 }
2210 
2211 void ShenandoahHeap::safepoint_synchronize_begin() {
2212   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2213     SuspendibleThreadSet::synchronize();
2214   }
2215 }
2216 
2217 void ShenandoahHeap::safepoint_synchronize_end() {
2218   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2219     SuspendibleThreadSet::desynchronize();
2220   }
2221 }
2222 
2223 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) {
2224   static const char *msg = "Concurrent uncommit";
2225   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
2226   EventMark em("%s", msg);
2227 
2228   op_uncommit(shrink_before, shrink_until);
2229 }
2230 
2231 void ShenandoahHeap::try_inject_alloc_failure() {
2232   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2233     _inject_alloc_failure.set();
2234     os::naked_short_sleep(1);
2235     if (cancelled_gc()) {
2236       log_info(gc)("Allocation failure was successfully injected");
2237     }
2238   }
2239 }
2240 
2241 bool ShenandoahHeap::should_inject_alloc_failure() {
2242   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2243 }
2244 
2245 void ShenandoahHeap::initialize_serviceability() {
2246   _memory_pool = new ShenandoahMemoryPool(this);
2247   _cycle_memory_manager.add_pool(_memory_pool);
2248   _stw_memory_manager.add_pool(_memory_pool);
2249 }
2250 
2251 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2252   GrowableArray<GCMemoryManager*> memory_managers(2);
2253   memory_managers.append(&_cycle_memory_manager);
2254   memory_managers.append(&_stw_memory_manager);
2255   return memory_managers;
2256 }
2257 
2258 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2259   GrowableArray<MemoryPool*> memory_pools(1);
2260   memory_pools.append(_memory_pool);
2261   return memory_pools;
2262 }
2263 
2264 MemoryUsage ShenandoahHeap::memory_usage() {
2265   return _memory_pool->get_memory_usage();
2266 }
2267 
2268 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2269   _heap(ShenandoahHeap::heap()),
2270   _index(0) {}
2271 
2272 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2273   _heap(heap),
2274   _index(0) {}
2275 
2276 void ShenandoahRegionIterator::reset() {
2277   _index = 0;
2278 }
2279 
2280 bool ShenandoahRegionIterator::has_next() const {
2281   return _index < _heap->num_regions();
2282 }
2283 
2284 char ShenandoahHeap::gc_state() const {
2285   return _gc_state.raw_value();
2286 }
2287 
2288 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2289 #ifdef ASSERT
2290   assert(_liveness_cache != NULL, "sanity");
2291   assert(worker_id < _max_workers, "sanity");
2292   for (uint i = 0; i < num_regions(); i++) {
2293     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2294   }
2295 #endif
2296   return _liveness_cache[worker_id];
2297 }
2298 
2299 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2300   assert(worker_id < _max_workers, "sanity");
2301   assert(_liveness_cache != NULL, "sanity");
2302   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2303   for (uint i = 0; i < num_regions(); i++) {
2304     ShenandoahLiveData live = ld[i];
2305     if (live > 0) {
2306       ShenandoahHeapRegion* r = get_region(i);
2307       r->increase_live_data_gc_words(live);
2308       ld[i] = 0;
2309     }
2310   }
2311 }